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Abstract 

Background: Individuals with ADHD and other forms of externalizing psychopathology tend to 

display poor behavioral performance on the go/no-go task, which is thought to reflect deficits in 

inhibitory control. However, clinical neuroimaging studies using this paradigm have yielded 

conflicting results, raising basic questions about what the task measures and which aspects of the 

task relate to clinical outcomes of interest. We aimed to provide a clearer understanding of how 

neural activations from this paradigm relate to the cognitive mechanisms that underlie 

performance and the implications of these relationships for clinical research.  

Methods: 143 emerging adults (ages 18-21) performed the go/no-go task during fMRI scanning. 

We used the diffusion decision model (DDM), a mathematical modeling approach, to quantify 

distinct neurocognitive processes that underlie go/no-go performance. We then correlated DDM 

parameters with brain activation across several standard go/no-go contrasts and assessed 

relationships of DDM parameters and associated neural measures with clinical ratings. 

Results: Fronto-parietal activations on correct inhibition trials, which have typically been 

assumed to isolate neural processes involved in inhibition, were unrelated to either individuals’ 

response biases or their efficiency of task performance. In contrast, responses to false alarms in 

brain regions putatively responsible for error monitoring were strongly related to more efficient 

performance on the task and correlated with externalizing behavior and ADHD symptoms.  

Conclusions: Our findings cast doubt on conventional interpretations of go/no-go task-related 

activations as reflecting inhibition functioning. We instead find that error-related contrasts 

provide clinically-relevant information about neural systems involved in monitoring and 

optimizing cognitive performance. 
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Introduction 

 The go/no-go task, in which participants are asked to make a motor response following 

stimulus presentations but to withhold their response after a subset of “no-go” stimuli, is one of 

the most ubiquitous experimental paradigms in clinical neuroscience. Commonly assumed to 

index an individual’s ability to inhibit pre-potent or impulsive responses, behavioral metrics 

from the task, including false alarm (FA) rate and response times, indicate generally poorer task 

performance in attention-deficit/hyperactivity disorder (ADHD), substance use disorders, and 

externalizing psychopathology more broadly (1,2,3). Such findings are often cited as evidence in 

support of the hypothesis that poor inhibitory control is a trans-diagnostic risk factor for 

externalizing disorders (4,5,6,7,8). In turn, functional magnetic resonance imaging (fMRI) 

measures of go/no-go task-related neural activations have played a fundamental role in research 

on the neurodevelopmental mechanisms of inhibitory control (9,10) and on aberrant brain 

processes in clinical conditions associated with disinhibition (11,12,13,14) 

Neuroimaging studies typically focus on several types of contrast images from the go/no-

go task when making inferences about inhibitory control. Analyses in which activity during 

correct rejects (CRs: “no-go” trials where a response is inhibited) is contrasted against activity 

during “go” trials or a baseline are typically assumed to isolate neural activity related to 

inhibitory processes (15,16; cf. 17), and tend to reveal right-lateralized activation in prefrontal 

and parietal structures (18). This approach is based on the subtraction logic that intact inhibitory 

processes are present during CRs, but not other trials, and hence individuals’ magnitude of 

activation during CRs should correspond to individual or clinical differences in the integrity of 

response inhibition (13,16,19,20). In addition, analyses in which activity during FAs is 

contrasted against that during other trials or baseline may be conducted with the goal of indexing 
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neural activity related to error monitoring. Indeed, such contrasts tend to reveal activation in 

multiple regions associated with the processing of errors, including the anterior cingulate (ACC), 

insula and broader fronto-parietal networks (19,20,21,22,23,24).  

 Despite the go/no-go paradigm’s success in reliably eliciting patterns of neural activation, 

associations between these activations and clinical outcomes are sometimes difficult to interpret. 

Across a variety of studies using this paradigm, clinical groups with behavioral disinhibition 

symptomatology have alternately been found to display reduced (12,19,20,25) or increased 

(13,26,27,28,29) activation in the brain structures assumed to implement inhibitory processes. 

Furthermore, significant clinical differences in go/no-go task-related activation are often found in 

situations where behavioral performance differences are absent (12,14,23,26,28,29). Taken 

together, these trends in the literature present significant challenges for the conventional 

assumption that the magnitude of neural responses from go/no-go task contrasts indexes the 

same underlying construct of inhibitory control that is assumed to be indexed by the task’s 

behavioral measures. 

 The current study aims to provide a clearer understanding of how neural activations from 

the go/no-go paradigm relate to the cognitive mechanisms that underlie task performance and of 

the implications of these relationships for the study of psychopathology. We utilized data from a 

large (N=143) sample of individuals at risk for externalizing behavior to assess correlations 

between go/no-go task activations and latent cognitive processes measured by the diffusion 

decision model (DDM), a well-validated mathematical model of two-choice decision tasks 

(30,31) that was recently extended to explain performance in the go/no-go paradigm (32,33). The 

DDM frames the decision of whether to respond or withhold from responding as a noisy 

evidence accumulation process that drifts between boundaries which represent each of the two 
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possible decision outcomes (Figure 1). Although the process drifts towards, and typically 

terminates at, the correct boundary (e.g., the “withhold response” boundary on trials with “no-

go” stimuli), errors occur when it terminates at the other boundary due to noise. In the DDM 

framework, several cognitive mechanisms can explain differences in go/no-go task performance: 

1) individuals’ general efficiency of evidence accumulation towards the correct choice, as 

indexed by the drift rate (v) parameters, 2) response biases, which are indexed by the start point 

(z) parameter and tend to favor decisions with higher probabilities, such as “go” responses in the 

go/no-go paradigm (31), 3) caution, as indexed by a parameter for the separation between 

boundaries (a), with lower values indicating a faster but more error-prone decision-making style, 

and 4) time taken up by processes peripheral to the decision (e.g., perceptual encoding, motor 

response speed), indexed by a non-decision time (Ter) parameter.  

The first goal of the study was to assess whether individual differences in neural 

activations from common go/no-go task contrasts were correlated with individual differences in 

one or more of the latent psychological processes indexed by the DDM. The second goal was to 

assess whether any task-related activation patterns could potentially be interpreted as neural-

level indices of mechanistic processes that have meaningful relationships with psychopathology.  

Methods 

Participants 

An initial sample of 147 participants, ages 18-21, was recruited from the Michigan 

Longitudinal Study (MLS) to participate in a neuroimaging study. The MLS is an ongoing 

prospective study that follows a community sample of families with a history of alcohol use 

disorder (AUD) and low-risk families from the same neighborhoods (34,35).  Participants were 

excluded from participating in the larger MLS if they displayed signs of fetal alcohol syndrome. 
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Participants were excluded from recruitment into the neuroimaging study if they 1) displayed 

contraindications to MRI scanning, 2) were left-handed, 3) suffered from a neurological, acute or 

chronic medical illness, 4) had a personal history of psychosis or schizophrenia, or similar 

history in first-degree relatives, or 5) were prescribed psychoactive medications in the past 6 

months, with the exception of psychostimulants prescribed to treat attention difficulties. 

Participants using prescribed psychostimulants were asked to discontinue their medication at 

least 48 hours prior to scanning session. Participants were asked to abstain from using alcohol or 

illicit substances for 48 hours prior to the study appointment. All study procedures were 

approved by the University of Michigan’s Institutional Review Board, and all participants 

provided written informed consent. 

Three participants were excluded because their behavioral data did not meet quality 

control criteria for model-based analyses (at least 200 available trials and overall accuracy rate 

>.55) and one participant was excluded because they did not commit any FAs, precluding 

analysis of FA contrasts. This left a final sample of 143 participants (87 males), whose 

demographic information is displayed in Table 1. 

