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Abstract 

Objective: Using three European and two Chinese genome-wide association studies 

(GWAS), we investigated the performance of genetic risk scores (GRS) for predicting 

the susceptibility and severity of Systemic lupus erythematosus (SLE), using renal 

disease as a proxy for severity. 

Methods:  We used four GWASs to test the performance of GRS both cross validating 

within the European population and between European and Chinese populations. The 

performance of GRS in SLE risk prediction was evaluated by Receiver Operating 

Characteristic (ROC) curves.  We then analyzed the polygenic nature of SLE 

statistically.  We also partitioned patients according to their age-of-onset and 

evaluated the predictability of GRS in disease severity in each age group.  

Results: We found consistently that the best GRS in the prediction of SLE used SNPs 

associated at the level of P<1e-05 in all GWAS datasets and that SNPs with P-values 

above 0.2 were inflated for SLE true positive signals. The GRS results in an area under 

the ROC curve ranging between 0.64 and 0.72, within European and between the 

European and Chinese populations.  We further showed a significant positive 

correlation between a GRS and renal disease in two independent European GWAS 

(Pcohort1=2.44e-08; Pcohort2=0.00205) and a significant negative correlation with age of 

SLE onset (Pcohort1=1.76e-12; Pcohort2=0.00384).  We found that the GRS performed 

better in prediction of renal disease in the ‘later onset’ compared to the ‘earlier onset’ 

group.   

Conclusion: The GRS predicts SLE in both European and Chinese populations and 

correlates with poorer prognostic factors: young age of onset and lupus nephritis.   
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Introduction 

Systemic lupus erythematosus (SLE [MIM: 601744]) is a chronic inflammatory 

autoimmune disease characterized by a wide spectrum of signs and symptoms 

varying among affected individuals and can involve many organs and systems, 

including the skin, joints, kidneys, lungs, central nervous system, and haematopoietic 

system (1).  A recent report underscores that SLE is among the leading causes of 

death in young females, particular females among ages 15-24 years, in which SLE 

ranked tenth in the leading causes of death in all populations and fifth for African 

American and Hispanic females (2).  Lupus nephritis is the most common cause of 

morbidity and mortality.  Patients with kidney disease are likely to have more severe 

clinical outcomes and a shorter lifespan.  30-60% of adults and up to 70% of children 

with SLE have renal disease, characterized by the glomerular deposition of immune 

complexes and an ensuring inflammatory response (3).  Genetic ancestry influences 

the incidence and prevalence of SLE and kidney involvement, being more frequent in 

Hispanics, Africans and Asians than in European (4-7).   Currently, kidney disease in 

SLE is diagnosed by use of light microscopy, which drives therapeutic decision-

making.  However, not all patients will respond to therapy, indicating that additional 

information focusing on the mechanism of tissue injury is required.   Moreover, early 

detection of kidney involvement in SLE is important because early treatment can be 

applied to reduce the accumulation of renal disability. 

Although the exact aetiology of lupus is not fully understood, a strong genetic link has 

been identified through the application of family (8, 9) and twins studies (10).  SLE 

does not follow a single locus Mendelian pattern of inheritance, and so it is termed a 

complex trait.  Complex traits are multi-factorial with both genetic and environmental 

contributions.  Genome-wide association studies (GWAS) have been successfully 

used to investigate the genetic basis of a disease and this has dramatically advanced 

knowledge of the genetic aetiology of SLE.  Our recent review summarized a total of 

84 genetic loci that are implicated as SLE risk (11).  Despite the advances in the 

genetics of SLE, it is not clear how to utilise genetic information for the prediction of 

SLE risk or severity.   

A genetic risk score (GRS) summarizes risk-associated variations by aggregating 

information from multiple risk single nucleotide polymorphisms (SNPs).  The approach 
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to calculate the GRS is to simply count disease-associated alleles or weighting the 

summed alleles by log Odds Ratios.  Recent studies (12, 13) have proposed methods 

which select SNPs from GWAS by LD (linkage disequilibrium) pruning and clumping 

and thresholding for GRS calculation.  As the number of SNPs included in a GRS 

increases, the distribution approaches normality, even when individual risk alleles are 

relatively uncommon. Therefore, a GRS can be an effective means of constructing a 

genome-wide risk measurement that summarises an individual’s genetic 

predisposition to SLE.  Moreover, as GRSs pool information from multiple SNPs, each 

individual SNP does not strongly influence the summary measurement. Thus, the GRS 

is more robust to imperfect linkage for any tag SNP and causal SNP, and less sensitive 

to minor allele frequencies for individual SNPs (14-17). 

