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Abstract

A plethora of recent experimental literature implicates the abrupt, synchronous

activation of GABAergic interneurons in driving the sudden change in brain activity

that heralds seizure initiation. However, the mechanisms predisposing an inhibitory

network toward sudden coherence specifically during ictogenesis remain unknown. We

address this question by comparing simulated inhibitory networks containing control

interneurons and networks containing hyper-excitable interneurons modeled to mimic

treatment with 4-Aminopyridine (4-AP), an agent commonly used to model seizures in

vivo and in vitro. Our in silico study demonstrates that model inhibitory networks with

4-AP interneurons are more prone than their control counterparts to exist in a bistable

state in which asynchronously firing networks can abruptly transition into synchrony

due to a brief perturbation. We further show that perturbations driving this transition

could reasonably arise in vivo based on models of background excitatory synaptic

activity in the cortex. Thus, these results propose a mechanism by which an inhibitory

network can transition from incoherent to coherent dynamics in a fashion that may

precipitate seizure as a downstream effect. Moreover, this mechanism specifically
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explains why inhibitory networks containing hyper-excitable interneurons are more

vulnerable to this state change, and how such networks can undergo this transition

without a permanent change in the drive to the system. This, in turn, potentially

explains such networks’ increased vulnerability to seizure initiated by GABAergic

activity.

Author summary

For decades, the study of epilepsy has focused on the hypothesis that over-excitation or 1

dis-inhibition of pyramidal neurons underlies the transition from normal brain activity 2

to seizure. However, a variety of recent experimental findings have implicated a sudden 3

synchronous burst of activity amongst inhibitory interneurons in driving this transition. 4

Given the counter-intuitive nature of these findings and the correspondingly novel 5

hypothesis of seizure generation, the articulation of a feasible mechanism of action 6

underlying this dynamic is of paramount importance for this theory’s viability. Here, we 7

use computational techniques, particularly the concept of bistability in the context of 8

dynamical systems, to propose a mechanism for the necessary first step in such a 9

process: the sudden synchronization of a network of inhibitory interneurons. This is the 10

first detailed proposal of a computational mechanism explaining any aspect of this 11

hypothesis of which we are aware. By articulating a mechanism that not only underlies 12

this transition, but does so in a fashion explaining why ictogenic networks might be 13

more prone to this behavior, we provide critical support for this novel hypothesis of 14

seizure generation and potential insight into the larger question of why individuals with 15

epilepsy are particularly vulnerable to seizure. 16

Introduction 17

Epilepsy is a neurological disease distinguished by repeated seizures, often characterized 18

by hyper-excitable and synchronous activity of pyramidal neurons. Epilepsy research is 19

typically divided into studies focused on either seizure initiation [1], propagation [2, 3], 20

or termination [4], as schematized in Fig 1 [5]. Historically, studies of seizure initiation 21

have focused on the hypothesis that hyper-excitability of excitatory cells is the impetus 22

of seizure [5] and associated inhibitory collapse. However, there is as of yet no 23

cellular-based mechanism explaining the transition into seizure [6, 7]. 24

Recently, some studies of seizure initiation have shifted focus to over-activity of 25

inhibitory interneurons. This literature has yielded convincing evidence that 26

interneurons serve a causal role in seizure initiation [1, 8–13], laying the groundwork for 27

a novel hypothesis for seizure initiation (a “GABAergic initiation hypothesis”) in which 28

synchronous activation of inhibitory interneurons precipitates the onset of a seizure, as 29

diagrammed in Fig 1 [12]. Given the contemporaneous nature of this hypothesis it is an 30

ideal target for rigorous computational study; here, such research aims to unearth a 31

mechanism explaining the predisposition of inhibitory interneurons in a hyper-excitable 32
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Fig 1. A “GABAergic initiation hypothesis” in the context of the state of
epilepsy research.
Epilepsy research is divided into studies focusing on seizure initiation, propagation, or
termination (illustrated by the rows in this figure and the example studies cited). This
paper is interested in seizure initiation in the context of a “GABAergic initiation
hypothesis”, schematized on the top row of the figure. The focus of the current work is
the sudden transition of interneurons into synchrony, as the articulation of a potential
mechanism explaining this transition, alongside a justification as to why networks in a
seizure state are more vulnerable to this transition, should be identified in order for this
overall hypothesis of seizure initiation to be viable.

environment to suddenly transition into synchrony, the necessary initial step in this 33

hypothesis. We thus focus on the earliest time in the transition to seizure and not 34

aspects of propagation and termination. 35

The study of inhibitory network synchrony is decades old, dating back to the work of 36

Wang and Rinzel [14]. Various mechanisms have been proposed to explain the 37

generation of oscillations in purely inhibitory networks, the most prominent of which 38

may be the Interneuron Network Gamma (ING) mechanism [15–20]. Previous work has 39

shown that inhibitory networks built to examine population activity in an in vitro 40

hippocampal preparation manifest “sharp transitions” into coherent population activity 41

caused by a small, permanent increase to the external drive to the network [21]. 42

Additional studies have explored the effect of connection probabilities and cell 43

characteristics manifested by classifications of cell excitability on inhibitory network 44

synchrony [22,23], and have noted that bistability between asynchronous and 45

synchronous firing was possible [23]. 46

Inhibitory oscillations are implicated in both physiological and pathological brain 47

states. The sudden onset of inhibitory synchrony caused by an increase in drive from 48

CA3 is suggested to underlie the generation of ripples associated with sharp waves in 49

the hippocampus [24,25]. Such data is further evidence that a transition to oscillatory 50

dynamics can be brought about by increased external drive, as shown 51

computationally [21, 23]. Inducing hyper-excitability in inhibitory cells might represent 52
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an analogue to this increased drive, potentially explaining why hyper-excitable systems 53

transition to synchronous states of a seizure or an inter-ictal spike (IIS). Consistent with 54

this suggestion is that interneuronal firing increases before pyramidal cell firing prior to 55

IIS generation and seizures in animal epilepsy models [1,26–30]. Analogously in humans, 56

putative interneurons increase their firing before seizure onset [13]. 57

The existing computational insights into inhibitory network synchrony, combined 58

with the experimental literature implicating this dynamic in seizure initiation, motivate 59

this computational study. To explore the role of interneuronal synchrony in seizure 60

initiation, randomly connected, purely inhibitory network models are developed. These 61

networks utilized cell models mimicking properties exhibited by neurons treated with 62

4-Aminopyridine (4-AP), a commonly used experimental model to generate 63

seizures [31,32], or properties of a healthy, control interneuron. Utilizing these tools, 64

this investigation articulates a mechanism explaining how a sudden transition from 65

asynchronous to synchronous firing might arise in an inhibitory network that also offers 66

an explanation for the predisposition of hyper-excitable networks towards this transition. 67

This mechanism was uncovered by comparing the tendency of control and 4-AP 68

inhibitory networks to synchronize, both from random initial conditions and following a 69

perturbation biasing the network towards synchrony. This revealed that 4-AP networks 70

are much more likely to transition from asynchronous to synchronous dynamics 71

following a perturbation, due to a significantly larger regime of network parameters 72

supporting bistability. The existence of a “bistable transition” driving an inhibitory 73

network into synchrony expands upon existing literature probing such mechanisms, 74

especially in the context of epilepsy. As control models do not exhibit the same 75

predisposition for “bistable transitions” when compared to 4-AP networks, this finding 76

may provide important insight into mechanisms underlying seizure generation. In turn, 77

these findings provide paramount in silico support for the integral role of inhibitory 78

interneurons in seizure initiation. 79

Materials and methods 80

A link between the activity of inhibitory interneurons and seizure generation exists, 81

although how it manifests remains unclear. Using optogenetic mice expressing 82

channelrhodopsin-2 in inhibitory interneurons under proconvulsant conditions of 83

4-AP [33], it has been shown that the activation of inhibitory interneurons in layer 2-3 84

(L2/3) of mice somatosensory cortex can trigger ictal events [12]. The strategy here 85

involved building generic inhibitory networks that roughly approximate cortical 86

inhibitory networks, utilizing neuron models of both a healthy, control interneuron and 87

an interneuron made hyper-excitable by treatment with 4-AP. Such an undertaking was 88

informed by a combination of existing computational models of inhibitory interneurons, 89

literature describing the general effects of 4-AP, and unpublished in-house experiments 90

yielding data from the same interneuron in both control and 4-AP settings. 91
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Neuron Models 92

Neurons were modeled via a two dimensional system of ordinary differential equations 93

first described by Izhikevich [34]. This model has two variables: V , which represents the 94

membrane potential in mV; and u, which represents the slow “recovery” current in pA. 95

