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Abstract  
Despite infiltrating immune cells playing an essential role in human disease and the patient 
response to treatment, the central mechanisms influencing variability in infiltration patterns are 
unclear. Using bulk RNA-seq data from 53 GTEx tissues, we applied cell-type deconvolution 
algorithms to evaluate the immune landscape across the healthy human body. We first 
performed a differential expression analysis of inflamed versus non-inflamed samples to identify 
essential pathways and regulators of infiltration. Next, we found 21 of 73 infiltration-related 
phenotypes to be associated with either age or sex (FDR < 0.1). Through our genetic analysis, 
we discovered 13 infiltration-related phenotypes have genome-wide significant associations 
(iQTLs) (P < 5.0 x 10-8), with a significant enrichment of tissue-specific expression quantitative 
trait loci in suggested iQTLs (P < 10-5). We highlight an association between neutrophil content 
in lung tissue and a variant near the CUX1 transcription factor gene (P = 9.7 x 10-11), which has 
been previously linked to neutrophil infiltration, inflammatory mechanisms, and the regulation of 
several immune response genes. Together, our results identify key factors influencing inter-
individual variability of specific tissue infiltration patterns, which could provide insights on 
therapeutic targets for shifting infiltration profiles to a more favorable one. 
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Introduction 

Human immune systems vary dramatically across individuals, yet the environmental and 
genetic determinants of this variability remain poorly characterized. Many studies have identified 
genetic components and environmental stimuli that alter immune cell composition in peripheral 
blood1-6. However, normal tissues and organs also consist of diverse cell types, including 
infiltrating immune cells. The variability in infiltration across individuals and between tissues has 
not been documented and the mechanisms enabling such variation in baseline infiltration have 
not been elucidated. 

Identifying the genetic influences on specific patterns of infiltrating immune cells is 
crucial to understanding disease biology. Beyond further explaining heritable manifestations of 
infectious diseases and autoimmunity1-9, such efforts can further uncover the drivers of 
characteristic immune cell signatures in the tumor microenvironment that are prognostic for 
cancer progression and predictive of treatment response10. For example, response is improved 
in patients with T cell-inflamed tumors compared to T cell-depleted tumors among patients 
receiving immune checkpoint inhibitors targeting PD1 and CTLA410,11 and among ovarian 
cancer patients receiving chemotherapy12. However, a complete mechanistic description 
underlying immune-rich and immune-poor tumor phenotypes remains elusive. 

Recent advances in computational methods have allowed reliable inference of the 
heterogeneous cell types from gene expression data of a single population-level (bulk) tissue 
sample13-15. At the same time, large-scale sequencing efforts such as the GTEx project16 have 
enabled a detailed exploration of the links between genomic and transcriptomic variations 
across different tissues. Together, these cell-type estimation methods can be utilized in synergy 
with massive bulk sequenced data sets to infer cellular heterogeneity and achieve statistically 
well-powered associations that intrinsically drive the heterogeneity17-19. 

In the present study, we aimed to evaluate the inherent immune infiltration landscape 
across healthy tissues in the human body and to determine the intrinsic factors contributing to 
the infiltration variability. Using bulk RNA-seq data from 53 distinct GTEx tissue types, we 
applied cell-type deconvolution algorithms to infer immune content and developed an analysis 
framework to leverage information across methods for association testing. We identified 
transcriptomic differences associated with extreme infiltration patterns by performing a 
differential expression analysis of the immune-rich and immune-depleted samples20. We 
discovered associations between donor characteristics such as age, sex, and germline genetic 
variants with infiltration variability. We find that these genetic determinants are enriched for an 
overlap with tissue-specific expression quantitative trait loci (eQTLs). Additionally, such genetic 
variants can serve as leading candidates for understanding the basic biology behind infiltrating 
immune cell patterns.  
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Results 

Robust estimation of immune cell types in bulk RNA-seq profiles. 

To describe immune content from bulk RNA-seq samples, we used two central 
algorithms: xCell13 and CIBERSORT14. xCell relies on a modification of single sample gene-set 
enrichment analysis to estimate cell type scores, while CIBERSORT employs a linear support 
vector regression model. The default reference signatures allow deconvolution of 64 immune 
and stroma cell types for xCell and 22 immune cell types for CIBERSORT. CIBERSORT also 
calculates a scaling factor that measures the degree of infiltration. We refer to the relative 
proportions from CIBERSORT as “CIBERSORT-Relative” and the product of the relative 
proportions with the scaling factor as “CIBERSORT-Absolute”. We estimate three scores for 
each cell type to describe the immune content from the gene expression data for each tissue in 
each individual: xCell, CIBERSORT-Relative, and CIBERSORT-Absolute scores. 

We first hypothesized that the relative and absolute scores from CIBERSORT 
encapsulated different aspects of the single-cell deconvolution. While “CIBERSORT-Absolute” 
simultaneously quantifies a degree of immune infiltration, “CIBERSORT-Relative” is focused on 
capturing compositional changes in the immune content (Supplementary Note). We simulated 
synthetic mixes composed of bulk tissue “spiked” in silico with CD4+ T cells and CD8+ T cells 
(see Methods). We correlated the known amount of CD4+ and CD8+ T cell infiltration in these 
mixtures with estimated deconvolution scores under a “tissue” scenario and an “immune cell” 
scenario. In the “immune cell” scenario, we let the true infiltration be the proportion of each cell 
type to the total immune content. In the “tissue” scenario, the true infiltration amount is the 
proportion of each cell type to the entire sample. As expected, we found that CIBERSORT-
Relative to more accurately estimate the infiltration amounts of the in silico mixtures than 
CIBERSORT-Absolute in the “immune cell” scenario, while the reverse was true in the “tissue” 
scenario (Supplementary Table 1). However, in both scenarios, the CIBERSORT method 
resulted in strong correlations between deconvolution scores and the true amount of infiltration 
(r = 0.64-0.89).  

