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Abstract
Background: Individuals with ADHD and other forms of externalizing psychopathology tend to
display poor behavioral performance on the go/no-go task, which is thought to reflect deficits in
inhibitory control. However, clinical neuroimaging studies using this paradigm have yielded
conflicting results, raising basic questions about what the task measures and which aspects of the
task relate to clinical outcomes of interest. We aimed to provide a clearer understanding of how
neural activations from this paradigm relate to the cognitive mechanisms that underlie
performance and the implications of these relationships for clinical research.
Methods: 143 emerging adults (ages 18-21) performed the go/no-go task during fMRI scanning.
We used the diffusion decision model (DDM), a mathematical modeling approach, to quantify
distinct neurocognitive processes that underlie go/no-go performance. We then correlated DDM
parameters with brain activation across several standard go/no-go contrasts and assessed
relationships of DDM parameters and associated neural measures with clinical ratings.
Results: Fronto-parietal activations on correct inhibition trials, which have typically been
assumed to isolate neural processes involved in inhibition, were unrelated to either individuals’
response biases or their efficiency of task performance. In contrast, responses to false alarms in
brain regions putatively responsible for error monitoring were strongly related to more efficient
performance on the task and correlated with externalizing behavior and ADHD symptoms.
Conclusions: Our findings cast doubt on conventional interpretations of go/no-go task-related
activations as reflecting inhibition functioning. We instead find that error-related contrasts
provide clinically-relevant information about neural systems involved in monitoring and

optimizing cognitive performance.
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Introduction

The go/no-go task, in which participants are asked to make a motor response following
stimulus presentations but to withhold their response after a subset of “no-go” stimuli, is one of
the most ubiquitous experimental paradigms in clinical neuroscience. Commonly assumed to
index an individual’s ability to inhibit pre-potent or impulsive responses, behavioral metrics
from the task, including false alarm (FA) rate and response times, indicate generally poorer task
performance in attention-deficit/hyperactivity disorder (ADHD), substance use disorders, and
externalizing psychopathology more broadly (1,2,3). Such findings are often cited as evidence in
support of the hypothesis that poor inhibitory control is a trans-diagnostic risk factor for
externalizing disorders (4,5,6,7,8). In turn, functional magnetic resonance imaging (fMRI)
measures of go/no-go task-related neural activations have played a fundamental role in research
on the neurodevelopmental mechanisms of inhibitory control (9,10) and on aberrant brain
processes in clinical conditions associated with disinhibition (11,12,13,14)

Neuroimaging studies typically focus on several types of contrast images from the go/no-
go task when making inferences about inhibitory control. Analyses in which activity during
correct rejects (CRs: “no-go” trials where a response is inhibited) is contrasted against activity
during “go” trials or a baseline are typically assumed to isolate neural activity related to
inhibitory processes (15,16; cf. 17), and tend to reveal right-lateralized activation in prefrontal
and parietal structures (18). This approach is based on the subtraction logic that intact inhibitory
processes are present during CRs, but not other trials, and hence individuals’ magnitude of
activation during CRs should correspond to individual or clinical differences in the integrity of
response inhibition (13,16,19,20). In addition, analyses in which activity during FASs is

contrasted against that during other trials or baseline may be conducted with the goal of indexing
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neural activity related to error monitoring. Indeed, such contrasts tend to reveal activation in
multiple regions associated with the processing of errors, including the anterior cingulate (ACC),
insula and broader fronto-parietal networks (19,20,21,22,23,24).

Despite the go/no-go paradigm’s success in reliably eliciting patterns of neural activation,
associations between these activations and clinical outcomes are sometimes difficult to interpret.
Across a variety of studies using this paradigm, clinical groups with behavioral disinhibition
symptomatology have alternately been found to display reduced (12,19,20,25) or increased
(13,26,27,28,29) activation in the brain structures assumed to implement inhibitory processes.
Furthermore, significant clinical differences in go/no-go task-related activation are often found in
situations where behavioral performance differences are absent (12,14,23,26,28,29). Taken
together, these trends in the literature present significant challenges for the conventional
assumption that the magnitude of neural responses from go/no-go task contrasts indexes the
same underlying construct of inhibitory control that is assumed to be indexed by the task’s
behavioral measures.

The current study aims to provide a clearer understanding of how neural activations from
the go/no-go paradigm relate to the cognitive mechanisms that underlie task performance and of
the implications of these relationships for the study of psychopathology. We utilized data from a
large (N=143) sample of individuals at risk for externalizing behavior to assess correlations
between go/no-go task activations and latent cognitive processes measured by the diffusion
decision model (DDM), a well-validated mathematical model of two-choice decision tasks
(30,31) that was recently extended to explain performance in the go/no-go paradigm (32,33). The
DDM frames the decision of whether to respond or withhold from responding as a noisy

evidence accumulation process that drifts between boundaries which represent each of the two
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possible decision outcomes (Figure 1). Although the process drifts towards, and typically
terminates at, the correct boundary (e.g., the “withhold response” boundary on trials with “no-
go” stimuli), errors occur when it terminates at the other boundary due to noise. In the DDM
framework, several cognitive mechanisms can explain differences in go/no-go task performance:
1) individuals’ general efficiency of evidence accumulation towards the correct choice, as
indexed by the drift rate (v) parameters, 2) response biases, which are indexed by the start point
(2) parameter and tend to favor decisions with higher probabilities, such as “go” responses in the
go/no-go paradigm (31), 3) caution, as indexed by a parameter for the separation between
boundaries (a), with lower values indicating a faster but more error-prone decision-making style,
and 4) time taken up by processes peripheral to the decision (e.g., perceptual encoding, motor
response speed), indexed by a non-decision time (Ter) parameter.

The first goal of the study was to assess whether individual differences in neural
activations from common go/no-go task contrasts were correlated with individual differences in
one or more of the latent psychological processes indexed by the DDM. The second goal was to
assess whether any task-related activation patterns could potentially be interpreted as neural-
level indices of mechanistic processes that have meaningful relationships with psychopathology.

Methods
Participants

An initial sample of 147 participants, ages 18-21, was recruited from the Michigan
Longitudinal Study (MLS) to participate in a neuroimaging study. The MLS is an ongoing
prospective study that follows a community sample of families with a history of alcohol use
disorder (AUD) and low-risk families from the same neighborhoods (34,35). Participants were

excluded from participating in the larger MLS if they displayed signs of fetal alcohol syndrome.
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Participants were excluded from recruitment into the neuroimaging study if they 1) displayed
contraindications to MRI scanning, 2) were left-handed, 3) suffered from a neurological, acute or
chronic medical illness, 4) had a personal history of psychosis or schizophrenia, or similar
history in first-degree relatives, or 5) were prescribed psychoactive medications in the past 6
months, with the exception of psychostimulants prescribed to treat attention difficulties.
Participants using prescribed psychostimulants were asked to discontinue their medication at
least 48 hours prior to scanning session. Participants were asked to abstain from using alcohol or
illicit substances for 48 hours prior to the study appointment. All study procedures were
approved by the University of Michigan’s Institutional Review Board, and all participants
provided written informed consent.