The model utilized here is slightly altered in the fashion described by Ferguson et. 96

al. [21], and is given by: 97

CmV̇ = k(V − vr)(V − vt)− u− Isyn + Iapp

u̇ = a[b(V − vr)− u]

if V ≥ vpeak, then V ← and u← u+ d

where k = klow if V ≤ vt and k = khigh if V > vt

(1)

In the above equations, Cm represents the membrane capacitance in pF, vr represents 98

the resting membrane potential in mV, vt represents the instantaneous threshold 99

potential in mV, vpeak is the spike cut-off value in mV, Isyn is sum of all incoming 100

synaptic current to the neuron in pA (described in detail below), Iapp represents the 101

external applied current in pA (described in detail below), a is the recovery time 102

constant of the adaptation current in ms−1, b describes the sensitivity of the adaptation 103

current to subthreshold fluctuations in nS, c is the voltage reset value in mV, d is the 104

total current affecting the after spike behavior in pA, and klow and khigh are scaling 105

factors in nS/mV. 106

The use of Izhikevich model neurons was motivated by the goals of this study: 107

namely, here we do not strictly constrain our neuron model with experimental results, 108

but rather create a model that more “generally” matches the properties of an 109

interneuron in both control and 4-AP cortical settings and highlights the key differences 110

between them (particularly those caused by hyper-excitability in 4-AP interneurons). 111

This choice allows for the detailed investigation of the mechanisms underlying the 112

transition into synchrony in these networks performed here. 113

Neuron model parameters 114

Models and parameter values were based primarily on previous Izhikevich inhibitory cell 115

models [21] and the literature describing the effects of 4-AP [32]. Unpublished in-house 116

experiments were used to supplement this literature and inform the modeling in areas in 117

which this literature was not as detailed. These experiments highlighted specific 118

differences in control and 4-AP settings, particularly with regards to the rheobase and 119

capacitance. 120

The model presented by Ferguson et. al. [21] was used as a “starting point” for the 121

models presented here, as the neurons of interest in that study exhibit similar major 122

properties to the types of neurons of interest in this research. This choice informed the 123

values of vr, vt, c and vpeak. The unpublished experimental work yielded Cm values for 124
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cortical interneurons. 125

The rest of the parameter values (a, b, d, klow, khigh) were chosen through a 126

parameter exploration to match the difference in rheobase caused by treatment of 4-AP. 127

Unpublished in-house experiments were used for the rheobase values of control and 128

4-AP interneurons, as recorded in the same cell, given that such details are not available 129

in the existing literature. An increase in spike-frequency adaptation in the 4-AP setting 130

is also implied by the literature [32] and correspondingly influenced the determination of 131

these parameters. As the model of Ferguson et. al. [21] was used as a reasonable model 132

of a fast-firing inhibitory cell, the slope of the frequency-current (FI) of that neuron was 133

used for the control case. Except for the changes caused by a shifted rheobase and the 134

presence of adaptation, this slope was kept approximately the same for the 4-AP model. 135

With the different rheobases, this means that the firing frequency is larger in the 4-AP 136

model relative to control for a given input current. 137

The parameter values for both what will hereafter be referred to as the “control” 138

model and what will hereafter be referred to as the “4-AP” model are included in Table 139

1, alongside the primary motivating factors in the choice of said parameter. Properties 140

of these model neurons encapsulated in their FI curves are illustrated in Fig 2. All 141

modeled neurons referred to as “control” or “4-AP” in this work use these parameter 142

values (i.e. every neuron within a given network is identical with the exception of its 143

external driving current). 144

Table 1. Parameters used in neuron models.

Parameter
Value

(Control)
Value

(4-AP) Rationale

Cm 73 pF 49 pF Unpublished in-house experiment

vr -60.6 mV -60.6 mV Ferguson et. al. (2013) [21]

vt -43.1 mV -43.1 mV Ferguson et. al. (2013) [21]

vpeak 2.5 mV 2.5 mV Ferguson et. al. (2013) [21]

a 0.01 ms−1 0.01 ms−1
Parameter influences rheobase and

adaptation exhibited by model*

b -0.2 nS -0.4 nS
Parameter influences rheobase and

adaptation exhibited by model*

c -67 mV -67 mV Ferguson et. al. (2013) [21]

d 1.25 pA 0.75 pA
Parameter influences rheobase and

adaptation exhibited by model*

klow 0.4 nS/mV 0.6 nS/mV
Parameter influences rheobase and

adaptation exhibited by model*

khigh 2 nS/mV 2 nS/mV
Parameter influences rheobase and

adaptation exhibited by model*

* Differences in rheobase and adaptation in control and 4-AP neurons are features shown by

Williams and Hablitz (2015) [32] as well as observed in our unpublished in-house experiment
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Fig 2. FI curves illustrating properties of neuron models used in this study.
FI Curves for control (blue and cyan) and 4-AP (red and magenta) modeled neurons.
Curves are shown for frequencies calculated using the initial (blue and red) and final
(cyan and magenta) inter-spike intervals to illustrate the tendency for spike-frequency
adaptation (SFA). These comparisons show that the neuron models utilized in this
study match the decreased rheobase and increased excitability and SFA of 4-AP treated
neurons in comparison to control neurons (with the rheobases determined from
unpublished in-house experiment for control and 4-AP neurons highlighted on the figure
by the colored dots).

Network Structure 145

Similar to inhibitory network models developed by Ferguson et. al. [21], the neurons in 146

the networks modeled here were randomly connected by synapses utilizing a first-order 147

kinetic model. Each synapse is modeled by 148

Isyn = gsyns(V − Esyn) (2)

where gsyn is the maximum inhibitory synaptic conductance in nS, s is the gating 149

variable, V is the membrane potential of the post-synaptic cell in mV, and Esyn is the 150

inhibitory reversal potential in mV. As this value of Esyn is set at an inhibitory value of 151

−75 mV for every possible synapse, this study includes only inhibitory synaptic 152

connections. Furthermore, gsyn is uniform for each network studied, meaning each 153

connection in a given network has the same strength. 154

The gating variable models the proportion of open synaptic channels, with its 155

dynamics given by 156

ṡ = α[T ](1− s)− βs (3)

where α represents the inverse of the rise time constant and β represents the inverse of 157

the decay time constant [35]. [T ] models the concentration of neurotransmitter released 158
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following a pre-synaptic action potential. [T ] is represented as a unitary pulse lasting 1 159

ms, from the time of the pre-synaptic spike (t0) to the end of the pulse (t1). With this, 160

the dynamics of s can be simplified to the following two equations, 161

s(t− t0) = s∞ + (s(t0)− s∞) e

t− t0
τs t0 < t < t1 (4)

s(t) = s(t1) e−β(t−t1) t > t1 (5)

where s∞ =
α

α+ β
and τs =

1

α+ β
. 162

Network model parameters 163

A fast rise time rate constant of α = 3.7037 ms−1 is used here as in [21]. Values for the 164

inhibitory reversal potential (-75 mV) and the synaptic decay rate constant (β = 0.3333 165

ms−1) were taken from Traub et. al. [36], and the range of inhibitory synaptic 166

conductances explored (0 to 10 nS) encompasses cortical estimates [36]. 167

Network size and connectivity were based on estimates regarding the density of 168

inhibitory cells present in the cortex and their intra-connectivity [37]. Choices regarding 169

network size were motivated by the size of L2/3 slices obtained in-house (approximately 170

0.03 mm3) combined with observations regarding the number of large basket cells (the 171

most abundant type of inhibitory cell in L2/3) per unit volume presented in Markram et. 172

al. [37]. Given that a single large basket cell synapses onto approximately 23 other large 173

basket cells in this brain region [37], and assuming random connectivity, the probability 174

of connection between such cells would be at least 0.04. Considering networks with 175

connectivity densities lower than 0.04 would be unlikely to exhibit coherent dynamics in 176

a randomly connected inhibitory network [23,38], this density is used as a lower bound 177

for this investigation. Based on such estimations, this study utilized networks of 500 178

neurons with the neurons randomly connected with connection probabilities of 0.04, 179

0.08, 0.12 and 0.16. Connection probabilities much larger than this were not needed as 180

they would be clearly unrealistic relative to the biological estimations. 181

As done in Ferguson et. al. [21], cell heterogeneity in the networks was implemented 182

by varying the amplitude of the tonic external input current, Iapp, to each neuron. The 183

input currents were selected from a normal distribution with a mean value of Iµ, with 184

the degree of heterogeneity in the input currents determined by the standard deviation, 185