Several studies (18-23)  have looked at GRS for SLE, however many relied on very 

few SNPs (23), had sample sizes inadequate for GRS, did not compare results across 

populations or were restricted to SNPs on the Immunochip . We investigated, for the 

first time, the performance of genome-wide SNPs for predicting SLE. As in the most 

recent study of Lupus Nephritis (21) we also investigated the predictive performance 

of SNPs published  as associated with SLE for disease severity. This study used data 

on three European GWAS and two Chinese GWAS. We first tested whether a 

quantitative model - a GRS derived from SLE GWAS applying a range of methods 

using genome wide SNPs, was an effective way to distinguish SLE patients and 

controls in three independent European cohorts.  Next, we classified SLE patients into 

two groups: SLE renal+ (patients with renal disease) and SLE renal- (patients without 

renal disease), and performed a case-case genome-wide association study (GWAS) 

in two independent SLE cohorts with available renal data for the identification of SLE 

renal susceptibility loci.  We then tested whether a GRS derived from SLE GWAS was 

an effective way to distinguish SLE patients with or without renal disease in two 

independent cohorts. A GRS analysis for SLE was performed across Chinese and 

European data where we trained the GRS in one population and predicted in the other.  

The SLE risk score was elevated in those with renal disease (compared to those 

without) and it showed a negative correlation with age of onset of the disease.  
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Patients and Methods 

Samples source 

European samples were from three previously published SLE GWAS – the SLE main 

cohort (24), the SLEGEN cohort (25), and the Genentech cohort (26).  The SLE main 

cohort (24) was the biggest SLE GWAS, which consisted of 4,036 SLE patients and 

6,959 healthy controls.  A total number of 603,208 SNPs were available post quality 

control.  The SLEGEN cohort (25) was carried out by The International Consortium for 

Systemic Lupus Erythematosus Genetics (SLEGEN) on women of European ancestry, 

which comprised 283,211 SNPs genotyped for 2,542 controls and 533 SLE patients.  

The Genentech cohort (26) was performed by Genentech on North American 

individuals of European descent, which comprised 487,208 SNPs genotyped for 1,165 

cases and 2,107 controls.  The samples used from the three European GWAS were 

independent: the main GWAS publication used Identity by descent (IBD) analysis in 

PLINK 1.9b (www.cog-genomics.org/plink/1.9/) (27)  to remove individuals from 

Genentech with IBD > 0.125, we used these data and applied the same analysis to 

the SLEGEN data. 

Chinese samples were from previously published GWAS from Anhui (1,047 cases and 

1,205 controls) (28) and Hong Kong (612 cases and 2,193 controls) (29, 30).  

Clinical sub-phenotypes were available for the SLE main cohort and SLEGEN cohort, 

which were documented according to the standard American College of 

Rheumatology (ACR) classification criteria.  Subgroups of patients with renal disease 

or without renal disease were identified according to the sub-phenotype data using 

ACR classification.   Following quality control, the sample size of patients with renal 

disease, lupus nephritis (LN+) were 1,152 and 146; while patients without renal 

disease (LN-) were 1,949 and 378 in the SLE main cohort and SLEGEN cohort, 

respectively.  More details are presented in Table S1.  

 

Genome-wide association study (GWAS)  

SLE GWAS 
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SLE GWASs were performed in genotyped SNPs including principal components 

consistent with the original publications in all three independent cohorts.  