Three participants were excluded because their behavioral data did not meet quality
control criteria for model-based analyses (at least 200 available trials and overall accuracy rate
>.55) and one participant was excluded because they did not commit any FAs, precluding
analysis of FA contrasts. This left a final sample of 143 participants (87 males), whose
demographic information is displayed in Table 1.

Go/No-Go Task

Participants completed an event-related go/no-go task (10) during fMRI data collection in
which they were presented with a series of letters for 500ms at a time (interstimulus fixation
interval of 3500ms) and asked to press a button for every letter other than “X” (“go” trials) but to
withhold their response on trials where an “X” was presented (“no-go” trials). Participants
completed 5 182-second imaging runs of 49 trials each, for a total of 245 trials, 60 (25%) of
which were “no-go” trials. Neuroimaging data acquisition parameters and sequences (36) are

reported in Supplemental Materials.
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Psychopathology Measures

Participants completed the neuroimaging study in between MLS data collection waves.
At waves 6-8 (ages 18-24), participants filled out the Adult Self Report (ASR: 37), a
questionnaire which assesses levels of internalizing and externalizing psychopathology and
symptoms of DSM-IV syndromes. For each participant in the current study, the administration of
the ASR closest in time to the scan was identified (mean days between ASR administration and
scan=421, SD=401), and raw scores from this measure were used. Five participants (all male)
did not have ASR data available (i.e., they did not complete waves 6-8). Therefore, they were not
included in analyses that involved prediction of psychopathology.
DDM Analysis

The go/no-go version of the DDM outlined by (32) and (33), which assumes that “no-go”
decisions are made when the decision process reaches an implicit (non-response) boundary, was
fit to data in R (38) using the chi-square minimization procedure described in these studies.
Functions from the R package rtdists (39) were used to calculate chi-square values and simulate
model-predicted data to assess fit. As between-trial variability parameters in the model are
difficult to estimate without massive numbers of trials (40) and “simple” versions of the DDM,
without these parameters, provide estimates of the main model parameters that appear to be
comparably reliable and informative to those of the “full” DDM (41), only the main DDM
parameters were estimated: drift rates for “go” and “no-go” stimuli, (v.go, v.nogo), starting point
(2), boundary separation (a) and non-decision time (Ter). The upper boundary was assumed to
trigger responses, while the lower boundary was assumed to be the non-response boundary. Start

point (z) was estimated as a proportion of a, and z values greater than .50 therefore indicate the


https://doi.org/10.1101/614420
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/614420; this version posted April 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

8
expected bias towards upper response boundary. Additional information on model specification,
estimation, and checks of model fit is available in Supplemental Materials.
fMRI Data Pre-processing

Functional images were first reconstructed using an iterative algorithm (42). Head motion
was corrected with realignment using FSL 5.0.2.2 tools (FMRIB, Oxford, United Kingdom) and
runs were excluded if they exceeded 3 mm translation or 3° rotation in any direction during the
run. Remaining pre-processing steps, which were carried out using Statistical Parametric
Mapping 8 (SPM8: Wellcome Institute of Cognitive Neurology, London, United Kingdom),
included spatial normalization to standard space as defined by the Montreal Neurological
Institute template, resampling to 2x2x2mm voxels, and spatial smoothing with a 6mm full-width
half-maximum Gaussian kernel.
fMRI Analyses and ROI Selection

A general linear model (GLM) was fit at the individual level with three main regressors
convolved with the hemodynamic response function: 1) correct go trials (hereafter referred to as
the GO condition), 2) correct rejection (CR) no-go trials, and 3) false alarm (FA) no-go trials.
Motion parameters from earlier realignment and average white matter signal intensity for each
volume were also included as nuisance regressors. Following individual-level analyses, four
group-level contrasts were conducted: CR>GO, FA>GO, CR>FA, and FA>CR. Clusters from
the resulting statistical maps were determined to be statistically significant if they met a cluster-
level FWE-corrected threshold of .001. From these thresholded maps, we selected a smaller
number of discrete clusters as regions of interest (ROIs) based on previous research (detailed
below in Results). Average individual-level contrast parameter estimates were then extracted

from each ROI using MarsBaR (43).
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Data Analytic Plan

Following selection of ROIs, we conducted three main analyses to accomplish our goals.
Analyses were conducted within R or JASP (44), an open-source statistical package which
allows frequentist and Bayesian versions of common statistical tests to be easily implemented.
First, with the goal of identifying relationships between parameters of the DDM and task-related
neural activations, we conducted Bayesian correlation analyses in JASP between each DDM
parameter and activation estimates from each ROI. Bayesian analyses allow estimation of 95%
posterior credible intervals, which indicate the range in which there is a .95 probability that each
r value falls, as well as Bayes factors (BF10). BF1o is intuitively interpreted as an odds ratio for
the research hypothesis; a value of 5, for example, indicates the data are 5 times more likely
under the research hypothesis than under the null hypothesis. Although BF1o is best thought of as
a continuous measure of evidence, values >3 are generally interpreted as substantial evidence for
the research hypothesis and those <.33 as substantial evidence for the null (45). As we did not
have an a priori expectation of whether correlations between model parameters and neural
activations would be positive or negative, we simply tested the hypothesis that they were
correlated in either direction (i.e., the r prior was set to be a uniform distribution between -1 and
1). We primarily used BF1o for inference due to its ability to quantify evidence for both the
research and null hypotheses (45,46). However, we also report frequentist p-values, corrected for
multiple comparisons with the False Discovery Rate (FDR=5%) method (47), to corroborate our
BF1o inferences and assess whether correlations may have resulted from multiple testing.

Second, with the goal of indexing the latent constructs posited by the DDM at the neural
level, we constructed latent variables for the neural correlates of any DDM parameters that were

related to at least three ROIs. Latent variables were constructed by selecting the three ROIs that
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were most strongly linked to the parameter in the initial brain-behavior correlation analyses and
entering them into a structural equation model in the R package lavaan (48). In these models, the
three ROIs were treated as manifest measures of a neural latent variable that predicted the DDM
parameter of interest in a regression. Factor scores from this latent variable were then extracted
and were assumed to index the DDM construct at the neural level.

Third, with the goal of testing whether measures informed by DDM constructs predict
psychopathology, we assessed correlational relationships between the behavioral and neural
measures of these constructs and raw scores from two psychopathology scales on the ASR:
externalizing behavior and DSM-1V attention-deficit/hyperactivity disorder (ADHD) symptoms.
The former was selected because of previously-reported associations between go/no-go task-
related neural activations and risk for substance use and other broad forms of externalizing
behavior (14,23,28,29,49). The latter was selected because of the well-established associations
between DDM parameters and ADHD diagnosis (33,50,51,52). For BF1o, as we expected less
efficient processing, less cautious response style, greater bias toward responding, and/or longer
non-decision times to be related to increased psychopathology, we tested directional hypotheses
by setting a uniform prior between 0 and 1 for indices we expected to be positively correlated
with psychopathology (z, Ter) and a uniform prior between -1 and 0 for those we expected to be
negatively correlated (v, a).

Results
fMRI Contrasts and ROI selection

Whole-brain maps for all four contrasts (Figure 2a) revealed neural responses in multiple
regions that were broadly consistent with previous literature. The CR>GO contrast revealed

right-lateralized activity in the frontal and parietal regions commonly inferred to be involved in
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top-down inhibitory control (18,53,54). The FA>GO and FA>CR contrasts identified areas
associated with error processing and performance monitoring, including the ACC and bilateral
clusters spanning the inferior frontal gyrus (IFG) and anterior insula (22,24).

