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Abstract

Despite infiltrating immune cells playing an essential role in human disease and the patient
response to treatment, the central mechanisms influencing variability in infiltration patterns are
unclear. Using bulk RNA-seq data from 53 GTEXx tissues, we applied cell-type deconvolution
algorithms to evaluate the immune landscape across the healthy human body. We first
performed a differential expression analysis of inflamed versus non-inflamed samples to identify
essential pathways and regulators of infiltration. Next, we found 21 of 73 infiltration-related
phenotypes to be associated with either age or sex (FDR < 0.1). Through our genetic analysis,
we discovered 13 infiltration-related phenotypes have genome-wide significant associations
(iQTLs) (P < 5.0 x 10®), with a significant enrichment of tissue-specific expression quantitative
trait loci in suggested iQTLs (P < 107°). We highlight an association between neutrophil content
in lung tissue and a variant near the CUX1 transcription factor gene (P = 9.7 x 10™""), which has
been previously linked to neutrophil infiltration, inflammatory mechanisms, and the regulation of
several immune response genes. Together, our results identify key factors influencing inter-
individual variability of specific tissue infiltration patterns, which could provide insights on
therapeutic targets for shifting infiltration profiles to a more favorable one.
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Introduction

Human immune systems vary dramatically across individuals, yet the environmental and
genetic determinants of this variability remain poorly characterized. Many studies have identified
genetic components and environmental stimuli that alter immune cell composition in peripheral
blood™®. However, normal tissues and organs also consist of diverse cell types, including
infiltrating immune cells. The variability in infiltration across individuals and between tissues has
not been documented and the mechanisms enabling such variation in baseline infiltration have
not been elucidated.

Identifying the genetic influences on specific patterns of infiltrating immune cells is
crucial to understanding disease biology. Beyond further explaining heritable manifestations of
infectious diseases and autoimmunity’®, such efforts can further uncover the drivers of
characteristic immune cell signatures in the tumor microenvironment that are prognostic for
cancer progression and predictive of treatment response’®. For example, response is improved
in patients with T cell-inflamed tumors compared to T cell-depleted tumors among patients
receiving immune checkpoint inhibitors targeting PD1 and CTLA4'%"" and among ovarian
cancer patients receiving chemotherapy'?. However, a complete mechanistic description
underlying immune-rich and immune-poor tumor phenotypes remains elusive.

Recent advances in computational methods have allowed reliable inference of the
heterogeneous cell types from gene expression data of a single population-level (bulk) tissue
sample™'°. At the same time, large-scale sequencing efforts such as the GTEx project'® have
enabled a detailed exploration of the links between genomic and transcriptomic variations
across different tissues. Together, these cell-type estimation methods can be utilized in synergy
with massive bulk sequenced data sets to infer cellular heterogeneity and achieve statistically
well-powered associations that intrinsically drive the heterogeneity'’"°.

In the present study, we aimed to evaluate the inherent immune infiltration landscape
across healthy tissues in the human body and to determine the intrinsic factors contributing to
the infiltration variability. Using bulk RNA-seq data from 53 distinct GTEXx tissue types, we
applied cell-type deconvolution algorithms to infer immune content and developed an analysis
framework to leverage information across methods for association testing. We identified
transcriptomic differences associated with extreme infiltration patterns by performing a
differential expression analysis of the immune-rich and immune-depleted samples?. We
discovered associations between donor characteristics such as age, sex, and germline genetic
variants with infiltration variability. We find that these genetic determinants are enriched for an
overlap with tissue-specific expression quantitative trait loci (eQTLs). Additionally, such genetic
variants can serve as leading candidates for understanding the basic biology behind infiltrating
immune cell patterns.
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Results

Robust estimation of immune cell types in bulk RNA-seq profiles.

To describe immune content from bulk RNA-seq samples, we used two central
algorithms: xCell"® and CIBERSORT. xCell relies on a modification of single sample gene-set
enrichment analysis to estimate cell type scores, while CIBERSORT employs a linear support
vector regression model. The default reference signatures allow deconvolution of 64 immune
and stroma cell types for xCell and 22 immune cell types for CIBERSORT. CIBERSORT also
calculates a scaling factor that measures the degree of infiltration. We refer to the relative
proportions from CIBERSORT as “CIBERSORT-Relative” and the product of the relative
proportions with the scaling factor as “CIBERSORT-Absolute”. We estimate three scores for
each cell type to describe the immune content from the gene expression data for each tissue in
each individual: xCell, CIBERSORT-Relative, and CIBERSORT-Absolute scores.

We first hypothesized that the relative and absolute scores from CIBERSORT
encapsulated different aspects of the single-cell deconvolution. While “CIBERSORT-Absolute”
simultaneously quantifies a degree of immune infiltration, “CIBERSORT-Relative” is focused on
capturing compositional changes in the immune content (Supplementary Note). We simulated
synthetic mixes composed of bulk tissue “spiked” in silico with CD4+ T cells and CD8+ T cells
(see Methods). We correlated the known amount of CD4+ and CD8+ T cell infiltration in these
mixtures with estimated deconvolution scores under a “tissue” scenario and an “immune cell”
scenario. In the “immune cell” scenario, we let the true infiltration be the proportion of each cell
type to the total immune content. In the “tissue” scenario, the true infiltration amount is the
proportion of each cell type to the entire sample. As expected, we found that CIBERSORT-
Relative to more accurately estimate the infiltration amounts of the in silico mixtures than
CIBERSORT-Absolute in the “immune cell” scenario, while the reverse was true in the “tissue”
scenario (Supplementary Table 1). However, in both scenarios, the CIBERSORT method
resulted in strong correlations between deconvolution scores and the true amount of infiltration
(r=0.64-0.89).

