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Abstract  25 

 26 

Understanding the factors that influence the outcome of crop interactions with microbes is key to 27 

managing crop diseases and improving yield. While the composition, structure and functional profile of 28 

crop microbial communities are shaped by complex interactions between the host, microbes and the 29 

environment, the relative contribution of each of these factors is mostly unknown. Here, we profiled the 30 

community composition of bacteria across leaves of 3,024 rice (Oryza sativa) accessions from field trials 31 

in China and the Philippines using metagenomics. Despite significant differences in diversity between 32 

environments, the structure and metabolic profiles of the microbiome appear to be conserved, suggesting 33 

that microbiomes converge onto core functions. Furthermore, co-occurrence analysis identified microbial 34 
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hubs that regulate the network structure of the microbiome. We identified rice genomic regions controlling 35 

the abundance of these hubs, enriched for processes involved in stress responses and carbohydrate 36 

metabolism. We functionally validated the importance of these processes, finding that abundance of hub 37 

taxa was different in rice mutants with altered cellulose and salicylate accumulation, two major 38 

metabolites at the host-microbe interactions interface. By identifying key host genomic regions, host traits 39 

and hub microbes that govern microbiome composition, our study opens the door to designing future 40 

cropping systems. 41 

 42 

Introduction  43 

Plant colonization of terrestrial habitats ignited the formation of biodiverse systems, termed phytobiomes, 44 

in which plants co-evolve with unicellular and multicellular organisms in fluctuating environmental 45 

conditions. In phytobiomes, plants are in constant interaction with microbial communities that adapted to 46 

colonize plant tissues, termed microbiomes (1). Microbes in these communities may have (nearly) neutral, 47 

harmful or beneficial effects on plant fitness. Benefits conferred by microbes to their host plants can be 48 

direct through protection from attacks and stressful environmental conditions, or indirect through the 49 

enhancement of plant resistance responses and/or plant growth (2–6).  50 

 51 

Ecological theories suggest that microbiomes do not assemble randomly but that their formation is 52 

governed by complex interactions among microbes, host and environment (7,8). Understanding these 53 

complex interactions will help translational research to improve agronomic traits. The first step is to 54 

characterize and identify the mechanisms that drive the microbial community composition by quantifying 55 

the richness and diversity of taxa. The second step is to identify microbe-microbe metabolic interactions 56 

and host genetic factors, to define the ecological network structure (9–11). However, due to a lack of 57 

large-scale studies we still have only limited mechanistic insight into the identity and relative importance 58 

of factors that shape host-microbe interactions. 59 

 60 

Asian rice (Oryza sativa L.) is grown globally and forms the staple food for over fifty percent of the 61 

world’s population. As part of the 3,000 Rice Genomes Project (3K-RGP) we recently completed the re-62 

sequencing of a large genetic diversity panel comprised of 3,024 accessions from all major rice varietal 63 

groups(12,13). These accessions are adapted to a wide variety of agro-ecosystems and possess extensive 64 

heritable trait diversity, which in turn may influence microbiome assembly. Furthermore, the 3K-RGP 65 

panel has been used successfully to identify the genetic architecture underlying a number of complex 66 

morphological and phenological traits. 67 
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Here, we performed in-depth analyses of the meta-genomes of the 3,024 rice accessions to identify factors 68 

that drive microbiome assembly in the rice phyllosphere. We successfully captured the composition, 69 

structure, and functional profile of the leaf microbiomes of these accessions growing in two major areas 70 

of rice production, China and the Philippines. Our analyses showed that despite differences in the presence 71 

and abundance of individual microbial taxa the composition of the microbiome converges onto similar 72 

core metabolic functions in both environments. We discovered central taxa that as microbial “hubs” have 73 

an outsized influence on the network of host-microbe interactions and identified host genomic regions that 74 

control their abundance. These genomic regions were enriched for peroxisome-located processes involved 75 

in stress responses and carbohydrate metabolism. We functionally confirmed that host genetic variation 76 

in cellulose and salicylate accumulation can impact microbiome composition. The production of these 77 

compounds partially relies on peroxisome-located metabolism, and they play critical roles at the interface 78 

of host-microbe interactions. Our data provides insight into the mechanisms that drive microbiome 79 

assembly and opens the door for future initiatives to engineer consortia of beneficial microbes for crop 80 

performance improvement. 81 

 82 

Results  83 

 84 

Metagenome sequencing of the 3K-RGP accessions captures the rice leaf microbiome diversity. To 85 

characterize the rice leaf microbiome, we analyzed the metagenomic data from our 3K-RGP panel as 86 

explained in Fig. S1. Our panel contains sequencing data from 2,466 rice accessions grown in the 87 

Philippines (agPh) and 558 accessions grown in China (agCh). Microbial reads were identified after 88 

filtering against five reference rice genomes. Overall, 75% of the reads corresponded to Eubacteria and 89 

Archaea (Supplementary Table S1). We assessed species richness by measuring species accumulation 90 

(observed richness) and evenness. The accumulation curves across environments reached a plateau at 600 91 

microbial genera present in a minimum of 100 rice accessions (Fig. S2A), and the average evenness values 92 

suggested a similar distribution of species abundance (Fig. S2B). Increasing the number of rice accessions 93 

in either agPh or agCh, did not result in the detection of more microbial genera. To account for differences 94 

in sample size, we calculated rarefied species richness and observed a higher number of genera in agCh 95 

