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Abstract

Objective: Using three European and two Chinese genome-wide association studies
(GWAS), we investigated the performance of genetic risk scores (GRS) for predicting
the susceptibility and severity of Systemic lupus erythematosus (SLE), using renal

disease as a proxy for severity.

Methods: We used four GWASS to test the performance of GRS both cross validating
within the European population and between European and Chinese populations. The
performance of GRS in SLE risk prediction was evaluated by Receiver Operating
Characteristic (ROC) curves. We then analyzed the polygenic nature of SLE
statistically. We also partitioned patients according to their age-of-onset and

evaluated the predictability of GRS in disease severity in each age group.

Results: We found consistently that the best GRS in the prediction of SLE used SNPs
associated at the level of P<1e-05 in all GWAS datasets and that SNPs with P-values
above 0.2 were inflated for SLE true positive signals. The GRS results in an area under
the ROC curve ranging between 0.64 and 0.72, within European and between the
European and Chinese populations. We further showed a significant positive
correlation between a GRS and renal disease in two independent European GWAS
(Pcohort1=2.44e-08; Pconort2=0.00205) and a significant negative correlation with age of
SLE onset (Pconhort1=1.76€-12; Pconort2=0.00384). We found that the GRS performed

better in prediction of renal disease in the ‘later onset’ compared to the ‘earlier onset’

group.

Conclusion: The GRS predicts SLE in both European and Chinese populations and

correlates with poorer prognostic factors: young age of onset and lupus nephritis.
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Introduction

Systemic lupus erythematosus (SLE [MIM: 601744]) is a chronic inflammatory
autoimmune disease characterized by a wide spectrum of signs and symptoms
varying among affected individuals and can involve many organs and systems,
including the skin, joints, kidneys, lungs, central nervous system, and haematopoietic
system (1). A recent report underscores that SLE is among the leading causes of
death in young females, particular females among ages 15-24 years, in which SLE
ranked tenth in the leading causes of death in all populations and fifth for African
American and Hispanic females (2). Lupus nephritis is the most common cause of
morbidity and mortality. Patients with kidney disease are likely to have more severe
clinical outcomes and a shorter lifespan. 30-60% of adults and up to 70% of children
with SLE have renal disease, characterized by the glomerular deposition of immune
complexes and an ensuring inflammatory response (3). Genetic ancestry influences
the incidence and prevalence of SLE and kidney involvement, being more frequent in
Hispanics, Africans and Asians than in European (4-7). Currently, kidney disease in
SLE is diagnosed by use of light microscopy, which drives therapeutic decision-
making. However, not all patients will respond to therapy, indicating that additional
information focusing on the mechanism of tissue injury is required. Moreover, early
detection of kidney involvement in SLE is important because early treatment can be

applied to reduce the accumulation of renal disability.

Although the exact aetiology of lupus is not fully understood, a strong genetic link has
been identified through the application of family (8, 9) and twins studies (10). SLE
does not follow a single locus Mendelian pattern of inheritance, and so it is termed a
complex trait. Complex traits are multi-factorial with both genetic and environmental
contributions. Genome-wide association studies (GWAS) have been successfully
used to investigate the genetic basis of a disease and this has dramatically advanced
knowledge of the genetic aetiology of SLE. Our recent review summarized a total of
84 genetic loci that are implicated as SLE risk (11). Despite the advances in the
genetics of SLE, it is not clear how to utilise genetic information for the prediction of

SLE risk or severity.

A genetic risk score (GRS) summarizes risk-associated variations by aggregating

information from multiple risk single nucleotide polymorphisms (SNPs). The approach
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to calculate the GRS is to simply count disease-associated alleles or weighting the
summed alleles by log Odds Ratios. Recent studies (12, 13) have proposed methods
which select SNPs from GWAS by LD (linkage disequilibrium) pruning and clumping
and thresholding for GRS calculation. As the number of SNPs included in a GRS
increases, the distribution approaches normality, even when individual risk alleles are
relatively uncommon. Therefore, a GRS can be an effective means of constructing a
genome-wide risk measurement that summarises an individual’s genetic
predisposition to SLE. Moreover, as GRSs pool information from multiple SNPs, each
individual SNP does not strongly influence the summary measurement. Thus, the GRS
is more robust to imperfect linkage for any tag SNP and causal SNP, and less sensitive

to minor allele frequencies for individual SNPs (14-17).