We also compared the CIBERSORT performance to xCell. Since xCell is an enrichment-
based algorithm, not a deconvolution algorithm, it is not recommended for comparing scores
between cell types. As a result, xCell scores correlated well in the “tissue” scenario (r=0.90
with CD4+ T cells, r = 0.96 with CD8+ T cells) but worse in the “immune cell” scenario (r = 0.65
with CD4+ T cells, r = 0.45 with CD8+ T cells), even after normalization (Supplementary Table
2). We also found that xCell had imperfect correlation with CIBERSORT-Absolute scores (CD8:
r=0.58, CD4: r = 0.86). Therefore, these results indicate that each method provides interesting
information to be exploited in downstream analysis.
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Evaluating infiltration across human tissues by using deconvolution.

Our first objective was to deconvolute cellular heterogeneity from bulk RNA-seq GTEX
samples and examine the immune infiltration profile. The v7 GTEX release consists of 11,688
samples, spanning 53 different tissues/sample types from 714 donors'®. We performed
comprehensive deconvolution of these samples using our three methods (xCell, CIBERSORT-
Relative, and CIBERSORT-Absolute) and focused most of our analyses on CD4+ T cells, CD8+
T cells, macrophages, and neutrophils (Figure 1a; Supplementary Note).

To obtain a global overview of heterogeneity in immune composition, we performed
hierarchical clustering of the tissues based on the medians of each immune cell type (see
Methods) (Figure 1b). Across the 3 methods, many of the nearest-neighbor pairings were
consistent and recapitulated relationships between tissues that share high degrees of histologic
similarity and immune infiltration (Supplementary Note; Supplementary Figures 4-5). In our
analysis of macrophage content across tissues, we found the highest scores (CIBERSORT-
Absolute) to be in lung, spleen, and adipose tissue (Figure 1c). High levels of macrophages,
especially uncommitted MO and anti-inflammatory M2 macrophages, were found in lung tissues
(Figure 1b). We discuss other interesting observations comparing infiltration patterns between
tissues in the Supplementary Note (Supplementary Figures 6-9).

Importantly, we found large variability between different individuals in a single tissue
type. Many tissues featured a majority of samples with trace immune enrichment, but these
tissues also contain several samples with significantly higher estimated immune content
(Supplementary Figures 6-9). Interestingly, t-SNE visualizations of estimated immune content
within a tissue type did not reveal distinct clusters of samples (Supplementary Figure 10).
Therefore, it appears that healthy individuals have highly variable infiltration patterns,
suggesting that the differences could be driven by a range of genetic and non-genetic factors
(such as age, sex, or environmental exposures). We aimed to identify transcriptomic
associations with infiltration through a differential expression analysis of grouped immune-
enriched (inflamed) vs immune-depleted (non-inflamed) tissue samples, and we aimed to
identify genetic effects through a genome-wide association study (GWAS) analysis of immune
content. Through a carefully designed filtering procedure, we focus our analysis on a limited set
of 73 infiltration phenotypes that represent immune cell type scores in a tissue (tissue-by-cell
type pairs) (see Methods).

Lastly, we were interested in whether infiltration signatures explain substantial variance
of gene expression calculated in bulk assays. We performed a principal component analysis of
the processed gene expression matrix within each tissue, before assessing the pairwise
relationship between the first four principal components and the 73 infiltration phenotypes using
CIBERSORT-Absolute scores. Even after a Benjamini-Hochberg false discovery rate (FDR)
correction?’, we found that all but one infiltration phenotype was significantly correlated with at
least one principal component (FDR < 0.1), indicating that bulk gene expression measurements
are significantly confounded by cellular heterogeneity (Supplementary Table 9).
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Figure 1: Immune content across the human body. (a) Human body overlaid with GTEx tissues colored by the degree of immune infiltration, as
estimated by the scaling factor from CIBERSORT-Absolute. (b) Hierarchical clustering of GTEx tissues according to immune content (estimated

by CIBERSORT-Absolute). Heatmap displays cell type median scores, with upper bound set to 0.5. (c) Macrophage content across tissues
Scores estimated by CIBERSORT-Absolute and sorted. (d) Differential immune content between “hot” and “cold” clusters of the 43 infiltration

phenotypes for which DEGs could be identified
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Identification and characterization of extreme infiltrating immune cell
patterns

We then searched for genes preferentially expressed in immune cell type rich (hot)
versus immune cell type depleted (cold) cases. For each tissue type, we used consensus k-
means clustering to identify hot and cold cases for each cell type (Supplementary Table 3;
Figure 1d). We then performed a differential gene expression analyses between corresponding
hot and cold cases for each cell type. These identified differentially expressed genes (DEGs)
may partially explain tissue-specific heterogeneity in baseline immune infiltration.