We also compared the CIBERSORT performance to xCell. Since xCell is an enrichment-
based algorithm, not a deconvolution algorithm, it is not recommended for comparing scores 
between cell types. As a result, xCell scores correlated well in the “tissue” scenario (r = 0.90 
with CD4+ T cells, r = 0.96 with CD8+ T cells) but worse in the “immune cell” scenario (r = 0.65 
with CD4+ T cells, r = 0.45 with CD8+ T cells), even after normalization (Supplementary Table 
2). We also found that xCell had imperfect correlation with CIBERSORT-Absolute scores (CD8: 
r = 0.58, CD4: r = 0.86). Therefore, these results indicate that each method provides interesting 
information to be exploited in downstream analysis.   
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Evaluating infiltration across human tissues by using deconvolution. 

Our first objective was to deconvolute cellular heterogeneity from bulk RNA-seq GTEx 
samples and examine the immune infiltration profile. The v7 GTEx release consists of 11,688 
samples, spanning 53 different tissues/sample types from 714 donors16. We performed 
comprehensive deconvolution of these samples using our three methods (xCell, CIBERSORT-
Relative, and CIBERSORT-Absolute) and focused most of our analyses on CD4+ T cells, CD8+ 
T cells, macrophages, and neutrophils (Figure 1a; Supplementary Note).  

To obtain a global overview of heterogeneity in immune composition, we performed 
hierarchical clustering of the tissues based on the medians of each immune cell type (see 
Methods) (Figure 1b). Across the 3 methods, many of the nearest-neighbor pairings were 
consistent and recapitulated relationships between tissues that share high degrees of histologic 
similarity and immune infiltration (Supplementary Note; Supplementary Figures 4-5). In our 
analysis of macrophage content across tissues, we found the highest scores (CIBERSORT-
Absolute) to be in lung, spleen, and adipose tissue (Figure 1c). High levels of macrophages, 
especially uncommitted M0 and anti-inflammatory M2 macrophages, were found in lung tissues 
(Figure 1b). We discuss other interesting observations comparing infiltration patterns between 
tissues in the Supplementary Note (Supplementary Figures 6-9). 

Importantly, we found large variability between different individuals in a single tissue 
type. Many tissues featured a majority of samples with trace immune enrichment, but these 
tissues also contain several samples with significantly higher estimated immune content 
(Supplementary Figures 6-9). Interestingly, t-SNE visualizations of estimated immune content 
within a tissue type did not reveal distinct clusters of samples (Supplementary Figure 10). 
Therefore, it appears that healthy individuals have highly variable infiltration patterns, 
suggesting that the differences could be driven by a range of genetic and non-genetic factors 
(such as age, sex, or environmental exposures). We aimed to identify transcriptomic 
associations with infiltration through a differential expression analysis of grouped immune-
enriched (inflamed) vs immune-depleted (non-inflamed) tissue samples, and we aimed to 
identify genetic effects through a genome-wide association study (GWAS) analysis of immune 
content. Through a carefully designed filtering procedure, we focus our analysis on a limited set 
of 73 infiltration phenotypes that represent immune cell type scores in a tissue (tissue-by-cell 
type pairs) (see Methods). 

Lastly, we were interested in whether infiltration signatures explain substantial variance 
of gene expression calculated in bulk assays. We performed a principal component analysis of 
the processed gene expression matrix within each tissue, before assessing the pairwise 
relationship between the first four principal components and the 73 infiltration phenotypes using 
CIBERSORT-Absolute scores. Even after a Benjamini-Hochberg false discovery rate (FDR) 
correction21, we found that all but one infiltration phenotype was significantly correlated with at 
least one principal component (FDR < 0.1), indicating that bulk gene expression measurements 
are significantly confounded by cellular heterogeneity (Supplementary Table 9). 
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Figure	1:	Immune	content	 across	the	human	body.	(a)	Human	body	overlaid	with	GTEx	tissues	colored	 by	the	degree	of	immune	infiltration,	 as	
estimated	by	the	scaling	factor	from	CIBERSORT-Absolute.	(b)	Hierarchical	 clustering	of	GTEx	tissues	according	to	immune	content (estimated	
by	CIBERSORT-Absolute).	Heatmap displays	cell	type	median	scores,	with	upper	bound	set	to	0.5.	(c)	Macrophage	content	across	tissues.	
Scores	estimated	by	CIBERSORT-Absolute	and	sorted.	(d)	Differential	immune	content	 between	“hot”	and	“cold”	clusters	of	the	43	infiltration	
phenotypes	for	which	DEGs	could	 be	identified.
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Identification and characterization of extreme infiltrating immune cell 

patterns 

We then searched for genes preferentially expressed in immune cell type rich (hot) 
versus immune cell type depleted (cold) cases. For each tissue type, we used consensus k-
means clustering to identify hot and cold cases for each cell type (Supplementary Table 3; 
Figure 1d). We then performed a differential gene expression analyses between corresponding 
hot and cold cases for each cell type. These identified differentially expressed genes (DEGs) 
may partially explain tissue-specific heterogeneity in baseline immune infiltration. 

