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SUMMARY

Tissue clearing methods enable imaging of intact
biological specimens without sectioning. Howev-
er, reliable and scalable analysis of such large
imaging data in 3D remains a challenge. Towards
this goal, we developed a deep learning-based
framework to quantify and analyze the brain vas-
culature, named Vessel Segmentation & Analysis
Pipeline (VesSAP). Our pipeline uses a fully con-
volutional network with a transfer learning ap-
proach for segmentation. We systematically ana-
lyzed vascular features of the whole brains in-
cluding their length, bifurcation points and radius
at the micrometer scale by registering them to
the Allen mouse brain atlas. We reported the first
evidence of secondary intracranial collateral vas-
cularization in CD1-Elite mice and found reduced
vascularization in the brainstem as compared to
the cerebrum. VesSAP thus enables unbiased
and scalable quantifications for the angioarchi-
tecture of the cleared intact mouse brain and
yields new biological insights related to the vas-
cular brain function.

INTRODUCTION

Changes in the brain vasculature are a key fea-
ture of a large number of diseases effecting the
brain. Primary angiopathies, vascular risk factors

(e.g., diabetes), traumatic brain injury, vascular
occlusion and stroke all affect the brain vascular
network and interfere with normal microcircula-
tion and vascular function'. Alterations of the
brain microvasculature are also seen in neuro-
degenerative diseases, such as Alzheimer’s dis-
ease, tauopathy and amyloidopathy. These hall-
marks of the Alzheimer’s disease, can lead to
aberrant remodeling of the blood vessels'®%,
Consequently, capillary rarefaction is frequently
used as a marker for vascular damagesg. Thus,
quantitative analysis of the entire brain vascula-
ture including the capillary bed is pivotal to de-
velop a better understanding of physiological and
pathological brain function. However, quantifying
micrometer scale changes in the cerebrovascular
network of intact brains has been difficult for two
main reasons.

First, labeling and imaging of the complete
mouse brain vasculature down to the smallest
blood vessels has to be achieved. Magnetic res-
onance imaging (MRI), for instance, does not
have sufficient resolution to capture capillaries®.
MicroCT imaging can visualize the microvascula-
ture, but because of specimen size constraints it
fails to acquire a whole intact mouse brain™'. Flu-
orescent microscopy, on the other hand, provides
a higher resolution but can typically be applied to
1-200 um thin tissue slices, which does not pre-
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serve the structure of an end-to-end vascular
network. Recent advances in tissue clearing
could overcome this problem, but so far there
has been no demonstration of all vessels of all
sizes in an entire brain in three dimensions
(3D)".

The second challenge relates to automated anal-
ysis of 3D imaging data for structures that are
spanning entire mouse brains, which cannot be
analyzed piece by piece in a reliable and scala-
ble manner. Scanning transparent specimens of
several millimeters size at micrometer resolution,
inevitably introduces substantial variance in the
signal intensity and signal-to-noise ratio at differ-
ent depths. Thresholding methods are not capa-
ble of segmenting these large scans, whereas
shape-based filtering approaches such as Frangi
filters cannot reliably identify vessels from back-
ground™'*. To overcome these limitations more
advanced image processing methods with local
spatial regularization have been proposed for
processing light-sheet scans'®. However, such
methods including local spatial regularization
cannot segment large vascular networks across
changing intensity distributions. Finally, the size
of the acquired datasets poses a difficulty to as-
sess the organization of the whole vascular net-
work; therefore, such methods can only segment
small volumes ',

Here, we present VesSAP (Vessel Segmentation
& Analysis Pipeline), a method for automated
quantitative analysis of the entire mouse brain
vasculature, which overcomes the limitations
stated above. To achieve this, we first developed
a dual vascular staining approach using wheat
germ agglutinin (WGA) and Evans blue (EB) to
stain both small and large vessels in two fluores-
cent channels, consistently throughout the entire
brain. Next, we cleared whole stained brains us-
ing the 3DISCO method® and imaged them with
light-sheet microscopy at micrometer resolution.
Second, we developed a deep fully convolutional
network (FCN), which exploits the imaging data
from both dyes to provide a high-quality segmen-
tation of the vasculature in 3D. Subsequent fea-
ture extraction and registration to the latest Allen
adult mouse brain atlas enabled us to quantify all
features of interest with respect to their topo-

graphical location. Our deep learning-based ap-
proach works reliably despite variations in signal
intensities, outperforming previous filter-based
methods and reaching the quality of segmenta-
tions of human annotators. To our knowledge,
this is the first time that a deep learning approach
is being used to analyze complex imaging data of
cleared mouse brains i.e. spanning the entire
brain end-to-end.

We further applied VesSAP to a set of 6 mice
from two commonly used mouse strains to sys-
tematically explore strain-related differences in
vascular anatomy across brain regions as de-
scribed by the Allen brain atlas. We reported new
biological findings and provide a comprehensive
reference set of vessel anatomy features, reveal-
ing unique structures of different brain regions.
Thus, VesSAP represents an integrated pipeline
enabling automated and scalable analysis of the
complete mouse brain vasculature (Fig. 1). All
parts of the VesSAP are publicly hosted online
for easy adoption, including the imaging protocol,
the data (original scans, registered atlas data),
the trained algorithms, training data and a refer-
ence set of features describing the vascular net-
work in all brain regions at the following address:
http://DISCOtechnologies.org/VesSAP

RESULTS

Tissue clearing methods enable imaging of un-
sectioned biological specimens. To extract bio-
logically meaningful data, they have to be com-
bined with reliable and automated image analysis
methods. Towards this goal, we developed Ves-
SAP, a deep learning-based method to accurate-
ly and automatically analyze the vasculature of

cleared mouse brains. VesSAP encompasses 3
major steps: 1) staining, clearing and imaging of
the mouse brain vasculature by two different
dyes (WGA and EB) down to the capillary level,
2) transfer learning-based algorithms to automat-
ically segment and trace the whole brain vascula-
ture data at the capillary level and 3) extraction of
vascular features for hundreds of brain regions
by registering the data to the Allen brain atlas
(Fig. 1). We applied VesSAP to generate vascu-
lar reference maps for two commonly used
mouse strains under physiological conditions:
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VesSAP pipeline for quantitative analysis of whole brain vasculature
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Figure 1: Summary of the VesSAP pipeline for automated whole brain analysis of the

perfused vasculature

The proposed method consist of three modular steps: 1, multi dye vessel staining and DISCO tissue
clearing for high imaging quality using 3D light-sheet microscopy; 2, Deep-learning based segmentation
of blood vessels with 3D reconstruction and 3, Anatomical feature extraction and mapping of the entire
vasculature to the Allen adult mouse brain atlas for statistical analysis.

C57BL/6J and CD1-Elite mice. We report the first
evidence of secondary intracranial collateral vas-
cularization in CD1-Elite mice. Furthermore, our
work shows a significantly decreased vasculari-
zation density in the brainstem as compared to
the cerebrum in both mouse strains.

Step 1: Vascular staining, DISCO clearing,
and imaging

Towards staining the entire vasculature, we ap-
plied a combination of two dyes, WGA and EB
staining in two fluorescent channels. We then
performed 3DISCO clearing?' and light-sheet
microscopy imaging of whole mouse brains at
micrometer resolution (Fig. 2A-C, Supporting
Fig. 1). WGA predominantly stains small vessels
and, importantly, captures even the smallest ca-

pillaries down to diameters of a few micrometers,
while EB predominantly stains large vessels in-
cluding the middle cerebral artery and the circle
of Willis (Fig. 2D-l, Supporting Fig. 2). Merging
the signals from both dyes yields a staining of the
complete vasculature, showing the complemen-
tary nature of both dyes (Fig. 2C,F). Importantly,
the signals from both dyes are perfectly congru-
ent when staining the same vessel and solely
come from the vessel wall layer (Fig. 2G-l, Sup-
porting Fig. 2). Furthermore, owing to the dual
labeling, we maximized the signal to noise ratio
(SNR) for each dye independently to avoid satu-
ration of differently sized vessels when only a
single channel is used. We achieved this by in-
dependently optimizing the excitation and emis
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Light-sheet

Confocal

Figure 2: Enhancement of vascular staining using two complementary dyes

A-C, Maximum intensity projections of the automatically reconstructed tiling scans of WGA (A) and
Evans blue (B) signal in the same sample reveal all details of the perfused vascular network in the
merged view (C). D-F: Zoom-ins from marked region in (C) showing fine details. G-L, Confocal
microscopy confirms that WGA and EB dyes stain the vascular wall (G-I, maximum intensity projections
of 112 um) and that the vessels retain their tubular shape (J-L, single slice of 1 um).

sion power. For WGA, we reached a higher SNR  the SNR for small capillaries was substantially
for small capillaries; bigger vessels, however, lower but larger vessels reached a high SNR
were barely visible (Supporting Fig. 3). For EB, (Supporting Fig. 3). Thus, integrating the infor-
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mation from both channels allows homogenous
staining of the entire vasculature throughout the
whole brain, and results in a high SNR for high-
quality segmentations and analysis.

