

1 A novel reporter gene assay for pyrogen detection

2 Qing He[#], Chuan-fei Yu[#], Lang Wang[#], Yong-bo Ni, Heng Zhang,

3 Ying Du, Hua Gao*, Jun-zhi Wang*

4 National Institutes for Food and Drug Control, Beijing, China

5

6 # contributed equally

7 Corresponding author:

8 Jun-zhi Wang, Hua Gao, National Institutes for Food and Drug Control,

9 No. 31, Huatuo Road, Daxing District, Beijing 102629, China.

10 Email: wangjz@nifdc.org.cn

11

12 Highlights

- 13 • This novel reporter gene assay can detect different types of pyrogens, including
14 the lipopolysaccharide of gram-negative bacteria, the lipoteichoic acid of
15 gram-positive bacteria, and the zymosan of fungi.
- 16 • The novel reporter gene assay is sufficiently sensitive, stable, and accurate for
17 various applications.

18

19 Abstract

20 Fever is a systemic inflammatory response of the body to pyrogens. Nuclear factor κ B
21 (NF- κ B) is a central signalling molecule that causes the excessive secretion of various
22 proinflammatory factors induced by pyrogens. This study explored the feasibility of a
23 novel reporter gene assay (RGA) for pyrogen detection using RAW 264.7 cells stably
24 transfected with the NF- κ B reporter gene as a pyrogenic marker. Pyrogen was
25 incubated with the transgenic cells, and the intensity of the fluorescence signal
26 generated by luciferase secreted by the reporter gene was used to reflect the degree of
27 activation of NF- κ B, so as to quantitatively detect the pyrogens. The RGA could
28 detect different types of pyrogens, including the lipopolysaccharide (LPS) of
29 gram-negative bacteria, the lipoteichoic acid (LTA) of gram-positive bacteria, and the

30 zymosan of fungi, and a good dose-effect relationship was observed in terms of
31 NF- κ B activity. The limits of detection of the RGA to those pyrogens were 0.03
32 EU/ml, 0.001 μ g/ml, and 1 μ g/ml, respectively. The method had good precision and
33 accuracy and could be applied to many biological products (e.g., nivolumab,
34 rituximab, bevacizumab, etanercept, basiliximab, *haemophilus influenzae* type b
35 conjugate vaccine, 23-valent pneumococcal polysaccharide vaccine, and group A and
36 group C meningococcal conjugate vaccine). The results of this study suggest that the
37 novel RGA has a wide pyrogen detection spectrum and is sufficiently sensitive, stable,
38 and accurate for various applications.

39

40 **Importance**

41 Pyrogen testing is mandatory and a critical method to ensure the safety of parenteral
42 products including vaccines.

43 Currently, only two pharmacological tests, including the rabbit pyrogen test and the
44 bacterial endotoxins test (BET), are applied to evaluate pyrogenic contamination in
45 parenteral pharmaceuticals by most of state pharmacopoeias. Although generally
46 reliable, both of these assays have shortcomings. The rabbit test is not quantitative but
47 is expensive and involves the use of animals. It can also produce varying responses
48 depending on the strain, age and housing conditions of the rabbits. The BET, however,
49 does not detect pyrogens other than gram-negative bacterial endotoxins and is often
50 problematic when used to test solutions with a high protein content.

51 To overcome these shortcomings and satisfy the growing need for new methods
52 prompted by the constantly increasing production of biological compounds, it is
53 necessary to develop the novel assay for pyrogen detection.

54

55 **Keywords:** Fever; Pyrogens; Nuclear factor kappa B; RAW 264.7;
56 Lipopolysaccharide; Lipoteichoic acid; Zymosan

57

58 **1. Introduction**

59 Pyrogens are fever-inducing substances, including exogenous pyrogens [e.g., the

60 lipopolysaccharide (LPS) of gram-negative bacteria, the lipoteichoic acid (LTA) of
61 gram-positive bacteria, the peptidoglycan (PGN) and lipoprotein (LP) of
62 gram-negative/positive bacteria, and the zymosan of fungi] and endogenous pyrogens
63 (e.g., steroids, prostaglandin E, and proinflammatory cytokines) [1,2]. Pyrogen testing
64 is mandatory and a critical method to ensure the safety of parenteral products.

65 The Chinese Pharmacopoeia (CP) has adopted the rabbit pyrogen test (RPT) and the
66 bacterial endotoxin test (BET) for detecting pyrogenic contamination in products [3].

67 Our laboratory consumes approximately 1000-1500 rabbits per year for the RPT,
68 along with large quantities of manpower and material resources. Nevertheless, the
69 results of the RPT are often affected by many factors, such as environmental, animal,
70 and operating factors. Our laboratory also consumes approximately 15,000-20,000
71 vials of horseshoe crab reagents per year for the BET, which can only detect the LPS
72 of gram-negative bacteria. Most domestic horseshoe crabs are usually not reused to
73 produce reagents; meanwhile, horseshoe crab populations are becoming increasingly
74 scarce due to unreasonable capture practices, habitat loss, and pollution. The
75 European Pharmacopoeia (EP) has adopted the monocyte activation test (MAT),
76 which is mainly based on the use of monocytes and macrophages involved in fever
77 and proinflammatory cytokines [e.g., interleukin (IL)-6, IL-1 β , and tumor necrosis
78 factor (TNF)- α] as pyrogenic markers, to replace those traditional pyrogen tests [4].

79 The MAT often needs large amounts of human blood and its convenience needs to be
80 improved. The representativeness of using a single proinflammatory cytokine as the
81 pyrogenic marker is also limited in theory; however it does not involve the use of
82 animals *in vivo*, has a wide pyrogen detection spectrum, and follows the 3Rs principle
83 [5,6], which has gained widespread attention from researchers.

84 In essence, fever is a systemic inflammatory response of the body to pyrogens [7-9].
85 However, pyrogens can stimulate the body through different mechanisms and can
86 induce the excessive production of different proinflammatory factors, such as ILs,
87 TNF- α , CC chemokine ligand 5, CXC chemokine ligand 1, and prostaglandins, from
88 monocytes and macrophages [10-13]. For example, LPS mainly binds CD14 and
89 Toll-like receptor 4 (TLR4), and activated TLR4 can promote inflammation mainly

90 via pathways dependent on MyD88 (MyD88→NF-κB and IRF-5→synthesis of
91 proinflammatory cytokines, including TNF-α, IL-1β, and IL-6) and
92 TIR-domain-containing adapter-inducing interferon β (TRIF) (TRIF→NF-κB)
93 [14-18]. LTA mainly binds TLR2 to activate NF-κB, resulting in the production of
94 proinflammatory mediators, such as TNF-α, IL-1, IL-6, IL-8, nitric oxide (NO), and
95 chemokines [19-22]. LP, diacylated LP, and triacylated LP mainly bind TLR2, a dimer
96 formed with TLR2 and TLR6, and a dimer formed with TLR2 and TLR1. Activated
97 TLRs can promote inflammation mainly caused via the MyD88-dependent pathway
98 (MyD88→NF-κB/MAPK→synthesis of proinflammatory cytokines) [23,24].
99 Zymosan can bind TLR2 to activate NF-κB, resulting in the production of
100 proinflammatory mediators, such as TNF-α, IL-1β, and IL-8 [25-28].
101 The mechanisms of pyrogens stimulating the secretion of proinflammatory factors in
102 the body often involve the activation of NF-κB, which is the central signalling
103 molecule mediating the inflammatory response [29-32]. Thus, it is reasonable to use
104 NF-κB as a representative pyrogenic marker. Therefore, the main aim of the present
105 study was to evaluate the feasibility of utilizing murine macrophage RAW 264.7 cells
106 transfected with the NF-κB reporter gene to detect pyrogens.