 

SLE Renal GWAS within SLE cases  

The SLE Renal GWASs were performed within SLE cases, i.e., genome-wide 

associations of patients with renal disease (SLE Renal+, cases) and patients without 

renal disease (SLE Renal-, controls) in two independent cohorts, i.e., the SLE main 

cohort and the SLEGEN cohort.  For Renal GWASs, we pre-phased the genotyped 

data using the SHAPEIT algorithm (31) and then used IMPUTE2 (32) to impute to the 

density of the 1000 Genome reference data (phase 3 integrated set, release 20130502) 

(33) (data unpublished).  All case-control analysis was carried out using the SNPTEST 

algorithm (34).  SNPs with imputation INFO scores of < 0.7 and MAF (minor allele 

frequency) < 0.001 were removed.  After quality control (QC), there were 21,431,070 

SNPs left for further analysis.  Moreover, a genome-wide association meta-analysis of 

the SLE main cohort and SLEGEN cohort was performed using the summary statistics 

derived from the two Renal GWASs.  A standard threshold of P ≤ 5e-08 was used to 

report genome-wide significance and a P ≤ 1e-05 was used to report suggestive 

associated signals.    

 

Polygenic analysis 

We tested for non-zero standardized effect sizes (Z scores) for SLE association in the 

Genentech data for groups of SNPs stratified by their P values in the SLE main cohort. 

The Z scores in the Genentech data were polarized with respect to the SLE main 

cohort in that the effect allele was set to be the risk allele in the SLE main cohort. 

Under the null hypothesis the Z scores will have zero mean, while under the alternative 

the mean will be positive. SNPs were stratified by P value intervals of 1-0.9, 0.9-0.8, 

0.8-0.7, 0.7-0.6, 0.6-0.5, 0.5-0.4, 0.4-0.3, 0.3-0.2, 0.2-0.1, 0.1-0.00. We would expect 

a positive mean for SNPs with very small P values in the main SLE cohort as these 

will be enriched for true positives, while the same is not necessarily true over other P 

values ranges unless there are more widespread true associations with very weak 
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effects.  We also ran this analysis on renal association standardized effect sizes (Z 

scores) again polarized with respect to SLE association and stratified by SLE P values.  

In all analyses, we used an LD clumped set of SNPs with an R2 threshold of 0.1.  When 

comparing the SLE main cohort to the Genentech cohort or the SLEGEN cohort, we 

limited the clumping to SNPs that overlap the GWASs. 

 

Genetic risk score derivation 

A Genetic risk score (GRS) is a quantitative trait of an individual’s inherited risk based 

on the cumulative impact of many genetic variants, which is calculated according to 

the method described by Hughes et al (35), taking the number of risk alleles (i.e., 0, 1 

or 2) for a given SNP and multiplying this by its corresponding estimated effect - β 

coefficient, i.e. the natural log of its odds ratio (OR).  The cumulative risk score in each 

subject was calculated by summing the risk scores from the target risk loci: 

Genetic risk score =  ∑ 𝐺𝑖𝛽𝑖

𝑛

𝑖

 

where n represents the number of SLE risk loci, Gi is the number of risk alleles at a 

given SNP, and 𝛽𝑖 is the effect size of the risk SNP i. 

We used two approaches to select SNPs for GRS calculation.  The first approach – a 

weighted GRS was derived from all published independent SLE risk SNPs (Table S2) 

– including 78 SLE susceptibility loci (without the X chromosome), consisting of 93 

SNPs outside of the MHC region and 2 independent tag SNPs in the MHC region for 

two SLE associated HLA haplotypes.  The risk allele for each SNP is derived from its 

original publication, which is summarized in a recent review (11) and the effect size 

used in the GRS was generated from each GWAS used as a training set. Each GRS 

for four SLE cohorts (24, 25, 28-30) was generated using R version 3.4.3.  

The second approach – LD clumping and thresholding – was used to build 32 GRSs.  

Clumping and thresholding scores were built using a P value and linkage 

disequilibrium (LD)-driven clumping threshold in PLINK version 1.90b (www.cog-

genomics.org/plink/1.9/) (27).  In brief, the algorithm forms clumps around SNPs with 
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association P values less than a provided threshold (Index SNPs).  Each clump 

contains all SNPs within a specified window of the index SNP that are also in LD with 

the index SNP as determined by a provided pairwise correlation threshold (r2) in the 

training data.  The algorithm loops through all index SNPs, beginning with the smallest 