Overall, we identified DEGs for 43 of the infiltration phenotypes which passed our 
statistical thresholds (log FC >= 2.0, FDR < 0.01; see Methods). Across the 10 CD8+ T cell, 9 
CD4+ T cell, 21 macrophage, and 3 neutrophil phenotypes tested, we expected and found that 
the most common DEGs consisted of well-known markers of the corresponding immune cell 
types (Supplementary Table 5). For example, the most consistent DEGs across macrophage-
hot clusters are macrophage markers utilized by the xCell and CIBERSORT algorithms for 
estimating macrophage content: C1QB (18/21 tissues), VSIG4 (17/21), MARCO (17/21), and 
CD163 (16/21). Interestingly, the most common DEGs not present in the deconvolution 
reference gene sets includes C1QC (16/21) and FCGR3A (16/21), which correspond to 
complement component and immunoglobulin Fc receptor, and have well-characterized roles in 
opsonization 22,23. We then used the DEGs and Ingenuity Pathway Analysis (IPA) to identify 
dysregulated pathways, discover key upstream regulators, and find central disease and function 
ontologies (Supplementary Table 6, 7, 8). In our macrophage phenotypes, the most commonly 
dysregulated pathways were TREM1 signaling, which is an amplifier of macrophages 
inflammation24, and antigen-presenting cell maturation (Supplementary Table 6). The most 
frequent upstream regulator predicted to be activated by IPA in the macrophage-hot clusters 
was TGM2, while TFRC (transferrin receptor) was the most commonly inhibited as predicted by 
IPA (Supplementary Table 7). The latter finding may be linked to the role of macrophages in 
sequestering iron during inflammatory states25. Disease and function ontologies indicated that 
the most commonly activated pathways in macrophage-hot samples were associated with 
leukocyte and lymphocyte migration (Supplementary Table 8). We describe the results across 
the T cell and neutrophil phenotypes in Supplementary Note). 
Finally, we used our immune-hot clusters (eg. macrophage-hot) to examine whether individuals 
with inflammation in one tissue type may also exhibit similar inflammation in their other tissue 
types. Here, we report inconsistent inflammation patterns across distinct tissue types within the 
same individual (mode = 1 tissue per individual for each cell type) (Supplementary Figure 11). 
Therefore, we reflected that infiltration patterns are likely tissue-specific, rather than widespread. 
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Association of age and sex with immune infiltration. 

We next aimed to examine whether there are any associations of age or sex with 
immune infiltration. We adopted a multiple regression approach to measure age and sex effects 
across all infiltration phenotypes. This was repeated for each of the deconvolution procedures, 
and we merged p-values across all three by using Empirical Brown’s method26 (see Methods).  

We observed that 21 of 73 infiltration phenotypes were significantly associated with 
either age or sex (Table 1). While similar numbers of sex and age associations were identified 
(phenotypes with FDR < 0.1: 12 for age, 13 for sex), we found the most significant associations 
were increased T cell content in female breast tissue compared to male (Sex-CD8+ T cell 
association: P = 5.4 x 10-34 (Figure 2a); sex-CD4+ T cell associations: P = 3.2 x 10-9). In female 
samples, we observed significant heterogeneity, with several samples having no CD8+ T cell 
content detected and others having high predicted CD8+ T cell content (Figure 2a). The distinct 
contrast between female and male breast tissue could drive these immune differences, with 
male tissue predominantly lacking the lobular elements27 and temporal changes of females that 
are associated with T cells28 (Supplementary Note). However, the key drivers of this variability 
pattern remain unclear.  

The most significant association with age is CD4+ T cells in tibial artery tissue (P = 1.3 x 
10-9) (Figure 2b). We noted that 4/5 tested infiltration phenotypes from tibia area (exception: 
macrophage content in tibial nerve samples) had increased immune cell scores with age. In 
comparison, only 1/6 phenotypes in artery tissue from other body areas showed significant 
infiltration patterns with age (CD4+ T cells content in arterial aorta samples). Again, the reasons 
for these localized associations are unclear. 
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a

+/- indicates increase/decrease in females+/- indicates increase/decrease with older age

Table	1:	Significant	 associations	 with	 (a)	age and	(b)	sex.	Significance	indicates	 that	FDR-adjusted	p-values	are	below	0.1.	Raw	and	adjusted	
p-values	are	shown.	+/- indicates	 an	increase/decrease	 in	older	 age	samples,	or	an	increase/decrease	in	females	compared	 to	males	
samples.

b
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Association of genetic variants with infiltrating immune cells. 

We next searched for particular inherited genetic variants that could influence the 
variability of infiltration patterns. We refer to germline single nucleotide polymorphisms (SNPs) 
associated with the infiltration of a cell type in a tissue as infiltration quantitative trait loci 
(iQTLs). Using the Empirical Brown’s testing framework across 73 infiltration phenotypes, we 
discovered 13 infiltration phenotypes with at least one genome-wide significant iQTL (P < 5.0 x 
10-8) and 2 phenotypes with at least one study-wide significant iQTL (P < 6.8 x 10-10) (Table 2) 
(see Methods). 

The most significant iQTL we identified was an association between rs77155650 and 
neutrophil content in lung samples (P = 9.7 x 10-11) (Figure 2c-d) (Supplementary Note). The 
variant lies 76 kb from the transcription factor CUX1, in a potentially active regulatory region of 
the non-coding genome that overlaps enhancer histone marks across most cell types and 
overlaps promotor histone marks and DNAse sites in some cell types29,30. The DNA binding 
activity of the CUX1 protein product has been previously linked with neutrophil infiltration31,32 
and the regulation of multiple immune response genes33 (F2RL134,35, IL1A, MMP1036-38, and 
COX234,39) (Supplementary Note). In the GTEx lung samples, we found that CUX1 expression in 
the lung samples correlated significantly with neutrophil infiltration (P = 4.5 x 10-4) (Figure 2e). 
Potentially, the rs77155650 polymorphism could interact with CUX-1 DNA binding and the 
regulation of immune response genes in inflammation processes. 

The second study-wide significant iQTL we discovered was an association between 
rs116827016 and macrophage infiltration in tibial artery tissue (P = 3.86 x 10-10) (Table 2; Figure 
2f-g) (Supplementary Note). This SNP has not been identified as an eQTL in any tissue within 
the GTEx consortium analyses16, but has been commonly associated as an eQTL for KCTD10 
expression in whole blood (eQTLGen meta-analysis p-value = 5.7 x 10-63)40. We discovered a 
significant correlation between the KCTD10 expression in the GTEx tibial artery samples with 
the macrophage phenotype (P = 3.2 x 10-16) (Figure 2h). We analyzed KCTD10 expression 
across tissues and found that expression is highest in tibial artery samples (Supplementary 
Figure 13), and the expression-infiltration association is driven by increased macrophages in 
low KCTD10-expressed samples (Figure 2h). Functional studies of KCTD10 and its paralog 
TNFAIP1 have linked both to inflammation-associated angiogenesis41,42, so its possible that the 
rs116827016 haplotype alters immune response within the vascular system through changes in 
KCTD10 expression (Supplementary Note). 

