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Abstract

Perception is an active process involving continuous interactions with the environment. During such
interactions neural signals called corollary discharges (CDs) propagate across multiple brain regions
informing the animal whether itself or the world is moving. How the interactions between concurrent
CDs affect the large-scale network dynamics, and in turn help shape sensory perception is currently
unknown. We focused on the effect of saccadic and body-movement CDs on a network of visual
cortical areas in adult mice. CDs alone had large amplitudes, 3-4 times larger than visual responses,
and could be dynamically described as standing waves. They spread broadly, with peak activations in
the medial and anterior parts of the dorsal visual stream. Inhibition mirrored the wave-like dynamics
of excitation, suggesting these networks remained E/I balanced. CD waves superimposed sub-linearly
and asymmetrically: the suppression was larger if a saccade followed a body movement than in the
reverse order. These rules depended on the animal’s cognitive state: when the animal was most
engaged in a visual discrimination task, cortical states had large variability accompanied by increased
reliability in sensory processing and a smaller non-linearity. Modeling results suggest these states
permit independent encoding of CDs and sensory signals and efficient read-out by downstream
networks for improved visual perception. In summary, our results highlight a novel cognitive-
dependent arithmetic for the interaction of non-visual signals that dominate the activity of occipital
cortical networks during goal-oriented behaviors. These findings provide an experimental and
theoretical foundation for the study of active visual perception in ethological conditions.

Introduction

Corollary discharges (CDs) are copies of motor commands that do not themselves produce body
movements, but inform brain regions on whether the animal or the world is moving'*. These signals
are found ubiquitously in the animal kingdom? and it is increasingly understood they profoundly
impact the dynamics of several brain regions, affecting sensory perception as well>®, During
ethological behaviors multiple CDs concurrently propagate across neural networks!. However in
traditional approaches CDs have been either isolated one at a time for experimental convenience or
labelled as uncontrolled variability and abolished with anesthetized preparations or behavioral
paradigms that minimize motor components. Accordingly, how CDs interact with each other and how
these interactions affect sensory perception during goal-directed behaviors is currently unknown.

We addressed these questions in the visual cortex of awake mice, which has served as a model system
for two very well-studied CDs, those for saccadic eye movements®'*
first characterized the large-scale dynamics of the CDs analyzed individually or when interacting with
each other and with visual signals. Then we examined the cognitive dependence of the found
properties and their relevance to perception by studying the animals’ behavior in a visual
discrimination task.

and for body movements®>%°, We
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Results

Mice (n=15) were trained in a two-alternative forced choice (2AFC) orientation discrimination task (Fig.
1a,b, Extended Data Fig. 1a) with automated setups featuring self head-fixation?!. Head-fixed mice
made frequent voluntary saccadic eye movements mostly in the nasal-temporal direction? (Fig. 1c,
Extended Data Fig. 1d, Supp. Video 1) and preferentially after the stimulus presentation (in the open-
loop period, OL, Fig. 1a,d), possibly reflecting a task-related exploration of the visual stimuli. This
saccadic pattern emerged with training, with naive animals making significantly fewer exploratory eye
movements despite being shown the same visual stimuli — more salient given their novelty (Extended
Data Fig. 1b). Animals reported their choice by rotating a wheel with their front paws? (Fig. 1a,b).
Wheel rotations — from hereafter denoted ‘body movement’ — were associated with more general
movements of the trunk, tail, snout, whiskers, etc., (Supp. Video 2).

During behavior we imaged responses from excitatory neurons in a large network of visual cortical
areas (n=10 mice, Fig. 1e, Extended Data Fig. 1c, Methods). Notably, responses to isolated saccades
were about four times larger than contrast responses (Fig. 1f), even in the V1 retinotopic location of
the stimulus (Fig. 1f-g). Saccades strongly activated medial V1 and the medial part of the dorsal visual
stream (areas PM, AM, A, Fig. 1g, Extended Data Fig. 2a,b,g) — regions implicated in the magnocellular
hypothesis of saccadic suppression'*?* — anterior visual-parietal areas? (Extended Data Fig. 2i,j) and
partially-imaged somatosensory areas®®. After about half a second of transient increase, the response
was followed by a delayed suppression below baseline activity (Fig. 1f). The overall dynamics could be
described in terms of a global spatial pattern whose amplitude was modulated over time, i.e. a
standing wave of activity (Extended Data Fig. 3a, Methods). Deviations from the wave dynamics
(residuals of a singular-value decomposition, Methods) revealed a small but significant response in
motion sensitive areas®’ (i.e. RL, AL and LM, Extended Data Fig. 3c) with peak amplitude about 1.4
seconds after the onset of the saccade, possibly linked to a reafferent retinal signal, i.e. a sensory input
induced by the eye movements.

However, reafference was not a significant contributor to the overall response pattern. Indeed, the
onset of neural activity preceded the onset of saccades by 110ms (-110+20ms, s.e.), with the spatial
profile of the activation already matching that of the post-saccadic response (Extended Data Fig. 2c).
Nasal or temporal saccadic eye movements did not produce significantly different activations
(Extended Data Fig. 2d), as it should be expected by reafferent signals'2. Furthermore, in experiments
where we jittered the stimuli on the screen with displacement vectors and velocities drawn from the
distribution of actual saccades (simulated saccades?, Extended Data Fig. 1e, Methods), responses had
smaller amplitudes than saccadic ones and were localized in motion-sensitive areas?’ (Fig. 1f,g). Finally,
saccadic responses in the absence of contrast stimuli (Methods) and of behavioral task (“blanks”) were
comparable to those evoked in the presence of contrast stimuli, although the delayed suppression
was significantly reduced (Extended Data Fig. 4a-c).