P value and only allowing each SNP to appear in one clump.  The final output should 

contain the most significant disease-associated SNP for each LD-based clump across 

the genome. Note that when performing LD clumping, we firstly removed the X-

chromosome and the MHC extended region (24-36MB) and kept all other autosomal 

SNPs.  Then we included the MHC region by using two tag SNPs for two well-known 

HLA haplotypes in SLE, i.e. rs2187668 for HLA-DRB1*03:01 and rs9267992 for HLA-

DRB1*15:01 for the European cohort and rs9271366 for HLA-DRB1/HLA-DQA1 and 

rs9275328 for HLA-DQB1/HLA-DQA2 for the Chinese cohort (Table S2).  A GRS was 

built using the genotypes for the index SNPs weighted by the estimated effect sizes 

(β).  Specifically, when training the GRS in the SLE main cohort and testing in the 

SLEGEN cohort, we performed a GWAS on the genotyped SNPs in the SLE main 

cohort and generated 32 lists of clumped SNPs over a set of P values (--clump-p1: 

0.1, 0.01, 1e-03, 1e-04, 1e-05, 1e-06, 1e-07,and 5e-08),  r2 (--clump-r2: 0.2 and 0,5) 

and clumping radius (--clump-kb: 250 and 1000).  The 32 lists of SNPs were then used 

to generate 32 GRSs by summing across all variants weighted by their respective 

effect size for samples in the SLEGEN cohort.  We performed this analysis using all 

three cohorts in European population with one dataset as training and the other as a 

test set, generating six training-and-testing pairs. We also performed a cross 

population analysis between European and Chinese populations. 

 

Receiver Operating Characteristic (ROC) curves for model evaluation 

The GRS with the best discriminative capacity was determined based on the maximal 

Area under the ROC curve (AUC) with SLE or RENAL as the outcome and the 

candidate GRS as the predictor.  AUC confidence intervals were calculated using the 

‘pROC’ package within R and the difference between the ROC curves was determined 

with the ‘roc.test’ function, which used a non-parametric approach, as described by 

De Long et al  (36).  To assess the degree to which the age of SLE onset contributes 

to the prediction of renal involvement within SLE cases, we generated ROCs as above 
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with the GRS and compared to ROC curves with SLE age onset as a single predictor 

and the ROC with both GRS and age onset as predictor(s).   

 

Partitioning the genetic risk of renal disease 

Since a continuous score is difficult to interpret on an individual level when a physician 

needs to explain the results of the GRS to a patient, we partitioned SLE patients into 

quintile according to genetic dosage (SLE GRS).  We used a chi-square test to study 

the association of the partitioned GRS and renal risk.  The odds ratios of renal risk 

were then calculated compared to the reference group - the first quintile GRS group.   

To test whether the GRS correlated with renal disease independently of age-of-onset, 

we partitioned SLE patients into two groups according to their age of onset, with a cut-

off at age of 30 - patients with age above 30 were defined as ‘Late age onset’ and 

others as ‘Early age onset’.  A two-way ANOVA test was then performed with the 

function ‘aov’ in R, with aov(GRS ~ age group * renal group).  All statistical analyses 

were conducted using R version 3.4.3 software (https://www.r-project.org/). 

 

Results 

The best GRS in SLE prediction 

Among the GRSs generated from LD clumping and thresholding, the predictor with 

the best discriminative capacity was the one derived from SNPs clumping at P 

threshold (Pth) of 1e-05 with R2 < 0.2 in the SLE main cohort and tested in both the 

SLEGEN (AUC = 0.72; 95% C.I. = 0.69-0.74) and Genentech (AUC = 0.67; 95% C.I. 

= 0.66-0.69) cohorts (Figure 1 & Table S3), suggesting there may be more true 

positive signals than the genome-wide significant ones involved in the risk of SLE.  

This performance was not due to population structure as the GRS added significantly 

more (P = 2.2e-16 and P = 7.78e-14) to the AUC than principal components in both 

Genentech and SLEGEN respectively. In fact, the predictive performance of the GRS 

using all pairs of training and test data was maximised using SNPs below the standard 

genome-wide threshold (Table S3). This evidence for polygenicity was also seen in 
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an analysis of the association statistics (Z scores) in the Genentech GWAS polarised 

to the risk allele in the main GWAS, partitioned by their association P value in the main 

GWAS (see Methods). Here, we found evidence (Figure 2 & Table S4) against a zero 

mean (P = 3.91e-04) for the Z scores in Genentech data for SNPs with P values 

between 0.3 and 0.2 in the main GWAS. 