Overall, we identified DEGs for 43 of the infiltration phenotypes which passed our
statistical thresholds (log FC >= 2.0, FDR < 0.01; see Methods). Across the 10 CD8+ T cell, 9
CD4+ T cell, 21 macrophage, and 3 neutrophil phenotypes tested, we expected and found that
the most common DEGs consisted of well-known markers of the corresponding immune cell
types (Supplementary Table 5). For example, the most consistent DEGs across macrophage-
hot clusters are macrophage markers utilized by the xCell and CIBERSORT algorithms for
estimating macrophage content: C1QB (18/21 tissues), VSIG4 (17/21), MARCO (17/21), and
CD163 (16/21). Interestingly, the most common DEGs not present in the deconvolution
reference gene sets includes C1QC (16/21) and FCGR3A (16/21), which correspond to
complement component and immunoglobulin Fc receptor, and have well-characterized roles in
opsonization ?*%3, We then used the DEGs and Ingenuity Pathway Analysis (IPA) to identify
dysregulated pathways, discover key upstream regulators, and find central disease and function
ontologies (Supplementary Table 6, 7, 8). In our macrophage phenotypes, the most commonly
dysregulated pathways were TREM1 signaling, which is an amplifier of macrophages
inflammation®*, and antigen-presenting cell maturation (Supplementary Table 6). The most
frequent upstream regulator predicted to be activated by IPA in the macrophage-hot clusters
was TGM2, while TFRC (transferrin receptor) was the most commonly inhibited as predicted by
IPA (Supplementary Table 7). The latter finding may be linked to the role of macrophages in
sequestering iron during inflammatory states?. Disease and function ontologies indicated that
the most commonly activated pathways in macrophage-hot samples were associated with
leukocyte and lymphocyte migration (Supplementary Table 8). We describe the results across
the T cell and neutrophil phenotypes in Supplementary Note).

Finally, we used our immune-hot clusters (eg. macrophage-hot) to examine whether individuals
with inflammation in one tissue type may also exhibit similar inflammation in their other tissue
types. Here, we report inconsistent inflammation patterns across distinct tissue types within the
same individual (mode = 1 tissue per individual for each cell type) (Supplementary Figure 11).
Therefore, we reflected that infiltration patterns are likely tissue-specific, rather than widespread.
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Association of age and sex with immune infiltration.

We next aimed to examine whether there are any associations of age or sex with
immune infiltration. We adopted a multiple regression approach to measure age and sex effects
across all infiltration phenotypes. This was repeated for each of the deconvolution procedures,
and we merged p-values across all three by using Empirical Brown’s method®® (see Methods).

We observed that 21 of 73 infiltration phenotypes were significantly associated with
either age or sex (Table 1). While similar numbers of sex and age associations were identified
(phenotypes with FDR < 0.1: 12 for age, 13 for sex), we found the most significant associations
were increased T cell content in female breast tissue compared to male (Sex-CD8+ T cell
association: P = 5.4 x 1034 (Figure 2a); sex-CD4+ T cell associations: P = 3.2 x 10). In female
samples, we observed significant heterogeneity, with several samples having no CD8+ T cell
content detected and others having high predicted CD8+ T cell content (Figure 2a). The distinct
contrast between female and male breast tissue could drive these immune differences, with
male tissue predominantly lacking the lobular elements?’ and temporal changes of females that
are associated with T cells® (Supplementary Note). However, the key drivers of this variability
pattern remain unclear.

The most significant association with age is CD4+ T cells in tibial artery tissue (P = 1.3 x
10®) (Figure 2b). We noted that 4/5 tested infiltration phenotypes from tibia area (exception:
macrophage content in tibial nerve samples) had increased immune cell scores with age. In
comparison, only 1/6 phenotypes in artery tissue from other body areas showed significant
infiltration patterns with age (CD4+ T cells content in arterial aorta samples). Again, the reasons
for these localized associations are unclear.
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Association of genetic variants with infiltrating immune cells.

We next searched for particular inherited genetic variants that could influence the
variability of infiltration patterns. We refer to germline single nucleotide polymorphisms (SNPs)
associated with the infiltration of a cell type in a tissue as infiltration quantitative trait loci
(iIQTLs). Using the Empirical Brown’s testing framework across 73 infiltration phenotypes, we
discovered 13 infiltration phenotypes with at least one genome-wide significant iQTL (P < 5.0 x
10®) and 2 phenotypes with at least one study-wide significant iQTL (P < 6.8 x 107°) (Table 2)
(see Methods).

The most significant IQTL we identified was an association between rs77155650 and
neutrophil content in lung samples (P = 9.7 x 107" (Figure 2c-d) (Supplementary Note). The
variant lies 76 kb from the transcription factor CUX1, in a potentially active regulatory region of
the non-coding genome that overlaps enhancer histone marks across most cell types and
overlaps promotor histone marks and DNAse sites in some cell types®=°. The DNA binding
activity of the CUX1 protein product has been previously linked with neutrophil infiltration3'32
and the regulation of multiple immune response genes® (F2RL13*3% IL1A, MMP10%3, and
COX2%+3%) (Supplementary Note). In the GTEx lung samples, we found that CUX1 expression in
the lung samples correlated significantly with neutrophil infiltration (P = 4.5 x 10*) (Figure 2e).
Potentially, the rs77155650 polymorphism could interact with CUX-1 DNA binding and the
regulation of immune response genes in inflammation processes.