107 **2. Experiments**

108 2.1. Materials and methods

109 2.1.1. Reagents

110 The national standard for bacterial endotoxins is LPS, which was obtained from
111 *Escherichia coli* O55:B5 [10000 endotoxin units (EU)/vial, batch 150600-200707,
112 identical to the 2nd international WHO standard for endotoxin 94/580 from
113 *Escherichia coli* O113:H10] and was provided by the National Institutes for Food and
114 Drug Control (NIFDC). The following materials were also used in this work: LTA
115 (Sigma-Aldrich, Cat # L3265), zymosan (Sigma-Aldrich, Cat # Z4250), foetal bovine
116 serum (FBS, Gemini, Cat # 900-108), penicillin-streptomycin (Gibco, Cat #
117 15140-122), L-glutamine (Gibco, Cat # 25030-081), hygromycin B (Amresco, Cat #
118 V900372), Bright-Glo Luciferase Assay reagent (Promega, Cat # E2650),
119 phosphate-buffered saline (PBS, HyClone, Cat # SH30256.01), trypsin-EDTA (Gibco,

120 Cat # 25200-056), DMEM (Gibco, Cat # 11995-065), pyrogen-free water for the BET
121 (Zhanjiang A&C Biological, LTD), *Tachypleus* amebocyte lysate (TAL, Zhanjiang
122 A&C Biological, LTD), nivolumab injection reagent (Bristol-Myers Squibb Holdings
123 Pharma, LTD Liability Company), rituximab injection reagent (Roche Diagnostics,
124 GmbH), bevacizumab injection reagent (Roche Diagnostics, GmbH), etanercept
125 solution for injection (Pfizer Ireland Pharmaceuticals), *haemophilus influenzae* type b
126 conjugate vaccine (Yuxi Walvax Biotechnology Co., LTD), 23-valent pneumococcal
127 polysaccharide vaccine (Yuxi Walvax Biotechnology Co., LTD), group A and group
128 C meningococcal conjugate vaccine (Yuxi Walvax Biotechnology Co., LTD), and
129 basiliximab for injection (Novartis Pharma Stein AG).

130 2.1.2. Consumables

131 Ninety-six-well plates were used for both the RGA (Corning, Cat # 3917, white, flat
132 bottom, tissue culture treated, polystyrene) and the BET (Corning, Cat # M9005, flat
133 bottom, polystyrene, tissue culture-treated). Mouse IL-1 β , IL-6 and TNF- α ELISAs
134 were performed using commercially available kits (Xin Bo Sheng Co.). Other
135 reagents/materials were purchased as sterile and free of pyrogens, and glassware was
136 baked at 250°C for 1 h.

137 2.1.3. Construction of the reporter gene vector

138 The pCM1.1_luc_hygro vector contains a minimal promoter followed by a luciferase
139 gene. NF- κ B response element
140 (5_-TCCTCGAAAGTCCCCTCTGAGATCCTCGAAAGTCCCCTCTGAGATC
141 TCAGAGGGGACTTCCGAGGA-3_) was synthesized by overlap PCR and
142 inserted into the multiple cloning site ahead of the mini-promoter region, and the
143 positive clone was verified by DNA sequencing.

144 2.1.4. Development of RAW 264.7 cells stably transfected with the reporter gene
145 vector

146 The plasmid pCM1.1_ NF- κ B _luc_hygro was introduced into RAW 264.7 cells
147 (ATCC) by electroporation. The cells were selected at 48 h after transfection in
148 selective media (DMEM containing 10% FBS, 1% penicillin-streptomycin, 1%
149 glutamine, and 150 μ g/ml hygromycin B). After being selected for 3 weeks,

150 hygromycin-resistant cells were then cloned by limited dilution to obtain a single cell
151 clone and were then screened for the induction of luciferase activity by treatment with
152 gradient concentrations of LPS (e.g. 1000 ng/ml, 100 ng/ml, and then 1:3 dilutions, 10
153 series). The resulting positive clones were routinely maintained in the selective media.

154 2.1.5. FACS analysis

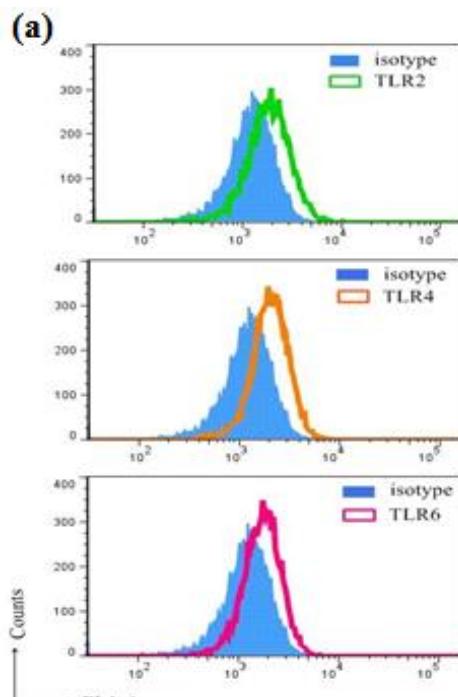
155 RAW 264.7 cells were centrifuged (300 g×5 min) at 4°C, washed twice with ice-cold
156 PBS, and then blocked with 200 µg/ml mouse IgG (Jackson ImmunoResearch, Cat #
157 015-000-003) on ice for 10-20 min. The cells were resuspended in PBS containing 4%
158 bovine calf serum (BCS) at a concentration of 2×10^6 cells/ml and were aliquoted into
159 96-well plates (50 µl/well). Then, 50 µl of 2 µg/ml fluorescence-labelled antibodies
160 was added for the detection of TLR2 (R&D, Cat # FAB1530G), TLR4 (R&D, Cat #
161 FAB27591G), and TLR6 (R&D, Cat # FAB1533G); rat IgG2a Alexa Fluor (AF)
162 488-conjugated antibody was used as an isotype control (R&D, Cat # IC006G). The
163 cell-antibody mixture was incubated on ice for 45 min in the dark, washed twice with
164 PBS containing 4% BCS, and resuspended in 200 µl of 5 µg/ml propidium iodide (PI,
165 Sigma-Aldrich, Cat # P4170) in PBS to stain dead cells. Data were collected on a BD
166 FACSCanto system and analysed using FlowJo software.

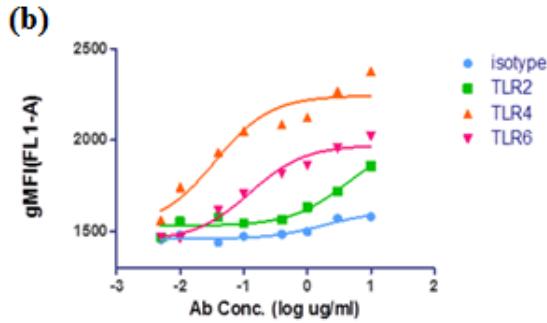
167 2.1.6. RGA

168 Selected cells in the logarithmic growth stage were washed with PBS and digested
169 with 0.25% trypsin-EDTA. Confluent cell monolayers were suspended in the selective
170 medium at the required concentration, seeded into 96-well plates (100 µl/well), and
171 allowed to attach for 24 h. Then, the selective medium was discarded, and sample
172 solutions prepared with assay medium (DMEM containing 10% FBS) were added to
173 the 96-well plates (100 µl/well, $n=4$). The plates were incubated at 37°C in an
174 atmosphere of 5% CO₂ in air for a period. After incubation, Bright-Glo Luciferase
175 Assay reagent was added to the 96-well plates (100 µl/well), which were subsequently
176 shaken for 1 min. Finally, luciferase activity was determined using a Luminoskan
177 Ascent reader. If necessary, commercial ELISA kits were used to detect the levels of
178 proinflammatory factors (e.g., IL-1 β , IL-6, and TNF- α) in the supernatants.

179 2.1.7. BET

180 The kinetic chromogenic TAL assay was performed according to the manufacturer's
181 instructions (Zhanjiang A&C Biological, LTD). One hundred microliters/well of the
182 sample/standard solutions ($n=2$) prepared with pyrogen-free water was mixed with an
183 equal volume of an endotoxin-specific TAL reagent, also prepared with pyrogen-free
184 water, in 96-well plates. The rate of colour development was measured at 37°C using
185 a specially equipped microplate reader (Synergy HT, BioTek Instruments, Inc.). The
186 endotoxin contents of the samples were calculated according to the parallel line assay
187 method using the logarithmically transformed dose and the rate of colour development
188 and are expressed as EU/ml, referring to the standard endotoxin.

