

1 *Lactobacillus rhamnosus* Lcr35® as an effective treatment for  
2 preventing *Candida albicans* infection in preclinical models: first  
3 mechanistical insights

4 Cyril Poupet<sup>1\*</sup>, Taous Saraoui<sup>1</sup>, Philippe Veisseire<sup>1</sup>, Muriel Bonnet<sup>1</sup>, Caroline Dausset<sup>2</sup>, Marylise  
5 Gachinat<sup>1</sup>, Olivier Camarès<sup>1</sup>, Christophe Chassard<sup>1</sup>, Adrien Nivoliez<sup>2</sup>, Stéphanie Bornes<sup>1</sup>

6 <sup>1</sup>Université Clermont Auvergne, INRA, VetAgro Sup, UMRF, 15000, Aurillac, France

7 <sup>2</sup> biose Industrie, 24 avenue Georges Pompidou, Aurillac, France

8

9 \* Corresponding author

10 E-mail : [cyril.poupet@uca.fr](mailto:cyril.poupet@uca.fr) (CP)

11

## 12 Short title : Lcr35® as a candidiasis preventive treatment

13

## 14 Abstract

15 The increased recurrence of *Candida albicans* infections is associated with greater resistance to  
16 antifungal drugs. This involves the establishment of alternative therapeutic protocols such as the  
17 probiotic microorganisms whose antifungal potential has already been demonstrated using preclinical  
18 models (cell cultures, laboratory animals). Understanding the mechanisms of action of probiotic  
19 microorganisms has become a strategic need for the development of new therapeutics for humans. In  
20 this study, we investigated the prophylactic anti-*Candida albicans* properties of *Lactobacillus*  
21 *rhamnosus* Lcr35® using the *in vitro* Caco-2 cells model and the *in vivo* *Caenorhabditis elegans* model.  
22 On Caco-2 cells, we showed that the strain Lcr35® significantly inhibited the growth of the pathogen  
23 (~2 log CFU.mL<sup>-1</sup>) and its adhesion (150 to 6,300 times less). Moreover, on the top of having a pro-  
24 longevity activity in the nematode, Lcr35® protects the animal from the fungal infection even if the  
25 yeast is still detectable in its intestine. At the mechanistic level, we noticed the repression of genes of  
26 the p38 MAPK signaling pathway and genes involved in the antifungal response induced by Lcr35®  
27 suggesting that the pathogen no longer appears to be detected by the worm immune system. However,  
28 the DAF-16 / FOXO transcription factor, implicated in the longevity and antipathogenic response of  
29 *C. elegans*, is activated by Lcr35®. These results suggest that the probiotic strain acts by stimulating  
30 its host via DAF-16, but also by suppressing the virulence of the pathogen.

31

32 Keywords: *Lactobacillus rhamnosus* Lcr35®, *Candida albicans*, *Caenorhabditis elegans*,  
33 prophylaxis, immune response

34

35

## 36 1 Introduction

37 *Candida albicans* is a commensal yeast found in the gastrointestinal and urogenital tracts (1,2),  
38 responsible for various infections ranging from superficial infections affecting the skin to life-  
39 threatening systemic infections i.e. candidemia (3). Its pathogenicity is based on several factors as the  
40 formation of biofilms, thigmotropism, adhesion and invasion of host cells, secretion of hydrolytic  
41 enzymes (3) and a transition from yeast to hyphal filaments facilitating its spread (4,5).

42 There is an increase in the number of fungal infections mainly due to the increase in resistance to drugs  
43 (6,7) and to the limited number of available antifungals, some of which are toxic (8). In addition, it is  
44 very common that antifungal treatment destabilizes more or less severely the host commensal  
45 microbiota, leading to dysbiosis (9). This state creates a favorable situation for the establishment of  
46 another pathogen or a recurrence. Besides, because of the presence of similarities between yeasts and  
47 human cells (i.e. eukaryotic cells), the development of novel molecules combining antifungal activity  
48 and host safety was particularly complicated (8). These different elements demonstrate the need to  
49 develop new therapeutic strategies aimed at effectively treating a fungal infection while limiting the  
50 health risks for the host in particular by preserving the integrity of its microbiota. The use of probiotics  
51 in order to cure candidiasis or fungal-infection-related dysbiosis is part of these novel strategies (10–  
52 12). The World Health Organization (WHO) and the Food and Agriculture Organization of the United  
53 Nations (FAO) defines probiotics as “live microorganisms, which, when administered in adequate  
54 amounts, confer a health benefit on the host” (13). Under this appellation of probiotic, a wide variety  
55 of microbial species is found within both prokaryotes and eukaryotes (yeasts like *Saccharomyces*)  
56 although these are mainly lactic bacteria such as the genera *Lactobacillus* and *Bifidobacterium* (14).  
57 Nowadays, a new name is increasingly used to replace the term probiotic: live biotherapeutic products

58 (LBP). These LBP are biological products containing live biotherapeutic microorganisms (LBM) used  
59 to prevent, treat or cure a disease or condition of human beings, excluding vaccines (15).

60 In this issue, we focus on *Lactobacillus rhamnosus* Lcr35®, a Gram-positive bacterium commercialized  
61 by biose® as a pharmaceutical product for more than 60 years for preventive and curative  
62 gastrointestinal and gynecological indications. Lcr35® is a well-known probiotic strain whose *in vitro*  
63 and *in vivo* characteristics are widely documented (16–23). Nivoliez *et al.* demonstrated the probiotic  
64 properties of the native strain such as resistance to gastric acidity and bile stress, lactic acid production.  
65 Under its commercial formulations, Lcr35® strain has the ability to adhere on intestinal (Caco-2, HT29-  
66 MTX) and vaginal (CRL -2616) epithelial cells. The inhibition of the pathogens' adhesion to the  
67 intestinal cells by Lcr35® has not been investigated by the authors. This study has also shown that  
68 Lcr35® leads to a strong inhibition of vaginal (*Candida albicans*, *Gardnerella vaginalis*) and intestinal  
69 (enterotoxigenic and enteropathogenic *Escherichia coli* (ETEC, EPEC), *Shigella flexneri*) pathogens  
70 (24). Although these probiotic and antimicrobial effects have been observed during clinical trials but  
71 we know little about the molecular mechanisms underlying these properties. Randomized trials  
72 conducted in infants and children have shown that preventive intake of probiotics has a positive impact  
73 on the development of infectious or inflammatory bowel diseases by maintaining the balance of the  
74 microbiota (Isolauri *et al.* 2002). *In vitro* as well as *in vivo* studies, using preventive approaches, have  
75 revealed certain mechanisms of action of probiotics (26).

76 Up to now, most probiotics used in both food and health applications are selected and characterized on  
77 the basis of their *in vitro* properties (27) before being tested on complex *in vivo* models (murine models)  
78 and in human clinical trials. The *in vitro* are used mainly for ethical and cost issues (28) but also allow  
79 experimentations under defined and controlled conditions. As a result, some strains meeting the criteria  
80 for *in vitro* selection no longer respond *in vivo* and vice versa (29). This fact reinforces the idea that *in*

81 *vitro* and *in vivo* tests are complementary and necessary for the most reliable characterization of  
82 probiotic properties.

83 Here we propose to use both the *in vitro* Caco-2 cells culture and the invertebrate host *Caenorhabditis*  
84 *elegans* as an *in vivo* model to investigate the microorganism – microorganism – host interactions.  
85 Caco-2 cells are a well characterized enterocyte-like cell line. They are a reliable *in vitro* system to  
86 study the adhesion capacity of lactobacilli as well as their probiotic effects, such as protection against  
87 intestinal injury induced by pathogens (30,31). Nevertheless, the use of *in vivo* models, allowing to get  
88 closer to the complex environment of the human body, is inevitable in the case of a mechanistic study.  
89 Indeed, while rudimentary models such as *Caenorhabditis elegans*, or *Drosophila* exhibit obvious  
90 benefits for (large) screening purposes, they are also not devoid of relevance in deciphering more  
91 universal signaling pathways, even related to mammalian innate immunity (32). With its many genetic  
92 and protein homologies with human beings (33), *C. elegans* has become the ideal laboratory tool for  
93 physiological as well as mechanistic studies. The roundworm has already been used to study the  
94 pathogenicity mechanisms of *Candida albicans*. Pukkila-Worley *et al.* have demonstrated a rapid  
95 antifungal response with the overexpression of antimicrobials encoding genes such as *abf-2*, *fipr-22*,  
96 *fipr-23*, *cnc-7*, *thn-1* and chitinases (*cht-1* and T19H5.1) or detoxification enzymes (*oac-31*, *trx-3*). It  
97 has also been shown that *C. albicans* hyphal formation is a key virulence factor who modifies the gene  
98 expression in the *C. elegans* killing assay (34). Some of these genes are notably dependent on the  
99 highly conserved p38 MAPK signaling pathway (35). Several recent studies have established that the  
100 transition from yeast morphology to hyphal form was largely dependent on environmental parameters.  
101 It is also controlled by genetic factors such as eIF2 kinase Gcn2 (36) or SPT20 (37) whose mutations  
102 induce a decrease in virulence of the pathogen and an enhanced survival of the host. However, few  
103 studies have been conducted with the nematode on the use of probiotic microorganisms for the  
104 treatment of *C. albicans* fungal infection (38).

105 In this context, the aim of this study was to evaluate the effect of *Lactobacillus rhamnosus* Lcr35®  
106 strain to prevent a fungal infection due to *C. albicans* using the *in vitro* cellular model Caco-2 and the  
107 *in vivo* model *C. elegans*. In order to overcome the experimental limits of the *in vitro* model, we  
108 conducted the mechanistic study solely on the *C. elegans* model. The worm survival and gene  
109 expression, in response to the pathogen and/or the probiotic, were evaluated.

