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Abstract

Understanding the factors that influence the outcome of crop interactions with microbes is key to
managing crop diseases and improving yield. While the composition, structure and functional profile of
crop microbial communities are shaped by complex interactions between the host, microbes and the
environment, the relative contribution of each of these factors is mostly unknown. Here, we profiled the
community composition of bacteria across leaves of 3,024 rice (Oryza sativa) accessions from field trials
in China and the Philippines using metagenomics. Despite significant differences in diversity between
environments, the structure and metabolic profiles of the microbiome appear to be conserved, suggesting

that microbiomes converge onto core functions. Furthermore, co-occurrence analysis identified microbial
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hubs that regulate the network structure of the microbiome. We identified rice genomic regions controlling
the abundance of these hubs, enriched for processes involved in stress responses and carbohydrate
metabolism. We functionally validated the importance of these processes, finding that abundance of hub
taxa was different in rice mutants with altered cellulose and salicylate accumulation, two major
metabolites at the host-microbe interactions interface. By identifying key host genomic regions, host traits
and hub microbes that govern microbiome composition, our study opens the door to designing future

cropping systems.

Introduction

Plant colonization of terrestrial habitats ignited the formation of biodiverse systems, termed phytobiomes,
in which plants co-evolve with unicellular and multicellular organisms in fluctuating environmental
conditions. In phytobiomes, plants are in constant interaction with microbial communities that adapted to
colonize plant tissues, termed microbiomes (1). Microbes in these communities may have (nearly) neutral,
harmful or beneficial effects on plant fitness. Benefits conferred by microbes to their host plants can be
direct through protection from attacks and stressful environmental conditions, or indirect through the

enhancement of plant resistance responses and/or plant growth (2—6).

Ecological theories suggest that microbiomes do not assemble randomly but that their formation is
governed by complex interactions among microbes, host and environment (7,8). Understanding these
complex interactions will help translational research to improve agronomic traits. The first step is to
characterize and identify the mechanisms that drive the microbial community composition by quantifying
the richness and diversity of taxa. The second step is to identify microbe-microbe metabolic interactions
and host genetic factors, to define the ecological network structure (9—-11). However, due to a lack of
large-scale studies we still have only limited mechanistic insight into the identity and relative importance

of factors that shape host-microbe interactions.

Asian rice (Oryza sativa L.) is grown globally and forms the staple food for over fifty percent of the
world’s population. As part of the 3,000 Rice Genomes Project (3K-RGP) we recently completed the re-
sequencing of a large genetic diversity panel comprised of 3,024 accessions from all major rice varietal
groups(12,13). These accessions are adapted to a wide variety of agro-ecosystems and possess extensive
heritable trait diversity, which in turn may influence microbiome assembly. Furthermore, the 3K-RGP
panel has been used successfully to identify the genetic architecture underlying a number of complex

morphological and phenological traits.
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Here, we performed in-depth analyses of the meta-genomes of the 3,024 rice accessions to identify factors
that drive microbiome assembly in the rice phyllosphere. We successfully captured the composition,
structure, and functional profile of the leaf microbiomes of these accessions growing in two major areas
of rice production, China and the Philippines. Our analyses showed that despite differences in the presence
and abundance of individual microbial taxa the composition of the microbiome converges onto similar
core metabolic functions in both environments. We discovered central taxa that as microbial “hubs” have
an outsized influence on the network of host-microbe interactions and identified host genomic regions that
control their abundance. These genomic regions were enriched for peroxisome-located processes involved
in stress responses and carbohydrate metabolism. We functionally confirmed that host genetic variation
in cellulose and salicylate accumulation can impact microbiome composition. The production of these
compounds partially relies on peroxisome-located metabolism, and they play critical roles at the interface
of host-microbe interactions. Our data provides insight into the mechanisms that drive microbiome
assembly and opens the door for future initiatives to engineer consortia of beneficial microbes for crop

performance improvement.

Results

Metagenome sequencing of the 3K-RGP accessions captures the rice leaf microbiome diversity. To
characterize the rice leaf microbiome, we analyzed the metagenomic data from our 3K-RGP panel as
explained in Fig. S1. Our panel contains sequencing data from 2,466 rice accessions grown in the
Philippines (agPh) and 558 accessions grown in China (agCh). Microbial reads were identified after
filtering against five reference rice genomes. Overall, 75% of the reads corresponded to Eubacteria and
Archaea (Supplementary Table S1). We assessed species richness by measuring species accumulation
(observed richness) and evenness. The accumulation curves across environments reached a plateau at 600
microbial genera present in a minimum of 100 rice accessions (Fig. S2A), and the average evenness values
suggested a similar distribution of species abundance (Fig. S2B). Increasing the number of rice accessions
in either agPh or agCh, did not result in the detection of more microbial genera. To account for differences
in sample size, we calculated rarefied species richness and observed a higher number of genera in agCh
(Fig. S2C). The total richness and alpha diversity (effective Shannon diversity) values were similar to
other plant leaf microbiomes (11,14,15) and showed that agCh harbored 1.5 times more diversity than
agPh (Fig. 1A-B; Supplementary Table S2). The higher values found in agCh might be associated with
accessions being exposed to an array of microbial taxa missing or having lower abundance in the agPh

environment (Fig 1C). Indeed, a major driver of microbiome diversity is the availability of microbes
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captured from the environment (9,10,16). Overall, our 3K-RGP meta-genomic sequencing effort
successfully captured the leaf microbiome and identified the environment as a major factor that impacts

microbial community diversity (9,17-20).

