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SUMMARY  

Tissue clearing methods enable imaging of intact 
biological specimens without sectioning. Howev-
er, reliable and scalable analysis of such large 
imaging data in 3D remains a challenge. Towards 
this goal, we developed a deep learning-based 
framework to quantify and analyze the brain vas-
culature, named Vessel Segmentation & Analysis 
Pipeline (VesSAP). Our pipeline uses a fully con-
volutional network with a transfer learning ap-
proach for segmentation. We systematically ana-
lyzed vascular features of the whole brains in-
cluding their length, bifurcation points and radius 
at the micrometer scale by registering them to 
the Allen mouse brain atlas. We reported the first 
evidence of secondary intracranial collateral vas-
cularization in CD1-Elite mice and found reduced 
vascularization in the brainstem as compared to 
the cerebrum. VesSAP thus enables unbiased 
and scalable quantifications for the angioarchi-
tecture of the cleared intact mouse brain and 
yields new biological insights related to the vas-
cular brain function.  

INTRODUCTION   

Changes in the brain vasculature are a key fea-
ture of a large number of diseases effecting the 
brain. Primary angiopathies, vascular risk factors 

(e.g., diabetes), traumatic brain injury, vascular 
occlusion and stroke all affect the brain vascular 
network and interfere with normal microcircula-
tion and vascular function1-5. Alterations of the 
brain microvasculature are also seen in neuro-
degenerative diseases, such as Alzheimer’s dis-
ease, tauopathy and amyloidopathy. These hall-
marks of the Alzheimer’s disease, can lead to 
aberrant remodeling of the blood vessels1,6-8. 
Consequently, capillary rarefaction is frequently 
used as a marker for vascular damages9. Thus, 
quantitative analysis of the entire brain vascula-
ture including the capillary bed is pivotal to de-
velop a better understanding of physiological and 
pathological brain function. However, quantifying 
micrometer scale changes in the cerebrovascular 
network of intact brains has been difficult for two 
main reasons.  

First, labeling and imaging of the complete 
mouse brain vasculature down to the smallest 
blood vessels has to be achieved. Magnetic res-
onance imaging (MRI), for instance, does not 
have sufficient resolution to capture capillaries10. 
MicroCT imaging can visualize the microvascula-
ture, but because of specimen size constraints it 
fails to acquire a whole intact mouse brain11. Flu-
orescent microscopy, on the other hand, provides 
a higher resolution but can typically be applied to 
1-200 μm thin tissue slices, which does not pre-
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serve the structure of an end-to-end vascular 
network. Recent advances in tissue clearing 
could overcome this problem, but so far there 
has been no demonstration of all vessels of all 
sizes in an entire brain in three dimensions 
(3D)12.  

The second challenge relates to automated anal-
ysis of 3D imaging data for structures that are 
spanning entire mouse brains, which cannot be 
analyzed piece by piece in a reliable and scala-
ble manner. Scanning transparent specimens of 
several millimeters size at micrometer resolution, 
inevitably introduces substantial variance in the 
signal intensity and signal-to-noise ratio at differ-
ent depths. Thresholding methods are not capa-
ble of segmenting these large scans, whereas 
shape-based filtering approaches such as Frangi 
filters cannot reliably identify vessels from back-
ground13,14. To overcome these limitations more 
advanced image processing methods with local 
spatial regularization have been proposed for 
processing light-sheet scans15. However, such 
methods including local spatial regularization 
cannot segment large vascular networks across 
changing intensity distributions. Finally, the size 
of the acquired datasets poses a difficulty to as-
sess the organization of the whole vascular net-
work; therefore, such methods can only segment 
small volumes15-19.  

Here, we present VesSAP (Vessel Segmentation 
& Analysis Pipeline), a method for automated 
quantitative analysis of the entire mouse brain 
vasculature, which overcomes the limitations 
stated above. To achieve this, we first developed 
a dual vascular staining approach using wheat 
germ agglutinin (WGA) and Evans blue (EB) to 
stain both small and large vessels in two fluores-
cent channels, consistently throughout the entire 
brain. Next, we cleared whole stained brains us-
ing the 3DISCO method20 and imaged them with 
light-sheet microscopy at micrometer resolution. 
Second, we developed a deep fully convolutional 
network (FCN), which exploits the imaging data 
from both dyes to provide a high-quality segmen-
tation of the vasculature in 3D. Subsequent fea-
ture extraction and registration to the latest Allen 
adult mouse brain atlas enabled us to quantify all 
features of interest with respect to their topo-

graphical location. Our deep learning-based ap-
proach works reliably despite variations in signal 
intensities, outperforming previous filter-based 
methods and reaching the quality of segmenta-
tions of human annotators. To our knowledge, 
this is the first time that a deep learning approach 
is being used to analyze complex imaging data of 
cleared mouse brains i.e. spanning the entire 
brain end-to-end.  

We further applied VesSAP to a set of 6 mice 
from two commonly used mouse strains to sys-
tematically explore strain-related differences in 
vascular anatomy across brain regions as de-
scribed by the Allen brain atlas. We reported new 
biological findings and provide a comprehensive 
reference set of vessel anatomy features, reveal-
ing unique structures of different brain regions. 
Thus, VesSAP represents an integrated pipeline 
enabling automated and scalable analysis of the 
complete mouse brain vasculature (Fig. 1). All 
parts of the VesSAP are publicly hosted online 
for easy adoption, including the imaging protocol, 
the data (original scans, registered atlas data), 
the trained algorithms, training data and a refer-
ence set of features describing the vascular net-
work in all brain regions at the following address: 
http://DISCOtechnologies.org/VesSAP 

RESULTS   

Tissue clearing methods enable imaging of un-
sectioned biological specimens. To extract bio-
logically meaningful data, they have to be com-
bined with reliable and automated image analysis 
methods. Towards this goal, we developed Ves-
SAP, a deep learning-based method to accurate-
ly and automatically analyze the vasculature of  

cleared mouse brains. VesSAP encompasses 3 
major steps: 1) staining, clearing and imaging of 
the mouse brain vasculature by two different 
dyes (WGA and EB) down to the capillary level, 
2) transfer learning-based algorithms to automat-
ically segment and trace the whole brain vascula-
ture data at the capillary level and 3) extraction of 
vascular features for hundreds of brain regions 
by registering the data to the Allen brain atlas 
(Fig. 1). We applied VesSAP to generate vascu-
lar reference maps for two commonly used 
mouse strains under physiological conditions: 
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C57BL/6J and CD1-Elite mice. We report the first 
evidence of secondary intracranial collateral vas-
cularization in CD1-Elite mice. Furthermore, our 
work shows a significantly decreased vasculari-
zation density in the brainstem as compared to 
the cerebrum in both mouse strains.  

Step 1: Vascular staining, DISCO clearing, 
and imaging 
Towards staining the entire vasculature, we ap-
plied a combination of two dyes, WGA and EB 
staining in two fluorescent channels. We then 
performed 3DISCO clearing21 and light-sheet 
microscopy imaging of whole mouse brains at 
micrometer resolution (Fig. 2A-C, Supporting 
Fig. 1). WGA predominantly stains small vessels 
and, importantly, captures even the smallest ca-

pillaries down to diameters of a few micrometers, 
while EB predominantly stains large vessels in-
cluding the middle cerebral artery and the circle 
of Willis (Fig. 2D-I, Supporting Fig. 2). Merging 
the signals from both dyes yields a staining of the 
complete vasculature, showing the complemen-
tary nature of both dyes (Fig. 2C,F). Importantly, 
the signals from both dyes are perfectly congru-
ent when staining the same vessel and solely 
come from the vessel wall layer (Fig. 2G-I, Sup-
porting Fig. 2). Furthermore, owing to the dual 
labeling, we maximized the signal to noise ratio 
(SNR) for each dye independently to avoid satu-
ration of differently sized vessels when only a 
single channel is used. We achieved this by in-
dependently optimizing the excitation and emis 

 

Figure 1: Summary of the VesSAP pipeline for automated whole brain analysis of the 
perfused vasculature  
The proposed method consist of three modular steps: 1, multi dye vessel staining and DISCO tissue 
clearing for high imaging quality using 3D light-sheet microscopy; 2, Deep-learning based segmentation 
of blood vessels with 3D reconstruction and 3, Anatomical feature extraction and mapping of the entire 
vasculature to the Allen adult mouse brain atlas for statistical analysis. 
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sion power. For WGA, we reached a higher SNR 
for small capillaries; bigger vessels, however, 
were barely visible (Supporting Fig. 3). For EB, 

the SNR for small capillaries was substantially 
lower but larger vessels reached a high SNR 
(Supporting Fig. 3). Thus, integrating the infor-

 

Figure 2: Enhancement of vascular staining using two complementary dyes  
A-C, Maximum intensity projections of the automatically reconstructed tiling scans of WGA (A) and  
Evans blue (B) signal in the same sample reveal all details of the perfused vascular network in the 
merged view (C). D-F: Zoom-ins from marked region in (C) showing fine details. G-L, Confocal  
microscopy confirms that WGA and EB dyes stain the vascular wall (G-I, maximum intensity projections 
of 112 µm) and that the vessels retain their tubular shape (J-L, single slice of 1 µm). 
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mation from both channels allows homogenous 
staining of the entire vasculature throughout the 
whole brain, and results in a high SNR for high-
quality segmentations and analysis.  

Step 2: Segmentation of the volumetric 
images   
To enable extraction of quantitative features of 
the vascular structure, the vessels in the ac-
quired brain scans need to be segmented in 3D. 
Motivated by the recent success of deep learning 
based approaches in biomedical image data 
analysis22-32, including human MRI data segmen-
tation, we developed a deep FCN to exploit the 
complementary signals of both dyes to derive a 
complete segmentation of the entire vasculature. 

Our network architecture is a deep FCN, which 
segments vessels based on the input from two 
imaging channels. The network consists of 5 lay-
ers, 4 convolutional layers followed by one fully 
connected layer. In a first step, the two input 
channels (WGA and EB) are concatenated. This 
yields a set in which each voxel in 3D space is 
characterized by two features. Each convolution-
al step integrates the information from the voxel's 
3D neighborhood. Here we use cross-hair 
shaped convolutional kernels to sample the local 
surrounding of each voxel in a sparse manner 
along three orthogonal planes25 (Fig. 3A). After 
the last convolution, the information from 50 fea-
tures per voxel is combined with a fully connect-
ed layer and a sigmoidal activation to estimate 
the likelihood that a given voxel represents a 
vessel. Subsequent binarization yields the final 
segmentation. In both, training and testing, the 
images are processed on sub-patches of 50 × 
100 × 100 pixels.  