Go/No-Go Task 

 Participants completed an event-related go/no-go task (10) during fMRI data collection in 

which they were presented with a series of letters for 500ms at a time (interstimulus fixation 

interval of 3500ms) and asked to press a button for every letter other than “X” (“go” trials) but to 

withhold their response on trials where an “X” was presented (“no-go” trials). Participants 

completed 5 182-second imaging runs of 49 trials each, for a total of 245 trials, 60 (25%) of 

which were “no-go” trials. Neuroimaging data acquisition parameters and sequences (36) are 

reported in Supplemental Materials. 
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Psychopathology Measures 

 Participants completed the neuroimaging study in between MLS data collection waves. 

At waves 6-8 (ages 18-24), participants filled out the Adult Self Report (ASR: 37), a 

questionnaire which assesses levels of internalizing and externalizing psychopathology and 

symptoms of DSM-IV syndromes. For each participant in the current study, the administration of 

the ASR closest in time to the scan was identified (mean days between ASR administration and 

scan=421, SD=401), and raw scores from this measure were used. Five participants (all male) 

did not have ASR data available (i.e., they did not complete waves 6-8). Therefore, they were not 

included in analyses that involved prediction of psychopathology. 

DDM Analysis 

 The go/no-go version of the DDM outlined by (32) and (33), which assumes that “no-go” 

decisions are made when the decision process reaches an implicit (non-response) boundary, was 

fit to data in R (38) using the chi-square minimization procedure described in these studies. 

Functions from the R package rtdists (39) were used to calculate chi-square values and simulate 

model-predicted data to assess fit. As between-trial variability parameters in the model are 

difficult to estimate without massive numbers of trials (40) and “simple” versions of the DDM, 

without these parameters, provide estimates of the main model parameters that appear to be 

comparably reliable and informative to those of the “full” DDM (41), only the main DDM 

parameters were estimated: drift rates for “go” and “no-go” stimuli, (v.go, v.nogo), starting point 

(z), boundary separation (a) and non-decision time (Ter). The upper boundary was assumed to 

trigger responses, while the lower boundary was assumed to be the non-response boundary. Start 

point (z) was estimated as a proportion of a, and z values greater than .50 therefore indicate the 
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expected bias towards upper response boundary. Additional information on model specification, 

estimation, and checks of model fit is available in Supplemental Materials. 

fMRI Data Pre-processing 

 Functional images were first reconstructed using an iterative algorithm (42). Head motion 

was corrected with realignment using FSL 5.0.2.2 tools (FMRIB, Oxford, United Kingdom) and 

runs were excluded if they exceeded 3 mm translation or 3° rotation in any direction during the 

run. Remaining pre-processing steps, which were carried out using Statistical Parametric 

Mapping 8 (SPM8: Wellcome Institute of Cognitive Neurology, London, United Kingdom), 

included spatial normalization to standard space as defined by the Montreal Neurological 

Institute template, resampling to 2x2x2mm voxels, and spatial smoothing with a 6mm full-width 

half-maximum Gaussian kernel.  

fMRI Analyses and ROI Selection 

 A general linear model (GLM) was fit at the individual level with three main regressors 

convolved with the hemodynamic response function: 1) correct go trials (hereafter referred to as 

the GO condition), 2) correct rejection (CR) no-go trials, and 3) false alarm (FA) no-go trials. 

Motion parameters from earlier realignment and average white matter signal intensity for each 

volume were also included as nuisance regressors. Following individual-level analyses, four 

group-level contrasts were conducted: CR>GO, FA>GO, CR>FA, and FA>CR. Clusters from 

the resulting statistical maps were determined to be statistically significant if they met a cluster-

level FWE-corrected threshold of .001. From these thresholded maps, we selected a smaller 

number of discrete clusters as regions of interest (ROIs) based on previous research (detailed 

below in Results). Average individual-level contrast parameter estimates were then extracted 

from each ROI using MarsBaR (43).  
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Data Analytic Plan 

 Following selection of ROIs, we conducted three main analyses to accomplish our goals. 

Analyses were conducted within R or JASP (44), an open-source statistical package which 

allows frequentist and Bayesian versions of common statistical tests to be easily implemented. 

First, with the goal of identifying relationships between parameters of the DDM and task-related 

neural activations, we conducted Bayesian correlation analyses in JASP between each DDM 

parameter and activation estimates from each ROI. Bayesian analyses allow estimation of 95% 

posterior credible intervals, which indicate the range in which there is a .95 probability that each 

r value falls, as well as Bayes factors (BF10). BF10 is intuitively interpreted as an odds ratio for 

the research hypothesis; a value of 5, for example, indicates the data are 5 times more likely 

under the research hypothesis than under the null hypothesis. Although BF10 is best thought of as 

a continuous measure of evidence, values >3 are generally interpreted as substantial evidence for 

the research hypothesis and those <.33 as substantial evidence for the null (45). As we did not 

have an a priori expectation of whether correlations between model parameters and neural 

activations would be positive or negative, we simply tested the hypothesis that they were 

correlated in either direction (i.e., the r prior was set to be a uniform distribution between -1 and 

1). We primarily used BF10 for inference due to its ability to quantify evidence for both the 

research and null hypotheses (45,46). However, we also report frequentist p-values, corrected for 

multiple comparisons with the False Discovery Rate (FDR=5%) method (47), to corroborate our 

BF10 inferences and assess whether correlations may have resulted from multiple testing. 

Second, with the goal of indexing the latent constructs posited by the DDM at the neural 

level, we constructed latent variables for the neural correlates of any DDM parameters that were 

related to at least three ROIs. Latent variables were constructed by selecting the three ROIs that 
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were most strongly linked to the parameter in the initial brain-behavior correlation analyses and 

entering them into a structural equation model in the R package lavaan (48). In these models, the 

three ROIs were treated as manifest measures of a neural latent variable that predicted the DDM 

parameter of interest in a regression. Factor scores from this latent variable were then extracted 

and were assumed to index the DDM construct at the neural level.  

Third, with the goal of testing whether measures informed by DDM constructs predict 

psychopathology, we assessed correlational relationships between the behavioral and neural 

measures of these constructs and raw scores from two psychopathology scales on the ASR: 

externalizing behavior and DSM-IV attention-deficit/hyperactivity disorder (ADHD) symptoms. 

The former was selected because of previously-reported associations between go/no-go task-

related neural activations and risk for substance use and other broad forms of externalizing 

behavior (14,23,28,29,49). The latter was selected because of the well-established associations 

between DDM parameters and ADHD diagnosis (33,50,51,52). For BF10, as we expected less 

efficient processing, less cautious response style, greater bias toward responding, and/or longer 

non-decision times to be related to increased psychopathology, we tested directional hypotheses 

by setting a uniform prior between 0 and 1 for indices we expected to be positively correlated 

with psychopathology (z, Ter) and a uniform prior between -1 and 0 for those we expected to be 

negatively correlated (v, a). 

Results 

fMRI Contrasts and ROI selection 

 Whole-brain maps for all four contrasts (Figure 2a) revealed neural responses in multiple 

regions that were broadly consistent with previous literature. The CR>GO contrast revealed 

right-lateralized activity in the frontal and parietal regions commonly inferred to be involved in 
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top-down inhibitory control (18,53,54). The FA>GO and FA>CR contrasts identified areas 

associated with error processing and performance monitoring, including the ACC and bilateral 

clusters spanning the inferior frontal gyrus (IFG) and anterior insula (22,24).  