Several studies (18-23) have looked at GRS for SLE, however many relied on very
few SNPs (23), had sample sizes inadequate for GRS, did not compare results across
populations or were restricted to SNPs on the Immunochip . We investigated, for the
first time, the performance of genome-wide SNPs for predicting SLE. As in the most
recent study of Lupus Nephritis (21) we also investigated the predictive performance
of SNPs published as associated with SLE for disease severity. This study used data
on three European GWAS and two Chinese GWAS. We first tested whether a
guantitative model - a GRS derived from SLE GWAS applying a range of methods
using genome wide SNPs, was an effective way to distinguish SLE patients and
controls in three independent European cohorts. Next, we classified SLE patients into
two groups: SLE renal+ (patients with renal disease) and SLE renal- (patients without
renal disease), and performed a case-case genome-wide association study (GWAS)
in two independent SLE cohorts with available renal data for the identification of SLE
renal susceptibility loci. We then tested whether a GRS derived from SLE GWAS was
an effective way to distinguish SLE patients with or without renal disease in two
independent cohorts. A GRS analysis for SLE was performed across Chinese and
European data where we trained the GRS in one population and predicted in the other.
The SLE risk score was elevated in those with renal disease (compared to those

without) and it showed a negative correlation with age of onset of the disease.
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Patients and Methods
Samples source

European samples were from three previously published SLE GWAS - the SLE main
cohort (24), the SLEGEN cohort (25), and the Genentech cohort (26). The SLE main
cohort (24) was the biggest SLE GWAS, which consisted of 4,036 SLE patients and
6,959 healthy controls. A total number of 603,208 SNPs were available post quality
control. The SLEGEN cohort (25) was carried out by The International Consortium for
Systemic Lupus Erythematosus Genetics (SLEGEN) on women of European ancestry,
which comprised 283,211 SNPs genotyped for 2,542 controls and 533 SLE patients.
The Genentech cohort (26) was performed by Genentech on North American
individuals of European descent, which comprised 487,208 SNPs genotyped for 1,165
cases and 2,107 controls. The samples used from the three European GWAS were
independent: the main GWAS publication used Identity by descent (IBD) analysis in
PLINK 1.9b (www.cog-genomics.org/plink/1.9/) (27) to remove individuals from

Genentech with IBD > 0.125, we used these data and applied the same analysis to
the SLEGEN data.

Chinese samples were from previously published GWAS from Anhui (1,047 cases and
1,205 controls) (28) and Hong Kong (612 cases and 2,193 controls) (29, 30).

Clinical sub-phenotypes were available for the SLE main cohort and SLEGEN cohort,
which were documented according to the standard American College of
Rheumatology (ACR) classification criteria. Subgroups of patients with renal disease
or without renal disease were identified according to the sub-phenotype data using
ACR classification. Following quality control, the sample size of patients with renal
disease, lupus nephritis (LN+) were 1,152 and 146; while patients without renal
disease (LN-) were 1,949 and 378 in the SLE main cohort and SLEGEN cohort,
respectively. More details are presented in Table S1.

Genome-wide association study (GWAYS)

SLE GWAS
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SLE GWASs were performed in genotyped SNPs including principal components

consistent with the original publications in all three independent cohorts.

SLE Renal GWAS within SLE cases

The SLE Renal GWASs were performed within SLE cases, i.e., genome-wide
associations of patients with renal disease (SLE Renal+, cases) and patients without
renal disease (SLE Renal-, controls) in two independent cohorts, i.e., the SLE main
cohort and the SLEGEN cohort. For Renal GWASSs, we pre-phased the genotyped
data using the SHAPEIT algorithm (31) and then used IMPUTEZ2 (32) to impute to the
density of the 1000 Genome reference data (phase 3 integrated set, release 20130502)
(33) (data unpublished). All case-control analysis was carried out using the SNPTEST
algorithm (34). SNPs with imputation INFO scores of < 0.7 and MAF (minor allele
frequency) < 0.001 were removed. After quality control (QC), there were 21,431,070
SNPs left for further analysis. Moreover, a genome-wide association meta-analysis of
the SLE main cohort and SLEGEN cohort was performed using the summary statistics
derived from the two Renal GWASs. A standard threshold of P < 5e-08 was used to
report genome-wide significance and a P < 1e-05 was used to report suggestive

associated signals.