(Fig. S2C). The total richness and alpha diversity (effective Shannon diversity) values were similar to 96 

other plant leaf microbiomes (11,14,15) and showed that agCh harbored 1.5 times more diversity than 97 

agPh (Fig. 1A-B; Supplementary Table S2). The higher values found in agCh might be associated with 98 

accessions being exposed to an array of microbial taxa missing or having lower abundance in the agPh 99 

environment (Fig 1C). Indeed, a major driver of microbiome diversity is the availability of microbes 100 
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captured from the environment (9,10,16). Overall, our 3K-RGP meta-genomic sequencing effort 101 

successfully captured the leaf microbiome and identified the environment as a major factor that impacts 102 

microbial community diversity (9,17–20). 103 

 104 

Host environment and genotype shape the rice leaf microbiome. To further dissect differences in 105 

microbial community composition of agPh and agCh, we compared the relative abundance of Eubacteria 106 

and Archaea at different taxonomical levels. We found that 27% and 57% of the dissimilarity occurred at 107 

Phylum and genus level, respectively (Supplementary Table S3, S4). Proteobacteria, Firmicutes, 108 

Actinobacteria, Cyanobacteria, Tenericutes, and Euryarchaeota were the most abundant phyla (Fig 1D), 109 

resembling the abundances of these phyla in the leaf microbiomes of other crops (11,21–23). Interestingly, 110 

Euryarchaeota, which include methanogenic bacteria, and are frequently found under the anaerobic 111 

conditions in the rice paddies, were only marginally present in the aerobic phyllosphere (9,22). 112 

Presumably because of the aerobic conditions in the phyllosphere, we did not detect members of taxa 113 

commonly found in the soil or rhizosphere either (9,17–20).  114 

 115 

While the microbiomes of agCh and agPh harbored 152 and 121 genera with relative abundance higher 116 

than 0.1%, respectively, only 25 genera contributed to the dissimilarities between them (Fig. 1D, 117 

Supplementary Table S3). These genera are common members of the leaf microbiomes of other crop plant 118 

species (9,24). For example, the genera Propionibacterium, Agrobacterium, Acidovorax, and 119 

Enterobacter were over four times more abundant in agCh than in agPh while Xanthomonas and Serratia 120 

showed the reverse pattern (Fig. 1D, Supplementary Table S4). Most of these genera include species that 121 

are oxygen-tolerant and capable of colonizing plant or animal hosts (Supplementary Table S4), 122 

contributing to a picture of the rice phyllosphere as a favorable environment for aerobic taxa. One factor 123 

that may account for the dissimilarities in the microbiome compositions of agPh and agCh, might be a 124 

difference in agricultural practices between the two environments. Different human interventions could 125 

lead to alternative routes in the horizontal acquisition of taxa in the microbiome (8,25,26).  To confirm 126 

that agricultural practices could form a factor that shapes the leaf microbiome we needed to rule out that 127 

major genera were not artificially introduced during sample collection. To this end, we used qPCR to 128 

detect 11 highly abundant genera in 18 randomly selected accessions from our 3K-RGP panel 129 

(Supplementary Table S5). We were able to quantify the presence of all taxa and observed a similar 130 

distribution across accessions (Fig. S3). Similar to our previous findings, the genera Pseudomonas, 131 

Xanthomonas, Mycoplasma, and Mycobacterium were the most abundant genera, ruling out that highly 132 

abundant genera were introduced artificially.   133 
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 134 

Another factor that shapes the microbiome is the host genotype (10,16,19,27). To evaluate the extent to 135 

which host genotype impacts the assembly of microbial communities, we compared a number of diversity 136 

indices among 12 rice varietal groups and proximal clusters that act as a proxy for host genotype (13).  137 

We found that the richness and evenness values were strongly influenced by host genotype, whereas the 138 

diversity value was affected by the environment (Fig. 2, Supplementary Table S6). Eight out of 12 rice 139 

varietal groups and proximal clusters harbored a similar number and distribution of microbial genera, 140 

independent of the fact that plants in these groups and clusters were grown in different environments. 141 

Despite this significant effect of host genotype, heritability values for the most abundant genera in agPh 142 

and agCh were relatively low (Fig. S4) (16,23). This pattern would be expected if accessions in the groups 143 

and clusters each carry different combinations of alleles underlying trait differences that influence 144 

microbiome composition, i.e. if the genetic basis for such traits is diffuse. If this is the case, then certain 145 

host traits should explain more of the variation in the composition of the rice leaf microbiome.  146 

 147 

Accessions in different rice varietal groups and proximal clusters are known to have adapted 148 

independently to the same agro-ecosystems, often converging on the same traits. Indeed, we find that the 149 

agro-ecosystem in which accessions were originally collected explained a significant amount of variation 150 

in microbiome composition independent of the experimental conditions (Fig. S5, Supplementary Table 151 

S7). Overall, our data suggest that environment plays a key role in determining variation in microbial 152 

community composition. However, other factors such as host genetic background and traits associated 153 

with adaptation to particular ecologies further condition the assembly of the leaf microbiome (28–30). 154 

 155 

The rice leaf microbiome structure is conserved despite differences in community composition. The 156 

establishment and maintenance of the microbial community is further shaped by networks of interactions 157 

among microbes (1,31,32). To identify essential microbial relationships, we inferred co-occurrence 158 

ecological networks from the agCh and agPh datasets. Interestingly and despite significant differences in 159 

composition, agCh and agPh assembled communities with similar structures (Fig. 3A), suggesting similar 160 

network properties. Although the mechanism that favors co-existence of highly diverse microbial 161 

community remains uncharacterized, this shows that community assembly might follow specific rules 162 

independent of the availability of taxa for recruitment. We identified seven highly connected genera or 163 

“hubs” in networks of microbes colonizing agCh and agPh (Fig. 3A, Supplementary Table S8-S9). 164 