Often, deep neural networks require large 
amount of annotated data to be trained. Here, we 
circumvented this requirement with a transfer 
learning approach, which is frequently used to 
train algorithms with limited annotated data33. In 
short, the network was first pre-trained on a 

large, synthetically generated vessel-like data set 
(Supporting Fig. 4)34 and then refined on a 
small amount of manually annotated part of the 
real brain vessel scans. This approach drastically 
reduced the need for manually annotated training 
data, as indicated by the following observations: 
first, the network that was solely trained on syn-
thetic data already yields acceptable segmenta-
tions of real brain vessel scans. Second, the re-
finement on the real data set already converged 
after a few training epochs. Third, only a very 
small amount of manually annotated training data 
(here: 0.02 % of a full brain scan) was needed to 
segment the vasculature of an entire brain with 
the quality of human annotations.  

To assess the quality of the segmentation quanti-
tatively, we compared the network prediction with 
manually created ground truth segmentation and 
ran several experiments with alternative ap-
proaches (Fig. 3B, Supporting Fig. 5). To pro-
vide comparability with the literature, we reported 
two voxel-wise measures that quantify the quality 
of the segmentation, accuracy and the F1-
score35. As compared with the ground truth, our 
network exploiting the information from WGA and 
EB achieved an accuracy of 0.93 ± 0.01 and a 
F1-Score 0.76 ± 0.01 (Fig. 3B). To assess the 
importance of integrating information from both, 
WGA and EB, we designed a control network 
that only has access to the commonly used WGA 
signal, which reduced the quality of the vessel 
segmentation (accuracy: 0.90 ± 0.08; F1-Score 
0.74 ± 0.07). As further controls, we implemented 
alternative state-of-the-art methods and found 
that our network outperforms classical Frangi 
filters13 (accuracy: 0.85 ± 0.03; F1-Score 0.47 ± 
0.18), as well as recent methods considering lo-
cal spatial context via Markov random fields15,36 
(accuracy: 0.85 ± 0.03; F1-Score 0.48 ± 0.04).  

Next, we compared the segmentation accuracy 
of our network with human annotations. A total of 
4 human experts independently annotated two 
volumes each and these segmentations were  
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Figure 3: Deep learning architecture of VesSAP and performance on vessel  
segmentation  
A, The proposed VesSAP network architecture, consisting of four convolutional layers and a sigmoid 
classification layer. Schematic representation of the convolutional cross hair operations applied in each 
convolutional step. B, Evaluation metrics for the performance of VesSAP compared to a one channel 
architecture and the commonly used Frangi filter and speed of segmentation for one image volume of 
500 × 500 × 50 pixels. C, The quantification for interrater experiment showing the performance of our 
model compared to four human experts. Each of them annotated two patches. D, 3D rendering of full 
brain segmentation from a CD1-E mouse. E, 3D rendering of a small patch marked in (D) showing large 
vessels and connected capillaries. 
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again compared to the ground-truth segmenta-
tion. We found that the accuracy of segmentation 
quality of independent human annotators was 
comparable to the predicted segmentation of our 
network (Fig. 3c). Moreover, our network could 
segment a whole mouse brain scan within 24 
hours on a single GPU workstation whereas the 
annotators who created our segmentations would 
need more than a year to process a whole brain. 
In summary, the VesSAP pipeline is able to seg-
ment the whole brains vasculature at human lev-
el accuracy with a substantially higher speed. 

Fig. 3D and Supporting Video 1,2 show an ex-
ample of a brain vasculature that was segmented 
by VesSAP in 3D. Zooming into a smaller patch 
reveals that the connectivity of the vascular net-
work was fully maintained (Fig. 3E, Supporting 
Video 1). Comparing single slices of the imaging 
data with the predicted segmentation shows that 
vessels are accurately segmented regardless of 
absolute illumination and vessel diameter (Sup-
porting Fig. 6).  

Step 3: Feature extraction and atlas 
registration 
It has previously been shown that vessel density, 
radius and the number of bifurcation points can 
be used to describe vascular anatomy3. Hence, 
we used our segmentation to trace and quantify 
these features as the distinct parameters to 
characterize the mouse brain vasculature (Fig. 
4A, Supporting Video 3). A visualization of the 
quantified vessel radius along the entire vascular 
network is shown in Fig. 4B. After extracting 
vascular features of the whole brain with Ves-
SAP, we registered the volume to the Allen brain 
atlas (Supporting Video 4,5). This allowed us to 
map the segmented vasculature and correspond-
ing features to distinct anatomical brain regions. 
A representative cross-section of the brain 
through the vasculature, color-coded by coarse 
anatomical regions, is depicted in Fig. 4C. Each 
anatomical region can be further divided into sub-
regions, yielding a total of 1238 anatomical struc-
tures (619 per hemisphere) for the entire brain 
(Fig. 4D). This allows analyzing each denoted 
brain region and grouping regions into clusters 
such as left vs. right hemisphere, gray vs. white 

matter or hierarchical clusters of the Allen brain 
atlas ontology. For our subsequent statistical fea-
ture analysis, we chose to group the labeled 
structures according to the main 55 anatomical 
clusters of the current Allen brain atlas ontology. 
We thus provide the first whole mouse brain vas-
cular map with the extracted centerlines, bifurca-
tion points and radius down to the capillary level. 

VesSAP provides a reference map of the 
whole brain vasculature in mice 
To extend utility of our new method, we next de-
rived three secondary features from the segmen-
tation to build a reference map of the brain vas-
culature: 1) To approximate the total length of all 
vessels in a given volume of interest, we extract 
the centerlines and count the voxels along it (ex-
pressed in voxel / voxel ratio); 2) density of bifur-
cation points normalized to the region size (ex-
pressed in count / mm3); and 3) average radius 
for each region (expressed in μm). These fea-
tures were all referenced to the Allen brain atlas 
ontology. We used these features to determine 
the vascular features in 6 individual brain sam-
ples from the C57BL/6J and CD1-Elite strains (n 
= 3 mice for each strain). From these quantifica-
tions we derived the following conclusions: first, 
the vessel radius is evenly distributed in different 
regions of the same brain (Fig. 5A). Second, the 
bifurcation density and vessel length are uneven-
ly distributed in the same brain over different re-
gions, while they correlate well among different 
mice for the same regions (Fig. 5B,C). Moreover, 
bifurcation density correlates well with the vessel 
length ratio in most of the brain regions (Fig. 5D, 
Pearson’s correlation, r=0.956, p-value=1.971-30). 
Third, we observed that the extracted features 
show no significant statistical difference for the 
same anatomical cluster between the two strains 
(C57BL/6J and CD1-Elite) (Supporting Fig. 7, 
Supporting Tables 1-4).  

Next, we visually inspected exemplary regions 
and validated the output of VesSAP. For exam-
ple, the Gustatory areas showed higher vascular 
density compared to the Anterodorsal nucleus 
(Fig. 6A) as predicted by VesSAP (Fig. 6B,C). 
This inspection also suggested that the capillary 
density was the primary reason for the regional  

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/613257doi: bioRxiv preprint 

https://doi.org/10.1101/613257
http://creativecommons.org/licenses/by-nc/4.0/


  
 8 

 

variations in the same brain. Additionally we 
found 1) direct intracranial vascular anastomosis 
in both strains (white arrowheads, Fig. 6D,E), 
and 2) that the anterior cerebral artery, middle 
cerebral artery and the posterior cerebral artery 
are connected at the dorsal visual cortex (red 
arrowheads, Fig. 6D,E).  

Importantly, our findings on vasculature length 
are in line with the predictions in the literature 
obtained in small volumes, confirming the ro-
bustness of our method. For example, previous 
studies quantifying small patches estimated the 
density of cortical blood vessels as 0.922 m/mm³, 
0.444 m/mm³ or 0.471 m/mm³ in the cortex12,17,37. 
Using VesSAP, calculating centerline density as 

described above, and accounting for the 30 % 
isotropic tissue shrinkage in DISCO clearing38, 
we found an average vascular density of 0.473 ± 
0.161 m/mm³ over the whole mouse cortex.  

DISCUSSION 

Researchers have extensively worked towards 
examining the cerebral vasculature at the com-
plete brain scale. This is particularly relevant, 
because current theories for many cardiovascu-
lar, neurodegenerative and metabolic disease 
pathologies include the capillaries, which can 
reflect the earliest symptoms. Thus, a method to 
robustly image, segment and analyze the com-
plete cerebral vasculature of the mouse brain has  

 

Figure 4: Pipeline showing feature extraction and registration process into the native 
space of each scan  
A, Representation of the features extracted from vessels: volume mask, centerline, bifurcations and  
radii. B, Radius illustration of the vasculature in a representative CD1-E mouse brain. C-D, Vascular 
segmentation results overlaid on the hierarchically (C) and randomly color coded atlas to reveal all  
annotated regions (D) available including hemispheric difference (dashed line in D). 
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Figure 5: Reference values of  vessel radii, bifurcations and vessel lengths in cleared 
tissue mapped to 55 anatomical clusters of the Allen brain atlas 
A-C, Representation of the average radius (A), number of bifurcation points (B) and vessel length (C) in 
each of the selected anatomical clusters in the Allen brain atlas. Open circles denotes CD1-E and 
closed circles C57BL/6J strain; each circle represents a single mouse. As the features are similar be-
tween two strains, we pooled the data of them to generate reginal feature graphs. D, Scatter plot of the 
vessel length against the bifurcations shows a region specific tight correlation between these features 
(Pearson’s r = 0.9560; p = 1.9711-30). Each color represents a different brain area. All abbreviations 
are listed in the Supporting table 1. 
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Figure 6: Exemplary quantitative analysis enabled by VesSAP 
A, Maximum intensity projections representative patches from the Gustatory areas (GU) and Anterodorsal 
nucleus (AD) segmentation (600 x 600 x 33 µm). B,C, Quantification of the normalized bifurcation count and 
normalized vessel length ratio for the AD and GU clusters. In all graphs the black data points originate from 
the C57BL/6J samples and the white data points from the CD1-E. Mean values are given with error bars 
representing the standard error of the mean. D,E, Images of the vasculature in a representative C57BL/6J 
(D) and a CD1-E mouse (E) where the white arrowheads indicate the numerous anastomoses between the 
major arteries. Direct vascular connections between the medial cerebral artery (MCA), the anterior cerebral 
artery (ACA) and the posterior cerebral artery (PCER) are indicated by red arrowheads. 
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been much needed. Previous studies were re-
stricted: either they did not have sufficient resolu-
tions to visualize all vessels including tiny capil-
laries such as MRI and microCT imaging modali-
ties39-41, or once capillaries are imaged by high 
resolution fluorescent microscopy, the analysis 
could solely be done on small volumes12. Here 
we present VesSAP, a framework for unbiased 
statistical investigation of the complete vascular 
network in the intact adult mouse brain at the 
capillary level. We extracted the centerlines, bi-
furcation points and radius and assign them 
topographically to the Allen brain atlas to gener-
ate a reference map of the adult mouse brain 
vasculature. These maps can potentially be used 
to model synthetic cerebrovascular networks42,43. 
More advanced metrics to describe the vascula-
ture and networks, for example global Strahler 
values, network connectivity and local statistics 
on bifurcation angles and vascular shape can be 
extracted using our method. Furthermore, the 
centerlines and bifurcation points can be inter-
preted as the edges and nodes for building a full 
vascular network graph, offering unprecedented 
means for studying local and global properties of 
the cerebrovascular network in the future.  
Several methods have been proposed to label 
the cerebral vasculature of the mouse CNS 
based on one dye. Here, we employed two dif-
ferent dyes for complementary staining of the 
blood vessels, which are based on different 
mechanisms. The WGA binds to the glycocalyx 
of the endothelial lining of the blood vessels, but 
it can miss some segments of the large vessels. 
To circumvent this, we injected the EB dye into 
the mice 12 hours before WGA perfusion in vivo, 
allowing its long-term circulation to mark large 
vessels under physiological conditions. The 
combination of these dyes in this study enabled a 
wide dynamic contrast. This strategy has been 
proven quite beneficial for the segmentation of 
the complete cerebral vasculature of C57BL/6J 
and CD1-E strains as we showed here. 