Variants already associated with gene expression allow inference into functional roles. 
Thus, we were next interested in identifying whether there were expression quantitative trait loci 
(eQTLs) from the GTEx consortium analysis16 that were also iQTLs (ieQTLs). We found that 2 
infiltration phenotypes had ieQTLs surpassing genome-wide significance (P < 5.0 x 10-8) (Table 
2).  

Our third most significant iQTL association (and most significant ieQTL association), the 
rs11883564 locus with CD4+ T cells content in sun exposed skin tissues (P = 4.2 x 10-9), 
overlapped with a significant association for STAM2 gene expression16 (Table 2; Figure 2i-j). 
STAM2 is essential for T-cell development43 and the rs11883564 haplotype has been 
associated with alopecia areata response to chemotherapy in breast cancer patients44. Alopecia 
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Figure	2:	Significant	associations	 with	 infiltrating	 immune	cell	patterns. (a)	shows	sex	association	with	CD8+	T	cell	content	in	breast	tissue	
samples.	(b)	shows	age	association	with	CD4+	T	cell	content	in	tibial artery	samples.	(c-e)	relates	to	the	genetic	analysis	of	neutrophil	 content	
in	lung	tissue	samples,	(f-h)	is	macrophage	content	in	tibial artery	tissue,	and	(i-k)	concerns	the	CD4+	T	cell	content	in	sun	exposed	skin	tissue.	
The	leftmost	of	these	plots	are	genome-wide	QQ-plots	of	Empirical	Brown’s	 p-values,	the	middle	plots	reflect	genotype-phenotype	association	
plots	(using	CIBERSORT	– Absolute	residuals),	and	the	rightmost	plots	are	eGene expression-phenotype	 association	plots	of	the	significant	iQTL
(using	estimated	scores	from	CIBERSORT	– Absolute),	split	into	quartiles	of	gene	expresson.
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areata is an autoimmune disease characterized by hair loss from infiltrating T cells45. We also 
discovered significant correlation between STAM2 gene expression and the CD4+ T cell 
signature in skin tissue (p = 7.2 x 10-9; Figure 2k). Genetic network analysis of STAM2 revealed 
an integral role in immune regulation pathways (Supplementary Figure 14, Supplementary Note, 
see Methods). 

Downstream analysis of genetic results  

Next, we systematically tested for an enrichment of tissue-specific expression QTLs in 
the most significant SNPs from our genetic analysis. We first relaxed our iQTL threshold to the 
GWAS catalog cut-off by querying all genetic associations with p < 10-5 to represent our “top 
hits” and developed two complementary approaches for testing over- or underrepresentation of 
tissue-specific eQTLs (see Methods). Both approaches converged in showing significant 
enrichment of tissue-specific eQTLs in the top hits for many phenotypes (Figure 3; 
Supplementary Figure 15) (Supplementary Note). We note that directionality is unclear when 
SNPs are both iQTLs and eQTLs. These SNPs could independently alter immune content and 
expression levels, but it is also likely that differences in expression levels drive changes in 
infiltration patterns. Similarly, it is likely that cellular heterogeneity differences (from infiltration 
effects) underlie many eQTL associations.  

To attempt to draw functional conclusions from our genetic results, we used the gene 
expression associations from our ieQTLs. We constructed a GeneMania network46 by forming a 
list of ieGenes (genes whose expression is associated with the variant, as determined from 
GTEx analysis16) from ieQTLs with our relaxed iQTL threshold p < 10-5 (GWAS catalog cut-off). 
We queried 85 genes, building a network of 115 total genes with 15 functional attributes and 30 
additional genes (Supplementary Figure 16). We found that this network was enriched for 
pyrimidine biosynthesis and DNA repair functions (Supplementary Table 12). These functions 
help maintain healthy DNA, which is crucial for normal function and cancer avoidance. We 
discovered that the most interconnected added genes were involved in pyrimidine biosynthesis, 
transcriptional mechanisms, epigenetic remodeling, and immune-related disorders 
(Supplementary Note). Lastly, GeneMania identified a 9.55% weighting enrichment between 
network nodes to the Gasdermin protein domain, as collected in InterPro47. Gasdermin is 
required for recognizing foreign material and pathogens to induce IL-1 for recruiting immune 
cells48,49. In summary, our GeneMania network highlights central mechanisms controlling the 
immune environment.  

Lastly, we analyzed whether iQTLs commonly displayed pleiotropic effects. We found 
that almost all iQTLs were associated with only a single cell type in a single tissue type under a 
p < 10-5 threshold (Supplementary Table 13). We also found that 3/176 ieGenes from ieQTLs 
(using the relaxed p < 10-5 threshold) were phenotype-specific (Supplementary Table 14; 
Supplementary Figure 17).   
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Tissue Cell RS	ID Chromosome Position P-value q-value eQTL?
Lung Neutrophils rs77155650 7 101382863 9.76E-11 0.0003 FALSE

Artery	- Tibial Macrophages rs116827016 12 109787397 3.86E-10 0.0003 FALSE
Skin	- Sun	Exposed	(Lower	leg) CD4+ T	cells rs11883564 2 153016576 4.15E-09 0.0040 TRUE
Esophagus	– Gastro.	Junction CD4+ T	cells rs9847949 3 24599271 6.54E-09 0.0157 FALSE