We found that the genetic risk score trained in our European (EUR) data predicted 

SLE in the Chinese (CHN) data well (Figure 1C & 1D) with an AUC (0.64) when using 

the best approach for GRS in the Europeans (R2 < 0.2 for all SNP pairs and using 

SNPs that passed the P value threshold of 1e-05).  The range of AUC values over all 

P value thresholds for SNP inclusion was [0.60 – 0.64]. The results when training in 

the CHN and predicting in EUR were similar: AUC = 0.64 when using the best 

approach for GRS in the Europeans (R2 < 0.2 for all SNP pairs and using SNPs that 

passed the P value threshold of 1e-05) and range of AUC values over all P value 

thresholds for SNP inclusion was [0.55 – 0.64].  

 

Lupus Nephritis GWAS within SLE cases  

Lupus Nephritis (LN) occurs in approximately half of all SLE patients, and its frequency 

ranges from 25% to 75% depending on the population studied (37).  About one third 

of European SLE patients experience renal disease (38). Until recently, one of the 

most common causes of death in SLE patients was kidney failure.  According to the 

lupus severity index (LSI) using the ACR criteria developed by Bello et al (39), renal 

involvement has the highest impact and particular strongly associated with disease 

severity, hence we chose LN as a proxy of SLE severity in this study. 

The within case LN GWAS in the SLE main cohort, which comprised 1152 SLE 

patients with renal disease (LN+) and 1949 patients without renal disease (LN-), did 

not identify any genome-wide significant associated loci (P ≤ 5e-08) (Figure S1A). 

Consistently, no inflation (genomic inflation factor: λ = 1.014) was observed in the QQ 

plot (Figure S1D).  Similarly, none of the SNPs reached genome-wide significance in 

the SLEGEN cohort (25) (λ = 1.023) (Figure S1B & 1E).  In addition, no variant passed 

genome-wide significance in the meta-analysis of the SLE main cohort and SLEGEN 
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cohort for Renal GWAS (λ = 0.9565) (Figure S1C & S1F).  Summary association 

statistics for SNPs with P ≤ 1e-05 are provided in Table S5 and S6.  

We did, however, see evidence that SNPs with very strong evidence for association 

with SLE (P ≤ 1e-05) were associated with LN.  This was evident from an analysis of 

the renal association statistics (Z scores) polarised to the risk allele for SLE.  There 

was strong evidence (Figure 2 & Table S4, P = 8.72e-08) against a zero mean for the 

Renal Z scores for SNPs with P ≤ 1e-05 for SLE in the main cohort. This result was 

replicated in the SLEGEN study with P = 2.42e-03 (Figure 2 & Table S4).  The finding 

of renal association with SNPs showing very strong evidence for association with SLE 

could be exploited for prediction of disease progression and we explore this below.  

 

Genetic risk loading of SLE is significantly higher in LN+ patients 

While we observed that no individual SNPs were significantly associated with renal 

involvement in the SLE cases, we did show that there was a deviation from zero mean 

for renal Z scores taken from SNPs with very strong evidence for association with SLE.  

In view of this finding, we investigated the correlation between the SLE GRS and renal 

disease in all SLE cases.  To accomplish this, we used the GRS derived from a list of 

published SLE associated SNPs (11) for the comparison of the SLE genetic risk 

burden in patients with and without renal disease.  As expected, the GRS was higher 

in the SLE patients compared to healthy controls in both independent cohorts (Figure 

3).    

A significantly higher GRS was observed in the group of patients with renal disease 

(LN+) compared to patients without renal disease (LN-) (Figure 3).  In the SLE main 

cohort, the mean (SD) of the GRS was 18.1 (1.64) for LN+ patients and 17.8 (1.65) 

for LN- patients (P = 1.60e-07); the mean (SD) for the SLEGEN cohort was 18.2 (1.66) 

for LN+ patients and 17.6 (1.69) for LN- patients (P = 0.0010).  Moreover, we saw a 

significant increasing trend of GRS over levels of diseases:  Healthy control, LN- 

patients, and LN+ patients, in the SLE main cohort and the SLEGEN cohort (Figure 

3). 
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Genetic risk of nephritis and age of onset in SLE  