Moreover, the networks for plants in both environments shared Clostridium, Mycoplasma, and 165 

Helicobacter as three hubs with the highest number of connections and positive associations (rPearson > 0.7, 166 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/615278doi: bioRxiv preprint 

https://doi.org/10.1101/615278
http://creativecommons.org/licenses/by/4.0/


 

 

P-value < 0.001) (Supplementary Table S7, Supplementary Table S8). The hubs genera appear to stabilize 167 

the network of interactions because when we artificially removed these genera from the analysis the 168 

interactions were lost (Fig. S6). Similar to other studies (31,33), our results suggest that the hub genera 169 

have a regulatory effect on the network of microbial interactions and or may play an important ecological 170 

role in the microbial community. The connectivity of a genus within the network did not correlate with 171 

the abundance of that genus. For example, the highly-abundant genera Xanthomonas and Streptococcus 172 

were not identified as hubs, while Helicobacter, with less than 1% abundance, still plays a role in shaping 173 

the network of interactions (33–35). We are aware that other inter-kingdom interactions might be driving 174 

the differences in microbial community composition (33,36), but their influence appears to be limited in 175 

the case of the rice leaf microbiome.  176 

 177 

We next analyzed the network topology to reveal modular interaction patterns. We found that the networks 178 

for both agCh and agPh had seven modules (Fig. 3A, Supplementary Table S8-S9). This structure suggests 179 

a highly stable network since a microbial community appears to reach an equilibrium when its network of 180 

interactions has a small number of modules (31). Compared to other studies (9,20), we found that most of 181 

the modules were not organized randomly but rather shaped by microbial genetic ancestry, biological 182 

function, or ecological niche. For instance, we found that one module was enriched with Cyanobacteria, 183 

while another module showed enrichment for plant growth-promoting bacteria (Supplementary Table S7 184 

and S8). This aligns with the idea that some microbes in the phyllosphere adapted to the leaf surface 185 

conditions (31). While the data suggest that members of the same module might have strong biochemical 186 

associations, it is not clear if modules overlap in the roles they play, or if members co-localize to the same 187 

leaf sub-compartments. Overall, the leaf microbiome structure is likely defined more strongly by the 188 

biological functions of modules than by the diversity or abundance of individual taxa (23,37–39). The fact 189 

that we identified the same hubs genera in two independent datasets, from two different rice growing 190 

environments, strongly aligns with the ideas that hubs have an outsized role in shaping the microbial 191 

community and that community assembly follows certain rules (1). 192 

 193 

The functional profile of the leaf microbiome is conserved despite differences in microbial 194 

composition. If the structure of the microbial community is defined by rules that depend on the overall 195 

function of each module of microbial taxa (1,31,34), then the microbes of agCh and agPh should share 196 

metabolic profiles. We predicted functional categories for the microbial taxa and found that the 197 

communities on agCh and agPh exhibited similar profiles (Fig 3B, Supplementary Table S10). Both 198 

datasets shared 22 of 24 KEGG level 2 pathways (Fig 3B, Supplementary Table S10). The most abundant 199 
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pathways, also common to other leaf microbiomes, were associated with transcription, carbohydrate 200 

metabolism, translation, environmental adaptation, metabolism of terpenoids, and amino acid metabolism 201 

(20,37,40,41). The presence of common categories such as xenobiotic biodegradation and biosynthesis of 202 

secondary metabolites might indicate microbial adaptation to agricultural practices in each rice-growing 203 

environment (1,22,42). Interestingly, the microbes of agCh contained five more pathways for carbon 204 

fixation, than those of agPh, which might be caused by adaptation to differences in climatic conditions or 205 

light exposure on the leaf surface (43,44). The redundancy of functions and hub genera in the leaf 206 

microbiomes of both environments supports the idea of a core set of microbes in each community that is 207 

under selective pressure from complex microbiome-host interactions to provide essential functions for the 208 

community, which aligns with the concept of a functional entity or holobiont (1,43).  209 

 210 

The nature of our experiment prevented us to test if the leaf microbiome had different metabolic profiles 211 

compared to microbial communities in the soils or roots in the same experimental conditions in the two 212 

environments. Due to these limitations, we used other available plant microbiome datasets to estimate 213 

functional categories. We evaluated three shotgun metagenome sequencing datasets (rice soil, wheat soil, 214 

and rice leaf) and three 16S rDNA databases (rice root endosphere, rice rhizosphere, and maize leaf) 215 

(Supplementary Table S11). As expected, samples profile with different sequencing technologies formed 216 

separate clusters (Fig. S7). Despite the fact that 16S rDNA and shotgun meta-genome sequencing captured 217 

different types of information, samples profiled with either technique showed that microbiomes of leaves, 218 

roots, and soils have consistently different functional profiles (Fig. S7). This result aligned with other 219 

studies finding that biological functions of microbial community are linked to the plant tissues and soil 220 

compartments of origin (33,38,41,45). In summary, it is likely that key microbial genera (“hubs”) make 221 

an important contribution to organizing the leaf microbiome as a network of microbial modules that 222 

perform a complex of functional roles tailored to the phyllosphere. 223 

 224 

Rice metabolic pathways modulate the leaf microbial community. To identify rice genetic factors that 225 

may control the recruitment and establishment of the microbial hub genera, we conducted a genome-wide 226 

association study (GWAS) on 3,024 rice accessions, using the genomic information from 6.5 million SNPs 227 

and the relative abundance of the three key hubs that were present in both environments: Helicobacter, 228 

Mycoplasma, and Clostridium. Overall, we found 32 significant SNPs associated with hub abundance (P-229 

value < 1E-15, ci = 0.95), distributed across nine chromosomes (Fig. 4A, Supplementary Table S12). 230 