The second study-wide significant iQTL we discovered was an association between
rs116827016 and macrophage infiltration in tibial artery tissue (P = 3.86 x 107°) (Table 2; Figure
2f-g) (Supplementary Note). This SNP has not been identified as an eQTL in any tissue within
the GTEXx consortium analyses'®, but has been commonly associated as an eQTL for KCTD10
expression in whole blood (eQTLGen meta-analysis p-value = 5.7 x 10%)*°. We discovered a
significant correlation between the KCTD 10 expression in the GTEX tibial artery samples with
the macrophage phenotype (P = 3.2 x 107'®) (Figure 2h). We analyzed KCTD10 expression
across tissues and found that expression is highest in tibial artery samples (Supplementary
Figure 13), and the expression-infiltration association is driven by increased macrophages in
low KCTD10-expressed samples (Figure 2h). Functional studies of KCTD10 and its paralog
TNFAIP1 have linked both to inflammation-associated angiogenesis*'*?, so its possible that the
rs116827016 haplotype alters immune response within the vascular system through changes in
KCTD10 expression (Supplementary Note).

Variants already associated with gene expression allow inference into functional roles.
Thus, we were next interested in identifying whether there were expression quantitative trait loci
(eQTLs) from the GTEx consortium analysis'® that were also iQTLs (ieQTLs). We found that 2
infiltration phenotypes had ieQTLs surpassing genome-wide significance (P < 5.0 x 10®) (Table
2).

Our third most significant iQTL association (and most significant ieQTL association), the
rs11883564 locus with CD4+ T cells content in sun exposed skin tissues (P = 4.2 x 107),
overlapped with a significant association for STAM2 gene expression'® (Table 2; Figure 2i-j).
STAM?2 is essential for T-cell development*® and the rs11883564 haplotype has been
associated with alopecia areata response to chemotherapy in breast cancer patients*. Alopecia
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Figure 2: Significant associations with infiltrating immune cell patterns. (a) shows sex association with CD8+ T cell content in breast tissue
samples. (b) shows age association with CD4+ T cell content in tibial artery samples. (c-e) relates to the genetic analysis of neutrophil content

in lung tissue samples, (f-h) is macrophage content in tibial artery tissue, and (i-k) concerns the CD4+ T cell content in sun exposed skin tissue.
The leftmost of these plots are genome-wide QQ-plots of Empirical Brown’s p-values, the middle plots reflect genotype-phenotype association
plots (using CIBERSORT — Absolute residuals), and the rightmost plots are eGene expression-phenotype association plots of the significant iQTL
(using estimated scores from CIBERSORT — Absolute), split into quartiles of gene expresson.
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areata is an autoimmune disease characterized by hair loss from infiltrating T cells*®. We also
discovered significant correlation between STAMZ2 gene expression and the CD4+ T cell
signature in skin tissue (p = 7.2 x 10°%; Figure 2k). Genetic network analysis of STAM2 revealed
an integral role in immune regulation pathways (Supplementary Figure 14, Supplementary Note,
see Methods).

Downstream analysis of genetic results

Next, we systematically tested for an enrichment of tissue-specific expression QTLs in
the most significant SNPs from our genetic analysis. We first relaxed our iQTL threshold to the
GWAS catalog cut-off by querying all genetic associations with p < 10 to represent our “top
hits” and developed two complementary approaches for testing over- or underrepresentation of
tissue-specific eQTLs (see Methods). Both approaches converged in showing significant
enrichment of tissue-specific eQTLs in the top hits for many phenotypes (Figure 3;
Supplementary Figure 15) (Supplementary Note). We note that directionality is unclear when
SNPs are both iQTLs and eQTLs. These SNPs could independently alter immune content and
expression levels, but it is also likely that differences in expression levels drive changes in
infiltration patterns. Similarly, it is likely that cellular heterogeneity differences (from infiltration
effects) underlie many eQTL associations.

To attempt to draw functional conclusions from our genetic results, we used the gene
expression associations from our ieQTLs. We constructed a GeneMania network*® by forming a
list of ieGenes (genes whose expression is associated with the variant, as determined from
GTEXx analysis'®) from ieQTLs with our relaxed iQTL threshold p < 10° (GWAS catalog cut-off).
We queried 85 genes, building a network of 115 total genes with 15 functional attributes and 30
additional genes (Supplementary Figure 16). We found that this network was enriched for
pyrimidine biosynthesis and DNA repair functions (Supplementary Table 12). These functions
help maintain healthy DNA, which is crucial for normal function and cancer avoidance. We
discovered that the most interconnected added genes were involved in pyrimidine biosynthesis,
transcriptional mechanisms, epigenetic remodeling, and immune-related disorders
(Supplementary Note). Lastly, GeneMania identified a 9.55% weighting enrichment between
network nodes to the Gasdermin protein domain, as collected in InterPro*’. Gasdermin is
required for recognizing foreign material and pathogens to induce IL-1 for recruiting immune
cells***°_ In summary, our GeneMania network highlights central mechanisms controlling the
immune environment.

Lastly, we analyzed whether iQTLs commonly displayed pleiotropic effects. We found
that almost all iQTLs were associated with only a single cell type in a single tissue type under a
p < 10 threshold (Supplementary Table 13). We also found that 3/176 ieGenes from ieQTLs
(using the relaxed p < 10 threshold) were phenotype-specific (Supplementary Table 14;
Supplementary Figure 17).
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Table 2: Genome-wide significant variant associations (P <5 x 102) for the 73 tested infiltration phenotypes. For each phenotype, only

the most significant SNP is listed. The association g-values and whether the significant SNP is a GTEx eQTL in that tissue is also listed.

Chromosome and position are reference genome build 37.