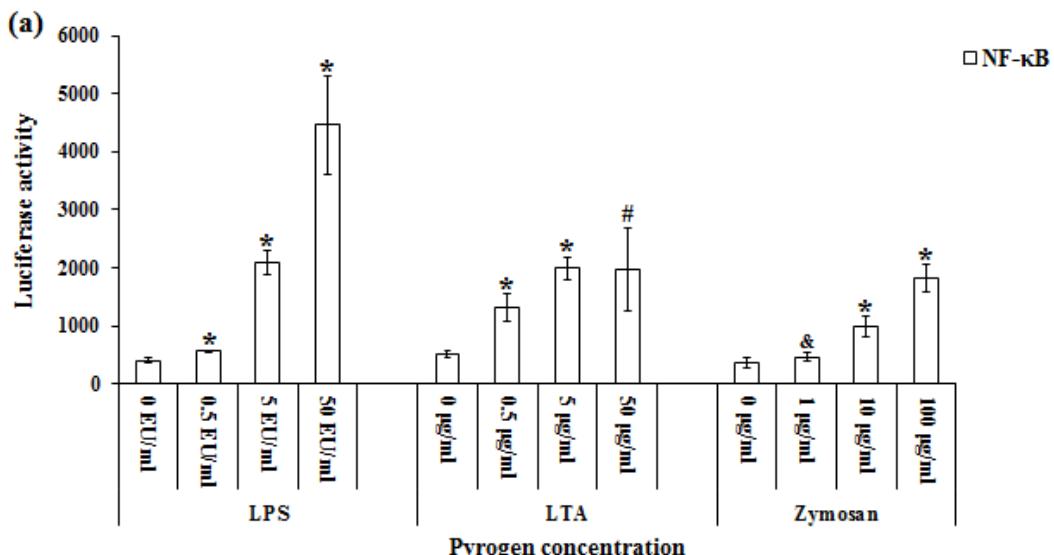

189 **2.2. Statistical analysis**


190 All experiments were repeated three times. The data are expressed as the mean and
191 standard error of the mean (SEM). The data were compared between groups using the
192 Student's *t*-test.

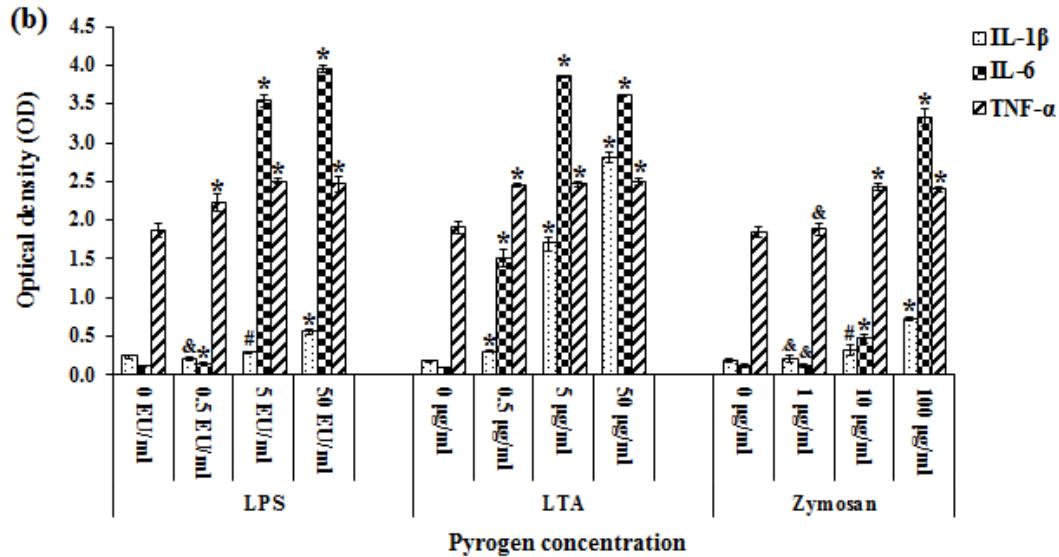
193 **3. Results**

194 **3.1. Identification of TLR2, TLR4, and TLR6 on RAW 264.7 cells**

195



197


198 **Fig. 1.** Expression of TLR2 (green line), TLR4 (orange line), and TLR6 (purple line) on RAW
199 264.7 cells (a) and binding curves of the corresponding antibodies (Ab, concentrations from 10
200 $\mu\text{g/ml}$ to 0.005 $\mu\text{g/ml}$, at 1:3 dilutions) to TLR2, TLR4, and TLR6 on RAW 264.7 cells (b) were
201 analysed by FACS. Rat IgG2a AF488 (blue shadow or line) was used as an isotype control.
202 The results of this experiment are presented in Figure 1. The data show that the RAW
203 264.7 cells expressed the main receptors that can bind to pyrogens, including TLR2,
204 TLR4, and TLR6.

205 3.2. Correlation between NF- κ B activation and proinflammatory factor secretion

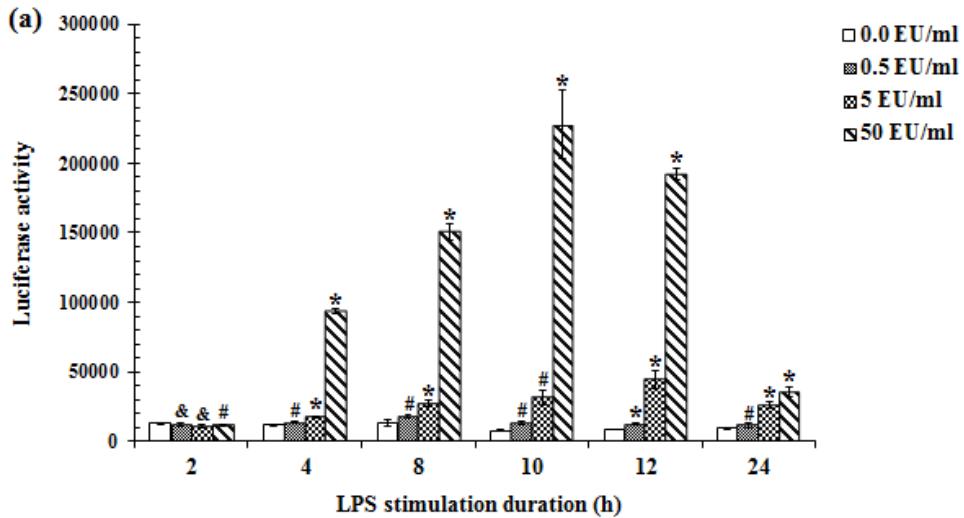
206

207

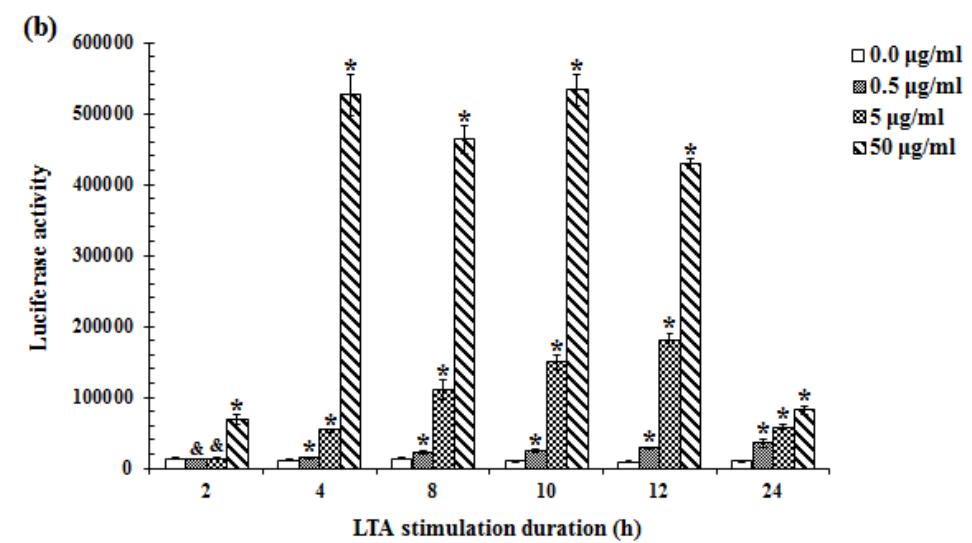
208

209 **Fig. 2.** The activity of NF- κ B (a) and the secretion of the proinflammatory factors (b) IL-1 β , IL-6,
210 and TNF- α in RAW 264.7 cells at a density of 10×10^5 cells/ml after stimulation with LPS, LTA,
211 and zymosan for 24 h ($n=4$).