Our FCN segmentation architecture outperforms 
the current state-of-the-art methods significantly 
(Fig. 3B). Importantly, VesSAP is one to two or-
ders of magnitude faster than the state-of-the-art 
automation which has a far lower accuracy, and 
more than 350 times faster than a human anno-

tator. Our inter-annotator experiment validates 
that our model reaches human level performance 
(Fig. 3C). However, from a medical imaging and 
machine learning perspective the scores, espe-
cially dice, precision and recall are low compared 
to some other segmentation tasks in medical im-
aging44-46.  

We attribute this mainly to the nature of a vascu-
lar network. Vessels are long but thin tubular 
shapes. In our images the radius of the capillar-
ies (about 3 µm) is in the range of our voxel reso-
lution, therefore, a segmentation of the correct 
thickness down to a single pixel is difficult. This 
inconsistency with the label does not pose a ma-
jor problem for our main task to segment the 
whole vasculature and extract features; however 
it introduces a significant reduction to the F1-
Score, which is frequently used metric in ma-
chine learning tasks. The goal here is to segment 
a complete vasculature of the brain, to enable us 
to extract vascular features such as centerlines 
and bifurcation points. Therefore, introduction of 
a new metric in the future would be needed for 
this type of data. This metric should weight the 
correct detection of the vessels more and allow 
the outer wall of a blood vessel to be in a certain 
range of distance from the centerline of that ves-
sel. The inter-annotator experiment and the com-
parison to our segmentation yielded insight in the 
quality of the segmentation. The human annota-
tor segmentation accuracy and F1-Score were 
not superior compared to our model and the an-
notators disagreed substantially emphasizing the 
strength of our segmentation.  

The proposed segmentation concept is based on 
a transfer learning approach, where we trained 
our data on a synthetic dataset and only refined it 
on a real labeled dataset 1.7 % of the size of the 
synthetic dataset. We consider this a major ad-
vantage compared to approaches that train from 
scratch. The model should generalize very well to 
other datasets, where other scientist would only 
need a small labeled dataset to achieve good 
segmentation performance. The pertinence of 
our approach should go well beyond vessel da-
tasets, and could find applications for many other 
imaging tasks, for example tracing neurons.  
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Based on our vascular reference map new prop-
erties can be discovered and biological models 
can be confirmed faster. Here, we found that a 
substantial difference in vascularization and bi-
furcation density exists across the regions of the 
Allen brain atlas. Furthermore, we found that in-
tracranial anastomoses between the anterior 
cerebral artery, middle cerebral artery and the 
posterior cerebral artery which are known from 
C57BL/6J35,47, are also present in albino CD1-
Elite strain. This is opposed to the BALB/c albino 
mouse where the absence of collaterals has 
been described35. To our best knowledge this is 
the first evidence for high collateral density in 
albino CD1-Elite mice. This finding is important 
because existence of such collateral vessels be-
tween large vessels can significantly alter the 
outcome of the ischemic stroke lesion as the 
blood deprived brain regions from the occlusion 
of a large vessel could be compensated by the 
blood supplies coming from the collateral exten-
sions from other large vessels35,48,49. Thus, our 
VesSAP method enables unbiased quantification 
of vascular anatomy in intact mouse brains and 
can lead to the discovery of previously over-
looked anatomical knowledge. 

In conclusion, VesSAP is the first scalable and 
automated machine learning-based method to 
analyze complex imaging data coming from the 
cleared intact mouse brains. It outperforms all 
previous methods of vessel segmentation and 
achieves a human level of accuracy several or-
ders of magnitude faster. Thus, we foresee that 
our new method will accelerate the applications 
of tissue clearing in particular for the studies as-
sessing the brain vasculature.  

METHODS 

Tissue preparation 
The animals were housed under a 12/12 hr 
light/dark cycle. The animal experiments were 
conducted according to institutional guidelines 
(Klinikum der Universität München/Ludwig Maxi-
milian University of Munich), after approval of the 
ethical review board of the government of Upper 
Bavaria (Regierung von Oberbayern, Munich, 
Germany), and in accordance with the European 
directive 2010/63/EU for animal research. For 

this study we injected 150 μl (2% V/V% in saline) 
of Evans blue dye (Sigma-Aldrich, E2129) intra-
peritoneally into three C57BL/6J and CD1-Elite 
male, 3 months old mice (n=3 per group). After 
12 hrs of postinjection time, we anaesthetized the 
animals with a triple combination of MMF (i.p.; 
1 ml per 100 g body mass for mice) and opened 
their chest for transcardial perfusion. The follow-
ing media was supplied by a peristaltic pump set 
to deliver 8 ml/min volume: 150 μl wheat germ 
agglutinin conjugated to Alexa 594 dye (Ther-
moFisher Scientific, W11262) and 15 ml PBS 1x 
and 15 ml 4% PFA. 

After perfusion, the brains were extracted and 
incubated into 3DISCO clearing solutions as de-
scribed by Ertürk et al.21. Briefly, we immersed 
them in a gradient of tetra-hydrofuran (Sigma-
Aldrich, 186562): 50 vol%, 70 vol%, 80 vol%, 
90 vol%, 100 vol% (in distilled water), and 
100 vol% at 25 °C for 12 h each step. At this point 
we modified the protocol to incubate the samples 
in tert-Butanol incubation for 12 hrs at 35 °C fol-
lowed by immersion in dichloromethane (Sigma-
Aldrich, 270997) for 12 hrs at room temperature 
and finally incubation with the refractive index 
matching solution BABB (benzyl alcohol + benzyl 
benzoate 1:2; Sigma-Aldrich, 24122 and 
W213802), for at least 24 hrs at room tempera-
ture until transparency was achieved. Each incu-
bation step was carried out on a laboratory shak-
er. 

Imaging of the cleared samples 
We captured the optical section images with a  
4× objective lens (Olympus XLFLUOR 340) 
equipped with an immersion corrected dipping 
cap mounted on a LaVision UltraII microscope. 
For 20× imaging, we used Zeiss CLARITY objec-
tive (Clr Plan-Neofluar, NA 1.0). The images were 
taken in 16 bit precision, which results in a reso-
lution of 1.625 μm on the XY axes. The brain 
structures were visualized by the Alexa 594 and 
Evans blue fluorescent dyes at 561 and 640 nm 
excitation respectively. In z-dimension we took 
the sectional images in 3 μm steps from the right 
and left sides. To reduce defocus, which derives 
from the Gaussian shape of the beam we used a 
12 step sequential shifting of the focal position of 
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the light sheet per plane and side. The thinnest 
point of the light sheet was 5 μm.  

Reconstruction of the whole brain datasets 
from the tiling volumes 
We stitched the acquired volumes using TeraS-
titcher's automatic global optimization function 
(v1.10.3). We produced volumetric intensity im-
ages of the whole brain considering each chan-
nel separately. Next, we generated isotropic da-
tasets because the registration and successive 
processing steps were more robust on isotropic 
datasets, therefore we downsampled the recon-
structed 3D vascular datasets in XY dimensions 
to 3 × 3 × 3 μm resolution. 

Deep learning network architecture 
Here we introduced a deep 3D fully convolutional 
network (FCN) for segmentation of our blood 
vessel dataset. The networks general architec-
ture consists of 4 convolutional layers followed by 
a sigmoid activation layer, see Fig. 3A. General-
ly, the input layer is designed to take n images as 
an input. In our implemented case, the input to 
the first layer of the network are n=2 images of 
the same brain, which have been stained differ-
ently, see Fig. 3A. To specifically account for the 
general class imbalance (much more tissue 
background than vessels) in our dataset, and the 
high false positive rates associated with the class 
imbalance, the following class balancing loss 
function with stable weights from Tetteh et al. is 
implemented, see Equation II.1. Here, L1 is a 
numerically stable class balancing loss function 
and the term L2 penalizes the network for false 
predictions. Y+ and Y- represent the foreground 
and background classes respectively, P(yj=k| 
X;W) is the probability that the voxel j in volume 
X belongs to class k given the volume X and 
network weights W. Yf+ and Yf- represent the 
false positive and false positive predictions re-
spectively at each training iteration.  

 

The 3D convolutional operations in this network 
are implemented as sparse crosshair filters to 
reduce memory consumption and speed up the 
computation, for a graphical representation see 
Supporting Fig. 4. Tetteh et al. showed that by 
using this operation a faster computation is 
achieved without undermining the prediction ac-
curacy25. The crosshair filter works by separating 
a full 3D kernel into 3 orthogonal 2D kernels. 
Those kernels are applied to the volume at every 
layer of the network. 

The networks training is driven by a stochastic 
gradient descent function without a regulariza-
tion. A prediction or segmentation with a trained 
model takes a volumetric image of arbitrary size 
and outputs an estimated probabilistic segmenta-
tion of the input images size. The algorithms 
have been implemented using the THEANO 
framework50. They are trained and tested on a 
NVIDIA Quadro P5000 GPU and on machines 
with 64GB and 500GB RAM respectively.  

Transfer learning  
Typically, medical imaging tasks are aggravated 
by scarce and very scarce data availability. The 
proposed transfer learning approach, aims to 
account for the scarce labeled data by pre-
training our models on a synthetic dataset and 
refining them on a small training set of interest51. 
Our approach pre-trains a two channel version of 
DeepVesselNet on a synthetically generated da-
taset52,53, with the goal to learn specific vascular 
shaped image patterns. The pre-training is car-
ried out on a dataset of 136 volumes of a size of 
325 × 304 × 600 pixels. While pre-training we 
applied a learning rate of 0.01 and a decay of 
0.99 which we applied after every 200 iterations. 
Finally the pre-trained model is fine-tuned by re-

ℒ(𝐖) = ℒ1(𝐖) + ℒ2(𝐖)ℒ1(𝐖) = − 1

|𝑌+|
�  𝑗∈𝑌+ log 𝑃(𝑦𝑗 = 1|𝑋;𝐖) − 1

|𝑌−|
�  𝑗∈𝑌− log 𝑃(𝑦𝑗 = 0|𝑋;𝐖)
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training on a real microscopic dataset consisting 
of eleven volumes with a size of 500 × 500 × 50 
pixels, which were manually annotated by the 
expert who imaged the data and further verified 
by two additional experts. All volumes are pro-
cessed in smaller sub-patches by our network. 
This enables us to process volumes of arbitrary 
sizes and dimensions. The data we use in the 
fine-tuning step accumulates to 1.7% of the syn-
thetic datasets voxel volume and solely 0.02% of 
the voxel volume of a single brain image. For the 
fine-tuning step we utilized a learning rate of 
0.0001 and a decay of 0.98, which we applied 
after every 10 iterations.  