From these maps, we identified 23 frontal, parietal and sub-cortical ROls (Table 2) that
would be of the greatest interest given prior work (18,22,24,53,54) and extracted average
parameter estimates for the respective contrasts from these regions. Similarity between the
clusters identified by the FA>GO and FA>CR contrasts suggested that parameter estimates from
ROIs in these contrasts were redundant; indeed, estimates from ROIs in the FA>GO contrast
were highly correlated with those from the corresponding regions in the FA>CR contrast,
ranging from r=.80 (right middle frontal gyrus) to r=.89 (anterior cingulate). Therefore, to reduce
redundancy and limit the number of correlation tests, we only used ROIs drawn from the FA>CR
contrast, for a final total of 16 ROIs in further analyses.

Neural Correlates of DDM Parameters

Plots comparing empirical RT and accuracy data to data predicted by the DDM suggested
that the model generally described behavioral data well (Supplemental Materials). Hence, we
determined that model fit was adequate, and proceeded to investigate links between DDM
parameter estimates and neural activation. For these and all subsequent analyses, v.go and v.nogo
were averaged to provide a general index of evidence accumulation efficiency (v). Notably, most
participants’ start point (z) values were above .50 (Table 1), indicating that they were biased
toward the decision to respond, relative to the decision to withhold a response, as would be
expected for a task with a greater proportion of “go” relative to “no-go” stimuli.

Table 3 reports results from correlation tests of relationships between ROI activations and

DDM parameters. The most substantial associations identified were the positive correlations
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between v and activity in the prefrontal regions identified by the FA>CR contrast. FA-related
activations in regions putatively involved in error monitoring, the bilateral insula/IFG and ACC,
were most strongly correlated with v. Neither efficiency of task processing (v) nor bias toward
responding (z) were related to activity in the fronto-parietal network identified in the CR>GO
contrast; Bayes factors generally suggested evidence against the presence of such relationships.
Rather, activity in a subset of these ROIls displayed weak relationships with DDM parameters
that index other processes; increased activity in the right middle frontal gyrus and right parietal
lobe was related to a less cautious decision-making style (emphasizing speed over accuracy by
lowering a), while increased activity in the latter was also linked to shorter non-decision times.
Brain and Behavioral Measures of DDM Constructs

As the strongest links between DDM parameters and ROI activation were between v and
FA-related activation in the putative error monitoring network involving the ACC and bilateral
insula/IFG, we constructed a structural equation model (Figure 2b) in which these three regions
were manifest indices of a latent neural variable (v.brain) that predicted DDM estimates of v
from behavioral data (v.behavior). Practical fit indices suggested that the model described the
data adequately (CFI1=.999, TLI1=.998, RMSEA=.031, SRMR=.020), and all relationships in the
model, including the three factors loadings and the regression in which v.brain predicted
v.behavior, displayed p-values <.001. Although the Ter parameter was weakly linked to activity
in three ROIs, a similar model in which activity in these ROIs formed a factor to predict Ter
displayed questionable fit (CFI= .98, TLI=.95, RMSEA=.102, SRMR=.047) and abnormalities
(negative variance estimates) that suggested it was poorly specified. Therefore, the primary
measures of interest were indices of the construct of evidence accumulation efficiency at the

behavioral (v.behavior) and neural (v.brain) levels. To ensure that our ROI selection strategy did
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not bias predictions of psychopathology, we also conducted a sensitivity analysis (Supplemental
Materials) where we used the first principle component of neural responses in the FA>CR
contrast as an alternate v.brain measure. This component was strongly correlated with the v.brain
measure reported here (r=.92) and displayed similar relationships with v.behavior and
psychopathology.

Prediction of Psychopathology

Correlation tests of relationships between model-based measures and clinical outcomes of
interest (externalizing behaviors, ADHD symptoms) are displayed in Table 4. Although
v.behavior did not predict self-reported externalizing behavior, there was moderate evidence that
this index was negatively related to ADHD symptoms, consistent with prior case-control studies.
However, v.brain displayed moderate to strong evidence of negative relationships with both
outcomes. All other DDM parameters displayed evidence against the presence of hypothesized
relationships with psychopathology.

Discussion

The current study assessed whether activations from several common go/no-go
neuroimaging contrasts were related to latent cognitive processes indexed by the DDM, a well-
validated mathematical model of the go/no-go task (30,31), and whether these activations and
corresponding cognitive processes were related to externalizing psychopathology. This approach
was aimed at testing the common assumption in the clinical neuroscience literature that
individual differences in go/no-go task-related neural activations index the integrity of clinically-
relevant neurocognitive mechanisms.

Individual differences in CR-related fronto-parietal activations, which are generally

described as the neural substrate of response inhibition (18,53,54), were neither related to
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individuals’ efficiency at deciding whether or not to withhold a response (v) nor related to their
level of bias toward responding relative to withholding (z). Instead, greater activation in the right
middle frontal gyrus and right parietal lobe was weakly related to less cautious decision-making
styles (lower a). Although lower a may be interpreted as more “impulsive” responding, and
increased activation during CRs could therefore be posited as a neural marker of impulsivity, this
interpretation is tenuous for two reasons. First, the relationships observed between a and
activations were relatively weak for relationships between variables that presumably index the
same construct, and were not robust to corrections for multiple testing. Second, as a did not
predict externalizing behaviors or ADHD symptoms, individual differences in caution on the
standard go/no-go task appear to be unrelated to these clinical entities, despite the fact that these
entities are generally associated with impulsivity. Therefore, the current findings cast doubt on
the conventional interpretation of CR-related fronto-parietal activations as corresponding to
individual differences in inhibition ability, and suggest that if they do index individual
differences in a mechanistic process, such as caution, that process is likely to be orthogonal to
externalizing behavior.

In contrast, FA-related activations in the ACC and bilateral insula, regions related to error
processing (22,24), were strongly correlated with v, suggesting that neural systems involved in
performance monitoring are crucial for optimizing an individual’s ability to efficiently decide
whether to initiate or withhold responses. These activations also displayed evidence of
relationships with clinical outcomes; the neural correlates of v predicted individual differences in
both externalizing behaviors and ADHD symptoms. Taken together with the body of behavioral
research linking ADHD and externalizing behaviors to poorer performance on the go/no-go task

(1,2,55,56), these results suggest that the task does indeed tap into a neurocognitive construct
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with clinical relevance. However, rather than being exclusively related to the inhibition of
responses or to neural processes that are engaged on CR trials only, the current findings suggest
that this construct may be better-defined as a general efficiency of evidence accumulation, which
may be dependent on performance monitoring systems.