The second corollary discharge we examined was related to body movements'®, also typically
occurring after the stimulus onset (Fig. 1d). Consistent with studies on locomotion>!, body
movements elicited large-amplitude responses, about three times larger than responses to visual
stimuli (Fig. 1f,g). They localized in medial V1 and dorsal stream areas (Fig. 1g), such as the posterior
parietal cortex (A, anterior-RL, and AM?®), and the hind-paw somatosensory areas®. Similar to
saccades, responses emerged before the initiation of the wheel rotation (-237+31ms, s.e.; n=10;
Extended Data Fig. 2c) reflecting either a pre-motor preparatory component®%?°, or stereotypical
undetected movements preceding wheel rotations. After about half a second of transient increase,
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77 responses were followed by a delayed suppression (Fig. 1f,g). Also in this case, the overall dynamics
78  could be well summarized in terms of a standing wave of activity (Extended Data Fig. 3a). An analysis
79 of the residuals from the wave dynamics identified a small but significant response in motion-sensitive
80  areas (Extended Data Fig. 3c), likely related to the stimulus motion induced by the wheel rotation
81  (closed-loop period, CL, Fig. 1a).

82 Inhibitory activity (PV-cre line, n=5) approximately mirrored excitatory activity both for saccades and
83  body-movements?®3%31, Responses were ~2.5x and ~2.9x larger than those evoked by visual stimuliZ®
84  (Fig. 1f,g) with an amplitude increase preceding saccadic and body movements (Extended Data Fig.
85 2c). Both saccades and body movements had a delayed suppression and the overall response in blank
86  conditions resembled those of excitatory neurons (Extended Data Fig. 4a-c). Responses were
87  widespread® with a similar cortical localization as excitatory neurons (Fig. 1g). The overall dynamics
88  was also consistent with a standing wave of activity (Extended Data Fig. 3a).

89 In summary, saccadic and body movement responses were consistent with standing waves of activity
90 and were several folds larger than contrast responses, with spatially distinct activation patterns
91 (Extended Data Fig. 2e,f). Both CDs were characterized by non-sensory components emerging before
92 the movement, and had a delayed suppressive response that could not be fully explained by an
93  overlapping slow intrinsic signal?®33-3
94  stimulus and simulated saccades). There was a strong similarity in the spatial and temporal activity

since it was not observed in response to retinal inputs (Fig. 1f,

95 patterns of PV and excitatory populations®°, with excitation and inhibition (E-1) seemingly balanced
96  during saccadic and body-movement CDs.

97  Saccades and body movements often occurred in close temporal proximity and soon after stimulus

98  onset (Fig. 1d, Extended Data Fig. 1b), giving us the opportunity to examine the properties of the

99 stimulus-CD and of the CD-CD interactions. For stimulus-CDs interactions we calculated average
100 responses in trials when saccades or body movements occurred in close temporal proximity with the
101 stimulus onset (Methods). A prominent feature was a significant larger peak response amplitude than
102  forisolated visual responses (Fig. 2a,b; Extended Data Fig. 5a,b). The duration of stimulus-CD response
103 was comparable to that of isolated saccade or body-movement CDs. Moreover, the spatial distribution
104  also resembled that of saccades or body movements (Extended Data Fig. 5¢). An analysis of linearity
105 (GLM, Methods) revealed that the saccade and stimulus interaction was supralinear, while the body-
106 movement and stimulus interaction was sub-linear when stimulus and CD coincided, but it was
107 supralinear when the CD followed the stimulus®® (Extended Data Fig. 6). When saccadic and body
108 movement CDs interacted within short temporal windows, peak response amplitudes were larger than
109 for isolated CDs but significantly smaller than their linear sum (Fig. 2c; Extended Data Fig. 7a-f). We
110  confirmed this was not a result of GCaMP-signal saturation (Extended Data Fig. 7i). Responses also
111 had a strong delayed suppression (Fig. 2c), largest at 2.2+0.2s from the time of interaction. The spatial
112 pattern of the peak CD-CD interaction was mostly a superposition of isolated CDs and it was distinct
113 from the spatial pattern of the delayed suppression, which was more uniformly localized in anterior
114  regions (Extended Data Fig. 7g,h). The sublinear summation was well captured by an overall
115 suppressive component in a GLM-derived interaction kernel (Fig. 2d-g, Methods). Notably, the
116  strongest suppressive interaction occurred when a saccade happened after a body movement (Fig.
117 2e-f; Extended Data Fig. 8a,c). Similar to the spatial pattern of the peak CD-CD interaction, the
118  nonlinear suppressive component at the time of its maximum was broadly distributed across visual
119 areas, with the peak suppression localized similarly to the isolated saccadic response (Fig. 2g). In PV
120  mice the CD-CD interaction was also suppressive and asymmetric, but less pronounced than for
121 excitation (Extended Data Fig. 8b,d-g). In summary, the contrast response was overshadowed by the
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122 interacting CDs, resulting in a response profile similar to that of CDs in isolation. Interactions were
123 nonlinear, and depended on the lag between stimulus onset and saccade or body movement. The CD-
124  CD interaction was primarily suppressive, with an asymmetry relative to the order of the CDs.
125 Interacting responses were localized in the medial part of V1 and in the medial-anterior dorsal stream
126 areas, being more prominent in excitatory neurons than in PV cells.

127 Next, we examined how the summation dynamics between CDs and with visual stimuli might affect
128  the processing of visual information and consequently the animal’s sensory perception. We started by
129  formulating a simple hypothesis for the previously described temporal asymmetry in the interactions,
130 reasoning that the order of motor execution (saccade or body movement first) could link to learned
131 behavioral patterns in trained mice. For example, a mouse highly engaged in the task could first
132  visually explore (saccade) and then make a wheel movement, with the reverse order being more
133 typical of less engaged animals. Since cognitive-state changes (i.e. task engagement, attention, arousal,
134  etc.) are known to correlate with changes in cortical states®*3°, the asymmetry would emerge because
135 movements with different temporal orders occur in different cortical states. Consistent with this
136 hypothesis, also the processing of CDs in isolation — and of visual signals — should depend on cortical
137  states and correlate with performance, as a reflection of changes in cognitive states. To examine these
138  possibilities we analyzed differences in cognitive states®® using pupil dilation as a biomarker,
139  evaluated visual perception through the animal's ability to discriminate orientations in the 2AFC task,
140 and measured the dynamics of cortical states via quantifiers derived directly from the neural
141 responses.