Our training set consist of eleven volumetric im-
ages from two mice brains, the test and valida-
tion set consists of four patches from two differ-
ent brains. Each patch consists of a volume of 
500 × 500 × 50 pixels. We chose independent 
brains to guarantee generalizability. The patches 
are processed and predicted in 25 small sub-
patches. We cross-test on our test and validation 
set by rotating these four-fold. In every rotation 
our validation set consists of 3 patches and our 
test set of one patch. To prevent an overfitting of 
our model we chose the validation and test set 
from two brains. One from the CD1-E and one 
from the C57BL/6J strain. We choose the lowest 
log loss on our validation set to be our model 
selection point (see Supporting Fig. 4a). We 
report an average F1-Score of 0.76 ± 0.01, an 
average accuracy of 0.93 ± 0.01, an average 
precision of 0.79 ± 0.02 and an average recall of 
0.73 ± 0.02 on our test sets. All scores are given 
with a 1σ standard deviation. On average our 
model reached the model selection point after 45 
epochs of training.  

Pre-processing of segmentation 
The pre-processing represents a significant fac-
tor for the overall success of the training and 
segmentation. The intensity distribution among 
the brains and among brain regions differs sub-
stantially. To account for the intensity distribu-
tions, two preprocessing strategies have been 
applied successively. 

a) High-cut filter: In this step the intensities x 
above a certain threshold, c which is defined by 

an individual percentile for each volume is set to 
that threshold. Next, they were normalized by 
f(x). 

 

b) Normalization of intensities: The original inten-
sities were normalized to the range of 0 to 1, 
where x is the pixel intensity and X are all intensi-
ties of the volume. 

 

Inter-annotator experiment 
To compare VesSAP’s segmentation to a human 
level annotation we implemented an inter-
annotator experiment. For this experiment we 
determined a gold standard label for two patches 
of 500 × 500 × 500  pixels from a commission of 
three experts, including the expert who imaged 
our data and is therefore most familiar with the 
images. Next, we gave the two patches to 4 other 
experts to label the complete vasculature. The 
experts spend multiple hours to label each patch 
within the ImageJ and ITK-snap environment and 
were allowed to use their favored approaches to 
generate their best label. Finally, we calculated 
the accuracy and dice scores for the different 
raters, compared to the gold standard and com-
pared them to the scores of our model.  

Feature extraction 
In order to quantify the anatomy of the mouse 
brain vasculature we extracted descriptive fea-
tures based on our segmentation. Later we regis-
tered them to the Allen brain atlas.  

As features we extracted the centerlines, the bi-
furcation points and the radius of the segmented 
blood vessels. We consider those features to be 
independent from the elongation of the light 
sheet scans and the connectedness of the ves-
sels due to staining, imaging and/or segmenta-
tion artefacts. We found the extracted features as 
a baseline.  

𝑔(𝑥) =  � 𝑐, 𝑥 > 𝑐𝑥, 𝑥 ≤ 𝑐 

𝑓(𝑥) =  
𝑥 −  min (𝑋)

max(𝑋) − min (𝑋)
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Before extracting the centerlines we applied two 
cycles of binary erosion and dilation to remove 
false negative pixels within the volume of seg-
mented vessels as those would induce false cen-
terlines. Our centerline extraction is based on a 
3D thinning algorithm as introduced by Lee et 
al.54. Based on the centerlines we extracted bi-
furcation points. A bifurcation is the branching 
point on a centerline where a larger vessel splits 
into two or more small vessels (see Fig. 4A). In a 
network analysis context they are significant as 
they represent the nodes of a vascular network55. 
Furthermore, bifurcation points have significance 
in a biological context. In neurodegenerative dis-
eases, capillaries are known to degenerate56, 
thereby significantly reducing the number of bi-
furcation points in an affected brain region com-
pared to a healthy brain. To detect the bifurcation 
points an algorithm was implemented. The algo-
rithm takes the centerlines as an input and calcu-
lates for every point on that centerline the sur-
rounding centerline pixels to determine if a point 
is a centerline. The radius of a blood vessel is a 
key feature to describe vascular networks. The 
radius yields information about the flow and hier-
archy of the vessel network55. The proposed al-
gorithm calculates the Euclidean distance trans-
form for every segmented pixel v to the closest 
background pixel bclosest (Equation II.2). Next, 
the distance transform matrix is multiplied with 
the 3D centerline mask equaling the minimum 
radius of the vessel around the centerline. 

  

Registration to the reference atlas  
We used the average template, the annotation 
file and the latest ontology file (Ontology ID: 1) of 
the current Allen brain mouse atlas CCFv3 
201710. Then we scaled the template and the 
annotation file up from 10 to 3 µm3 to match our 
reconstructed brain scans. After this we multi-
plied the left side of the (still symmetrical) anno-
tation file with -1 so that the labels can be later 
assigned to the corresponding hemispheres. 

Next, the average template and the 3D vascular 
datasets were downsampled to 10% of their orig-
inal size in each dimension to achieve a reason-
ably fast alignment. In the sake of the integrity of 
the extracted features, we aligned the template to 
each of the brain scans individually using a two-
step rigid and deformable (B-Spline) registration 
and applied the transformation parameters to the 
full resolution annotation volume in 3 × 3 × 3 μm 
resolution. Subsequently we created masks for 
the anatomical clusters based on the current Al-
len brain atlas ontology. 

Statistics 
Data collection and analysis were not performed 
blind to the strains. Data distribution was as-
sumed to be normal, but this was not formally 
tested. All data values are given as mean ± SEM. 
Data were analyzed with standardized effect size 
indices (Cohen’s d)57 to investigate differences of 
vessel density, number of bifurcation points and 
radii between brain areas across the two mouse 
strains (n=3 per strain) and comparisons across 
brain areas in the pooled (n=6) dataset. Statisti-
cal analysis was performed using MATLAB. 

Data visualization 
All volumetric datasets were rendered using 
Imaris, Arivis and ITK Snap. 

CODE AND DATA AVAILABILITY 

VesSAP codes and data that we produced are 
publicly hosted online for easy adoption, includ-
ing the imaging protocol, the data (original scans, 
registered atlas data), the trained algorithms, 
training data and a reference set of features de-
scribing the vascular network in all brain regions 
at the following address. Implementation of ex-
ternal libraries are available on request.  
http://DISCOtechnologies.org/VesSAP 

ACKNOWLEDGMENTS 

This work was supported by the Vascular De-
mentia Research Foundation, Synergy Excel-
lence Cluster Munich (SyNergy), ERA-Net Neu-
ron (01EW1501A to A.E.), Fritz Thyssen Stiftung 
(A.E., Ref. 10.17.1.019MN), DFG (A.E., Ref. ER 
810/2-1), NIH (A.E.), Helmholtz ICEMED Alliance 
(A.E.), and the German Federal Ministry of Edu-

𝑑(𝑣, 𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =  ��(𝑣𝑖 − 𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖)² 

3
1   

II.2 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/613257doi: bioRxiv preprint 

http://discotechnologies.org/VesSAP
https://doi.org/10.1101/613257
http://creativecommons.org/licenses/by-nc/4.0/


  
 16 

 

cation and Research via the Software Campus 
initiative (O.S.). Furthermore, NVIDIA supported 
this work with a Titan XP via the GPU Grant Pro-
gram. M.I.T is member of Graduate School of 
Systemic Neurosciences (GSN), Ludwig Maximil-
ian University of Munich. 

AUTHOR CONTRIBUTIONS 

M.I.T. performed the tissue processing, clearing 
and imaging experiments. M.I.T and K.V. devel-
oped the whole brain staining protocol. M.I.T. 
stitched and assembled the whole brain scans. 
V.E. generated the synthetic vascular training 
dataset. J.C.P, G.T. and O.S developed the deep 
learning architecture, trained the models and per-
formed the quantitative analyses. M.I.T. annotat-
ed the data. M.D. and M.D. helped with data in-
terpretation. B.M, M.P. and G.T. provided guid-
ance in developing the deep learning architecture 
and helped with data interpretation. A.E., M.I.T. 
and J.C.P. wrote the manuscript. All the authors 
edited the manuscript. A.E. initiated and led all 
aspects of the project.  

CONFLICT OF INTEREST STATEMENT 

The authors declare that the research was con-
ducted in the absence of any commercial or fi-
nancial relationships that could be construed as a 
potential conflict of interest. 

REFERENCES 

1 Bennett, R. E. et al. Tau induces blood vessel 
abnormalities and angiogenesis-related gene 
expression in P301L transgenic mice and human 
Alzheimer's disease. Proc Natl Acad Sci U S A 115, 
E1289-E1298, doi:10.1073/pnas.1710329115 (2018). 

2 Joutel, A. et al. Cerebrovascular dysfunction and 
microcirculation rarefaction precede white matter 
lesions in a mouse genetic model of cerebral ischemic 
small vessel disease. J Clin Invest 120, 433-445, 
doi:10.1172/JCI39733 (2010). 

3 Obenaus, A. et al. Traumatic brain injury results in 
acute rarefication of the vascular network. Sci Rep 7, 
239, doi:10.1038/s41598-017-00161-4 (2017). 

4 Li, W. et al. Adaptive cerebral neovascularization in a 
model of type 2 diabetes: relevance to focal cerebral 
ischemia. Diabetes 59, 228-235 (2010). 

5 Völgyi, K. et al. Chronic Cerebral Hypoperfusion 
Induced Synaptic Proteome Changes in the rat 

Cerebral Cortex. Molecular Neurobiology 55, 4253-
4266, doi:10.1007/s12035-017-0641-0 (2018). 

6 Klohs, J. et al. Contrast-enhanced magnetic 
resonance microangiography reveals remodeling of 
the cerebral microvasculature in transgenic ArcAbeta 
mice. J Neurosci 32, 1705-1713, 
doi:10.1523/JNEUROSCI.5626-11.2012 (2012). 

7 Hunter, J. M. et al. Morphological and pathological 
evolution of the brain microcirculation in aging and 
Alzheimer's disease. PloS one 7, e36893, 
doi:10.1371/journal.pone.0036893 (2012). 