Thirty out of 32 SNPs were located within 16 annotated rice genes (Supplementary Table S13). Eleven 231 

SNPs had a missense effect on nine of the 16 genes. Linkage disequilibrium analysis identified 19 232 
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haplotype blocks ranging from 30 to 130 kb and spanning 180 candidate genes (Supplementary Table 233 

S14). 234 

 235 

To assess if any of these genes have been previously associated with rice agronomic traits, we used the 236 

rice quantitative trait locus (QTL) database, Q-TARO. Overall, the 180 candidate genes mapped to 65 237 

QTLs distributed in different categories: biotic or abiotic stresses (24 QTLs), morphological traits (23 238 

QTLs), and physiological traits (18 QTLs) (Fig. 4B, Supplementary Table S14).  In addition, 36 candidate 239 

genes were connected to each other in pathways related to stress responses, carbohydrates metabolism, 240 

and amino acid metabolism whose enzymatic reactions take place for an important part in the peroxisome 241 

(Supplementary Table S15). Host genetic factors involved in the same processes were linked to leaf 242 

microbiome assembly in similar studies in Arabidopsis, Nicotiana, and maize (23,32,46,47). This makes 243 

it likely that allelic variation in certain host genes influences he abundance of hub genera and this the 244 

composition of the rice leaf microbiomes.  245 

 246 

To test the hypothesis that single host genes involved in stress responses and carbohydrate metabolism 247 

could modulate the leaf microbiome, we performed 16S rDNA sequencing on the apoplastic fluid of rice 248 

lines with different accumulation of salicylate and cellulose – two compounds whose production takes 249 

place partially in the peroxisome. For cellulose accumulation, we compared microbial community profiles 250 

on the Indica rice cultivar IR24 and its Xa4-containing near-isogenic line (IR24+Xa4). The protein XA4 251 

is a cell-wall associated kinase involved in cellulose accumulation, which influences leaf mechanical 252 

strength and defense responses to bacterial infection (48). For salicylate production, we compared the 253 

microbiomes of the Japonica rice line Rojolele (accession R711) to its overexpressing line (R711+SAox). 254 

The latter line constitutively expresses the bacterial genes entC and pmsB, encoding for isochorismate 255 

synthase and isochorismate-pyruvate lyase, respectively (49). Both genes are involved in the salicylic acid 256 

biosynthetic pathway, a phytohormone with a key role in stress responses. In both scenarios, the bacterial 257 

richness decreased, while the abundance of Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes 258 

fluctuated when the alleles of interest were present (Fig. 5 A-D, Supplementary Table S16). The line 259 

IR24+Xa4 showed a reduction in the abundance of Actinobacteria, but an increase in Proteobacteria and 260 

Firmicutes (Fig 5A). At the same time, all phyla showed a substantial decrease in the number of genera 261 

by which they are represented in the microbiome (Fig. 5C). The line R711+SAox had a decrease in the 262 

abundance of Firmicutes and increase in Proteobacteria (Fig 5B). Nevertheless, the reduction in the 263 

number of genera present was less dramatic than in the IR24 - IR24+Xa4 comparison (Fig. 5C, D). The 264 

small difference detected in abundance, despite the decrease in the number of genera present, indicated 265 
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that the remaining genera acclimated or adapted to the stressful environmental presence of increase 266 

salicylate accumulation by occupying the spaces left by the decline of other genera. A closer look at the 267 

hub genera showed that the majority of hubs remained unaltered, and that only two hub genera experience 268 

significant changes in abundance between the lines (Fig. 5E, F). For instance, Bacillus, Pseudomonas, and 269 

Helicobacter increased in abundance in IR24+Xa4 and R711+SAox lines compared to IR24 and R711, 270 

respectively. In the case of Clostridium, the salicylate and cellulose accumulation appears to correlate with 271 

a reduction in the abundance of this hub. Finally, Sphingobium abundance change was specific to the 272 

stress signal. In IR24+Xa4 the abundance of this genera increased while in R711+SAox decrease, 273 

compared to their respective controls. The exacerbation of cellulose and salicylate accumulation in these 274 

lines appears to modulate the presence of specific microbial groups in the apoplast, suggesting that the 275 

host might reshape the composition of the microbial community in a controlled fashion. Additional 276 

evidence is needed to understand the driving forces behind the modulation of the abundance of hub genera 277 

and any independent or knock-on effects on the abundance of other microbial taxa. 278 

 279 

Conclusions 280 

 281 

Microbial communities that live in association with plants carry a great diversity of metabolic capabilities 282 

and often influence broad aspects of plant biology. In agricultural environments, the composition of these 283 

communities affects overall crop performance by contributing to important plant functions such as 284 

vegetative growth, nutrient uptake, and immune responses, among others (2,6,41). Efforts to understand 285 

and exploit such capabilities may bring exciting opportunities to design future cropping systems. Using 286 

meta-genomic profiling of the 3K-RGP panel, we described the regulatory factors that shape the rice leaf 287 

microbiome. Our results indicated that the environment is the main reservoir of microbial diversity. 288 