σ. σ = 3, 6 and 12 pA were studied. 186

Simulations 187

The code underlying these simulations was written in the C programming language and 188

run on a Linux-based high-performance computing cluster utilizing Compute Canada 189

resources provided via the University of Toronto [39]. All simulations were run for 2000 190

ms, with the initial conditions randomized such that V ∈ (−70, 0) while u = 0. Model 191
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equations were integrated using the Euler Method with a time step dt = 0.01 ms. Spikes 192

did not trigger synaptic current until 100 milliseconds into the simulation (via a simple 193

manipulation in the code) to allow initial transients to decay. 194

In order to uncover other potential dynamical states of the network, a brief, large 195

amplitude current pulse was delivered uniformly to each cell in the network to perturb 196

the system and potentially bias it towards the synchronous dynamical state. This 2 ms 197

pulse had an amplitude of 1000 pA and was delivered at 1000 ms. This is analogous to 198

imposing homogeneous initial conditions causing instantaneous spiking of all neurons in 199

the network, in contrast to the randomized initial conditions that begin the simulations. 200

To identify networks that exhibited bistability between asynchronous and clustered 201

behavior, network dynamics established from random initial conditions (figure panels 202

denoted Random Initial Conditions) and those established after the perturbation (figure 203

panels denoted Following Perturbation) were compared. 204

Heatmaps of the Synchrony Measure and differences in the Synchrony Measure 205

before and after the perturbation shown in all figures display the average of these scores 206

over five independent simulations. The Random Initial Conditions scores were 207

calculated based on the network activity from 500 to 1000 milliseconds, and the 208

Following Perturbation scores were calculated based on the network activity from 1500 209

to 2000 milliseconds. In the heatmap plots the mean applied current value Iµ was 210

varied along the y-axis, while the inhibitory synaptic weight gsyn was varied along the 211

x-axis. Simulations (not shown here) were run to ensure that the behaviors indicated by 212

the Synchrony Measure taken over the given intervals were indicative of stable behaviors 213

that would persist long past the time interval measured here. 214

Measures 215

The measure used to quantify coherent activity in the simulated networks, here termed 216

a Synchrony Measure, is a slight adaptation of a commonly used measure created by 217

Golomb and Rinzel [40,41] that quantifies the degree of spiking coincidence in the 218

network. This particular implementation of this measure has been utilized in previous 219

studies [23,42,43] 220

Briefly, the measure involved convolving a Gaussian function with the time of each 221

action potential for every cell to generate functions Vi(t). The population averaged 222

voltage V (t) was then defined as V (t) =
1

N

N∑
i=1

Vi(t), where N is the number of cells in 223

the network. The overall variance of the population averaged voltage σ and the variance 224

of an individual neuron’s voltage σi were defined as 225

σ =< V (t)2 > − < V (t) >2 (6)

and 226

σi =< Vi(t)
2 > − < Vi(t) >

2 (7)
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where < · > indicates time averaging over the interval for which the measure is taken. 227

The Synchrony Measure S was then defined as 228

S =
σ

1

N

∑N
i=1 σi

(8)

The value S = 0 indicates completely asynchronous firing, while S = 1 corresponds to 229

fully synchronous pattern of network activity. Example raster plots and the 230

corresponding Synchrony Measure values over an illustrative range are shown in Fig 3. 231

Fig 3. Example raster plots illustrating the Synchrony Measure and
motivating the definition of the Bistability Measure.
A: An example network that exhibits “messy” synchronous dynamics both before and
after the perturbation is delivered at 1000 ms, resulting in a moderate value of the
Synchrony Measure in each case. Dynamics before the perturbation are shown in the
left panel, while dynamics following the perturbation are shown in the right. Although
the Synchrony Measure following the perturbation is larger than that before the
perturbation, this increase does not indicate a bistable transition from asynchronous to
synchronous dynamics, but rather qualitatively “tighter” synchrony. The choice of 0.3
as the “threshold value” in the articulation of the Bistability Measure prevents cases
such as this from contributing positively to the measure. B: An example network
exhibiting asynchrony before the perturbation (left panel) and very clear synchrony
afterwards (right panel), along with the corresponding Synchrony Measures. Very low
synchrony measures (typically less than 0.25) indicate asynchrony, while higher
Synchrony Measures illustrate synchrony, with higher values indicating more ordered
and less “messy” synchrony.

This research was interested not merely in the degree of synchronous firing in the 232

networks of interest (described by the Synchrony Measure), but rather was primarily 233

focused on identifying a transition from asynchronous to synchronous dynamics driven 234

by network bistability. A straightforward way to identify whether such a transition 235

occurred following a perturbation (discussed in detail above) is to compare the value of 236

the Synchrony Measure before and after said perturbation; in such a comparison, large 237

increases in the Synchrony Measure following the perturbation are likely indicative of a 238

transition from asynchronous to synchronous dynamics. Further, to analyze a network’s 239

predisposition towards this transition over a range of parameter values, one need only 240

summate these individual comparisons in an informed fashion into a single, quantitative 241

score. This motivated the creation of a Bistability Measure used in this study. 242
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This measure was calculated in three steps. First, the difference between the 243

Synchrony Measure following the modeled perturbation and the Synchrony Measure 244

from randomized initial conditions was taken for each network in some context (i.e. for 245

a particular parameter range encapsulated by a given heatmap). Second, only cases 246

when this difference was > 0.3 were included in the summation (this choice is justified 247

in detail below). Finally, the sum of the Synchrony Measure differences exceeding this 248

threshold value was taken to yield the final Bistability Measure. 249

The choice of the “threshold” value of 0.3 in the second step above merits further 250

explanation. The Synchrony Measure is not a binary differentiation between 251

asynchronous and synchronous dynamics, but rather a quantitative measure of the 252

degree of synchronous firing. This means that increases in the Synchrony Measure, 253

particularly subtle ones, do not necessarily indicate a differentiation of asynchrony from 254

synchrony, but instead could indicate the presence of qualitatively “tighter” synchrony. 255

An example of such a case is seen in Fig 3A. However, large increases in the Synchrony 256

Measure are almost always indicative of entirely different dynamical states, as shown by 257

the example in Fig 3B). After a thorough investigation of the correspondence between a 258

qualitative assessment of synchrony (i.e. visual inspection of raster plots) and the 259

quantitative assessment provided by the Synchrony Measure, it was determined that a 260

difference of at least 0.3 in the Synchrony Measure before and after a perturbation best 261

identified networks in which a transition between dynamical states occurred while 262

excluding networks in which an increased Synchrony Measure only indicated subtle 263

changes in the network dynamics. 264

Instantiating this “threshold” value into the calculation of the Bistability Measure 265

ensures that the measure best quantifies the tendency for networks to exhibit bistable 266

transitions, rather than naively quantifying the difference in Synchrony Measure before 267

and after the perturbation. This occurs in two fashions during the calculation of the 268

measure to further ensure robustness: first, networks that exhibit minor changes in the 269

Synchrony Measure (< 0.3) are completely excluded from the summation, considering 270

such networks are extremely unlikely to exhibit a bistable transition; and second, the 271

summation of the change in the Synchrony Measure values, rather than a binary 272

summation of which networks exhibit a change above the threshold value, allows 273

networks that exhibit a larger Synchrony Measure difference (for which one can much 274

more confidently assert a dynamical transition occurs) to be weighted more heavily in 275

the calculation of the Bistability Measure. Finally, the fact that this value was not 276

chosen arbitrarily is worth further emphasis: this choice was made only after a detailed 277

investigation into the interpretation of various Synchrony Measure differences and trial 278

calculations of the Bistability Measure with various choices of this “threshold” value 279

(not shown here), all of which that contained flaws improved upon by the choice made 280

for the final measure. 281
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Ornstein-Uhlenbeck process 282

The perturbation described above is motivated primarily by the desire to uncover a 283

mechanism for the transition from asynchrony to synchrony from the perspective of 284

dynamical systems. In order to assess whether this mechanism is biologically reasonable, 285

an analogous perturbation that might arise in more biologically grounded models was 286

sought. 287

An Ornstein-Uhlenbeck process [44] is used in the literature to model background 288

synaptic input into a network [45,46], and is used in this study to determine whether 289

“perturbation-like” activity might arise naturally from this model of external synaptic 290

input. This process, used to determine the conductance of excitatory synaptic input in 291

this context, is described mathematically by the following equations [45] with an initial 292

condition ge(0) = ge0: 293

ge(t+ h) = ge0 + [ge(t)− ge0]e−h/τe +AeN(0, 1) (9)