8 Meyer, E. P., Ulmann-Schuler, A., Staufenbiel, M. & 
Krucker, T. Altered morphology and 3D architecture of 
brain vasculature in a mouse model for Alzheimer's 
disease. Proceedings of the national academy of 
sciences 105, 3587-3592 (2008). 

9 Edwards-Richards, A. et al. Capillary rarefaction: an 
early marker of microvascular disease in young 
hemodialysis patients. Clin Kidney J 7, 569-574, 
doi:10.1093/ckj/sfu106 (2014). 

10 Calabrese, E., Badea, A., Cofer, G., Qi, Y. & Johnson, 
G. A. A Diffusion MRI Tractography Connectome of 
the Mouse Brain and Comparison with Neuronal 
Tracer Data. Cereb Cortex 25, 4628-4637, 
doi:10.1093/cercor/bhv121 (2015). 

11 Dyer, E. L. et al. Quantifying mesoscale 
neuroanatomy using x-ray microtomography. eNeuro 
4 (2017). 

12 Lugo-Hernandez, E. et al. 3D visualization and 
quantification of microvessels in the whole ischemic 
mouse brain using solvent-based clearing and light 
sheet microscopy. J Cereb Blood Flow Metab 37, 
3355-3367, doi:10.1177/0271678X17698970 (2017). 

13 Frangi, A. F., Niessen, W. J., Vincken, K. L. & 
Viergever, M. A. in International conference on 
medical image computing and computer-assisted 
intervention.  130-137 (Springer). 

14 Sato, Y. et al. Three-dimensional multi-scale line filter 
for segmentation and visualization of curvilinear 
structures in medical images. Medical image analysis 
2, 143-168 (1998). 

15 Di Giovanna, A. P. et al. Whole-Brain Vasculature 
Reconstruction at the Single Capillary Level. Sci Rep 
8, 12573, doi:10.1038/s41598-018-30533-3 (2018). 

16 Xiong, B. et al. Precise Cerebral Vascular Atlas in 
Stereotaxic Coordinates of Whole Mouse Brain. Front 
Neuroanat 11, 128, doi:10.3389/fnana.2017.00128 
(2017). 

17 Zhang, L. Y. et al. CLARITY for High-resolution 
Imaging and Quantification of Vasculature in the 
Whole Mouse Brain. Aging Dis 9, 262-272, 
doi:10.14336/AD.2017.0613 (2018). 

18 Zudaire, E., Gambardella, L., Kurcz, C. & Vermeren, 
S. A computational tool for quantitative analysis of 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/613257doi: bioRxiv preprint 

https://doi.org/10.1101/613257
http://creativecommons.org/licenses/by-nc/4.0/


  
 17 

 

vascular networks. PloS one 6, e27385, 
doi:10.1371/journal.pone.0027385 (2011). 

19 Clark, T. A. et al. Artery targeted photothrombosis 
widens the vascular penumbra, instigates peri-infarct 
neovascularization and models forelimb impairments. 
Scientific Reports 9, 2323 (2019). 

20 Ertürk, A. et al. Three-dimensional imaging of solvent-
cleared organs using 3DISCO. Nature Protocols 7, 
1983-1995, doi:10.1038/nprot.2012.119 (2012). 

21 Erturk, A. et al. Three-dimensional imaging of solvent-
cleared organs using 3DISCO. Nat Protoc 7, 1983-
1995, doi:10.1038/nprot.2012.119 (2012). 

22 Kamnitsas, K. et al. Efficient multi-scale 3D CNN with 
fully connected CRF for accurate brain lesion 
segmentation. Medical Image Analysis 36, 61-78, 
doi:https://doi.org/10.1016/j.media.2016.10.004 
(2017). 

23 Girshick, R. in Proceedings of the IEEE international 
conference on computer vision.  1440-1448. 

24 He, K., Gkioxari, G., Dollár, P. & Girshick, R. in 
Proceedings of the IEEE international conference on 
computer vision.  2961-2969. 

25 Tetteh, G. et al. DeepVesselNet: Vessel 
Segmentation, Centerline Prediction, and Bifurcation 
Detection in 3-D Angiographic Volumes. 
arXiv:1803.09340 [cs] (2018). 

26 Strack, R. Deep learning in imaging. Nature Methods 
16, 17-17, doi:10.1038/s41592-018-0267-9 (2019). 

27 Weigert, M. et al. Content-aware image restoration: 
pushing the limits of fluorescence microscopy. Nature 
Methods 15, 1090-1097, doi:10.1038/s41592-018-
0216-7 (2018). 

28 Wang, H. et al. Deep learning enables cross-modality 
super-resolution in fluorescence microscopy. Nat 
Methods 16, 103-110, doi:10.1038/s41592-018-0239-
0 (2019). 

29 Falk, T. et al. U-Net: deep learning for cell counting, 
detection, and morphometry. Nat Methods 16, 67-70, 
doi:10.1038/s41592-018-0261-2 (2019). 

30 Haberl, M. G. et al. CDeep3M-Plug-and-Play cloud-
based deep learning for image segmentation. Nat 
Methods 15, 677-680, doi:10.1038/s41592-018-0106-
z (2018). 

31 Caicedo, J. C. et al. Data-analysis strategies for 
image-based cell profiling. Nat Methods 14, 849-863, 
doi:10.1038/nmeth.4397 (2017). 

32 Dorkenwald, S. et al. Automated synaptic connectivity 
inference for volume electron microscopy. Nat 
Methods 14, 435-442, doi:10.1038/nmeth.4206 
(2017). 

33 Litjens, G. et al. A survey on deep learning in medical 
image analysis. Medical Image Analysis 42, 60-88, 
doi:10.1016/j.media.2017.07.005 (2017). 

34 Schneider, M., Reichold, J., Weber, B., Szekely, G. & 
Hirsch, S. Tissue metabolism driven arterial tree 
generation. Med Image Anal 16, 1397-1414, 
doi:10.1016/j.media.2012.04.009 (2012). 

35 Chalothorn, D., Clayton, J. A., Zhang, H., Pomp, D. & 
Faber, J. E. Collateral density, remodeling, and 
VEGF-A expression differ widely between mouse 
strains. Physiological Genomics 30, 179-191, 
doi:10.1152/physiolgenomics.00047.2007 (2007). 

36 Li, S. Z. in Computer Vision — ECCV '94. (ed Jan-
Olof Eklundh) 361-370 (Springer Berlin Heidelberg). 

37 Di Giovanna, A. P. et al. Whole-Brain Vasculature 
Reconstruction at the Single Capillary Level. Scientific 
Reports 8, doi:10.1038/s41598-018-30533-3 (2018). 

38 Pan, C. et al. Shrinkage-mediated imaging of entire 
organs and organisms using uDISCO. Nat Methods, 
doi:10.1038/nmeth.3964 (2016). 

39 Ghanavati, S., Yu, L. X., Lerch, J. P. & Sled, J. G. A 
perfusion procedure for imaging of the mouse 
cerebral vasculature by X-ray micro-CT. J Neurosci 
Methods 221, 70-77, 
doi:10.1016/j.jneumeth.2013.09.002 (2014). 

40 Ghanavati, S., Lerch, J. P. & Sled, J. G. Automatic 
anatomical labeling of the complete cerebral 
vasculature in mouse models. Neuroimage 95, 117-
128 (2014). 

41 Pathak, A. P., Kim, E., Zhang, J. & Jones, M. V. 
Three-dimensional imaging of the mouse 
neurovasculature with magnetic resonance 
microscopy. PloS one 6, e22643 (2011). 

42 Jamniczky, H. A. & Hallgrimsson, B. Modularity in the 
skull and cranial vasculature of laboratory mice: 
implications for the evolution of complex phenotypes. 
Evol Dev 13, 28-37, doi:10.1111/j.1525-
142X.2010.00453.x (2011). 

43 Menti, E., Bonaldi, L., Ballerini, L., Ruggeri, A. & 
Trucco, E. in International Workshop on Simulation 
and Synthesis in Medical Imaging.  167-176 
(Springer). 

44 Milletari, F., Navab, N. & Ahmadi, S. in 2016 Fourth 
International Conference on 3D Vision (3DV).  565-
571. 

45 Havaei, M. et al. Brain tumor segmentation with Deep 
Neural Networks. Medical Image Analysis 35, 18-31, 
doi:https://doi.org/10.1016/j.media.2016.05.004 
(2017). 

46 Bakas, S. et al. Identifying the Best Machine Learning 
Algorithms for Brain Tumor Segmentation, 
Progression Assessment, and Overall Survival 
Prediction in the BRATS Challenge. arXiv:1811.02629 
[cs, stat] (2018). 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/613257doi: bioRxiv preprint 

https://doi.org/10.1016/j.media.2016.10.004
https://doi.org/10.1016/j.media.2016.05.004
https://doi.org/10.1101/613257
http://creativecommons.org/licenses/by-nc/4.0/


  
 18 

 

47 Faber, J. E., Moore, S. M., Lucitti, J. L., Aghajanian, 
A. & Zhang, H. Sex Differences in the Cerebral 
Collateral Circulation. Translational stroke research 8, 
273-283, doi:10.1007/s12975-016-0508-0 (2017). 

48 Zhang, H., Prabhakar, P., Sealock, R. & Faber, J. E. 
Wide genetic variation in the native pial collateral 
circulation is a major determinant of variation in 
severity of stroke. J Cereb Blood Flow Metab 30, 923-
934, doi:10.1038/jcbfm.2010.10 (2010). 

49 Beretta, S. et al. Cerebral collateral flow defines 
topography and evolution of molecular penumbra in 
experimental ischemic stroke. Neurobiol Dis 74, 305-
313, doi:10.1016/j.nbd.2014.11.019 (2015). 

50 Bastien, F. et al. Theano: new features and speed 
improvements. arXiv:1211.5590 [cs] (2012). 

51 Hoo-Chang, S. et al. Deep Convolutional Neural 
Networks for Computer-Aided Detection: CNN 
Architectures, Dataset Characteristics and Transfer 
Learning. IEEE transactions on medical imaging 35, 
1285-1298, doi:10.1109/TMI.2016.2528162 (2016). 

52 Schneider, M., Hirsch, S., Weber, B., Székely, G. & 
Menze, B. H. Joint 3-D vessel segmentation and 
centerline extraction using oblique Hough forests with 
steerable filters. Medical Image Analysis 19, 220-249, 
doi:10.1016/j.media.2014.09.007 (2015). 

53 Schneider, M., Reichold, J., Weber, B., Székely, G. & 
Hirsch, S. Tissue metabolism driven arterial tree 
generation. Medical Image Analysis 16, 1397-1414, 
doi:10.1016/j.media.2012.04.009 (2012). 

54 Lee, T. C., Kashyap, R. L. & Chu, C. N. Building 
Skeleton Models via 3-D Medial Surface Axis 
Thinning Algorithms. CVGIP: Graphical Models and 
Image Processing 56, 462-478, 
doi:10.1006/cgip.1994.1042 (1994). 