## 110 **2 Material and methods**

### 111 **2.1 Microbial strains and growth conditions**

112 *Escherichia coli* OP50 strain was provided by the *Caenorhabditis* Genetics Center (Minneapolis, MN,  
113 USA) and was grown on Luria Broth (LB, MILLER'S Modification) (Conda, Madrid, Spain) at 37 °C  
114 overnight. *Lactobacillus rhamnosus* Lcr35® strain was provided by biose® (Aurillac, France) and was  
115 grown in de Man, Rogosa, Sharpe (MRS) broth (bioMérieux, Marcy l'Etoile, France) at 37 °C  
116 overnight. *Candida albicans* ATCC 10231 was grown in Yeast Peptone Glucose (YPG) broth pH 6.5  
117 (per L: 10 g yeast extract, 10 g peptone, 20 g glucose) at 37 °C for 48 hours. Microbial suspensions  
118 were spin down for 2 minutes at 1,500 rpm (Rotofix 32A, Hettich Zentrifugen, Tuttlingen, Germany)  
119 and washed with M9 buffer (per L: 3 g KH<sub>2</sub>PO<sub>4</sub>, 6 g Na<sub>2</sub>HPO<sub>4</sub>, 5 g NaCl, 1 mL 1 M MgSO<sub>4</sub>) in order  
120 to have a final concentration of 100 mg.mL<sup>-1</sup>.

### 121 **2.2 Influence of Lcr35® on *Candida albicans* growth and on *Candida* 122 *albicans* biofilm formation on Caco-2 cells monolayer**

123 Growth inhibition of *C. albicans* by the probiotic strain Lcr35® was examined using the human  
124 colorectal adenocarcinoma cell line Caco-2 (39). Caco-2 cells were grown in Dulbecco modified  
125 Eagle's minimal essential medium (DMEM, LIFE TECHNOLOGIE, Villebon-sur-Yvette, France)

126 supplemented with 20% inactivated fetal calf serum (LIFE TECHNOLOGIE, Villebon-sur-Yvette,  
127 France) at 37 °C with a 5% CO<sub>2</sub> in air atmosphere. For the assays, the cells were seeded at a  
128 concentration of 3.5x10<sup>5</sup> cells.well<sup>-1</sup> in 24-well plates (DUTSCHER, Brumath, France) and placed in  
129 growth conditions for 24 hours. Microbial strains were grown according to Nivoliez *et al.* (24). After  
130 growth, cell culture medium is removed and replaced by 1 mL of DMEM and 250 µL of Lcr35® culture  
131 (10<sup>8</sup> CFU.mL<sup>-1</sup>) in each well and incubated for 24 hours. 250 µL of *C. albicans* culture at different  
132 concentrations (10<sup>7</sup>, 10<sup>6</sup>, 10<sup>5</sup>, 10<sup>4</sup>, 10<sup>3</sup> and 10<sup>2</sup> CFU.mL<sup>-1</sup>) are added in each well. After incubation for  
133 24 and 48 hours, the inhibition of *C. albicans* by Lcr35® is evaluated. 100 µL of suspension is taken  
134 from each of the wells and the number of viable bacteria and/or yeasts were determined by plating  
135 serial dilutions of the suspensions onto MRS or Sabouraud agar plates. For the measurement of *C.*  
136 *albicans* biofilm formation, after incubation for 48 hours, the wells were washed twice with 0.5 mL of  
137 PBS and cells harvested with 1 mL of trypsin at 37 °C. As for the inhibition assay, the number of viable  
138 bacteria or/and yeasts were determined by plating serial dilutions of the suspensions onto MRS or  
139 Sabouraud agar plates. The plates are incubated at 37 °C for 72 hours (MRS) or 48 hours (Sabouraud).  
140 Each assay, performed three times independently, contains two technical replicates.

### 141 2.3 *Caenorhabditis elegans* maintenance

142 *Caenorhabditis elegans* N2 (wild-type) and TJ356 (*daf-16p::daf-16a/b::GFP + rol-6(su1006)*) strains  
143 were acquired from the *Caenorhabditis* Genetics Center (Minneapolis, MN). The nematodes were  
144 grown and maintained at 20 °C on Nematode Growth Medium (NGM) (per L: 3 g NaCl; 2.5 g peptone;  
145 17 g agar; 5 mg cholesterol; 1 mM CaCl<sub>2</sub>; 1 mM MgSO<sub>4</sub>, 25 mL 1 M potassium phosphate buffer at  
146 pH 6) plates, supplemented with yeast extract (4 g.L<sup>-1</sup>) (NGMY) and seeded with *E. coli* OP50 (40).

### 147 2.4 *Caenorhabditis elegans* synchronization

148 In order to avoid variation in results due to age differences, a worm synchronous population is required.  
149 Gravid worms were washed off using M9 buffer and spin down for 2 minutes at 1,500 rpm. 5 mL of  
150 worm bleach (2.5 mL of M9 buffer, 1.5 mL of bleach, 1 mL of sodium hydroxide 5M) was added to  
151 the pellet and vigorously shaken until adult worm body disruption. The action of worm bleach was  
152 stopped by adding 20 mL of M9 buffer. Eggs suspension was then spun down for 2 minutes at 1,500  
153 rpm and washed twice with 20 mL of M9 buffer. Eggs were allowed to hatch under slow agitation at  
154 25 °C for 24 hours in about 20 mL of M9 buffer. L1 larvae were then transferred on NGMY plates  
155 seeded with *E. coli* OP50 until they reach L4 / young adult stage.

## 156 **2.5 Body size**

157 Individual adult worms were photographed using an Evos FL microscope (Invitrogen, 10X  
158 magnification). After reaching L4 stage, they were transferred on NGMY plates previously seeded  
159 with the probiotic strain Lcr35® and their size were measured daily for three days. Length of worm  
160 body was determined by using ImageJ software as described by Mörck and Pilon (2006) (41) and  
161 compared to OP50-fed worms. At least 10 nematodes per experiment were imaged on at least three  
162 independent experiments.

## 163 **2.6 *Caenorhabditis elegans* lifespan assay**

164 Synchronous L4 worms were transferred on NGMY with 0.12 mM 5-fluorodeoxyuridine FUDR  
165 (Sigma, Saint-Louis, USA) and seeded with 100 µL of the 100 mg.mL<sup>-1</sup> microbial strain (~50 worms  
166 per plate). The plates were kept at 20 °C and live worms were scored each day until the death of all  
167 animals. An animal was scored as dead when it did not respond to a gentle mechanical stimulation.  
168 This assay was performed as three independent experiments with three plates per condition.

169 **2.7 Effects of *Lactobacillus rhamnosus* Lcr35® on candidiasis in**  
170 ***Caenorhabditis elegans***

171 Sequential feeding with Lcr35® and *C. albicans* were induced in *C. elegans* in all experiments  
172 (preventive assays). As control groups, a monotypic contamination was induced in *C. elegans* by  
173 inoculation only of *C. albicans*, Lcr35® or *E. coli* OP50.

174 **2.7.1 Preparation of plates containing probiotic bacteria or pathogen yeasts**

175 100 µL of Lcr35® or *E. coli* OP50 suspension (100 mg.mL<sup>-1</sup>) was spread on NGMY + 0.12 mM FUDR  
176 plates and incubated at 37 °C overnight. Concerning *C. albicans* strains, 100 µL of suspension were  
177 spread on Brain Heart Infusion BHI (Biokar diagnostics, Beauvais, France) + 0.12 mM FUDR plates  
178 and incubated at 37 °C overnight.

179 **2.7.2 Survival assay: preventive treatment**

180 The survival assay was performed according to de Barros *et al.* 2018 (38), with some modifications.  
181 During a preventive treatment, young adult worms were placed on plates containing Lcr35®, at 20 °C  
182 for different times (2, 4, 6 and 24 hours). Next, worms are washed with M9 buffer to remove bacteria  
183 prior being placed on *C. albicans* plates for 2 hours at 20 °C. Infected nematodes were washed off  
184 plates using M9 buffer prior to be transferred into a 6-well microtiter plate (about 50 worms per well)  
185 containing 2 mL of BHI / M9 (20% / 80%) + 0.12 mM FUDR liquid assay medium per well and  
186 incubated at 20 °C. For the control groups (i.e. *E. coli* OP50 + *C. albicans*, *E. coli* OP50 only, Lcr35®  
187 only and *C. albicans* only), worms were treated in the same way. Nematodes were observed daily and  
188 were considered dead when they did not respond to a gentle mechanical stimulation. This assay was  
189 performed as three independent experiments containing three wells per condition.

190 **2.8 Colonization of *C. elegans* intestine by *C. albicans***

191 In order to study worm's gut colonization by the pathogen *C. albicans*, a fluorescent staining of the  
192 yeast was performed. The yeast was stained with rhodamine 123 (Yeast Mitochondrial Stain Sampler  
193 Kit, Invitrogen, Eugene, USA) according to the manufacturer's instructions. A fresh culture of *C.*  
194 *albicans* was done in YPG broth as described before, 1.6  $\mu$ L of rhodamine 123 at 25 mM is added to 1  
195 mL of *C. albicans* suspension and incubated at room temperature in the dark for 15 minutes. The  
196 unbound dye is removed by centrifugation (14,000 rpm for 5 minutes at 4 °C) (Beckman J2-MC  
197 Centrifuge, Beckman Coulter, Brea, USA) and washed with 1 mL of M9 buffer. Subsequently, the  
198 nematodes are fed on *E. coli* OP50 or Lcr35® on NGMY plates for 4 hours and then with labeled *C.*  
199 *albicans* on BHI plates for 72 hours. The nematodes are then visualized using a 100X magnification  
200 fluorescence microscope (Evos FL, Invitrogen).