From these maps, we identified 23 frontal, parietal and sub-cortical ROIs (Table 2) that 

would be of the greatest interest given prior work (18,22,24,53,54) and extracted average 

parameter estimates for the respective contrasts from these regions. Similarity between the 

clusters identified by the FA>GO and FA>CR contrasts suggested that parameter estimates from 

ROIs in these contrasts were redundant; indeed, estimates from ROIs in the FA>GO contrast 

were highly correlated with those from the corresponding regions in the FA>CR contrast, 

ranging from r=.80 (right middle frontal gyrus) to r=.89 (anterior cingulate). Therefore, to reduce 

redundancy and limit the number of correlation tests, we only used ROIs drawn from the FA>CR 

contrast, for a final total of 16 ROIs in further analyses. 

Neural Correlates of DDM Parameters  

 Plots comparing empirical RT and accuracy data to data predicted by the DDM suggested 

that the model generally described behavioral data well (Supplemental Materials). Hence, we 

determined that model fit was adequate, and proceeded to investigate links between DDM 

parameter estimates and neural activation. For these and all subsequent analyses, v.go and v.nogo 

were averaged to provide a general index of evidence accumulation efficiency (v). Notably, most 

participants’ start point (z) values were above .50 (Table 1), indicating that they were biased 

toward the decision to respond, relative to the decision to withhold a response, as would be 

expected for a task with a greater proportion of “go” relative to “no-go” stimuli. 

Table 3 reports results from correlation tests of relationships between ROI activations and 

DDM parameters. The most substantial associations identified were the positive correlations 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2019. ; https://doi.org/10.1101/614420doi: bioRxiv preprint 

https://doi.org/10.1101/614420
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

between v and activity in the prefrontal regions identified by the FA>CR contrast. FA-related 

activations in regions putatively involved in error monitoring, the bilateral insula/IFG and ACC, 

were most strongly correlated with v. Neither efficiency of task processing (v) nor bias toward 

responding (z) were related to activity in the fronto-parietal network identified in the CR>GO 

contrast; Bayes factors generally suggested evidence against the presence of such relationships. 

Rather, activity in a subset of these ROIs displayed weak relationships with DDM parameters 

that index other processes; increased activity in the right middle frontal gyrus and right parietal 

lobe was related to a less cautious decision-making style (emphasizing speed over accuracy by 

lowering a), while increased activity in the latter was also linked to shorter non-decision times. 

Brain and Behavioral Measures of DDM Constructs 

 As the strongest links between DDM parameters and ROI activation were between v and 

FA-related activation in the putative error monitoring network involving the ACC and bilateral 

insula/IFG, we constructed a structural equation model (Figure 2b) in which these three regions 

were manifest indices of a latent neural variable (v.brain) that predicted DDM estimates of v 

from behavioral data (v.behavior). Practical fit indices suggested that the model described the 

data adequately (CFI=.999, TLI=.998, RMSEA=.031, SRMR=.020), and all relationships in the 

model, including the three factors loadings and the regression in which v.brain predicted 

v.behavior, displayed p-values <.001. Although the Ter parameter was weakly linked to activity 

in three ROIs, a similar model in which activity in these ROIs formed a factor to predict Ter 

displayed questionable fit (CFI= .98, TLI=.95, RMSEA=.102, SRMR=.047) and abnormalities 

(negative variance estimates) that suggested it was poorly specified. Therefore, the primary 

measures of interest were indices of the construct of evidence accumulation efficiency at the 

behavioral (v.behavior) and neural (v.brain) levels. To ensure that our ROI selection strategy did 
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not bias predictions of psychopathology, we also conducted a sensitivity analysis (Supplemental 

Materials) where we used the first principle component of neural responses in the FA>CR 

contrast as an alternate v.brain measure. This component was strongly correlated with the v.brain 

measure reported here (r=.92) and displayed similar relationships with v.behavior and 

psychopathology. 

Prediction of Psychopathology 

 Correlation tests of relationships between model-based measures and clinical outcomes of 

interest (externalizing behaviors, ADHD symptoms) are displayed in Table 4. Although 

v.behavior did not predict self-reported externalizing behavior, there was moderate evidence that 

this index was negatively related to ADHD symptoms, consistent with prior case-control studies. 

However, v.brain displayed moderate to strong evidence of negative relationships with both 

outcomes. All other DDM parameters displayed evidence against the presence of hypothesized 

relationships with psychopathology. 

Discussion 

 The current study assessed whether activations from several common go/no-go 

neuroimaging contrasts were related to latent cognitive processes indexed by the DDM, a well-

validated mathematical model of the go/no-go task (30,31), and whether these activations and 

corresponding cognitive processes were related to externalizing psychopathology. This approach 

was aimed at testing the common assumption in the clinical neuroscience literature that 

individual differences in go/no-go task-related neural activations index the integrity of clinically-

relevant neurocognitive mechanisms. 

 Individual differences in CR-related fronto-parietal activations, which are generally 

described as the neural substrate of response inhibition (18,53,54), were neither related to 
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individuals’ efficiency at deciding whether or not to withhold a response (v) nor related to their 

level of bias toward responding relative to withholding (z). Instead, greater activation in the right 

middle frontal gyrus and right parietal lobe was weakly related to less cautious decision-making 

styles (lower a). Although lower a may be interpreted as more “impulsive” responding, and 

increased activation during CRs could therefore be posited as a neural marker of impulsivity, this 

interpretation is tenuous for two reasons. First, the relationships observed between a and 

activations were relatively weak for relationships between variables that presumably index the 

same construct, and were not robust to corrections for multiple testing. Second, as a did not 

predict externalizing behaviors or ADHD symptoms, individual differences in caution on the 

standard go/no-go task appear to be unrelated to these clinical entities, despite the fact that these 

entities are generally associated with impulsivity. Therefore, the current findings cast doubt on 

the conventional interpretation of CR-related fronto-parietal activations as corresponding to 

individual differences in inhibition ability, and suggest that if they do index individual 

differences in a mechanistic process, such as caution, that process is likely to be orthogonal to 

externalizing behavior. 

 In contrast, FA-related activations in the ACC and bilateral insula, regions related to error 

processing (22,24), were strongly correlated with v, suggesting that neural systems involved in 

performance monitoring are crucial for optimizing an individual’s ability to efficiently decide 

whether to initiate or withhold responses. These activations also displayed evidence of 

relationships with clinical outcomes; the neural correlates of v predicted individual differences in 

both externalizing behaviors and ADHD symptoms. Taken together with the body of behavioral 

research linking ADHD and externalizing behaviors to poorer performance on the go/no-go task 

(1,2,55,56), these results suggest that the task does indeed tap into a neurocognitive construct 
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with clinical relevance. However, rather than being exclusively related to the inhibition of 

responses or to neural processes that are engaged on CR trials only, the current findings suggest 

that this construct may be better-defined as a general efficiency of evidence accumulation, which 

may be dependent on performance monitoring systems. 

 Such an explanation is consistent with recent accounts of cognitive deficits in ADHD. 

Although response inhibition has long been considered a core deficit in the disorder (57), 

individuals with ADHD display lower rates of evidence accumulation than their peers across a 

wide variety of tasks that vary in their response inhibition demands (52,58,59). These findings 

have recently been interpreted by some (58,59) as suggesting that individuals with ADHD 

display dysfunction related to the locus coeruleus norepinephrine (LC-NE) system, which is 

posited (60) to optimize arousal and the efficiency of processing in response to perceived task 

utility. This account implies that lower evidence accumulation efficiency may reflect either 

dysfunction in the LC-NE system itself, dysfunction in top-down inputs to the system that 

modulate its activity in response to information about task utility and performance, or lower 

perceived task utility due to broader factors. As the ACC and other brain regions involved in 

monitoring performance lapses are thought to provide top-down input to the LC-NE system to 

enhance task processing (60), the current study’s findings on the neural correlates of v are highly 

consistent with this account.  