Host environment and genotype shape the rice leaf microbiome. To further dissect differences in
microbial community composition of agPh and agCh, we compared the relative abundance of Eubacteria
and Archaea at different taxonomical levels. We found that 27% and 57% of the dissimilarity occurred at
Phylum and genus level, respectively (Supplementary Table S3, S4). Proteobacteria, Firmicutes,
Actinobacteria, Cyanobacteria, Tenericutes, and Euryarchaeota were the most abundant phyla (Fig 1D),
resembling the abundances of these phyla in the leaf microbiomes of other crops (11,21-23). Interestingly,
Euryarchaeota, which include methanogenic bacteria, and are frequently found under the anaerobic
conditions in the rice paddies, were only marginally present in the aerobic phyllosphere (9,22).
Presumably because of the aerobic conditions in the phyllosphere, we did not detect members of taxa

commonly found in the soil or rhizosphere either (9,17-20).

While the microbiomes of agCh and agPh harbored 152 and 121 genera with relative abundance higher
than 0.1%, respectively, only 25 genera contributed to the dissimilarities between them (Fig. 1D,
Supplementary Table S3). These genera are common members of the leaf microbiomes of other crop plant
species (9,24). For example, the genera Propionibacterium, Agrobacterium, Acidovorax, and
Enterobacter were over four times more abundant in agCh than in agPh while Xanthomonas and Serratia
showed the reverse pattern (Fig. 1D, Supplementary Table S4). Most of these genera include species that
are oxygen-tolerant and capable of colonizing plant or animal hosts (Supplementary Table S4),
contributing to a picture of the rice phyllosphere as a favorable environment for aerobic taxa. One factor
that may account for the dissimilarities in the microbiome compositions of agPh and agCh, might be a
difference in agricultural practices between the two environments. Different human interventions could
lead to alternative routes in the horizontal acquisition of taxa in the microbiome (8,25,26). To confirm
that agricultural practices could form a factor that shapes the leaf microbiome we needed to rule out that
major genera were not artificially introduced during sample collection. To this end, we used gPCR to
detect 11 highly abundant genera in 18 randomly selected accessions from our 3K-RGP panel
(Supplementary Table S5). We were able to quantify the presence of all taxa and observed a similar
distribution across accessions (Fig. S3). Similar to our previous findings, the genera Pseudomonas,
Xanthomonas, Mycoplasma, and Mycobacterium were the most abundant genera, ruling out that highly

abundant genera were introduced artificially.
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Another factor that shapes the microbiome is the host genotype (10,16,19,27). To evaluate the extent to
which host genotype impacts the assembly of microbial communities, we compared a number of diversity
indices among 12 rice varietal groups and proximal clusters that act as a proxy for host genotype (13).
We found that the richness and evenness values were strongly influenced by host genotype, whereas the
diversity value was affected by the environment (Fig. 2, Supplementary Table S6). Eight out of 12 rice
varietal groups and proximal clusters harbored a similar number and distribution of microbial genera,
independent of the fact that plants in these groups and clusters were grown in different environments.
Despite this significant effect of host genotype, heritability values for the most abundant genera in agPh
and agCh were relatively low (Fig. S4) (16,23). This pattern would be expected if accessions in the groups
and clusters each carry different combinations of alleles underlying trait differences that influence
microbiome composition, i.e. if the genetic basis for such traits is diffuse. If this is the case, then certain

host traits should explain more of the variation in the composition of the rice leaf microbiome.

Accessions in different rice varietal groups and proximal clusters are known to have adapted
independently to the same agro-ecosystems, often converging on the same traits. Indeed, we find that the
agro-ecosystem in which accessions were originally collected explained a significant amount of variation
in microbiome composition independent of the experimental conditions (Fig. S5, Supplementary Table
S7). Overall, our data suggest that environment plays a key role in determining variation in microbial
community composition. However, other factors such as host genetic background and traits associated

with adaptation to particular ecologies further condition the assembly of the leaf microbiome (28-30).

The rice leaf microbiome structure is conserved despite differences in community composition. The
establishment and maintenance of the microbial community is further shaped by networks of interactions
among microbes (1,31,32). To identify essential microbial relationships, we inferred co-occurrence
ecological networks from the agCh and agPh datasets. Interestingly and despite significant differences in
composition, agCh and agPh assembled communities with similar structures (Fig. 3A), suggesting similar
network properties. Although the mechanism that favors co-existence of highly diverse microbial
community remains uncharacterized, this shows that community assembly might follow specific rules
independent of the availability of taxa for recruitment. We identified seven highly connected genera or
“hubs” in networks of microbes colonizing agCh and agPh (Fig. 3A, Supplementary Table S8-S9).
Moreover, the networks for plants in both environments shared Clostridium, Mycoplasma, and

Helicobacter as three hubs with the highest number of connections and positive associations (Ieearson > 0.7,
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P-value < 0.001) (Supplementary Table S7, Supplementary Table S8). The hubs genera appear to stabilize
the network of interactions because when we artificially removed these genera from the analysis the
interactions were lost (Fig. S6). Similar to other studies (31,33), our results suggest that the hub genera
have a regulatory effect on the network of microbial interactions and or may play an important ecological
role in the microbial community. The connectivity of a genus within the network did not correlate with
the abundance of that genus. For example, the highly-abundant genera Xanthomonas and Streptococcus
were not identified as hubs, while Helicobacter, with less than 1% abundance, still plays a role in shaping
the network of interactions (33-35). We are aware that other inter-kingdom interactions might be driving
the differences in microbial community composition (33,36), but their influence appears to be limited in

the case of the rice leaf microbiome.