Step 2: Segmentation of the volumetric
images

To enable extraction of quantitative features of
the vascular structure, the vessels in the ac-
quired brain scans need to be segmented in 3D.
Motivated by the recent success of deep learning
based approaches in biomedical image data
analysis®*?, including human MRI data segmen-
tation, we developed a deep FCN to exploit the
complementary signals of both dyes to derive a
complete segmentation of the entire vasculature.

Our network architecture is a deep FCN, which
segments vessels based on the input from two
imaging channels. The network consists of 5 lay-
ers, 4 convolutional layers followed by one fully
connected layer. In a first step, the two input
channels (WGA and EB) are concatenated. This
yields a set in which each voxel in 3D space is
characterized by two features. Each convolution-
al step integrates the information from the voxel's
3D neighborhood. Here we use cross-hair
shaped convolutional kernels to sample the local
surrounding of each voxel in a sparse manner
along three orthogonal planes® (Fig. 3A). After
the last convolution, the information from 50 fea-
tures per voxel is combined with a fully connect-
ed layer and a sigmoidal activation to estimate
the likelihood that a given voxel represents a
vessel. Subsequent binarization yields the final
segmentation. In both, training and testing, the
images are processed on sub-patches of 50 x
100 x 100 pixels.

Often, deep neural networks require large
amount of annotated data to be trained. Here, we
circumvented this requirement with a transfer
learning approach, which is frequently used to
train algorithms with limited annotated data. In
short, the network was first pre-trained on a

large, synthetically generated vessel-like data set
(Supporting Fig. 4)** and then refined on a
small amount of manually annotated part of the
real brain vessel scans. This approach drastically
reduced the need for manually annotated training
data, as indicated by the following observations:
first, the network that was solely trained on syn-
thetic data already yields acceptable segmenta-
tions of real brain vessel scans. Second, the re-
finement on the real data set already converged
after a few training epochs. Third, only a very
small amount of manually annotated training data
(here: 0.02 % of a full brain scan) was needed to
segment the vasculature of an entire brain with
the quality of human annotations.

To assess the quality of the segmentation quanti-
tatively, we compared the network prediction with
manually created ground truth segmentation and
ran several experiments with alternative ap-
proaches (Fig. 3B, Supporting Fig. 5). To pro-
vide comparability with the literature, we reported
two voxel-wise measures that quantify the quality
of the segmentation, accuracy and the F1-
score®. As compared with the ground truth, our
network exploiting the information from WGA and
EB achieved an accuracy of 0.93 + 0.01 and a
F1-Score 0.76 + 0.01 (Fig. 3B). To assess the
importance of integrating information from both,
WGA and EB, we designed a control network
that only has access to the commonly used WGA
signal, which reduced the quality of the vessel
segmentation (accuracy: 0.90 £ 0.08; F1-Score
0.74 £ 0.07). As further controls, we implemented
alternative state-of-the-art methods and found
that our network outperforms classical Frangi
filters' (accuracy: 0.85 + 0.03; F1-Score 0.47 +
0.18), as well as recent methods considering lo-
cal spatial context via Markov random fields >
(accuracy: 0.85 + 0.03; F1-Score 0.48 £ 0.04).

Next, we compared the segmentation accuracy
of our network with human annotations. A total of
4 human experts independently annotated two
volumes each and these segmentations were
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Figure 3: Deep learning architecture of VesSAP and performance on vessel

segmentation

A, The proposed VesSAP network architecture, consisting of four convolutional layers and a sigmoid
classification layer. Schematic representation of the convolutional cross hair operations applied in each
convolutional step. B, Evaluation metrics for the performance of VesSAP compared to a one channel
architecture and the commonly used Frangi filter and speed of segmentation for one image volume of
500 x 500 x 50 pixels. C, The quantification for interrater experiment showing the performance of our
model compared to four human experts. Each of them annotated two patches. D, 3D rendering of full
brain segmentation from a CD1-E mouse. E, 3D rendering of a small patch marked in (D) showing large
vessels and connected capillaries.
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again compared to the ground-truth segmenta-
tion. We found that the accuracy of segmentation
quality of independent human annotators was
comparable to the predicted segmentation of our
network (Fig. 3¢). Moreover, our network could
segment a whole mouse brain scan within 24
hours on a single GPU workstation whereas the
annotators who created our segmentations would
need more than a year to process a whole brain.
In summary, the VesSAP pipeline is able to seg-
ment the whole brains vasculature at human lev-
el accuracy with a substantially higher speed.

Fig. 3D and Supporting Video 1,2 show an ex-
ample of a brain vasculature that was segmented
by VesSAP in 3D. Zooming into a smaller patch
reveals that the connectivity of the vascular net-
work was fully maintained (Fig. 3E, Supporting
Video 1). Comparing single slices of the imaging
data with the predicted segmentation shows that
vessels are accurately segmented regardless of
absolute illumination and vessel diameter (Sup-
porting Fig. 6).

Step 3: Feature extraction and atlas
registration

It has previously been shown that vessel density,
radius and the number of bifurcation points can
be used to describe vascular anatomy3. Hence,
we used our segmentation to trace and quantify
these features as the distinct parameters to
characterize the mouse brain vasculature (Fig.
4A, Supporting Video 3). A visualization of the
quantified vessel radius along the entire vascular
network is shown in Fig. 4B. After extracting
vascular features of the whole brain with Ves-
SAP, we registered the volume to the Allen brain
atlas (Supporting Video 4,5). This allowed us to
map the segmented vasculature and correspond-
ing features to distinct anatomical brain regions.
A representative cross-section of the brain
through the vasculature, color-coded by coarse
anatomical regions, is depicted in Fig. 4C. Each
anatomical region can be further divided into sub-
regions, yielding a total of 1238 anatomical struc-
tures (619 per hemisphere) for the entire brain
(Fig. 4D). This allows analyzing each denoted
brain region and grouping regions into clusters
such as left vs. right hemisphere, gray vs. white

matter or hierarchical clusters of the Allen brain
atlas ontology. For our subsequent statistical fea-
ture analysis, we chose to group the labeled
structures according to the main 55 anatomical
clusters of the current Allen brain atlas ontology.
We thus provide the first whole mouse brain vas-
cular map with the extracted centerlines, bifurca-
tion points and radius down to the capillary level.

VesSAP provides a reference map of the
whole brain vasculature in mice

To extend utility of our new method, we next de-
rived three secondary features from the segmen-
tation to build a reference map of the brain vas-
culature: 1) To approximate the total length of all
vessels in a given volume of interest, we extract
the centerlines and count the voxels along it (ex-
pressed in voxel / voxel ratio); 2) density of bifur-
cation points normalized to the region size (ex-
pressed in count / mm®); and 3) average radius
for each region (expressed in ym). These fea-
tures were all referenced to the Allen brain atlas
ontology. We used these features to determine
the vascular features in 6 individual brain sam-
ples from the C57BL/6J and CD1-Elite strains (n
= 3 mice for each strain). From these quantifica-
tions we derived the following conclusions: first,
the vessel radius is evenly distributed in different
regions of the same brain (Fig. 5A). Second, the
bifurcation density and vessel length are uneven-
ly distributed in the same brain over different re-
gions, while they correlate well among different
mice for the same regions (Fig. 5B,C). Moreover,
bifurcation density correlates well with the vessel
length ratio in most of the brain regions (Fig. 5D,
Pearson’s correlation, r=0.956, p-value=1.971").
Third, we observed that the extracted features
show no significant statistical difference for the
same anatomical cluster between the two strains
(C57BL/6J and CD1-Elite) (Supporting Fig. 7,
Supporting Tables 1-4).

Next, we visually inspected exemplary regions
and validated the output of VesSAP. For exam-
ple, the Gustatory areas showed higher vascular
density compared to the Anterodorsal nucleus
(Fig. 6A) as predicted by VesSAP (Fig. 6B,C).
This inspection also suggested that the capillary
density was the primary reason for the regional


https://doi.org/10.1101/613257
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/613257; this version posted April 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

=

T
\ - Segmentation

|:| Centerline
- Bifurcation
l |:| Radius

Vessel size

Figure 4: Pipeline showing feature extraction and registration process into the native

space of each scan

A, Representation of the features extracted from vessels: volume mask, centerline, bifurcations and
radii. B, Radius illustration of the vasculature in a representative CD1-E mouse brain. C-D, Vascular
segmentation results overlaid on the hierarchically (C) and randomly color coded atlas to reveal all
annotated regions (D) available including hemispheric difference (dashed line in D).

variations in the same brain. Additionally we
found 1) direct intracranial vascular anastomosis
in both strains (white arrowheads, Fig. 6D,E),
and 2) that the anterior cerebral artery, middle
cerebral artery and the posterior cerebral artery
are connected at the dorsal visual cortex (red
arrowheads, Fig. 6D,E).