Such an explanation is consistent with recent accounts of cognitive deficits in ADHD.
Although response inhibition has long been considered a core deficit in the disorder (57),
individuals with ADHD display lower rates of evidence accumulation than their peers across a
wide variety of tasks that vary in their response inhibition demands (52,58,59). These findings
have recently been interpreted by some (58,59) as suggesting that individuals with ADHD
display dysfunction related to the locus coeruleus norepinephrine (LC-NE) system, which is
posited (60) to optimize arousal and the efficiency of processing in response to perceived task
utility. This account implies that lower evidence accumulation efficiency may reflect either
dysfunction in the LC-NE system itself, dysfunction in top-down inputs to the system that
modulate its activity in response to information about task utility and performance, or lower
perceived task utility due to broader factors. As the ACC and other brain regions involved in
monitoring performance lapses are thought to provide top-down input to the LC-NE system to
enhance task processing (60), the current study’s findings on the neural correlates of v are highly
consistent with this account.

The current study has several limitations. First, the study only assessed correlational
relationships between behavioral indices, neural activations, and clinical scales from the same
time point. Future work involving prospective prediction of clinical outcomes would be useful
for clarifying whether model-based measures from the go/no-go task provide information about

individuals’ predisposition to psychopathology. Second, as the majority of the sample was male
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and many individuals displayed existing risk factors for externalizing psychopathology, our
findings may not generalize to samples without these features. Third, although the DDM
parameters and their associated neural activations predicted clinical outcomes, the effect sizes
were small, which has implications for the clinical utility of this work. Finally, an inherent
limitation of any work involving a formal cognitive model is that the conclusions drawn may be
peculiar to the assumptions of the specific model used. For example, if another model was used
which explained response inhibition on “no-go” trials with a set of mechanisms separate from
those assumed by the DDM, it is possible that different conclusions about the neural correlates of
response inhibition would have been reached. However, as the DDM provides a comprehensive
description of task performance on both “go” and “no-go” trials with a parsimonious set of
parameters, it is reasonable assume that the basic DDM adequately explains performance on the
task without invoking separate “inhibition” mechanisms.

In conclusion, the current study assessed relationships between neural activations from
common go/no-go task contrasts and parameter estimates from the DDM to test the assumption
that neural responses in these contrasts index individual differences in the integrity of clinically-
relevant neurocognitive processes. Surprisingly, activation in the right-lateralized fronto-parietal
network associated with successful inhibition was not related to the integrity of cognitive
processing. In contrast, activity during inhibitory errors in the ACC and bilateral insula was
strongly related to efficiency of processing on the task and predicted externalizing behaviors and
ADHD symptoms. These results call common mechanistic interpretations of go/no-go task-
related activations into question and suggest that these activations can inform clinical

neuroscience by providing information about neural systems that monitor and optimize task
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performance in response to perceived task utility, rather than about the specific neural correlates

of withholding responses.
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Figures and Tables

Figure 1. Schematic of the diffusion decision model explanation of the go/no-go task, as
outlined by Ratcliff, Huang-Pollock & McKoon (2018) and Huang-Pollock et al. (2017). On
each trial, the decision process drifts between an upper boundary for the decision to respond, set
at parameter a, and a lower (implicit) boundary for the decision to withhold from responding, set
at 0. The process begins at the location determined by the start point (z) parameter and moves
over time according to a stochastic process (similar to a random walk) that generally terminates
at the correct decision boundary, but occasionally terminates at the incorrect decision boundary
due to noise (i.e., on error trials). The rate at which the process drifts toward the correct
boundary (v) is estimated separately for trials with “go” stimuli (v.go) and trials with “no-go”
stimuli (v.nogo). RT on a given trial is determined by the “decision time”, which is the amount of
time it takes the process to reach one of the two boundaries, and the “non-decision time” (Ter
parameter), which accounts for time taken up by processes peripheral to the decision (e.g.,
stimulus encoding, motor response latency). Note that the start point (z) is closer to the upper
boundary for the decision to respond. This reflects a bias that is expected in a go/no-go task, or
any other task where one type of decisional outcome is more likely to be correct than the other
(e.g., when “go” stimuli are much more common than “no-go” stimuli), because participants
develop an a priori expectation for which outcome is most likely to be correct.

a respond
z
0 2 withhold response

decision time

RT = decision time + Ter
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Figure 2. Neural activation in all fMRI contrasts and brain-based indices of the DDM parameter
of drift rate (v). a) Whole-brain t-statistic maps (thresholded at FWE<.001) at selected axial
slices for each contrast. White numbers in the bottom left corner indicate the z-coordinate for
each slice. CR = correct rejection; FA = false alarm; GO = correct go trial. b) Model for the
latent neural variable indexing drift rate (v.brain) with FA>CR activation estimates from the right
anterior insula/inferior frontal gyrus (R. Ins./IFG), left anterior insula/inferior frontal gyrus (L.
Ins./IFG), and anterior cingulate cortex (ACC). Standardized factor loadings and a standardized
regression beta weight for prediction of average drift rate estimated with behavioral data
(v.behavior) are displayed.

R. Ins./IFG

ACC v.behavior

L. Ins/IFG
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Table 1. Characteristics of the sample and descriptive statistics for cognitive and behavioral
measures. For continuous variables, numbers indicate the mean with standard deviations in
parentheses. ASR summary statistics do not include the 5 subjects with missing data on these
measures (all were male). FH-AUD = family history of alcohol use disorder (either parent)

Gender (Male/Female) 87/56
Age at scan 19.66 (1.22)
Race/Ethnicity
Caucasian 128
Hispanic/Latino 5
African American 6
Other/bi-racial 4
FH-AUD (Positive/Negative/Unknown) 108/34/1
ASR Externalizing — raw score 9.43 (7.90)
ASR Externalizing — T score 48.98 (10.13)
ASR ADHD Symptoms — raw score 5.02 (4.26)
ASR ADHD Symptoms — T score 54.33 (6.56)
Drift rate for “go” stimuli (v.go) 2.77 (1.03)
Drift rate for “no-go” stimuli (v.nogo)* 1.90 (1.88)
Average drift rate for all stimuli (v.avg) 2.34 (0.88)
Boundary separation (a) 1.00 (0.21)
Non-decision time (Ter)** 317 (.032)
Response bias (z) 0.62 (0.07)
False alarm (FA) rate 0.28 (0.16)
Hit RT mean (MRT)** 448 (.061)
Hit RT standard deviation (SDRT)** .105 (.055)

*=Multiplied by -1 for comparability to v.go; **=seconds
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Table 2. MNI coordinates, cluster-forming thresholds and size of all regions of interest (ROIs)
selected from contrast maps for inclusion in further analyses. All ROIs were significant at a
cluster-level threshold of FWE<.001, but stricter thresholds were used where noted to separate
discrete clusters that were contiguous at this initial threshold. CR = correct rejection; FA = false
alarm; GO = correct go trial; Ant. = Anterior; IFG = Inferior Frontal Gyrus; Supp. =
Supplemental

Contrast ROI FWE threshold x vy z  Size (voxels)
CR>FA Left Striatum .001 -20 16 -2 196
Right Striatum .001 20 12 -10 234
Right Parietal .001 36 -38 50 188
CR>GO Supp. Motor Area .001 8 4 54 2833
Left Middle Frontal .001 -34 38 26 560
Left Ant. Insula/IFG .001 -36 16 6 684
Left Parietal .001 -58 -48 34 2017
Right Middle Frontal 1E-10 40 42 22 674
Right Ant. Insula/IFG 1E-10 34 20 O 907
Right Parietal 1E-10 58 -44 28 1422
FA>CR Anterior Cingulate .001 2 30 24 2086
Left Middle Frontal .001 -26 48 22 509
Right Middle Frontal .001 24 52 24 321
Left Ant. Insula/IFG .001 42 12 -4 901
Right Ant. Insula/IFG .001 44 12 -4 462
Thalamus 1E-7 -14 -16 8 528
FA>GO Anterior Cingulate 1E-10 4 30 26 1742
Left Middle Frontal 1E-7 -28 50 22 611
Right Middle Frontal 1E-7 26 54 24 842
Left Ant. Insula/IFG 1E-7 44 14 -6 1357
Right Ant. Insula/IFG 1E-7 44 14 -4 1404
Right Thalamus 1E-7 16 -10 6 529