We partitioned the SLE cases into five groups according to quintiles for GRS to show 

the risk of renal involvement.  We observed over 1.5 folds higher risk of renal disease 

(OR = 1.58; 95% C.I. = 1.25-1.99; P = 0.00015) between the top and bottom quintiles 

of GRS in the SLE main cohort (Figure 4A).  This is replicated in the SLEGEN cohort 

(Figure 4B), with odds ratios of 3.16 (95% C.I. = 1.62-6.13; P = 0.00091).  A 

significantly earlier age of SLE onset was observed in those with renal disease 

compared to those without renal disease.  In the main cohort (Figure 5A), the mean 

(SD) for age of disease onset was 29yrs (12) for LN+ patients and 35yrs (13) for LN- 

patients (P = 2.8e-27); the means for the SLEGEN cohort (Figure 5B) were 28yrs (11) 

and 35yrs (13) for LN+ and LN-, respectively (P = 6.05e-09).  When testing the 

association of GRS with age of onset in the SLE main cohort, a significant correlation 

was present – the higher the GRS, the earlier age of SLE onset (P = 4.59e-12).  This 

correlation was also detected in the SLEGEN cohort (P = 0.021) and the combined 

Chinese cohort (P = 1.57e-06). 

To test whether the GRS correlated with renal disease independently of age-of-onset, 

we partitioned SLE patients into two groups according to their age of onset, i.e. ‘Late 

age onset’ and ‘Early age onset’ and performed a two-way ANOVA test (See Methods).  

The GRS was shown to positively correlate with both renal disease and early age-of-

onset (PRenal = 7.64e-05 and Page-of-onset = 1.06e-09) in the SLE main cohort, with 

significant association with renal disease in the SLEGEN cohort but marginal evidence 

for age-of-onset (PRenal = 0.0288 and Page-of-onset = 0.0513), while we found that there 

was no statistically significant interaction between renal and early age-of-onset  in the 

SLE main cohort (PInteraction = 0.795) and marginal evidence in  the SLEGEN cohort 

(PInteraction = 0.0511) (Figure S2).  Notably, we found that GRS was a better predictor 

of renal disease in the ‘Late age onset’ group (AUC = 0.62) compared with the ‘Early 

age onset’ group (Figure 6). 

Finally, we assessed the predictive ability of the partitioned SLE GRS (quintile GRS, 

see methods) over the two age-of-onset groups.  In the main SLE cohort there is a 

clear and significant risk effect for renal involvement with increasing GRS in the ‘Late 

age of onset’ group, but no significant effect in the early onset group.  We observed 

over two folds higher risk of renal disease (OR = 2.33; 95% C.I. = 1.57-3.47; P = 3.76-
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05) between the upper fourth quintile and the bottom quintile in the ‘Late age onset’ 

group in the SLE main cohort (Figure 4A).  The results were similar in the SLEGEN 

cohort, with the risk of renal disease between the top and bottom quintile of GRS being 

over five times (OR = 5.48; 95% C.I. = 1.65-18.3; P = 0.00664) (Figure 4B & Table 

S7) in patients of ‘Late age onset’ but no significant differences in those with ‘Early 

age onset’. These results are robust to the chosen threshold in the definition of ‘Late 

age onset’ and ‘Early age onset’ (Table S7) 

 

Discussion 

GRS has been showed to be predictive for several diseases including cardiovascular 

disease (AUC = 0.81, 95% C.I. = 0.81-0.81) (12), inflammatory bowel disease (AUC = 

0.63, 95% C.I. = 0.62–0.64) (12) and breast cancer (AUC = 0.63, 95% C.I. = 0.63-

0.65) (40). However, in many of these applications the AUC values are dependent on 

inclusion of age and sex for prediction and so the AUC due to genetics alone would 

have been substantially lower (41).  We have shown that a SLE GRS using only SNPs 

has good predictive power with AUC approaching 0.7 over a range of settings when 

trained and tested between three European GWAS. We also used two combined 

Chinese studies’ data as both independent validation and a test of cross populations 

prediction performance. In both populations we show that, when using GWAS data as 

a training set, a GRS using SNPs with association P values well below genome-wide 

levels of significance has the best predictive performance. This, along with other 

studies that have reinvestigated SLE GWAS data (42), is further evidence that SLE is 

a polygenic disease with many risk variants as yet undiscovered, and that more 

powerful studies could lead to useful predictive models. Genetic risk scores may also 

have utility in prediction of disease severity and we find evidence for this to be so for 

SLE. Our data show that renal involvement is not related to specific genetic factors or 

particular genes but simply to genetic load of risk alleles.    