294

Ae =

√(
Deτe

2

)(
1− e

−2h
τe

)
(10)

where N(0, 1) is a normal random number taken from a distribution with 0 mean and a 295

standard deviation of 1. 296

The insights from Piwkowska et. al. [46] allowed for the choice of parameters 297

constrained by cortical data. The parameters used in the Ornstein-Uhlenbeck process 298

utilized in this study were ge0 = 3 nS, τe = 2 ms, and De = 2 (a unitless diffusion 299

coefficient), and the integration time step was h = 0.01 ms. 300

Code Accessibility 301

The code/software described in the paper is freely available online at 302

https://github.com/FKSkinnerLab/CorticalInhibitoryNetwork. 303

Results 304

In order for inhibitory interneurons to serve as the impetus for seizures, as posited by a 305

“GABAergic initiation hypothesis”, there should exist a mechanism that explains both 306

how a network of such interneurons can suddenly transition into synchronous dynamics 307

(which in turn provides a large burst of synaptic inhibition to pyramidal neurons in the 308

behaving animal) and why model seizure networks are more prone to exhibit this 309

transition and the resultant pathological brain activity. To examine this, an 310

experimental 4-AP hyper-excitable state, as used to model seizures by Chang et. 311

al. [12], is used as a basis for these mathematical model explorations, with results from 312

such networks compared to model control networks. 313
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Bistability between coherent and incoherent states is exhibited 314

more robustly by 4-AP inhibitory networks 315

The concept of bistability arises primarily from the mathematical study of dynamical 316

systems. In this context, a “stable” state is one which will be preserved by the system 317

for all time in the absence of any perturbations to the conditions defining the system. 318

In nonlinear systems it is possible for multiple stable states to exist, and for the network 319

to naturally settle into any one of these stable states depending upon a variety of 320

factors including the initial conditions and any perturbations that might be delivered. 321

In a biological system, this could manifest from the history of inputs from different 322

brain structures along various pathways to the network in question. Such a system is 323

defined to be “bistable” or “multistable” given the existence of more than one stable 324

solution to the mathematical equations [47]. 325

The results presented in Fig 4 show that many of the networks within the parameter 326

regime considered in this work exhibit bistability. In panels A and B the Synchrony 327

Measure (described in the Materials and Methods section) was taken for the same 328

networks in two different states: the results from randomized initial conditions are 329

shown in the left panels, while the results following a perturbation to the system 330

(described in the Materials and Methods section) are shown in the right panels. Note 331

that the parameter range shown in these heatmaps is “zoomed in” relative to the larger 332

parameter scan used in the heatmaps presented in the following section in order to 333

better highlight the regime of bistability. Control networks are shown in panel A while 334

4-AP networks are shown in panel B. 335

There appear to be a number of networks in both the control and 4-AP settings that 336

show a high Synchrony Measure, and thus coherent network states, following the 337

perturbation but not from randomized initial conditions. This is indicative of a bistable 338

system in which both the coherent and incoherent states are stable, even though the 339

network might require a perturbation in order to leave the incoherent stable state and 340

settle into the coherent stable state. This result is highlighted by Fig 4C in which the 341

difference between the Synchrony Measure following the perturbation and the Synchrony 342

Measure from randomized initial conditions is plotted to highlight the networks in 343

which this difference occurs. Qualitatively, it appears not only that the parameter 344

regime including these type of networks is shifted when comparing the 4-AP and control 345

cases, but most importantly it appears that more of these types of networks exist in the 346

4-AP setting as opposed to the control case. To quantify this observation, a Bistability 347

Measure (as outlined in the Materials and Methods section) was used, revealing that, 348

indeed, the parameter regime defining bistable networks is larger in the 4-AP case. 349

Raster plots highlighting an example network that is bistable in a 4-AP network, but 350

not in the control case, for the same parameter values are shown below these heatmaps. 351

It makes sense, in the context of the study of seizure initiation, that both control 352

and 4-AP networks would exhibit some bistability. Indeed, it is well established that all 353

brains are capable of generating a seizure, even though seizures are much more likely in 354
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Fig 4. Networks containing model 4-AP neurons are more prone to
bistability than networks of control neurons.
A-B: Heatmaps displaying the Synchrony Measure for control networks (A) and 4-AP
networks (B) with a connectivity probability of 0.12 and a standard deviation amongst
the driving currents of 6 pA. In these heatmaps, the inhibitory synaptic weight is varied
along the x-axis and the average external applied current is varied along the y-axis. The
left panel displays the measure taken from randomized initial conditions, while the right
panel displays the measure taken after a modeled perturbation. C: Heatmaps over the
same parameter regime, but now showing the difference between the Synchrony
Measure shown in the right and left heatmaps in panels A and B. Control results are
shown on the left, and 4-AP results are shown on the right. 4-AP model networks are
much more likely than control model networks to exhibit a change in dynamics following
the perturbation (as indicated both by more warm colors in the heatmap and by the
increased Bistability Measure score shown above the panels), indicating that the
perturbation induced a transition from asynchronous to synchronous dynamics
indicative of a bistability. A raster plot for both the control and 4-AP settings for a
network with an inhibitory synaptic weight of 1.25 nS and an average external applied
current of 185 pA (corresponding to the outlined box in the heatmap) is shown,
providing an illustrative example of a case where the transition from asynchronous to
synchronous dynamics following the perturbation, and thus the existence of a bistability,
is observed in the 4-AP but not the control case.
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individuals with epilepsy (see the literature on seizures arising in non-epileptic patients 355

following traumatic brain injury [48,49]). However, it is interesting in the context of a 356

“GABAergic initiation hypothesis” that 4-AP networks were more likely to exhibit 357

bistability than control networks. This result supports the hypothesis that 4-AP 358

treated, hyper-excitable interneurons are more likely to exhibit the necessary dynamics 359

underlying seizure onset, which in this context is the transition from asynchronous to 360

synchronous firing via a “bistable transition”. It is also interesting to note that the 361

bistable regime is both wider (i.e. encompassing a larger range of synaptic strengths) 362

and includes lower driving currents for 4-AP networks, although the latter is perhaps 363

expected due to the lower rheobase of 4-AP neurons. 364

The robustness of this result was confirmed when networks were subjected to 365

different degrees of heterogeneity in the external driving currents and different 366

connection probabilities. This is shown by the Synchrony Measure difference heatmaps 367

and Bistability Measures shown in Fig 5. Indeed, in all four cases presented (varying 368

connection probability in panels A-B and varying standard deviation of the external 369

applied currents in panels C-D, the 4-AP networks were more likely to exhibit 370

bistability, as seen via a joint analysis of the Bistability Measures and the bistable 371

parameter regime in the heatmaps. 372

The analysis of these in silico networks through the lens of the mathematical 373

concept of bistability reveals crucial properties of 4-AP networks that could not 374

otherwise be identified. However, the question remains whether a transition of this type 375

is biologically feasible, especially considering the perturbation used to reveal the 376

existence of the bistability was motivated from dynamical systems insights rather than 377

the underlying biology. We address this using an Ornstein-Uhlenbeck process (as 378

described in the Materials and Methods section [45,46]) to generate a reasonable 379

approximation of background excitatory synaptic conductance in the cortex. Such 380

synaptic activity can be thought of as a more biologically-grounded analogue for the 381

Iapp tonic driving current used in the computational models here. The conductance 382

generated by the Ornstein-Uhlenbeck process is transformed into a driving current 383

simply by multiplying by (V −Esyn), where here Esyn takes on an excitatory value of 0 384

mV and V is approximated as the resting potential of the neuron (here −60.6 mV). 385

An example of such a current, generated for 1000 ms, is seen in Fig 6A. Zooming in 386

on the red portion of the current (225 ms to 275 ms), a 5 ms portion of the current 387

trace that retains a significantly higher than average value is highlighted in green. This 388

current is simplified for computational implementation by a square current pulse with 389

an amplitude of 320 pA and a 5 ms duration, approximated on the figure with a dotted 390

black line. 391

Critically, the “bistable transition” typified by the raster plots in Fig 4 is preserved 392

when the perturbation is replaced by the current pulse motivated by the results from 393

the Ornstein-Uhlenbeck process, as shown in Fig 6B-C. This result suggests that a 394

“bistable transition” is viable in a more biologically-grounded setting, as it can be 395

triggered by a perturbation that could reasonably occur due to fluctuations in the 396