142  To characterize the link between cognitive states, performance and cortical states, we pooled across
143  all CD interactions and defined a space of pupil baseline and area change, (Fig. 3a-c, Extended Data
144 Fig. 2h, Methods), associated to tonic and phasic changes in pupil dilations3°. As expected, the
145  animal’s performance varied across regions of this pupil space, with gradual increase in performance
146  for larger pupil area (Fig. 3b,c), and with a trend for peak performance at intermediate values of area
147  change (Fig. 3c), in agreement with Yerkes-Dodson inverted U- curve®'. Notably, correct trials
148 extended to regions of the largest pupil area, more so than incorrect trials, while time-out trials
149  densely clustered in the region of small pupil area, suggesting an overall reduction in task
150 engagement?® (Fig. 3b). To quantify differences in cortical states, we relied on two measures. First, we
151  defined a dynamical range index (DR) that measures the standard deviation of the neural response
152 throughout a trial (Methods). Large-amplitude CDs could drive high DR values, but CDs were neither
153  consistently sufficient nor necessary for high DR states (Extended Data Fig. 9a, Fig. 3f,g). This index
154 reflected either changes in cortical states following modulations in the animal’s cognitive state3®42
155 undetected sensory-motor components. The former interpretation was supported by the wider
156 spread of trials with high DR in the pupil space (Fig. 3c), also accompanied by higher performance (Fig.
157  3d,e), suggesting increased arousal or engagement in high DR states. Using the stimulus-locked change
158 in the neural response as a second measure of cortical state (Methods), we observed the highest
159  performance in trials with the largest changes (Fig. 3d). Overall, this measure was an informative
160 regressor of the trial choice, with correct, incorrect, and time-out trials characterized by progressively
161  smaller amplitude changes (Fig.3h). This trend was observed also when splitting trials into high and
162 low DR groups, indicating that the neural-to-behavioral correlation was observable on a trial basis and
163 persisted across a broad range of cortical and cognitive states (Fig. 3h). In summary, when analyzing
164 pupil dilation, neural responses and task performance, we observed a significant correlation between
165 psychometric and neurometric parameters with co-variability in cognitive, performance, and cortical
166 states.

or
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167  As hypothesized, cortical-state changes affected visual responses and CDs, both when considered in
168 isolation or as interacting. The amplitude of the stimulus-evoked response in isolation from other
169  movements (Methods), was larger and had a higher signal-to-noise ratio** (Methods) in high DR states,
170  when performance was also higher (Fig. 4a,b). Responses to isolated saccadic and body movements
171 remained space-time separable (standing waves) across DR states, with the peak amplitude and the
172  delayed suppression both enhanced in high DR states, in accord with a multiplicative gain
173 modulation®® (Fig. 4c,d; Extended Data Fig. 9). A similar dependence on dynamical range and
174  performance was observed in CD interactions (Fig.4e-g). In particular, the non-linear suppression was
175 smaller in high DR states, suggesting increased functional independence between CDs, with
176  interactions better described as a linear sum of isolated CDs (Fig. 4e). Notably, although the E-I ratio
177  wason average balanced in isolated and interacting CDs (Fig. 4f,g), in trials with high DR the initial part
178  of the response was multiplicatively scaled both for E and | activations, but in the later part, E was
179  further reduced than |, skewing the ratio toward an overall response suppression (Fig. 4f,g). A possible
180  explanation relates to the phasic and tonic changes in pupil area that had multiplicative and
181 subtractive effects on the interacting responses (Fig. 3f,g, quadrants 2,3 and 1,4 respectively). Hence
182  acortical-state dependent recruitment of the brain circuits involved in the pupil control could underlie
183  the late E-I imbalance?>31404447  Regarding the temporal asymmetry in CD interactions, both
184  dynamical range and performance were significantly larger when saccades happened before body
185 movements than in the reverse order (Fig. 4h,i). This asymmetry was invariant with respect to cortical
186  states and observed on a trial basis, i.e. when grouping trials into high or low DR states (Fig. 4i).
187  Together these considerations support the proposed hypothesis that changes in cognitive state
188  associated to higher performance and larger DR values, better correlate with a behavioral pattern
189  where visual exploration precedes body movements. Further support to this interpretation comes
190 from the observation that saccades after stimulus onset, but not those preceding it, correlated with
191 higher performance (Extended Data Fig. 6e). According to a mechanistic interpretation, the functional
192  circuits recruited by the CDs are differentially modulated by the animal’s cognitive state3¢38. This is
193 possible via cholinergic*®* and noradrenergic neuromodulatory systems known to be robustly
194  activated by these CDs and implicated in the control of arousal and attention®%*? (Fig. 4j). This
195 mechanistic view suggests a simple computational-level interpretation of how CD interactions
196 influence perception. Performance modulation could be causally linked to a cognitive effect (e.g.
197 related to attention, engagement, etc.), to a perceptual one (e.g. related to the processing of visual
198  signals) or to a combination of the two. All our results support the last interpretation. On one hand
199 high DR states correlated with larger pupil dilations, indicative of a cognitive modulation. On the other
200  hand, in high DR states CDs were larger, together with larger amplitude and S/N of the contrast
201 responses. Furthermore, GLM analysis (Fig. 4e) indicates that the nonlinearities are most negligible in
202 high DR states, suggesting a functional independence (orthogonality) between signals in an encoding
203 space of neural activations®3. Hence, downstream networks can better decode and use CDs-related
204  information (e.g. for perceptual stabilization'***> and predictive coding®>'°) when CDs and visual
205 signals are linearly and independently combined. This interpretation also agrees with findings that
206  during saccades visual information is not necessarily gated away, but rather it is retrievable depending
207 on the visual stimulus and task structure®®. In conclusion, these results reveal a cognitive and cortical-
208  state dependent arithmetic for the interaction of signals that overshadow sensory activations in
209 sensory cortices, introducing a novel experimental and computational framework for the study of
210  visual perception in ethological conditions.
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Methods