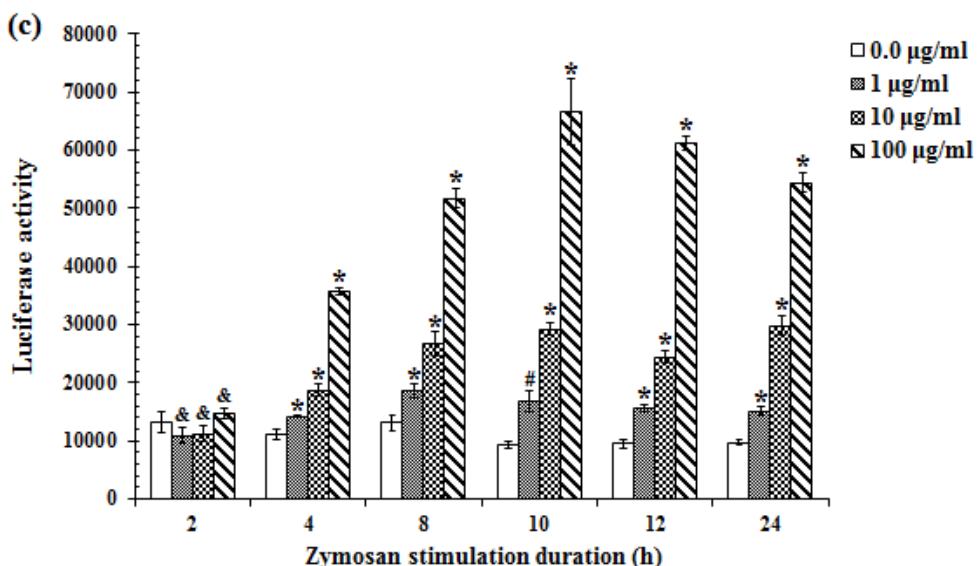
212 & $P > 0.05$ vs. the negative control (e.g., 0 EU/ml, 0 μ g/ml)


213 # $P < 0.05$ vs. the negative control

214 * $P < 0.01$ vs. the negative control


215 The results of this experiment are presented in Figure 2. The Pearson's correlation
216 coefficients between the activation of NF- κ B and the secretion of proinflammatory
217 factors (e.g., IL-1 β , IL-6, and TNF- α) were 0.967, 0.895, and 0.721, respectively, for
218 LPS; 0.836, 0.986, and 0.915, respectively, for LTA; and 0.981, 0.950, and 0.838,
219 respectively, for zymosan. The data show that the dose-effect trends of the LPS-,
220 LTA-, and zymosan-induced NF- κ B activation were consistent with those of the
221 secretion of proinflammatory factors induced by those pyrogens, suggesting that a
222 good correlation between the activation of NF- κ B and the secretion of
223 proinflammatory factors.

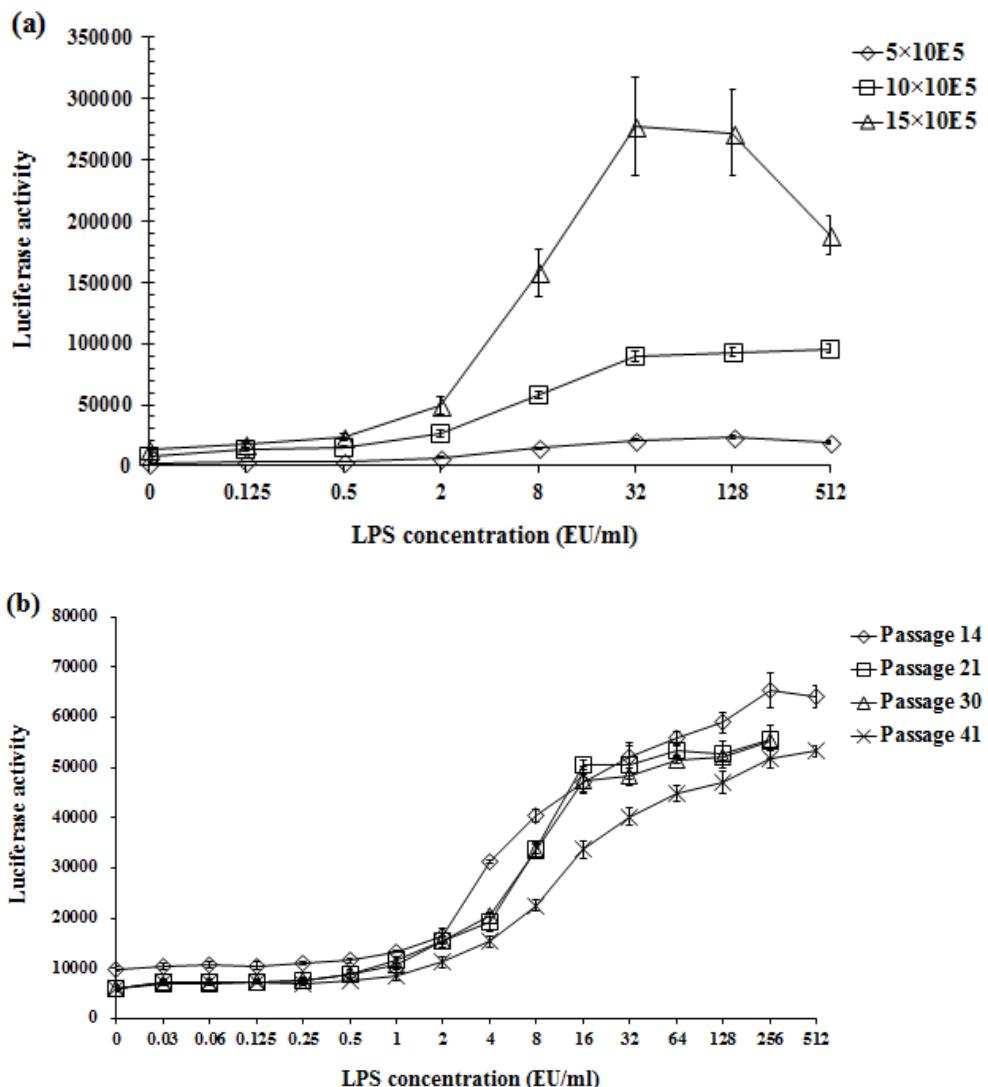
224 3.3. The time-effect relationships of pyrogens (LPS, LTA, and zymosan) activating
225 NF- κ B


226

227

228

229 **Fig. 3.** The NF- κ B activity levels of RAW 264.7 cells at a density of 10×10^5 cells/ml after
230 stimulation with LPS (a), LTA (b), and zymosan (c) for different times ($n=4$).