April 11, 2019 15/36

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/613794doi: bioRxiv preprint 

https://doi.org/10.1101/613794
http://creativecommons.org/licenses/by/4.0/


Fig 5. Networks containing model 4-AP neurons exhibit bistability more
robustly than control networks for a variety of network parameters.
A-D: Heatmaps displaying the difference between the Synchrony Measure following a
modeled perturbation and from randomized initial conditions for control networks (left)
and 4-AP networks (right). In these heatmaps, the inhibitory synaptic weight is varied
along the x-axis and the average external applied current is varied along the y-axis. The
Bistability Measure for each condition is shown above the corresponding panel. Results
for a connection probability of 0.08 and standard deviation of 6 pA are shown in panel
A, results for a connection probability of 0.16 and standard deviation of 6 pA are shown
in panel B, results for a connection probability of 0.12 and standard deviation of 3 pA
are shown in panel C, and results for a connection probability of 0.12 and standard
deviation of 12 pA are shown in panel D. In all cases, 4-AP model networks exhibit a
larger parameter regime showing behaviors indicative of a bistability than analogous
control networks, shown both by more warm colors in the heatmap and the increased
Bistability Measure.

background excitatory synaptic activity in the cortex. Taken together with the detailed 397

analysis presented above of the bistability present in these networks from the 398

perspective of dynamical systems, it is apparent that a transition from asynchrony to 399

synchrony in inhibitory networks caused by a “bistable transition” is both a 400

computationally and biologically plausible mechanism explaining the initial step of a 401

“GABAergic initiation hypothesis” of seizure. 402

Sharp transitions between coherent and incoherent states 403

caused by increased external input are not likely to underlie the 404

initial step of seizure initiation 405

In inhibitory network models of CA1 hippocampus that were constrained in size, 406

connection probability, cellular and synaptic properties, previous work by [21] 407

demonstrated “sharp transitions” between asynchronous and synchronous firing caused 408
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Fig 6. In vivo-like excitatory background synaptic currents can also elicit
“bistable transitions” in the model inhibitory networks.
A: An example of excitatory background synaptic current (1000 ms in the top panel)
generated using an Ornstein-Uhlenbeck Process with parameters informed by cortical
experimental literature. The bottom panel zooms in on a region of interest (plotted in
red) revealing a brief period (plotted in green) in which the current is significantly
larger than its average value, activity which has perturbation-like qualities. This
activity is approximated by a current pulse of similar width and amplitude, plotted on
the figure in a dashed black line. B-C: Raster plots for a control (B) and 4-AP (C)
network that is identical to the examples displayed in Fig 4, where the large, brief
current pulse used as the perturbation throughout this study is replaced by a current
pulse informed by the Ornstein-Uhlenbeck Process shown in panel A that represents in
vivo-like activity. Despite this change, which amounts to a wider pulse with significantly
lower amplitude, the control and 4-AP networks still exhibit antithetical responses to
this perturbation; namely, control networks return to asynchronous firing following the
perturbation while 4-AP networks transition into synchronous dynamics.

by a small, permanent increase in the external drive to the network. This additional 409

mechanism has both experimental and computational support (see the discussion in the 410

Introduction) to explain a transition into synchrony in purely inhibitory networks. We 411

thus investigated it as a potential mechanism for the initial inhibitory synchrony 412

necessary for a “GABAergic initiation hypothesis” of seizure. Indeed, potentially 413

eliminating it as a candidate mechanism in this context would provide additional 414

support for the viability of the “bistable transition” mechanism described in the 415

previous section. 416
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We investigated the tendency for inhibitory networks of both control and 4-AP 417

neurons to synchronize from randomized initial conditions with varying connection 418

probabilities and heterogeneities. Fig 7 shows results illustrating network coherence for 419

a parameter scan over a range of inhibitory synaptic strengths that encompass 420

physiological estimates [37] and average external applied currents with varied 421

connection probabilities. Panels A-C show Synchrony Measure scores for networks over 422

the entire parameter regime studied here, with results for control networks shown on the 423

left and 4-AP networks shown on the right. 424

While connection probability estimates indicated a value of at least 0.04 was 425

biologically reasonable (see Methods), simulated networks produced no coherent states 426

with this connection probability. This is perhaps not too surprising given that the 427

cellular models utilized here were only loosely motivated by experiments (see Methods) 428

so that additional estimates of network connectivity are not expected to be precise. 429

However, it is expected that any differences in control and 4-AP models are meaningful 430

since these differences were captured in a comparable fashion (see Methods and Fig 2). 431

Fig 7 also includes three two-dimensional plots highlighting the evolution of the 432

Synchrony Measure as a function of the average external applied current for a set value 433

of the inhibitory synaptic weight in panels D-F. Results for each connection probability 434

are shown jointly to facilitate comparison, with results for control networks shown in 435

the left panels and results for 4-AP networks shown in the right panels. Additionally, 436

the “sharpness” of the transition from asynchrony to synchrony was quantified by 437

taking the slope of the line segment best representing this transition, which is chosen to 438

be that between the first point that achieves a Synchrony Measure greater than half the 439

maximum Synchrony Measure observed by networks in that panel and the point one 440

current step earlier. The slopes for all of the examples presented in Figs 7 and 8 are 441

shown jointly in Table 2. 442

The results presented in Fig 7 show that a sharp transition between asynchrony and 443

synchrony caused by a small, permanent increase in external driving current does occur 444

in these cortically-motivated networks over a range of reasonable connection 445

probabilities, both for control and 4-AP neurons. As one would intuitively expect, the 446

parameter regime in which network coherence occurs grows larger as the connection 447

probability becomes larger (Fig 7A-C. The two-dimensional plots (Fig 7D-F do not 448

show a clear pattern between the connection probability and the sharpness of the 449

transition, but this is reasonable considering that large connection probabilities were not 450

included in our explorations (see Methods). The differences between control and 4-AP 451

networks were also observed when the heterogeneity was varied as shown in Fig 8. 452

Heatmaps analyzing the Synchrony Measure over the entire parameter regime are shown 453

in panels A-C, with similar comparison between control and 4-AP networks as in Fig 7, 454

while analogous two-dimensional Figs to those in Fig 7 are shown in panels D-F, but 455

with varying standard deviations as opposed to connection probabilities in each panel. 456

The results presented in Fig 8 show the expected effects of increased heterogeneity: 457

namely, as the heterogeneity increases, the size of the parameter regime exhibiting 458
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Fig 7. Cortically motivated inhibitory networks exhibit a “sharp transition”
between asynchronous and synchronous dynamics driven by an increase in
the external drive for various connection probabilities.
A-C: Heatmaps displaying the Synchrony Measure for control networks (left) and 4-AP
networks (right) with a standard deviation amongst the driving currents of 6 pA and
varying connectivity densities. In these heatmaps, the inhibitory synaptic weight is
varied along the x-axis and the average external applied current is varied along the
y-axis, and the measure is taken from random initial conditions. D-F: Two dimensional
“slices” of the heatmaps in panels A-C taken to better illustrate the sharpness of the
transition between asynchronous and synchronous dynamics as well as more easily
compare this sharpness both across varying connection probabilities and between control
and 4-AP conditions. Panel D shows results for an inhibitory synaptic weight of 1.25 nS,
panel E for an inhibitory synaptic weight of 2.0 nS, and panel F for an inhibitory
synaptic weight of 2.5 nS. There is no significant difference in the tendency for 4-AP
versus control networks to exhibit the “sharp transition” from asynchrony to synchrony
despite differences in the parameter regime supporting synchrony. Furthermore, the
differences in the “sharpness” of the transition in the two cases are not robust.

coherent states decreases. This is shown most clearly by comparing the results with a 459

standard deviation of 12 pA to both the results with a standard deviation of 3 pA and 6 460

pA, which show similar regimes of synchronous dynamics (although the synchrony is 461

more pronounced over this regime when the heterogeneity is smallest at 3 pA). 462
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Fig 8. Varying the heterogeneity in external driving current in modeled
purely inhibitory networks largely preserves the general dynamical
differences and similarities seen between the 4-AP and control cases from
randomized initial conditions.
A-C: Heatmaps displaying the Synchrony Measure for control networks (left) and 4-AP
networks (right) with a connection probability of 0.12 and varying standard deviations
amongst the driving currents. In these heatmaps, the inhibitory synaptic weight is
varied along the x-axis and the average external applied current is varied along the
y-axis, and the measure is taken from random initial conditions. D-F: Two dimensional
“slices” of the heatmaps in panels A-C taken to better illustrate the sharpness of the
transition between asynchronous and synchronous dynamics as well as more easily
compare this sharpness both across varying connection probabilities and between
control and 4-AP conditions. Panel D shows results for an inhibitory synaptic weight of
1.25 nS, panel E for an inhibitory synaptic weight of 2.0 nS, and panel F for an
inhibitory synaptic weight of 2.5 nS. Once again, there is no significant difference in the
tendency for 4-AP versus control networks to exhibit the transition from asynchrony to
synchrony, nor any significant differences in the “sharpness” of this transition.