Polygenic analysis

We tested for non-zero standardized effect sizes (Z scores) for SLE association in the
Genentech data for groups of SNPs stratified by their P values in the SLE main cohort.
The Z scores in the Genentech data were polarized with respect to the SLE main
cohort in that the effect allele was set to be the risk allele in the SLE main cohort.
Under the null hypothesis the Z scores will have zero mean, while under the alternative
the mean will be positive. SNPs were stratified by P value intervals of 1-0.9, 0.9-0.8,
0.8-0.7, 0.7-0.6, 0.6-0.5, 0.5-0.4, 0.4-0.3, 0.3-0.2, 0.2-0.1, 0.1-0.00. We would expect
a positive mean for SNPs with very small P values in the main SLE cohort as these
will be enriched for true positives, while the same is not necessarily true over other P

values ranges unless there are more widespread true associations with very weak


https://doi.org/10.1101/614867
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/614867; this version posted December 13, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

effects. We also ran this analysis on renal association standardized effect sizes (Z
scores) again polarized with respect to SLE association and stratified by SLE P values.
In all analyses, we used an LD clumped set of SNPs with an R? threshold of 0.1. When
comparing the SLE main cohort to the Genentech cohort or the SLEGEN cohort, we
limited the clumping to SNPs that overlap the GWASs.

Genetic risk score derivation

A Genetic risk score (GRS) is a quantitative trait of an individual’s inherited risk based
on the cumulative impact of many genetic variants, which is calculated according to
the method described by Hughes et al (35), taking the number of risk alleles (i.e., 0, 1
or 2) for a given SNP and multiplying this by its corresponding estimated effect - 3
coefficient, i.e. the natural log of its odds ratio (OR). The cumulative risk score in each
subject was calculated by summing the risk scores from the target risk loci:

n
Genetic risk score = Z GipPi
7

where n represents the number of SLE risk loci, Gj is the number of risk alleles at a
given SNP, and g, is the effect size of the risk SNP i.

We used two approaches to select SNPs for GRS calculation. The first approach — a
weighted GRS was derived from all published independent SLE risk SNPs (Table S2)
— including 78 SLE susceptibility loci (without the X chromosome), consisting of 93
SNPs outside of the MHC region and 2 independent tag SNPs in the MHC region for
two SLE associated HLA haplotypes. The risk allele for each SNP is derived from its
original publication, which is summarized in a recent review (11) and the effect size
used in the GRS was generated from each GWAS used as a training set. Each GRS

for four SLE cohorts (24, 25, 28-30) was generated using R version 3.4.3.