 The current study has several limitations. First, the study only assessed correlational 

relationships between behavioral indices, neural activations, and clinical scales from the same 

time point. Future work involving prospective prediction of clinical outcomes would be useful 

for clarifying whether model-based measures from the go/no-go task provide information about 

individuals’ predisposition to psychopathology. Second, as the majority of the sample was male 
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and many individuals displayed existing risk factors for externalizing psychopathology, our 

findings may not generalize to samples without these features. Third, although the DDM 

parameters and their associated neural activations predicted clinical outcomes, the effect sizes 

were small, which has implications for the clinical utility of this work. Finally, an inherent 

limitation of any work involving a formal cognitive model is that the conclusions drawn may be 

peculiar to the assumptions of the specific model used. For example, if another model was used 

which explained response inhibition on “no-go” trials with a set of mechanisms separate from 

those assumed by the DDM, it is possible that different conclusions about the neural correlates of 

response inhibition would have been reached. However, as the DDM provides a comprehensive 

description of task performance on both “go” and “no-go” trials with a parsimonious set of 

parameters, it is reasonable assume that the basic DDM adequately explains performance on the 

task without invoking separate “inhibition” mechanisms. 

 In conclusion, the current study assessed relationships between neural activations from 

common go/no-go task contrasts and parameter estimates from the DDM to test the assumption 

that neural responses in these contrasts index individual differences in the integrity of clinically-

relevant neurocognitive processes. Surprisingly, activation in the right-lateralized fronto-parietal 

network associated with successful inhibition was not related to the integrity of cognitive 

processing. In contrast, activity during inhibitory errors in the ACC and bilateral insula was 

strongly related to efficiency of processing on the task and predicted externalizing behaviors and 

ADHD symptoms. These results call common mechanistic interpretations of go/no-go task-

related activations into question and suggest that these activations can inform clinical 

neuroscience by providing information about neural systems that monitor and optimize task 
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performance in response to perceived task utility, rather than about the specific neural correlates 

of withholding responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2019. ; https://doi.org/10.1101/614420doi: bioRxiv preprint 

https://doi.org/10.1101/614420
http://creativecommons.org/licenses/by-nc/4.0/


18 
 

Figures and Tables 

Figure 1. Schematic of the diffusion decision model explanation of the go/no-go task, as 

outlined by Ratcliff, Huang-Pollock & McKoon (2018) and Huang-Pollock et al. (2017). On 

each trial, the decision process drifts between an upper boundary for the decision to respond, set 

at parameter a, and a lower (implicit) boundary for the decision to withhold from responding, set 

at 0. The process begins at the location determined by the start point (z) parameter and moves 

over time according to a stochastic process (similar to a random walk) that generally terminates 

at the correct decision boundary, but occasionally terminates at the incorrect decision boundary 

due to noise (i.e., on error trials). The rate at which the process drifts toward the correct 

boundary (v) is estimated separately for trials with “go” stimuli (v.go) and trials with “no-go” 

stimuli (v.nogo). RT on a given trial is determined by the “decision time”, which is the amount of 

time it takes the process to reach one of the two boundaries, and the “non-decision time” (Ter 

parameter), which accounts for time taken up by processes peripheral to the decision (e.g., 

stimulus encoding, motor response latency). Note that the start point (z) is closer to the upper 

boundary for the decision to respond. This reflects a bias that is expected in a go/no-go task, or 

any other task where one type of decisional outcome is more likely to be correct than the other 

(e.g., when “go” stimuli are much more common than “no-go” stimuli), because participants 

develop an a priori expectation for which outcome is most likely to be correct. 

  

 

 

 

 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2019. ; https://doi.org/10.1101/614420doi: bioRxiv preprint 

https://doi.org/10.1101/614420
http://creativecommons.org/licenses/by-nc/4.0/


19 
 

Figure 2. Neural activation in all fMRI contrasts and brain-based indices of the DDM parameter 

of drift rate (v). a) Whole-brain t-statistic maps (thresholded at FWE<.001) at selected axial 

slices for each contrast. White numbers in the bottom left corner indicate the z-coordinate for 

each slice. CR = correct rejection; FA = false alarm; GO = correct go trial. b) Model for the 

latent neural variable indexing drift rate (v.brain) with FA>CR activation estimates from the right 

anterior insula/inferior frontal gyrus (R. Ins./IFG), left anterior insula/inferior frontal gyrus (L. 

Ins./IFG), and anterior cingulate cortex (ACC). Standardized factor loadings and a standardized 

regression beta weight for prediction of average drift rate estimated with behavioral data 

(v.behavior) are displayed. 
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Table 1. Characteristics of the sample and descriptive statistics for cognitive and behavioral 

measures. For continuous variables, numbers indicate the mean with standard deviations in 

parentheses. ASR summary statistics do not include the 5 subjects with missing data on these 

measures (all were male). FH-AUD = family history of alcohol use disorder (either parent) 

 

Gender (Male/Female) 87/56 

Age at scan 19.66 (1.22) 

Race/Ethnicity  

      Caucasian 128 

      Hispanic/Latino 5 

      African American 6 

      Other/bi-racial 4 

FH-AUD (Positive/Negative/Unknown) 108/34/1 

ASR Externalizing – raw score 9.43 (7.90) 

ASR Externalizing – T score 48.98 (10.13) 

ASR ADHD Symptoms – raw score 5.02 (4.26) 

ASR ADHD Symptoms – T score 54.33 (6.56) 

Drift rate for “go” stimuli (v.go) 2.77 (1.03) 

Drift rate for “no-go” stimuli (v.nogo)* 1.90 (1.88) 

Average drift rate for all stimuli (v.avg) 2.34 (0.88) 

Boundary separation (a) 1.00 (0.21) 

Non-decision time (Ter)** .317 (.032) 

Response bias (z) 0.62 (0.07) 

False alarm (FA) rate 0.28 (0.16) 

Hit RT mean (MRT)** .448 (.061) 

Hit RT standard deviation (SDRT)** .105 (.055) 

*=Multiplied by -1 for comparability to v.go; **=seconds 
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Table 2. MNI coordinates, cluster-forming thresholds and size of all regions of interest (ROIs) 

selected from contrast maps for inclusion in further analyses. All ROIs were significant at a 

cluster-level threshold of FWE<.001, but stricter thresholds were used where noted to separate 

discrete clusters that were contiguous at this initial threshold. CR = correct rejection; FA = false 

alarm; GO = correct go trial; Ant. = Anterior; IFG = Inferior Frontal Gyrus; Supp. = 

Supplemental 

 

Contrast  ROI FWE threshold x y z Size (voxels) 