While these results show the existence of transitions caused by increased external 463

drive that are “sharp”, Figs 7 and 8 do not reveal any difference in the tendency for 464

control or 4-AP networks to exhibit this sharp transition. While 4-AP networks exhibit 465

a high synchrony measure over a wider parameter regime, particularly at lower values of 466
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Table 2. Slopes quantifying “sharpness” of the transition from asynchrony
to synchrony seen in Figs 7 and 8.

Connection
Probability

Standard
Deviation

Inhibitory
Synaptic Weight

Control
Slope

4-AP
Slope

1.25 nS 0.0125 0.0135

0.08 6 pA 2.00 nS 0.0059 0.0047

2.50 nS 0.0030 0.0012

1.25 nS 0.0204 0.0172

0.12 3 pA 2.00 nS 0.0074 0.0096

2.50 nS 0.0041 0.0033

1.25 nS 0.0191 0.0211

0.12 6 pA 2.00 nS 0.0038 0.0057

2.50 nS 0.0027 0.0042

1.25 nS 0.0135 0.0138

0.12 12 pA 2.00 nS 0.0043 0.0074

2.50 nS 0.0034 0.0039

1.25 nS 0.0106 0.0162

0.16 6 pA 2.00 nS 0.0059 0.0108

2.50 nS 0.0027 0.0037

Note: for each parameter set, the larger slope is bolded for ease of reference.

the average external applied current (explained by a combination of the 467

hyper-excitability of 4-AP neurons, insights from the ING mechanism, and the analysis 468

of sparsely connected inhibitory networks presented by Rich et. al. [23]), this does not 469

indicate an increased tendency to exhibit the transition from asynchrony to synchrony. 470

Indeed, such a transition exists almost uniformly across the inhibitory synaptic weights 471

studied here (which can be seen both by visually inspecting the increase in Synchrony 472

Measure going up a column in the heatmaps or looking at the two-dimensional traces), 473

with only the applied current value at which the transition occurs changing. 474

Furthermore, any comparisons of the relative “sharpness” of the transitions in 475

control and 4-AP networks are qualitative at best. In a majority of the comparisons 476

illustrated in the two-dimensional plots (Fig 7D-F), 4-AP networks displayed a higher 477

slope measure shown in Table 2 than their control counterparts. However, this feature is 478

not entirely robust (see, for example, the comparison of networks with a connection 479

probability of 0.08 in Fig 7E and Table 2), and there is no guarantee that the minor 480

increases in the slope measure are indicative of a difference in the actual dynamics 481

underlying the transition. Further detailed analysis of this feature of the networks 482

would be required to draw any conclusions. 483

Finally, it is worth noting that a change of this sort is unlikely to arise via an 484

Ornstein-Uhlenbeck process modeling background excitatory synaptic activity, in 485

contrast to what was shown in Fig 6 (i.e. that perturbation-like activity could arise 486

from this process). Indeed, the example current presented in Fig 6 does not show any 487
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large amplitude increases in the synaptic current lasting longer than tens of milliseconds. 488

This indicates that a small, permanent increase to the external drive to the network 489

likely requires a more consequential biological change in the system, especially when 490

compared to a perturbation which can arise more naturally via fluctuations in the 491

background synaptic activity. 492

Taken together, these results confirm that a transition from asynchrony to synchrony 493

as a result of minor, permanent increases to the external driving current can occur in 494

these cortically-motivated networks, similar to the results presented by Ferguson et. 495

al. [21] in the hippocampus. However, there is no robust difference in the tendency for 496

4-AP versus control networks to exhibit this transition. This strongly suggests that this 497

mechanism is unlikely responsible for the initial step in a “GABAergic initiation 498

hypothesis”. Instead, a mechanism driven by a “bistable transition” is more plausible in 499

the context of explaining GABAergic seizure initiation, as it is much more likely to 500

occur in 4-AP networks rather than control networks. While transitions into synchrony 501

caused by minor, permanent increases to the external drive to an inhibitory network 502

certainly could occur in the brain given the existing literature, this conclusion implies 503

that mechanism is more likely to drive non-pathological oscillations rather than the 504

pathological inhibitory synchrony potentially initiating seizure. 505

Discussion 506

Computational models of epilepsy encompass various levels of detail and address 507

different seizure aspects [50]. To help individuals with epilepsy, mechanisms underlying 508

the initiation, propagation and termination of seizures must be discovered and fully 509

understood (see Fig 1). This paper aims to provide support for a novel hypothesis for 510

seizure initiation, a “GABAergic initiation hypothesis”, by proposing a viable 511

cellular-based mechanism by which the necessary initial step of this hypothesis, the 512

sudden transition of ictogenic inhibitory networks into synchrony, might come about. 513

Such a mechanism has not yet been presented in the literature of which the authors are 514

aware. This hypothesis proposes that synchronous activation of inhibitory interneurons 515

(the “initial step” investigated here) gives rise to a strong inhibitory signal that 516

activates the excitatory, pyramidal cell population via PIR [12] (see Fig 1). As 517

experimental support for this theory accumulates [1, 8–13], computational insights such 518

as those presented here can provide further support for its viability by proposing 519

reasonable mechanisms underlying the activity seen in experiments. Such mechanistic 520

insights may also facilitate future clinical applications of this research. 521

In this study, inhibitory networks informed by a cortical environment in control and 522

hyper-excitable settings were constructed, with the modeled hyper-excitability 523

specifically mimicking the treatment of interneurons with 4-AP. Experimentally, in vivo 524

and in vitro treatment with 4-AP induces seizures that are preceded by interneuronal 525

synchrony and predominantly GABAergic IIS [29,51], and thus 4-AP is a commonly 526

used epilepsy model [31,32]. This experimental evidence justifies not only the use of 527
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4-AP as a seizure-model in this study, but also the focus on the effects of 4-AP on 528

interneuronal networks. However, GABAergic activity does not only play a role in 529

seizure initiation under 4-AP conditions; indeed, synchronous interneuronal activation 530

has also been shown to underlie IIS in the in vivo pilocarpine model of epilepsy [13], 531

precede seizures in both the low-Mg, high K+ model [26,28] and electrical stimulation 532

models of seizure initiation [52], and more generally precede seizures in rodents [9, 29]. 533

Thus, the insights gained from this study can be applied to the general study of 534

epileptiform activity. 535

Two potential mechanisms by which inhibitory networks could suddenly transition 536

into synchronous firing were examined in this paper. In the context of the study of 537

seizure initiation, the mere existence of such a transition is not of primary concern; 538

rather, such a transition should occur appreciably more often in hyper-excitable (i.e. 539

4-AP treated) networks when compared to control networks. One potential mechanism, 540

previously articulated in the computational literature by Ferguson et. al. [21] in a 541

hippocampal setting and confirmed by other studies for more general networks [23], 542

proposes that small, permanent increases in excitatory drive could cause a sharp 543

transition between incoherent and coherent states in a purely inhibitory network. While 544

transitions of this type were present in the networks studied here, there was no 545

difference in the tendency for this transition to occur when 4-AP and control networks 546

were compared. In contrast, transitions caused by a brief perturbation to external drive 547

to the system, termed “bistable transitions” given the correspondence of this transition 548

with the concept of bistability from dynamical systems theory, were notably more likely 549

to occur in 4-AP than control networks. This crucial difference implies that “bistable 550

transitions” are a more viable candidate mechanism that explains a sudden transition of 551

an inhibitory network into synchrony in pathological networks. 552

The general concept of bistability has been discussed previously in epilepsy 553

literature, given that epilepsy as a disease represents the sudden transition between two 554

seemingly stable brain states: the “healthy” non-seizure state characterized by largely 555

uncorrelated neural activity and the “pathological” seizure state characterized by 556

synchronous neural firing [53]. However, it is worth emphasizing that the setting in 557

which bistability is analyzed, and thus the context of the corresponding perturbation, is 558

unique in this study, driven primarily by the focus on a “GABAergic initiation 559

hypothesis”. Indeed, existing studies investigate a bistability between seizure and 560

non-seizure states in settings such as intact hippocampal slices [54], a computational 561

network of both excitatory and inhibitory cells with special emphasis on the role of 562

extracellular potassium concentrations [55], or more general mathematical settings [53]. 563

In contrast, in this study bistability is analyzed solely in an inhibitory network, and the 564

bistability does not in itself represent the transition into seizure, but rather a dynamical 565

change that might precipitate seizure onset due to its downstream effects (as illustrated 566

by a “GABAergic initiation hypothesis” schematized in Fig 1). 567

We also highlight an important distinction between this work and other 568

computational work investigating the role of GABAergic signalling in epileptiform 569
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activity and inter-ictal discharges (IID): while recent literature investigating this topic 570

makes use of the potential depolarizing capacity of GABA [56,57], the work presented 571

here uses purely inhibitory GABAergic synapses. Indeed, while changes in the GABA 572

reversal potential are seen during seizure propagation [3], the changes in chloride 573

concentrations necessary to elicit this feature are unlikely to exist prior to or during 574

seizure initiation, which is the focus of this research. Moreover, the mechanisms 575

proposed in the work of Chizhov et. al. [56,57] do not focus on the capacity of excitatory 576

cells for PIR, in contrast to the “GABAergic initiation hypothesis” discussed here. 577