Vagina CD8+ T	cells rs67160095 5 16047889 9.21E-09 0.0226 FALSE
Esophagus	- Mucosa Macrophages rs12631070 3 1518915 1.48E-08 0.0280 FALSE

Spleen Neutrophils rs10956711 8 134621178 2.07E-08 0.0395 FALSE
Nerve - Tibial CD4+ T	cells rs9422297 10 1257108276 2.08E-08 0.1046 FALSE

Thyroid Macrophages rs7277675 21 42637222 2.51E-08 0.0494 TRUE
Skin	- Sun	Exposed	(Lower	leg) Macrophages rs4118372 3 189287063 2.56E-08 0.0318 FALSE

Artery	- Aorta CD8+ T	cells rs34573417 10 9576753 2.85E-08 0.0494 FALSE
Colon	 - Transverse Macrophages N/A 10 3629677 2.94E-08 0.0776 FALSE

Prostate CD8+ T	cells rs12603004 17 13712941 4.26E-08 0.0435 FALSE

Table	2:	Genome-wide	 significant	 variant	associations	 (P	<	5	x	10-8)	for	the	73	tested	 infiltration	 phenotypes.	 For	each	phenotype,	 only	
the	most	significant	SNP	is	listed.	The	association	 q-values	and	whether	 the	significant	SNP	is	a	GTEx	eQTL	in	that	tissue	is	also	listed.	
Chromosome	 and	position	 are	reference	 genome	build	 37.

Figure	3:	eQTL	enrichment	 in	iQTLs.	Test	1	chi-square	 p-values	across	all	infiltration	 phenotypes,	 colored	 by	whether	 eQTLs	are	over-
represented	 (red)	or	under-represented	 (blue)	in	the	iQTLs.
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Discussion 

The GTEx consortium project enabled an analysis of transcriptomic variation across 
diverse human tissues, and the discovery of association between that variation and genetic 
polymorphisms. With the development of computational algorithms that can deconvolute the 
cellular heterogeneity underlying bulk RNA-seq data, the GTEx data sets could be utilized to 
evaluate the baseline immune landscape across the human body. This quantification of immune 
cells from bulk RNA-seq should become standard in many bulk RNA-seq analyses. Additionally, 
we observed that population-level gene expression values are strongly affected by infiltrating 
immune cells through a principal component-based correlation analysis, implying that measures 
of infiltration should be considered in downstream analyses of bulk expression data.  

We also developed frameworks to leverage information across multiple cell-type 
estimation methods and capture differences in deconvolution methods. An individual cell-type 
estimation method has imperfect correlation with the true scores and other computational 
methods, likely due to the selected markers and cell types in the reference set inducing certain 
biases. Thus, we increased our confidence in downstream analyses by incorporating results 
from multiple deconvolution algorithms, and demonstrated convergence on plausible, significant 
results while maintaining low false positive rates in large genomic analyses.  

We also note that in the clinic, the relative ratio of CD4:CD8+ T cells is a blood test 
marker to monitor the health of the immune system50, which can be better captured by relative 
estimates of infiltration. Our demonstration of heterogeneous infiltration profiles across tissues 
suggests that deconvolution methods can potentially be used to derive an expanded set of 
biomarkers to assess immunologic health across a variety of organs.  

Importantly, we demonstrated substantial variability in immune content across 
individuals within a number of different tissue types. Inspired by efforts to characterize the 
heterogeneity of tumor immune landscapes, we engaged in an endeavor to discretize clusters of 
individuals based on their tissue infiltration20,51,52. We were able to successfully show strong 
separability of immune content in hot clusters compared to cold ones across most phenotypes, 
and used these clusters to discover that the strongest DEGs revealed essential functions, 
pathways, and upstream regulators. Furthermore, we identified genetic loci associated with 
immune infiltration that could pose as future clinical markers to guide patient stratification. In 
cancer, the infiltration profile may be driven by not only new somatic mutations but also pre-
existing germline variants. Since the immune signature in the tumor microenvironment is highly 
correlated with the response to treatments such as immunotherapy, germline variants could 
enhance predictive modeling of response and reveal novel therapeutic targets for shifting 
infiltration profiles to a more favorable one. Previous studies demonstrated that cancer cells 
maintain chromatin structure from the tissue-of-origin, so it is possible that germline iQTLs have 
conserved infiltration effects in the cancer cells53. If this were the case, then functional 
experiments could be a promising avenue for developing medicines to shift infiltration patterns. 
Overall, understanding a personalized baseline immune response from genetics would enhance 
the interpretation of immune presence in the tumor microenvironment. 

An important area of future research is to test associations between somatic mutation 
burden and immune infiltration estimates in healthy tissues. Recent research performed using 
the GTEx database has shown that genetically distinct non-cancerous subclonal populations 
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may arise in healthy tissues, akin to the phenomenon of clonal hematopoiesis of indeterminate 
potential in blood cells54. We saw a significant increase of T cell content in female breast and 
thyroid tissues compared to males. Immune response may correlate with somatic mutation 
detection, and it would be interesting to evaluate whether differential immune content between 
males and females is driven by sex-differential somatic clonal mutations which could eventually 
promote cancer. In parallel, the epidemiological differences between males and females in 
developing breast and thyroid cancer is striking: of breast cancer, there are 100 times more 
cases in females compared to males, and of thyroid cancer, there are nearly 3 times as many 
cases in females compared to males55. Further investigation could provide improved 
understanding of the increased female disease incidence.  