Until recently, the most common cause of death in SLE patients was kidney failure.  

Though the frequency of death from kidney disease has decreased sharply due to 

better therapies (e.g. dialysis and kidney transplantation), kidney failure is still 

potentially fatal in some people with SLE and causes significant morbidity.  According 
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to the lupus severity index (LSI) using the ACR criteria developed by Bello et al (39), 

renal involvement had the highest impact and particularly more strongly associated 

with disease severity, hence we used renal involvement as a proxy of SLE severity in 

this study.  In the SLE within-case renal GWASs, we observed no genome-wide 

significant signals in either the SLE main cohort or the SLEGEN cohort, or meta-

analysis of these two.  Both datasets had genetic variants with less stringent P values 

(P ≤ 1e-05) for renal association, but none of them were replicated in the other cohort.  

Considering the sample size of both cohorts are relatively small, we applied an online 

genetic power calculator (http://zzz.bwh.harvard.edu/gpc/) to calculate the power of 

our current sample size for the GWAS study (Table S8).  We assumed the effect sizes 

of SLE renal risk alleles is similar to that seen in SLE GWAS, so the odds ratio (OR) 

of the risk allele would be between 1.0 and 2.0.  Therefore, we calculated power under 

a variety of parameters, including OR, risk allele frequency (RAF) and alpha.   As 

showed in Table S8, we have a power of ≥ 0.8 to detect a genetic risk variant with an 

OR = 1.4 and RAF = 0.3 or an OR = 1.5 and RAF = 0.2 when alpha = 5e-08.  However, 

if we assume the renal associated variants are as weak as most of the SLE associated 

variants (OR < 1.2), then we are under powered (< 0.8) to detect the true renal 

associations at the GWAS significant threshold of P = 5e-08 in the current study. 

We did however find evidence that SNPs most associated with SLE (P < 1e-05) were 

enriched for associations with SLE renal involvement.  Specifically, the renal 

association P values of the 95 SNPs (of 77 published SLE risk loci) in the SLE main 

cohort and the SLEGEN cohort are strongly inflated as shown in the QQ plots (Figure 

S3), suggesting the cumulative genetic burden from multiple SLE risk genes with 

modest effect.  So we then tested the hypothesis that the genetic risk loading of SLE 

may correlate with kidney involvement.  Therefore, a genetic risk score (GRS) using 

published SNPs with robust evidence for association with  SLE was derived for the 

prediction of SLE renal disease.  In both European cohorts, the SLE main cohort and 

the SLEGEN cohort, the GRS was significantly higher in patients with renal disease 

than patients without. In addition, patients with a higher GRS were more likely to have 

renal involvement at a younger age, indicating the strong genetic background of SLE 

development.  These findings provide more evidence to support the opinion that 

younger-age onset lupus is generally more severe than older-onset lupus as reported 

previously (43-45). 
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Our analysis of Renal disease in SLE patients has shown that, while we find no SNPs 

significantly associated with renal disease, the fact that SLE associated variants 

correlated with renal using a GRS suggests that many SLE associated variants are 

also risk for renal involvement albeit with likely weaker effects (Odds ratios). We find 

that the GRS and age-of-onset are correlated but the GRS is associated with renal 

involvement independently of age-of-onset with no interaction observed. The GRS 

performs better for predicting renal disease in patients with late age-of-onset.  We also 

find that a stratified GRS may be a more viable option for predicting renal disease, 

where we estimate significantly high relative risks for those in the tails of the GRS 

distribution in both of our European studies that had renal data.  

A limitation of this study is that we were not able to replicate our renal results in the 

Chinese as renal data were not available. Renal involvement in Chinese is more 

common than in Europeans; the Chinese SLE patients are more heterogeneous, 

suffer from more severe clinical manifestations and earlier age of onset. The use of 

GRS for predicting SLE severity in Chinese may not have the same utility as in 

Europeans where we find the stronger association in the late onset patients. 