201 **2.9 RNA isolation and RT- quantitative PCR**

202 About 10,000 worms were harvested from NGMY plates with M9 buffer. Total RNA was extracted by  
203 adding 500  $\mu$ L of TRIzol reagent (Ambion by life technologies, Carlsbad, USA). Worms were  
204 disrupted by using a Precellys (Bertin instruments, Montigny-le-Bretonneux, France) and glass beads  
205 (PowerBead Tubes Glass 0.1mm, Mo Bio Laboratories, USA). Beads were removed by centrifugation  
206 at 14,000 rpm for 1 minute (Eppendorf® 5415D, Hamburg, Germany), and 100  $\mu$ L of chloroform were  
207 added to the supernatant. Tubes were vortexed for 30 seconds and incubated at room temperature for  
208 3 minutes. The phenolic phase was removed by centrifugation at 12,000 rpm for 15 minutes at 4 °C.  
209 The aqueous phase was treated with chloroform as previously. RNA was precipitated by adding 250  
210  $\mu$ L of isopropanol for 4 minutes at room temperature and spin down at 12,000 rpm for 10 minutes (4  
211 °C). The supernatant was discarded and the pellet was washed with 1,000  $\mu$ L of 70% ethanol. The  
212 supernatant was discarded after centrifugation at 14,000 rpm for 5 minutes (4 °C) and the pellet was

213 dissolved into 20  $\mu$ L of RNase-free water. RNA was reverse-transcribed using High-Capacity cDNA  
214 Archive kit (Applied Biosystems, Foster City, USA), according to the manufacturer's instructions. For  
215 real-time qPCR assay, each tube contained 2.5  $\mu$ L of cDNA, 6.25  $\mu$ L of Rotor-Gene SYBR Green Mix  
216 (Qiagen GmbH, Hilden, Germany), 1.25  $\mu$ L of 10  $\mu$ M primers (reported in Table 1) (Eurogentec,  
217 Seraing, Belgium) and 1.25  $\mu$ L of water. All samples were run in triplicate. Rotor-Gene Q Series  
218 Software (Qiagen GmbH, Hilden, Germany) was used for the analysis. In our study, two reference  
219 genes, *cdc-42* and Y45F10D.4, were used in all the experimental groups. The Quantification of gene-  
220 of-interest expression ( $E_{GOI}$ ) was performed according to Hellemans *et al.* formula (42) :

$$221 E_{GOI} = \frac{(\text{GOI efficiency})^{\Delta Ct_{GOI}}}{\sqrt{(\text{cdc - 42 efficiency})^{\Delta Ct_{cdc - 42}} \times (\text{Y45F10D.4 efficiency})^{\Delta Ct_{Y45F10D.5}}}}$$

222

| Gene name                          | Gene type    | Forward Primer (5' – 3') | Reverse Primer (5' – 3')  | Reference  |
|------------------------------------|--------------|--------------------------|---------------------------|------------|
| <i>cdc-42</i>                      | housekeeping | ATCCACAGACCGACGTGTTT     | GTCTTGAGCAATGATGCGA       | (71)       |
| Y45F10D.4                          | housekeeping | CGAGAACCGCGAAATGTCGGA    | CGGTTGCCAGGAAAGATGAGGC    | (72)       |
| <i>daf-2</i>                       | GOI          | AAAAGATTGGCTGGTCAGAGA    | TTTCAGTACAAATGAGATTGTCAGC | (73)       |
| <i>daf-16</i>                      | GOI          | TTCAATGCAAGGAGCATTG      | AGCTGGAGAACACGAGACG       | (73)       |
| <i>sek-1</i>                       | GOI          | GCCGATGGAAAGTGGTTTA      | TAAACGGCATGCCAATAAT       | (73)       |
| <i>pmk-1</i>                       | GOI          | CCGACTCCACGAGAAGGATA     | AGCGAGTACATTCAAGCAGCA     | (73)       |
| <i>abf-2</i>                       | GOI          | TCGTCCGTTCCCTTTCCCTT     | CCTCTCTTAATAAGAGCACC      | This study |
| <i>fipr-22</i> /<br><i>fipr-23</i> | GOI          | CCCAATCCAGTATGAAGTTG     | ATTTCAGTCTTCACACCGGA      | This study |
| <i>cnc-4</i>                       | GOI          | ATGCTTCGCTACATTCTCGT     | TTACTTTCCAATGAGCATT       | This study |

223 **Table 1: Targeted *C. elegans* genes primers for qPCR analysis.** GOI: Gene of Interest

224

## 225 **2.10 Statistical analysis**

226 Data are expressed as the mean  $\pm$  standard deviation.

227 *C. elegans* survival assay was examined by using the Kaplan-Meier method, and differences were  
228 determined by using the log-rank test with R software version 3.5.0 (43), *survival* (44) and *survminer*  
229 (45) packages. For *C. albicans* growth inhibition and biofilm formation, *C. elegans* growth and gene  
230 expression of the genes analyzed, differences between conditions were determined by a two-way  
231 ANOVA followed by a Fisher's Least Significant Difference (LSD) post hoc test using GraphPad

232 Prism version 7.0a for Mac OS X (GraphPad Software, La Jolla, California, USA). A *p*-value  $\leq 0.05$   
233 was considered as significant.

234 **2.11 DAF-16 nuclear localization**

235 DAF-16 nuclear localization was followed as described by Fatima *et al.* 2014 (46) using transgenic TJ-  
236 356 worms (DAF-16::GFP). Once adults, worms are exposed to single strain: *E. coli* OP50, Lcr35<sup>®</sup> or  
237 *C. albicans* for 2, 4, 6, 24 and 76 hours at 20 °C. A preventive approach was also conducted: worms  
238 were put in the presence of *E. coli* OP50 or Lcr35<sup>®</sup> for 4 hours then *C. albicans* for 2 hours. The  
239 nematodes were subsequently photographed 2, 4, 6 and 24 hours after infection. The translocation of  
240 DAF-16::GFP was scored by assaying the presence of GFP accumulation in the *C. elegans* cell nuclei,  
241 using a 40X magnification fluorescence microscope (Evos FL, Invitrogen).

242 **3 Results**

243 **3.1 Anti-*Candida albicans* effects of Lcr35<sup>®</sup> on Caco-2 cell monolayer**

244 **3.1.1 Growth inhibition of the yeast**

245 In the presence of Caco-2 cells, regardless of the concentration of the inoculum (from 10<sup>2</sup> to 10<sup>7</sup>  
246 CFU.mL<sup>-1</sup>), *C. albicans* grew to concentrations that ranged from 7.48  $\pm$  0.39 to 7.83  $\pm$  0.34 log  
247 CFU.mL<sup>-1</sup> after 48 hours of incubation. Similar *C. albicans* growth was measured in the absence of  
248 human cells (data not shown). When prophylactic treatment was used, i.e. when the Caco-2 cells were  
249 pre-incubated with the probiotic Lcr35<sup>®</sup>, we observed an antifungal activity against *C. albicans*.  
250 Indeed, the bacterium induced a significant inhibition of the yeast of 2 log CFU.mL<sup>-1</sup> which then  
251 reached a concentration ranging from 5.40  $\pm$  0.07 to 6.05  $\pm$  0.25 log CFU.mL<sup>-1</sup>. Two different inhibition  
252 profiles were observed after 48 h. On one hand, when the inoculum was highly concentrated (7 log

253 CFU.mL<sup>-1</sup>), we observed a decrease in the yeast population which is a sign of cell death. On the other  
254 hand, when the inoculum was less concentrated (2 to 4 log CFU.mL<sup>-1</sup>), we noticed that the yeast was  
255 able to grow although its growth seemed to stop between 5.32 ± 0.36 and 5.51 ± 0.14 log CFU.mL<sup>-1</sup>  
256 (Table 2).

257

|                                                                          |                        | Length of incubation (hours) |                |                 |
|--------------------------------------------------------------------------|------------------------|------------------------------|----------------|-----------------|
| Concentration of <i>Candida albicans</i> inocula (CFU.mL <sup>-1</sup> ) | With or without Lcr35® | 0                            | 24             | 48              |
| $10^7$                                                                   | <b>with</b>            | 7.25 ± 0.51                  | 6.39 ± 0.73    | 6.05 ± 0.25 *** |
|                                                                          | <b>without</b>         | 6.77 ± 0.10                  | 7.29 ± 0.23    | 7.78 ± 0.41     |
| $10^6$                                                                   | <b>with</b>            | 5.85 ± 0.25                  | 5.47 ± 0.12 *  | 5.73 ± 0.09 *** |
|                                                                          | <b>without</b>         | 5.76 ± 0.18                  | 7.42 ± 0.27    | 7.69 ± 0.20     |
| $10^5$                                                                   | <b>with</b>            | 4.77 ± 0.41                  | 5.01 ± 0.12 ** | 5.49 ± 0.04 *** |
|                                                                          | <b>without</b>         | 4.60 ± 0.28                  | 7.60 ± 0.69    | 7.83 ± 0.34     |
| $10^4$                                                                   | <b>with</b>            | 3.69 ± 0.21                  | 4.92 ± 0.54    | 5.51 ± 0.14 *   |
|                                                                          | <b>without</b>         | 3.72 ± 0.13                  | 7.09 ± 0.59    | 7.48 ± 0.39     |
| $10^3$                                                                   | <b>with</b>            | 2.56 ± 0.34                  | 3.59 ± 0.25    | 5.51 ± 0.16 *** |
|                                                                          | <b>without</b>         | 2.30 ± 0.17                  | 6.60 ± 0.28    | 7.93 ± 0.45     |
| $10^2$                                                                   | <b>with</b>            | 1.34 ± 0.31                  | 3.18 ± 0.76    | 5.32 ± 0.36 *** |
|                                                                          | <b>without</b>         | 1.34 ± 0.38                  | 6.18 ± 1.01    | 7.80 ± 0.27     |