231 & $P > 0.05$ vs. the negative control (e.g., 0 EU/ml, 0 μ g/ml)

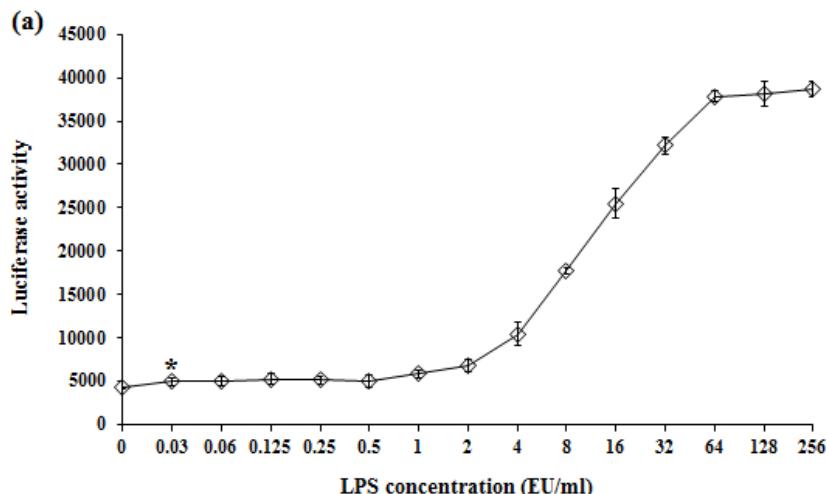
232 # $P < 0.05$ vs. the negative control

233 * $P < 0.01$ vs. the negative control

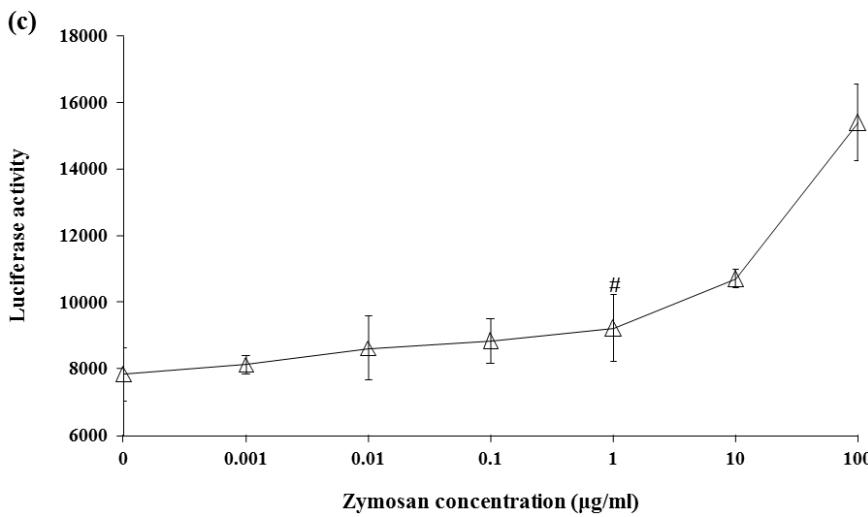
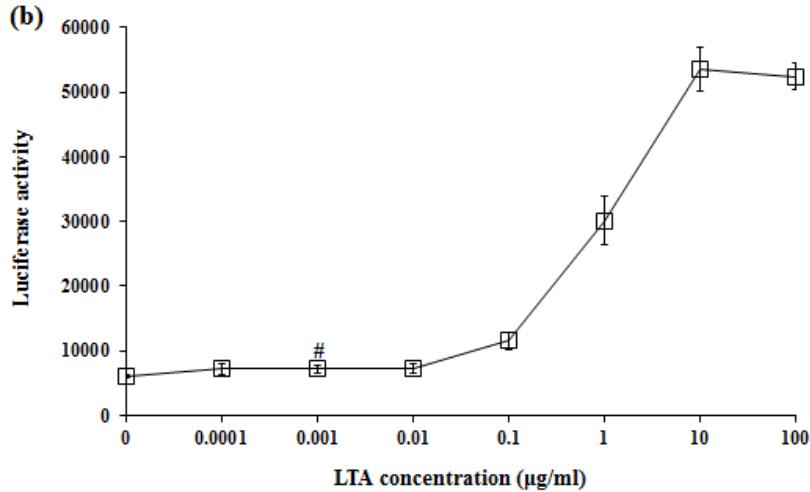
234 The results of this experiment are presented in Figure 3. The data show that the
235 different pyrogens, i.e., LPS, LTA, and zymosan, could activate NF- κ B in a
236 dose-dependent manner. Increasing the stimulation time up to 10-12 h, almost all
237 concentrations of the three pyrogens could activate NF- κ B to an extreme extent.

238 3.4. The dose-effect relationships of LPS in activating NF- κ B in RAW 264.7 cells at
239 different cell densities and passages

240


241

242 **Fig. 4.** The NF- κ B activity levels of RAW 264.7 cells at 5×10^5 , 10×10^5 , and 15×10^5 cells/ml (a);
243 and at passage 14, 21, 30, and 40 with a density of 10×10^5 cells/ml (b) after stimulation with LPS



244 for 10 h ($n=4$).

245 The results of this experiment are presented in Figure 4. The data of Figure 4a show
246 that at different cell densities, LPS had a dose-effect relationship with NF- κ B activity
247 to a certain extent. The dose-response curve was relatively flatter for low cell density
248 (5×10^5 cells/ml) than for the medium and high cell densities (10×10^5 and 15×10^5
249 cells/ml, respectively). However, LPS had a relatively narrower concentration range
250 (32-128 EU/ml) for maintaining maximum NF- κ B activity at the high cell density
251 (15×10^5 cells/ml) compared with that (32-512 EU/ml) at the medium cell density
252 (10×10^5 cells/ml). Besides, the NF- κ B activity at the high cell density (15×10^5
253 cells/ml) was much more susceptible to the “edge effect” of plates in the culture,
254 which might lead to a decrease in NF- κ B activity at that density stimulated by the 512
255 EU/ml of LPS. The data of Figure 4b show that at different cell passages with a
256 density of 10×10^5 cells/ml, LPS also had a stable dose-effect relationship with NF- κ B
257 activity. The dose-response curves at different cell passages were relatively parallel.
258 These results indicate that LPS had the best and most stable dose-effect relationship
259 with NF- κ B activity at a cell density of 10×10^5 cells/ml.

260 3.5. The limits of detection (LODs) and dose-response curves of pyrogen-induced
261 NF- κ B responses

262

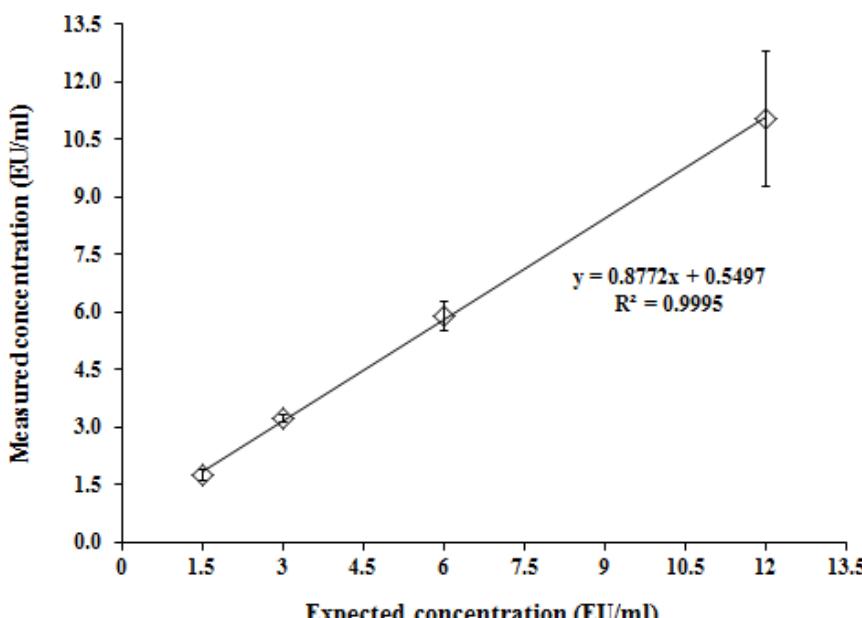
Fig. 5. The NF- κ B activity levels of RAW 264.7 cells at a density of 10×10^5 cells/ml after stimulation with a series of concentrations of LPS (a), LTA (b), and zymosan (c) for 10 h ($n=4$).