The second approach — LD clumping and thresholding — was used to build 32 GRSs.
Clumping and thresholding scores were built using a P value and linkage
disequilibrium (LD)-driven clumping threshold in PLINK version 1.90b (www.cog-
genomics.org/plink/1.9/) (27). In brief, the algorithm forms clumps around SNPs with
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association P values less than a provided threshold (Index SNPs). Each clump
contains all SNPs within a specified window of the index SNP that are also in LD with
the index SNP as determined by a provided pairwise correlation threshold (r?) in the
training data. The algorithm loops through all index SNPs, beginning with the smallest
P value and only allowing each SNP to appear in one clump. The final output should
contain the most significant disease-associated SNP for each LD-based clump across
the genome. Note that when performing LD clumping, we firstly removed the X-
chromosome and the MHC extended region (24-36MB) and kept all other autosomal
SNPs. Then we included the MHC region by using two tag SNPs for two well-known
HLA haplotypes in SLE, i.e. rs2187668 for HLA-DRB1*03:01 and rs9267992 for HLA-
DRB1*15:01 for the European cohort and rs9271366 for HLA-DRB1/HLA-DQA1 and
rs9275328 for HLA-DQB1/HLA-DQAZ2 for the Chinese cohort (Table S2). A GRS was
built using the genotypes for the index SNPs weighted by the estimated effect sizes
(B). Specifically, when training the GRS in the SLE main cohort and testing in the
SLEGEN cohort, we performed a GWAS on the genotyped SNPs in the SLE main
cohort and generated 32 lists of clumped SNPs over a set of P values (--clump-p1:
0.1, 0.01, 1e-03, 1e-04, 1e-05, 1e-06, 1e-07,and 5e-08), r? (--clump-r2: 0.2 and 0,5)
and clumping radius (--clump-kb: 250 and 1000). The 32 lists of SNPs were then used
to generate 32 GRSs by summing across all variants weighted by their respective
effect size for samples in the SLEGEN cohort. We performed this analysis using all
three cohorts in European population with one dataset as training and the other as a
test set, generating six training-and-testing pairs. We also performed a cross

population analysis between European and Chinese populations.

Receiver Operating Characteristic (ROC) curves for model evaluation

The GRS with the best discriminative capacity was determined based on the maximal
Area under the ROC curve (AUC) with SLE or RENAL as the outcome and the
candidate GRS as the predictor. AUC confidence intervals were calculated using the
‘PROC’ package within R and the difference between the ROC curves was determined
with the ‘roc.test’ function, which used a non-parametric approach, as described by
De Long et al (36). To assess the degree to which the age of SLE onset contributes

to the prediction of renal involvement within SLE cases, we generated ROCs as above
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with the GRS and compared to ROC curves with SLE age onset as a single predictor
and the ROC with both GRS and age onset as predictor(s).

Partitioning the genetic risk of renal disease

Since a continuous score is difficult to interpret on an individual level when a physician
needs to explain the results of the GRS to a patient, we partitioned SLE patients into
quintile according to genetic dosage (SLE GRS). We used a chi-square test to study
the association of the partitioned GRS and renal risk. The odds ratios of renal risk

were then calculated compared to the reference group - the first quintile GRS group.

To test whether the GRS correlated with renal disease independently of age-of-onset,
we partitioned SLE patients into two groups according to their age of onset, with a cut-
off at age of 30 - patients with age above 30 were defined as ‘Late age onset’ and
others as ‘Early age onset’. A two-way ANOVA test was then performed with the
function ‘aov’ in R, with aov(GRS ~ age group * renal group). All statistical analyses

were conducted using R version 3.4.3 software (https://www.r-project.org/).

Results
The best GRS in SLE prediction

Among the GRSs generated from LD clumping and thresholding, the predictor with
the best discriminative capacity was the one derived from SNPs clumping at P
threshold (Pw) of 1e-05 with R? < 0.2 in the SLE main cohort and tested in both the
SLEGEN (AUC =0.72; 95% C.I. = 0.69-0.74) and Genentech (AUC = 0.67; 95% C.I.
= 0.66-0.69) cohorts (Figure 1 & Table S3), suggesting there may be more true
positive signals than the genome-wide significant ones involved in the risk of SLE.
This performance was not due to population structure as the GRS added significantly
more (P = 2.2e-16 and P = 7.78e-14) to the AUC than principal components in both
Genentech and SLEGEN respectively. In fact, the predictive performance of the GRS
using all pairs of training and test data was maximised using SNPs below the standard

genome-wide threshold (Table S3). This evidence for polygenicity was also seen in

-11 -
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an analysis of the association statistics (Z scores) in the Genentech GWAS polarised
to the risk allele in the main GWAS, partitioned by their association P value in the main
GWAS (see Methods). Here, we found evidence (Figure 2 & Table S4) against a zero
mean (P = 3.91e-04) for the Z scores in Genentech data for SNPs with P values
between 0.3 and 0.2 in the main GWAS.