CR>FA  Left Striatum  .001 -20 16 -2 196 

  Right Striatum  .001 20 12 -10 234 

  Right Parietal  .001 36 -38 50 188 

CR>GO  Supp. Motor Area  .001 8 4 54 2833 

  Left Middle Frontal .001 -34 38 26 560 

  Left Ant. Insula/IFG  .001 -36 16 6 684 

  Left Parietal  .001 -58 -48 34 2017 

  Right Middle Frontal  1E-10 40 42 22 674 

  Right Ant. Insula/IFG  1E-10 34 20 0 907 

  Right Parietal  1E-10 58 -44 28 1422 

FA>CR  Anterior Cingulate  .001 2 30 24 2086 

  Left Middle Frontal  .001 -26 48 22 509 

  Right Middle Frontal  .001 24 52 24 321 

  Left Ant. Insula/IFG  .001 -42 12 -4 901 

  Right Ant. Insula/IFG  .001 44 12 -4 462 

  Thalamus 1E-7 -14 -16 8 528 

FA>GO  Anterior Cingulate  1E-10 4 30 26 1742 

  Left Middle Frontal  1E-7 -28 50 22 611 

  Right Middle Frontal  1E-7 26 54 24 842 

  Left Ant. Insula/IFG  1E-7 -44 14 -6 1357 

  Right Ant. Insula/IFG  1E-7 44 14 -4 1404 

  Right Thalamus 1E-7 16 -10 6 529 

  Left Thalamus 1E-7 -16 -16 8 412 
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Table 3. Correlation (r) values, 95% posterior credible intervals (CIs), Bayes factors (BF10) and 

frequentist p-values for correlational relationships between ROI activations and DDM 

parameters. For Bayes factors: bolded = substantial evidence (>3:1 odds) for a correlational 

relationship; For p-values: *=survives FDR correction for multiple comparisons within each 

family of tests (families defined by DDM parameters) 

 

 

 Efficiency (v) Bias (z)  

Region r [CI] BF10 p r [CI] BF10 p 

CR/FA Left Striatum (-20,16,-2) -.10[-.25,.07] 0.2 .256 .09[-.08,.25] 0.18 .305 

CR/FA Right Parietal (36,-38,50) -.16[-.32,.00] 0.66 .053 -.10[-.26,.06] 0.22 .219 

CR/FA Right Striatum (20,12,-10) -.11[-.26,.06] 0.23 .208 .11[-.06,.27] 0.24 .191 

CR/GO Left Ant. Insula/IFG (-36,16,6) -.14[-.29,.03] 0.37 .109 .05[-.11,.21] 0.12 .557 

CR/GO Left Middle Frontal (-34,38,26) .05[-.12,.21] 0.12 .584 .04[-.13,.20] 0.11 .679 

CR/GO Left Parietal (-58,-48,34) -.18[-.33,-.01] 0.9 .037 .12[-.05,.27] 0.27 .165 

CR/GO Right Ant. Insula/IFG (34,20,0) .01[-.15,.17] 0.11 .901 .11[-.06,.27] 0.25 .190 

CR/GO Right Middle Frontal (40,42,22) .13[-.03,.29] 0.36 .114 .10[-.06,.26] 0.22 .217 

CR/GO Right Parietal (58,-44,28) .09[-.08,.24] 0.17 .314 .07[-.10,.23] 0.14 .430 

CR/GO Supp. Motor Area (8,4,54) .03[-.13,.19] 0.11 .713 .03[-.14,.19] 0.11 .747 

FA/CR Anterior Cingulate (2,30,24) .40[.25,.53] 2.1E+4 6.7E-7* -.11[-.27,.05] 0.26 .178 

FA/CR Left Ant. Insula/IFG (-42,12,-4) .41[.26,.53] 3.9E+4 3.5E-7* -.11[-.27,.05] 0.26 .179 

FA/CR Left Middle Frontal (-26,48,22) .27[.11,.41] 20.71 1.1E-3* -.04[-.20,.12] 0.12 .631 

FA/CR Right Ant. Insula/IFG (44,12,-4) .45[.30,.57] 6.4E+5 1.9E-8* -.15[-.30,.01] 0.52 .073 

FA/CR Right Middle Frontal (24,52,24) .36[.20,.49] 1.4E+3 1.2E-5* -.15[-.31,.01] 0.55 .067 

FA/CR Thalamus_(-14,-16,8) -.02[-.18,.15] 0.11 .852 -.20[-.35,-.04] 1.89 .016 

 

 Caution (a) Non-decision (Ter)  

Region r [CI] BF10 p r [CI] BF10 p 

CR/FA Left Striatum (-20,16,-2) -.18[-.33,-.02] 1.14 .028 -.24[-.38,-.08] 6.10 .004* 

CR/FA Right Parietal (36,-38,50) -.04[-.20,.12] 0.12 .634 .00[-.16,.16] 0.11 .988 

CR/FA Right Striatum (20,12,-10) -.21[-.36,-.05] 2.31 .012 -.25[-.39,-.09] 8.50 .003* 

CR/GO Left Ant. Insula/IFG (-36,16,6) -.16[-.31,.01] 0.62 .058 -.09[-.25,.07] 0.19 .267 

CR/GO Left Middle Frontal (-34,38,26) -.20[-.35,-.04] 1.79 .017 -.03[-.19,.13] 0.11 .711 

CR/GO Left Parietal (-58,-48,34) -.20[-.35,-.03] 1.54 .020 -.17[-.32,.00] 0.73 .047 

CR/GO Right Ant. Insula/IFG (34,20,0) -.19[-.34,-.03] 1.43 .022 -.16[-.32,.00] 0.67 .053 

CR/GO Right Middle Frontal (40,42,22) -.23[-.37,-.06] 3.84 .007 -.05[-.21,12] 0.12 .570 

CR/GO Right Parietal (58,-44,28) -.24[-.39,-.08] 6.52 .004 -.22[-.37,-.06] 3.27 .008* 

CR/GO Supp. Motor Area (8,4,54) -.15[-.31,.01] 0.54 .069 -.07[-.23,.10] 0.14 .423 

FA/CR Anterior Cingulate (2,30,24) .04[-.13,.20] 0.12 .659 .09[-.08,.24] 0.17 .312 

FA/CR Left Ant. Insula/IFG (-42,12,-4) .05[-.12,.21] 0.12 .586 .16[.00,.31] 0.64 .055 

FA/CR Left Middle Frontal (-26,48,22) -.06[-.22,.10] 0.14 .448 .07[-.09,.23] 0.15 .389 

FA/CR Right Ant. Insula/IFG (44,12,-4) .11[-.06,.27] 0.24 .197 .19[.03,.34] 1.31 .024 

FA/CR Right Middle Frontal (24,52,24) .01[-.15,.17] 0.11 .921 .06[-.10,.22] 0.14 .453 

FA/CR Thalamus_(-14,-16,8) -.12[-.28,.04] 0.29 .150 .11[-.05,.27] 0.26 .180 
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Table 4. Correlation (r) values, 95% posterior credible intervals (CIs), Bayes factors (BF10) and 

frequentist p-values for relationships between model-based indices and externalizing 

psychopathology self-ratings. All analyses excluded the 5 subjects who did not have ASR data 

available. CIs and r values were estimated assuming a uniform prior from -1 to 1. However, as 

we specifically wished to test the hypotheses that less efficient neurocognitive functioning and/or 

less cautious response style were related to increased rates of psychopathology, Bayes factors for 

v.behavior, v.brain, and a tested the directional hypothesis that the relationship with 

psychopathology was negative (i.e., the uniform prior spanned values between -1 and 0). As we 

wished to test the hypotheses that higher levels of bias toward responding and/or longer non-

decision times were related to increased rates of psychopathology, Bayes factors for z and Ter 

tested the hypothesis that the relationship with psychopathology was positive (i.e., the uniform 

prior spanned values between 0 and 1). For Bayes factors: bolded = substantial evidence (>3:1 

odds) for the tested correlational relationship; For p-values: *=survives FDR correction for 

multiple comparisons within each family of tests (families defined by psychopathology measure) 

 

 Externalizing Scale (raw) DSM-ADHD Scale (raw)  

Predictor r [CI] BF10 p r [CI] BF10 p 

v.behavior -.13[-.29,.04] .64 .124 -.21[-.36,-.05] 4.70 .012* 

v.brain -.23[-.38,-.06] 7.90 .007* -.28[-.42,-.12] 48.29 9.3E-04* 

a -.07[-.24,.09] .25 .393 -.07[-.23,.10] .23 .418 

z -.06[-.22,.11] .07 .497 -.03[-.19,.14] .08 .749 

Ter -.03[-.20,.14] .08 .716 .04[-.12,.21] .17 .614 
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Neuroimaging Data Acquisition Parameters 

Whole brain T2*-weighted MRI images were acquired on a 3.0 T GE Signa scanner 

(Milwaukee, WI) using a single-shot spiral in-out sequence (1) with the following parameters: 

TR=2000ms, TE=30ms, flip angle=90°, FOV=200mm, 29 axial slices, 64×64 matrix, in-plane 

resolution=3.12mm×3.12mm, and slice thickness=4mm. To assist with inter-subject spatial 

normalization, a high-resolution T1-weighted anatomical image was acquired in a separate scan 

with the following parameters: three-dimensional spoiled gradient-recalled echo, TR=25ms, 

minimum TE, FOV=25cm, 256x256 matrix, slice thickness=1.4mm. 