Animals

211  Transgenic mice used in this work were Thy1-GCaMP6f mice (n=10, “excitatory mice”), and PV-Cre
212 mice injected with AAV9-CAG-FLEX-GCaMP6f (n=5, “PV mice”). A large proportion of the PV cell
213 population was successfully driven to express GCaMP6f (Fig. 1e, Extended Data Fig. 1c). When
214 inclusion criteria reduced the number of animals used for specific analysis, we indicated the number
215 accordingly. For all reported results, the number of sessions per animal ranged from 9 to 60, with a
216 minimum and maximum number of trials per animal from 1000 to 8000.

Behavioral training

217  Animals were trained in a 2AFC orientation discrimination task. Two oriented Gabor patches (20° static
218 sinusoidal gratings, sf = 0.08 cpd, randomized spatial phase, 2D Gaussian window, sigma=0.25°) were
219 shown on the left and right sides of a screen (LCD monitor 25cm distance from the animal,
220 33.6cm x59.8 cm [¥68° x 100°dva], 1920 x 1080 pixels, PROLITE B2776HDS-B1, IIYAMA) at +35°
221  eccentricity relative to the body’s midline. Mice had to report which of the two stimuli matched a
222 target orientation (vertical, n=12; horizontal, n=3). The smallest orientation difference varied
223 depending on animals, from 3° to 30°. Animals made the choice by rotating a rubber wheel with their
224  front paws (Fig.1a; Supplementary video 2), which shifted stimuli horizontally on the screen??3, For a
225 response to be correct, the target stimulus had to be shifted to the center of the screen, upon which
226  the animal was rewarded with 4pL of water. Incorrect responses were discouraged with a prolonged
227 (10s) inter-trial interval and a flickering checkerboard stimulus (2Hz). If no response was made within
228 10 seconds (time-out trials), no reward nor discouragement was given.

229  Animals were imaged after exceeding a performance threshold of 75% correct rate for 5-10
230  consecutive sessions (typically after ~4-12 weeks) when trained in the automated self-head-
231 restraining setups. Depending on animals, performance in the imaging setup (e.g. Fig. 1b) could
232 fluctuate from session to session. To work with a coherent behavioral dataset, we excluded sessions
233 with exceedingly large fractions of time-outs (>=20%) or with average performance below 60%.

234  Every trial consisted of an open-loop period (OL: 1.5s) and a closed-loop period (CL: 0—10s), followed
235 by an inter-trial interval (ITI: 3—5s). We recorded cortical responses, wheel rotations and eye/pupil
236  videos from a pre-stimulus period (1s duration). Stimuli were presented in the OL period, when wheel
237 rotations did not produce any stimulus movement. In 25% of the trials, the OL lasted longer by an
238 additional randomized 0.5—1.5s period during which we presented simulated-saccade stimuli: i.e.
239 patches moving passively on the screen according to the previously recorded eye movement velocities
240 (Extended Data Fig. 1d).

The psychometric curve

241  We fitted the animal’s probability of making a right-side choice as a function of task difficulty using a
242 psychometric function®” Y(e; a,B,y,1) = v+ (1 —y — 1) F(e; a, B), where F(x) is a Gaussian
243 cumulative probability function, a and 8 are the mean and standard deviation, y and A are left and
244  right (L/R) lapse rates, € is the signed trial difficulty. Confidence intervals were computed by
245 bootstrapping (n=999).

Detection of saccades and body movements
Eye tracking

246 We monitored the left, contralateral eye illuminated by IR LED (SLS-0208-B medium Beam, Mightex®),
247  usinga CMOS camera (FL3-U3-13E4M-C, POINT GREY) equipped with a zoom lens (Navitar Zoom 7000,
248 1280x1024 pixels, typical ROI size: 350x250 pixels, 30Hz acquisition rate) with an IR filter (Kenko
249 PRO1D R72, 52mm). The camera was aligned to the perpendicular bisector of the eye, making ~60°
250 angle with the midsagittal axis of the animal.
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251  Automatic tracking of the pupil position was done with custom software (Matlab toolbox, GitHub Link).
252  We first processed each video frame to extract the visible region of the eye ball (Extended Data Fig.
253 10a, MATLAB imreconstruct.m and factorization-based texture segmentation®®), with morphological
254  operations (dilation, erosion, disk structuring elements 106 and 202um, respectively) to remove pixel
255 noise (Extended Data Fig. 10a). To extract the pupil segment, which has lower intensity values, we
256  performed Otsu thresholding® on the intensity distribution in every frame (Extended Data Fig. 10b).
257  We further imposed geometrical constraints to reduce misclassification of the pupil with the eyelid
258 shadows: the pupil had to: 1) be closer to the center of eye segment (Euclidean distance); 2) have a
259 roundness index (4*pi*area/perimeter?) >0.7. We fitted an ellipse to extract the pupil center position
260 and area, then used for saccade-detection and pupil area analyses. We also confirmed accuracy of
261 pupil-tracking by visually inspecting hundreds of trials.

Saccade Detection

262  To detect saccadic eye movements, we first filtered the XY positions of the pupil center over time
263 (frames) using an edge filter [-1 -1 0 1 1] and transformed the resulting time series to XY velocities,
264  then we applied an adaptive elliptic thresholding algorithm to find the saccade time-frames that had
265 velocities larger than the elliptic threshold®® (Extended Data Fig. 10c). We discarded the saccades that
266 lasted <=60ms and were smaller than 1.5° (see ERA method-section for the robustness of the results
267 relative to specific threshold values). We extracted the time, magnitude, duration, velocity, start and
268  landing positions of each saccade (Fig. 1c,d).