Lastly, we note that superior computational algorithms for cell-type estimation are still 
needed, as well as larger and better annotated data sets. The algorithms we used are limited to 
inference of single-cell compositional information and do not infer a cell’s molecular signatures, 
where dysregulation may be even more informative56. While single-cell sequencing can provide 
a more intricate and accurate perspective of the infiltrating immune cells, single-cell studies 
have not been scaled large enough to understand the genetic basis of infiltration patterns. Even 
with bulk sequencing, the sample sizes examined in our study are limited and must be 
expanded. We limited our statistical genetic analysis to tissues having greater than 70 samples 
with matched genotype and phenotype information, and the maximum tissue type had 361 
samples. At this sample size, we can only detect the largest of genetic effects. If infiltration is a 
widely polygenic trait, then increased sample size is necessary to dissect the genetic 
architecture of inter-individual differences in infiltration. Similarly, larger sample sizes will allow 
potential detection of tissue-specific immunomodulatory genes in our hot-cold analysis. Finally, 
it would enable improved assessment of infiltration pleiotropy. In our study, our identified genetic 
variants were rarely associated with multiple immune infiltration phenotypes. This implies that 
the genetics of infiltration differs depending on the tissue of interest and the expression patterns 
in that tissue, and that down-regulation of one tissue’s key functional genes within another 
tissue could create a completely separate genetic variation network that leads to infiltration. 
However, a larger dataset is necessary to ascertain how tissue-specific the genomics of 
infiltration patterns are.  
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Methods 

GTEx data 

Processed gene expression profiles from the GTEx v7 data release were downloaded 
from the GTEx data portal. Genotype data and raw fastq reads are from the GTEx v6 release, 
and were downloaded from dbGAP. 

Deconvolution of bulk RNA-seq profiles 

To deconvolute bulk RNA-seq profiles into single-cell scores, we used CIBERSORT-
Relative, CIBERSORT-Absolute, and xCell. CIBERSORT outputs were generated using 1000 
permutations and quantile normalization disabled. Since xCell scores are generated by 
assessing relative variability between all input samples, the scores were generated separately 
for each tissue type. This allows better sensitivity to within-tissue cellular variability without 
substantial confounding from between-tissue variability, which was proven by our testing of 
xCell on synthetic mixes (Supplementary Table 2). Each cell type by tissue type combination is 
considered an infiltration phenotype. 

Simulating “immune-spiked” synthetic mixes 

To generate “immune-spiked” synthetic mixes, we hand-selected one sigmoid colon 
GTEx sample (GTEX-XXEK-1826-SM-4BRVC) and one sun-exposed skin GTEx sample 
(GTEX-WFON-2126-SM-3LK7O) from the v6 release. Both these samples were identified by 
applying CIBERSORT-Absolute to all GTEx samples and identifying samples with the lowest 
detected presence of infiltrated immune cells (high CIBERSORT p-values, low cell scores). 
Using 5 different CD4+ T cell references and 5 different CD8+ T cell references (Supplementary 
Table 15 for SRA), we designed 90 synthetic mixes which contained 80-95% reads sampled 
from one of the GTEx samples and 5-20% of the reads sampled from the T cell samples. There 
were four different simulation types: (1) only CD4+ T cells infiltration as 5-20% of the sample, 
(2) only CD8+ T cells infiltration as 5-20% of the sample, (3) both CD4+ and CD8+ T cells 
infiltration in equal proportions as 5-20% of the sample, and (4) CD4+ and CD8+ T cells 
infiltration but in unequal proportions (2:3 and 1:4 ratios as 5-20% of the sample). Half the 
simulations were created using 1 CD4+/CD8+ reference and half with 5 CD4+/CD8+ references 
(cellular heterogeneity versus no heterogeneity). Both the colon and skin samples represented 
half the simulations, and the skin and colon samples were not part of any of the same synthetic 
mixes. The different immune samples used and their relative proportions across the 90 synthetic 
mixtures generated is outlined in Supplementary Table 15. 
 

The bulk tissue and immune samples were aligned to the GRCh38 reference genome 
using STAR57 and sorted with samtools58. The number of reads in each sample were measured 
using samtools idxstats, then downsampled to the desired library size using samtools view with 
the -s flag and the specified percentage of total reads. Next, the resulting bam files containing 
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the downsampled bulk and immune reads were merged using bamtools merge to create a 
single synthetic mixture bam file59.   

Generating TPM gene measurements from the synthetic mixes 

RNAseq samples were quantified with the Gencode gene annotation reference (V22 release). 
Aligned reads were then quantified for gene expression in terms of TPM and FPKM using 
StringTie60. 
 

Empirical evaluation of CIBERSORT relative vs absolute outputs  

To empirically compare CIBERSORT relative and absolute scores, we calculated the 
true amount of infiltration as two separate measures: “tissue” and “immune cell”. In the former, 
true amount of infiltration is calculated as the percent of reads from the immune cell type in the 
entire sample. In the latter, the true amount of infiltration is calculated as the percent of reads 
from the immune cell type in the immune content of the sample. 
 

CIBERSORT was used to compute relative and absolute deconvolution scores of all 
synthetic mixes. All scores, regardless of generation process, were correlated with the true 
amount of infiltration in both the “tissue” and “immune cell” scenarios to quantitatively assess 
the differences. 

Merging cell subtype estimates into single scores 

The CD4+ T cells category for CIBERSORT outputs reflects the sum of the “T cells CD4 
naïve”, “T cells CD4 memory resting”, and “T cells CD4 memory activated” categories that are a 
part of the given LM22 reference matrix in CIBERSORT. The CIBERSORT “Macrophage” 
category represents the sum of the “Macrophages M0”, “Macrophages M1”, and “Macrophages 
M2” categories in the LM22 matrix. For the xCell analyses, CD4+ T cell scores were calculated 
by summing the scores from “CD4+ memory T-cells”, “CD4+ naive T-cells”, “CD4+ T-cells”, 
“CD4+ Tcm”, and “CD4+ Tem”. Macrophage scores were calculated using “Macrophages”, 
“Macrophages M1”, and “Macrophages M2”. Lastly, CD8+ T cell xCell scores were calculated by 
summing “CD8+ naive T-cells”, “CD8+ T-cells”, “CD8+ Tcm”, and “CD8+ Tem”. 