Diffusion Decision Model Specification and Parameter Estimation 

 The current study focused on MLS participants who completed their first session of the 

neuroimaging study when they were ages 18-21. However, the neuroimaging component of the 

MLS has recruited additional participants since these initial sessions (including the offspring of 

the original MLS participants), and has attempted to conduct longitudinal neuroimaging data 

collection at 1- to 2-year intervals with as many individuals as possible. Therefore, at the time 

that analyses for the current project began, data from a total of 1280 go/no-go neuroimaging 

sessions had been collected from 306 individual participants while they were between the ages of 

7 and 30. Rather than only fitting the diffusion decision model (DDM) to data from the 

neuroimaging sessions used for the current study, we decided to fit the DDM to all sessions from 

the MLS neuroimaging sample with valid go/no-go behavioral data for two reasons. First, doing 

so provided us with many more data points with which to evaluate model fit and to enter into our 

simulation-recovery study to assess the reliability of parameter estimates. Second, we aimed to 

produce parameter estimates that could be leveraged in future work involving the other time 

points from the neuroimaging study. Of the 1280 sessions available, 1255 met our inclusion 
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criteria for data quality, which were 1) that at least 200 trials were available for model-fitting and 

2) that the overall accuracy rate in the session was greater than .55, indicating that the participant 

understood, and was engaging in, the task. After selection of the included sessions, response 

times (RTs) less than 200ms were excluded from analysis as fast guesses, following standard 

procedures for fitting the DDM (2), and the DDM was fit to each session separately. 

 As noted in the main text, “simple” versions DDM, which do not include the parameters 

for between-trial variability in drift rate (sv), start point (sz) or non-decision time (st0), are often 

preferable to “full” versions of the DDM for two reasons. First, as it is difficult to reliably 

estimate these between-trial variability parameters without very large numbers of trials, fixing 

them to 0 for most applications of the DDM likely makes estimates of the main model 

parameters (v, a, z, Ter) more stable (3). Second, evidence from a blinded, collaborative test of 

researchers’ ability to draw valid inferences from response time models (4) strongly suggested 

that simple versions of the DDM provided inferences about constructs indexed by the main 

DDM parameters that were just as robust and valid those provided by full versions of the DDM. 

Therefore, we first fit a “simple” version of the DDM which only contained 5 parameters: drift 

rate for “go” stimuli (v.go), drift rate for “no-go”  stimuli (v.nogo), boundary separation (a), non-

decision time (Ter). Decisions to respond on a given trial were assumed to occur when the 

diffusion process crossed the upper response boundary, while decisions to withhold from 

responding were assumed to occur when the process crossed the lower response boundary, which 

was equivalent to the “implicit” boundary assumed by (5,6). Hence, more positive values of v.go 

indicate more efficient accumulation of evidence for the correct response on “go” trials, but more 

negative values of v.nogo indicate more efficient accumulation of evidence for the correct 

response on “no-go” trials. For all subsequent analyses, v.nogo parameter estimates were 
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multiplied by -1 so that they would be directly comparable with v.go parameter estimates. The z 

parameter was parameterized as a proportion of a, meaning that values above .5 indicate a bias 

toward responding and values below .5 indicate a bias to non-responses. 

 The model was in fit by implementing the chi-square minimization procedure specified 

for the go/no-go DDM by (5) and (6) using functions from the R package rtdists (7) and base 

functions in the R language. Chi-square values to be minimized were calculated for each set of 

model parameters by first calculating the proportion of responses that the model predicted would 

terminate at the upper and lower response boundaries, as well as predicted RT quantiles (.1, .2, 

.3, .4, .5, .6, .7, .8, and .9) for correct responses to “go” stimuli and erroneous responses to “no-

go” stimuli, which formed 10 bins for response times (e.g., a bin for responses less than the .1 

quantile, a bin for responses between the .1 and .2 quantiles, etc.). The expected proportion of 

response times in each bin was .1 multiplied by overall proportion of each response type 

(respond/withhold) predicted by the model for each condition (“go”/”no-go”), which produces 

expected proportions that are weighted by accuracy in each condition. As non-responses in the 

“go” and “no-go” conditions do not have observed response times, a single bin was used. The 

expected proportion of responses in this bin was simply 1 multiplied by the proportion of non-

responses predicted by the model in each condition. Following prior work (Ratcliff et al., 2018), 

we used an alternate RT binning procedure when the number of RTs in a given condition was 

small: when the number of RTs was <11 we used the predicted median RT to form two bins 

(where the expected proportion was .5 multiplied by the expected proportion for that response), 

and when the number of trials was <4, we used a single bin (the same procedure as was used for 

non-responses). The expected number (E) of responses for each of the bins was then calculated 

by multiplying the response and RT proportions predicted by the model by the actual number of 
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trials in each stimulus condition. The observed number (O) of responses in each bin was then 

counted, and a chi-square value for each bin was calculated as (O - E)2/E. Overall chi-square 

values were then calculated by summing over all bins for the individual. 

 With the overall chi-square value as an optimization criterion, the R function optim() was 

used to implement a multidimensional search using the Nelder-Mead method. Following 

previous work (8), starting points for the initial search process were found using the EZ diffusion 

model (9) to estimate v, a, and Ter parameters for data in the “go” condition. The starting value 

for v.go was the v estimate from EZ and the starting value for v.nogo was this estimate multiplied 

by -1. Start points for the a and Ter parameters were equivalent to the respective parameters 

from the EZ fits, and the start point for z was always set at .5, as EZ does not estimate response 

bias. Running the Nelder-Mead algorithm multiple times and using parameter estimates from 

each run as start points for the following run often notably improves model fit (8). Therefore, this 

procedure was adopted for the current analysis; optim() was set to run as many times as needed 

until no further decrease in the chi-square value could be accomplished (mean number of 

minimization runs per neuroimaging session = 5.07, SD = 2.35). Bounds were placed in the 

search space for several parameters to prevent impossible values (z>1,z<0, a<0,Ter<0) or 

unrealistically large values (v > 6, v < -6) by setting the objective function to return an infinite 

chi-square if such a parameter value is entered. 