Left Thalamus 1E-7 -16 -16 8 412
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Table 3. Correlation (r) values, 95% posterior credible intervals (Cls), Bayes factors (BF10) and
frequentist p-values for correlational relationships between ROI activations and DDM

parameters. For Bayes factors: bolded = substantial evidence (>3:1 odds) for a correlational
relationship; For p-values: *=survives FDR correction for multiple comparisons within each

family of tests (families defined by DDM parameters)

Efficiency (v) Bias (2)

Region r [CI] BFio p r [CI] BFio p
CR/FA Left Striatum (-20,16,-2) -10[-.25,07] 0.2 256 .09[-.08,25] 0.8  .305
CR/FA Right Parietal (36,-38,50) -16[-.32,,00]  0.66 .053 -10[-.26,06] 022  .219
CR/FA Right Striatum (20,12,-10) -11[-.26,06]  0.23 208 11[-06,27] 024 191
CR/GO Left Ant. Insula/IFG (-36,16,6) -.14[-.29,.03] 0.37 109 .05[-.11,.21] 0.12 .557
CR/GO Left Middle Frontal (-34,38,26) | .05[-.12,21]  0.12 584 04[-13,20] 011  .679
CR/GO Left Parietal (-58,-48,34) -18[-.33,-01] 0.9 037 12[-05,27] 027  .165
CR/GO Right Ant. Insula/IFG (34,20,0) | .01[-.15,17]  0.11 901 11[-06,27] 025  .190
CR/GO Right Middle Frontal (40,42,22) | .13[-.03,29]  0.36 114 10[-.06,26] 022 217
CR/GO Right Parietal (58,-44,28) .09[-.08,24]  0.17 314 07[-10,23] 014 430
CR/GO Supp. Motor Area (8,4,54) .03[-13,19]  0.11 713 03[-14,19] 011  .747
FA/CR Anterior Cingulate (2,30,24) 40[.25,53] 2.1E+4 6.7E-7* | -11[-27,05] 026  .178
FA/CR Left Ant. Insula/IFG (-42,12,-4) 41[.26,53] 3.9e+4 3.5E-7* -.11[-.27,.05] 0.26 79
FAJ/CR Left Middle Frontal (-26,48,22) 27[.11,.41] 2071 1.1E-3* -.04[-.20,.12] 0.12 .631
FA/CR Right Ant. Insula/IFG (44,12,-4) | 45[.30,57] 6.4E+5 1.9E-8* | -15[-30,01] 052  .073
FA/CR Right Middle Frontal (24,52,24) | .36[.20,49] 14E+3 1.2E-5* | -15[-31,01] 055  .067
FA/CR Thalamus_(-14,-16,8) -02[-.18,.15]  0.11 852 | -.20[-.35-.04] 189  .016

Caution (a) Non-decision (Ter)

Region r [Cl] BF1o p r [C]] BF1o p
CRI/FA Left Striatum (-20,16,-2) -18[-.33-.02] 1.14 028 | -24[-38-08] 6.10  .004*
CR/FA Right Parietal (36,-38,50) -04[-.20,.12]  0.12 634 00[-.16,.16] 0.1 988
CR/FA Right Striatum (20,12,-10) -21[-.36,-.05] 231 012 | -25[-39-09] 850  .003*
CR/GO Left Ant. Insula/IFG (-36,16,6) | -.16[-31,01]  0.62 058 -09[-.25,07]  0.19 267
CR/GO Left Middle Frontal (-34,38,26) | -.20[-.35,-.04] 1.79 017 -.03[-.19,.13] 0.11 711
CR/GO Left Parietal (-58,-48,34) -20[-.35,-.03] 1.54 .020 -17[-.32,00]  0.73 047
CR/GO Right Ant. Insula/IFG (34,20,0) | -.19[-.34,-03]  1.43 022 -16[-.32,00]  0.67 053
CR/GO Right Middle Frontal (40,42,22) | -.23[-.37,-.06]  3.84 .007 -05[-21,12]  0.12 570
CR/GO Right Parietal (58,-44,28) -24[-39,-08] 6.52 004 | -22[-37,-06] 327  .008*
CR/GO Supp. Motor Area (8,4,54) -15[-.31,.01] 0.54 .069 -07[-.23,10] 0.14 423
FAJ/CR Anterior Cingulate (2,30,24) .04[-.13,.20] 0.12 .659 .09[-.08,.24] 0.17 312
FA/CR Left Ant. Insula/IFG (-42,12,-4) | .05[-12,21]  0.12 586 16[.00,31]  0.64 055
FA/CR Left Middle Frontal (-26,48,22) | -.06[-.22,.10]  0.14 448 07[-.09,23]  0.15 389
FA/CR Right Ant. Insula/IFG (44,12,-4) | .11[-.06,27]  0.24 197 19[.03,34] 131 024
FA/CR Right Middle Frontal (24,52,24) | .01[-.15,17]  0.11 921 06[-.10,22]  0.14 453
FA/CR Thalamus_(-14,-16,8) -12[-.28,04]  0.29 150 11[-.05,27]  0.26 180
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Table 4. Correlation (r) values, 95% posterior credible intervals (Cls), Bayes factors (BF10) and
frequentist p-values for relationships between model-based indices and externalizing
psychopathology self-ratings. All analyses excluded the 5 subjects who did not have ASR data
available. Cls and r values were estimated assuming a uniform prior from -1 to 1. However, as
we specifically wished to test the hypotheses that less efficient neurocognitive functioning and/or
less cautious response style were related to increased rates of psychopathology, Bayes factors for
v.behavior, v.brain, and a tested the directional hypothesis that the relationship with
psychopathology was negative (i.e., the uniform prior spanned values between -1 and 0). As we
wished to test the hypotheses that higher levels of bias toward responding and/or longer non-
decision times were related to increased rates of psychopathology, Bayes factors for z and Ter
tested the hypothesis that the relationship with psychopathology was positive (i.e., the uniform
prior spanned values between 0 and 1). For Bayes factors: bolded = substantial evidence (>3:1
odds) for the tested correlational relationship; For p-values: *=survives FDR correction for
multiple comparisons within each family of tests (families defined by psychopathology measure)

Externalizing Scale (raw) DSM-ADHD Scale (raw)
Predictor r [CI] BFio p r [CI] BFio P
v.behavior -.13[-.29,.04] 64 124 | -21[-.36,-05] 470  .012*
v.brain -.23[-.38,-.06] 7.90 .007* | -.28[-.42,-.12] 48.29 9.3E-04*
a -.07[-.24,.09] 25 393 | -.07[-.23,.10] .23 418
z -.06[-.22,.11] .07 497 | -.03[-.19,14] .08 749
Ter -.03[-.20,.14] .08 716 | .04[-12,21] .17 614
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Neuroimaging Data Acquisition Parameters