$P < 0.05$ vs. the negative control (e.g., 0 EU/ml, 0 $\mu\text{g/ml}$)

* $P < 0.01$ vs. the negative control

The results of this experiment are presented in Figure 5. The data show that the LODs of the NF- κ B responses to LPS, LTA, and zymosan were 0.03 EU/ml ($P=0.005$), 0.001 $\mu\text{g/ml}$ ($P=0.021$), and 1 $\mu\text{g/ml}$ ($P=0.033$), respectively. The activity of NF- κ B increased in a dose-dependent manner in response to the pyrogen concentration. These results indicate the good sensitivity and dose-effect relationship of this method for detecting pyrogens.

3.6. Precision and accuracy of the RGA for detecting LPS in the laboratory


Four samples of LPS, whose expected concentrations were 1.5 (sample 1), 3.0

278 (sample 2), 6.0 (sample 3), and 12.0 (sample 4) EU/ml, respectively, were detected by
279 the RGA. The results are presented in Table 1. The data show that the measured
280 concentrations of LPS in the samples were 1.761 ± 0.126 (sample 1), 3.241 ± 0.101
281 (sample 2), 5.906 ± 0.390 (sample 3), and 11.028 ± 1.760 (sample 4) EU/ml,
282 respectively, and the intraassay and interassay coefficients of variation (CVs) were
283 generally less than 13% and 16% .

284 **Table 1** Precision of the RGA for detecting LPS

	Round 1	Round 2	Round 3	Interassay CV (%)
Sample 1(EU/ml)	1.927	1.791	1.717	7
	1.879	1.653	1.765	
	1.725	1.871	1.522	
Intraassay CV (%)	6	6	8	/
Sample 2(EU/ml)	3.319	3.216	3.103	3
	3.418	3.265	3.255	
	3.089	3.258	3.249	
Intraassay CV (%)	5	1	3	/
Sample 3(EU/ml)	5.426	5.678	5.924	7
	6.065	5.683	6.755	
	5.719	5.726	6.175	
Intraassay CV (%)	6	0	7	/
Sample 4(EU/ml)	11.91	8.752	9.632	16
	11.646	9.039	12.121	
	14.372	11.125	10.655	
Intraassay CV (%)	12	13	12	/

285

286

287 **Fig. 6.** Linear regression analysis between the expected and measured LPS concentrations.

288 The results are presented in Figure 6. The data show a good linear relationship
289 between the expected and measured concentrations in the tested LPS concentration
290 range (1.5-12.0 EU/ml), suggesting that the method also had good accuracy.

291 **3.7. Application of the RGA to drugs**

292 Drugs within the maximum valid dilution (MVD) pass the interference assay when
293 the spike recovery is within the range of 50-200%. The recovery concentration of LPS
294 in the drugs was 4.0 EU/ml, and the LOD of LPS used in the experiment was 0.125
295 EU/ml. The results are presented in Table 2, and they indicate that the method has
296 potential for various applications.

297 **Table 2** Recovery of LPS spike in drugs measured by the RGA

Drug	Fold-dilution	NF-κB response	
		Spike recovery (%)	Interference
Nivolumab injection	16	121	no
Rituximab injection	8	125	no
Bevacizumab injection	16	161	no
Etanercept solution for injection	168	105	no
<i>Haemophilus influenzae</i> type b conjugate vaccine	400	74	no
23-Valent pneumococcal polysaccharide vaccine	400	75	no
Group A and group C meningococcal conjugate vaccine	8000	85	no
Basiliximab for injection	64	70	no

298 Spike recovery=100% (the mean concentration of endotoxin detected in the diluted solution
299 containing the added endotoxin - that detected in the diluted solution)/the added endotoxin.

300 **3.8. Comparison between the RGA and BET**

301 Drugs were tested at their MVD, each of which was calculated as the endotoxin limit
302 concentration in EU/ml divided by the LOD (in this case, 0.5 EU/ml).

303 Each drug presented five blinded spikes, two of which were defined as negative,

304 meaning they were below 0.5 EU/ml (0 and 0.25 EU/ml), while three were positive
305 (0.5, 1.0, and 2.0 EU/ml). These spikes were tested by both the RGA and BET.
306 After the interference test was passed, the samples were classified by a so-called
307 prediction model (PM), which classified the samples as negative (N) when the mean
308 concentration of endotoxin equivalents in each of the sample replicates calculated by
309 the endotoxin standard curve was less than the contaminant limit concentration
310 specified for the samples. The samples were otherwise classified as positive (P).
311 Within-laboratory reproducibility was calculated as the proportion of samples
312 classified identically in three independent runs. Reproducibility between methods was
313 calculated as the proportion of samples classified identically. Sensitivity was defined
314 as the probability of correctly classifying positive samples, and specificity was
315 defined as the probability of correctly classifying negative samples. The results are
316 presented in Table 3.

317 **Table 3** Classification of samples by the RGA and BET

Drug	Spike (EU/ml)	Truth	RGA			BET		
			Round 1	Round 2	Round 3	Round 1	Round 2	Round 3
	0	N	N	N	N	N	N	N
<i>Haemophilus</i>	0.25	N	N	N	N	N	N	N
<i>influenzae</i> type b conjugate vaccine	0.5	P	N	P	P	N	N	N
	1	P	P	P	P	P	P	P
	2	P	P	P	P	P	P	P
	0	N	N	N	N	N	N	N
23-Valent pneumococcal polysaccharide vaccine	0.25	N	N	N	N	N	N	N
	0.5	P	P	P	P	N	N	N
	1	P	P	P	P	P	P	P
	2	P	P	P	P	P	P	P
Sensitivity (%)			94 (17/18)			67 (12/18)		
Specificity (%)			100 (12/12)			100 (12/12)		
Within-laboratory reproducibility (%)			90 (27/30)			100 (30/30)		
Reproducibility between assays (%)			87 (52/60)			/		

318 False classifications are in bold type.

319 The BET assay, in principle, is a physicochemical binding assay. Protein components
320 in products often interfere with the binding of LPS to the limulus agents, leading to
321 the fact that the interference of the product is mostly manifested as inhibition. Even if

322 the interference of the product at a small dilution is eliminated, false-negative results
323 are more likely to occur in the BET, as shown by the sensitivities of the BET (67%)
324 and RGA (94%). However, the accuracy of the BET will be affected when the
325 interference of the product at a large dilution is eliminated. The RGA can overcome
326 the above problems of the BET, and the results of the RGA should be more accurate.

327 **4. Discussion**

328 Currently, three pyrogen tests, including the RPT, BET, and MAT, have been adopted
329 by pharmacopeias [3,4]. The RPT involves the use of animals *in vivo*, does not
330 correspond with the 3Rs principle, has variations in response depending on many
331 factors, and is expensive. The BET is a physicochemical test for detecting the LPS of
332 gram-negative bacteria, not a functional activity test [33]. The MAT is mainly based
333 on the use of monocytes and macrophages involved in the febrile response and can
334 overcome those problems; however, it often needs large amounts of human blood and
335 its convenience needs to be improved. The representativeness of using a single
336 proinflammatory cytokine as the pyrogenic marker is also limited in theory.

337 Compared with other sources of monocytes and macrophages, such as whole blood
338 [34-36] and peripheral blood monocytes [37-39], monocytic and macrophage cell
339 lines are more stable and easier to use [40-43]. RAW 264.7 cells are mouse-derived
340 macrophages that contain a variety of receptors involved in the immune response, as
341 described above, and can react with various pyrogens. The results of this study also
342 confirm that pyrogens from different sources can activate an NF- κ B reporter gene
343 when it is transfected into RAW 264.7 cells.