Common agricultural practices, such as crop irrigation or the use of animal labor, might also explain how 289 

microbes from other niches are usually part of the phyllosphere. The structure of the leaf microbiome is 290 

most likely determined by ecological networks that perform core functions. Some of these functions, such 291 

as carbon fixation or xenobiotics degradation, suggest adaption to the leaf environment in the context of 292 

modern agriculture. Moreover, the networks revealed key microbial groups that regulate the establishment 293 

of the community but also appear to be controlled genetically by the host. It is not surprising that some of 294 

the identified regions are enriched in genes related to stress response since the microbiome evolved to 295 

interface and react to environmental variation. Our results validate the idea that both, the plant and the 296 

microbiome, shape the network of interactions and therefore co-evolutionary tracks are inevitable. Give 297 
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the scale of the dataset, we have taken the first steps in unearthing the factors behind microbiome assembly 298 

in rice, which can be harnessed for engineering future crop improvements.  299 

 300 

Methods 301 

 302 

Genomic source 303 

To describe the rice leaf microbiome, we used the 3,000 Rice Genomes Project database (12). This 304 

database was originally created to gather information about the rice genetic variation. The lines were 305 

planted in two different environments. Around 2,466 accessions at the International Rice Research 306 

Institute, in the Philippines, and 558 accessions at the Chinese academy of Agricultural Science in China. 307 

The lines include five varietal groups: Indica, Japonica, Aus, Aromatic and admixed (13). Indica and 308 

Japonica can be further subdivided into genetically proximal clusters (13). Japonica has four clusters 309 

(Japx, Tropical Japonica (named trop), Subtropical Japonica (named subtrop), and Temperate Japonica 310 

(named temp)). Indica has five clusters (Indx, Ind1A, Ind1B, Ind2, and Ind3). The database also includes 311 

information on country of origin, breeding classification, and ecosystem. Here we repurposed the database 312 

to gather information about the rice leaf microbiome (see Figure S1 for details about the project). We 313 

mapped each rice accession genome to the five reference rice genomes (Nipponbare, 93-11, IR64, 314 

Kasalath, and DJ123) with the software BWA v0.7.10 (50). We extracted the reads that did not map to the 315 

five rice genomes with samtools v1.0 (51). The reads were converted to Fasta files with BEDtools v2.17.0 316 

(52) and used as entries for the software Kraken v1.0 (53). This software classified the reads from Phylum 317 

to Genus-levels based on the bacteria and archaea database from RefSeq NCBI database (release 69). To 318 

estimate taxa abundance we used the Bayesian-based tool Bracken v1.0 (54). We kept the genera that were 319 

present in at least 10% of samples for further analysis.  320 

 321 

Diversity estimation 322 

For composition analysis we used the relative abundance normalization on the count matrix, where the 323 

read counts for a taxa-level in a given sample were divided by the sum of all counts in that sample. To 324 

calculate the richness and diversity indexes, we use the R package Vegan v2.5-3. To check homogeneity 325 

of variance across samples we used the classical Levene’s test with mean. Comparison of alpha diversity 326 

values were performed with ANOVA and the linear model y ~ environment, where y is the richness, 327 

evenness or effective Shannon diversity. For ad-hoc analysis we used Wilcoxon and Kruskal-Wallis tests. 328 

To calculate dissimilarity indices in the microbial community, we run the Vegan function vedgist with the 329 

Bray-Curtis method and the function wcmdscale to plot a weighted principal coordinates analysis.  To 330 
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identify which taxa contributes to dissimilarities between environments, we used the function Simper from 331 

the R package Vegan. We used the relative abundance of Phyla or genus as microbial community matrix, 332 

environment as grouping factor and 100 permutations. For comparison among the rice varietal groups and 333 

among clusters, we set the linear model y ~ rice varietal group*environment, where y was richness, 334 

evenness or effective Shannon diversity. Then we adjusted the linear model to the means of the factor 335 

environment with the least-squares means function in R package Emmeans v1.3.3. We used 95% 336 

confidence interval and Tukey-adjusted comparisons. To estimate broad heritability of the most abundant 337 

genera within environment, we used the R package lme4 v1.1-19 to fit a random effect linear model. The 338 

abundant genera were normalized to relative abundance and the fixed variable was rice varietal group. To 339 

estimated heritability, we divided the variance of the model to the sum of all variances and residuals. We 340 

plotted the values for each environment and genera. To evaluate if other factors shape the microbial 341 

community, we used 467 accession grown in Philippines that have full information about country of 342 

origin, breeding classification, and ecosystem. We calculated a distance matrix with the R package Vegan 343 

and visualized the distribution of microbial abundance taxa with a canonical correspondence analysis.  For 344 

correlations we used the chi-square values.  345 

 346 

Quantification of 16S from abundant genera 347 

To validate the results from 3K-RGP metagenome analysis, we amplified and quantified eleven of the 348 

most abundant genera in 18 randomly selected rice accessions from the 3K-RGP. The 18 accessions were 349 

five Indica, five Japonica, two Aus, four Admix, and two Aromatic. We grew the plants in glasshouse 350 

conditions at The International Rice Research Institute and harvested the leaves at 21 days old. We cleaned 351 

the leaves with ethanol, bleach and water before DNA extraction. DNA was extracted with CTAB method 352 

(12). The DNA was aliquoted in similar concentrations for the qPCR. For amplification and quantification, 353 

we used the StepOnePlus™ Real-Time PCR System and SYBR Green following manufacturer protocol 354 

(Applied Biosystems). We selected published primers for Pseudomonas sp., Burkholderia sp., 355 

Mycoplasma sp., Streptomyces sp., Methylobacterium sp and 16s rDNA region V34 (Supplementary Table 356 

S6). We designed primers for Mycobacterium sp., Xanthomonas sp., Alteromonas sp., Pantoea sp., 357 

Spiroplasma sp., Bacillus sp. and Clostridium sp. For comparisons, all samples were normalized to the 358 