Enrichment of tissue-specific eQTLs in top GWAS hits ( p < 107° )

Fewer eQTLs than expected

® Greater eQTLs than expected

(d)o+Bol -

0O-qe

Tissue and Immune Cell Type

Figure 3: eQTL enrichment in iQTLs. Test 1 chi-square p-values across all infiltration phenotypes, colored by whether eQTLs are over-

represented (red) or under-represented (blue) in the iQTLs.
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Discussion

The GTEXx consortium project enabled an analysis of transcriptomic variation across
diverse human tissues, and the discovery of association between that variation and genetic
polymorphisms. With the development of computational algorithms that can deconvolute the
cellular heterogeneity underlying bulk RNA-seq data, the GTEx data sets could be utilized to
evaluate the baseline immune landscape across the human body. This quantification of immune
cells from bulk RNA-seq should become standard in many bulk RNA-seq analyses. Additionally,
we observed that population-level gene expression values are strongly affected by infiltrating
immune cells through a principal component-based correlation analysis, implying that measures
of infiltration should be considered in downstream analyses of bulk expression data.

We also developed frameworks to leverage information across multiple cell-type
estimation methods and capture differences in deconvolution methods. An individual cell-type
estimation method has imperfect correlation with the true scores and other computational
methods, likely due to the selected markers and cell types in the reference set inducing certain
biases. Thus, we increased our confidence in downstream analyses by incorporating results
from multiple deconvolution algorithms, and demonstrated convergence on plausible, significant
results while maintaining low false positive rates in large genomic analyses.

We also note that in the clinic, the relative ratio of CD4:CD8+ T cells is a blood test
marker to monitor the health of the immune system®®, which can be better captured by relative
estimates of infiltration. Our demonstration of heterogeneous infiltration profiles across tissues
suggests that deconvolution methods can potentially be used to derive an expanded set of
biomarkers to assess immunologic health across a variety of organs.

Importantly, we demonstrated substantial variability in immune content across
individuals within a number of different tissue types. Inspired by efforts to characterize the
heterogeneity of tumor immune landscapes, we engaged in an endeavor to discretize clusters of
individuals based on their tissue infiltration®*"°2, We were able to successfully show strong
separability of immune content in hot clusters compared to cold ones across most phenotypes,
and used these clusters to discover that the strongest DEGs revealed essential functions,
pathways, and upstream regulators. Furthermore, we identified genetic loci associated with
immune infiltration that could pose as future clinical markers to guide patient stratification. In
cancer, the infiltration profile may be driven by not only new somatic mutations but also pre-
existing germline variants. Since the immune signature in the tumor microenvironment is highly
correlated with the response to treatments such as immunotherapy, germline variants could
enhance predictive modeling of response and reveal novel therapeutic targets for shifting
infiltration profiles to a more favorable one. Previous studies demonstrated that cancer cells
maintain chromatin structure from the tissue-of-origin, so it is possible that germline iQTLs have
conserved infiltration effects in the cancer cells®. If this were the case, then functional
experiments could be a promising avenue for developing medicines to shift infiltration patterns.
Overall, understanding a personalized baseline immune response from genetics would enhance
the interpretation of immune presence in the tumor microenvironment.

An important area of future research is to test associations between somatic mutation
burden and immune infiltration estimates in healthy tissues. Recent research performed using
the GTEx database has shown that genetically distinct non-cancerous subclonal populations
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may arise in healthy tissues, akin to the phenomenon of clonal hematopoiesis of indeterminate
potential in blood cells®. We saw a significant increase of T cell content in female breast and
thyroid tissues compared to males. Immune response may correlate with somatic mutation
detection, and it would be interesting to evaluate whether differential immune content between
males and females is driven by sex-differential somatic clonal mutations which could eventually
promote cancer. In parallel, the epidemiological differences between males and females in
developing breast and thyroid cancer is striking: of breast cancer, there are 100 times more
cases in females compared to males, and of thyroid cancer, there are nearly 3 times as many
cases in females compared to males®. Further investigation could provide improved
understanding of the increased female disease incidence.

Lastly, we note that superior computational algorithms for cell-type estimation are still
needed, as well as larger and better annotated data sets. The algorithms we used are limited to
inference of single-cell compositional information and do not infer a cell’s molecular signatures,
where dysregulation may be even more informative®. While single-cell sequencing can provide
a more intricate and accurate perspective of the infiltrating immune cells, single-cell studies
have not been scaled large enough to understand the genetic basis of infiltration patterns. Even
with bulk sequencing, the sample sizes examined in our study are limited and must be
expanded. We limited our statistical genetic analysis to tissues having greater than 70 samples
with matched genotype and phenotype information, and the maximum tissue type had 361
samples. At this sample size, we can only detect the largest of genetic effects. If infiltration is a
widely polygenic trait, then increased sample size is necessary to dissect the genetic
architecture of inter-individual differences in infiltration. Similarly, larger sample sizes will allow
potential detection of tissue-specific immunomodulatory genes in our hot-cold analysis. Finally,
it would enable improved assessment of infiltration pleiotropy. In our study, our identified genetic
variants were rarely associated with multiple immune infiltration phenotypes. This implies that
the genetics of infiltration differs depending on the tissue of interest and the expression patterns
in that tissue, and that down-regulation of one tissue’s key functional genes within another
tissue could create a completely separate genetic variation network that leads to infiltration.
However, a larger dataset is necessary to ascertain how tissue-specific the genomics of
infiltration patterns are.
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Methods

GTEx data

Processed gene expression profiles from the GTEx v7 data release were downloaded
from the GTEx data portal. Genotype data and raw fastq reads are from the GTEXx v6 release,
and were downloaded from dbGAP.