We next analyzed the network topology to reveal modular interaction patterns. We found that the networks
for both agCh and agPh had seven modules (Fig. 3A, Supplementary Table S8-S9). This structure suggests
a highly stable network since a microbial community appears to reach an equilibrium when its network of
interactions has a small number of modules (31). Compared to other studies (9,20), we found that most of
the modules were not organized randomly but rather shaped by microbial genetic ancestry, biological
function, or ecological niche. For instance, we found that one module was enriched with Cyanobacteria,
while another module showed enrichment for plant growth-promoting bacteria (Supplementary Table S7
and S8). This aligns with the idea that some microbes in the phyllosphere adapted to the leaf surface
conditions (31). While the data suggest that members of the same module might have strong biochemical
associations, it is not clear if modules overlap in the roles they play, or if members co-localize to the same
leaf sub-compartments. Overall, the leaf microbiome structure is likely defined more strongly by the
biological functions of modules than by the diversity or abundance of individual taxa (23,37-39). The fact
that we identified the same hubs genera in two independent datasets, from two different rice growing
environments, strongly aligns with the ideas that hubs have an outsized role in shaping the microbial

community and that community assembly follows certain rules (1).

The functional profile of the leaf microbiome is conserved despite differences in microbial
composition. If the structure of the microbial community is defined by rules that depend on the overall
function of each module of microbial taxa (1,31,34), then the microbes of agCh and agPh should share
metabolic profiles. We predicted functional categories for the microbial taxa and found that the
communities on agCh and agPh exhibited similar profiles (Fig 3B, Supplementary Table S10). Both
datasets shared 22 of 24 KEGG level 2 pathways (Fig 3B, Supplementary Table S10). The most abundant
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pathways, also common to other leaf microbiomes, were associated with transcription, carbohydrate
metabolism, translation, environmental adaptation, metabolism of terpenoids, and amino acid metabolism
(20,37,40,41). The presence of common categories such as xenobiotic biodegradation and biosynthesis of
secondary metabolites might indicate microbial adaptation to agricultural practices in each rice-growing
environment (1,22,42). Interestingly, the microbes of agCh contained five more pathways for carbon
fixation, than those of agPh, which might be caused by adaptation to differences in climatic conditions or
light exposure on the leaf surface (43,44). The redundancy of functions and hub genera in the leaf
microbiomes of both environments supports the idea of a core set of microbes in each community that is
under selective pressure from complex microbiome-host interactions to provide essential functions for the

community, which aligns with the concept of a functional entity or holobiont (1,43).

The nature of our experiment prevented us to test if the leaf microbiome had different metabolic profiles
compared to microbial communities in the soils or roots in the same experimental conditions in the two
environments. Due to these limitations, we used other available plant microbiome datasets to estimate
functional categories. We evaluated three shotgun metagenome sequencing datasets (rice soil, wheat soil,
and rice leaf) and three 16S rDNA databases (rice root endosphere, rice rhizosphere, and maize leaf)
(Supplementary Table S11). As expected, samples profile with different sequencing technologies formed
separate clusters (Fig. S7). Despite the fact that 16S rDNA and shotgun meta-genome sequencing captured
different types of information, samples profiled with either technique showed that microbiomes of leaves,
roots, and soils have consistently different functional profiles (Fig. S7). This result aligned with other
studies finding that biological functions of microbial community are linked to the plant tissues and soil
compartments of origin (33,38,41,45). In summary, it is likely that key microbial genera (“hubs’’) make
an important contribution to organizing the leaf microbiome as a network of microbial modules that

perform a complex of functional roles tailored to the phyllosphere.

Rice metabolic pathways modulate the leaf microbial community. To identify rice genetic factors that
may control the recruitment and establishment of the microbial hub genera, we conducted a genome-wide
association study (GWAS) on 3,024 rice accessions, using the genomic information from 6.5 million SNPs
and the relative abundance of the three key hubs that were present in both environments: Helicobacter,
Mycoplasma, and Clostridium. Overall, we found 32 significant SNPs associated with hub abundance (P-
value < 1E-15, ci = 0.95), distributed across nine chromosomes (Fig. 4A, Supplementary Table S12).
Thirty out of 32 SNPs were located within 16 annotated rice genes (Supplementary Table S13). Eleven
SNPs had a missense effect on nine of the 16 genes. Linkage disequilibrium analysis identified 19
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haplotype blocks ranging from 30 to 130 kb and spanning 180 candidate genes (Supplementary Table
S14).

To assess if any of these genes have been previously associated with rice agronomic traits, we used the
rice quantitative trait locus (QTL) database, Q-TARO. Overall, the 180 candidate genes mapped to 65
QTLs distributed in different categories: biotic or abiotic stresses (24 QTLs), morphological traits (23
QTLs), and physiological traits (18 QTLS) (Fig. 4B, Supplementary Table S14). In addition, 36 candidate
genes were connected to each other in pathways related to stress responses, carbohydrates metabolism,
and amino acid metabolism whose enzymatic reactions take place for an important part in the peroxisome
(Supplementary Table S15). Host genetic factors involved in the same processes were linked to leaf
microbiome assembly in similar studies in Arabidopsis, Nicotiana, and maize (23,32,46,47). This makes
it likely that allelic variation in certain host genes influences he abundance of hub genera and this the

composition of the rice leaf microbiomes.