16S rDNA region V34 and plotted in logarithmic scale. We included primers for Spiroplasma to validate 359 

that the reads assigned to Mycoplasma were not a wrong annotation.  360 

 361 

Microbial ecological network and functional analysis 362 
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For the microbiome microbial ecological network we used the program SpiecEasi v0.1.4 (55). As the 363 

program is sensitive to rare species, we removed all the genera that were not present in at least 50% of all 364 

the samples from the count matrix. We used the absolute counts as the program does a center-log-365 

transformation. We did the analysis with the Meinshausen-Buhlmann's neighborhood method and the 366 

following parameters, lambda.min.ratio=1e-2, nlambda=20, pulsar.params=list (rep.num=100, ncores=7) 367 

(55). The program was run in R and the network was plotted with Gephi v0.9.2.  The functional profile 368 

for agCh and agPh was predicted with the web-based tool Vikodak v1.0 under the co-metabolism 369 

algorithm workflow (56). Briefly, this algorithm is based on the assumption that genes present by various 370 

microbes in the microbial community contribute to specific metabolic pathway(s). The functions were 371 

classified with KEGG hierarchy levels. For further comparisons, we kept pathways with more than 1% 372 

abundance. We run a Wilcoxon rank sum test to compare the agCh and agPh microbial profiles.   373 

 374 

Genome Wide Association Study  375 

 376 

We implemented PLINK 1.9 (61) and GEMMA 0.97  (58) for the population stratification and SNP-based 377 

association test. We kept Chinese (agCh) and Philippines (agPh) rice accessions together because some 378 

agCh lack SNP information, which will bias the association analysis. For the analysis we used 6.5 million 379 

filtered rice SNPs from the 29 million bi-allelic SNPs retrieved from the Rice SNP-Seek Database v0.4 380 

(snp-seek.irri.org). We excluded SNPs with lower genotypic rate (>95%) and minor allele frequency 381 

(MAF < 0.01). We removed the SNPs that fail the Hardy-Weinberg equilibrium test (P < 0.0001). We 382 

performed GWAS with the centered log ratio-transformed abundance of the three hubs Clostridium, 383 

Helicobacter and Mycoplasma as phenotypic trait. We used abundance because our hypothesis is that hubs 384 

have a strong effect on the microbiome interactions, and the ecological network was build based on co-385 

abundance. We also run the analysis using other genus from the network and we found overlapping in 386 

some SNPs. We run GWAS with the GEMMA multivariable linear model and identified significant SNPs 387 

by filtering with False Discovery Rate (FDR <0.01) and P-value (P-value <1E-15). The Manhattan plots 388 

and quantile-quantile (Q-Q) plot were created with the R package qqman v.0.1.3. We determine the 389 

expected and observed probabilities of SNPs association with Q-Qplot. We grouped the significant 390 

markers by haploblocks based on the linkage disequilibrium decay (LD<0.3) and correlation coefficients 391 

(r2 > 0.6) in each chromosome using Haploview v4.2 (59,60). We identify and described the genes by 392 

gene ontology annotation, QTL overlapping, RiceNet v2 interactions and SNP effect based on the 393 

information from SNP-Seek Database (snp-seek.irri.org) (Dataset S13).  394 

 395 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2019. ; https://doi.org/10.1101/615278doi: bioRxiv preprint 

https://doi.org/10.1101/615278
http://creativecommons.org/licenses/by/4.0/


 

 

To validate the GWAS results, we evaluated the effect of stress response pathway on the microbiome 396 

composition. We selected rice lines available at the International Rice Research Institute. The rice lines 397 

IR24 and R711 were used as controls and compared to the lines IR24+Xa4 and R711+SAox which had 398 

altered cellulose and salicylate accumulation levels, respectively. The rice line IR24+Xa4, has the gene 399 

Xa4 in the IR24 background. The gene Xa4, is associated with cell-wall reinforcement and was introduced 400 

as part of breeding programs.  The line R711+SAox has the genes entC and pmsB, related to the salicylic 401 

acid biosynthetic pathway.  The gene construct containing both EntC and pmsB genes under CaMV 35S 402 

promoter fused with plastid targeting sequence (49) was inserted to a modified pCAMBIA 1300 and 403 

transformed in the rice cultivar Rojolele accession number R711 following the modified method of Toki 404 

et al (61). The presence of transgenes in the progenies were detected by PCR amplification. We extracted 405 

the leaf apoplastic fluids from IR24, IR24+Xa4, R711 and R711+SAox and recover the 16S rDNA by 406 

PCR amplification. We used apoplastic fluids instead of whole tissue to avoid overrepresentation of plastid 407 

DNA and to reduce noise by using only endophytes. Using apoplast, instead of whole tissue, we reduced 408 

80% the chloroplast contamination. For the apoplastic fluids extraction, we used negative pressure with a 409 

syringe to force water into the apoplast and then by centrifugation (1000 rcf, 10 min, 4 C) wash out the 410 

apoplastic fluids. For the 16S enrichment we performed a PCR with Q5® High-Fidelity DNA Polymerase 411 

(New England Biolabs), the forward primer 341F and the reverse primer 806R to cover the V3/V4 region. 412 

To test for bacteria contamination, we did a PCR with the water used for apoplast extraction. If we did not 413 

observe bands with water as template, we pooled PCR products from six samples of the same rice line and 414 

send the pool for sequencing. We sent 5 ug (total mass) of pooled PCR products to BGI group 415 

(https://www.bgi.com)  for 16S Amplicon Sequencing with Illumina MiSeq PE300 using the 16S V3-V4 416 

region. BGI gave us, on average, 125,000 cleaned paired end reads of 300 base pairs. We confirm the 417 

reads were clean using the programs Trimmomatic v0.38 (SLIDINGWINDOW:5:15 MINLEN:200 418 