Deconvolution of bulk RNA-seq profiles

To deconvolute bulk RNA-seq profiles into single-cell scores, we used CIBERSORT-
Relative, CIBERSORT-Absolute, and xCell. CIBERSORT outputs were generated using 1000
permutations and quantile normalization disabled. Since xCell scores are generated by
assessing relative variability between all input samples, the scores were generated separately
for each tissue type. This allows better sensitivity to within-tissue cellular variability without
substantial confounding from between-tissue variability, which was proven by our testing of
xCell on synthetic mixes (Supplementary Table 2). Each cell type by tissue type combination is
considered an infiltration phenotype.

Simulating “immune-spiked” synthetic mixes

To generate “immune-spiked” synthetic mixes, we hand-selected one sigmoid colon
GTEx sample (GTEX-XXEK-1826-SM-4BRVC) and one sun-exposed skin GTEx sample
(GTEX-WFON-2126-SM-3LK70) from the v6 release. Both these samples were identified by
applying CIBERSORT-Absolute to all GTEx samples and identifying samples with the lowest
detected presence of infiltrated immune cells (high CIBERSORT p-values, low cell scores).
Using 5 different CD4+ T cell references and 5 different CD8+ T cell references (Supplementary
Table 15 for SRA), we designed 90 synthetic mixes which contained 80-95% reads sampled
from one of the GTEx samples and 5-20% of the reads sampled from the T cell samples. There
were four different simulation types: (1) only CD4+ T cells infiltration as 5-20% of the sample,
(2) only CD8+ T cells infiltration as 5-20% of the sample, (3) both CD4+ and CD8+ T cells
infiltration in equal proportions as 5-20% of the sample, and (4) CD4+ and CD8+ T cells
infiltration but in unequal proportions (2:3 and 1:4 ratios as 5-20% of the sample). Half the
simulations were created using 1 CD4+/CD8+ reference and half with 5 CD4+/CD8+ references
(cellular heterogeneity versus no heterogeneity). Both the colon and skin samples represented
half the simulations, and the skin and colon samples were not part of any of the same synthetic
mixes. The different immune samples used and their relative proportions across the 90 synthetic
mixtures generated is outlined in Supplementary Table 15.

The bulk tissue and immune samples were aligned to the GRCh38 reference genome
using STAR® and sorted with samtools®®. The number of reads in each sample were measured
using samtools idxstats, then downsampled to the desired library size using samtools view with
the -s flag and the specified percentage of total reads. Next, the resulting bam files containing
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the downsampled bulk and immune reads were merged using bamtools merge to create a
single synthetic mixture bam file®°.

Generating TPM gene measurements from the synthetic mixes

RNAseq samples were quantified with the Gencode gene annotation reference (V22 release).
Aligned reads were then quantified for gene expression in terms of TPM and FPKM using
StringTie®.

Empirical evaluation of CIBERSORT relative vs absolute outputs

To empirically compare CIBERSORT relative and absolute scores, we calculated the
true amount of infiltration as two separate measures: “tissue” and “immune cell”. In the former,
true amount of infiltration is calculated as the percent of reads from the immune cell type in the
entire sample. In the latter, the true amount of infiltration is calculated as the percent of reads
from the immune cell type in the immune content of the sample.

CIBERSORT was used to compute relative and absolute deconvolution scores of all
synthetic mixes. All scores, regardless of generation process, were correlated with the true
amount of infiltration in both the “tissue” and “immune cell” scenarios to quantitatively assess
the differences.

Merging cell subtype estimates into single scores

The CD4+ T cells category for CIBERSORT outputs reflects the sum of the “T cells CD4
naive”, “T cells CD4 memory resting”, and “T cells CD4 memory activated” categories that are a
part of the given LM22 reference matrix in CIBERSORT. The CIBERSORT “Macrophage”
category represents the sum of the “Macrophages M0”, “Macrophages M1”, and “Macrophages
M2” categories in the LM22 matrix. For the xCell analyses, CD4+ T cell scores were calculated
by summing the scores from “CD4+ memory T-cells”, “CD4+ naive T-cells”, “CD4+ T-cells”,
“‘CD4+ Tcm”, and “CD4+ Tem”. Macrophage scores were calculated using “Macrophages”,
“Macrophages M1”, and “Macrophages M2”. Lastly, CD8+ T cell xCell scores were calculated by
summing “CD8+ naive T-cells”, “CD8+ T-cells”, “CD8+ Tcm”, and “CD8+ Tem”.

Visualizing cellular heterogeneity estimates across GTEXx

Dendrograms representing the degree of similarity in immune composition across the 48
tissues in the GTEx dataset with at least 70 samples were generated for each of the 3
deconvolution methods. For each method, the median value of estimated immune content for
each cell type was computed within each tissue. For the xCell deconvolution, 34 immune cell
types were used, and for both Cibersort Absolute and Relative, 22 cell types were used. The
heatmaps were drawn in R using pheatmap®’, with Euclidean distance metric and with the


https://doi.org/10.1101/614305
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/614305; this version posted April 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

“‘complete” linkage method. The xCell, Cibersort Absolute, and Cibersort Relative plots used
maximal values of 0.05, 0.5, and 0.3, respectively.