Importantly, our findings on vasculature length
are in line with the predictions in the literature
obtained in small volumes, confirming the ro-
bustness of our method. For example, previous
studies quantifying small patches estimated the
density of cortical blood vessels as 0.922 m/mm?3,
0.444 m/mm?or 0.471 m/mm? in the cortex'?""*"
Using VesSAP, calculating centerline density as

described above, and accounting for the 30 %
isotropic tissue shrinkage in DISCO clearing®,
we found an average vascular density of 0.473 +
0.161 m/mm? over the whole mouse cortex.

DISCUSSION

Researchers have extensively worked towards
examining the cerebral vasculature at the com-
plete brain scale. This is particularly relevant,
because current theories for many cardiovascu-
lar, neurodegenerative and metabolic disease
pathologies include the capillaries, which can
reflect the earliest symptoms. Thus, a method to
robustly image, segment and analyze the com-
plete cerebral vasculature of the mouse brain has
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Figure 5: Reference values of vessel radii, bifurcations and vessel lengths in cleared
tissue mapped to 55 anatomical clusters of the Allen brain atlas

A-C, Representation of the average radius (A), number of bifurcation points (B) and vessel length (C) in
each of the selected anatomical clusters in the Allen brain atlas. Open circles denotes CD1-E and
closed circles C57BL/6J strain; each circle represents a single mouse. As the features are similar be-
tween two strains, we pooled the data of them to generate reginal feature graphs. D, Scatter plot of the
vessel length against the bifurcations shows a region specific tight correlation between these features
(Pearson’s r = 0.9560; p = 1.9711-30). Each color represents a different brain area. All abbreviations
are listed in the Supporting table 1.
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Figure 6: Exemplary quantitative analysis enabled by VesSAP

A, Maximum intensity projections representative patches from the Gustatory areas (GU) and Anterodorsal
nucleus (AD) segmentation (600 x 600 x 33 um). B,C, Quantification of the normalized bifurcation count and
normalized vessel length ratio for the AD and GU clusters. In all graphs the black data points originate from
the C57BL/6J samples and the white data points from the CD1-E. Mean values are given with error bars
representing the standard error of the mean. D,E, Images of the vasculature in a representative C57BL/6J
(D) and a CD1-E mouse (E) where the white arrowheads indicate the numerous anastomoses between the
major arteries. Direct vascular connections between the medial cerebral artery (MCA), the anterior cerebral
artery (ACA) and the posterior cerebral artery (PCER) are indicated by red arrowheads.
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been much needed. Previous studies were re-
stricted: either they did not have sufficient resolu-
tions to visualize all vessels including tiny capil-
laries such as MRI and microCT imaging modali-
ties®**', or once capillaries are imaged by high
resolution fluorescent microscopy, the analysis
could solely be done on small volumes'?. Here
we present VesSAP, a framework for unbiased
statistical investigation of the complete vascular
network in the intact adult mouse brain at the
capillary level. We extracted the centerlines, bi-
furcation points and radius and assign them
topographically to the Allen brain atlas to gener-
ate a reference map of the adult mouse brain
vasculature. These maps can potentially be used
to model synthetic cerebrovascular networks***.
More advanced metrics to describe the vascula-
ture and networks, for example global Strahler
values, network connectivity and local statistics
on bifurcation angles and vascular shape can be
extracted using our method. Furthermore, the
centerlines and bifurcation points can be inter-
preted as the edges and nodes for building a full
vascular network graph, offering unprecedented
means for studying local and global properties of
the cerebrovascular network in the future.
Several methods have been proposed to label
the cerebral vasculature of the mouse CNS
based on one dye. Here, we employed two dif-
ferent dyes for complementary staining of the
blood vessels, which are based on different
mechanisms. The WGA binds to the glycocalyx
of the endothelial lining of the blood vessels, but
it can miss some segments of the large vessels.
To circumvent this, we injected the EB dye into
the mice 12 hours before WGA perfusion in vivo,
allowing its long-term circulation to mark large
vessels under physiological conditions. The
combination of these dyes in this study enabled a
wide dynamic contrast. This strategy has been
proven quite beneficial for the segmentation of
the complete cerebral vasculature of C57BL/6J
and CD1-E strains as we showed here.

Our FCN segmentation architecture outperforms
the current state-of-the-art methods significantly
(Fig. 3B). Importantly, VesSAP is one to two or-
ders of magnitude faster than the state-of-the-art
automation which has a far lower accuracy, and
more than 350 times faster than a human anno-

tator. Our inter-annotator experiment validates
that our model reaches human level performance
(Fig. 3C). However, from a medical imaging and
machine learning perspective the scores, espe-
cially dice, precision and recall are low compared
to some other segmentation tasks in medical im-
aging***®.

We attribute this mainly to the nature of a vascu-
lar network. Vessels are long but thin tubular
shapes. In our images the radius of the capillar-
ies (about 3 ym) is in the range of our voxel reso-
lution, therefore, a segmentation of the correct
thickness down to a single pixel is difficult. This
inconsistency with the label does not pose a ma-
jor problem for our main task to segment the
whole vasculature and extract features; however
it introduces a significant reduction to the F1-
Score, which is frequently used metric in ma-
chine learning tasks. The goal here is to segment
a complete vasculature of the brain, to enable us
to extract vascular features such as centerlines
and bifurcation points. Therefore, introduction of
a new metric in the future would be needed for
this type of data. This metric should weight the
correct detection of the vessels more and allow
the outer wall of a blood vessel to be in a certain
range of distance from the centerline of that ves-
sel. The inter-annotator experiment and the com-
parison to our segmentation yielded insight in the
quality of the segmentation. The human annota-
tor segmentation accuracy and F1-Score were
not superior compared to our model and the an-
notators disagreed substantially emphasizing the
strength of our segmentation.

The proposed segmentation concept is based on
a transfer learning approach, where we trained
our data on a synthetic dataset and only refined it
on a real labeled dataset 1.7 % of the size of the
synthetic dataset. We consider this a major ad-
vantage compared to approaches that train from
scratch. The model should generalize very well to
other datasets, where other scientist would only
need a small labeled dataset to achieve good
segmentation performance. The pertinence of
our approach should go well beyond vessel da-
tasets, and could find applications for many other
imaging tasks, for example tracing neurons.
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Based on our vascular reference map new prop-
erties can be discovered and biological models
can be confirmed faster. Here, we found that a
substantial difference in vascularization and bi-
furcation density exists across the regions of the
Allen brain atlas. Furthermore, we found that in-
tracranial anastomoses between the anterior
cerebral artery, middle cerebral artery and the
posterior cerebral artery which are known from
C57BL/6J*°>*, are also present in albino CD1-
Elite strain. This is opposed to the BALB/c albino
mouse where the absence of collaterals has
been described®. To our best knowledge this is
the first evidence for high collateral density in
albino CD1-Elite mice. This finding is important
because existence of such collateral vessels be-
tween large vessels can significantly alter the
outcome of the ischemic stroke lesion as the
blood deprived brain regions from the occlusion
of a large vessel could be compensated by the
blood supplies coming from the collateral exten-
sions from other large vessels®*“**°_ Thus, our
VesSAP method enables unbiased quantification
of vascular anatomy in intact mouse brains and
can lead to the discovery of previously over-
looked anatomical knowledge.

In conclusion, VesSAP is the first scalable and
automated machine learning-based method to
analyze complex imaging data coming from the
cleared intact mouse brains. It outperforms all
previous methods of vessel segmentation and
achieves a human level of accuracy several or-
ders of magnitude faster. Thus, we foresee that
our new method will accelerate the applications
of tissue clearing in particular for the studies as-
sessing the brain vasculature.

METHODS

Tissue preparation

The animals were housed under a 12/12hr
light/dark cycle. The animal experiments were
conducted according to institutional guidelines
(Klinikum der Universitat Minchen/Ludwig Maxi-
milian University of Munich), after approval of the
ethical review board of the government of Upper
Bavaria (Regierung von Oberbayern, Munich,
Germany), and in accordance with the European
directive 2010/63/EU for animal research. For

this study we injected 150 pl (2% V/V% in saline)
of Evans blue dye (Sigma-Aldrich, E2129) intra-
peritoneally into three C57BL/6J and CD1-Elite
male, 3 months old mice (n=3 per group). After
12 hrs of postinjection time, we anaesthetized the
animals with a triple combination of MMF (i.p.;
1 mlper 100 g body mass for mice) and opened
their chest for transcardial perfusion. The follow-
ing media was supplied by a peristaltic pump set
to deliver 8 ml/min volume: 150 pyl wheat germ
agglutinin conjugated to Alexa 594 dye (Ther-
moFisher Scientific, W11262) and 15 ml PBS 1x
and 15 ml 4% PFA.