258 **Table 2: Monitoring of *Candida albicans* growth in the presence of Lcr35® on Caco-2 cells**

259 **monolayer.** Results are expressed as  $\log_{10}$  CFU.mL<sup>-1</sup> of yeasts alone (controls) in co-incubation with  
260 Lcr35® (mean  $\pm$  standard deviation). Comparison between conditions with and without Lcr35® was  
261 performed using a two-way ANOVA followed by a Fisher's LSD post hoc test (p < 0.05: \* ; p <  
262 0.01: \*\* ; p < 0.001 : \*\*\* ; p < 0.0001 : \*\*\*\*)

263

264 **3.1.2 Inhibition of the yeast's biofilm formation**

265 The ability of a pathogen to form a biofilm is an important step in facilitating its systemic dissemination  
266 in the host tissue. After 48 hours of incubation, the *C. albicans* biofilm contained between 5.78 log  
267 CFU.mL<sup>-1</sup> (inoculum at 10<sup>2</sup> CFU.mL<sup>-1</sup>) and 8.69 log CFU.mL<sup>-1</sup> of yeasts (inoculum at 10<sup>7</sup> CFU.mL<sup>-1</sup>).  
268 However, since the cells were pre-exposed to Lcr35® and for the same *C. albicans* inocula, we  
269 observed a significant decrease in the amount of yeasts in the biofilm: 4.32 to 5.16 log CFU.mL<sup>-1</sup>,  
270 which corresponded to an inhibition ranging from 1.46 to 3.53 log. The strongest inhibition was  
271 observed in the case where the inoculum of *C. albicans* was the most concentrated (Fig 1).

272

273 **Fig 1: Determination of the *C. albicans* biofilm formation in presence of Lcr35® (10<sup>8</sup> CFU.mL<sup>-1</sup>)**  
274 **or not onto Caco-2 cells monolayer (mean  $\pm$  standard deviation).** Different concentrations of  
275 yeasts were tested then the amount present in the biofilm was evaluated after 48 hours of incubation.  
276 Comparison between conditions with and without Lcr35® was performed using a two way ANOVA  
277 followed by a Fisher's LSD post hoc (p < 0.05: \* ; p < 0.01: \*\* ; p < 0.001 : \*\*\* ; p < 0.0001 : \*\*\*\*)

278

279

280 **3.2 Effects of Lcr35® on *C. elegans* physiology**

281 **3.2.1 Lcr35® extends *C. elegans* lifespan**

282 We investigated the effects on *C. elegans* lifespan induced by either the pathogenic yeast *C. albicans*  
283 or the probiotic Lcr35®. Feeding adult nematodes with the probiotic strain resulted in a significant  
284 increase of the mean lifespan compared to OP50-fed worms ( $p = 3.56 \cdot 10^{-6}$ ) evolving from 7 to 10 days  
285 (+ 42.9%) whereas *C. albicans* had no impact on *C. elegans* mean lifespan. On the other hand, when  
286 *C. albicans* was used as a feeding source, worms displayed a significant reduced lifespan ( $p = 1.27 \cdot 10^{-5}$ )  
287 which dropped from 16 to 14 days (-12.5%). Lcr35® did not increase the worm's longevity compared  
288 to OP50 (Fig 2). These results showed that the probiotic strain ameliorated the mean lifespan without  
289 increasing the life expectancy of the worm.

290

291 **Fig 2: Influence of *Lactobacillus rhamnosus* Lcr35® on lifespan of *C. elegans* wild-type N2**

292 **strain.** Worms were fed with *E. coli* OP50 ( $n = 285$ ) *C. albicans* ATCC 10231 ( $n = 242$ ), and Lcr35®  
293 ( $n = 278$ ). Mean lifespan, where half of the population is dead, is represented on the abscissa. The  
294 asterisks indicate the *p*-values (log-rank test) with OP50 as a control ( $p < 0.05 : *$  ;  $p < 0.01 : **$  ;  $p <$   
295  $0.001 : ***$ ).

296 **3.2.2 Lcr35® does not modify *C. elegans* growth**

297 The body size of Lcr35® fed nematodes were compared to OP50-fed worms. Feeding worms with the  
298 probiotic strain did not significantly change in growth rate nor body size as they all reached their  
299 maximal length after three days (Fig 3).

300

301 **Fig 3: Growth of *C. elegans* (adult) on *E. coli* OP50 and on Lcr35®.** All results are represented as  
302 means +/- standard deviations.

303 **3.3 Effect of Lcr35® preventive treatment on candidiasis**

304 **3.3.1 Effect of Lcr35® on *C. elegans* survival after *C. albicans* exposure**

305 When *C. elegans* was sequentially exposed for 2 h to Lcr35® prior being infected by *C. albicans*, the  
306 survival of the nematodes was increased significantly as the mean lifespan rised from 3 to 11 days  
307 (267% increase in survival) compared with that observed with *C. albicans* infection alone ( $p < 2.10^{-16}$ ).  
308 There was no significant difference between worms sequentially exposed to Lcr35® and *C. albicans*  
309 and those exposed to Lcr35® only (Fig 4) ( $p = 1$ ). Similar results were obtained when the nematodes  
310 were exposed to the probiotic for 4 hours. In that case, we observed that Lcr35® completely protected  
311 *C. elegans* from infection since there was no significant difference with the Lcr35® control condition  
312 without infection ( $p = 0.4$ ).

313

314 **Fig 4: Preventive effects of Lcr35® against *C. albicans* ATCC 10231.** Mean survival, where half of  
315 the population is dead, is represented on the abscissa. The asterisks indicate the  $p$ -values (log-rank  
316 test) against OP50 ( $p < 0.05$ : \* ;  $p < 0.01$ : \*\* ;  $p < 0.001$  : \*\*\*). Infection duration: 2 hours; treatment  
317 duration: 2 hours (*E. coli* OP50 (n = 126); *C. albicans* ATCC 10231 (n = 424); Lcr35® (n = 93); *C.*  
318 *albicans* + *E. coli* OP50 (n = 287); *C. albicans* + Lcr35® (n = 224)) ; treatment duration: 4 hours (*E.*  
319 *coli* OP50 (n = 313); *C. albicans* ATCC 10231 (n = 424); Lcr35® (n = 259); *C. albicans* + *E. coli*  
320 OP50 (n = 120); *C. albicans* + Lcr35® (n = 164)); treatment duration: 6 hours (*E. coli* OP50 (n =  
321 222); *C. albicans* ATCC 10231 (n = 424); Lcr35® (n = 165); *C. albicans* + *E. coli* OP50 (n = 339); *C.*  
322 *albicans* + Lcr35® (n = 300)); treatment duration: 24 hours (*E. coli* OP50 (n = 248); *C. albicans*

323 ATCC 10231 (n = 424); Lcr35® (n = 170); *C. albicans* + *E. coli* OP50 (n = 220); *C. albicans* +  
324 Lcr35® (n = 183)).

325

326 For longer treatment times (6 and 24 hours), we observed a significant decrease of mean survival in  
327 the presence of Lcr35® (condition 6 hours: p = 0.04, condition 24 hours: p < 2.10<sup>-16</sup>) or Lcr35® and *C.*  
328 *albicans* (condition 6 hours: p = 9.10<sup>-13</sup>, condition 24 hours: p < 2.10<sup>-16</sup>) compared to the treatment of  
329 4 hours. Taken together, the results showed that the 4 hours probiotic treatment was the most protective  
330 against infection.

### 331 **3.3.2 Influence of Lcr35® presence on *C. albicans* colonization of the worm's gut**

332 In order to determine whether the anti-*Candida* effects observed were due to the removal of the  
333 pathogen, colonization of the intestine of the nematode by *C. albicans* was observed by light  
334 microscopy. After three days of incubation in the presence of the pathogen, wild-type worms had an  
335 important colonization of the entire digestive tract (Fig 5A). However, it turned out that this strain of  
336 *C. albicans* was not able to form hyphae within the worm. We subsequently applied prophylactic  
337 treatment to the worms for 4 hours before infecting them with yeast. We observed that after a  
338 preventive treatment with the control OP50 (Fig 5B) or the probiotic Lcr35® (Fig 5C), the yeast *C.*  
339 *albicans* was still detected in the digestive tract of the host.

340

341 **Fig 5: *C. albicans* colonization of *C. elegans*'s gut 72 hours (A) and after a 4-hour-prophylactic**  
342 **treatment with *E. coli* OP50 (B) or Lcr35® (C).** The green color represents yeast labeled with  
343 rhodamine 123. Scale bar, 10 μm.

344

345 **3.4 Mechanistic study**

346 **3.4.1 Modulation of *C. elegans* genes expression induced by Lcr35® and *C.***

347 ***albicans***

348 To elucidate the mechanisms involved in the action of Lcr35® against *C. albicans*, we studied the  
349 expression of seven *C. elegans* genes (Table 3). We targeted three groups of genes: *daf-2* and *daf-16*  
350 (insulin signaling pathway) involved in host longevity and antipathogenicity, *sek-1* and *pmk-1* (p38  
351 MAPK signaling pathway) which concern the immunity response as well as *abf-2*, *cnc-4* and *fipr-22* /  
352 *fipr-23* which encode for antimicrobial proteins. We noted that Lcr35® tended to induce an  
353 overexpression of *daf-16* ( $p = 0.1635$ ) while having no effect on *daf-2* ( $p = 0.2536$ ) when *C. albicans*  
354 tended to induce an up-regulation of both genes ( $p = 0.1155$  and  $p = 0.2396$  respectively). We did not  
355 observe any expression modulation of *daf-2* nor *daf-16* using a preventive treatment with *E. coli* OP50  
356 ( $p = 0.1258$  and  $p = 0.1215$ ) or with Lcr35® ( $p = 0.1354$  and  $p = 0.3021$ ).