We found that the genetic risk score trained in our European (EUR) data predicted
SLE in the Chinese (CHN) data well (Figure 1C & 1D) with an AUC (0.64) when using
the best approach for GRS in the Europeans (R? < 0.2 for all SNP pairs and using
SNPs that passed the P value threshold of 1e-05). The range of AUC values over all
P value thresholds for SNP inclusion was [0.60 — 0.64]. The results when training in
the CHN and predicting in EUR were similar: AUC = 0.64 when using the best
approach for GRS in the Europeans (R? < 0.2 for all SNP pairs and using SNPs that
passed the P value threshold of 1e-05) and range of AUC values over all P value
thresholds for SNP inclusion was [0.55 — 0.64].

Lupus Nephritis GWAS within SLE cases

Lupus Nephritis (LN) occurs in approximately half of all SLE patients, and its frequency
ranges from 25% to 75% depending on the population studied (37). About one third
of European SLE patients experience renal disease (38). Until recently, one of the
most common causes of death in SLE patients was kidney failure. According to the
lupus severity index (LSI) using the ACR criteria developed by Bello et al (39), renal
involvement has the highest impact and particular strongly associated with disease

severity, hence we chose LN as a proxy of SLE severity in this study.

The within case LN GWAS in the SLE main cohort, which comprised 1152 SLE
patients with renal disease (LN+) and 1949 patients without renal disease (LN-), did
not identify any genome-wide significant associated loci (P < 5e-08) (Figure S1A).
Consistently, no inflation (genomic inflation factor: A = 1.014) was observed in the QQ
plot (Figure S1D). Similarly, none of the SNPs reached genome-wide significance in
the SLEGEN cohort (25) (A =1.023) (Figure S1B & 1E). In addition, no variant passed

genome-wide significance in the meta-analysis of the SLE main cohort and SLEGEN

-12 -
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cohort for Renal GWAS (A = 0.9565) (Figure S1C & S1F). Summary association
statistics for SNPs with P < 1e-05 are provided in Table S5 and S6.

We did, however, see evidence that SNPs with very strong evidence for association
with SLE (P < 1e-05) were associated with LN. This was evident from an analysis of
the renal association statistics (Z scores) polarised to the risk allele for SLE. There
was strong evidence (Figure 2 & Table S4, P = 8.72e-08) against a zero mean for the
Renal Z scores for SNPs with P < 1e-05 for SLE in the main cohort. This result was
replicated in the SLEGEN study with P = 2.42e-03 (Figure 2 & Table S4). The finding
of renal association with SNPs showing very strong evidence for association with SLE

could be exploited for prediction of disease progression and we explore this below.

Genetic risk loading of SLE is significantly higher in LN+ patients

While we observed that no individual SNPs were significantly associated with renal
involvement in the SLE cases, we did show that there was a deviation from zero mean
for renal Z scores taken from SNPs with very strong evidence for association with SLE.
In view of this finding, we investigated the correlation between the SLE GRS and renal
disease in all SLE cases. To accomplish this, we used the GRS derived from a list of
published SLE associated SNPs (11) for the comparison of the SLE genetic risk
burden in patients with and without renal disease. As expected, the GRS was higher
in the SLE patients compared to healthy controls in both independent cohorts (Figure
3).

A significantly higher GRS was observed in the group of patients with renal disease
(LN+) compared to patients without renal disease (LN-) (Figure 3). In the SLE main
cohort, the mean (SD) of the GRS was 18.1 (1.64) for LN+ patients and 17.8 (1.65)
for LN- patients (P = 1.60e-07); the mean (SD) for the SLEGEN cohort was 18.2 (1.66)
for LN+ patients and 17.6 (1.69) for LN- patients (P = 0.0010). Moreover, we saw a
significant increasing trend of GRS over levels of diseases: Healthy control, LN-
patients, and LN+ patients, in the SLE main cohort and the SLEGEN cohort (Figure
3).