After perfusion, the brains were extracted and
incubated into 3DISCO clearing solutions as de-
scribed by Ertiirk et al.?'. Briefly, we immersed
them in a gradient of tetra-hydrofuran (Sigma-
Aldrich, 186562): 50 vol%, 70 vol%, 80 vol%,
90 vol%, 100vol% (in distilled water), and
100 vol% at 25 °C for 12 h each step. At this point
we modified the protocol to incubate the samples
in tert-Butanol incubation for 12 hrs at 35 °C fol-
lowed by immersion in dichloromethane (Sigma-
Aldrich, 270997) for 12 hrs at room temperature
and finally incubation with the refractive index
matching solution BABB (benzyl alcohol + benzyl
benzoate 1:2; Sigma-Aldrich, 24122 and
W213802), for at least 24 hrs at room tempera-
ture until transparency was achieved. Each incu-
bation step was carried out on a laboratory shak-
er.

Imaging of the cleared samples

We captured the optical section images with a
4x objective lens (Olympus XLFLUOR 340)
equipped with an immersion corrected dipping
cap mounted on a LaVision Ultrall microscope.
For 20x% imaging, we used Zeiss CLARITY objec-
tive (Clr Plan-Neofluar, NA 1.0). The images were
taken in 16 bit precision, which results in a reso-
lution of 1.625 ym on the XY axes. The brain
structures were visualized by the Alexa 594 and
Evans blue fluorescent dyes at 561 and 640 nm
excitation respectively. In z-dimension we took
the sectional images in 3 ym steps from the right
and left sides. To reduce defocus, which derives
from the Gaussian shape of the beam we used a
12 step sequential shifting of the focal position of
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the light sheet per plane and side. The thinnest
point of the light sheet was 5 um.

Reconstruction of the whole brain datasets
from the tiling volumes

We stitched the acquired volumes using TeraS-
titcher's automatic global optimization function
(v1.10.3). We produced volumetric intensity im-
ages of the whole brain considering each chan-
nel separately. Next, we generated isotropic da-
tasets because the registration and successive
processing steps were more robust on isotropic
datasets, therefore we downsampled the recon-
structed 3D vascular datasets in XY dimensions
to 3 x 3 x 3 ym resolution.

Deep learning network architecture

Here we introduced a deep 3D fully convolutional
network (FCN) for segmentation of our blood
vessel dataset. The networks general architec-
ture consists of 4 convolutional layers followed by
a sigmoid activation layer, see Fig. 3A. General-
ly, the input layer is designed to take n images as
an input. In our implemented case, the input to
the first layer of the network are n=2 images of
the same brain, which have been stained differ-
ently, see Fig. 3A. To specifically account for the
general class imbalance (much more tissue
background than vessels) in our dataset, and the
high false positive rates associated with the class
imbalance, the following class balancing loss
function with stable weights from Tetteh et al. is
implemented, see Equation Il.1. Here, L4 is a
numerically stable class balancing loss function
and the term L, penalizes the network for false
predictions. Y. and Y. represent the foreground
and background classes respectively, P(y;=kK|
X;W) is the probability that the voxel j in volume
X belongs to class k given the volume X and
network weights W. Y and Y:. represent the
false positive and false positive predictions re-
spectively at each training iteration.

1.1
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1 1
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The 3D convolutional operations in this network
are implemented as sparse crosshair filters to
reduce memory consumption and speed up the
computation, for a graphical representation see
Supporting Fig. 4. Tetteh et al. showed that by
using this operation a faster computation is
achieved without undermining the prediction ac-
curacy25. The crosshair filter works by separating
a full 3D kernel into 3 orthogonal 2D kernels.
Those kernels are applied to the volume at every
layer of the network.

The networks training is driven by a stochastic
gradient descent function without a regulariza-
tion. A prediction or segmentation with a trained
model takes a volumetric image of arbitrary size
and outputs an estimated probabilistic segmenta-
tion of the input images size. The algorithms
have been implemented using the THEANO
framework®°. They are trained and tested on a
NVIDIA Quadro P5000 GPU and on machines
with 64GB and 500GB RAM respectively.

Transfer learning

Typically, medical imaging tasks are aggravated
by scarce and very scarce data availability. The
proposed transfer learning approach, aims to
account for the scarce labeled data by pre-
training our models on a synthetic dataset and
refining them on a small training set of interest®".
Our approach pre-trains a two channel version of
DeepVesselNet on a synthetically generated da-
taset®®%, with the goal to learn specific vascular
shaped image patterns. The pre-training is car-
ried out on a dataset of 136 volumes of a size of
325 x 304 x 600 pixels. While pre-training we
applied a learning rate of 0.01 and a decay of
0.99 which we applied after every 200 iterations.
Finally the pre-trained model is fine-tuned by re-
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training on a real microscopic dataset consisting
of eleven volumes with a size of 500 x 500 x 50
pixels, which were manually annotated by the
expert who imaged the data and further verified
by two additional experts. All volumes are pro-
cessed in smaller sub-patches by our network.
This enables us to process volumes of arbitrary
sizes and dimensions. The data we use in the
fine-tuning step accumulates to 1.7% of the syn-
thetic datasets voxel volume and solely 0.02% of
the voxel volume of a single brain image. For the
fine-tuning step we utilized a learning rate of
0.0001 and a decay of 0.98, which we applied
after every 10 iterations.

Our training set consist of eleven volumetric im-
ages from two mice brains, the test and valida-
tion set consists of four patches from two differ-
ent brains. Each patch consists of a volume of
500 x 500 x 50 pixels. We chose independent
brains to guarantee generalizability. The patches
are processed and predicted in 25 small sub-
patches. We cross-test on our test and validation
set by rotating these four-fold. In every rotation
our validation set consists of 3 patches and our
test set of one patch. To prevent an overfitting of
our model we chose the validation and test set
from two brains. One from the CD1-E and one
from the C57BL/6J strain. We choose the lowest
log loss on our validation set to be our model
selection point (see Supporting Fig. 4a). We
report an average F1-Score of 0.76 + 0.01, an
average accuracy of 0.93 + 0.01, an average
precision of 0.79 £ 0.02 and an average recall of
0.73 £ 0.02 on our test sets. All scores are given
with a 10 standard deviation. On average our
model reached the model selection point after 45
epochs of training.

Pre-processing of segmentation

The pre-processing represents a significant fac-
tor for the overall success of the training and
segmentation. The intensity distribution among
the brains and among brain regions differs sub-
stantially. To account for the intensity distribu-
tions, two preprocessing strategies have been
applied successively.

a) High-cut filter: In this step the intensities x
above a certain threshold, ¢ which is defined by

an individual percentile for each volume is set to
that threshold. Next, they were normalized by
f(x).

c,x>cC
x,x <cC

g(x) = {

b) Normalization of intensities: The original inten-
sities were normalized to the range of 0 to 1,
where x is the pixel intensity and X are all intensi-
ties of the volume.

x — min(X)
max(X) — min(X)

f&) =

Inter-annotator experiment

To compare VesSAP’s segmentation to a human
level annotation we implemented an inter-
annotator experiment. For this experiment we
determined a gold standard label for two patches
of 500 x 500 x 500 pixels from a commission of
three experts, including the expert who imaged
our data and is therefore most familiar with the
images. Next, we gave the two patches to 4 other
experts to label the complete vasculature. The
experts spend multiple hours to label each patch
within the ImagedJ and ITK-snap environment and
were allowed to use their favored approaches to
generate their best label. Finally, we calculated
the accuracy and dice scores for the different
raters, compared to the gold standard and com-
pared them to the scores of our model.

Feature extraction

In order to quantify the anatomy of the mouse
brain vasculature we extracted descriptive fea-
tures based on our segmentation. Later we regis-
tered them to the Allen brain atlas.

As features we extracted the centerlines, the bi-
furcation points and the radius of the segmented
blood vessels. We consider those features to be
independent from the elongation of the light
sheet scans and the connectedness of the ves-
sels due to staining, imaging and/or segmenta-
tion artefacts. We found the extracted features as
a baseline.
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Before extracting the centerlines we applied two
cycles of binary erosion and dilation to remove
false negative pixels within the volume of seg-
mented vessels as those would induce false cen-
terlines. Our centerline extraction is based on a
3D thinning algorithm as introduced by Lee et
al.>*. Based on the centerlines we extracted bi-
furcation points. A bifurcation is the branching
point on a centerline where a larger vessel splits
into two or more small vessels (see Fig. 4A). Ina
network analysis context they are significant as
they represent the nodes of a vascular network®”.
Furthermore, bifurcation points have significance
in a biological context. In neurodegenerative dis-
eases, capillaries are known to degenerate56,
thereby significantly reducing the number of bi-
furcation points in an affected brain region com-
pared to a healthy brain. To detect the bifurcation
points an algorithm was implemented. The algo-
rithm takes the centerlines as an input and calcu-
lates for every point on that centerline the sur-
rounding centerline pixels to determine if a point
is a centerline. The radius of a blood vessel is a
key feature to describe vascular networks. The
radius yields information about the flow and hier-
archy of the vessel network®®. The proposed al-
gorithm calculates the Euclidean distance trans-
form for every segmented pixel v to the closest
background pixel bgosest (Equation 11.2). Next,
the distance transform matrix is multiplied with
the 3D centerline mask equaling the minimum
radius of the vessel around the centerline.