---

**Genes of interest**

| <b>Conditions</b>                               | <b>Insulin signaling pathway</b> |               | <b>p38 MAPK signaling pathway</b> |              | <b>Antimicrobials</b> |              |                                    |
|-------------------------------------------------|----------------------------------|---------------|-----------------------------------|--------------|-----------------------|--------------|------------------------------------|
|                                                 | <i>daf-2</i>                     | <i>daf-16</i> | <i>sek-1</i>                      | <i>pmk-1</i> | <i>abf-2</i>          | <i>cnc-4</i> | <i>fipr-22</i> /<br><i>fipr-23</i> |
| <b>Lcr35®</b>                                   | 1.35                             | 2.18          | 0.38 **                           | 0.36 *       | 1.70                  | 3.39         | 0.61                               |
| <b><i>C. albicans</i></b>                       | 2.48                             | 3.31          | 3.21 *                            | 4.33         | 11.33                 | 22.32        | 1.08                               |
| <b><i>E. coli</i> OP50 + <i>C. albicans</i></b> | 1.82                             | 0.53          | 0.37 *                            | 3.40         | 4.69                  | 0.16 **      | 0.78                               |
| <b>Lcr35® + <i>C. albicans</i></b>              | 0.69                             | 1.74          | 0.31 **                           | 1.15         | 1.61                  | 0.41 *       | 0.42 *                             |

357 **Table 3:** Modulation of *C. elegans* GOs expression induced by Lcr35® and *C. albicans* in pure and  
358 sequential cultures in comparison with the control condition *E. coli* OP50 (alone). Genes were  
359 considered differentially expressed when the p-value was lower than 0.05 (\*) or 0.01 (\*\*) according  
360 to Fisher's LSD test, and simultaneously when the expression change was of at least 2 times or 0.5  
361 times.

362

363 The *sek-1* and *pmk-1* immunity genes were significantly downregulated in the presence of Lcr35® by  
364 a 2.63-fold (p = 0.015) and 2.78-fold (p = 0.0149) while they were up-regulated by *C. albicans* 3.21-  
365 fold (p = 0.0247) and 4.33-fold (0.1618). Preventive treatment with *E. coli* OP50 repressed 2.70 times  
366 *sek-1* (0.37-fold with p = 0.0204) but tended to overexpress *pmk-1*. Preventive treatment with Lcr35®  
367 had the same effect on *sek-1* (p = 0.0016) but induced no change on *pmk-1* expression (p = 0.8205).  
368 Finally, among the 3 antimicrobials encoding genes tested, only the expression of *cnc-4* seemed to be  
369 modulated in the presence of Lcr35® with an overexpression (p = 0.1753). *C. albicans* seemed also to  
370 induce overexpression of *abf-2* (p = 0.2213) and *cnc-4* (p = 0.3228) but interestingly, *fipr-22* / *fipr-23*  
371 (p = 0.8225) expression remained unchanged. Overexpression of *abf-2* (6.25-fold, p = 0.3158) and  
372 significant repression of *cnc-4* (p = 0.0088) were observed when *E. coli* OP50 was used as a preventive  
373 treatment. Using a Lc35® preventive treatment, *cnc-4* and *fipr-22* / *fipr-23* were significantly repressed  
374 (p = 0.0396 and p = 0.0385 respectively).

375 **3.4.2 Influence of Lcr35® and *C. albicans* on DAF-16 nuclear translocation**

376 In order to further investigate the mechanisms involved in the anti-*C. albicans* effects of Lcr35®, we  
377 followed the nuclear translocation of DAF-16 / FOXO transcription factor using DAF-16::GFP strain.  
378 Whatever the incubation time, the worms did not show any translocation of DAF-16 while feeding  
379 with *E. coli* OP50 (Fig 6A). When Lcr35® is used as food, we observed a nuclear translocation of the

380 transcription factor, taking place gradually from 4 hours of incubation with a maximum of intensity in  
381 the nuclei after 6 hours. The distribution of DAF-16 was both cytoplasmic and nuclear (Fig 6B). When  
382 the nematode was fed exclusively with *C. albicans*, we observed a rapid nuclear translocation of the  
383 transcription factor after two hours of incubation in the presence of the pathogen (Fig 6C). This  
384 translocation was maintained throughout the experiment i.e. 76 hours.

385

386 **Fig 6: DAF-16 cellular localization in *C. elegans* transgenic strain TJ-356 (*daf-16p::daf-***

387 *16a/b::GFP + rol-6(su1006)*) expressing DAF-16::GFP.

388 Worms fed on OP50 (A), on Lcr35® (B) and on *C. albicans* ATCC 10231 (C). Scale bar, 100 µm

389

### 390 **3.4.3Effect of Lcr35® preventive treatment on DAF-16 nuclear translocation**

391 We investigated the effect of preventive treatment on the cellular localization of DAF-16 over time  
392 after infection by *C. albicans*. When nematodes were first fed with *E. coli* OP50 before being infected,  
393 DAF-16 was fully observed in the nuclei up to 4 hours after infection and then gradually translocated  
394 to be cytoplasmic after 24 hours (Fig 7A). Conversely, the worms first exposed to Lcr35® and then to  
395 the pathogen showed a different response, the transcription factor was found only in the nuclei (Fig  
396 7B).

397

398 **Fig 7: Effect of preventive approach on DAF-16 nuclear localization in *C. elegans* transgenic**  
399 **strain TJ-356 expressing DAF-16::GFP.** Worms fed on OP50 + *C. albicans* (A) and on Lcr35® + *C.*  
400 *albicans* (B). Scale bar, 100 µm

## 401 4 Discussion

402 Selection of microbial strains as probiotics is based on a combination of functional probiotic properties  
403 revealed first by classical basic *in vitro* testing. Beyond resistance to gastric pH or bile salts, the ability  
404 of the strain to adhere to epithelial cells is frequently studied since this represents a prerequisite for the  
405 mucosal colonization as part of the anti-pathogen activity. Adhesion is also a key parameter for  
406 pathogens since it allows them to release toxins and enzymes directly into the target cell, facilitating  
407 their dissemination (47). Nivoliez *et al.* showed that native probiotic strain Lcr35® adhered rather  
408 weakly to the Caco-2 intestinal cells while the industrial formulation increases this capacity (24). We  
409 have further demonstrated here the ability of Lcr35® to inhibit the growth of the pathogen *C. albicans*  
410 and the formation of a *Candida* biofilm on an intestinal cells monolayer *in vitro*. As described by  
411 Jankowska *et al.* (47), the low adherence of *L. rhamnosus* compared to *C. albicans* seems to reflect  
412 that competition for membrane receptors is not the only mechanism. It is probably related to the  
413 synthesis of antifungal effectors by the probiotic as well (47). Exopolysaccharides (EPS) secreted by  
414 certain lactobacilli have been shown to modify the surface properties (hydrophobicity) of  
415 microorganisms with direct consequences on their adhesion capacities (48). EPS have antifungal effect  
416 by inhibiting the growth of *C. albicans* but also its adhesion to epithelial cells. The surface  
417 polysaccharides of *L. rhamnosus* GG, one strain phylogenetically close to Lcr35, appear to interfere in  
418 the binding between the fungal lectin-like adhesins and host sugars or between the fungal cell wall  
419 carbohydrates and their epithelial adhesion receptor (49). A recent study has shown that purified  
420 fractions of exopolysaccharides also interfered with adhesion capacities of microorganisms (50). It  
421 would be interesting to assay the inhibitory properties of Lcr35® EPS. But in order to fully understand  
422 the probiotic mechanisms, *in vitro* approaches are too limited. Moving to an *in vivo* approach is  
423 mandatory to better understand the interactions between microorganisms (probiotics and pathogens)  
424 and the host response.

425 *C. elegans* is considered as a powerful *in vivo* model for studying the pathogenicity of microorganisms  
426 (34,35,51–53) but also the antimicrobial properties of lactic acid bacteria (54,55). The nature of the  
427 nutrient source is an important parameter that has a great influence on the nematode's physiology.  
428 Depending on the quality and quantity of food, the growth and body size, fertility and longevity of *C.*  
429 *elegans* are affected either positively or negatively (56,57). Regarding to worm growth, it appears that  
430 there is some disparity depending on the type of lactic acid bacteria used. It has been shown that  
431 *Bifidobacterium spp.* had no influence on the size of adult worms although their growth is slightly  
432 slowed down (58,59). *Lactobacillus spp.* by contrast usually result in lower growth rates but also lower  
433 sizes and are sometimes even lethal to the larvae (60,61). The mechanisms for explaining the longevity  
434 extension induced by lactic acid bacteria are not fully understood. Suggested by some authors, caloric  
435 restriction is known as a method of extending the lifespan of many taxa (62–64). In our case, similarly  
436 to the work of Komura *et al.*, it seems that it is not involved in the present case insofar as the growth  
437 of nematodes in the presence of the probiotic is strictly identical compared to *E. coli* OP50-fed worms  
438 (65).