55 Rempfler, M. et al. Reconstructing cerebrovascular 
networks under local physiological constraints by 
integer programming. Medical Image Analysis 25, 86-
94, doi:10.1016/j.media.2015.03.008 (2015). 

56 Marchesi, V. T. Alzheimer's dementia begins as a 
disease of small blood vessels, damaged by 
oxidative-induced inflammation and dysregulated 
amyloid metabolism: implications for early detection 
and therapy. The FASEB Journal 25, 5-13, 
doi:10.1096/fj.11-0102ufm (2011). 

57 Cohen, J. The effect size index: d. Statistical power 
analysis for the behavioral sciences 2, 284-288 
(1988). 

 

VIDEO LEGENDS 

Supporting Video 1  
Visualization of a representative CD1-E mouse 
brain by VesSAP showing the data quality.  

Supporting Video 2 (VR optimized viewing)  
The whole mouse brain shown in Video 1 has 
been rendered for virtual reality (VR) viewing us-
ing Arivis InViewR. The immersed VR view 
shows the quality of VesSAP segmentation. We 
propose that scientific VR videos coming from 
large cleared samples could be a helpful tool for 
scientists to explore the data in a 3D interactive 
way. VR videos might also be used for educa-
tional purposes as they can be viewed on smart 
phones and other available VR devices. Please 
check the link for more information regarding how 
to view this VR video:  
http://DISCOtechnologies.org/VesSAP/#VR 

Supporting Video 3 
Segmentation and features demonstration on a 
subset of the whole dataset. VesSAP enables 
reliable segmentation (red) and feature extraction  
(bifurcation points and centerlines, green and 
cyan) down to the capillary-level from the imag-
ing data (grey).  

Supporting Video 4 
Whole brain data registered to the Allen adult 
brain atlas. The video shows the alignment accu-
racy and segmentation overlaid.  

Supporting Video 5 
Substack of the whole brain data registered to 
the Allen adult brain atlas. This video reveals the 
full resolution segmentation on a small set of the 
brain scans data. 
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Supporting figure 1: Vasculature is stained homogenously throughout all brain regions 
A, Sagittal maximum intensity projections. B, Coronal maximum intensity projections. C,  Axial maximum  
projections. D-F, Zoom-ins where capillary level staining is evident. 
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Supporting figure 2: Confocal microscopy confirms that the neurovasculature is stained in a 
complimentary way  
A,B, Maximum intensity projection of the WGA and the EB signal respectively. C, Merge of the two signals 
shows that capillaries are predominantly stained with WGA whereas EB shows strong staining of major 
blood vessels. 
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Supporting figure 3: Raw signal intensity distribution along line profiles across stained vessels 
for three animals 
Both dyes stain the vasculature with a complimentary SNR. For some vessels the SNR of both channels are 
similar (A), whereas for other vessels the EB or WGA channels have a substantially higher SNR compared to 
the other (B) and (C). These graphs quantitatively describe the SNR enhancements owing to double dye stain-
ing strategy. 
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Supporting figure 4: Details of VesSAP performance 
A, Averaged validation performance and model selection point on the mean squared error metric. B, Evaluation 
metrics: accuracy, F1-Score, precision, recall and speed (for one image volume of 500 × 500 × 50 pixels ) of 
the different models for segmentation.  
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Supporting figure 5: Details of the segmentation quality by VesSAP 
A,B, Side by side slices of the raw lectin channel image and the segmentation (green). C, 3D rendering of a 
small brain patch showcasing connected capillaries.  
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Supporting figure 6: Inter-strain comparison of the features of the vascular network in the 
C57BL/6J and CD1-E mice using Cohen’s d method.  
A-B, Normalized vessel and bifurcations density matrices show small differences on the level of strains respec-
tively. C, Distribution of average radius across brain regions in the two strains. It shows a mainly homogenous 
pattern, most probably governed by the high amount of capillaries in the vascular network. For the full list of 
abbreviations refer to the Supporting Table 1. The extracted numerical features are in Supporting Tables 2-4. 
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Cluster All regions in the cluster 
Name of clus-

ter 

MO 
MO, MO1, MO2/3, MO5, MO6a, MO6b, MOp, MOp1, MOp2/3, MOp5, 

MOp6a, MOp6b, MOs, MOs1, MOs2/3, MOs5, MOs6a, MOs6b 

Somatomotor 

areas 

SS 

SS, SS1, SS2/3, SS4, SS5, SS6a, SS6b, SSp, SSp1, SSp2/3, SSp4, SSp5, SSp6a, 

SSp6b, SSp-bfd, SSp-bfd1, SSp-bfd2/3, SSp-bfd4, SSp-bfd5, SSp-bfd6a, SSp-

bfd6b, SSp-ll, SSp-ll1, SSp-ll2/3, SSp-ll4, SSp-ll5, SSp-ll6a, SSp-ll6b, SSp-m, SSp-

m1, SSp-m2/3, SSp-m4, SSp-m5, SSp-m6a, SSp-m6b, SSp-n, SSp-n1, SSp-n2/3, 

SSp-n4, SSp-n5, SSp-n6a, SSp-n6b, SSp-tr, SSp-tr1, SSp-tr2/3, SSp-tr4, SSp-tr5, 

SSp-tr6a, SSp-tr6b, SSp-ul, SSp-ul1, SSp-ul2/3, SSp-ul4, SSp-ul5, SSp-ul6a, SSp-

ul6b, SSp-un, SSp-un1, SSp-un2/3, SSp-un4, SSp-un5, SSp-un6a, SSp-un6b, 

SSs, SSs1, SSs2/3, SSs4, SSs5, SSs6a, SSs6b, VISrll, VISrll1, VISrll2/3, VISrll4, 

VISrll5, VISrll6a, VISrll6b 

Somatosensory 

areas 

GU GU, GU1, GU2/3, GU4, GU5, GU6a, GU6b 
Gustatory  

areas 

VISC VISC, VISC1, VISC2/3, VISC4, VISC5, VISC6a, VISC6b Visceral area 

AUD 

AUD, AUDd, AUDd1, AUDd2/3, AUDd4, AUDd5, AUDd6a, AUDd6b, AUDp, 

AUDp1, AUDp2/3, AUDp4, AUDp5, AUDp6a, AUDp6b, AUDpo, AUDpo1, 

AUDpo2/3, AUDpo4, AUDpo5, AUDpo6a, AUDpo6b, AUDv, AUDv1, AUDv2/3, 

AUDv4, AUDv5, AUDv6a, AUDv6b, VISlla, VISlla1, VISlla2/3, VISlla4, VISlla5, 

VISlla6a, VISlla6b 

Auditory areas 

VIS 

VIS, VIS1, VIS2/3, VIS4, VIS5, VIS6a, VIS6b, VISal, VISal1, VISal2/3, VISal4, 

VISal5, VISal6a, VISal6b, VISam, VISam1, VISam2/3, VISam4, VISam5, VIS-

am6a, VISam6b, VISl, VISl1, VISl2/3, VISl4, VISl5, VISl6a, VISl6b, VISli, VISli1, 

VISli2/3, VISli4, VISli5, VISli6a, VISli6b, VISp, VISp1, VISp2/3, VISp4, VISp5, 

VISp6a, VISp6b, VISpl, VISpl1, VISpl2/3, VISpl4, VISpl5, VISpl6a, VISpl6b, 

VISpm, VISpm1, VISpm2/3, VISpm4, VISpm5, VISpm6a, VISpm6b, VISpor, 

VISpor1, VISpor2/3, VISpor4, VISpor5, VISpor6a, VISpor6b 

Visual areas 

ACA 
ACA, ACA1, ACA2/3, ACA5, ACA6a, ACA6b, ACAd, ACAd1, ACAd2/3, ACAd5, 

ACAd6a, ACAd6b, ACAv, ACAv1, ACAv2/3, ACAv5, ACAv6a, ACAv6b 

Anterior cingu-

late area 

PL PL, PL1, PL2, PL2/3, PL5, P L6a, PL6b Prelimbic area 

ILA ILA, ILA1, ILA2, ILA2/3, ILA5, ILA6a, ILA6b 
Infralimbic 

area 

ORB 

ORB, ORB1, ORB2/3, ORB5, ORB6a, ORB6b, ORBl, ORBl1, ORBl2/3, ORBl5, 

ORBl6a, ORBl6b, ORBm, ORBm1, ORBm2, ORBm2/3, ORBm5, ORBm6a, 

ORBm6b, ORBv, ORBvl, ORBvl1, ORBvl2/3, ORBvl5, ORBvl6a, ORBvl6b 

Orbital area 

AI 
AI, AId, AId1, AId2/3, AId5, AId6a, AId6b, AIp, AIp1, AIp2/3, AIp5, AIp6a, 

AIp6b, AIv, AIv1, AIv2/3, AIv5, AIv6a, AIv6b 

Agranular  

insular area 

RSP 

RSP, RSPagl, RSPagl1, RSPagl2/3, RSPagl5, RSPagl6a, RSPagl6b, RSPd, RSPd1, 

RSPd2/3, RSPd4, RSPd5, RSPd6a, RSPd6b, RSPv, RSPv1, RSPv2, RSPv2/3, 

RSPv5, RSPv6a, RSPv6b, VISm, VISm1, VISm2/3, VISm4, VISm5, VISm6a, 

VISm6b, VISmma, VISmma1, VISmma2/3, VISmma4, VISmma5, VISmma6a, 

VISmma6b, VISmmp, VISmmp1, VISmmp2/3, VISmmp4, VISmmp5, 

VISmmp6a, VISmmp6b 

Retrosplenial 

area 

PTL PTLp, PTLp1, PTLp2/3, PTLp4, PTLp5, PTLp6a, PTLp6b, VISa, VISa1, VISa2/3, Posterior pari-
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VISa4, VISa5, VISa6a, VISa6b, VISrl, VISrl1, VISrl2/3, VISrl4, VISrl5, VISrl6a, 

VISrl6b 

etal associa-

tion areas 

TE TEa, TEa1, TEa2/3, TEa4, TEa5, TEa6a, TEa6b 
Temporal as-

sociation areas 

PERI PERI, PERI1, PERI2/3, PERI5, PERI6a, PERI6b Perirhinal area 

ECT ECT, ECT1, ECT2/3, ECT5, ECT6a, ECT6b Ectorhinal area 

OLF OLF, MOB, MOBipl, MOBopl Olfactory areas 

AOB AOB, AOBgl, AOBmi 
Accessory ol-

factory bulb 

AOBgr AOBgr, NLOT, NLOT1, NLOT1-3, NLOT2, NLOT3 AOBgr & NLOT 

AON AON, AON1, AON2, AONd, AONe, AONl, AONm, AONpv 
Anterior olfac-

tory nucleus 

TT TT, TTd, TTd1, TTd1-4, TTd2, TTd3, TTd4, TTv, TTv1, TTv1-3, TTv2, TTv3 Taenia tecta 