AVGQUAL:20) and Flash2 v2.2.00 (-m 10 -x 0.1 -M 200) (62,63). The downstream analysis were done 419 

with the Qiime2 v 2018.11 and the “moving pictures” tutorial (64). Briefly we used dada2 to detect and 420 

correct Illumina amplicon sequence data. We assigned taxonomy to the sequences using the Small Subunit 421 

(SSU) rRNA Database from Silva release 132 (https://www.arb-silva.de/). 422 
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Captions for supplementary tables 433 

Supplementary table S1. List of 3K-RGP rice accessions with number of reads that did not map to the 434 

rice genomes (unmapped reads). The reads were subjected to taxonomic classification with the software 435 

Kraken (Kraken output) and were quantified with the software Bracken to Phylum and Genera (Bracken 436 

output). The growing location for each accession is also listed. 437 

Supplementary table S2. List of 3K-RGP rice accessions with the richness and diversity indexes. The 438 

indexes were total read counts (same bracken output), the logarithm of total counts (Log10_TRC), the 439 

number of genera (Genus_Counts), Effective Shannon diveristy, Pielou’s evenness and Simpson 1/D 440 

index. 441 

Supplementary table S3. Significant Phylum and Genera that contribute to the differences between 442 

accessions grown in China and accessions grown in Philippines. The biology of the 25 genera is 443 

indicated as tolerance to oxygen and niche. 444 

Supplementary table S4. Relative abundance (average and standard deviation) of the 533 genera in 445 

accessions grown in China and accessions grown in Philippines. 446 

Supplementary table S5. Sequences of 16S primers used for validation of metagenomic analysis and list 447 

of the 18 rice accessions from the 3K-RGP project used for validation. The primers were based on other 448 

publications or design for this study. The primers that amplify the rice actin gene were used as control. 449 

Supplementary table S6. Least squares mean estimates of leaf microbiome richness, evenness and 450 

effective Shannon diversity in the rice varietal groups (Admix, Aromatic, Aus, Indica and Japonica) and 451 

clusters.  452 

Supplementary table S7. Description for 2,234 lines with reliable passport data from the IRRI database 453 

or accession grown in Philippines. 454 

Supplementary table S8. Co-abundance network values for the most abundant genera in accessions 455 

grown in Philippines. 456 

Supplementary table S9. Co-abundance network values for the most abundant genera in accessions 457 

grown in Philippines China. 458 

Supplementary table S10. Metabolic pathways predicted by Vikodak for each environment, based on 459 

KEGG levels 1,2 and 3. Average and  460 
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Supplementary table S11. List of NCBI microbiome accessions used for the correspondence analyses 461 

on the functional profiles of 16S and shotgun sequencing technologies. 462 

Supplementary table S12: Significant signals from the genomic wide association analysis (GWAS) 463 

with a multivariable linear model using 6.5 million SNPs and the three hubs abundance. We kept SNPs 464 

with a P-wald value lower than 1E-15. 465 

Supplementary table S13: Description of the significant SNPs, from Supplementary table S11. 466 

Chromosome, genomic position in Nipponbare genome, annotation, gene ontology and SNP effect were 467 

retrieved from the webpage snpseek.org. 468 

Supplementary table S14: Description of haplotype blocks for each significant SNP, number of 469 

associated candidate genes and the QTLs that match to the same region. 470 

Supplementary table S15: Interactions between all the candidate genes associated with the haplotype 471 

blocks. The analysis was retrieved from RiceNet webpage. The probabilistic functional network 472 

database for interactions was AUC= 0.92; P-value < 0.0001. 473 

Supplementary table S16: Relative abundance of the apoplastic microbiome from IR24, IR24+Xa4, 474 

R711 and R711+SAox. The confidence value indicates the average classification of reads to that group. 475 

 476 
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Figures and legends 672 

  673 

Fig. 1. Host environment shapes the rice leaf microbiome diversity and composition.  A-B The 674 

species richness and Shannon effective number of species comparisons between accessions grown in 675 

China and Philippines; *P-value < 0.001. Kruskal-Wallis test.  C Weighted principal coordinates analysis 676 

based on the distances between environments microbial composition. The clustering is based on Bray–677 

Curtis dissimilarity index.  D Leaf microbiome composition of rice accessions grown in China and 678 

Philippines. The inner position of the sunburst chart represents taxonomic hierarchy Phylum and the outer 679 
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position represents Genus. The chart shows abundance higher than 1%. The black line highlights the 680 

unique genera for each environment. 681 

 682 

 683 

Fig.2. Rice varietal groups and the environment shapes the leaf microbiome. Least squares mean 684 

estimates of leaf microbiome richness (left panel), evenness (middle panel) and effective Shannon 685 

diversity (right panel) in the rice varietal groups (Admix, Aromatic, Aus, Indica and Japonica) after 686 

environment adjustment. Means sharing the same letter are not significant different based on Tukey 687 

method (alpha = 0.05). The analysis for all varietal groups is in the Supplementary Table S6. 688 

 689 
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 690 

Fig.3. Microbial ecological network of the rice leaf microbiome identified common hubs that could 691 

explain the conserved functional profile among environments. A Microbial ecological network from 692 

China and Philippines with abundant genera present in at least 50% of all samples. The colors represent 693 

the seven modules of each network. Each node represents a genus and the circle size indicates betweenness 694 

centrality increment. The key microbial hubs are Clostridium (Clo), Mycoplasma (My) and Helicobacter 695 

(H). Other hubs in China are Spiroplasma (Sa), Azospirillum (Am), Prochlorococcus (Pr), Sphingobium 696 

(Sm). For Philippines, important hubs are Bacillus (Ba), Pseudomonas (P), and Azotobacter (A). The 697 
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properties of the network are number of edges, number of nodes or genera, average degree and modularity. 698 