1.2

3
d(vr bclosest) = Z(vi - l')closest,i)2
1

Registration to the reference atlas

We used the average template, the annotation
file and the latest ontology file (Ontology ID: 1) of
the current Allen brain mouse atlas CCFv3
201710. Then we scaled the template and the
annotation file up from 10 to 3 pm® to match our
reconstructed brain scans. After this we multi-
plied the left side of the (still symmetrical) anno-
tation file with -1 so that the labels can be later
assigned to the corresponding hemispheres.

Next, the average template and the 3D vascular
datasets were downsampled to 10% of their orig-
inal size in each dimension to achieve a reason-
ably fast alignment. In the sake of the integrity of
the extracted features, we aligned the template to
each of the brain scans individually using a two-
step rigid and deformable (B-Spline) registration
and applied the transformation parameters to the
full resolution annotation volume in 3 x 3 x 3 um
resolution. Subsequently we created masks for
the anatomical clusters based on the current Al-
len brain atlas ontology.

Statistics

Data collection and analysis were not performed
blind to the strains. Data distribution was as-
sumed to be normal, but this was not formally
tested. All data values are given as mean + SEM.
Data were analyzed with standardized effect size
indices (Cohen’s d)* to investigate differences of
vessel density, number of bifurcation points and
radii between brain areas across the two mouse
strains (n=3 per strain) and comparisons across
brain areas in the pooled (n=6) dataset. Statisti-
cal analysis was performed using MATLAB.

Data visualization
All volumetric datasets were rendered using
Imaris, Arivis and ITK Snap.

CODE AND DATA AVAILABILITY

VesSAP codes and data that we produced are
publicly hosted online for easy adoption, includ-
ing the imaging protocol, the data (original scans,
registered atlas data), the trained algorithms,
training data and a reference set of features de-
scribing the vascular network in all brain regions
at the following address. Implementation of ex-
ternal libraries are available on request.
http://DISCOtechnologies.org/VesSAP
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VIDEO LEGENDS

Supporting Video 1
Visualization of a representative CD1-E mouse
brain by VesSAP showing the data quality.

Supporting Video 2 (VR optimized viewing)
The whole mouse brain shown in Video 1 has
been rendered for virtual reality (VR) viewing us-
ing Arivis InViewR. The immersed VR view
shows the quality of VesSAP segmentation. We
propose that scientific VR videos coming from
large cleared samples could be a helpful tool for
scientists to explore the data in a 3D interactive
way. VR videos might also be used for educa-
tional purposes as they can be viewed on smart
phones and other available VR devices. Please
check the link for more information regarding how
to view this VR video:
http://DISCOtechnologies.org/VesSAP/#VR

Supporting Video 3

Segmentation and features demonstration on a
subset of the whole dataset. VesSAP enables
reliable segmentation (red) and feature extraction
(bifurcation points and centerlines, green and
cyan) down to the capillary-level from the imag-
ing data (grey).

Supporting Video 4

Whole brain data registered to the Allen adult
brain atlas. The video shows the alignment accu-
racy and segmentation overlaid.

Supporting Video 5

Substack of the whole brain data registered to
the Allen adult brain atlas. This video reveals the
full resolution segmentation on a small set of the
brain scans data.
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Supporting figure 1: Vasculature is stained homogenously throughout all brain regions
A, Sagittal maximum intensity projections. B, Coronal maximum intensity projections. C, Axial maximum
projections. D-F, Zoom-ins where capillary level staining is evident.
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Supporting figure 2: Confocal microscopy confirms that the neurovasculature is stained in a
complimentary way

A,B, Maximum intensity projection of the WGA and the EB signal respectively. C, Merge of the two signals
shows that capillaries are predominantly stained with WGA whereas EB shows strong staining of major
blood vessels.


https://doi.org/10.1101/613257
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/613257; this version posted April 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

C

Signal profiles

mouse 1 mouse 2 mouse 3
A Both (WGA and EB) dyes stain
4 7 .
40000 0000 0000
35000 - 35000 60000 -
30000 - 30000 50000 -
25000
25000 - 40000 -
20000 - 20000
30000 -
15000 - 15000
10000 - 10000 20000
5000 - 5000 10000 -
0 0 0
B WGA is stronger than EB
7000 - 60000
60000 -
6000 - 50000
5000 - 50000 -
40000
4000 - 40000 -
30000
3000 - 30000 -
2000 - 20000 20000 -
1000 - 444‘//"\\5‘7 10000 10000 -
0 0 0
EB is stronger than WGA
25000 - 25000 -
60000
20000 - 50000 20000 -
15000 - 40000 15000 -
30000
10000 - 10000 -
20000
5000 - 5000 -
10000
0 0 0
L> Pixel distance

Supporting figure 3: Raw signal intensity distribution along line profiles across stained vessels
for three animals
Both dyes stain the vasculature with a complimentary SNR. For some vessels the SNR of both channels are
similar (A), whereas for other vessels the EB or WGA channels have a substantially higher SNR compared to
the other (B) and (C). These graphs quantitatively describe the SNR enhancements owing to double dye stain-
ing strategy.
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Supporting figure 4: Details of VesSAP performance
A, Averaged validation performance and model selection point on the mean squared error metric. B, Evaluation
metrics: accuracy, F1-Score, precision, recall and speed (for one image volume of 500 x 500 x 50 pixels ) of

the different models for segmentation.
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single slice

3D rendering

Supporting figure 5: Details of the segmentation quality by VesSAP
A,B, Side by side slices of the raw lectin channel image and the segmentation (green). C, 3D rendering of a
small brain patch showcasing connected capillaries.
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Supporting figure 6: Inter-strain comparison of the features of the vascular network in the
C57BL/6J and CD1-E mice using Cohen’s d method.

A-B, Normalized vessel and bifurcations density matrices show small differences on the level of strains respec-
tively. C, Distribution of average radius across brain regions in the two strains. It shows a mainly homogenous
pattern, most probably governed by the high amount of capillaries in the vascular network. For the full list of
abbreviations refer to the Supporting Table 1. The extracted numerical features are in Supporting Tables 2-4.
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Supporting table 1

Cluster

All regions in the cluster

Name of clus-
ter

MO, MO1, M02/3, MO5, MO6a, MO6b, MOp, MOp1, MOp2/3, MOpS5,
MOp6a, MOp6b, MOs, MOs1, MOs2/3, MOs5, MOs6a, MOs6b

Somatomotor
areas

SS, SS1, SS2/3, SS4, SS5, SS6a, SS6b, SSp, SSp1, SSp2/3, SSp4, SSp5, SSpba,
SSp6b, SSp-bfd, SSp-bfd1, SSp-bfd2/3, SSp-bfd4, SSp-bfds, SSp-bfd6a, SSp-
bfdéb, SSp-Il, SSp-I11, SSp-112/3, SSp-114, SSp-1I5, SSp-l16a, SSp-116b, SSp-m, SSp-
m1, SSp-m2/3, SSp-m4, SSp-m5, SSp-m6a, SSp-m6b, SSp-n, SSp-n1, SSp-n2/3,
SSp-n4, SSp-n5, SSp-n6a, SSp-n6b, SSp-tr, SSp-trl, SSp-tr2/3, SSp-tr4, SSp-tr5,
SSp-tr6a, SSp-tréb, SSp-ul, SSp-ull, SSp-ul2/3, SSp-ul4, SSp-ul5, SSp-ul6a, SSp-
uléb, SSp-un, SSp-un1, SSp-un2/3, SSp-un4, SSp-un5, SSp-un6a, SSp-unéb,
SSs, SSs1, SSs2/3, SSs4, SSs5, SSs6a, SSs6b, VISrll, VISrll1, VISrll2/3, VISrll4,
VISrlI5, VISrll6a, VISrlI6b