Assessment of Model Fit 

 Model fit was assessed by plotting model-predicted accuracy rates and RT quantiles (.1, 

.5, .9) for the “go” and “no-go” stimulus conditions against actual values of the same accuracy 

rates and RT quantiles for each go/no-go task session. Supplemental Figures 1 and 2 display 

these plots for data from every neuroimaging session in the MLS sample with useable data 
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(N=1255), and separately for the 143 sessions that were further analyzed in the current study. In 

these plots, points clustered around the diagonal indicate good model fit. Points farther from the 

diagonal represent misfits, and cases in which the majority of points fall above or below the 

diagonal indicate a bias, as they suggest that the model is either over- or under-predicting the RT 

or accuracy rates in a given condition. Inspection of the plots indicates that the model provided 

an excellent description of performance on “go” trials; most points are clustered close to the 

diagonal for both RT quantiles and accuracy rates. For “no-go” trials, although points generally 

clustered around the diagonal, there was relatively more misfit, and an apparent bias in which the 

model systematically over-predicted RTs for false alarms, which was most pronounced for the 

longest RTs (.9 quantile). This misfit likely reflects the challenge of describing RT data in this 

condition, which are much sparser than RT data in the “go” condition. The vast majority of 

subjects had accuracy rates greater than .50 on “no-go” trials, indicating that less than 30 RTs 

were available for fitting in this condition, which may explain why model predictions for some 

“no-go” RT quantiles are less accurate. Nonetheless, predicted “no-go” RT quantiles were still 

highly correlated with empirical quantiles (r = .90, .89 and .72 for the .1, .5 and .9 “no-go” RT 

quantiles, respectively, in the full N=1255 sample), suggesting that the model described 

individual differences in “no-go” RT data relatively well under the circumstances. Therefore, we 

concluded that model fit was adequate. 

Simulation-Recovery Study to Assess DDM Parameter Reliability 

 To assess whether the model and fitting method used could be expected to reliably 

recover DDM parameters given the number of trials in the MLS go/no-go task, we conducted a 

simulation/recovery study. First, 400 of the 1255 task sessions from the MLS sample that were 

fit to the DDM were randomly selected. Next, parameters from each of these sessions were used 
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to simulate 400 separate data sets which each consisted of the same number of “go” stimulus 

trials (n=185) and “no-go” stimulus trials (n=60) as the empirical data. The DDM was then fit to 

all 400 simulated data sets using the same procedures outlined above and parameter estimates 

recovered from the data sets were compared with those used to simulate the data. We adopted the 

convention for determining quality of recovery that was used by (10); correlation (r) values for 

the relationship between the simulated and recovered parameters were considered 

“poor/unacceptable” if r < .50, “fair” if .50 < r < .75, “good” of .75 < r < .90 and “excellent” if r 

> .90. Supplemental Figure 3 displays scatterplots and r values for all parameters, which indicate 

that every parameter displayed “good” or “excellent” recovery except in the case of z, where 

recovery was “fair”. Hence, this analysis provided evidence that the DDM displayed acceptable 

parameter recovery when fit to the data in this sample using the procedures outlined above. 

Correlations Between ROI Activations and Behavioral Summary Statistics 

Of the behavioral summary statistics commonly used to index task performance in prior 

work (Supplemental Table 1), FA rate and hit SDRT were strongly linked to the putative error-

processing-related activations in the FA>CR contrast that were also linked to v. However, these 

measures also showed associations with a handful of regions in the CR contrasts, with worse 

performance (higher FA rates) generally being linked to greater activation. Increased CR>GO 

contrast activation in right fronto-parietal regions was also related to faster RTs, although the 

associations, reported in the main body of the manuscript, of the same regions with the a 

parameter of the DDM suggest that this relationship with MRT is due to individual differences in 

response caution (less cautious responding with greater activation) rather than individual 

differences in the integrity of task performance. 

Sensitivity Analysis with Alternate Measure of v at the Neural Level 
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 Our primary strategy for obtaining measures of DDM parameters at the neural level, as 

described in the text, involved 1) entering the three ROIs that were most strongly related to the 

parameter into a structural equation model in which these ROIs created a latent factor that 

predicted the parameter, and 2) extracting factor scores as the neural-level measure (i.e., v.brain). 

Although the procedure was specifically designed to identify patterns of neural activity that were 

most closely related to the individual DDM parameters, it could be argued that this approach 

would bias the neural measure’s prediction of psychopathology; if parameter estimates drawn 

from behavioral data are related to psychopathology, then ROIs that are selected precisely 

because they are related to these parameter estimates may show correlations with 

psychopathology that are artificially inflated. In order to address this concern, we conducted a 

sensitivity analysis that involved a more data-driven approach to identifying neural measures of 

v, the only parameter that appeared to be robustly related to brain responses. 

 First, given that v was exclusively related to neural responses in the FA>CR contrast, we 

conducted a principle component analysis (PCA) of the activation estimates of all ROIs from this 

contrast using the R package FactoMineR (11). Results of this PCA are displayed in 

Supplemental Table 2a. The first component, which explained over 63% of the variance, was 

most strongly correlated with the putative error monitoring regions that were entered in to the 

v.brain latent variable model in the main text: the ACC and bilateral insula. The first component 

was correlated with v.behavior (r=.41, p<.001) and very strongly correlated with the v.brain 

latent variable obtained using our original procedure in the main text (r=.92, p<.001), suggesting 

that it reflects an individual difference in neural function that can similarly be thought of a 

neural-level measure of v. Next, we assessed relationships of this measure with the clinical 

outcomes of interest. Similar to correlation tests involving the v.brain latent variable from the 
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main text, we used Bayes factors (BF10) to test the directional hypothesis that the first FA>CR 

component was negatively related to psychopathology. We also corrected for multiple 

comparisons (including correlation tests involving v.behavior, the original v.brain, and the other 

DDM parameters) with the False Discovery Rate (FDR=5%) method. Results (Supplemental 

Table 2b) indicate moderate evidence that the FA>CR component is negatively related to both 

externalizing behavior and ADHD symptoms, and that the strength of these negative correlations 

is similar to that of the correlations between v.brain and the same clinical outcomes. 

 Taken together, results of this sensitivity analysis suggest that the component that 

explains the majority of the variance in the FA>CR contrast is highly similar to the v.brain 

measure obtained via the ROI selection procedure used in the main text, and can be similarly 

thought of as a neural-level measure of v. As there was evidence that this measure was also 

similarly related to the clinical outcomes of interest, we concluded that the ROI selection 

procedure used in the main text to create a neural-level index of v did not produce spurious 

relationships with psychopathology. 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2019. ; https://doi.org/10.1101/614420doi: bioRxiv preprint 

https://doi.org/10.1101/614420
http://creativecommons.org/licenses/by-nc/4.0/


43 
 

Supplemental Tables and Figures 

Supplemental Figure 1. Empirical data for “go” and “no-go” condition accuracy rates and 

correct go and false alarm (FA) RT quantiles (.1, .5 and .9) plotted against the same values 

predicted by the model. The left panel displays data from all 1255 go/no-go task sessions entered 

into the analysis while the right panel only displays data for the 143 sessions that were analyzed 

further in the current study. Following previous work (Ratcliff, Huang-Pollock & McKoon, 

2018) FA RT quantile data are only displayed for sessions with >10 observed RTs. The diagonal 

line indicates where points would fall if there was a perfect relationship between the empirical 

and predicted values. For clarity and comparability between the larger sample and sub-sample, 

axis intervals are set to be the same between samples and between “go” and “no-go” RT 

quantiles. Therefore, these plots do not include several outlier RT quantile values, which are 

shown in plots displayed in Supplemental Figure 2, below. 
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Supplemental Figure 2. The same RT quantile data as displayed in Supplemental Figure 2 with 

plot axes adjusted to accommodate all data in each specific condition. As in in the previous 

figure, the diagonal line indicates where points would fall if there was a perfect relationship 

between the empirical and predicted values. 
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Supplemental Figure 3. Parameter values used to simulate 400 data sets (drawn at random from 