The mechanism proposed in this paper is the first of which the authors are aware 578

that describes how the initial step of a “GABAergic initiation hypothesis” might occur 579

with both biological [12] and computational (this study) support. This, in turn, provides 580

new and convincing evidence that may help to explain how the hyper-excitability 581

induced by 4-AP causes the cortex to be more vulnerable to seizures, and more generally 582

how interneurons can be involved in the initiation of cortical seizures clinically [58,59]. 583

Mechanism details 584

The exploration of a transition driven by a small, permanent increase to the external 585

drive was motivated by modeling studies [21] and physiological evidence [24] of 586

inhibitory networks in the hippocampus. The observed sharp transition in the 587

hippocampal model networks of Ferguson et. al. [21] was dependent on constraining the 588

model network from cellular, synaptic and connectivity perspectives with the 589

experimental data and context. The research presented here revealed that those 590

hippocampal insights were translatable to a more generic, cortically-motivated network. 591

Given this, it is possible that these insights are generalizable to most fast-firing 592

inhibitory networks, although parameters representing external drive and synaptic 593

strengths would not necessarily be the same. Additionally, considering the similarities in 594

neural and network properties utilized in this work and that of Ferguson et. al. [21], it 595

is very probable that the hippocampal networks would exhibit bistability of some form. 596

However, of critical importance in the context of this study is the lack of an appreciable 597

difference in the tendency for 4-AP and control model networks to exhibit this 598

transition. 599

The mechanism articulated in this paper making use of the mathematical concept of 600

bistability addresses the shortcomings, in the context of seizure initiation, of the 601

mechanism described above. Bistability arises on a small scale in many neuron models, 602

including the Hodgkin-Huxley equations, in which both the resting state and periodic 603

firing of action potentials are stable solutions and the amplitude of the input to the 604

system determines which of these dynamics is exhibited by the model [47]. Here, 605

bistability was observed in the larger scale, network dynamics of coherent and 606

incoherent network states. These states were uncovered by making use of a similar 607

perturbation to that utilized previously in a more abstract study of inhibitory 608

networks [23]. Critically, the transition from asynchrony to synchrony brought about by 609

this mathematically-motivated perturbation persisted when a lower amplitute and wider 610

April 11, 2019 24/36

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/613794doi: bioRxiv preprint 

https://doi.org/10.1101/613794
http://creativecommons.org/licenses/by/4.0/


perturbation, motivated by activity that might arise from an Ornstein-Uhlenbeck 611

process simulating background excitatory synaptic activity, was used. This result 612

indicates that this transition is potentially viable in a biologically-grounded setting as 613

well. 614

The analysis of this “bistable transition” reveals that it is more likely to occur in 615

4-AP networks as opposed to their control counterparts. This result indicates that it is 616

a much more likely culprit in the initial step of a “GABAergic initiation hypothesis” of 617

seizure than a transition brought about by a small, permanent increase in external drive 618

to the network. Further support for bistability serving a role in seizure onset is found in 619

the statistics of inter-seizure intervals [60]. Moreover, the cortically-motivated 620

Ornstein-Uhlenbeck process generated current displayed in Fig 6 illustrates that 621

perturbation-like activity is more likely to arise from background synaptic excitation 622

than longer-lasting increases approximating a permanent increase in the external drive 623

to an inhibitory network. Taken together, these insights support the hypothesis that 624

dynamical changes made possible by network bistability mechanistically explain how 625

interneuronal populations are “hijacked” in pathology [61]. 626

The role of firing frequency 627

Given that the primary difference between the 4-AP and control model neurons is in the 628

hyper-excitabillity of the 4-AP neurons, it bears investigating whether this feature plays 629

a disproportionate role in dictating the overall network dynamics. To analyze this, a 630

“Mean Firing Frequency” measure (which involves simply summing the total number of 631

spikes in the network over a given time interval, dividing by the number of cells, and 632

then converting this value into a frequency by dividing by the length of the time 633

interval) was taken over the last 500 ms of simulations performed from random initial 634

conditions over the parameter space used in Fig 4. The results, presented in Fig 9, 635

reveal that the average cell firing frequency in control and 4-AP networks with similar 636

network parameters and similar dynamical states (i.e. synchrony or asynchrony) are 637

actually quite close (and any differences are certainly diminished from the extreme 638

differences seen in their FI curves presented in Fig 2). This finding is fairly robust over 639

all but the weakest inhibitory syanptic weights. Thus, the critical implication is that the 640

mechanism involved in the “bistable transition” involves an interplay of cellular 641

(potentially not only the hyper-excitability, but also the increased adaptation, in 4-AP 642

neurons) and network properties, and could not be replicated merely by causing the 643

neurons to fire faster in some artificial fashion. 644

Also of interest in this analysis was that both control and 4-AP networks show a 645

similar increase in average firing rate when transitioning from asynchrony to synchrony 646

(highlighted by the example raster plots and corresponding mean firing frequencies 647

presented in Fig 9). This result is analogous to a similar finding in [21] and indicates a 648

potential avenue for an experimental exploration of the results presented here: namely, 649

a substantial increase in firing rate following a perturbation to an inhibitory network is 650

likely indicative of the transition into synchronous firing. Such behavior is likely more 651
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Fig 9. Overall firing frequency is higher in networks exhibiting synchrony,
providing a potential avenue through which to identify the results of this
work via experimental recordings.
A-B: Mean Firing Frequency values, averaged over five independent simulations, for
control (A) and 4-AP (B) networks. The border dividing the parameter regime
supporting synchronous dynamics (top-left) from the regime of asynchrony is depicted
by the bolded black line, where this border was found using a cutoff value for the
Synchrony Measure of 0.25 (which was found to be reasonable after a rigorous
investigation of a variety of raster plots and their corresponding Synchrony Measures).
Example raster plots for the networks outlined in pink and red illustrate example
asynchronous and synchronous raster plots, respectively, along this border. Their Mean
Firing Frequency values illustrate the relatively large increase in network activity that is
associated with the transition from asynchronous to synchronous firing.

easily identifiable by multi-electrode arrays than synchronous firing itself. 652

Furthermore, these results shed new light on the interaction between synchrony and 653

increased cell firing rate in the context of seizure onset. Experimental literature 654
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commonly shows that these dynamics (in both excitatory and inhibitory cells) both 655

accompany seizure onset (see, for example, the work in humans of [62]), with many of 656

these studies implying that increased firing rate plays a causal role in the transition into 657

synchrony (see, for example, the work of [13] which reveals an increase in interneuron 658

firing rates prior to seizure and the corresponding synchronous dynamics). However, the 659

“bistable transition” described in this paper does not require a change to the system that 660

would increase the average cell firing rate; rather, the increased firing rate comes about 661

seemingly driven by the induced synchronous firing of the inhibitory network. Thus, it 662

is possible that synchrony of inhibitory networks is permissive of an increased neural 663

firing rate, instead of increased firing rate causing this synchrony. Indeed, where there is 664

sparse sampling of interneurons, increased firing rates of interneurons prior to a seizure 665

may be additionally interpreted from our modelling results to represent a transition to 666

synchronous interneuronal firing [13] rather than a firing rate increase alone. 667

Theoretical insights and related studies 668

The multi-scale and nonlinear nature of the human brain makes it challenging to 669

understand its dynamics. As such, insights from theory are needed to help guide 670

computational studies and inform the understanding of brain networks. Here, models of 671

inhibitory networks informed by cortical data were used to explore potential 672

mechanisms leading to the transition from asynchrony to synchrony that occurred more 673

robustly in hyper-excitable settings. Such synchrony primarily corresponded with fast 674

network oscillations. 675

However, networks of fast-firing interneurons can also produce slow population 676

output as shown in modeling studies [63]. The ability of fast-firing inhibitory networks 677

to produce slow population activities was shown to be possible via individual cells 678

having enough of a “kink” in their frequency-current (FI) curves that allowed a bistable 679

network mechanism to be present [63]. The modeled slow population activity (< 5 Hz) 680

is seen in vitro using a hippocampal preparation [64,65], and a bistable network 681

mechanism was subsequently leveraged to explain paradoxical changes seen in Rett 682

syndrome mice from the perspective of these same slow population activities [66]. 683