Somatosensory
areas

GU, GU1, GU2/3, GU4, GUS5, GU6a, GU6bb

Gustatory
areas

VISC, VISC1, VISC2/3, VISC4, VISC5, VISC6a, VISC6b

Visceral area

AUD, AUDd, AUDd1, AuDd2/3, AUDd4, AUDd5, AUDd6a, AUDd6b, AUDp,
AUDp1, AUDp2/3, AUDp4, AUDp5, AUDp6a, AUDp6b, AUDpo, AUDpo1,
AUDpo2/3, AUDpo4, AUDpo5, AUDpo6a, AUDpo6b, AUDv, AUDv1, AUDv2/3,
AUDv4, AUDvV5, AUDv6a, AUDve6D, VISlla, VISllal, VISIla2/3, VISIla4, VISIIa5,
VISlla6a, VISllabb

Auditory areas

VIS, VIS1, VIS2/3, VIS4, VIS5, VIS6a, VIS6b, VISal, VISall, VISal2/3, VISal4,
VISal5, VISal6a, VISal6b, VISam, VISam1, VISam2/3, VISam4, VISam5, VIS-
am6a, VISameb, VIS, VISI1, VISI2/3, VISI4, VISI5, VISI6a, VISI6b, VISIi, VISIi1,
VISIi2/3, VISli4, VISIi5, VISli6a, VISlieb, VISp, VISp1, VISp2/3, VISp4, VISp5,
VISp6a, VISp6b, VISpl, VISpl1, VISpl2/3, VISpl4, VISpl5, VISpl6a, VISpleb,
VISpm, VISpm1, VISpm2/3, VISpm4, VISpm5, VISpme6a, VISpméb, VISpor,
VISpor1, VISpor2/3, VISpor4, VISpor5, VISpor6a, VISporéb

Visual areas

ACA, ACA1, ACA2/3, ACAS5, ACA6a, ACA6b, ACAd, ACAd1, ACAd2/3, ACAdS,

Anterior cingu-

ACAd6a, ACAd6b, ACAv, ACAvL, ACAV2/3, ACAVS, ACAV6a, ACAVEb late area

PL PL1, PL2, PL2/3, PL5, P L6a, PL6b Prelimbic area
ILA, ILA1, ILA2, ILA2/3, ILAS, ILAGa, ILAGb Lnrg:"mb'c
ORB, ORB1, ORB2/3, ORB5, ORB6a, ORB6b, ORBI, ORBI1, ORBI2/3, ORBIS,

ORBI6a, ORBI6b, ORBm, ORBm1, ORBm2, ORBm2/3, ORBMS5, ORBM6a, Orbital area
ORBm6b, ORBv, ORBvI, ORBvI1, ORBVI2/3, ORBvI5, ORBvI6a, ORBVI6b

Al, Ald, Ald1, Ald2/3, Ald5, Ald6a, Ald6b, Alp, Alp1, Alp2/3, Alp5, Alp6a, Agranular
Alp6b, Alv, Alv, Alv2/3, Alv5, Alv6a, Alvéb insular area

RSP, RSPagl, RSPagl1, RSPagl2/3, RSPagl5, RSPagl6a, RSPagl6b, RSPd, RSPd1,
RSPd2/3, RSPd4, RSPd5, RSPd6a, RSPd6b, RSPv, RSPv1, RSPv2, RSPv2/3,
RSPv5, RSPv6a, RSPv6b, VISm, VISm1, VISm2/3, VISm4, VISm5, VISm6a,
VISm6b, VISmma, VISmma1l, VISmmaz2/3, VISmma4, VISmma5, VISmmaéa,
VISmmaéb, VISmmp, VISmmp1, VISmmp2/3, VISmmp4, VISmmp5,
VISmmp6a, VISmmp6b

Retrosplenial
area

PTLp, PTLp1, PTLp2/3, PTLp4, PTLpS, PTLp6a, PTLp6b, VISa, VISal, VISa2/3,

Posterior pari-
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Supporting table 1

VISa4, VISa5, VISa6a, VISa6b, VISrl, VISrI1, VISrl2/3, VISrl4, VIS5, VISri6a, etal associa-
VISrl6b tion areas
Temporal as-

TEa, TEal, TEa2/3, TEa4, TEa5, TEaba, TEabb

sociation areas

PERI, PERI1, PERI2/3, PERIS, PERI6a, PERI6b

Perirhinal area

ECT, ECT1, ECT2/3, ECT5, ECT6a, ECT6b

Ectorhinal area

OLF OLF, MOB, MOBipl, MOBopl Olfactory areas
AOB | AOB, AOBgl, AOBmi B Gl
factory bulb
AOBgr | AOBgr, NLOT, NLOT1, NLOT1-3, NLOT2, NLOT3 AOBgr & NLOT
AON | AON, AON1, AON2, AONd, AONe, AONI, AONm, AONpv Anterior olfac-
tory nucleus
TT TT, TTd, TTd1, TTd1-4, TTd2, TTd3, TTd4, TTv, TTvl, TTv1-3, TTv2, TTv3 Taenia tecta
DP DP, DP1, DP2, DP2/3, DP5, DP6a Dorsal pedun-
cular area
PIR PIR, PIR1, PIR1-3, PIR2, PIR3 Piriform area
COA, COAa, COAal, COAa2, COAa3, COAp, COApl, COApl1, COApl1-2, COApI1- ol i
COA 3, COApl2, COApI3, COApm, COApm1, COApm1-2, COApm1-3, COApm2,
dalar area
COApm3
Piriform-
PAA PAA, PAAL, PAA1-3, PAA2, PAA3 amygdalar
area
Postpiriform
TR TR, TR1, TR1-3, TR2, TR3 .
transition area
ENT, ENTI, ENTI1, ENTI2, ENTI2/3, ENTI2a, ENTI2b, ENTI3, ENTI4, ENTI4/5, Retro-
ENTI5, ENTI5/6, ENTI6a, ENTI6b, ENTm, ENTm1, ENTm2, ENTm2a, ENTm2b, hippocampal
ENTm3, ENTm4, ENTm5, ENTm5/6, ENTmM6, ENTmv, ENTmv1, ENTmv2, .
ENTmv3, ENTmv4, ENTmv5/6, RHP resion
PAR PAR, PAR1, PAR2, PAR3 Parasubiculum
ProS, ProSd, ProSd-m, ProSd-sr, ProSv, ProSv-m, Prosv-sr Prosubiculum
CLA CLA, CTXsp, 6b Claustrum
Ep EP EPd, EPv Endopiriform
nucleus
LA LA Lateral amyg-
dalar nucleus
Basolateral
BLA BLA, BLAa, BLAp, BLAv amygdalar
nucleus
Basomedial
BMA BMA, BMAa, BMAp amygdalar
nucleus
Posterior
PA PA amygdalar
nucleus
CP CP, CNU, STR, STRd Caudoputamen
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Supporting table 1

ACB | ACB, FS, isl, ism, LSS, OT, OT1, OT1-3, OT2, OT3, STRv Nucleus ac-
cumbens
Anterior
AAA | AAA, BA, CEA, CEAC, CEAI, CEAm, IA, MEA, MEAad, MEAay, MEADd, MEADd-a, | "
MEApd-b, MEApd-c, MEApv, SAMY area
GPe | GPe, GPi, PAL, PALd Pallidum
MA MA, PALV, S| Magnocellular
nucleus
MS MS, MSC, NDB, PALm, TRS Medial septal
nucleus
. . Bed nucleus of
Gac | BAC, BST, BSTa, BSTal, BSTam, BSTd, BSTdm, BSTfu, BSTi, BSTju, BSTme, i
BSTov, BSTp, BSTpr, BSTrh, BSTse, BSTtr, BSTv, PALC )
commissure
BS BS, TH Brain stem
5ORem | DORsM, GENd, LGd, LGd-co, LGd-ip, LGd-sh, MG, MGd, MGm, MGv, PoT, PP, IQfJar;n:tso rse”’
SPA, SPF, SPFm, SPFp, VAL, VENT, VM, VP, VPL, VPLpc, VPM, VPMpc
cortex related
AD, AM, AMd, AMv, ATN, AV, CL, CM, DORpm, EPI, Eth, GENv, IAD, IAM, IGL,
AD ILM, IMD, IntG, LAT, LD, LGv, LGvIl, LGvm, LH, LP, MD, MDc, MDI, MDm, MED, | Anterodorsal
MH, MTN, PCN, PF, PIL, PIN, PO, POL, PR, PT, PVT, RE, REth, RH, RT, SGN, nucleus
SMT, SubG, Xi
ARH, ASO, NC, PVa, PVH, PVHam, PVHap, PVHm, PVHmm, PVHmpd, PVHp, ﬁ:;;ar;‘?chxf_o'
PVHpm, PVHpmI, PVHpmm, PVHpv, PVi, PVZ, SO cleus
ADP, AHA, AVP, AVPV, DMH, DMHa, DMHp, DMHv, MEPO, MPO, OV, PD, ps, | nterodorsal
PSCH, PVp, PVpo, PVR, SBPV, SCH, SFO, VLPO, VMPO Z;elfspt'c nu-
AHN, AHNa, AHNc, AHNd, AHNp, LM, MBO, MEZ, MM, MMd, MMI, MMm, |
MMme, MMp, MPN, MPNc, MPNI, MPNm, PH, PMd, PMv, PVHd, PVHdp, iy
PVHF, PVHIp, PVHmpv, SUM, SUMI, SUMm, TM, TMd, TMv, VMH, VMHa, Yporhaiamic
VMHc, VMHdm, VMHvI Leets
A13, FF, LHA, LPO, LZ, ME,PeF, PST, PSTN, RCH, STN, TU, Z|
MB MB Midbrain
IC IC, ICc, ICd, ICe, MBsen, MEV, NB, PBG, SAG, SCO, SCop, SCs, SCsg, SCzo Inferior
colliculus
APN, AT, CUN, DT, EW, I, INC, InCo, IV, LT, MA3, MBmot, MBsta, MPT, MRN, |
apN | MRNm, MRNme, MRNp, MT, ND, NOT, NPC, OP, Pad, PAG, PN, PPT, PRC, PRT, | 1'%
RN, RPF, RR, SCdg, SCdw, SCig, SCig-a, SCig-b, SCig-c, SCiw, SCm, SNI, SNr, Su3, nucleus
VTA, VTN
SNc | SNc, CLI, DR, IF, IPA, IPC, IPDL, IPDM, IPI, IPL, IPN, IPR, IPRL, PPN, RAmb, RL f’]‘i‘gbrzta”t'a
o KF, NLL, NLLd, NLLh, NLLv, PB, PBI, PBIc, PBId, PBle, PBIs, PBIv, PBm, PBme, | Koelliker-Fuse
PBmm, PBmv, POR, P-sen, PSV, SOC, SOCI, SOCm subnucleus
Acs5, B, DTN, I5, LTN, P5, PC5, PCG, PDTg, PG, P-mot, PRNc, PRNv, SG, SSN, | Accessory
Acs5 . .
SUT, TRN, V trigeminal
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nucleus