We plot the mean cell type score across all tissues, separately for each deconvolution
method, in heatmaps sorted by the mean CIBERSORT-Absolute scores for neutrophils,
macrophages, CD4+ T cells, and CD8+ T cells (Supplementary Figure 1). We compute pairwise
correlations between all tissue x cell type phenotypes (eg. compare CD4+ T cells in sun
exposed skin tissue individually with neutrophils, macrophages, CD4+ T cells, and CD8+ T cells
in each tissue). We plot these pairwise correlations using heatmaps (Supplementary Figure 2).
We visualized a single cell type across all tissues for each deconvolution method using
boxplots, sorted by the CIBERSORT-Absolute cell type score (Supplementary Figures 6-9).

Lastly, we used t-SNE to visualize immune content within a single tissue type and
identify whether any clusters exist. We used scatterplots to visualize the two components and
colored each point (which represents a unique sample/individual) by measured CD8+ T cell
content.

Filtering infiltration phenotypes for statistical analysis

To reduce the number of tests while focusing on informative phenotypes, we further limit
our next analyses to cases where the cell type is abundant in the tissue/sample type and
statistical methods could be reliably powered. We filter the tissue x cell type (infiltration)
phenotypes to only those that have:

(1) a sufficient sample size of N > 70 (matched genetic, expression, and covariate information)
(similar to GTEXx threshold)

(2) consistent overall infiltration of immune cells in that tissue type (>50% of CIBERSORT
relative deconvolutions have p < 0.50 (null hypothesis is that no immune cells from the
reference are in the sample) (p = 0.50 observed previously')

(3) the specific immune cell type is a substantial part of the average immune content in that
tissue (> 5% mean abundance in all CIBERSORT relative deconvolutions of the tissue) (>5%
cutoff observed previously)'®

(4) CIBERSORT-Absolute and xCell scores do not disagree agree with each other (no
significantly negative correlation)

While we were interested in studying regulatory T cell infiltration, this cell type would not
pass the 3rd filter and so was removed from analysis. This leaves a total of 73 tissue x cell type
combinations, which we refer to as our infiltration phenotypes.

Analyzing principal components of gene expression profiles

Principal component analysis was performed on the processed gene expression matrix
for each tissue separately. A linear regression analysis was fit between each infiltration
phenotype and each of the first four principal components in that tissue (one-by-one). The p-
values across all models were adjusted using Benjamini & Hochberg’s false discovery rate
(FDR) correction?®'. We then identified the minimum adjusted p-value for each infiltration
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phenotype, from its individual comparisons with the first four principal components. We tested at
FDR=0.1.

Differential expression analysis of extreme infiltration patterns

Consensus clustering of samples was performed using the BioConductor package
ConsensusClusterPlus®?, modified with the fastcluster R package to obtain considerable speed-
up of results®®, with 2,000 resampling cycles and k-means clustering with Euclidean distance.
The most robust number of clusters was then selected for each tissue-cell pair. Within a given
tissue-cell pair, clusters were assigned labels of “hot” or “cold” based on the mean estimate of
sample scores for the cell type of interest. This procedure was applied independently to each of
the xCell, Cibersort Absolute, and Cibersort Relative deconvolutions of the 73 tissue-cell pairs.
Samples consistently identified as hot and cold across all 3 sets were taken as “consensus” hot
and cold samples and considered for differential expression.

Differential gene expression was performed between the consensus hot and cold
samples for each tissue-cell pair using limma-voom®*. To address class imbalance between the
number of hot and cold samples, we required that there be at least 6 hot and 6 cold samples in
each tissue-cell pair before proceeding with differential expression, for statistical reasons
described previously®. This left 51 tissue-cell pairs with sufficient number of samples.

Further, to account for covariate effects, we considered age (numeric; binned into 10-
year categories), sex (binary), death classification (categorical; 0, 1, 2, 3, 4), autolysis score
(numeric), and sample collection site (categorical). Covariates were included in the design
matrix if there were a minimum of 3 hot and 3 cold samples in each level of that covariate.
However, if there were a single level of a covariate that did not feature hot samples, we required
that there be no more than 5 cold samples for that level in order for the covariate to be included
in the design matrix (Supplementary Table 3).

43 of the 51 phenotypes featured differentially expressed genes at Benjamini-Hochberg
adjusted P < 0.01 and log fold-change > 2.0, after adjustment for covariates and filtering of
immune gene signatures used by the xCell and Cibersort deconvolution algorithms. Canonical
pathways significantly enriched in the genes of interest were identified by Ingenuity Pathway
Analysis.