Whole brain T2*-weighted MRI images were acquired on a 3.0 T GE Signa scanner
(Milwaukee, WI) using a single-shot spiral in-out sequence (1) with the following parameters:
TR=2000ms, TE=30ms, flip angle=90°, FOV=200mm, 29 axial slices, 64x64 matrix, in-plane
resolution=3.12mmx3.12mm, and slice thickness=4mm. To assist with inter-subject spatial
normalization, a high-resolution T1-weighted anatomical image was acquired in a separate scan
with the following parameters: three-dimensional spoiled gradient-recalled echo, TR=25ms,
minimum TE, FOV=25cm, 256x256 matrix, slice thickness=1.4mm.
Diffusion Decision Model Specification and Parameter Estimation

The current study focused on MLS participants who completed their first session of the
neuroimaging study when they were ages 18-21. However, the neuroimaging component of the
MLS has recruited additional participants since these initial sessions (including the offspring of
the original MLS participants), and has attempted to conduct longitudinal neuroimaging data
collection at 1- to 2-year intervals with as many individuals as possible. Therefore, at the time
that analyses for the current project began, data from a total of 1280 go/no-go neuroimaging
sessions had been collected from 306 individual participants while they were between the ages of
7 and 30. Rather than only fitting the diffusion decision model (DDM) to data from the
neuroimaging sessions used for the current study, we decided to fit the DDM to all sessions from
the MLS neuroimaging sample with valid go/no-go behavioral data for two reasons. First, doing
so provided us with many more data points with which to evaluate model fit and to enter into our
simulation-recovery study to assess the reliability of parameter estimates. Second, we aimed to
produce parameter estimates that could be leveraged in future work involving the other time

points from the neuroimaging study. Of the 1280 sessions available, 1255 met our inclusion
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criteria for data quality, which were 1) that at least 200 trials were available for model-fitting and
2) that the overall accuracy rate in the session was greater than .55, indicating that the participant
understood, and was engaging in, the task. After selection of the included sessions, response
times (RTs) less than 200ms were excluded from analysis as fast guesses, following standard
procedures for fitting the DDM (2), and the DDM was fit to each session separately.

As noted in the main text, “simple” versions DDM, which do not include the parameters
for between-trial variability in drift rate (sv), start point (sz) or non-decision time (st0), are often
preferable to “full” versions of the DDM for two reasons. First, as it is difficult to reliably
estimate these between-trial variability parameters without very large numbers of trials, fixing
them to O for most applications of the DDM likely makes estimates of the main model
parameters (v, a, z, Ter) more stable (3). Second, evidence from a blinded, collaborative test of
researchers’ ability to draw valid inferences from response time models (4) strongly suggested
that simple versions of the DDM provided inferences about constructs indexed by the main
DDM parameters that were just as robust and valid those provided by full versions of the DDM.
Therefore, we first fit a “simple” version of the DDM which only contained 5 parameters: drift
rate for “go” stimuli (v.go0), drift rate for “no-go” stimuli (v.nogo), boundary separation (a), non-
decision time (Ter). Decisions to respond on a given trial were assumed to occur when the
diffusion process crossed the upper response boundary, while decisions to withhold from
responding were assumed to occur when the process crossed the lower response boundary, which
was equivalent to the “implicit” boundary assumed by (5,6). Hence, more positive values of v.go
indicate more efficient accumulation of evidence for the correct response on “go” trials, but more
negative values of v.nogo indicate more efficient accumulation of evidence for the correct

response on “no-go” trials. For all subsequent analyses, v.nogo parameter estimates were
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multiplied by -1 so that they would be directly comparable with v.go parameter estimates. The z
parameter was parameterized as a proportion of a, meaning that values above .5 indicate a bias
toward responding and values below .5 indicate a bias to non-responses.

The model was in fit by implementing the chi-square minimization procedure specified
for the go/no-go DDM by (5) and (6) using functions from the R package rtdists (7) and base
functions in the R language. Chi-square values to be minimized were calculated for each set of
model parameters by first calculating the proportion of responses that the model predicted would
terminate at the upper and lower response boundaries, as well as predicted RT quantiles (.1, .2,
3,.4,.5,.6,.7,.8, and .9) for correct responses to “go” stimuli and erroneous responses to “no-
go” stimuli, which formed 10 bins for response times (e.g., a bin for responses less than the .1
quantile, a bin for responses between the .1 and .2 quantiles, etc.). The expected proportion of
response times in each bin was .1 multiplied by overall proportion of each response type
(respond/withhold) predicted by the model for each condition (“go”/”no-go’), which produces
expected proportions that are weighted by accuracy in each condition. As non-responses in the
“go” and “no-go” conditions do not have observed response times, a single bin was used. The
expected proportion of responses in this bin was simply 1 multiplied by the proportion of non-
responses predicted by the model in each condition. Following prior work (Ratcliff et al., 2018),
we used an alternate RT binning procedure when the number of RTs in a given condition was
small: when the number of RTs was <11 we used the predicted median RT to form two bins
(where the expected proportion was .5 multiplied by the expected proportion for that response),
and when the number of trials was <4, we used a single bin (the same procedure as was used for
non-responses). The expected number (E) of responses for each of the bins was then calculated

by multiplying the response and RT proportions predicted by the model by the actual number of
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trials in each stimulus condition. The observed number (O) of responses in each bin was then
counted, and a chi-square value for each bin was calculated as (O - E)?/E. Overall chi-square
values were then calculated by summing over all bins for the individual.

With the overall chi-square value as an optimization criterion, the R function optim() was
used to implement a multidimensional search using the Nelder-Mead method. Following
previous work (8), starting points for the initial search process were found using the EZ diffusion
model (9) to estimate v, a, and Ter parameters for data in the “go” condition. The starting value
for v.go was the v estimate from EZ and the starting value for v.nogo was this estimate multiplied
by -1. Start points for the a and Ter parameters were equivalent to the respective parameters
from the EZ fits, and the start point for z was always set at .5, as EZ does not estimate response
bias. Running the Nelder-Mead algorithm multiple times and using parameter estimates from
each run as start points for the following run often notably improves model fit (8). Therefore, this
procedure was adopted for the current analysis; optim() was set to run as many times as needed
until no further decrease in the chi-square value could be accomplished (mean number of
minimization runs per neuroimaging session = 5.07, SD = 2.35). Bounds were placed in the
search space for several parameters to prevent impossible values (z>1,z<0, a<0,Ter<0) or
unrealistically large values (v > 6, v < -6) by setting the objective function to return an infinite
chi-square if such a parameter value is entered.