Nevertheless, our results in Chinese showing a correlation between age of onset and 

SLE GRS suggest that in this population disease severity is also driven by load of 

disease associated variants.  

This is the first study to investigate accumulated genetic risk and its relationship with 

the susceptibility and severity of SLE with data in Chinese and European populations.  

We found that the higher the GRS, the younger onset of SLE in both populations. 

Within the European population and across the Chinese and European populations 

we find that a genetic risk score incorporating LD pruned SNPs (at R2 = 0.2) with 

modest (P < 1e-05) evidence for association with disease predicts SLE with AUC of 

0.64 and above.  In the European data we see that in patients of late onset, a higher 

GRS means patients are more likely to suffer from more severe disease.  In brief, age 

of onset incorporating a GRS may assist early prediction of lupus nephritis in a clinical 

setting.  Nevertheless, more clinical studies and multi population data are needed to 

validate the usefulness of this application.  
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Figures Legends 

Figure 1. ROCs and AUCs of models in SLE prediction in European cohorts and 

between ancestries. 

GRSs for the prediction of SLE in the SLEGEN cohort (A) and Genentech cohort (B) 

were generated from SNPs of LD clumping and threshold derived from the SLE main 

cohort.  All GRSs for the training-and-validation in European cohorts were generated 

with two MHC tag SNPs derived from the European GWAS (See Methods). GRSs for 

the prediction of SLE across populations (C) and (D) were generated from SNPs of 

LD clumping and threshold without MHC tag SNPs.  The ‘GRS at Pth’ represented the 

GRS in the SLE prediction model, which was derived from the LD clumping at the 

according GWAS P value threshold. 

 

Figure 2. Polygenic test of SLE and Renal disease. 

Polygenic test of SLE in Genentech cohort (A & B) and polygenic test of Renal 

disease in the SLE main cohort (C & D) and SLEGEN cohort (E & F).  The SLE main 

cohort was used to generate a P value for each SNP, to stratify the SNPs into 

groups for the Z score calculation of SLE association or Renal association.   

 

Figure 3. GRS over levels of disease: Controls / SLE Renal (-) / SLE Renal (+). 

The violin-and-box plots show the summary GRS for each level of the disease in the 

SLE main cohort (A) and the SLEGEN cohort (B).  The violins show the distribution 

of the GRS across each group. The bottom line of the box inside the violin is the 1st 

quantile, the top line is the 3rd quantile, and the box is divided at the median.  

Sample size (N) of each group is showed within brackets below the group name.  

Note that GRS for SLE main cohort and SLEGEN cohort are generated by 93 non-

MHC SNPs and 2 MHC tag SNPs - a total of 95 SNPs (Table S2).   
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Figure 4. Relationship of quintiles of the GRS and risk of renal disease within 

SLE patients. 

Plots show the odds ratios of Renal disease for the SLE main cohort (A) and the 

SLEGEN cohort (B), comparing each of the upper four GRS quintiles with the lowest 

quintile; dotted lines represent the 95% confidence intervals (C.I.); horizontal black 

dotted lines represent OR = 1.  

 

Figure 5. Age of SLE onset in patients of Renal(-) / Renal(+). 

The violin-and-box plots show the age of SLE onset for each level of the disease in 

the SLE main cohort (A) and the SLEGEN cohort (B).  The violins show the 

distribution of the Age of SLE onset across each group.  The bottom line of the box 

inside the violin is the 1st quantile, the top line is the 3rd quantile, and the box is 

divided at the median.  Sample size (N) of each group is showed within brackets 

below the group name.   

 

Figure 6. ROC Curves for models predicting a diagnosis of Renal disease in SLE 

patients using GRS, split by age-of-onset. 

The models were trained in the SLE main cohort and tested in the SLEGEN cohort.  

The plots showed the ROC curves in the prediction of renal disease in SLE patients 

with GRS as a predictor, The ROC curve in black was trained and tested with all SLE 

samples, the purple curve was trained and tested in the ‘Early age onset’ patients (≤ 

30yrs), and the red curve was trained and tested in the ‘Late age onset’ group.  AUC, 

area under the ROC curve is showed with 95% C.I. in brackets. 
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