Pupil Area

269  To analyze the pupil area (Fig.3a) we first converted eye-tracking-camera pixels to mm using direct
270  measurements of the width and length of the eye to account for experiment-to-experiment variability
271 in the zooming factor. We calculated the average pupil area for each imaging session by averaging
272  area values across all trials within the session. Finally, pupil area in every trial was normalized
273 (subtracted) relative to the session mean.

Wheel detection

274  Toautomatically detect the time at which the animals rotated the wheel, we first converted the wheel
275 rotation values into velocities and flagged as potential wheel movements the time-bins when the
276  velocity had a zero-crossing (i.e. sign change) or deviated from zero above a fixed threshold (20°). All
277 movements smaller than such threshold were considered unintentional twitches of the wheel and
278  discarded (see ERA method-section for the robustness of the results relative to specific threshold
279  values).

Imaging

280 Expert mice were placed under a macroscope for wide-field imaging (THT, Brain Vision) using a head-
281 plate latching system?!. The macroscope was equipped with a CMOS camera (pco.edge5.5, pixel size:
282 6.5um?, pixel number: 5.5mp) and two lenses (NIKKOR, 50mm, F1.2, NA = 0.46) to image GCaMP6f
283 fluorescent signals: excitation light, 465nm LED (LEX2B, Brain Vision); emission filter, band-pass at
284  525+25nm (Edmund).

Retinotopy

285 We computed maps of retinotopy to identify primary and higher visual areas. Briefly, we used a
286 standard frequency-based method with slowly moving horizontal and vertical flickering bars in
287  anesthetized mice (~0.8% Isoflurane) on a 40” LCD monitor (liyama®). Visual area segmentation (Fig.
288 le and Extended Data Fig. 1c), was done based on azimuth and elevation gradient inversions as
289 detailed elsewhere®®3, To center and orient maps across animals we used the centroid of V1 and the
290  iso-azimuth line passing through it®L.
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Pre-processing Wide-field GCaMP6f signals

291  We first motion corrected GCaMP data®. Using a semi-automated control-point selection method
292 (MATLAB cpselect, using blood vessel images), all image frames were registered to a previously
293  acquired retinotopic map. To compute relative fluorescence responses, we calculated a grand-average

294  scalar Foi'j =<1 >yyt o With I

Xyt Xyt the XYT image tensor in trial i, session j. We then used this

295  scalar to normalize the raw data tensor Fxl;,t = I;]yt - Foi'j)/FOi'j. Data in each trials was then
296  band-pass filtered ([0.1 12] Hz) and smoothed with mild spatial filtering (Gaussian ¢ = 20um). Finally,
297 each tensor was compressed with spatial binning (130x130um? with 50% overlap). The results

298 presented do not critically depend on any of these parameters.
Data Analysis
Event Related Analyses (ERA)

299  We analyzed isolated events in windows that contained only one of the four events: stimulus,
300 simulated saccade, saccade and body movements (Fig.1f, Extended Data Fig. 10d,e). The stimulus
301 isolation window was from 1s before to 1s after the stimulus onset; the simulated saccades window
302 was from trial start to 3s after stimulus onset; the saccades and body movement window, from 2.5s
303 before to 2.5s after the event (Extended Data Fig. 10d). The window sizes were chosen by considering
304 thetime needed for the response to return to baseline during a quiescence period (Extended Data Fig.
305 10h,i). For interacting saccade and body movements, we selected trials with body movement within
306 time-lag windows of [-0.75, -0.25]s, [-0.25, 0.25]s and [0.25, 0.75]s around a saccade (or vice versa).
307  We also excluded trials when other events were detected 2.5s away from the closest event on each
308 side, see the isolation window and event distributions in Extended Data Fig. 10f,g for lag -0.25—0.25s.

309 For event-related analysis (ERA) we computed trial-averaged responses centered on the time of the
310 event. Spatially, we defined 4 ROIs for each event: we first identified the time of peak response
311 amplitude in V1 and then selected pixels above a varying threshold, from 70" to 99'" percentile at
312 steps of 0.5 percentiles, to create binary mask-images. We then averaged the masks (Extended Data
313 Fig. 10j-m) and defined an ROI as a contiguous group of pixels above the 99" percentile (Extended
314 Data Fig. 10n). The results presented did not critically depend on any of the parameters above.
315 Temporal event-related responses in each ROl were computed as a within ROl pixel average after
316  frame-0 correction. This was done by computing an average dF/F in a time window [-0.2 Os] from
317 stimulus onset and simulated saccade, or [-0.8 -0.3s] from saccade and body movements, averaged
318 across trials and animals, and subtracting this value from the event-related responses. Error bars in
319 across-animal averages are always standard error of the mean (s.e.) while across-trial error bars are
320 always 95% confidence interval (95% Cl). Peak responses were computed by averaging within a 100ms
321 window centered at the time of max amplitude. To compute spatial maps (Fig. 1g, and most maps in
322 Extended Data Figures), we normalized (z-scored) the dF/F of each pixel in every frame with max
323 amplitude over time: Z = %where F; is the peak amplitude (average of peak frame +1 frame)
324 on trial i, (F;) is the average across trials, ¢ is the standard deviation across trials, and k is a small
325 regularizing scalar to avoid division by zero. Then we averaged z-scored responses across mice (Fig.
326 1g). This was done for both data and the SVD model (singular value decomposition). For SVD analyses
327 (Extended Data Fig. 2), we modeled spatial-temporal response tensors (D) using the SVD components
328  with the highest variance explained, i.e. as a matrix multiplication of a temporal vector (T) with a 2D
329  image component (S), plus residuals (R): D = a (Sx T) + R, with a a scaling factor. Variance explained
330 was computed as in Geisler et al®.