Assessment of Model Fit

Model fit was assessed by plotting model-predicted accuracy rates and RT quantiles (.1,
.5, .9) for the “go” and “no-go” stimulus conditions against actual values of the same accuracy
rates and RT quantiles for each go/no-go task session. Supplemental Figures 1 and 2 display

these plots for data from every neuroimaging session in the MLS sample with useable data
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(N=1255), and separately for the 143 sessions that were further analyzed in the current study. In
these plots, points clustered around the diagonal indicate good model fit. Points farther from the
diagonal represent misfits, and cases in which the majority of points fall above or below the
diagonal indicate a bias, as they suggest that the model is either over- or under-predicting the RT
or accuracy rates in a given condition. Inspection of the plots indicates that the model provided
an excellent description of performance on “go” trials; most points are clustered close to the
diagonal for both RT quantiles and accuracy rates. For “no-go” trials, although points generally
clustered around the diagonal, there was relatively more misfit, and an apparent bias in which the
model systematically over-predicted RTs for false alarms, which was most pronounced for the
longest RTs (.9 quantile). This misfit likely reflects the challenge of describing RT data in this
condition, which are much sparser than RT data in the “go” condition. The vast majority of
subjects had accuracy rates greater than .50 on “no-go” trials, indicating that less than 30 RTs
were available for fitting in this condition, which may explain why model predictions for some
“no-go” RT quantiles are less accurate. Nonetheless, predicted “no-go” RT quantiles were still
highly correlated with empirical quantiles (r = .90, .89 and .72 for the .1, .5 and .9 “no-go” RT
quantiles, respectively, in the full N=1255 sample), suggesting that the model described
individual differences in “no-go” RT data relatively well under the circumstances. Therefore, we
concluded that model fit was adequate.
Simulation-Recovery Study to Assess DDM Parameter Reliability

To assess whether the model and fitting method used could be expected to reliably

recover DDM parameters given the number of trials in the MLS go/no-go task, we conducted a
simulation/recovery study. First, 400 of the 1255 task sessions from the MLS sample that were

fit to the DDM were randomly selected. Next, parameters from each of these sessions were used
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to simulate 400 separate data sets which each consisted of the same number of “go” stimulus
trials (n=185) and “no-go” stimulus trials (n=60) as the empirical data. The DDM was then fit to
all 400 simulated data sets using the same procedures outlined above and parameter estimates
recovered from the data sets were compared with those used to simulate the data. We adopted the
convention for determining quality of recovery that was used by (10); correlation (r) values for
the relationship between the simulated and recovered parameters were considered
“poor/unacceptable” if r < .50, “fair” if .50 <r <.75, “good” of .75 <r < .90 and “excellent” if r
> .90. Supplemental Figure 3 displays scatterplots and r values for all parameters, which indicate
that every parameter displayed “good” or “excellent” recovery except in the case of z, where
recovery was “fair”. Hence, this analysis provided evidence that the DDM displayed acceptable
parameter recovery when fit to the data in this sample using the procedures outlined above.
Correlations Between ROI Activations and Behavioral Summary Statistics

Of the behavioral summary statistics commonly used to index task performance in prior
work (Supplemental Table 1), FA rate and hit SDRT were strongly linked to the putative error-
processing-related activations in the FA>CR contrast that were also linked to v. However, these
measures also showed associations with a handful of regions in the CR contrasts, with worse
performance (higher FA rates) generally being linked to greater activation. Increased CR>GO
contrast activation in right fronto-parietal regions was also related to faster RTs, although the
associations, reported in the main body of the manuscript, of the same regions with the a
parameter of the DDM suggest that this relationship with MRT is due to individual differences in
response caution (less cautious responding with greater activation) rather than individual
differences in the integrity of task performance.

Sensitivity Analysis with Alternate Measure of v at the Neural Level
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Our primary strategy for obtaining measures of DDM parameters at the neural level, as
described in the text, involved 1) entering the three ROIs that were most strongly related to the
parameter into a structural equation model in which these ROIs created a latent factor that
predicted the parameter, and 2) extracting factor scores as the neural-level measure (i.e., v.brain).
Although the procedure was specifically designed to identify patterns of neural activity that were
most closely related to the individual DDM parameters, it could be argued that this approach
would bias the neural measure’s prediction of psychopathology; if parameter estimates drawn
from behavioral data are related to psychopathology, then ROIs that are selected precisely
because they are related to these parameter estimates may show correlations with
psychopathology that are artificially inflated. In order to address this concern, we conducted a
sensitivity analysis that involved a more data-driven approach to identifying neural measures of
v, the only parameter that appeared to be robustly related to brain responses.

First, given that v was exclusively related to neural responses in the FA>CR contrast, we
conducted a principle component analysis (PCA) of the activation estimates of all ROIs from this
contrast using the R package FactoMineR (11). Results of this PCA are displayed in
Supplemental Table 2a. The first component, which explained over 63% of the variance, was
most strongly correlated with the putative error monitoring regions that were entered in to the
v.brain latent variable model in the main text: the ACC and bilateral insula. The first component
was correlated with v.behavior (r=.41, p<.001) and very strongly correlated with the v.brain
latent variable obtained using our original procedure in the main text (r=.92, p<.001), suggesting
that it reflects an individual difference in neural function that can similarly be thought of a
neural-level measure of v. Next, we assessed relationships of this measure with the clinical

outcomes of interest. Similar to correlation tests involving the v.brain latent variable from the
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main text, we used Bayes factors (BF1o) to test the directional hypothesis that the first FA>CR
component was negatively related to psychopathology. We also corrected for multiple
comparisons (including correlation tests involving v.behavior, the original v.brain, and the other
DDM parameters) with the False Discovery Rate (FDR=5%) method. Results (Supplemental
Table 2b) indicate moderate evidence that the FA>CR component is negatively related to both
externalizing behavior and ADHD symptoms, and that the strength of these negative correlations
is similar to that of the correlations between v.brain and the same clinical outcomes.

Taken together, results of this sensitivity analysis suggest that the component that
explains the majority of the variance in the FA>CR contrast is highly similar to the v.brain
measure obtained via the ROI selection procedure used in the main text, and can be similarly
thought of as a neural-level measure of v. As there was evidence that this measure was also
similarly related to the clinical outcomes of interest, we concluded that the ROI selection
procedure used in the main text to create a neural-level index of v did not produce spurious

relationships with psychopathology.
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Supplemental Tables and Figures

Supplemental Figure 1. Empirical data for “go” and “no-go” condition accuracy rates and
correct go and false alarm (FA) RT quantiles (.1, .5 and .9) plotted against the same values
predicted by the model. The left panel displays data from all 1255 go/no-go task sessions entered
into the analysis while the right panel only displays data for the 143 sessions that were analyzed
further in the current study. Following previous work (Ratcliff, Huang-Pollock & McKoon,
2018) FA RT quantile data are only displayed for sessions with >10 observed RTs. The diagonal
line indicates where points would fall if there was a perfect relationship between the empirical
and predicted values. For clarity and comparability between the larger sample and sub-sample,
axis intervals are set to be the same between samples and between “go” and “no-go” RT
quantiles. Therefore, these plots do not include several outlier RT quantile values, which are
shown in plots displayed in Supplemental Figure 2, below.
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Supplemental Figure 2. The same RT quantile data as displayed in Supplemental Figure 2 with
plot axes adjusted to accommodate all data in each specific condition. As in in the previous
figure, the diagonal line indicates where points would fall if there was a perfect relationship
between the empirical and predicted values.
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Supplemental Figure 3. Parameter values used to simulate 400 data sets (drawn at random from
400 of the 1255 actual task sessions) plotted against parameter values that were recovered when
these data sets were fit the DDM using the procedures outlined above. Correlation values (r)
between the simulated and recovered parameter values are displayed in the top left corner of
each plot Diagonal lines indicate where points would fall if there was perfect parameter

recovery.
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Supplemental Table 1. Correlation (r) values, 95% credible intervals (Cls), Bayes factors
(BF10) and frequentist p-values for correlational relationships between ROI activations and
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behavioral summary statistics. For Bayes factors: bolded = substantial evidence (>3:1 odds) for
a correlational relationship; For p-values: *=survives FDR correction for multiple comparisons
within each family of tests (families defined by summary statistics)