To test the hypothesis that single host genes involved in stress responses and carbohydrate metabolism
could modulate the leaf microbiome, we performed 16S rDNA sequencing on the apoplastic fluid of rice
lines with different accumulation of salicylate and cellulose — two compounds whose production takes
place partially in the peroxisome. For cellulose accumulation, we compared microbial community profiles
on the Indica rice cultivar IR24 and its Xa4-containing near-isogenic line (IR24+Xa4). The protein XA4
is a cell-wall associated kinase involved in cellulose accumulation, which influences leaf mechanical
strength and defense responses to bacterial infection (48). For salicylate production, we compared the
microbiomes of the Japonica rice line Rojolele (accession R711) to its overexpressing line (R711+SAo0x).
The latter line constitutively expresses the bacterial genes entC and pmsB, encoding for isochorismate
synthase and isochorismate-pyruvate lyase, respectively (49). Both genes are involved in the salicylic acid
biosynthetic pathway, a phytohormone with a key role in stress responses. In both scenarios, the bacterial
richness decreased, while the abundance of Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes
fluctuated when the alleles of interest were present (Fig. 5 A-D, Supplementary Table S16). The line
IR24+Xa4 showed a reduction in the abundance of Actinobacteria, but an increase in Proteobacteria and
Firmicutes (Fig 5A). At the same time, all phyla showed a substantial decrease in the number of genera
by which they are represented in the microbiome (Fig. 5C). The line R711+SAox had a decrease in the
abundance of Firmicutes and increase in Proteobacteria (Fig 5B). Nevertheless, the reduction in the
number of genera present was less dramatic than in the IR24 - IR24+Xa4 comparison (Fig. 5C, D). The

small difference detected in abundance, despite the decrease in the number of genera present, indicated
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that the remaining genera acclimated or adapted to the stressful environmental presence of increase
salicylate accumulation by occupying the spaces left by the decline of other genera. A closer look at the
hub genera showed that the majority of hubs remained unaltered, and that only two hub genera experience
significant changes in abundance between the lines (Fig. 5E, F). For instance, Bacillus, Pseudomonas, and
Helicobacter increased in abundance in IR24+Xa4 and R711+SAox lines compared to IR24 and R711,
respectively. In the case of Clostridium, the salicylate and cellulose accumulation appears to correlate with
a reduction in the abundance of this hub. Finally, Sphingobium abundance change was specific to the
stress signal. In IR24+Xa4 the abundance of this genera increased while in R711+SAox decrease,
compared to their respective controls. The exacerbation of cellulose and salicylate accumulation in these
lines appears to modulate the presence of specific microbial groups in the apoplast, suggesting that the
host might reshape the composition of the microbial community in a controlled fashion. Additional
evidence is needed to understand the driving forces behind the modulation of the abundance of hub genera

and any independent or knock-on effects on the abundance of other microbial taxa.

Conclusions

Microbial communities that live in association with plants carry a great diversity of metabolic capabilities
and often influence broad aspects of plant biology. In agricultural environments, the composition of these
communities affects overall crop performance by contributing to important plant functions such as
vegetative growth, nutrient uptake, and immune responses, among others (2,6,41). Efforts to understand
and exploit such capabilities may bring exciting opportunities to design future cropping systems. Using
meta-genomic profiling of the 3K-RGP panel, we described the regulatory factors that shape the rice leaf
microbiome. Our results indicated that the environment is the main reservoir of microbial diversity.
Common agricultural practices, such as crop irrigation or the use of animal labor, might also explain how
microbes from other niches are usually part of the phyllosphere. The structure of the leaf microbiome is
most likely determined by ecological networks that perform core functions. Some of these functions, such
as carbon fixation or xenobiotics degradation, suggest adaption to the leaf environment in the context of
modern agriculture. Moreover, the networks revealed key microbial groups that regulate the establishment
of the community but also appear to be controlled genetically by the host. It is not surprising that some of
the identified regions are enriched in genes related to stress response since the microbiome evolved to
interface and react to environmental variation. Our results validate the idea that both, the plant and the

microbiome, shape the network of interactions and therefore co-evolutionary tracks are inevitable. Give
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the scale of the dataset, we have taken the first steps in unearthing the factors behind microbiome assembly

in rice, which can be harnessed for engineering future crop improvements.

Methods

Genomic source

To describe the rice leaf microbiome, we used the 3,000 Rice Genomes Project database (12). This
database was originally created to gather information about the rice genetic variation. The lines were
planted in two different environments. Around 2,466 accessions at the International Rice Research
Institute, in the Philippines, and 558 accessions at the Chinese academy of Agricultural Science in China.
The lines include five varietal groups: Indica, Japonica, Aus, Aromatic and admixed (13). Indica and
Japonica can be further subdivided into genetically proximal clusters (13). Japonica has four clusters
(Japx, Tropical Japonica (named trop), Subtropical Japonica (named subtrop), and Temperate Japonica
(named temp)). Indica has five clusters (Indx, Ind1A, Ind1B, Ind2, and Ind3). The database also includes
information on country of origin, breeding classification, and ecosystem. Here we repurposed the database
to gather information about the rice leaf microbiome (see Figure S1 for details about the project). We
mapped each rice accession genome to the five reference rice genomes (Nipponbare, 93-11, IR64,
Kasalath, and DJ123) with the software BWA v0.7.10 (50). We extracted the reads that did not map to the
five rice genomes with samtools v1.0 (51). The reads were converted to Fasta files with BEDtools v2.17.0
(52) and used as entries for the software Kraken v1.0 (53). This software classified the reads from Phylum
to Genus-levels based on the bacteria and archaea database from RefSeq NCBI database (release 69). To
estimate taxa abundance we used the Bayesian-based tool Bracken v1.0 (54). We kept the genera that were

present in at least 10% of samples for further analysis.