331  Saccadic and body movement velocities below the detection threshold could modulate the amplitude
332  of the isolated saccadic response (Extended Data Fig. 2i-j). We quantified this in trials with isolated
333  saccades, normalizing saccadic and wheel movement velocities by their trial-average maximum. For
334 every trial, we calculated the average velocity within a [-0.5, +1]s time window centered on the time
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335  of the saccade. We then divided trials into small and large wheel velocity groups using the mean
336  velocity across all trials as a threshold. This small contamination of below-threshold velocities did not
337  depend on whether the movement occurred in isolation or together with other movements (Extended
338 Data Fig. 9a).

Linear prediction with jittered times

339  To compute the linear prediction for stimulus-CD interactions (Fig. 2a,b), we convolved the isolated
340 CD responses (Fig. 1f) with binary input vectors representing recorded movement times, summed
341  them with the isolated stimulus response, and averaged across trials and animals. Similarly, for CD-CD
342 interactions (Fig. 2c), we convolved the responses to isolated body movements and saccades with the
343 corresponding binary input vectors, alighed them to the time of saccade, and averaged across trials.

Signal Saturation

344 For a given trial i with a pair of saccade and body movement events with a time lag of [-0.25, 0.25]s
345 we calculated a baseline fluorescence image Fé by averaging raw fluorescence values over t = [-0.8,
346 0]s. We also calculated a peak fluorescence image F! by averaging frames over a 100ms window

. i_pl
347 centered at the time of peak response. Percentage amplitude change was defined as §' = % * 100.
0

348  Then, we divided the distribution of Fé derived from all trials into 5 equal amplitude intervals
349  (quintiles), and for each interval computed mean Fé’i” values together with corresponding mean
350 percentage changes §%™. For every animal we plotted 6% as a function of Fé’m with its 95% Cl

351 (Extended Data Fig. 7i). We discarded intervals with less than 25 trials.
Pupil and Neural Space, and DR

352 In pupil space the x-axis was the baseline pupil area, i.e. the average area in the [0, 200] ms interval
353 after the stimulus onset, and the y-axis was the maximum area change relative to this baseline in the
354  OL period (Fig. 3b). For interacting events (Fig. 3f), the baseline was the pupil area at the time of first
355 event (£50ms) and the maximum change was calculated in a [0, 4] interval after the second event (Fig.
356  3f). A similar procedure was used to define the dF/F neural space (Fig. 3d,h). The dynamical range
357 index (DR) was calculated using the standard deviation of the V1 response over the whole trial
358  duration DR; = O'(Ri't) where R is the V1 response in trial i over time t. Calculating DR values
359 including responses from other areas did not significantly change these results. To define ‘high’ and
360 ‘low’ DR states we used 75" and 25" percentiles of DR distribution across all trials.

Data used in GLM

361 In each trial, for every pixel, GCaMP responses were frame-zero corrected by subtracting the average
362 dF/Fin the [-1.0, -0.8]s interval before stimulus onset. Data was down-sampled to 10 Hz, and spatially
363 binned: 300x300um pixel size, “tile” in the following. Only responses in the open loop were analyzed
364  to exclude activations due to stimulus motion. Trials with events in the [-1.0, -0.8]s interval before
365 stimulus onset, or with blinks or simulated saccades were excluded.

Model

366 For a given tile and trial, we model the GCaMP response y(t) as y =Y/, w;*x;+ &,
367  with convolutional kernels w;, Gaussian noise e~N(0,X), and inputs x;, i € {s, b, e, sb, se, be}, with
368 s, b, e, stimulus onset, body movement, eye movements, and their pairwise combinations, sb, se, be.
369 Each x; was a binary time series, with 1’s at the time of an event. Pairwise inputs were the outer
370 product of corresponding linear inputs. Kernels w; acted causally and anticausally to account for both
371 pre- and post-movement responses. The bias term was zero since y was frame-zero corrected.
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Optimization

372 In matrix form Y = Xw + €l; we estimated kernels from 40 data bootstraps using ridge regression,
373 w = (XTX + €I)"1XY, where the optimal ¢ is found for every tile and kernel w; by maximizing log
374 marginal likelihood using a fixed-point algorithm®®’. The expression for W is equivalent to Bayesian
375  MAP estimate with € = aﬁ/ag, where ¢ is noise variance of observations and azf is prior variance®®,
376  wis biased, with the amplitude of kernels estimated from relatively few noisy trials strongly penalized
377  (e.g. Extended Data Fig. 8.g, right).

Sequential fitting

378  To eliminate the trade-off between kernels of different inputs, we estimated them sequentially®®. We
379  estimated wy from trials with no body or eye movements until 2.8s after trial start, w, was estimated
380 in a time window 7, = (-1.0s, 1.5s) centered on the stimulus onset and could also contain a slow
381  upward/downward trend related to movements in the ITI period. From the residuals, y,; = y — wy *
382  x,, we estimated w,, with t, = (-0.3s, 2.0s) and w,, with 7;, = (-0.3s, 2.0s) using segments of trials
383 where the movements were isolated. Isolation meant no overlap with any part of the T-window of any
384  surrounding movements. From the residuals, ¥,spe = ¥rs — Wp * Xp — W, * X, We estimated the
385 body-eye movement interaction kernel wy,,, Tp. = [(-0.3s, 2.0s), (-0.3s, 2.0s)] using all trials. Finally,
386  we estimated stimulus-eye movement wg, (using dF/F downsampled at 5Hz) and stimulus-body
387 movement wg, kernels from the residuals Y, = Vs — W * X, and Vyp = Vg — Wy * X, USING
388  the same trial segments as when fitting w, and wy, respectively to ensure isolation.

Kernel analysis and figures
Used data

389 Due to the stringent trial-selection criteria, wy, could be reliably estimated from n=8 excitatory
390 animals and n=5 PV animals; wg, from n=5 excitatory animals, w, from n=6 excitatory animals. wg,
391  and wy, could be estimated in fewer excitatory animals than w, because we additionally required
392  isolation of the respective movement. wy, and wg, could not be reliably estimated for PV animals.