Superior
CS CS, CSI, CSm, LC, LDT, NI, PRNr, P-sat, RPO, SLC, SLD central nucleus
raphe

AP, CN, CNlam, CNspg, CU, DCN, DCO, ECU, GR, MY-sen, NTB, NTS, NTSce,
AP NTSco, NTSge, NTSI, NTSm, Pa5, SPVC, SPVI, SPVO, SPVOcdm, SPVYOmdmd, Area postrema
SPVYOmdmv, SPVOrdm, SPVOvI, VCO, z

ACVI, ACVIl, AMB, AMBd, AMBv, DMX, ECO, EV, GRN, ICB, INV, IO, IRN, ISN,

ACVI LAV, LIN, LRN, LRNm, LRNp, MARN, MDRN, MDRNd, MDRNv, MV, MY-mot, gccﬁif“;fj;{or
NIS, NR, PARN, PAS, PGRN, PGRNd, PGRNI, PHY, PMR, PPY, PPYd, PPYs, PRP, nucleus

SPIV, SUV, VI, VII, VNC, x, XII, y

Supporting table 1: List of anatomical clusters and all the brain regions that they represent according to

the current Allen adult mouse brain atlas ontology.
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Supporting table 2
Cluster | BL6#2 BL6#4 BL6#5 CD1#15 |CD1#41 | CD1#42
0.0093572 | 0.0059082 | 0.0047905 | 0.0052599 | 0.0074767 | 0.0056309
0.0115752 | 0.0093265 | 0.0081327 | 0.0070534 | 0.0112136 | 0.0066858
0.0103486 | 0.0078052 | 0.0067535 | 0.0088425 | 0.0131467 | 0.0082024
0.0094285 | 0.0077694 | 0.0060486 | 0.0062264 | 0.0122675 | 0.0053494
0.0076337 | 0.0058136 | 0.0059237 | 0.0069463 | 0.0075269 | 0.0061430
0.0076265 | 0.0050208 | 0.0054900 | 0.0043612 | 0.0069535 | 0.0042240
0.0108309 | 0.0070736 | 0.0060967 | 0.0081567 | 0.0111447 | 0.0089168
0.0102455 | 0.0064844 | 0.0046423 | 0.0051858 | 0.0085280 | 0.0058823
0.0108894 | 0.0047988 | 0.0028369 | 0.0077173 | 0.0081559 | 0.0086919
0.0137248 | 0.0064118 | 0.0058307 | 0.0060286 | 0.0092827 | 0.0067783
0.0093757 | 0.0058920 | 0.0049804 | 0.0049596 | 0.0078331 | 0.0047837
0.0115985 | 0.0091914 | 0.0062429 | 0.0053676 | 0.0109665 | 0.0055400
0.0045193 | 0.0048831 | 0.0052986 | 0.0048463 | 0.0068559 | 0.0044541
0.0053130 | 0.0047694 | 0.0046928 | 0.0055785 | 0.0070274 | 0.0048437
0.0051592 | 0.0033750 | 0.0046063 | 0.0032898 | 0.0055644 | 0.0027928
0.0048977 | 0.0037841 | 0.0043316 | 0.0040392 | 0.0063336 | 0.0034538
OLF 0.0091333 | 0.0028067 | 0.0056325 | 0.0038479 | 0.0104136 | 0.0027701
AOB 0.0102001 | 0.0074197 | 0.0073297 | 0.0036032 | 0.0089601 | 0.0040691
AOBgr 0.0066158 | 0.0071247 | 0.0058011 | 0.0026772 | 0.0056548 | 0.0024047
-0.0119582 0.0032694 | 0.0047818 | 0.0050356 | 0.0085656 | 0.0055792
T 0.0128843 | 0.0057909 | 0.0071700 | 0.0058206 | 0.0082569 | 0.0064400
DP 0.0107445 | 0.0037908 | 0.0039061 | 0.0071797 | 0.0082577 | 0.0080111
PIR 0.0093940 | 0.0062563 | 0.0065447 | 0.0042132 | 0.0074207 | 0.0037186
COA 0.0044112 | 0.0028131 | 0.0044865 | 0.0021680 | 0.0045812 | 0.0017700
PAA 0.0042952 | 0.0022902 | 0.0043477 | 0.0017543 | 0.0050305 | 0.0014458
TR 0.0058219 | 0.0029637 | 0.0044652 | 0.0027056 | 0.0056278 | 0.0022267
-0.0063865 0.0051335 | 0.0046995 | 0.0042859 | 0.0144999 | 0.0036851
PAR 0.0114697 | 0.0091646 | 0.0076682 | 0.0078766 | 0.0113733 | 0.0070761
-0.0076081 0.0038296 | 0.0033865 | 0.0050129 | 0.0076083 | 0.0047397
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CLA 0.0096760 | 0.0053913 | 0.0053636 | 0.0045884 | 0.0071508 | 0.0042252
EP 0.0078594 | 0.0046981 | 0.0047499 | 0.0035476 | 0.0062039 | 0.0031096
LA 0.0048305 | 0.0019873 | 0.0032737 | 0.0032051 | 0.0061426 | 0.0026785
BLA 0.0054087 | 0.0022658 | 0.0039579 | 0.0026897 | 0.0058530 | 0.0022209
BMA 0.0064536 | 0.0030861 | 0.0045863 | 0.0031615 | 0.0057182 | 0.0026441
PA 0.0042582 | 0.0035128 | 0.0024244 | 0.0031166 | 0.0051596 | 0.0025716
CP 0.0083593 | 0.0037503 | 0.0048630 | 0.0050527 | 0.0074828 | 0.0048447
ACB 0.0066948 | 0.0019018 | 0.0043521 | 0.0033112 | 0.0055023 | 0.0034835
AAA 0.0074127 | 0.0041995 | 0.0033715 | 0.0036295 | 0.0056303 | 0.0030950
GPe 0.0069966 | 0.0024761 | 0.0040185 | 0.0030260 | 0.0063187 | 0.0027351
MA 0.0085149 | 0.0021984 | 0.0047591 | 0.0025952 | 0.0062517 | 0.0024843
MS 0.0113546 | 0.0072848 | 0.0077730 | 0.0056466 | 0.0092087 | 0.0057410
BAC 0.0064581 | 0.0012580 | 0.0036531 | 0.0030268 | 0.0061399 | 0.0029772
BS 0.0048691 | 0.0024906 | 0.0035570 | 0.0051794 | 0.0088115 | 0.0050795
DORsm 0.0030760 | 0.0014435 | 0.0022406 | 0.0023438 | 0.0054218 | 0.0040204