344 Most existing MATs often use various proinflammatory cytokines (e.g., IL-6, IL-1 β ,
345 and TNF- α) as pyrogenic markers [6,44]. Although this approach has a certain
346 rationality, pyrogens stimulate the body via different mechanisms to induce immune
347 cells to secrete different proinflammatory factors. Our previous study found
348 differences between the secretion of IL-6 and IL-1 β even from the same
349 cryopreserved or fresh pooled human whole blood [45,46]. However, the synthesis
350 and secretion of various proinflammatory factors mostly involve the activation of

351 NF-κB; thus, it is more reasonable to use NF-κB as a representative pyrogenic marker.
352 The results of this study confirm that the activation of NF-κB by stimulation with
353 different pyrogens, including LPS, LTA, and zymosan, showed a good correlation
354 with the secretion of proinflammatory factors (e.g., IL-1 β , IL-6, and TNF- α) induced
355 by those pyrogens. Additionally, the time-effect relationships of the induced NF-κB
356 activation were similar among the pyrogens, which might also verify that NF-κB is a
357 central signaling molecule that mediates the fever reaction induced by pyrogens. It has
358 been reported that RAW 264.7 and THP-1 cells have similar detection limits for LPS
359 and LTA [40]. We also found that fresh pooled human whole blood and RAW 264.7
360 cells had similar reactivities to LTA and zymosan [46].
361 This study verifies the feasibility of the novel RGA for pyrogen detection in the
362 laboratory. We plan to organize validation of the method in different laboratories.
363 In conclusion, this study establishes a novel bioassay for pyrogen detection using
364 RAW 264.7 cells transfected with a NF-κB reporter gene as a pyrogenic marker. This
365 method can be used to detect multiple pyrogens; is sensitive, stable, and accurate; and
366 can be applied widely.

367 **Acknowledgement**

368 We thank Zean Yang and Yusheng Pei for their invaluable technical assistance.

369 **Declaration of Conflicting interests**

370 The author(s) declared no potential conflicts of interest with respect to the research,
371 authorship, and/or publication of this article.

372 **References**

- 373 [1] C.A. Dinarello, Infection, fever, and exogenous and endogenous pyrogens: some concepts
374 have changed, *J. Endotoxin Res.* 10 (2004) 201-222.
- 375 [2] P. Moreillon, P.A. Majcherczyk, Proinflammatory activity of cell-wall constituents from
376 gram-positive bacteria, *Scand. J. Infect. Dis.* 35 (2003) 632-641.
- 377 [3] Chinese Pharmacopoeia Commission. *Pharmacopoeia of People's Republic of China* (Vol IV)
378 [S]. Beijing: China Medical Science and Technology Publishing House, 2015: 153-157.
- 379 [4] Monocyte activation test. *European Pharmacopoeia* [S]. 6.7 Edition 2.6.30 Chapter, 2010:
380 5440.

- 381 [5] T. Hartung, I. Aaberge, S. Berthold, G. Carlin, E. Charton, S. Coecke, S. Fennrich, M. Fischer,
382 M. Gommer, M. Halder, K. Haslov, M. Jahnke, T. Montag-Lessing, S. Poole, L. Schechtman,
383 A. Wendel, G. Werner-Felmayer, Novel pyrogen tests based on the human fever reaction. The
384 report and recommendations of ECVAM Workshop 43. European Centre for the Validation of
385 Alternative Methods. European Centre for the Validation of Alternative Methods, Altern. Lab.
386 Anim. 29 (2001) 99-123.
- 387 [6] S. Hoffmann, A. Peterbauer, S. Schindler, S. Fennrich, S. Poole, Y. Mistry, T. Montag-Lessing,
388 I. Spreitzer, B. Löschner, M. van Aalderen, R. Bos, M. Gommer, R. Nibbeling, G.
389 Werner-Felmayer, P. Loitzl, T. Jungi, M. Brcic, P. Brügger, E. Frey, G. Bowe, J. Casado, S.
390 Coecke, J. de Lange, B. Mogster, L.M. Naess, I.S. Aaberge, A. Wendel, T. Hartung,
391 International validation of novel pyrogen tests based on human monocyteoid cells, J. Immunol.
392 Methods 298 (2005) 161-173.
- 393 [7] J. Roth, G.E. De Souza, Fever induction pathways: evidence from responses to systemic or
394 local cytokine formation, Braz. J. Med. Biol. Res. 34 (2001) 301-314.
- 395 [8] C. Nathan, Points of control in inflammation, Nature 420 (2002) 846-852.
- 396 [9] M. Broom, Physiology of fever, Paediatr. Nurs. 19 (2007) 40-44.
- 397 [10] L. Janský, S. Vybíral, D. Pospíšilová, J. Roth, J. Dornand, E. Zeisberger, J. Kamínková,
398 Production of systemic and hypothalamic cytokines during the early phase of endotoxin fever,
399 Neuroendocrinology 62 (1995) 55-61.
- 400 [11] Z. Chai, S. Gatti, C. Toniatti, V. Poli, T. Bartfai, Interleukin (IL)-6 gene expression in the
401 central nervous system is necessary for fever response to lipopolysaccharide or IL-1 beta: a
402 study on IL-6-deficient mice, J. Exp. Med. 183 (1996) 311-316.
- 403 [12] A. Fernández-Alonso, K. Benamar, M. Sancibrián, F.J. López-Valpuesta, F.J. Miñano, Role
404 of interleukin-1 beta, interleukin-6 and macrophage inflammatory protein-1 beta in
405 prostaglandin-E2-induced hyperthermia in rats, Life Sci. 59 (1996) 185-190.
- 406 [13] A.R. Zampronio, D.M. Soares, G.E. Souza, Central mediators involved in the febrile
407 response: effects of antipyretic drugs, Temperature 2 (2015) 506-521.
- 408 [14] C. De Castro, M. Parrilli, O. Holst, A. Molinaro, Microbe-associated molecular patterns in
409 innate immunity: extraction and chemical analysis of gram-negative bacterial
410 lipopolysaccharides, Methods Enzymol. 480 (2010) 89-115.

- 411 [15] A. Muszynski, M. Laus, J.W. Kijne, R.W. Carlson, Structures of the lipopolysaccharides from
412 Rhizobium leguminosarum RBL5523 and its UDP-glucose dehydrogenase mutant (exo5),
413 Glycobiology 21 (2011) 55-68.
- 414 [16] N.E. Madala, M.R. Leone, A. Molinaro, I.A. Dubery, Deciphering the structural and
415 biological properties of the lipid A moiety of lipopolysaccharides from Burkholderiaceacia
416 strain ASP B 2D, in *Arabidopsis thaliana*, Glycobiology 21 (2011) 184-194.
- 417 [17] A. Gnauck, R.G. Lente, M.C. Kruger, The characteristics and function of bacterial
418 lipopolysaccharides and their endotoxic potential in humans, Int. Rev. Immunol. 35 (2016)
419 189-218.
- 420 [18] D.A. Chistiakov, V.A. Myasoedova, V.V. Revin, A.N. Orekhov, Y.V. Bobryshev, The impact
421 of interferon-regulatory factors to macrophage differentiation and polarization into M1 and
422 M2, Immunobiology 223 (2018) 101-111.
- 423 [19] K.S. Jang, J.E. Baik, S.S. Kang, J.H. Jeon, S. Choi, Y.H. Yang, B.G. Kim, C.H. Yun, S.H.
424 Han, Identification of staphylococcal lipoteichoic acid-binding proteins in human serum by
425 high-resolution LTQ-Orbitrap mass spectrometry, Mol. Immunol. 50 (2012) 177-183.
- 426 [20] S. Bunk, S. Sigel, D. Metzdorf, O. Sharif, K. Triantafilou, M. Triantafilou, T. Hartung, S.
427 Knapp, S. von Aulock, Internalization and coreceptor expression are critical for
428 TLR2-mediated recognition of lipoteichoic acid in human peripheral blood, J. Immunol. 185
429 (2010) 3708-3717.
- 430 [21] M. Cot, A. Ray, M. Gilleron, A. Vercellone, G. Larrouy-Maumus, E. Armau, S. Gauthier, G.
431 Tiraby, G. Puzo, J. Nigou, Lipoteichoic acid in *Streptomyces hygroscopicus*: structural model
432 and immunomodulatory activities, PLoS. One 6 (2011) e26316.
- 433 [22] I.J. Claes, M.E. Segers, T.L. Verhoeven, Lipoteichoic acid is an important microbe-associated
434 molecular pattern of *Lactobacillus rhamnosus* GG, Microb. Cell Fact 11 (2012) 161.
- 435 [23] K. Takeda, H. Miyatake, N. Yokota, S. Matsuyama, H. Tokuda, K. Miki, Crystal structures of
436 bacterial lipoprotein localization factors, LolA and LolB, EMBO J. 22 (2003) 3199-3209.
- 437 [24] A. Buaklin, T. Palaga, D. Hannaman, R. Kerdkaew, K. Patarakul, A. Jacquet, Optimization of
438 the immunogenicity of a DNA vaccine encoding a bacterial outer membrane lipoprotein, Mol.
439 Biotechnol. 56 (2014) 903-910.
- 440 [25] S. Dillon, S. Agrawal, K. Banerjee, J. Letterio, T.L. Denning, K. Oswald-Richter, D.J.