Diversity estimation

For composition analysis we used the relative abundance normalization on the count matrix, where the
read counts for a taxa-level in a given sample were divided by the sum of all counts in that sample. To
calculate the richness and diversity indexes, we use the R package Vegan v2.5-3. To check homogeneity
of variance across samples we used the classical Levene’s test with mean. Comparison of alpha diversity
values were performed with ANOVA and the linear model y ~ environment, where vy is the richness,
evenness or effective Shannon diversity. For ad-hoc analysis we used Wilcoxon and Kruskal-Wallis tests.
To calculate dissimilarity indices in the microbial community, we run the Vegan function vedgist with the

Bray-Curtis method and the function wecmdscale to plot a weighted principal coordinates analysis. To
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identify which taxa contributes to dissimilarities between environments, we used the function Simper from
the R package Vegan. We used the relative abundance of Phyla or genus as microbial community matrix,
environment as grouping factor and 100 permutations. For comparison among the rice varietal groups and
among clusters, we set the linear model y ~ rice varietal group*environment, where y was richness,
evenness or effective Shannon diversity. Then we adjusted the linear model to the means of the factor
environment with the least-squares means function in R package Emmeans v1.3.3. We used 95%
confidence interval and Tukey-adjusted comparisons. To estimate broad heritability of the most abundant
genera within environment, we used the R package Ime4 v1.1-19 to fit a random effect linear model. The
abundant genera were normalized to relative abundance and the fixed variable was rice varietal group. To
estimated heritability, we divided the variance of the model to the sum of all variances and residuals. We
plotted the values for each environment and genera. To evaluate if other factors shape the microbial
community, we used 467 accession grown in Philippines that have full information about country of
origin, breeding classification, and ecosystem. We calculated a distance matrix with the R package Vegan
and visualized the distribution of microbial abundance taxa with a canonical correspondence analysis. For

correlations we used the chi-square values.

Quantification of 16S from abundant genera

To validate the results from 3K-RGP metagenome analysis, we amplified and quantified eleven of the
most abundant genera in 18 randomly selected rice accessions from the 3K-RGP. The 18 accessions were
five Indica, five Japonica, two Aus, four Admix, and two Aromatic. We grew the plants in glasshouse
conditions at The International Rice Research Institute and harvested the leaves at 21 days old. We cleaned
the leaves with ethanol, bleach and water before DNA extraction. DNA was extracted with CTAB method
(12). The DNA was aliquoted in similar concentrations for the gPCR. For amplification and quantification,
we used the StepOnePlus™ Real-Time PCR System and SYBR Green following manufacturer protocol
(Applied Biosystems). We selected published primers for Pseudomonas sp., Burkholderia sp.,
Mycoplasma sp., Streptomyces sp., Methylobacterium sp and 16s rDNA region V34 (Supplementary Table
S6). We designed primers for Mycobacterium sp., Xanthomonas sp., Alteromonas sp., Pantoea sp.,
Spiroplasma sp., Bacillus sp. and Clostridium sp. For comparisons, all samples were normalized to the
16S rDNA region V34 and plotted in logarithmic scale. We included primers for Spiroplasma to validate

that the reads assigned to Mycoplasma were not a wrong annotation.

Microbial ecological network and functional analysis
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For the microbiome microbial ecological network we used the program SpiecEasi v0.1.4 (55). As the
program is sensitive to rare species, we removed all the genera that were not present in at least 50% of all
the samples from the count matrix. We used the absolute counts as the program does a center-log-
transformation. We did the analysis with the Meinshausen-Buhlmann's neighborhood method and the
following parameters, lambda.min.ratio=1e-2, nlambda=20, pulsar.params=list (rep.num=100, ncores=7)
(55). The program was run in R and the network was plotted with Gephi v0.9.2. The functional profile
for agCh and agPh was predicted with the web-based tool Vikodak v1.0 under the co-metabolism
algorithm workflow (56). Briefly, this algorithm is based on the assumption that genes present by various
microbes in the microbial community contribute to specific metabolic pathway(s). The functions were
classified with KEGG hierarchy levels. For further comparisons, we kept pathways with more than 1%

abundance. We run a Wilcoxon rank sum test to compare the agCh and agPh microbial profiles.

Genome Wide Association Study

We implemented PLINK 1.9 (61) and GEMMA 0.97 (58) for the population stratification and SNP-based
association test. We kept Chinese (agCh) and Philippines (agPh) rice accessions together because some
agCh lack SNP information, which will bias the association analysis. For the analysis we used 6.5 million
filtered rice SNPs from the 29 million bi-allelic SNPs retrieved from the Rice SNP-Seek Database v0.4
(snp-seek.irri.org). We excluded SNPs with lower genotypic rate (>95%) and minor allele frequency
(MAF < 0.01). We removed the SNPs that fail the Hardy-Weinberg equilibrium test (P < 0.0001). We
performed GWAS with the centered log ratio-transformed abundance of the three hubs Clostridium,
Helicobacter and Mycoplasma as phenotypic trait. We used abundance because our hypothesis is that hubs
have a strong effect on the microbiome interactions, and the ecological network was build based on co-
abundance. We also run the analysis using other genus from the network and we found overlapping in
some SNPs. We run GWAS with the GEMMA multivariable linear model and identified significant SNPs
by filtering with False Discovery Rate (FDR <0.01) and P-value (P-value <1E-15). The Manhattan plots
and quantile-quantile (Q-Q) plot were created with the R package ggman v.0.1.3. We determine the
expected and observed probabilities of SNPs association with Q-Qplot. We grouped the significant
markers by haploblocks based on the linkage disequilibrium decay (LD<0.3) and correlation coefficients
(r?> 0.6) in each chromosome using Haploview v4.2 (59,60). We identify and described the genes by
gene ontology annotation, QTL overlapping, RiceNet v2 interactions and SNP effect based on the