DP DP, DP1, DP2, DP2/3, DP5, DP6a 
Dorsal pedun-

cular area 

PIR PIR, PIR1, PIR1-3, PIR2, PIR3 Piriform area 

COA 

COA, COAa, COAa1, COAa2, COAa3, COAp, COApl, COApl1, COApl1-2, COApl1-

3, COApl2, COApl3, COApm, COApm1, COApm1-2, COApm1-3, COApm2, 

COApm3 

Cortical amyg-

dalar area 

PAA PAA, PAA1, PAA1-3, PAA2, PAA3 

Piriform-

amygdalar 

area 

TR TR, TR1, TR1-3, TR2, TR3 
Postpiriform 

transition area 

ENT 

ENT, ENTl, ENTl1, ENTl2, ENTl2/3, ENTl2a, ENTl2b, ENTl3, ENTl4, ENTl4/5, 

ENTl5, ENTl5/6, ENTl6a, ENTl6b, ENTm, ENTm1, ENTm2, ENTm2a, ENTm2b, 

ENTm3, ENTm4, ENTm5, ENTm5/6, ENTm6, ENTmv, ENTmv1, ENTmv2, 

ENTmv3, ENTmv4, ENTmv5/6, RHP 

Retro-

hippocampal 

region 

PAR PAR, PAR1, PAR2, PAR3 Parasubiculum 

ProS ProS, ProSd, ProSd-m, ProSd-sr, ProSv, ProSv-m, Prosv-sr Prosubiculum 

CLA CLA, CTXsp, 6b Claustrum 

EP EP, EPd, EPv 
Endopiriform 

nucleus 

LA LA 
Lateral amyg-

dalar nucleus 

BLA BLA, BLAa, BLAp, BLAv 

Basolateral 

amygdalar 

nucleus 

BMA BMA, BMAa, BMAp 

Basomedial 

amygdalar 

nucleus 

PA PA 

Posterior 

amygdalar 

nucleus 

CP CP, CNU, STR, STRd Caudoputamen 
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ACB ACB, FS, isl, islm, LSS, OT, OT1, OT1-3, OT2, OT3, STRv 
Nucleus ac-

cumbens 

AAA 
AAA, BA, CEA, CEAc, CEAl, CEAm, IA, MEA, MEAad, MEAav, MEApd, MEApd-a, 

MEApd-b, MEApd-c, MEApv, sAMY 

Anterior 

amygdalar 

area 

GPe GPe, GPi, PAL, PALd Pallidum 

MA MA, PALv, SI 
Magnocellular 

nucleus 

MS MS, MSC, NDB, PALm, TRS 
Medial septal 

nucleus 

BAC 
BAC, BST, BSTa, BSTal, BSTam, BSTd, BSTdm, BSTfu, BSTif, BSTju, BSTmg, 

BSTov, BSTp, BSTpr, BSTrh, BSTse, BSTtr, BSTv, PALc 

Bed nucleus of 

the anterior 

commissure 

BS BS, TH Brain stem 

DORsm 
DORsm, GENd, LGd, LGd-co, LGd-ip, LGd-sh, MG, MGd, MGm, MGv, PoT, PP, 

SPA, SPF, SPFm, SPFp, VAL, VENT, VM, VP, VPL, VPLpc, VPM, VPMpc 

Thalamus, sen-

sory-motor 

cortex related 

AD 

AD, AM, AMd, AMv, ATN, AV, CL, CM, DORpm, EPI, Eth, GENv, IAD, IAM, IGL, 

ILM, IMD, IntG, LAT, LD, LGv, LGvl, LGvm, LH, LP, MD, MDc, MDl, MDm, MED, 

MH, MTN, PCN, PF, PIL, PIN, PO, POL, PR, PT, PVT, RE, REth, RH, RT, SGN, 

SMT, SubG, Xi 

Anterodorsal 

nucleus 

ARH 
ARH, ASO, NC, PVa, PVH, PVHam, PVHap, PVHm, PVHmm, PVHmpd, PVHp, 

PVHpm, PVHpml, PVHpmm, PVHpv, PVi, PVZ, SO 

Arcuate hypo-

thalamic nu-

cleus 

ADP 
ADP, AHA, AVP, AVPV, DMH, DMHa, DMHp, DMHv, MEPO, MPO, OV, PD, PS, 

PSCH, PVp, PVpo, PVR, SBPV, SCH, SFO, VLPO, VMPO 

Anterodorsal 

preoptic nu-

cleus 

AHN 

AHN, AHNa, AHNc, AHNd, AHNp, LM, MBO, MEZ, MM, MMd, MMl, MMm, 

MMme, MMp, MPN, MPNc, MPNl, MPNm, PH, PMd, PMv, PVHd, PVHdp, 

PVHf, PVHlp, PVHmpv, SUM, SUMl, SUMm, TM, TMd, TMv, VMH, VMHa, 

VMHc, VMHdm, VMHvl 

Anterior  

hypothalamic 

nucleus 

A13 A13, FF, LHA, LPO, LZ, ME,PeF, PST, PSTN, RCH, STN, TU, ZI 
 

MB MB Midbrain 

IC IC, ICc, ICd, ICe, MBsen, MEV, NB, PBG, SAG, SCO, SCop, SCs, SCsg, SCzo 
Inferior  

colliculus 

APN 

APN, AT, CUN, DT, EW, III, INC, InCo, IV, LT, MA3, MBmot, MBsta, MPT, MRN, 

MRNm, MRNmg, MRNp, MT, ND, NOT, NPC, OP, Pa4, PAG, PN, PPT, PRC, PRT, 

RN, RPF, RR, SCdg, SCdw, SCig, SCig-a, SCig-b, SCig-c, SCiw, SCm, SNl, SNr, Su3, 

VTA, VTN 

Anterior  

pretectal  

nucleus 

SNc SNc, CLI, DR, IF, IPA, IPC, IPDL, IPDM, IPI, IPL, IPN, IPR, IPRL, PPN, RAmb, RL 
Substantia 

nigra 

KF 
KF, NLL, NLLd, NLLh, NLLv, PB, PBl, PBlc, PBld, PBle, PBls, PBlv, PBm, PBme, 

PBmm, PBmv, POR, P-sen, PSV, SOC, SOCl, SOCm 

Koelliker-Fuse 

subnucleus 

Acs5 
Acs5, B, DTN, I5, LTN, P5, PC5, PCG, PDTg, PG, P-mot, PRNc, PRNv, SG, SSN, 

SUT, TRN, V 

Accessory  

trigeminal  
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nucleus 

CS CS, CSl, CSm, LC, LDT, NI, PRNr, P-sat, RPO, SLC, SLD 

Superior  

central nucleus 

raphe 

AP 

AP, CN, CNlam, CNspg, CU, DCN, DCO, ECU, GR, MY-sen, NTB, NTS, NTSce, 

NTSco, NTSge, NTSl, NTSm, Pa5, SPVC, SPVI, SPVO, SPVOcdm, SPVOmdmd, 

SPVOmdmv, SPVOrdm, SPVOvl, VCO, z 

Area postrema 

ACVI 

ACVI, ACVII, AMB, AMBd, AMBv, DMX, ECO, EV, GRN, ICB, INV, IO, IRN, ISN, 

LAV, LIN, LRN, LRNm, LRNp, MARN, MDRN, MDRNd, MDRNv, MV, MY-mot, 

NIS, NR, PARN, PAS, PGRN, PGRNd, PGRNl, PHY, PMR, PPY, PPYd, PPYs, PRP, 

SPIV, SUV, VI, VII, VNC, x, XII, y 

Accessory  

facial motor 

nucleus 

 

Supporting table 1: List of anatomical clusters and all the brain regions that they represent according to 

the current Allen adult mouse brain atlas ontology. 
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Cluster BL6#2 BL6#4 BL6#5 CD1#15 CD1#41 CD1#42 

MO 0.0093572 0.0059082 0.0047905 0.0052599 0.0074767 0.0056309 

SS 0.0115752 0.0093265 0.0081327 0.0070534 0.0112136 0.0066858 

GU 0.0103486 0.0078052 0.0067535 0.0088425 0.0131467 0.0082024 

VISC 0.0094285 0.0077694 0.0060486 0.0062264 0.0122675 0.0053494 

AUD 0.0076337 0.0058136 0.0059237 0.0069463 0.0075269 0.0061430 

VIS 0.0076265 0.0050208 0.0054900 0.0043612 0.0069535 0.0042240 

ACA 0.0108309 0.0070736 0.0060967 0.0081567 0.0111447 0.0089168 

PL 0.0102455 0.0064844 0.0046423 0.0051858 0.0085280 0.0058823 

ILA 0.0108894 0.0047988 0.0028369 0.0077173 0.0081559 0.0086919 

ORB 0.0137248 0.0064118 0.0058307 0.0060286 0.0092827 0.0067783 

AI 0.0093757 0.0058920 0.0049804 0.0049596 0.0078331 0.0047837 

RSP 0.0115985 0.0091914 0.0062429 0.0053676 0.0109665 0.0055400 

PTL 0.0045193 0.0048831 0.0052986 0.0048463 0.0068559 0.0044541 

TE 0.0053130 0.0047694 0.0046928 0.0055785 0.0070274 0.0048437 

PERI 0.0051592 0.0033750 0.0046063 0.0032898 0.0055644 0.0027928 

ECT 0.0048977 0.0037841 0.0043316 0.0040392 0.0063336 0.0034538 

OLF 0.0091333 0.0028067 0.0056325 0.0038479 0.0104136 0.0027701 

AOB 0.0102001 0.0074197 0.0073297 0.0036032 0.0089601 0.0040691 

AOBgr 0.0066158 0.0071247 0.0058011 0.0026772 0.0056548 0.0024047 

AON 0.0119582 0.0032694 0.0047818 0.0050356 0.0085656 0.0055792 

TT 0.0128843 0.0057909 0.0071700 0.0058206 0.0082569 0.0064400 

DP 0.0107445 0.0037908 0.0039061 0.0071797 0.0082577 0.0080111 

PIR 0.0093940 0.0062563 0.0065447 0.0042132 0.0074207 0.0037186 

COA 0.0044112 0.0028131 0.0044865 0.0021680 0.0045812 0.0017700 

PAA 0.0042952 0.0022902 0.0043477 0.0017543 0.0050305 0.0014458 

TR 0.0058219 0.0029637 0.0044652 0.0027056 0.0056278 0.0022267 

ENT 0.0063865 0.0051335 0.0046995 0.0042859 0.0144999 0.0036851 

PAR 0.0114697 0.0091646 0.0076682 0.0078766 0.0113733 0.0070761 

ProS 0.0076081 0.0038296 0.0033865 0.0050129 0.0076083 0.0047397 
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CLA 0.0096760 0.0053913 0.0053636 0.0045884 0.0071508 0.0042252 