Hit MRT Hit SDRT
Region r [CI] BFio p r [CI] BF1o0 p
CR/FA Left Striatum (-20,16,-2) -21[-.36,-.05] 2.54 .011* -.04[-.20,.12] 0.12 .626
CR/FA Right Parietal (36,-38,50) .10[-.06,.26] 0.22 217 19[.03,.34] 1.31 .024
CR/FA Right Striatum (20,12,-10) -22[-.36,-.05] 2091 .010* -01[-.17,.15] 0.11 .898
CR/GO Left Ant. Insula/IFG (-36,16,6) -10[-.26,.07]  0.20 .245 .05[-.12,.21] 0.12 .582
CR/GO Left Middle Frontal (-34,38,26) | -.17[-.32,.00] 0.71 .049 -12[-.28,.04] 0.29 .150
CR/GO Left Parietal (-58,-48,34) -15[-.30,.01] 0.52 .072 .01[-.15,.18] 0.11 .870
CR/GO Right Ant. Insula/IFG (34,20,0) | -.24[-.38,-.07] 5.60 .005* -.08[-.24,.08] 0.17 322
CR/GO Right Middle Frontal (40,42,22) | -.27[-.41,-11] 17.98 .001* -23[-.38,-.07] 4.98 .005*
CR/GO Right Parietal (58,-44,28) -.33[-.46,-.17] 255.00 7.2E-5* | -20[-.35,-.03] 1.57 .019
CR/GO Supp. Motor Area (8,4,54) -.14[-.29,.03] 0.38 .108 .01[-.15,.17] 0.11 919
FAJ/CR Anterior Cingulate (2,30,24) -.14[-.29,.03] 0.38 107 -.30[-.44,-.14] 80.30 2.5E-4*
FA/CR Left Ant. Insula/IFG (-42,12,-4) | -.05[-.22,11]  0.13 518 -24[-.38,-.07] 5.48  .005*
FA/CR Left Middle Frontal (-26,48,22) | -.12[-.27,.05]  0.27 A71 -22[-.37,-.06] 3.13 .009*
FA/CR Right Ant. Insula/IFG (44,12,-4) | -.04[-.20,.13] 0.12 .666 -.24[-.39,-.08] 6.84 .004*
FA/CR Right Middle Frontal (24,52,24) | -.05[-.21,.11]  0.13 529 -14[-.30,.02] 0.42 .095
FA/CR Thalamus_(-14,-16,8) .09[-.8,.24] 0.18 .307 .00[-.16,.16] 0.11 .994
FA rate
Region r [Cl] BFio p
CR/FA Left Striatum (-20,16,-2) .19[.03,.34] 151 .020*
CR/FA Right Parietal (36,-38,50) .03[-.13,.19] 0.11 .698
CR/FA Right Striatum (20,12,-10) .22[.06,.37] 3.65 .007*
CR/GO Left Ant. Insula/IFG (-36,16,6) .20[.04,.35] 1.86 .016*
CR/GO Left Middle Frontal (-34,38,26) .09[-.08,.25] 0.18 .285
CR/GO Left Parietal (-58,-48,34) .30[.14,.44] 82.83  4.4E-4*
CR/GO Right Ant. Insula/IFG (34,20,0) .24[.07,.38] 5.74 .004*
CR/GO Right Middle Frontal (40,42,22) | .08[-.09,.24] 0.16 .362
CR/GO Right Parietal (58,-44,28) 11[-.06,.27] 0.24 .200
CR/GO Supp. Motor Area (8,4,54) .07[-.09,.23] 0.15 401
FAJ/CR Anterior Cingulate (2,30,24) -40[-.53,-.25] 1.9E+4 T7.7E-7*
FA/CR Left Ant. Insula/IFG (-42,12,-4) | -.42[-.54,-.27] 8.5E+4 1.6E-7*
FA/CR Left Middle Frontal (-26,48,22) | -.25[-.40,-.09] 10.48 .002*
FA/CR Right Ant. Insula/IFG (44,12,-4) | -.49[-.60,-.35] 2.6E+7 4.1E-10*
FA/CR Right Middle Frontal (24,52,24) | -.40[-.53,-.25] 1.9E+4 7.5E-7*
FA/CR Thalamus (-14,-16,8) -.09[-.25,.07] 0.19 275
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Supplemental Table 2a. Outcome of the principal component analysis of neural responses in
ROIs from the CR>FA contrast. Values in rows labeled with ROl names indicate correlations
between each ROI and component.

Components
1 2 3 4 5
% of variance explained 63.29 1351 10.70 7.04 3.70
Cumulative % of variance 63.29 76.80 8749 9453 98.23

Anterior Cingulate 90 .03 17 .04 -.40
Left Ant. Insula/IFG .87 .01 -43 .00 .08
Left Middle Frontal .76 -43 A1 46 12
Right Ant. Insula/IFG .86 .07 -.40 -.20 .02
Right Middle Frontal 75 -.28 43 -.40 14
Thalamus 59 74 .26 13 14

Supplemental Table 2a. Correlation (r) values, 95% posterior credible intervals (Cls), Bayes
factors (BF10) and frequentist p-values for relationships between model-based indices, including
the first component of the FA>CR PCA analysis (“FA>CR.comp”), and externalizing
psychopathology self-ratings. All analyses excluded the 5 subjects who did not have ASR data
available. Cls and r values were estimated assuming a uniform prior from -1 to 1. Bayes factors
for v.behavior, v.brain, a, and FA>CR.comp tested the directional hypothesis that the relationship
with psychopathology was negative (i.e., the uniform prior spanned values between -1 and 0).
Bayes factors for z and Ter tested the hypothesis that the relationship with psychopathology was
positive (i.e., the uniform prior spanned values between 0 and 1). For Bayes factors: bolded =
substantial evidence (>3:1 odds) for the tested correlational relationship; For p-values:
*=survives FDR correction for multiple comparisons within each family of tests (families
defined by psychopathology measure)

Externalizing Scale (raw) DSM-ADHD Scale (raw)
Predictor r [C]] BF1o p r [C]] BF1o p

v.behavior -.13[-.29,.04] .64 124 | -21[-.36,-.05] 4.70  .012*
v.brain -.23[-.38,-.06] 790  .007* | -.28[-.42,-.12] 48.29 9.3E-04*
FA>CR.comp -.21[-.36,-.04] 404  .015* | -.25[-.39,-.08] 1456  .003*
a -.07[-.24,.09] 25 393 | -.07[-.23,10] .23 418
z -.06[-.22,.11] .07 497 | -.03[-.19,.14] .08 749
Ter -.03[-.20,.14] .08 716 | .04[-12,21] .17 614
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