Graphical representation and pre-processing

393  We represent kernels wy,, wg,, Wg, in the coordinates of lags, (tp,7.), (75, Te), (Ts, Tp) - (Fig. 26;
394 Extended Data Fig. 6b,d; Extended Data Fig. 8a,b), a kernel element is thus e.g. wy (7}, 7,.). For
395  improved graphics, we filtered wy,., W, Wy in the lag-lag space with a mean filter of 3x3 time bins.
396 For the results presented, we only considered elements significantly different from zero (two-tailed
397 Mann-Whitney U-test at @ = 0.05), that passed the permutation test (wy, only), and that could be
398 estimated from at least 10 data points — these criteria were tested for all animals, all tiles, and lags.
399 Permutation test for wy,, was performed by randomly assigning trials with interactions to saccade-
400 body movement pairs with different At and fitting the GLM with ¢ fixed at the unshuffled estimate.
401 Wp was then tested against the shuffled-data estimate of w, using Mann-Whitney U-test (¢=0.05).

Population kernels

402 We calculated population kernels wgzp, wfg”’, or wggp (Fig. 2e; Extended Data Fig. 6b,e; Extended
403 Data Fig. 8a,b), as average normalized kernels wy,,, wg,, W, belonging to the tiles (300x300um) with
404  the most suppressive wy, (T, T,) and wg, (T, Tp) or most facilitating wg, (75, T, ) values. The patterns
405  of suppression and facilitation of wy,, wg., Wy, did not change substantially as we considered
406  different larger regions (data not shown). We masked elements wgzp (dim colors) that were
407 indistinguishable from permutated data or could not be estimated in n=3 or more (of 8 total) animals
408  (in n=2 or more (of 5) for PV animals). We masked elements w?ﬁp and w?,fp if they could not be

409  estimated in n=2 or more (of 6) animals.

410  We show (1, 7,) of maximally suppressive elements of every animal with a red dot, and population
411 average ((tp,T,)) — with a red circle (Fig. 2e), s.e. smaller than circle size. We excluded one outlier
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412 mouse. Similarly, we show maximally facilitating w,, (75, T,.) of individual animals with black asterisks
413  and meanis.e. as a circle with error bars (Extended Data Fig. 6e). We show maximally suppressive
414  wg, (14, 1) with black circles, maximally facilitating wg, (75, ) as black crosses, and respective
415 population medians and median-based standard errors as a large circle and a large cross (Extended
416 Data Fig. 6b). Markers of all animals were jittered with Gaussian noise of ¢ = 0.1 to avoid overlap in
417  the graphics.

GLM simulated responses

418  We predicted nonlinear components of the response using the GLM (Fig. 2g; Extended Data Fig. 6¢,f;
419 Extended Data Fig. 8c,d), where all but the corresponding nonlinear term was set to zero. Responses
420  were generated according to lags highlighted on the respective population kernels.

Maximum suppression at relative lag and time

421 From normalized kernels of individual mice, we found maximum suppression as a function of relative
422 lag Atyp,, A1y, AT, and time Aty,,, Atgy,, Atg, (Fig. 2f; Extended Data Fig. 6g-1; Extended Data Fig. 8e,f),
423 computed an average curve, and compared population values at all lags with those at the lag of the
424 minimum of the average curve (Fig. 2f; Extended Data Fig. 6k,|; Extended Data Fig. 8e,f; U-test, a=0.05)
425 or at the lag of the maximum of the average curve (Extended Data Fig. 6g-j), and marked significantly
426  different At and At with asterisks. We additionally report the mean of At,,;,, and At,,;, across
427  animals, i.e. the average abscissa of the minima (Fig. 2f; Extended Data Fig. 8e¢,f).

Explained variance

428  We estimated response variance of every tile of every animal explained by a full GLM using R? = 1 —
429 Y9 —y)?/ Xi(y; — ¥)?%, where § is GLM prediction and j is data average, with summation done
430 over individual time bins and trials, following a 5-fold cross-validation procedure. We report
431 population average maps of explained variance in percent units (Extended Data Fig. 8g).