0.0056753 | 0.0022222 | 0.0033178 | 0.0027231 | 0.0057565 | 0.0026248

0.0035346 | 0.0013719 | 0.0019229 | 0.0018142 | 0.0033885 | 0.0042785

0.0080422 | 0.0043285 | 0.0048229 | 0.0034813 | 0.0069629 | 0.0031331

0.0032352 | 0.0012860 | 0.0019369 | 0.0007876 | 0.0016155 | 0.0044040

0.0057085 | 0.0087157 | 0.0037526 | 0.0076900 | 0.0131571 | 0.0079402

0.0073036 | 0.0034578 | 0.0045716 | 0.0052940 | 0.0075160 | 0.0060563
IC 0.0069680 | 0.0038629 | 0.0047105 | 0.0045880 | 0.0078609 | 0.0041552
APN 0.0029680 | 0.0032348 | 0.0030604 | 0.0022715 | 0.0047944 | 0.0019137
SNc 0.0060860 | 0.0019211 | 0.0044188 | 0.0028324 | 0.0057872 | 0.0023751
KF 0.0076008 | 0.0018858 | 0.0044324 | 0.0033314 | 0.0085823 | 0.0028944
Acs5 0.0066081 | 0.0025452 | 0.0046771 | 0.0036584 | 0.0039047 | 0.0032545
CS 0.0087011 | 0.0026383 | 0.0057563 | 0.0035171 | 0.0045107 | 0.0031765
AP 0.0066081 | 0.0025452 | 0.0046771 | 0.0036584 | 0.0039047 | 0.0032545
ACVI 0.0087011 | 0.0026383 | 0.0057563 | 0.0035171 | 0.0045107 | 0.0031765

Supporting table 2: Quantification of the vascular density in the cleared C57BL/6J and CD1-E samples.

Units are voxel / voxel.
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Supporting table 3
Cluster | BL6#2 BL6#4 BL6#5 CD1#15 |CD1#41 | CD1#42
58747 25928 18771 23021 41925 24605
81938 55392 41329 34991 91440 33188
64919 43887 31781 46994 106192 | 43573
60946 43307 25628 29164 90915 25064
43883 28024 27613 30341 43744 26882
41070 21883 21334 17518 38791 17014
73782 42978 31045 46161 84863 50331
63124 29778 18616 23974 52830 27193
70281 21444 11073 40927 45240 46161
101634 | 26348 23932 26982 54700 30317
57171 26508 19309 20456 44979 19740
80271 64086 31553 24826 77618 25556
22653 21404 23944 20113 37798 18534
27177 22324 18080 22529 40611 19526
26337 12603 17302 12037 30265 10226
23760 15775 16037 14829 34208 12759
OLF 67201 13730 31261 18044 77776 13079
AOB 72779 53741 51858 14275 57188 16217
AOBgr 38724 43541 23809 12016 27053 10407
- 82886 11660 19241 21065 50677 23361
T 103443 | 34829 47850 29810 50347 32976
DP 70391 17691 18848 36776 50007 41069
PIR 62381 34940 32192 17870 42801 15681
COA 22695 11870 17324 8064 19222 6529
PAA 22821 10443 16374 6115 21308 5038
TR 28876 10722 14916 9180 32134 7599
- 35715 24852 19501 18217 43626 15683
PAR 95645 67655 49951 48112 87045 43132
- 45666 21193 15807 26575 46346 25764
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CLA 58103 27234 21991 18186 40745 17106
EP 45263 24647 17829 13057 32147 115632
LA 22607 7272 11995 9970 29692 8332
BLA 26390 8322 12758 8410 27131 6953
BMA 34605 14039 18049 10945 27125 9152
PA 36842 17510 19317 10740 27016 8863
CP 49050 18657 18848 22865 41620 21999
ACB 38197 7855 16459 13281 29801 13973
AAA 45574 22135 17737 14660 28890 12501
GPe 35965 10153 13676 11168 30533 10198
MA 52576 8567 19509 9678 34233 9262
MS 83538 49067 45058 28564 64772 28848
BAC 33445 4937 14113 12582 36741 12556
BS 23934 12955 14084 23102 41724 22090
DORsm 18224 10397 9458 12750 33125 15360

32506 15030 15181 12315 32209 11114

27038 13899 10118 14098 39273 21029

46301 24031 22182 14057 41098 12577

23459 11668 9114 12842 19713 21558

38540 53371 18192 38781 102410 40203

42072 16804 19880 27295 49630 28389
IC 39670 17201 21194 19085 51554 17441
APN 22274 19255 14006 8470 25487 7117
SNc 36840 9585 20578 11117 35509 9367
KF 43678 7455 17965 14252 52332 12439
Acs5 36638 13273 19135 15717 21821 14029
CS 54113 14353 25220 13968 24724 12519
AP 36638 13273 19135 15717 21821 14029
ACVI 54113 14353 25220 13968 24724 12519

Supporting table 3: Quantification of the number of bifurcation points in the cleared C57BL/6J and CD1-E

samples, units are counts / mm?.
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Supporting table 4

Cluster | BL6#2 BL6#4 BL6#5 CD1#15 | CD1#41 | CD1#42
3.792 3.989 4.177 3.905 3.538 3.823
3.922 4.090 4.311 4.046 3.532 4.090
4.042 4.597 4.991 4.092 3.867 4.147
4.101 4.409 4.605 4.333 3.698 4.384
3.733 3.910 4.045 3.907 3.520 3.695
3.849 3.975 4.050 3.889 3.577 3.708
4.156 4.634 4.490 4.238 3.789 4.073
3.949 4.509 4.194 4.004 3.733 3.827
4.083 4.591 4.960 4.285 3.740 3.936
4.055 4.046 4.272 4.272 3.468 3.769
3.955 4.250 4.740 4.118 3.625 3.908
3.892 4.193 4.177 3.979 3.654 3.783
3.847 3.906 3.960 3.704 3.492 3.826
3.852 3.894 4.027 3.729 3.383 3.576
3.877 3.948 3.988 3.669 3.368 3.660
4.110 3.902 4.052 3.667 3.477 3.551
OLF 4.233 4.734 4.677 4.663 3.761 4.317
AOB 3.964 5.202 4.564 3.946 4.007 4.377
AOBgr 5.965 4.925 5.542 5.907 4.747 4.416
- 3.788 4.072 4.403 3.945 3.619 3.846
T 4.948 6.245 5.822 5.966 4.626 4.652
DP 3.920 5.372 5.420 3.967 3.636 3.967
PIR 3.919 4.240 4.602 4.121 3.596 4.066
COA 4.237 4.526 4.455 4.763 3.817 3.973
PAA 4.486 4.588 4.817 5.101 3.852 4.352
TR 3.914 3.857 4.179 3.953 3.508 3.707
- 3.863 3.945 4.105 3.997 3.563 4.021
PAR 4.544 4.101 4.280 4.245 3.680 4.076
- 3.871 4.246 4.249 4.053 3.467 3.897
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CLA 4.092 4.206 4.843 4.037 3.716 3.986
EP 3.886 4.267 4.640 4.164 3.524 3.981
LA 3.839 3.973 4.417 3.741 3.585 3.853
BLA 3.933 4.124 4.488 3.938 3.674 3.929
BMA 4.129 4.191 4.453 3.979 3.808 4.049
PA 3.862 4.204 4.287 3.749 3.594 3.779
CP 4.310 4.679 4.812 4.892 3.857 4.409
ACB 4.019 4.327 4.352 4.593 3.594 3.938
AAA 4.842 4.544 4.801 5.022 4.138 4.326
GPe 4.148 4.651 4.631 4.176 3.641 4.288
MA 4.215 4.302 4.703 4.774 3.651 4.000
MS 4.450 4.434 4.865 5.750 3.972 5.174
BAC 3.842 5.629 4.694 4.030 3.373 3.808
BS 3.653 4.623 4.546 4.031 3.908 3.353
DORsm 3.497 4.727 4.334 3.751 3.510 3.444

3.547 4.532 4.316 3.679 3.603 3.610

3.605 4.308 4.376 5.557 3.824 3.392

3.578 4.900 4.776 4.540 4.181 3.541

3.671 4.076 4.035 3.901 3.961 3.229

3.458 3.985 4.211 3.828 3.746 3.330

3.449 4.505 4.410 3.694 3.707 3.280
IC 3.657 5.167 4.941 4.559 3.663 3.407
APN 3.581 4.918 4.317 5.277 4.336 3.483
SNc 3.613 4.565 4.565 5.008 3.731 3.546
KF 3.550 4.470 4.393 3.686 3.572 3.352
Acs5 3.392 4.353 4.067 4.028 3.920 3.221
CS 3.971 4.570 4.423 4.489 4.048 3.302
AP 3.392 4.353 4.067 4.028 3.920 3.221
ACVI 3.971 4.570 4.423 4.489 4.048 3.302

Supporting table 4: Quantification of the radii in the cleared C57BL/6J and CD1-E samples, units are um.
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