Multiple regression model for identifying age and sex associations

A multiple linear regression model accounting for age (numerical; discrete, binned into
10-year categories), sex (binary), death classification (categorical; 0, 1, 2, 3, 4), autolysis score
(numerical), and sample collection site (categorical) covariates was fit for each phenotype to
estimate age and sex effects (B). This was repeated for each of the deconvolution methods, and
the p-values were combined using Empirical Brown’s method®®. This method uses a covariance
matrix to combine dependent p-values, allowing the incorporation of distinct analyses from each
deconvolution method. As a final step, Benjamini & Hochberg’s false discovery rate (FDR)
correction?' was applied to adjust all age-covariate p-values, then to separately adjust all sex-
covariate p-values.
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Merging dependent p-values from three deconvolution score analyses

The p-values from an analysis using CIBERSORT-Relative, CIBERSORT-Absolute, and
xCell are all different (owing to separate scores) yet correlated (due to different methods at
quantifying the measure). To calculate a single measure of significance from all three analyses,
we used Empirical Brown’s method?. We calculate covariance matrices for each infiltration
phenotype (eg. CD4+ T cells in sun exposed skin tissue, using both the CIBERSORT and the
xCell scores) and employ Empirical Brown’s method to convert the three p-values into a single
p-value. This framework allows incorporation of several different cell type estimation methods to
capture unique infiltration patterns, before merging the results into single measures. The
Empirical Brown’s method p-values are reported, but age and sex testing p-values were
corrected using Benjamini & Hochberg'’s false discovery rate (FDR) correction prior to assessing
significance at o = 0.05.

Dimensionality reduction of cellular heterogeneity in breast tissues

To visualize differences in breast tissue heterogeneity, t-distributed stochastic neighbor
embedding (t-SNE)® was applied to the full (original) 64-cell type infiltration matrix from xCell.

Pre-GWAS: genotype and phenotype processing

Similar multiple regression models to the age/sex model were used for pre-analysis
phenotype processing. This model contained identical covariates to those discussed previously,
but also including the first three genotype-based principal components to control for any
population stratification. Genotype-based principal component analysis was performed using the
--pca function in plink®’. Gene expression-based latent factors, such as PEER factors®®, have
been demonstrated to be a powerful approach to correct for unwanted noise and technical
variation. However, as described previously, our gene expression-based principal components
correlated strongly with deconvolution estimates. As a result, our gene expression-based
principal components, which could drastically reduce statistical power and inflate false positive
rates, were not included in the model. The model was used to calculate residuals, which were
transformed into z-scores using a rank-inverse normal transformation as implemented in the
GenABEL® package in R. Genotypes were filtered by minor allele frequency (< 0.05),
missingness (> 0.1), and Hardy-Weinberg Equilibrium p-values (<107). A total of 5.6 million
SNPs remained for analysis.

Genetic analysis and hypothesis testing

We tested for associations between genome-wide variants and infiltration phenotypes
using a simple linear regression model and the likelihood ratio test as implemented in
GEMMA'®. This was repeated for each deconvolution method, returning three p-values for each
SNP’s relationship with each infiltration phenotype (cell type score in a tissue). The three p-
values were merged with the Empirical Brown’s method framework utilized previously in the age
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and sex testing. All SNPs below a genome-wide threshold of 5.0 x 10 were considered
significant. A separate study-wide significance threshold was determined by correcting for the
number of infiltration phenotypes tested (73): P < 6.8 x 107'°. The relationship between raw gene
expression and infiltration estimates were tested using a linear model.

GeneMania

GeneMania combines multiple biological databases with a weighted “guilt-by-
association” algorithm to add relevant genes to the query list and identify network edges “6. The
first GeneMania network was constructed using only STAMZ2 as the query gene, adding up to 20
additional genes and 10 functional attributes.

For the second and larger network, ieQTLs (loci associated with an infiltration phenotype
that are also GTEx eQTLs in that tissue) (GWAS catalog threshold: p < 10°) were used to form
a list of ieGenes (the target genes of ieQTLs). The list of genes (recorded in Supplementary
Table 16) were uploaded to the GeneMania software to construct a network of the input genes.
In this analysis, 15 relevant functional attributes were used to supplement 30 genes to the
original query of 85 genes. ieGenes with no shared edges with any other ieGenes were
removed. To quantitatively assess the connectivity of each newly added gene to the network,
GeneMania computes a score which was used to rank and identify the most interconnected
genes.

Testing for eQTL enrichment in iQTLs across phenotypes

iQTLs (P < 107, listed in Supplementary Table 17) were tested for over- or
underrepresentation of tissue-specific eQTLs using two approaches. In the first approach, a 2x2
table is created by assessing whether each SNP is a GTEx eQTL and whether each SNP is an
iIQTL (relaxed threshold: p < 10°). A chi-square test was performed to test whether tissue-
specific eQTLs were distributed non-independently in the iQTL results for each phenotype.

In the second approach, for each phenotype, we generated the list of NiQTLs and
match each of the N variants with a list of similar variants, as determined by minor allele
frequency (within 1%, as calculated using --freq in plink from all GTEx individuals’ genetic data)
and the same number of variants in linkage disequilibrium (LD) (r* > 0.2, as calculated in the
1000 Genomes Phase | EUR genetic data’’ and downloaded from Haploreg v4*). (We note that
the threshold requiring the number of variants in LD to be identical is relaxed to plus-minus five
variants-in-LD when no such variants exist.) We use these lists to generate 100 permutations.
For each permutation, we randomly sampled 1 matched SNP for each of the N iQTLs. From the
list of N randomly sampled SNPs, we calculated the proportion of SNPs that are tissue-specific
eQTLs. From these 100 permutations, we calculated 100 eQTL proportion measurements. We
then calculated the mean proportion, which we refer to as q. We let x be the # iQTLs that eQTLs
in that tissue (tissue-specific eQTLs). Lastly, we performed a two-sided binomial test with x
equal to the number of successes, N equal to the number of trials, and g equal to the
hypothesized probability of success. We tested the null hypothesis that the observed ieQTL
proportion is significantly different than random sampling. This approach is summarized in
Supplementary Figure 17.
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