-13-
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Genetic risk of nephritis and age of onset in SLE

We patrtitioned the SLE cases into five groups according to quintiles for GRS to show
the risk of renal involvement. We observed over 1.5 folds higher risk of renal disease
(OR =1.58; 95% C.I. = 1.25-1.99; P = 0.00015) between the top and bottom quintiles
of GRS in the SLE main cohort (Figure 4A). This is replicated in the SLEGEN cohort
(Figure 4B), with odds ratios of 3.16 (95% C.l. = 1.62-6.13; P = 0.00091). A
significantly earlier age of SLE onset was observed in those with renal disease
compared to those without renal disease. In the main cohort (Figure 5A), the mean
(SD) for age of disease onset was 29yrs (12) for LN+ patients and 35yrs (13) for LN-
patients (P = 2.8e-27); the means for the SLEGEN cohort (Figure 5B) were 28yrs (11)
and 35yrs (13) for LN+ and LN-, respectively (P = 6.05e-09). When testing the
association of GRS with age of onset in the SLE main cohort, a significant correlation
was present — the higher the GRS, the earlier age of SLE onset (P = 4.59e-12). This
correlation was also detected in the SLEGEN cohort (P = 0.021) and the combined
Chinese cohort (P = 1.57e-06).

To test whether the GRS correlated with renal disease independently of age-of-onset,
we partitioned SLE patients into two groups according to their age of onset, i.e. ‘Late
age onset’ and ‘Early age onset’ and performed a two-way ANOVA test (See Methods).
The GRS was shown to positively correlate with both renal disease and early age-of-
onset (Prena = 7.64e-05 and Page-of-onset = 1.06e-09) in the SLE main cohort, with
significant association with renal disease in the SLEGEN cohort but marginal evidence
for age-of-onset (Prenal = 0.0288 and Page-of-onset = 0.0513), while we found that there
was no statistically significant interaction between renal and early age-of-onset in the
SLE main cohort (Pinteracion = 0.795) and marginal evidence in the SLEGEN cohort
(Pinteraction = 0.0511) (Figure S2). Notably, we found that GRS was a better predictor
of renal disease in the ‘Late age onset’ group (AUC = 0.62) compared with the ‘Early

age onset’ group (Figure 6).

Finally, we assessed the predictive ability of the partitioned SLE GRS (quintile GRS,
see methods) over the two age-of-onset groups. In the main SLE cohort there is a
clear and significant risk effect for renal involvement with increasing GRS in the ‘Late
age of onset’ group, but no significant effect in the early onset group. We observed
over two folds higher risk of renal disease (OR = 2.33; 95% C.I. =1.57-3.47; P = 3.76-
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05) between the upper fourth quintile and the bottom quintile in the ‘Late age onset’
group in the SLE main cohort (Figure 4A). The results were similar in the SLEGEN
cohort, with the risk of renal disease between the top and bottom quintile of GRS being
over five times (OR = 5.48; 95% C.I. = 1.65-18.3; P = 0.00664) (Figure 4B & Table
S7) in patients of ‘Late age onset’ but no significant differences in those with ‘Early
age onset’. These results are robust to the chosen threshold in the definition of ‘Late

age onset’ and ‘Early age onset’ (Table S7)

Discussion

GRS has been showed to be predictive for several diseases including cardiovascular
disease (AUC =0.81, 95% C.I. = 0.81-0.81) (12), inflammatory bowel disease (AUC =
0.63, 95% C.I. = 0.62-0.64) (12) and breast cancer (AUC = 0.63, 95% C.I. = 0.63-
0.65) (40). However, in many of these applications the AUC values are dependent on
inclusion of age and sex for prediction and so the AUC due to genetics alone would
have been substantially lower (41). We have shown that a SLE GRS using only SNPs
has good predictive power with AUC approaching 0.7 over a range of settings when
trained and tested between three European GWAS. We also used two combined
Chinese studies’ data as both independent validation and a test of cross populations
prediction performance. In both populations we show that, when using GWAS data as
a training set, a GRS using SNPs with association P values well below genome-wide
levels of significance has the best predictive performance. This, along with other
studies that have reinvestigated SLE GWAS data (42), is further evidence that SLE is
a polygenic disease with many risk variants as yet undiscovered, and that more
powerful studies could lead to useful predictive models. Genetic risk scores may also
have utility in prediction of disease severity and we find evidence for this to be so for
SLE. Our data show that renal involvement is not related to specific genetic factors or

particular genes but simply to genetic load of risk alleles.