information from SNP-Seek Database (snp-seek.irri.org) (Dataset S13).
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To validate the GWAS results, we evaluated the effect of stress response pathway on the microbiome
composition. We selected rice lines available at the International Rice Research Institute. The rice lines
IR24 and R711 were used as controls and compared to the lines IR24+Xa4 and R711+SAox which had
altered cellulose and salicylate accumulation levels, respectively. The rice line IR24+Xa4, has the gene
Xa4 in the IR24 background. The gene Xa4, is associated with cell-wall reinforcement and was introduced
as part of breeding programs. The line R711+SAox has the genes entC and pmsB, related to the salicylic
acid biosynthetic pathway. The gene construct containing both EntC and pmsB genes under CaMV 35S
promoter fused with plastid targeting sequence (49) was inserted to a modified pPCAMBIA 1300 and
transformed in the rice cultivar Rojolele accession number R711 following the modified method of Toki
et al (61). The presence of transgenes in the progenies were detected by PCR amplification. We extracted
the leaf apoplastic fluids from IR24, IR24+Xa4, R711 and R711+SAox and recover the 16S rDNA by
PCR amplification. We used apoplastic fluids instead of whole tissue to avoid overrepresentation of plastid
DNA and to reduce noise by using only endophytes. Using apoplast, instead of whole tissue, we reduced
80% the chloroplast contamination. For the apoplastic fluids extraction, we used negative pressure with a
syringe to force water into the apoplast and then by centrifugation (1000 rcf, 10 min, 4 C) wash out the
apoplastic fluids. For the 16S enrichment we performed a PCR with Q5® High-Fidelity DNA Polymerase
(New England Biolabs), the forward primer 341F and the reverse primer 806R to cover the VV3/V4 region.
To test for bacteria contamination, we did a PCR with the water used for apoplast extraction. If we did not
observe bands with water as template, we pooled PCR products from six samples of the same rice line and
send the pool for sequencing. We sent 5 ug (total mass) of pooled PCR products to BGI group
(https://www.bgi.com) for 16S Amplicon Sequencing with Illumina MiSeq PE300 using the 16S V3-V4

region. BGI gave us, on average, 125,000 cleaned paired end reads of 300 base pairs. We confirm the
reads were clean using the programs Trimmomatic v0.38 (SLIDINGWINDOW:5:15 MINLEN:200
AVGQUAL:20) and Flash2 v2.2.00 (-m 10 -x 0.1 -M 200) (62,63). The downstream analysis were done
with the Qiime2 v 2018.11 and the “moving pictures” tutorial (64). Briefly we used dada2 to detect and
correct [llumina amplicon sequence data. We assigned taxonomy to the sequences using the Small Subunit

(SSU) rRNA Database from Silva release 132 (https://www.arb-silva.de/).
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Captions for supplementary tables

Supplementary table S1. List of 3K-RGP rice accessions with number of reads that did not map to the
rice genomes (unmapped reads). The reads were subjected to taxonomic classification with the software
Kraken (Kraken output) and were quantified with the software Bracken to Phylum and Genera (Bracken
output). The growing location for each accession is also listed.

Supplementary table S2. List of 3K-RGP rice accessions with the richness and diversity indexes. The
indexes were total read counts (same bracken output), the logarithm of total counts (Log10_TRC), the
number of genera (Genus_Counts), Effective Shannon diveristy, Pielou’s evenness and Simpson 1/D
index.

Supplementary table S3. Significant Phylum and Genera that contribute to the differences between
accessions grown in China and accessions grown in Philippines. The biology of the 25 genera is
indicated as tolerance to oxygen and niche.

Supplementary table S4. Relative abundance (average and standard deviation) of the 533 genera in
accessions grown in China and accessions grown in Philippines.

Supplementary table S5. Sequences of 16S primers used for validation of metagenomic analysis and list
of the 18 rice accessions from the 3K-RGP project used for validation. The primers were based on other
publications or design for this study. The primers that amplify the rice actin gene were used as control.
Supplementary table S6. Least squares mean estimates of leaf microbiome richness, evenness and
effective Shannon diversity in the rice varietal groups (Admix, Aromatic, Aus, Indica and Japonica) and
clusters.

Supplementary table S7. Description for 2,234 lines with reliable passport data from the IRRI database
or accession grown in Philippines.

Supplementary table S8. Co-abundance network values for the most abundant genera in accessions
grown in Philippines.

Supplementary table S9. Co-abundance network values for the most abundant genera in accessions
grown in Philippines China.

Supplementary table S10. Metabolic pathways predicted by Vikodak for each environment, based on
KEGG levels 1,2 and 3. Average and
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461  Supplementary table S11. List of NCBI microbiome accessions used for the correspondence analyses
462  on the functional profiles of 16S and shotgun sequencing technologies.