Only for the network analysis the genus counts were center-log-transformed. B KEGG level 2 pathways 699 

with more than 1% relative abundance in accessions grown in China and Philippines. NS no significant, 700 

Wilcoxon rank-sum test = 6869, P-value = 0.421. 701 

 702 

 703 

Fig.4. Rice metabolic pathways are associated with the microbiome structure. A Genome wide 704 

association study for the three microbial hubs in combine environments. Manhattan plot (left) and 705 

quartile–quartile plot (right) indicate major peaks (significant SNPs) associated with microbial abundance. 706 

P-values were adjusted with FDR and values lower than 1E-15 were consider significant (blue line). The 707 

significant hits are distributed across nine chromosomes. B The significant SNPs found in this study co-708 

localize with a number of agronomic QTLs categorized as: resistance or tolerance, morphological trait 709 

and physiological trait. Categories were retrieved from Q-Taro database. 710 

 711 

 712 

 713 
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 714 

Fig. 5 Host genes related to stress responses modify microbiome composition. A-B Phyla-level 715 

distribution in rice lines with different accumulation of cellulose (IR24+Xa4) and salicylate (R711+SAox) 716 

based on 16S rDNA amplicon. *P-value <0.05, Wilcoxon rank-sum test. C-D Genera-level numbers for 717 

each Phylum in each rice line. E, F Microbial hubs abundance fold change between control and rice line 718 

with modified accumulation. 719 

 720 

 721 

 722 

 723 

 724 
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Supplementary figures 725 

 726 
Figure S1. Generation of 3000 rice genomes dataset and pipeline for collecting the leaf microbiome. 727 

1. Selected gene bank accessions where grown at Philippines (agPh) or China (agCh). The Philippines 728 

accessions belong to the International Rice Gene bank Collection (IRGC) at the International Rice 729 

Research Institute (IRRI). The accessions grown in China are part of a bigger collection from the China 730 

National Crop Gene Bank (CNCGB) in the Institute of Crop Sciences, Chinese Academy of Agricultural 731 

Sciences (CAAS). The rice accessions were grown in the field and the environmental conditions between 732 

China and Philippines were more likely different (12). 2. Genomic DNA (gDNA) was extracted from 733 

young leaves of each accession by modified CTAB method. 3. All genomes were sent to BGI group 734 

(https://www.bgi.com) to construct the libraries and do the sequencing with the HiSeq2000 platform. 4. 735 

Clean reads, that correspond to 205,084,357,762 paired-end reads for all 3,024 genomes, were then map 736 

to five reference genomes using the BWA software. The reference genomes are Nipponbare, 93-11, IR64, 737 

Kasalath, and DJ123 (13). We separate the reads that map to all rice genomes from the reads that did not 738 

map to any rice genome. 5. We suggest the reads that did not map to any of the rice genomes (non-rice 739 

reads) came from microbial DNA that cohabit with rice.  740 

 741 
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 742 

Fig S2. Metagenome sequencing of the 3K-RGP accessions captures leaf microbiome diversity. A 743 

Richness curves for accessions grown in China and in Philippines. The y-axis represents number of 744 

identified genera and x-axis the number of collected samples. The shade on the curves represents the 745 

confidence interval of two in the curve points. B Evenness bar plots with Pielou’s formula. C The 746 

rarefaction curves for China and Philippines microbiomes showed the number of expected genera reach a 747 

plateau between 100 to 300 observed genera. The line indicates the theoretical linear correlation for 748 

rarefaction curves. All 3,024 accessions from the 3K-RGP and the 600 genera found in the analysis were 749 

used for the curves. Full data is in Supplementary Table S2. 750 

 751 
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 753 

FigS3. Member of the rice microbial community are present in accessions grown in Philippines. 754 

Logarithmic relative abundance of some bacterial groups found in the rice microbiome using specific 16S 755 

genus primers. 18 accessions from the 3K-RGP were validated for 12 groups of bacteria present in the 756 

rice microbiome. The most abundant bacteria are indicated in blue. 757 

758 
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 759 

Fig.S4. Rice varietal groups associates with variation of few genera. Broad-sense heritability estimates 760 

for China and Philippines genera. The heritability was calculated for the most abundant genera in each 761 

environment with a random linear model.  762 

763 
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 764 

Fig.S5. The distribution of the rice leaf microbiome affected by additional factors. Canonical 765 

correspondence analysis showing the distribution of microbial genera and rice accessions classified as A 766 

country of origin, B breeding classification, and C ecosystem. Red crosses represent the 533 genera found 767 

in the leaf microbiome of 467 accessions grown in Philippines. The chi-square values for each plot was 768 

41.7436, P-value < 0.05. 769 

770 
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 771 

Fig.S6. The microbial ecological networks from China and Philippines display similar connectivity 772 

and stability features. A Frequency of connections (degree) across the network. B Network stability plot 773 

based on the effect of removing nodes in the network (betweenness centrality) for China (blue) and the 774 

Philippines (green).  775 

 776 

 777 

Fig.S7. The leaf, roots and soil microbiomes have different functional profiles. Correspondence 778 

analysis of functional profiles from different microbiome datasets. A Correspondence analysis from 779 

databases with 16S amplicon and shotgun reads sequencing approaches. CA Dimension 1 and CA 780 

dimension 2 explains 80% and 10% of the differences. B Correspondence analysis of databases with 781 

shotgun sequences. Dimension 1 and dimension 2 explains 65% and 30% of the differences. We used 19 782 
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shotgun databases obtained from NCBI and our dataset. Due to the number of samples for our data 783 

compared with the NCBI data, we used median relative abundance of pathways per variety (N=24).  784 
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