Visualizing cellular heterogeneity estimates across GTEx 

Dendrograms representing the degree of similarity in immune composition across the 48 
tissues in the GTEx dataset with at least 70 samples were generated for each of the 3 
deconvolution methods. For each method, the median value of estimated immune content for 
each cell type was computed within each tissue. For the xCell deconvolution, 34 immune cell 
types were used, and for both Cibersort Absolute and Relative, 22 cell types were used. The 
heatmaps were drawn in R using pheatmap61, with Euclidean distance metric and with the 
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“complete” linkage method. The xCell, Cibersort Absolute, and Cibersort Relative plots used 
maximal values of 0.05, 0.5, and 0.3, respectively.	

We plot the mean cell type score across all tissues, separately for each deconvolution 
method, in heatmaps sorted by the mean CIBERSORT-Absolute scores for neutrophils, 
macrophages, CD4+ T cells, and CD8+ T cells (Supplementary Figure 1). We compute pairwise 
correlations between all tissue x cell type phenotypes (eg. compare CD4+ T cells in sun 
exposed skin tissue individually with neutrophils, macrophages, CD4+ T cells, and CD8+ T cells 
in each tissue). We plot these pairwise correlations using heatmaps (Supplementary Figure 2). 
We visualized a single cell type across all tissues for each deconvolution method using 
boxplots, sorted by the CIBERSORT-Absolute cell type score (Supplementary Figures 6-9).  

Lastly, we used t-SNE to visualize immune content within a single tissue type and 
identify whether any clusters exist. We used scatterplots to visualize the two components and 
colored each point (which represents a unique sample/individual) by measured CD8+ T cell 
content. 

Filtering infiltration phenotypes for statistical analysis 

To reduce the number of tests while focusing on informative phenotypes, we further limit 
our next analyses to cases where the cell type is abundant in the tissue/sample type and 
statistical methods could be reliably powered. We filter the tissue x cell type (infiltration) 
phenotypes to only those that have: 
(1) a sufficient sample size of N > 70 (matched genetic, expression, and covariate information) 
(similar to GTEx threshold) 
(2) consistent overall infiltration of immune cells in that tissue type (>50% of CIBERSORT 
relative deconvolutions have p < 0.50 (null hypothesis is that no immune cells from the 
reference are in the sample) (p = 0.50 observed previously19) 
(3) the specific immune cell type is a substantial part of the average immune content in that 
tissue (> 5% mean abundance in all CIBERSORT relative deconvolutions of the tissue) (>5% 
cutoff observed previously)19 
(4) CIBERSORT-Absolute and xCell scores do not disagree agree with each other (no 
significantly negative correlation) 

While we were interested in studying regulatory T cell infiltration, this cell type would not 
pass the 3rd filter and so was removed from analysis. This leaves a total of 73 tissue x cell type 
combinations, which we refer to as our infiltration phenotypes.  

Analyzing principal components of gene expression profiles 

Principal component analysis was performed on the processed gene expression matrix 
for each tissue separately. A linear regression analysis was fit between each infiltration 
phenotype and each of the first four principal components in that tissue (one-by-one). The p-
values across all models were adjusted using Benjamini & Hochberg’s false discovery rate 
(FDR) correction21. We then identified the minimum adjusted p-value for each infiltration 
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phenotype, from its individual comparisons with the first four principal components. We tested at 
FDR = 0.1. 

Differential expression analysis of extreme infiltration patterns 

Consensus clustering of samples was performed using the BioConductor package 
ConsensusClusterPlus62, modified with the fastcluster R package to obtain considerable speed-
up of results63, with 2,000 resampling cycles and k-means clustering with Euclidean distance. 
The most robust number of clusters was then selected for each tissue-cell pair. Within a given 
tissue-cell pair, clusters were assigned labels of “hot” or “cold” based on the mean estimate of 
sample scores for the cell type of interest. This procedure was applied independently to each of 
the xCell, Cibersort Absolute, and Cibersort Relative deconvolutions of the 73 tissue-cell pairs. 
Samples consistently identified as hot and cold across all 3 sets were taken as “consensus” hot 
and cold samples and considered for differential expression. 

Differential gene expression was performed between the consensus hot and cold 
samples for each tissue-cell pair using limma-voom64. To address class imbalance between the 
number of hot and cold samples, we required that there be at least 6 hot and 6 cold samples in 
each tissue-cell pair before proceeding with differential expression, for statistical reasons 
described previously65. This left 51 tissue-cell pairs with sufficient number of samples. 

Further, to account for covariate effects, we considered age (numeric; binned into 10-
year categories), sex (binary), death classification (categorical; 0, 1, 2, 3, 4), autolysis score 
(numeric), and sample collection site (categorical). Covariates were included in the design 
matrix if there were a minimum of 3 hot and 3 cold samples in each level of that covariate. 
However, if there were a single level of a covariate that did not feature hot samples, we required 
that there be no more than 5 cold samples for that level in order for the covariate to be included 
in the design matrix (Supplementary Table 3).  

43 of the 51 phenotypes featured differentially expressed genes at Benjamini-Hochberg 
adjusted P < 0.01 and log fold-change > 2.0, after adjustment for covariates and filtering of 
immune gene signatures used by the xCell and Cibersort deconvolution algorithms. Canonical 
pathways significantly enriched in the genes of interest were identified by Ingenuity Pathway 
Analysis.	