Statistics

432 We use the term ‘Wilcoxon’ to refer to the Wilcoxon signed-rank test, and ‘U-test’ to refer to the
433  Wilcoxon rank-sum test. We use confidence intervals of the mean (Cl) for within animal confidence
434 statistics. We use standard error of the mean (s.e.) for across animals error estimates. We use t-test
435 to compare mean amplitudes from within-animal data. When pooling maps across animals we first z-
436  score and then average.
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613 Figure 1. Corollary discharges during decision making. a) Setup and task structure. b) Psychometric curve,
614 example mouse; black line, fit (Methods); gray dots, data. c) Probability of saccade landing positions. White
615 square, session-average eye resting position. d) Probability of body movements (top) and saccades (bottom)
616 during the trial, in excitatory (black; n=10) and PV (dark blue; n=5) mice; error bands, s.e. e) Visual field sign
617 maps for excitatory and PV mice (n=10 and 5). f) Event related responses. Rows 1-4: saccade, wheel, simulated
618 saccade and stimulus, across corresponding ROIs (columns) for excitatory (black) and PV (blue) mice. Max
619 amplitude of saccadic response: 2.530.4 (Exc) and 2.1+0.3 (PV), %dF/F t s.e.; t-test comparing to stimulus
620 response, p<10. FWHM 0.56+0.06s and 0.46+0.08s (t-test PV vs Exc, p=0.38). Body-movement response: peak
621 2.240.2 and 2.5+0.4; larger than stimulus response, t-test p<10“and 0.005; FWHM 0.83+0.07s and 0.94+0.11s
622 (t-test p=0.4). Peak simulated saccade response: 0.53+0.04% and 1+0.24%. Peak stimulus response: 0.57+0.05%
623 and 0.9£0.2%. Insets: saccade (black) and body movement (red) velocities for each event, for excitatory mice.
624 g) Peak response maps: average normalized responses for each event (rows) at its corresponding peak time, for
625 excitatory (1st column) and PV (2nd column) mice (Methods). Gray area contours as in (e). White crosses indicate
626 ROI centers used in (f), Extended Data Fig. 10 j-n.
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627 Figure 2. Stimulus-CD and CD-CD interactions. a) Left: stimulus-saccade interaction for excitation (black) in
628 stimulus ROl and its linear prediction (red), i.e. the sum of stimulus and jittered saccade responses. Horizontal
629 double arrow, jittering window (Methods). Right: spatial map of activation at time of peak response. Peak
630 response amplitude is 3.8x larger than the contrast response (t-test, p<10*; n=10). FWHM: 0.5+0.04s s.e. same
631 as for isolated saccades, t-test p=0.5. b) Left: same as in (a), for stimulus-body movement interactions in stimulus
632 ROI. Peak response is 3x larger than contrast response (t-test, p<10). FWHM: 0.83+0.09s same as for isolated
633 body movements, t-test p=0.98. c) Responses to interacting CDs in saccade ROI for excitatory mice. Left: saccade-
634 body movement interaction and linear prediction (red; Methods). Peak responses are 1.2x and 1.3x larger than
635 for isolated saccades and body movements (t-test, p=0.2 and 0.01), but smaller than their linear sum (t-test,
636 p<103). Middle: spatial response at time of peak amplitude for interacting CDs in excitatory mice. Right:
637 suppressive response at time of peak suppression. d) GLM sequential fitting: average dF/F aligned to stimulus
638 onset in trials with CD-CD interactions (black), gray band Cl, example mouse. Model responses: stimulus (green),
639 stimulus + isolated CDs (red), stimulus + isolated CDs + nonlinear CD interaction (blue). e) Average CD-CD
640 interaction kernel for excitatory mice (n=8) in regions of max suppression (g). Masked black squares if n<5 mice
641 (Methods). Red dots, maximum suppression for individual animals; large circle for population average (lag
642 Tp=topserv-tp=0.7410.06s, 7,=0.1610.03s, one outlier omitted, error bars smaller than circle size). f) Top center,
643 illustration of relative lag At = 1, — 7, and time to nearest movement At = min(t,, 1), 7, > 0,7, > 0. Top
644 left and right —schematic of kernel elements with fixed At and At, in the same color. Left. Maximum suppression
645 as a function of At. Population average, black line (Cl, dark gray); individual animals, light gray. Asterisks, values
646 different from minimum of average curve (A7=0.5, diamond) (U-test, «=0.05). Average At,,;, across animals:
647 0.58%0.05s. Right. Maximum suppression as a function of At, same colors as (f). Average At,,,;,, across animals,
648 0.16%0.03s. g) Spatial distribution of nonlinear CD-CD component at time of maximum suppression (red circle in
649 (e)).
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Figure 3. Correlations between pupil dilation, performance and cortical states. a) Pupil area changes after
stimulus onset for correct (C), incorrect (I) and timeout (TO) choices. b) Iso-contour lines (10" percentile) of
C/1/TO trial distributions in pupil space (Methods). ¢) Performance in different regions of pupil space. Contour
lines (10t percentile) for trials with high (red) and low (cyan) DR. d) Performance in different regions of dF/F
space (Methods). Contour lines for high and low DR (10" percentile). e) Performance in high vs low DR trials
(population average for sessions with >60% C and <20% TO, 72+1% correct in high DR; 65+2% in low DR, s.e.,
difference of the means across animals, p=0.02, Wilcoxon, n=12). f) Pupil dilations for interacting CDs. Red and
blue dots, high and low DR. g) Neural responses for quadrants 1-4 in the pupil space (f). Inset: pupil modulation
for the 4 quadrants in (f). h) 95t percentile contour lines of C/I/TO distributions in the dF/F space (d), for high,
average, and low DR conditions.
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660 Figure 4. DR-dependent modulation of stimulus and CDs. a) Responses to isolated stimulus in high (red) and low
661 (blue) DR for excitatory mice. Inset: velocities of saccade and body movements for corresponding conditions. b)
662 Performance in high and low DR for trials with isolated stimuli (Wilcoxon p = 0.04, n=11). Only sessions with
663 >50% performance and <30% timeout rate are included. Inset: signal to noise ratio for corresponding trials
664 (Wilcoxon p=0.001). c) Responses to isolated saccades in high and low DR. Inset, responses normalized to
665 high/low peak ratio. d) Responses to isolated body movements in high and low DR. Inset as in (c). e) Left: average
666 dF/F during interactions with relative lags At™: -700ms<A1<-300ms (saccade before body movement, Fig. 2f) in
667 high and low DR. Dotted lines show predictions of the linear part of the GLM, red box Fig. 2d. Right: same as left,
668 but with relative lags At*: 300<At<700ms (saccade after body movement). Responses are aligned to the time
669 of saccade. f) Responses to interacting CDs in high and low DR. Inset, as in (c). g) Same as (f) for PV mice. h)
670 Response to interacting CDs at different lags, aligned to saccade time. Inset, fractional ratio of At~ and At™*
671 responses averaged across all trials (“avg.” label), and in high and low DR. i) DR in At™ is larger than in Att in
672 hDR, on average, and in IDR conditions (Wilcoxon on means across all trials: all DR p = 0.002, h-DR p =0.02, |I-DR
673 p<10*% and p<10* for session means in each condition). Inset: average performance in At~ versus At
674 (Wilcoxon p=0.007 across all trials). j) Schematic of the circuits controlling saccades, body movements, and pupil-
675 related arousal states: VC, visual cortex. Pulv, pulvinar. SC, superior colliculus. LGN, lateral geniculate nucleus.
676 MLR, mesencephalic locomotor region. LC, locus coeruleus. BF, Basal forebrain. M2, secondary motor cortex.
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