A critical difference between the bistable network mechanism of Ho et. al. [63] and 684

bistability related to properties of the ING mechanism (analogous to that presented 685

here) was summarized by Skinner and Chatzikalymniou [67]. In the work of Ho et. 686

al. [63], the mean excitatory drive received by inhibitory cells in the network must be 687

close to their spiking rheobase. The bistability is between states with low or high 688

numbers of fast-firing cells, and this allows slow population activities to come about due 689

to excitatory fluctuations in the system. A similar mechanism could be in play in the 690

work of Schlingloff et. al. [24] where an in vitro representation of sharp waves was 691

examined and it was suggested that sharp waves could be generated stochastically from 692

excitatory input. In contrast, for an ING-related bistability, the excitatory drive to the 693

inhibitory cells is not close to spiking rheobase, but as shown by Rich et. al. [23] and in 694

the cortically-motivated networks presented here, bistability between synchronized high 695
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frequency firing and asynchrony is possible. 696

There have been numerous studies in the computational literature probing the 697

tendency for networks of inhibitory neurons to synchronize, although these studies 698

typically are done in a more theoretical setting rather than the biologically-motivated 699

manner presented in this study. The interneuron models utilized here exhibit Type I 700

properties in their FI curves (namely, a steep FI curve with an arbitrarily low firing 701

frequency [68]), and neurons with these properties have been a focus of many 702

computational studies of inhibitory synchrony [69–72]. As such, the coherent dynamics 703

seen in our cortically-motivated inhibitory networks correspond with insights from these 704

more abstract computational studies. This literature contributed to the articulation of 705

the ING mechanism [15,16,18,19] that is most likely driving the coherent dynamics seen 706

in these cortical inhibitory networks. Another seminal study on inhibitory synchrony 707

and ING found that the synchrony promoted by the ING mechanism is most robust 708

when networks are more densely connected and cellular heterogeneity is low [73], 709

features replicated in the cortically-motivated networks presented here. 710

In this context we note that computational studies proposing mechanisms for 711

synchronous network oscillations are typically concerned either with purely inhibitory 712

networks (as presented here), purely excitatory networks [74], or networks containing 713

inter- and intra-connected subnetworks of excitatory and inhibitory cells (E-I networks). 714

Crucially, the mechanisms underlying synchrony and their dependence on features such 715

as cell excitability properties (i.e. the Type I vs. Type II distinction [68]), external 716

drive to the network, and network connectivity can vary significantly depending on the 717

type of network studied. For example, the results of Hansel et. al. [74] imply that an 718

excitatory network made up of cells of the type studied here is highly unlikely to ever 719

synchronize. Similarly, while the Pyramidal Interneuron Network Gamma (PING) 720

mechanism is commonly cited as a mechanism causing synchronous oscillations in E-I 721

networks [16, 72, 75, 76], recent work has revealed that the predictions of this mechanism 722

are altered by varying individual cellular properties and network connectivity [42,43]. 723

Limitations and Future Work 724

The neuron models implemented here used a simplified Izhikevich type integrate and fire 725

mathematical structure, informed by a combination of existing literature and in-house 726

experiments. With a full repertoire of experimental recordings, one could more fully 727

capture neuronal features and differences, but a consideration of the multiple inhibitory 728

cell types as well as network configurations and properties should also be taken into 729

consideration. Indeed, one could consider designing a neuromodulation study using the 730

Blue Brain Project [37] to examine this given the insights gleaned from this study. 731

The network structure used in this work, a purely inhibitory network, is also 732

simplified from the biology. However, this choice was critical in allowing for the 733

articulation of a mechanism of action underlying the transition of interneurons into 734

synchrony. Such a mechanism is a paramount and necessary “first step” towards an 735

overarching mechanism of a “GABAergic initiation hypothesis” and provides initial 736
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justification for further, more biologically detailed study of this hypothesis. With this 737

mechanism in hand, future work can more easily investigate how the dynamics of 738

excitatory cells might affect or interact with this behavior amongst the inhibitory 739

neurons. 740

For the work here, we focused on differences between control and 4-AP neurons as 741

encapsulated in our models. It is unlikely that utilizing a more realistic noisy synaptic 742

input would affect the primary results of this work, since both noisy [77] and 743

deterministic [21] inputs were used in previous hippocampal inhibitory network models 744

without changing insights regarding the transition into synchrony. 745

While use of a simplified neuron model and network structure enables extensive 746

parameter explorations to be easily done and dynamical aspects, like bistability, to be 747

uncovered, parameter interpretation relative to details of the biological system is less 748

straightforward. However, studies such as this could help leverage understanding and 749

motivate hypothesis-driven explorations in more detailed models. We note that due to 750

the relatively sparse connectivity of the cortically-motivated inhibitory networks studied, 751

mathematical tools such as reduction to phase oscillator models as in Hansel et. al. [74] 752

that require an assumption of all-to-all connectivity and weak coupling cannot be easily 753

applied to do further theoretical analyses. 754

With the ability to obtain and model human cellular data [78,79], it will be 755

interesting to consider how one might examine and take advantage of these mechanistic 756

insights. Expanding our mechanistic insights here to include excitatory cell networks 757

and other seizure phases (see Fig 1 [5]) are exciting considerations. 758

Conclusion 759

The hypothesis that excessive inhibitory signalling serves a causal role in seizure 760

initiation has support from numerous recent experimental studies, but until now has not 761

subject to rigorous computational investigation. Here, we provide the first 762

computational support for this theory by articulating a mechanism that not only 763

potentially explains the necessary, initial step in this process (the sudden transition of 764

inhibitory interneurons from asynchronous to synchronous firing), but also why 765

networks in a model ictogenic state are more vulnerable to this transition. This latter 766

feature distinguishes this mechanism as one particularly important in the study of 767

epilepsy, as any process asserted to relate to seizure initiation should be more likely to 768

occur in an ictogenic as opposed to healthy brain. As this novel hypothesis of seizure 769

initiation is inherently counter-intuitive, especially in comparison to the more 770

historically common theory of over-excitation or dis-inhibition initiating seizure, this 771

computational work articulating potential mechanisms of action is especially important 772

to support the theory’s viability. Indeed, our work presented here not only provides the 773

first evidence of which we are aware that feasible mechanisms underlying necessary 774

steps in this process exist, providing paramount support for a “GABAergic initiation 775

hypothesis”, but also presents new potential avenues for experimental and clinical 776
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epilepsy research via further investigation of this mechanism. 777

Acknowledgments 778

We thank Amir Rez Peimani for early simulations performed for this work. Funding for 779

this work was provided by the Natural Sciences and Engineering Research Council of 780

Canada (NSERC) via Discovery Grants to Frances K. Skinner and Taufik A. Valiante. 781

References

1. Miri ML, Vinck M, Pant R, Cardin JA. Altered hippocampal interneuron activity

precedes ictal onset. eLife. 2018;7:e40750.

2. Trevelyan AJ, Sussillo D, Watson BO, Yuste R. Modular propagation of

epileptiform activity: evidence for an inhibitory veto in neocortex. J Neurosci.

2006;26(48):12447–12455.

3. Ellender TJ, Raimondo JV, Irkle A, Lamsa KP, Akerman CJ. Excitatory effects

of parvalbumin-expressing interneurons maintain hippocampal epileptiform

activity via synchronous afterdischarges. J Neurosci. 2014;34(46):15208–15222.

4. Schindler K, Elger CE, Lehnertz K. Increasing synchronization may promote

seizure termination: evidence from status epilepticus. Clinical neurophysiology.

2007;118(9):1955–1968.

5. Jiruska P, De Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K.

Synchronization and desynchronization in epilepsy: controversies and hypotheses.

J Physiol (Lond). 2013;591(4):787–797.

6. Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of

seizure dynamics. Brain. 2014;137(8):2210–2230.

7. Zhang Z, Valiante T, Carlen P. Transition to seizure: from “macro”-to

“micro”-mysteries. Epilepsy Res. 2011;97(3):290–299.

8. Klaassen A, Glykys J, Maguire J, Labarca C, Mody I, Boulter J. Seizures and

enhanced cortical GABAergic inhibition in two mouse models of human

autosomal dominant nocturnal frontal lobe epilepsy. PNAS.

2006;103(50):19152–19157.

9. Avoli M, de Curtis M. GABAergic synchronization in the limbic system and its

role in the generation of epileptiform activity. Prog Neurobiol.

2011;95(2):104–132. doi:10.1016/j.pneurobio.2011.07.003.

10. Avoli M, Curtis Md, Gnatkovsky V, Gotman J, Köhling R, Lévesque M, et al.
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