EP 0.0078594 0.0046981 0.0047499 0.0035476 0.0062039 0.0031096 

LA 0.0048305 0.0019873 0.0032737 0.0032051 0.0061426 0.0026785 

BLA 0.0054087 0.0022658 0.0039579 0.0026897 0.0058530 0.0022209 

BMA 0.0064536 0.0030861 0.0045863 0.0031615 0.0057182 0.0026441 

PA 0.0042582 0.0035128 0.0024244 0.0031166 0.0051596 0.0025716 

CP 0.0083593 0.0037503 0.0048630 0.0050527 0.0074828 0.0048447 

ACB 0.0066948 0.0019018 0.0043521 0.0033112 0.0055023 0.0034835 

AAA 0.0074127 0.0041995 0.0033715 0.0036295 0.0056303 0.0030950 

GPe 0.0069966 0.0024761 0.0040185 0.0030260 0.0063187 0.0027351 

MA 0.0085149 0.0021984 0.0047591 0.0025952 0.0062517 0.0024843 

MS 0.0113546 0.0072848 0.0077730 0.0056466 0.0092087 0.0057410 

BAC 0.0064581 0.0012580 0.0036531 0.0030268 0.0061399 0.0029772 

BS 0.0048691 0.0024906 0.0035570 0.0051794 0.0088115 0.0050795 

DORsm 0.0030760 0.0014435 0.0022406 0.0023438 0.0054218 0.0040204 

AD 0.0056753 0.0022222 0.0033178 0.0027231 0.0057565 0.0026248 

ARH 0.0035346 0.0013719 0.0019229 0.0018142 0.0033885 0.0042785 

ADP 0.0080422 0.0043285 0.0048229 0.0034813 0.0069629 0.0031331 

AHN 0.0032352 0.0012860 0.0019369 0.0007876 0.0016155 0.0044040 

A13 0.0057085 0.0087157 0.0037526 0.0076900 0.0131571 0.0079402 

MB 0.0073036 0.0034578 0.0045716 0.0052940 0.0075160 0.0060563 

IC 0.0069680 0.0038629 0.0047105 0.0045880 0.0078609 0.0041552 

APN 0.0029680 0.0032348 0.0030604 0.0022715 0.0047944 0.0019137 

SNc 0.0060860 0.0019211 0.0044188 0.0028324 0.0057872 0.0023751 

KF 0.0076008 0.0018858 0.0044324 0.0033314 0.0085823 0.0028944 

Acs5 0.0066081 0.0025452 0.0046771 0.0036584 0.0039047 0.0032545 

CS 0.0087011 0.0026383 0.0057563 0.0035171 0.0045107 0.0031765 

AP 0.0066081 0.0025452 0.0046771 0.0036584 0.0039047 0.0032545 

ACVI 0.0087011 0.0026383 0.0057563 0.0035171 0.0045107 0.0031765 

Supporting table 2: Quantification of the vascular density in the cleared C57BL/6J and CD1-E samples. 

Units are voxel / voxel. 
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Cluster BL6#2 BL6#4 BL6#5 CD1#15 CD1#41 CD1#42 

MO 58747 25928 18771 23021 41925 24605 

SS 81938 55392 41329 34991 91440 33188 

GU 64919 43887 31781 46994 106192 43573 

VISC 60946 43307 25628 29164 90915 25064 

AUD 43883 28024 27613 30341 43744 26882 

VIS 41070 21883 21334 17518 38791 17014 

ACA 73782 42978 31045 46161 84863 50331 

PL 63124 29778 18616 23974 52830 27193 

ILA 70281 21444 11073 40927 45240 46161 

ORB 101634 26348 23932 26982 54700 30317 

AI 57171 26508 19309 20456 44979 19740 

RSP 80271 64086 31553 24826 77618 25556 

PTL 22653 21404 23944 20113 37798 18534 

TE 27177 22324 18080 22529 40611 19526 

PERI 26337 12603 17302 12037 30265 10226 

ECT 23760 15775 16037 14829 34208 12759 

OLF 67201 13730 31261 18044 77776 13079 

AOB 72779 53741 51858 14275 57188 16217 

AOBgr 38724 43541 23809 12016 27053 10407 

AON 82886 11660 19241 21065 50677 23361 

TT 103443 34829 47850 29810 50347 32976 

DP 70391 17691 18848 36776 50007 41069 

PIR 62381 34940 32192 17870 42801 15681 

COA 22695 11870 17324 8064 19222 6529 

PAA 22821 10443 16374 6115 21308 5038 

TR 28876 10722 14916 9180 32134 7599 

ENT 35715 24852 19501 18217 43626 15683 

PAR 95645 67655 49951 48112 87045 43132 

ProS 45666 21193 15807 26575 46346 25764 
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.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/613257doi: bioRxiv preprint 

https://doi.org/10.1101/613257
http://creativecommons.org/licenses/by-nc/4.0/


  
 32 

 

CLA 58103 27234 21991 18186 40745 17106 

EP 45263 24647 17829 13057 32147 11532 

LA 22607 7272 11995 9970 29692 8332 

BLA 26390 8322 12758 8410 27131 6953 

BMA 34605 14039 18049 10945 27125 9152 

PA 36842 17510 19317 10740 27016 8863 

CP 49050 18657 18848 22865 41620 21999 

ACB 38197 7855 16459 13281 29801 13973 

AAA 45574 22135 17737 14660 28890 12501 

GPe 35965 10153 13676 11168 30533 10198 

MA 52576 8567 19509 9678 34233 9262 

MS 83538 49067 45058 28564 64772 28848 

BAC 33445 4937 14113 12582 36741 12556 

BS 23934 12955 14084 23102 41724 22090 

DORsm 18224 10397 9458 12750 33125 15360 

AD 32506 15030 15181 12315 32209 11114 

ARH 27038 13899 10118 14098 39273 21029 

ADP 46301 24031 22182 14057 41098 12577 

AHN 23459 11668 9114 12842 19713 21558 

A13 38540 53371 18192 38781 102410 40203 

MB 42072 16804 19880 27295 49630 28389 

IC 39670 17201 21194 19085 51554 17441 

APN 22274 19255 14006 8470 25487 7117 

SNc 36840 9585 20578 11117 35509 9367 

KF 43678 7455 17965 14252 52332 12439 

Acs5 36638 13273 19135 15717 21821 14029 

CS 54113 14353 25220 13968 24724 12519 

AP 36638 13273 19135 15717 21821 14029 

ACVI 54113 14353 25220 13968 24724 12519 

Supporting table 3: Quantification of the number of bifurcation points in the cleared C57BL/6J and CD1-E 
samples, units are counts / mm3. 
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Cluster BL6#2 BL6#4 BL6#5 CD1#15 CD1#41 CD1#42 

MO 3.792 3.989 4.177 3.905 3.538 3.823 

SS 3.922 4.090 4.311 4.046 3.532 4.090 

GU 4.042 4.597 4.991 4.092 3.867 4.147 

VISC 4.101 4.409 4.605 4.333 3.698 4.384 

AUD 3.733 3.910 4.045 3.907 3.520 3.695 

VIS 3.849 3.975 4.050 3.889 3.577 3.708 

ACA 4.156 4.634 4.490 4.238 3.789 4.073 

PL 3.949 4.509 4.194 4.004 3.733 3.827 

ILA 4.083 4.591 4.960 4.285 3.740 3.936 

ORB 4.055 4.046 4.272 4.272 3.468 3.769 

AI 3.955 4.250 4.740 4.118 3.625 3.908 

RSP 3.892 4.193 4.177 3.979 3.654 3.783 

PTL 3.847 3.906 3.960 3.704 3.492 3.826 

TE 3.852 3.894 4.027 3.729 3.383 3.576 

PERI 3.877 3.948 3.988 3.669 3.368 3.660 

ECT 4.110 3.902 4.052 3.667 3.477 3.551 

OLF 4.233 4.734 4.677 4.663 3.761 4.317 

AOB 3.964 5.202 4.564 3.946 4.007 4.377 

AOBgr 5.965 4.925 5.542 5.907 4.747 4.416 

AON 3.788 4.072 4.403 3.945 3.619 3.846 

TT 4.948 6.245 5.822 5.966 4.626 4.652 

DP 3.920 5.372 5.420 3.967 3.636 3.967 

PIR 3.919 4.240 4.602 4.121 3.596 4.066 

COA 4.237 4.526 4.455 4.763 3.817 3.973 

PAA 4.486 4.588 4.817 5.101 3.852 4.352 

TR 3.914 3.857 4.179 3.953 3.508 3.707 

ENT 3.863 3.945 4.105 3.997 3.563 4.021 

PAR 4.544 4.101 4.280 4.245 3.680 4.076 

ProS 3.871 4.246 4.249 4.053 3.467 3.897 
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CLA 4.092 4.206 4.843 4.037 3.716 3.986 

EP 3.886 4.267 4.640 4.164 3.524 3.981 

LA 3.839 3.973 4.417 3.741 3.585 3.853 

BLA 3.933 4.124 4.488 3.938 3.674 3.929 

BMA 4.129 4.191 4.453 3.979 3.808 4.049 

PA 3.862 4.204 4.287 3.749 3.594 3.779 

CP 4.310 4.679 4.812 4.892 3.857 4.409 

ACB 4.019 4.327 4.352 4.593 3.594 3.938 

AAA 4.842 4.544 4.801 5.022 4.138 4.326 

GPe 4.148 4.651 4.631 4.176 3.641 4.288 

MA 4.215 4.302 4.703 4.774 3.651 4.000 

MS 4.450 4.434 4.865 5.750 3.972 5.174 

BAC 3.842 5.629 4.694 4.030 3.373 3.808 

BS 3.653 4.623 4.546 4.031 3.908 3.353 

DORsm 3.497 4.727 4.334 3.751 3.510 3.444 

AD 3.547 4.532 4.316 3.679 3.603 3.610 

ARH 3.605 4.308 4.376 5.557 3.824 3.392 

ADP 3.578 4.900 4.776 4.540 4.181 3.541 

AHN 3.671 4.076 4.035 3.901 3.961 3.229 

A13 3.458 3.985 4.211 3.828 3.746 3.330 

MB 3.449 4.505 4.410 3.694 3.707 3.280 

IC 3.657 5.167 4.941 4.559 3.663 3.407 

APN 3.581 4.918 4.317 5.277 4.336 3.483 

SNc 3.613 4.565 4.565 5.008 3.731 3.546 

KF 3.550 4.470 4.393 3.686 3.572 3.352 

Acs5 3.392 4.353 4.067 4.028 3.920 3.221 

CS 3.971 4.570 4.423 4.489 4.048 3.302 

AP 3.392 4.353 4.067 4.028 3.920 3.221 

ACVI 3.971 4.570 4.423 4.489 4.048 3.302 

Supporting table 4: Quantification of the radii in the cleared C57BL/6J and CD1-E samples, units are μm. 
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