439 After demonstrating the preventive effect of Lcr35 in the nematode, we decided to better understand  
440 the protective effect at the mechanistic level. In *C. elegans*, the insulin / IGF-1 signaling pathway is  
441 strongly involved in regulating the longevity and immunity of the animal. Signal transduction is  
442 mediated through DAF-16, a highly conserved FOXO transcription factor (66). Using the GFP fusion  
443 protein, we have shown that Lcr35<sup>®</sup> induces translocation of DAF-16 to the nucleus, suggesting that  
444 DAF-16 is involved in the probiotic mechanisms of action of Lcr35<sup>®</sup>. According to several studies, the  
445 pro-longevity effect of probiotics linked to DAF-16 implements strain-dependent mechanisms  
446 involving different regulatory pathways such as the DAF-2 / DAF-16 insulin pathway (67) or the c-  
447 Jun N-terminal kinase JNK-1 / DAF-16 pathway (59). The absence of modulation of *daf-2* expression  
448 in the presence of Lcr35<sup>®</sup> suggests that the DAF-2 / DAF-16 pathway is not involved and that it is

449 rather the JNK signaling pathway. The involvement of these pathways needs to be followed at  
450 proteomic and phosphoproteomic levels in order to validate this hypothesis.

451 The yeast *C. albicans* is capable of inducing a severe infection in *C. elegans* causing a rapid death of  
452 the host and even after a very short contact time. This infection is first manifested by the colonization  
453 of the whole intestinal lumen by yeasts and then, in the case of a virulent strain, by the formation of  
454 hyphae piercing the cuticle of the nematode leading to its death (34,68). In addition, it has been shown  
455 that strains of *C. albicans* incapable of forming hyphae, such as SPT20 mutants, have a significantly  
456 reduced pathogenicity in *C. elegans* as well as in *Galleria mellonella* or *Mus musculus* models while  
457 still being lethal (37). In the nematode, it seems that the distention of the intestine caused by the  
458 accumulation of yeasts is one of the causes of the death of the animal (35). Recently, de Barros *et al.*  
459 (38) showed that *Lactobacillus paracasei* 28.4 had anti-*C. albicans* activity both *in vitro* and *in vivo*  
460 by inhibiting filamentation of yeast protecting the nematode. Although *C. albicans* ATCC 10231 is  
461 able to form hyphae during *in vitro* assay, it failed to kill *C. elegans* by filamentation (data not shown).  
462 Therefore, it is likely that Lcr35<sup>®</sup> represses virulence factors in yeast other than filamentation.

463 From a mechanistic point of view, we can venture several hypotheses that can explain the anti-*C.*  
464 *albicans* properties of Lcr35<sup>®</sup> in the nematode: a direct interaction between the two microorganisms as  
465 well as an immunomodulation of the host by the probiotic. In the first case, it was demonstrated the  
466 inhibitory capacity of Lcr35<sup>®</sup> with respect to the pathogen during co-culture (24) and on mammalian  
467 cells monolayers (this study). This inhibition may be due to nutrient competition (*i.e.* glycogen  
468 consumption) or to the production of toxic metabolites against the yeast (24). We have shown that even  
469 after a preventive treatment with the probiotic, the digestive tract of the nematode is colonized by the  
470 pathogen without showing a pathological state. This suggests that Lcr35<sup>®</sup> induced repression of  
471 virulence factors in *C. albicans* as this has been shown by De Barros *et al.* (38). In the second case, an  
472 *in vitro* study on human dendritic cells revealed that Lcr35<sup>®</sup> induced a large dose-dependent

473 modulation in the expression of genes mainly involved in the immune response but also in the  
474 expression of CD, HLA and TLR membrane proteins. Highly conserved and found in *C. elegans*, TLR  
475 also play a role in the antipathogenic response of the nematode by activating the p38 MAPK pathway.  
476 Kim and Mylonakis (2012) showed that *tir-1* was involved in the probiotic mechanism of *L.*  
477 *acidophilus* NCFM (55). A pro-inflammatory effect has also been shown through cytokine secretion  
478 such as IL-1 $\beta$ , IL-12, TNF $\alpha$ . However, this immunomodulation takes place only in the presence of high  
479 concentration of Lcr35 $^{\circ}$  (69). In *C. elegans*, DAF-16 is closely related to mammalian FOXO3a, a  
480 transcription factor involved the inflammatory process (70). Therefore, activation of DAF-16 by  
481 Lcr35 $^{\circ}$  can be interpreted as the establishment of an inflammatory response in the host and allowing it  
482 to survive an infection. In our study, we observed that the duration of the Lcr35 $^{\circ}$  treatment influences  
483 the preventive anti-*Candida* effect on nematode lifespan suggesting that the quantity of Lcr35 $^{\circ}$   
484 ingested and/or treatment period of time may have an impact on the efficiency of the treatment. A  
485 thorough transcriptional study is interesting to characterize the deleterious effect of an increase in the  
486 dose of probiotics administered. We demonstrate that Lcr35 $^{\circ}$  induces a transcriptional response in the  
487 host by activating the transcription factor DAF-16 and repressing the p38 MAPK signaling pathway,  
488 including in the presence of *C. albicans*. We also observe the repression of the genes encoding for  
489 antimicrobials when the fungal infection was preceded by the probiotic treatment. The work of Pukkila-  
490 Worley *et al.* (35) demonstrated that *C. albicans* induced a fast antifungal response in the host inducing  
491 the secretion of antimicrobials such as *abf-2*, *cnc-4*, *cnc-7*, *fipr-22* and *fipr-23*. With the exception of  
492 *abf-2*, all these genes are under the control of PMK-1 whose inactivation makes the nematode  
493 susceptible to infection. In our study, we showed an Lcr35 $^{\circ}$  preventive treatment induced a down  
494 regulation of *cnc-4*, *fipr-22* and *fipr-23* genes while *pmk-1* remained unchanged compared to the  
495 control condition. The absence of overexpression of these genes in the presence of *C. albicans* after a  
496 pre-exposure with Lcr35 $^{\circ}$  suggests again that the probiotic inhibits the yeast virulence obviating the  
497 establishment of a defense mechanism by the host. Similar results have also been observed with

498 *Salmonella Enteritidis* where the authors hypothesize that the probiotics used induce immunotolerance  
499 in the nematode rather than the synthesis of antimicrobials (58). The use of *C. elegans* mutants or RNAi  
500 could be further considered to decipher the signaling and regulation mechanisms.

501 **5 Conclusion**

502 This study demonstrates the preventive anti-*C. albicans* properties of Lcr35® using both *in vitro* and  
503 *in vivo* preclinical models. The probiotic strain inhibits the growth of the pathogenic yeast and its ability  
504 to form biofilm on intestinal cells *in vitro*. Lcr35® allows a protection of the host *C. elegans* against  
505 infection despite the presence of *C. albicans* in its gut. Lcr35® during *C. albicans* infection seems to  
506 induce a decrease in the immune response of the nematode (downregulation of *sek-1*, *pmk-1*, *abf-2*,  
507 *cnc-4* and *fipr-22 / 23*). Extra studies on *C. elegans* whole transcriptome modulation by Lcr35® would  
508 be interesting to further reveal other mechanisms involved. The study of the yeast virulence genes  
509 modulation induced by Lcr35® could be very informative about complex mechanisms of the probiotic  
510 mechanisms of action. Also, in a second phase, the realization of a comparative study between Lcr35®  
511 and other *Lactobacillus* strains (*L. rhamnosus*, *L. casei*, *L. paracasei*) could be of interest to determine  
512 the degree of strain-dependence of our results.

513 **6 Acknowledgments**

514 Some strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure  
515 Programs (P40 OD010440).

516 We thank Jonathan Heuzé, Muriel Théret and Jeanne Riom, trainees at the UMRF 0545  
517 (UCA/INRA) for their involvement in the implementation of several experiments. We thank greatly  
518 all those who took part in the writing of this article.

519 **7 Conflict of Interest**

520 Adrien Nivoliez had an institutional affiliation with the company biose® which manufactures Lcr35®  
521 products.

522 The doctoral thesis of Cyril Poupet is partially financed by the company biose®.

523 **8 Author Contributions**

524 CP, MG and OC conceived and planned the experiments. CP, TS, PV, MG and OC carried out the  
525 experiments with help from MB and SB. CP wrote the manuscript. PV, MB, CD, CC and SB  
526 provided critical feedback. AN and SB supervised the project.

527 **9 Funding**

528 This work was supported by the European funds FEDER, the Auvergne-Rhône-Alpes Region and  
529 biose® as part of the doctoral thesis of Cyril Poupet.

530 **10 References**

- 531 1. Cauchie M, Desmet S, Lagrou K. *Candida* and its dual lifestyle as a commensal and a  
532 pathogen. *Res Microbiol* [Internet]. 2017 Nov [cited 2018 Sep 5];168(9–10):802–10.  
533 Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0923250817300402>
- 534 2. Neville BA, D'enfert C, Bougnoux M-E. *Candida albicans* commensalism in the  
535 gastrointestinal tract. *FEMS Yeast Res* [Internet]. 2015 [cited 2018 Sep 5];15:81. Available  
536 from: <https://unite.ut.ee/>
- 537 3. Mayer FL, Wilson D, Hube B. *Candida albicans* pathogenicity mechanisms. Vol. 4,  
538 Virulence. 2013. p. 119–28.