- 441 Kasprowicz, K. Kellar, J. Pare, T. van Dyke, S. Ziegler, D. Unutmaz, B. Pulendran, Yeast
442 zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen presenting cells and
443 immunological tolerance, *J. Clin. Invest.* 116 (2006) 916-928.
- 444 [26] R. Davicino, C. Martinez, M.A. Mattar, Y. Casali, S.G. Correa, L. Aragon, E.A. Saidman, G.
445 Messina, B. Micalizzi, Larrea divaricata Cav (Jarilla): production of superoxide anion,
446 hydrogen peroxide and expression of zymosan receptors, *Immunopharmacol Immunotoxicol*
447 30 (2008) 489-501.
- 448 [27] D.Q. Li, N. Zhou, L. Zhang, P. Ma, S.C. Pflugfelder, Suppressive effects of azithromycin on
449 zymosan-Induced production of proinflammatory mediators by human corneal epithelial cells,
450 *Invest. Ophthalmol. Vis. Sci.* 51 (2010) 5623-5629.
- 451 [28] B.R. Sahoo, M. Basu, B. Swain, M.R. Dikhit, P. Jayasankar, M. Samanta, Elucidation of
452 novel structural scaffold in rohu TLR2 and its binding site analysis with peptidoglycan,
453 lipoteichoic acid and zymosan ligands, and downstream MyD88 adaptor protein, *Biomed.*
454 *Res. Int.* 2013 (2013) 185282.
- 455 [29] N.L. Rhodus, B. Cheng, S. Myers, L. Miller, V. Ho, F. Ondrey, The feasibility of monitoring
456 NF- κ B associated cytokines: TNF- α , IL-1 α , IL-6, and IL-8 in whole saliva for the malignant
457 transformation of oral lichen planus, *Mol. Carcino.* 44 (2005) 77-82.
- 458 [30] X.P. Chi, X.Y. Ouyang, Y.X. Wang, Hydrogen sulfide synergistically upregulates
459 *Porphyromonas gingivalis* lipopolysaccharide-induced expression of IL-6 and IL-8 via
460 NF- κ B signalling in periodontal fibroblasts, *Arch. Oral Biol.* 59 (2014) 954-961.
- 461 [31] H. Wang, J. Qi, L. Li, T. Wu, Y. Wang, X. Wang, Q. Ning, Inhibitory effects of
462 Chikusetsusaponin IVa on lipopolysaccharide-induced pro-inflammatory responses in THP-1
463 cells, *Int. J. Immunopathol. Pharmacol.* 28 (2015) 308-317.
- 464 [32] Y. Cai, G.K. Sukhova, H.K. Wong, A. Xu, V. Tergaonkar, P.M. Vanhoutte, E.H. Tang, Rap1
465 induces cytokine production in pro-inflammatory macrophages through NF κ B signaling and
466 is highly expressed in human atherosclerotic lesions, *Cell Cycle* 14 (2015) 3580-3592.
- 467 [33] T. Hartung, The human whole blood pyrogen test-lessons learned in twenty years, *ALTEX* 32
468 (2015) 79-100.
- 469 [34] S. Fennrich, M. Fischer, T. Hartung, P. Lexa, T. Montag-Lessing, H.G. Sonntag, M. Weigandt,
470 A. Wendel, Detection of endotoxins and other pyrogens using human whole blood, *Dev. Bio.*

- 471 Stand. 101 (1999) 131-139.
- 472 [35] S. Schindler, S. Asmus, S. von Aulock, A. Wendel, T. Hartung, S. Fennrich, Cryopreservation
473 of human whole blood for pyrogenicity testing, J. Immunol. Methods 294 (2004) 89-100.
- 474 [36] S. Harder, E.S. Quabius, L. Ossenkop, C. Mehl, M. Kern, Surface contamination of dental
475 implants assessed by gene expression analysis in a whole-blood in vitro assay: a preliminary
476 study, J. Clin. Periodontol. 39 (2012) 987-994.
- 477 [37] A. Koryakina, E. Frey, P. Bruegger, Cryopreservation of human monocytes for pharmacopeial
478 monocyte activation test, J. Immunol. Methods 405 (2014) 181-191.
- 479 [38] S.R. Nair, C.S. Geetha, P.V. Mohanan, Analysis of IL-1 β release from cryopreserved pooled
480 lymphocytes in response to lipopolysaccharide and lipoteichoic acid, Biomed. Med. Res. Int.
481 2013 (2013) 689642.
- 482 [39] S. Poole, Y. Mistry, C. Ball, R.E. Gaines Das, L.P. Opie, G. Tucker, M. Patel, A rapid
483 'one-plate' in vitro test for pyrogens, J. Immunol. Methods 274(2003): 209-220.
- 484 [40] A. Peterbauer, S. Eperon, T.W. Jungi, E.R. Werner, G. Werner-Felmayer,
485 Interferon-gamma-primed moncytoid cell lines: optimizing their use for in vitro detection of
486 bacterial pyrogens, J. Immunol. Methods 233 (2000) 67-76.
- 487 [41] Y. Nakagawa, H. Maeda, T. Murai, Evaluation of the in vitro pyrogen test system based on
488 proinflammatory cytokine release from human monocytes: comparison with a human whole
489 blood culture test system and with the rabbit pyrogen test, Clin. Diagn. Lab. Immunol. 9
490 (2002) 588-597.
- 491 [42] L. Moesby, E.W. Hansen, J.D. Christensen, Ultrasonication of pyrogenic microorganisms
492 improves the detection of pyrogens in the MonoMac 6 assay, Eur. J. Pharm. Sci. 11 (2000)
493 51-57.
- 494 [43] A. Yamamoto, T. Sakai, M. Ochiai, K. Kamachi, M. Kataoka, H. Toyoizumi, Y. Horiuchi, A
495 cell line assay system for predicting the response of human blood to endotoxin, Jpn. J. Infect.
496 Dis. 56 (2003) 93-100.
- 497 [44] S. Schindler, I. Spreitzer, B. Löschner, S. Hoffmann, K. Hennes, M. Halder, P. Brügger, E.
498 Frey, T. Hartung, T. Montag, International validation of pyrogen tests based on cryopreserved
499 human primary blood cells, J. Immunol. Methods 316 (2006) 42-51.
- 500 [45] Q. He, H. Gao, L.M. Xu, Y. Lu, C. Wang, J. Rui, H. Fan, X.Y. Wang, J.Z. Wang, Analysis of

501 interleukin 6 and interleukin 1 β release in cryopreserved pooled human whole blood
502 stimulated with endotoxin, Innate Immun. 24 (2018) 316-322.
503 [46] Q. He, H. Gao, D.J. Tan, Y. Zhang, C. Chen, Q. Liu, J.Z. Wang, The use of human peripheral
504 blood monocytic cells: a novel method for pyrogen testing, Chin. J. Pharm. Anal. 32 (2012)
505 1711-1717.