Multiple regression model for identifying age and sex associations  

A multiple linear regression model accounting for age (numerical; discrete, binned into 
10-year categories), sex (binary), death classification (categorical; 0, 1, 2, 3, 4), autolysis score 
(numerical), and sample collection site (categorical) covariates was fit for each phenotype to 
estimate age and sex effects (!). This was repeated for each of the deconvolution methods, and 
the p-values were combined using Empirical Brown’s method26. This method uses a covariance 
matrix to combine dependent p-values, allowing the incorporation of distinct analyses from each 
deconvolution method. As a final step, Benjamini & Hochberg’s false discovery rate (FDR) 
correction21 was applied to adjust all age-covariate p-values, then to separately adjust all sex-
covariate p-values. 
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Merging dependent p-values from three deconvolution score analyses 

The p-values from an analysis using CIBERSORT-Relative, CIBERSORT-Absolute, and 
xCell are all different (owing to separate scores) yet correlated (due to different methods at 
quantifying the measure). To calculate a single measure of significance from all three analyses, 
we used Empirical Brown’s method26. We calculate covariance matrices for each infiltration 
phenotype (eg. CD4+ T cells in sun exposed skin tissue, using both the CIBERSORT and the 
xCell scores) and employ Empirical Brown’s method to convert the three p-values into a single 
p-value. This framework allows incorporation of several different cell type estimation methods to 
capture unique infiltration patterns, before merging the results into single measures. The 
Empirical Brown’s method p-values are reported, but age and sex testing p-values were 
corrected using Benjamini & Hochberg’s false discovery rate (FDR) correction prior to assessing 
significance at " = 0.05. 

Dimensionality reduction of cellular heterogeneity in breast tissues 

To visualize differences in breast tissue heterogeneity, t-distributed stochastic neighbor 
embedding (t-SNE)66 was applied to the full (original) 64-cell type infiltration matrix from xCell. 

Pre-GWAS: genotype and phenotype processing 

Similar multiple regression models to the age/sex model were used for pre-analysis 
phenotype processing. This model contained identical covariates to those discussed previously, 
but also including the first three genotype-based principal components to control for any 
population stratification. Genotype-based principal component analysis was performed using the 
--pca function in plink67. Gene expression-based latent factors, such as PEER factors68, have 
been demonstrated to be a powerful approach to correct for unwanted noise and technical 
variation. However, as described previously, our gene expression-based principal components 
correlated strongly with deconvolution estimates. As a result, our gene expression-based 
principal components, which could drastically reduce statistical power and inflate false positive 
rates, were not included in the model. The model was used to calculate residuals, which were 
transformed into z-scores using a rank-inverse normal transformation as implemented in the 
GenABEL69 package in R. Genotypes were filtered by minor allele frequency (< 0.05), 
missingness (> 0.1), and Hardy-Weinberg Equilibrium p-values (<10-6). A total of 5.6 million 
SNPs remained for analysis. 

Genetic analysis and hypothesis testing 

We tested for associations between genome-wide variants and infiltration phenotypes 
using a simple linear regression model and the likelihood ratio test as implemented in 
GEMMA70. This was repeated for each deconvolution method, returning three p-values for each 
SNP’s relationship with each infiltration phenotype (cell type score in a tissue). The three p-
values were merged with the Empirical Brown’s method framework utilized previously in the age 
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and sex testing. All SNPs below a genome-wide threshold of 5.0 x 10-8 were considered 
significant. A separate study-wide significance threshold was determined by correcting for the 
number of infiltration phenotypes tested (73): P < 6.8 x 10-10. The relationship between raw gene 
expression and infiltration estimates were tested using a linear model. 

GeneMania 

GeneMania combines multiple biological databases with a weighted “guilt-by-
association” algorithm to add relevant genes to the query list and identify network edges 46. The 
first GeneMania network was constructed using only STAM2 as the query gene, adding up to 20 
additional genes and 10 functional attributes.  

For the second and larger network, ieQTLs (loci associated with an infiltration phenotype 
that are also GTEx eQTLs in that tissue) (GWAS catalog threshold: p < 10-5) were used to form 
a list of ieGenes (the target genes of ieQTLs). The list of genes (recorded in Supplementary 
Table 16) were uploaded to the GeneMania software to construct a network of the input genes. 
In this analysis, 15 relevant functional attributes were used to supplement 30 genes to the 
original query of 85 genes. ieGenes with no shared edges with any other ieGenes were 
removed. To quantitatively assess the connectivity of each newly added gene to the network, 
GeneMania computes a score which was used to rank and identify the most interconnected 
genes. 

Testing for eQTL enrichment in iQTLs across phenotypes 

iQTLs (P < 10-5; listed in Supplementary Table 17) were tested for over- or 
underrepresentation of tissue-specific eQTLs using two approaches. In the first approach, a 2x2 
table is created by assessing whether each SNP is a GTEx eQTL and whether each SNP is an 
iQTL (relaxed threshold: p < 10-5). A chi-square test was performed to test whether tissue-
specific eQTLs were distributed non-independently in the iQTL results for each phenotype.  

In the second approach, for each phenotype, we generated the list of N iQTLs and 
match each of the N variants with a list of similar variants, as determined by minor allele 
frequency (within 1%, as calculated using --freq in plink from all GTEx individuals’ genetic data) 
and the same number of variants in linkage disequilibrium (LD) (r2 > 0.2, as calculated in the 
1000 Genomes Phase I EUR genetic data71 and downloaded from Haploreg v430). (We note that 
the threshold requiring the number of variants in LD to be identical is relaxed to plus-minus five 
variants-in-LD when no such variants exist.) We use these lists to generate 100 permutations. 
For each permutation, we randomly sampled 1 matched SNP for each of the N iQTLs. From the 
list of N randomly sampled SNPs, we calculated the proportion of SNPs that are tissue-specific 
eQTLs. From these 100 permutations, we calculated 100 eQTL proportion measurements. We 
then calculated the mean proportion, which we refer to as q. We let x be the # iQTLs that eQTLs 
in that tissue (tissue-specific eQTLs). Lastly, we performed a two-sided binomial test with x 
equal to the number of successes, N equal to the number of trials, and q equal to the 
hypothesized probability of success. We tested the null hypothesis that the observed ieQTL 
proportion is significantly different than random sampling. This approach is summarized in 
Supplementary Figure 17. 
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