- 539 4. Kadosh D, Antonio S. Control of *Candida albicans* morphology and pathogenicity by post-  
540 transcriptional mechanisms. *Cell Mol Life Sci.* 2017;73(22):4265–78.
- 541 5. Wächtler B, Wilson D, Haedicke K, Dalle F, Hube B. From attachment to damage: Defined  
542 genes of *Candida albicans* mediate adhesion, invasion and damage during interaction with  
543 oral epithelial cells. Munro C, editor. *PLoS One* [Internet]. 2011 Feb 23 [cited 2018 Sep  
544 10];6(2):e17046. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/21407800>
- 545 6. Farmakiotis D, Kontoyiannis DP. Epidemiology of antifungal resistance in human pathogenic  
546 yeasts: current viewpoint and practical recommendations for management. *Int J Antimicrob  
547 Agents* [Internet]. 2017 Sep [cited 2018 Sep 5];50(3):318–24. Available from:  
548 <https://linkinghub.elsevier.com/retrieve/pii/S0924857917302364>
- 549 7. Sanguinetti M, Posteraro B, Lass-Flörl C. Antifungal drug resistance among *Candida* species:  
550 Mechanisms and clinical impact. *Mycoses* [Internet]. 2015 Jun [cited 2018 Sep 5];58(S2):2–  
551 13. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/26033251>
- 552 8. Scorzoni L, de Paula E Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC,  
553 et al. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis.  
554 *Front Microbiol* [Internet]. 2017 [cited 2018 Sep 5];8:36. Available from:  
555 <http://www.ncbi.nlm.nih.gov/pubmed/28167935>
- 556 9. Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M, Tang J, et al. Immunological  
557 Consequences of Intestinal Fungal Dysbiosis. *Cell Host Microbe* [Internet]. 2016;19(6):865–  
558 73. Available from: <http://dx.doi.org/10.1016/j.chom.2016.05.003>
- 559 10. Hu H-J, Zhang G-Q, Zhang Q, Shakya S, Li Z-Y. Probiotics Prevent *Candida* Colonization  
560 and Invasive Fungal Sepsis in Preterm Neonates: A Systematic Review and Meta-Analysis of

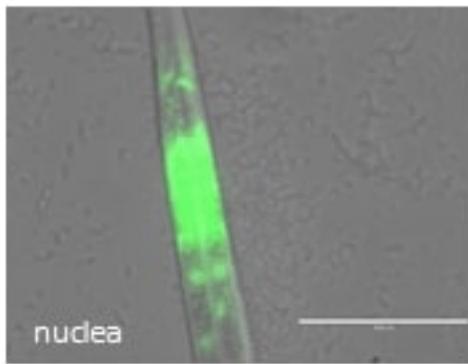
- 561                   Randomized Controlled Trials. *Pediatr Neonatol* [Internet]. 2017 Apr [cited 2018 Sep  
562                   5];58(2):103–10. Available from:  
563                   <http://linkinghub.elsevier.com/retrieve/pii/S1875957216301401>
- 564     11. Matsubara VH, Bandara HMHN, Mayer MPA, Samaranayake LP. Probiotics as Antifungals in  
565                   Mucosal Candidiasis. 2016 [cited 2018 Sep 5]; Available from:  
566                   <https://academic.oup.com/cid/article-abstract/62/9/1143/1745140>
- 567     12. Agrawal S, Rao S, Patole S. Probiotic supplementation for preventing invasive fungal  
568                   infections in preterm neonates - a systematic review and meta-analysis. *Mycoses* [Internet].  
569                   2015 Nov 1 [cited 2018 Sep 5];58(11):642–51. Available from:  
570                   <http://doi.wiley.com/10.1111/myc.12368>
- 571     13. FAO, WHO. Health and Nutritional Properties of Probiotics in Food including Powder Milk  
572                   with Live Lactic Acid Bacteria. *Food Nutr Pap* [Internet]. 2001 [cited 2016 Jun 14]; Available  
573                   from: <http://www.crcnetbase.com/doi/abs/10.1201/9781420009613.ch16>
- 574     14. Fijan S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent  
575                   Literature. *Int J Environ Res Public Heal Int J Environ Res Public Heal Int J Environ Res*  
576                   Public Heal [Internet]. 2014 [cited 2017 May 13];11:4745–67. Available from:  
577                   [www.mdpi.com/journal/ijerph](http://www.mdpi.com/journal/ijerph)
- 578     15. Olle B. Medicines from microbiota. *Nat Biotechnol* [Internet]. 2013 Apr 5 [cited 2017 Mar  
579                   31];31(4):309–15. Available from: <http://www.nature.com/doifinder/10.1038/nbt.2548>
- 580     16. Coudeyras S, Jugie G, Vermerie M, Forestier C. Adhesion of human probiotic *Lactobacillus*  
581                   *rhamnosus* to cervical and vaginal cells and interaction with vaginosis-associated pathogens.  
582                   *Infect Dis Obstet Gynecol* [Internet]. 2008 Jan 27 [cited 2018 Sep 10];2008:549640. Available

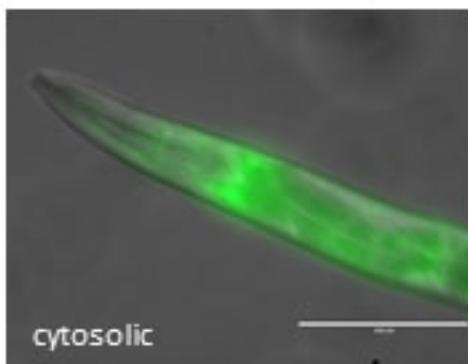
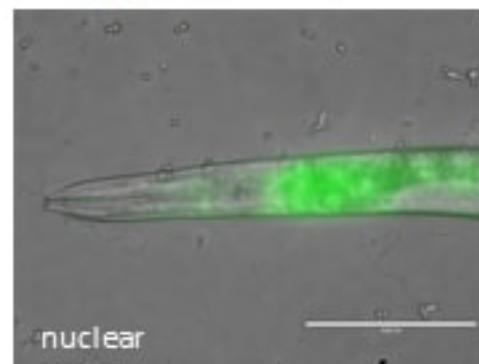
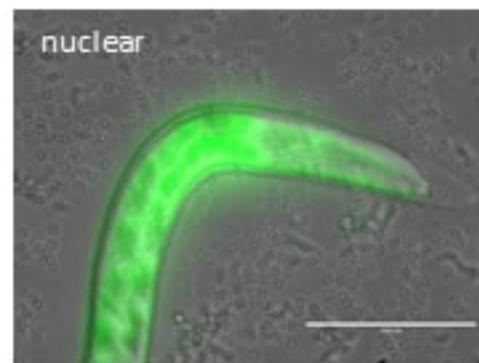
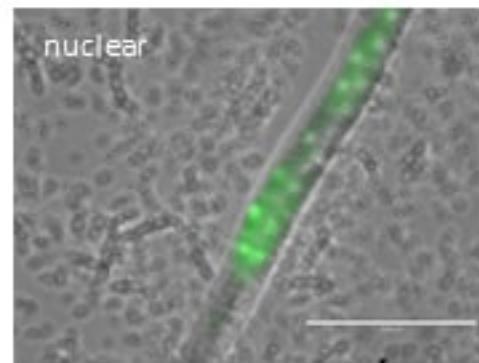
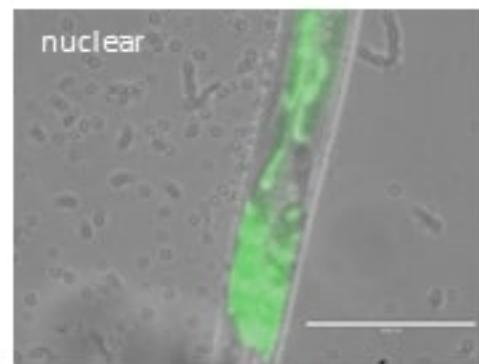
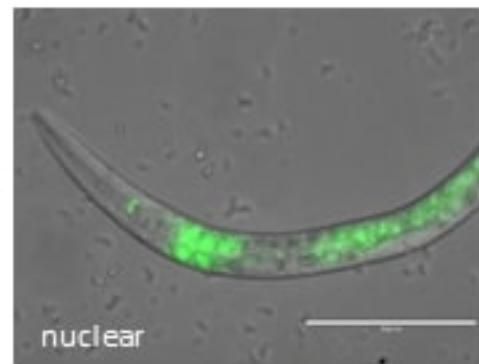
- 583 from: <http://www.ncbi.nlm.nih.gov/pubmed/19190778>
- 584 17. Coudeyras S, Marchandin H, Fajon C, Forestier C. Taxonomic and strain-specific  
585 identification of the probiotic strain *Lactobacillus rhamnosus* 35 within the *Lactobacillus*  
586 *casei* group. *Appl Environ Microbiol* [Internet]. 2008 May [cited 2018 Sep 10];74(9):2679–89.  
587 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/18326671>
- 588 18. Forestier C, De Champs C, Vatoux C, Joly B. Probiotic activities of *Lactobacillus casei*  
589 *rhamnosus*: *in vitro* adherence to intestinal cells and antimicrobial properties. *Res Microbiol*  
590 [Internet]. 2001 Mar [cited 2018 Sep 10];152(2):167–73. Available from:  
591 <http://www.ncbi.nlm.nih.gov/pubmed/11316370>
- 592 19. de Champs C, Maroncle N, Balestrino D, Rich C, Forestier C. Persistence of colonization of  
593 intestinal mucosa by a probiotic strain, *Lactobacillus casei* subsp. *rhamnosus* Lcr35, after oral  
594 consumption. *J Clin Microbiol* [Internet]. 2003 Mar [cited 2018 Sep 10];41(3):1270–3.  
595 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/12624065>
- 596 20. Petricevic L, Witt A. The role of *Lactobacillus casei rhamnosus* Lcr35 in restoring the normal  
597 vaginal flora after antibiotic treatment of bacterial vaginosis. *BJOG An Int J Obstet Gynaecol*  
598 [Internet]. 2008 Oct [cited 2016 Jun 14];115(11):1369–74. Available from:  
599 <http://doi.wiley.com/10.1111/j.1471-0528.2008.01882.x>
- 600 21. Muller C, Mazel V, Dausset C, Busignies V, Bornes S, Nivoliez A, et al. Study of the  
601 *Lactobacillus rhamnosus* Lcr35® properties after compression and proposition of a model to  
602 predict tablet stability. *Eur J Pharm Biopharm*. 2014;88(3):787–94.
- 603 22. Nivoliez A, Veisseire P, Alaterre E, Dausset C, Baptiste F, Camarès O, et al. Influence of  
604 manufacturing processes on cell surface properties of probiotic strain *Lactobacillus rhamnosus*