Until recently, the most common cause of death in SLE patients was kidney failure.
Though the frequency of death from kidney disease has decreased sharply due to
better therapies (e.g. dialysis and kidney transplantation), kidney failure is still

potentially fatal in some people with SLE and causes significant morbidity. According
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to the lupus severity index (LSI) using the ACR criteria developed by Bello et al (39),
renal involvement had the highest impact and particularly more strongly associated
with disease severity, hence we used renal involvement as a proxy of SLE severity in
this study. In the SLE within-case renal GWASs, we observed no genome-wide
significant signals in either the SLE main cohort or the SLEGEN cohort, or meta-
analysis of these two. Both datasets had genetic variants with less stringent P values
(P = 1e-05) for renal association, but none of them were replicated in the other cohort.
Considering the sample size of both cohorts are relatively small, we applied an online
genetic power calculator (http://zzz.bwh.harvard.edu/gpc/) to calculate the power of

our current sample size for the GWAS study (Table S8). We assumed the effect sizes
of SLE renal risk alleles is similar to that seen in SLE GWAS, so the odds ratio (OR)
of the risk allele would be between 1.0 and 2.0. Therefore, we calculated power under
a variety of parameters, including OR, risk allele frequency (RAF) and alpha. As
showed in Table S8, we have a power of = 0.8 to detect a genetic risk variant with an
OR =1.4 and RAF =0.3 or an OR = 1.5 and RAF = 0.2 when alpha = 5e-08. However,
if we assume the renal associated variants are as weak as most of the SLE associated
variants (OR < 1.2), then we are under powered (< 0.8) to detect the true renal

associations at the GWAS significant threshold of P = 5e-08 in the current study.

We did however find evidence that SNPs most associated with SLE (P < 1e-05) were
enriched for associations with SLE renal involvement. Specifically, the renal
association P values of the 95 SNPs (of 77 published SLE risk loci) in the SLE main
cohort and the SLEGEN cohort are strongly inflated as shown in the QQ plots (Figure
S3), suggesting the cumulative genetic burden from multiple SLE risk genes with
modest effect. So we then tested the hypothesis that the genetic risk loading of SLE
may correlate with kidney involvement. Therefore, a genetic risk score (GRS) using
published SNPs with robust evidence for association with SLE was derived for the
prediction of SLE renal disease. In both European cohorts, the SLE main cohort and
the SLEGEN cohort, the GRS was significantly higher in patients with renal disease
than patients without. In addition, patients with a higher GRS were more likely to have
renal involvement at a younger age, indicating the strong genetic background of SLE
development. These findings provide more evidence to support the opinion that
younger-age onset lupus is generally more severe than older-onset lupus as reported
previously (43-45).
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Our analysis of Renal disease in SLE patients has shown that, while we find no SNPs
significantly associated with renal disease, the fact that SLE associated variants
correlated with renal using a GRS suggests that many SLE associated variants are
also risk for renal involvement albeit with likely weaker effects (Odds ratios). We find
that the GRS and age-of-onset are correlated but the GRS is associated with renal
involvement independently of age-of-onset with no interaction observed. The GRS
performs better for predicting renal disease in patients with late age-of-onset. We also
find that a stratified GRS may be a more viable option for predicting renal disease,
where we estimate significantly high relative risks for those in the tails of the GRS

distribution in both of our European studies that had renal data.

A limitation of this study is that we were not able to replicate our renal results in the
Chinese as renal data were not available. Renal involvement in Chinese is more
common than in Europeans; the Chinese SLE patients are more heterogeneous,
suffer from more severe clinical manifestations and earlier age of onset. The use of
GRS for predicting SLE severity in Chinese may not have the same utility as in
Europeans where we find the stronger association in the late onset patients.
Nevertheless, our results in Chinese showing a correlation between age of onset and
SLE GRS suggest that in this population disease severity is also driven by load of

disease associated variants.