463  Supplementary table S12: Significant signals from the genomic wide association analysis (GWAS)
464  with a multivariable linear model using 6.5 million SNPs and the three hubs abundance. We kept SNPs
465  with a P-wald value lower than 1E-15.

466  Supplementary table S13: Description of the significant SNPs, from Supplementary table S11.

467  Chromosome, genomic position in Nipponbare genome, annotation, gene ontology and SNP effect were
468  retrieved from the webpage snpseek.org.

469  Supplementary table S14: Description of haplotype blocks for each significant SNP, number of

470  associated candidate genes and the QTLs that match to the same region.

471  Supplementary table S15: Interactions between all the candidate genes associated with the haplotype
472  blocks. The analysis was retrieved from RiceNet webpage. The probabilistic functional network

473  database for interactions was AUC= 0.92; P-value < 0.0001.

474 Supplementary table S16: Relative abundance of the apoplastic microbiome from IR24, IR24+Xa4,
475 R711 and R711+SAox. The confidence value indicates the average classification of reads to that group.
476
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Fig. 1. Host environment shapes the rice leaf microbiome diversity and composition. A-B The
species richness and Shannon effective number of species comparisons between accessions grown in
China and Philippines; *P-value < 0.001. Kruskal-Wallis test. C Weighted principal coordinates analysis
based on the distances between environments microbial composition. The clustering is based on Bray—
Curtis dissimilarity index. D Leaf microbiome composition of rice accessions grown in China and

Philippines. The inner position of the sunburst chart represents taxonomic hierarchy Phylum and the outer
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position represents Genus. The chart shows abundance higher than 1%. The black line highlights the

unigque genera for each environment.
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Fig.2. Rice varietal groups and the environment shapes the leaf microbiome. Least squares mean
estimates of leaf microbiome richness (left panel), evenness (middle panel) and effective Shannon
diversity (right panel) in the rice varietal groups (Admix, Aromatic, Aus, Indica and Japonica) after
environment adjustment. Means sharing the same letter are not significant different based on Tukey

method (alpha = 0.05). The analysis for all varietal groups is in the Supplementary Table S6.
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Fig.3. Microbial ecological network of the rice leaf microbiome identified common hubs that could
explain the conserved functional profile among environments. A Microbial ecological network from
China and Philippines with abundant genera present in at least 50% of all samples. The colors represent
the seven modules of each network. Each node represents a genus and the circle size indicates betweenness
centrality increment. The key microbial hubs are Clostridium (Clo), Mycoplasma (My) and Helicobacter
(H). Other hubs in China are Spiroplasma (Sa), Azospirillum (Am), Prochlorococcus (Pr), Sphingobium
(Sm). For Philippines, important hubs are Bacillus (Ba), Pseudomonas (P), and Azotobacter (A). The
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properties of the network are number of edges, number of nodes or genera, average degree and modularity.
Only for the network analysis the genus counts were center-log-transformed. B KEGG level 2 pathways
with more than 1% relative abundance in accessions grown in China and Philippines. NS no significant,
Wilcoxon rank-sum test = 6869, P-value = 0.421.
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Fig.4. Rice metabolic pathways are associated with the microbiome structure. A Genome wide
association study for the three microbial hubs in combine environments. Manhattan plot (left) and
quartile—quartile plot (right) indicate major peaks (significant SNPs) associated with microbial abundance.
P-values were adjusted with FDR and values lower than 1E-15 were consider significant (blue line). The
significant hits are distributed across nine chromosomes. B The significant SNPs found in this study co-
localize with a number of agronomic QTLs categorized as: resistance or tolerance, morphological trait

and physiological trait. Categories were retrieved from Q-Taro database.
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Fig. 5 Host genes related to stress responses modify microbiome composition. A-B Phyla-level

distribution in rice lines with different accumulation of cellulose (IR24+Xa4) and salicylate (R711+SAo0Xx)

based on 16S rDNA amplicon. *P-value <0.05, Wilcoxon rank-sum test. C-D Genera-level numbers for

each Phylum in each rice line. E, F Microbial hubs abundance fold change between control and rice line
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Supplementary figures
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Figure S1. Generation of 3000 rice genomes dataset and pipeline for collecting the leaf microbiome.
1. Selected gene bank accessions where grown at Philippines (agPh) or China (agCh). The Philippines
accessions belong to the International Rice Gene bank Collection (IRGC) at the International Rice
Research Institute (IRRI). The accessions grown in China are part of a bigger collection from the China
National Crop Gene Bank (CNCGB) in the Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences (CAAS). The rice accessions were grown in the field and the environmental conditions between
China and Philippines were more likely different (12). 2. Genomic DNA (gDNA) was extracted from
young leaves of each accession by modified CTAB method. 3. All genomes were sent to BGI group
(https://www.bgi.com) to construct the libraries and do the sequencing with the HiSeq2000 platform. 4.
Clean reads, that correspond to 205,084,357,762 paired-end reads for all 3,024 genomes, were then map
to five reference genomes using the BWA software. The reference genomes are Nipponbare, 93-11, IR64,
Kasalath, and DJ123 (13). We separate the reads that map to all rice genomes from the reads that did not
map to any rice genome. 5. We suggest the reads that did not map to any of the rice genomes (non-rice
reads) came from microbial DNA that cohabit with rice.



https://www.bgi.com/
https://doi.org/10.1101/615278
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/615278; this version posted April 22, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