400 of the 1255 actual task sessions) plotted against parameter values that were recovered when 

these data sets were fit the DDM using the procedures outlined above. Correlation values (r) 

between the simulated and recovered parameter values are displayed in the top left corner of 

each plot Diagonal lines indicate where points would fall if there was perfect parameter 

recovery. 
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Supplemental Table 1. Correlation (r) values, 95% credible intervals (CIs), Bayes factors 

(BF10) and frequentist p-values for correlational relationships between ROI activations and 

behavioral summary statistics. For Bayes factors: bolded = substantial evidence (>3:1 odds) for 

a correlational relationship; For p-values: *=survives FDR correction for multiple comparisons 

within each family of tests (families defined by summary statistics) 

 

 Hit MRT Hit SDRT  

Region r [CI] BF10 p r [CI] BF10 p 

CR/FA Left Striatum (-20,16,-2) -.21[-.36,-.05] 2.54 .011* -.04[-.20,.12] 0.12 .626 

CR/FA Right Parietal (36,-38,50) .10[-.06,.26] 0.22 .217 .19[.03,.34] 1.31 .024 

CR/FA Right Striatum (20,12,-10) -.22[-.36,-.05] 2.91 .010* -.01[-.17,.15] 0.11 .898 

CR/GO Left Ant. Insula/IFG (-36,16,6) -.10[-.26,.07] 0.20 .245 .05[-.12,.21] 0.12 .582 

CR/GO Left Middle Frontal (-34,38,26) -.17[-.32,.00] 0.71 .049 -.12[-.28,.04] 0.29 .150 

CR/GO Left Parietal (-58,-48,34) -.15[-.30,.01] 0.52 .072 .01[-.15,.18] 0.11 .870 

CR/GO Right Ant. Insula/IFG (34,20,0) -.24[-.38,-.07] 5.60 .005* -.08[-.24,.08] 0.17 .322 

CR/GO Right Middle Frontal (40,42,22) -.27[-.41,-.11] 17.98 .001* -.23[-.38,-.07] 4.98 .005* 

CR/GO Right Parietal (58,-44,28) -.33[-.46,-.17] 255.00 7.2E-5* -.20[-.35,-.03] 1.57 .019 

CR/GO Supp. Motor Area (8,4,54) -.14[-.29,.03] 0.38 .108 .01[-.15,.17] 0.11 .919 

FA/CR Anterior Cingulate (2,30,24) -.14[-.29,.03] 0.38 .107 -.30[-.44,-.14] 80.30 2.5E-4* 

FA/CR Left Ant. Insula/IFG (-42,12,-4) -.05[-.22,.11] 0.13 .518 -.24[-.38,-.07] 5.48 .005* 

FA/CR Left Middle Frontal (-26,48,22) -.12[-.27,.05] 0.27 .171 -.22[-.37,-.06] 3.13 .009* 

FA/CR Right Ant. Insula/IFG (44,12,-4) -.04[-.20,.13] 0.12 .666 -.24[-.39,-.08] 6.84 .004* 

FA/CR Right Middle Frontal (24,52,24) -.05[-.21,.11] 0.13 .529 -.14[-.30,.02] 0.42 .095 

FA/CR Thalamus_(-14,-16,8) .09[-.8,.24] 0.18 .307 .00[-.16,.16] 0.11 .994 

 

 FA rate  

Region r [CI] BF10 p 

CR/FA Left Striatum (-20,16,-2) .19[.03,.34] 1.51 .020* 

CR/FA Right Parietal (36,-38,50) .03[-.13,.19] 0.11 .698 

CR/FA Right Striatum (20,12,-10) .22[.06,.37] 3.65 .007* 

CR/GO Left Ant. Insula/IFG (-36,16,6) .20[.04,.35] 1.86 .016* 

CR/GO Left Middle Frontal (-34,38,26) .09[-.08,.25] 0.18 .285 

CR/GO Left Parietal (-58,-48,34) .30[.14,.44] 82.83 4.4E-4* 

CR/GO Right Ant. Insula/IFG (34,20,0) .24[.07,.38] 5.74 .004* 

CR/GO Right Middle Frontal (40,42,22) .08[-.09,.24] 0.16 .362 

CR/GO Right Parietal (58,-44,28) .11[-.06,.27] 0.24 .200 

CR/GO Supp. Motor Area (8,4,54) .07[-.09,.23] 0.15 .401 

FA/CR Anterior Cingulate (2,30,24) -.40[-.53,-.25] 1.9E+4 7.7E-7* 

FA/CR Left Ant. Insula/IFG (-42,12,-4) -.42[-.54,-.27] 8.5E+4 1.6E-7* 

FA/CR Left Middle Frontal (-26,48,22) -.25[-.40,-.09] 10.48 .002* 

FA/CR Right Ant. Insula/IFG (44,12,-4) -.49[-.60,-.35] 2.6E+7 4.1E-10* 

FA/CR Right Middle Frontal (24,52,24) -.40[-.53,-.25] 1.9E+4 7.5E-7* 

FA/CR Thalamus (-14,-16,8) -.09[-.25,.07] 0.19 .275 
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Supplemental Table 2a. Outcome of the principal component analysis of neural responses in 

ROIs from the CR>FA contrast. Values in rows labeled with ROI names indicate correlations 

between each ROI and component. 

 

 Components 

 1 2 3 4 5 

% of variance explained 63.29 13.51 10.70 7.04 3.70 

Cumulative % of variance 63.29 76.80 87.49 94.53 98.23 

Anterior Cingulate  .90 .03 .17 .04 -.40 

Left Ant. Insula/IFG  .87 .01 -.43 .00 .08 

Left Middle Frontal  .76 -.43 .11 .46 .12 

Right Ant. Insula/IFG  .86 .07 -.40 -.20 .02 

Right Middle Frontal  .75 -.28 .43 -.40 .14 

Thalamus .59 .74 .26 .13 .14 

 

Supplemental Table 2a. Correlation (r) values, 95% posterior credible intervals (CIs), Bayes 

factors (BF10) and frequentist p-values for relationships between model-based indices, including 

the first component of the FA>CR PCA analysis (“FA>CR.comp”), and externalizing 

psychopathology self-ratings. All analyses excluded the 5 subjects who did not have ASR data 

available. CIs and r values were estimated assuming a uniform prior from -1 to 1. Bayes factors 

for v.behavior, v.brain, a, and FA>CR.comp tested the directional hypothesis that the relationship 

with psychopathology was negative (i.e., the uniform prior spanned values between -1 and 0). 

Bayes factors for z and Ter tested the hypothesis that the relationship with psychopathology was 

positive (i.e., the uniform prior spanned values between 0 and 1). For Bayes factors: bolded = 

substantial evidence (>3:1 odds) for the tested correlational relationship; For p-values: 

*=survives FDR correction for multiple comparisons within each family of tests (families 

defined by psychopathology measure) 

 

 Externalizing Scale (raw) DSM-ADHD Scale (raw)  

Predictor r [CI] BF10 p r [CI] BF10 p 

v.behavior -.13[-.29,.04] .64 .124 -.21[-.36,-.05] 4.70 .012* 

v.brain -.23[-.38,-.06] 7.90 .007* -.28[-.42,-.12] 48.29 9.3E-04* 

FA>CR.comp -.21[-.36,-.04] 4.04 .015* -.25[-.39,-.08] 14.56 .003* 

a -.07[-.24,.09] .25 .393 -.07[-.23,.10] .23 .418 

z -.06[-.22,.11] .07 .497 -.03[-.19,.14] .08 .749 

Ter -.03[-.20,.14] .08 .716 .04[-.12,.21] .17 .614 
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