This is the first study to investigate accumulated genetic risk and its relationship with
the susceptibility and severity of SLE with data in Chinese and European populations.
We found that the higher the GRS, the younger onset of SLE in both populations.
Within the European population and across the Chinese and European populations
we find that a genetic risk score incorporating LD pruned SNPs (at R? = 0.2) with
modest (P < 1le-05) evidence for association with disease predicts SLE with AUC of
0.64 and above. In the European data we see that in patients of late onset, a higher
GRS means patients are more likely to suffer from more severe disease. In brief, age
of onset incorporating a GRS may assist early prediction of lupus nephritis in a clinical
setting. Nevertheless, more clinical studies and multi population data are needed to

validate the usefulness of this application.
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Figures Legends

Figure 1. ROCs and AUCs of models in SLE prediction in European cohorts and

between ancestries.

GRSs for the prediction of SLE in the SLEGEN cohort (A) and Genentech cohort (B)
were generated from SNPs of LD clumping and threshold derived from the SLE main
cohort. All GRSs for the training-and-validation in European cohorts were generated
with two MHC tag SNPs derived from the European GWAS (See Methods). GRSs for
the prediction of SLE across populations (C) and (D) were generated from SNPs of
LD clumping and threshold without MHC tag SNPs. The ‘GRS at P’ represented the
GRS in the SLE prediction model, which was derived from the LD clumping at the
according GWAS P value threshold.

Figure 2. Polygenic test of SLE and Renal disease.

Polygenic test of SLE in Genentech cohort (A & B) and polygenic test of Renal
disease in the SLE main cohort (C & D) and SLEGEN cohort (E & F). The SLE main
cohort was used to generate a P value for each SNP, to stratify the SNPs into
groups for the Z score calculation of SLE association or Renal association.

Figure 3. GRS over levels of disease: Controls / SLE Renal (-) / SLE Renal (+).

The violin-and-box plots show the summary GRS for each level of the disease in the
SLE main cohort (A) and the SLEGEN cohort (B). The violins show the distribution
of the GRS across each group. The bottom line of the box inside the violin is the 1st
guantile, the top line is the 3rd quantile, and the box is divided at the median.
Sample size (N) of each group is showed within brackets below the group name.
Note that GRS for SLE main cohort and SLEGEN cohort are generated by 93 non-
MHC SNPs and 2 MHC tag SNPs - a total of 95 SNPs (Table S2).
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Figure 4. Relationship of quintiles of the GRS and risk of renal disease within
SLE patients.

Plots show the odds ratios of Renal disease for the SLE main cohort (A) and the
SLEGEN cohort (B), comparing each of the upper four GRS quintiles with the lowest
quintile; dotted lines represent the 95% confidence intervals (C.1.); horizontal black

dotted lines represent OR = 1.

Figure 5. Age of SLE onset in patients of Renal(-) / Renal(+).

The violin-and-box plots show the age of SLE onset for each level of the disease in
the SLE main cohort (A) and the SLEGEN cohort (B). The violins show the
distribution of the Age of SLE onset across each group. The bottom line of the box
inside the violin is the 1st quantile, the top line is the 3rd quantile, and the box is
divided at the median. Sample size (N) of each group is showed within brackets

below the group name.

Figure 6. ROC Curves for models predicting a diagnosis of Renal disease in SLE

patients using GRS, split by age-of-onset.

The models were trained in the SLE main cohort and tested in the SLEGEN cohort.
The plots showed the ROC curves in the prediction of renal disease in SLE patients
with GRS as a predictor, The ROC curve in black was trained and tested with all SLE
samples, the purple curve was trained and tested in the ‘Early age onset’ patients (<
30yrs), and the red curve was trained and tested in the ‘Late age onset’ group. AUC,

area under the ROC curve is showed with 95% C.l. in brackets.
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AUC of Renal Prediction by GRS
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SLE P value (of SLE main cohort) vs SLE Z score (of GENENTECH cohort)
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T-test: Control vs SLE
P value: < 1.0e-400

T-test: Renal(-) vs Renal(+)
P value: 1.6e-07
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T-test: Control vs SLE
P value: 2.35e-56

T-test: Renal(-) vs Renal(+)
P value: 0.00104
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