A China richness curve Philippines richness curve B
o
§ 3 o | -5
§ o |} -
o S '
o
-
§ 3 §1 £ '
€ § @ 4 ¢
g 8 4 g 8 4 a °© T '
@ el @ & 1
2 g 2 = 8 '
@ = -4 ]
- § ol - § = “i’ =t 8 1
: 1
g 1 g S 1 T
o - o - o °
et T T T T T T < T T
0 100 300 500 0 500 1500 2500 CHINA  PHILIPPINES
Accessions grown in China (AgCh) Accessions grown in Philippines (AgPh)
China rarecurve Philippines rarecurve
C 8 8
< -

300
300

Rarefied No. of genera
200

Rarefied No. of genera
200

T T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Observed No. of genera Observed No. of genera

742
743  Fig S2. Metagenome sequencing of the 3K-RGP accessions captures leaf microbiome diversity. A

744  Richness curves for accessions grown in China and in Philippines. The y-axis represents number of
745  identified genera and x-axis the number of collected samples. The shade on the curves represents the
746  confidence interval of two in the curve points. B Evenness bar plots with Pielou’s formula. C The
747  rarefaction curves for China and Philippines microbiomes showed the number of expected genera reach a
748  plateau between 100 to 300 observed genera. The line indicates the theoretical linear correlation for
749  rarefaction curves. All 3,024 accessions from the 3K-RGP and the 600 genera found in the analysis were
750  used for the curves. Full data is in Supplementary Table S2.

751

752


https://doi.org/10.1101/615278
http://creativecommons.org/licenses/by/4.0/

753
754

755
756
757
758

bioRxiv preprint doi: https://doi.org/10.1101/615278; this version posted April 22, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Pseudomonas Xanthomonas Mycobacterium Mycoplasma Spiroplasma Alteromonas
1E+4 1E+4 1E+4 £ 1E+0 1E+0
1E-1
1E+2 ! 1E+2 I H Q
1E+2 1E1
1E-2
16+0| [+ = H 1E+0 1E-1 -
1E-2 1E-3 1€-3
1E-2 1E+0
1E-4 1E-5 1E-4 162
1E-4 H
1€-2 166 4 £ 1E-5 E El H
1E-6
g @ 1es El 166
168 1E-9 lE-ﬂ
: 1E-4 1E-10 | 1E-7 J
__Clostridium ) Bacillus Streptomyces Burkholderia Methylobacterium Pantoea
1E+0 1E40 1E+0 1E+0 1E+0 1E+0
1E-1
1E-2 1E-2 1E-2 1E-2 1E-1
1E-2
1E-4 1E-4
1E-4 153 1E-4 1E-2
@ H B - B
1E-6 B 1E-6 El E
1E-6 - 1E-4 g = 166 H H 1E3
1E-8 1E-8 1E-5 B
1E-8 1E-8 1E-4

L I St < I
FigS3. Member of the rice microbial community are present in accessions grown in Philippines.
Logarithmic relative abundance of some bacterial groups found in the rice microbiome using specific 16S

genus primers. 18 accessions from the 3K-RGP were validated for 12 groups of bacteria present in the

rice microbiome. The most abundant bacteria are indicated in blue.
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Fig.S4. Rice varietal groups associates with variation of few genera. Broad-sense heritability estimates

for China and Philippines genera. The heritability was calculated for the most abundant genera in each

environment with a random linear model.


https://doi.org/10.1101/615278
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/615278; this version posted April 22, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

A Country.of Origin

¥
.'e"
........................................ SNAPER Jeoncane
L
o
|
a
D! (30.9%
B c Culivaton type
Sample status
Gandra
' Txdal wetiand
N -\"\‘Tv'; 1ted .
E Upland
' De ater
8 wescsccapesscscsnngsibdloctstascccsdtocscnconsscsncsssane
H _ Raunfedlowiand
' - .,
= ’ P H
.7‘ » _\‘ '
2 ] - ;
~ ’ k .
£ v & -
A APt S el T e - VR T A e N R ¢
- ’ Swan
dvance ' '
Broadinge -
L}
Dim 1 (58.3%
764 Ry

765  Fig.S5. The distribution of the rice leaf microbiome affected by additional factors. Canonical
766  correspondence analysis showing the distribution of microbial genera and rice accessions classified as A
767  country of origin, B breeding classification, and C ecosystem. Red crosses represent the 533 genera found
768 in the leaf microbiome of 467 accessions grown in Philippines. The chi-square values for each plot was
769  41.7436, P-value < 0.05.
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772  Fig.S6. The microbial ecological networks from China and Philippines display similar connectivity
773  and stability features. A Frequency of connections (degree) across the network. B Network stability plot
774  based on the effect of removing nodes in the network (betweenness centrality) for China (blue) and the

775  Philippines (green).
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778  Fig.S7. The leaf, roots and soil microbiomes have different functional profiles. Correspondence
779  analysis of functional profiles from different microbiome datasets. A Correspondence analysis from
780  databases with 16S amplicon and shotgun reads sequencing approaches. CA Dimension 1 and CA
781  dimension 2 explains 80% and 10% of the differences. B Correspondence analysis of databases with

782  shotgun sequences. Dimension 1 and dimension 2 explains 65% and 30% of the differences. We used 19
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783  shotgun databases obtained from NCBI and our dataset. Due to the number of samples for our data

784  compared with the NCBI data, we used median relative abundance of pathways per variety (N=24).
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