- 605 Lcr35®. Appl Microbiol Biotechnol [Internet]. 2015 [cited 2017 Jan 1];99(1):399–411.
- 606 Available from: <http://link.springer.com/10.1007/s00253-014-6110-z>
- 607 23. Dausset C, Patrier S, Gajer P, Thoral C, Lenglet Y, Cardot JM, et al. Comparative phase I  
608 randomized open-label pilot clinical trial of Gynophilus® (Lcr regenerans®) immediate  
609 release capsules versus slow release muco-adhesive tablets. Eur J Clin Microbiol Infect Dis  
610 [Internet]. 2018 [cited 2019 Apr 2];37(10):1869–80. Available from:  
611 <https://doi.org/10.1007/s10096-018-3321-8>
- 612 24. Nivoliez A, Camares O, Paquet-Gachinat M, Bornes S, Forestier C, Veisseire P. Influence of  
613 manufacturing processes on *in vitro* properties of the probiotic strain *Lactobacillus rhamnosus*  
614 Lcr35®. J Biotechnol. 2012;160(3–4):236–41.
- 615 25. Isolauri E, Kirjavainen P V, Salminen S. Probiotics: a role in the treatment of intestinal  
616 infection and inflammation? Gut [Internet]. 2002;50(Supplement 3):iii54-iii59. Available  
617 from: [http://gut.bmjjournals.org/cgi/doi/10.1136/gut.50.suppl\\_3.iii54](http://gut.bmjjournals.org/cgi/doi/10.1136/gut.50.suppl_3.iii54)
- 618 26. do Carmo MS, Santos C itapary dos, Araújo MC, Girón JA, Fernandes ES, Monteiro-Neto V.  
619 Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in  
620 children. Food Funct [Internet]. 2018;9(10):5074–95. Available from:  
621 <http://dx.doi.org/10.1039/c8fo00376a>
- 622 27. Coudeyras S, Forestier C. Microbiote et probiotiques : impact en santé humaine. Can J  
623 Microbiol [Internet]. 2010 [cited 2018 Jan 30];56(8):611–50. Available from:  
624 <http://www.nrcresearchpress.com/doi/pdfplus/10.1139/W10-052>
- 625 28. Lacroix C, de Wouters T, Chassard C. Integrated multi-scale strategies to investigate  
626 nutritional compounds and their effect on the gut microbiota. Curr Opin Biotechnol [Internet].

- 627 2015 [cited 2017 Apr 30];32:149–55. Available from:  
628 <http://dx.doi.org/10.1016/j.copbio.2014.12.009>
- 629 29. Vinderola G, Gueimonde M, Gomez-Gallego C, Delfederico L, Salminen S. Correlation  
630 between *in vitro* and *in vivo* assays in selection of probiotics from traditional species of  
631 bacteria. *Trends Food Sci Technol* [Internet]. 2017;68:83–90. Available from:  
632 <http://dx.doi.org/10.1016/j.tifs.2017.08.005>
- 633 30. Montoro BP, Benomar N, Lerma LL, Gutiérrez SC, Gálvez A, Abriouel H. Fermented aloreña  
634 table olives as a source of potential probiotic *Lactobacillus pentosus* strains. *Front Microbiol*.  
635 2016;7(OCT).
- 636 31. Roselli M, Finamore A, Britti MS, Mengheri E. Probiotic bacteria *Bifidobacterium animalis*  
637 MB5 and *Lactobacillus rhamnosus* GG protect intestinal Caco-2 cells from the inflammation-  
638 associated response induced by enterotoxigenic *Escherichia coli* K88. *Br J Nutr* [Internet].  
639 2006;95(06):1177. Available from:  
640 [http://www.journals.cambridge.org/abstract\\_S0007114506001589](http://www.journals.cambridge.org/abstract_S0007114506001589)
- 641 32. Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, et al.  
642 Discovering probiotic microorganisms: *In vitro*, *in vivo*, genetic and omics approaches. *Front*  
643 *Microbiol*. 2015;6(FEB):1–28.
- 644 33. Lai CH, Chou CY, Ch'ang LY, Liu CS, Lin W. Identification of novel human genes  
645 evolutionarily conserved in *Caenorhabditis elegans* by comparative proteomics. *Genome Res*  
646 [Internet]. 2000 May [cited 2018 Sep 10];10(5):703–13. Available from:  
647 <http://www.ncbi.nlm.nih.gov/pubmed/10810093>
- 648 34. Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E. *Candida albicans* hyphal

- 649 formation and virulence assessed using a *Caenorhabditis elegans* infection model. *Eukaryot*  
650 *Cell* [Internet]. 2009 [cited 2018 Feb 7];8(11):1750–8. Available from:  
651 <http://ec.asm.org/content/8/11/1750.full.pdf>
- 652 35. Pukkila-Worley R, Ausubel FM, Mylonakis E. *Candida albicans* infection of *Caenorhabditis*  
653 *elegans* induces antifungal immune defenses. *PLoS Pathog*. 2011;7(6).
- 654 36. Alves V de S, Mylonakis E. The eIF2 kinase Gcn2 modulates *Candida albicans* virulence to  
655 *Caenorhabditis elegans*. *Clin Microbiol Infect Dis* [Internet]. 2018;3(2):1–4. Available from:  
656 <https://www.oatext.com/the-eif2-kinase-gcn2-modulates-candida-albicans-virulence-to-caenorhabditis-elegans.php>
- 658 37. Tan X, Fuchs BB, Wang Y, Chen W, Yuen GJ, Chen RB, et al. The role of *Candida albicans*  
659 SPT20 in filamentation, biofilm formation and pathogenesis. *PLoS One*. 2014;9(4):1–10.
- 660 38. de Barros PP, Scorzoni L, Ribeiro F de C, Fugisaki LR de O, Fuchs BB, Mylonakis E, et al.  
661 *Lactobacillus paracasei* 28.4 reduces *in vitro* hyphae formation of *Candida albicans* and  
662 prevents the filamentation in an experimental model of *Caenorhabditis elegans*. *Microb*  
663 *Pathog* [Internet]. 2018;117(November 2017):80–7. Available from:  
664 <https://doi.org/10.1016/j.micpath.2018.02.019>
- 665 39. Pinto M, Robineleon S, Appay MD, Kedinger M, Triadou N, Dussault E, et al. Enterocyte-  
666 like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture.  
667 *Biol Cell* [Internet]. 1983 Jan 1 [cited 2018 Oct 10];47:323–30. Available from:  
668 <https://www.scienceopen.com/document?vid=07f3fdcd-c23c-47d4-ad63-105346ef5453>
- 669 40. Brenner S. The genetics of *Caenorhabditis elegans*. *Genetics*. 1974;77(1):71–94.
- 670 41. Mörck C, Pilon M. *C. elegans* feeding defective mutants have shorter body lengths and







- 671 increased autophagy. *BMC Dev Biol* [Internet]. 2006 [cited 2018 Jan 30];6. Available from:  
672 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559592/pdf/1471-213X-6-39.pdf>
- 673 42. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative  
674 quantification framework and software for management and automated analysis of real-time  
675 quantitative PCR data. 2007 [cited 2017 Jun 14];8(2). Available from:  
676 [http://download.springer.com/static/pdf/804/art%253A10.1186%252Fgb-2007-8-2-r19.pdf?originUrl=http%3A%2F%2Fgenomebiology.biomedcentral.com%2Farticle%2F10.1186%25252Fgb-2007-8-2-r19&token2=exp=1497424427~acl=%2Fstatic%2Fpdf%2F804%2Fart%25253A10.1186%25252Fgb-2007-8-2-r19.pdf\\*~hmac=5b660aaa729e6c840581e3f1a59b3a251732c03c6248935dd629971b9f7036f6](http://download.springer.com/static/pdf/804/art%253A10.1186%252Fgb-2007-8-2-r19.pdf?originUrl=http%3A%2F%2Fgenomebiology.biomedcentral.com%2Farticle%2F10.1186%252Fgb-2007-8-2-r19&token2=exp=1497424427~acl=%2Fstatic%2Fpdf%2F804%2Fart%25253A10.1186%25252Fgb-2007-8-2-r19.pdf*~hmac=5b660aaa729e6c840581e3f1a59b3a251732c03c6248935dd629971b9f7036f6)
- 677 680 681 682 683 684 685 686 687 688 689 690 691 692
43. R Core Team. R: A language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2018. Available from: <https://www.r-project.org/>
44. Therneau TM. *\_A Package for Survival Analysis in S\_*. 2015.
45. Kassambara A, Kosinski M. *survminer: Drawing Survival Curves using “ggplot2.”* 2017.
46. Fatima S, Haque R, Jadiya P, Shamsuzzama, Kumar L, Nazir A. Ida-1, the *Caenorhabditis elegans* orthologue of mammalian diabetes autoantigen IA-2, potentially acts as a common modulator between Parkinson’s disease and diabetes: Role of Daf-2/Daf-16 insulin like signalling pathway. *PLoS One*. 2014;9(12).
47. Jankowska A, Laubitz D, Antushevich H, Zabielski R, Grzesiuk E. Competition of *Lactobacillus paracasei* with *Salmonella enterica* for adhesion to Caco-2 cells. *J Biomed*

- 693 Biotechnol. 2008;2008(1).
- 694 48. Nowak A, Motyl I, Śliżewska K, Libudzisz Z, Klewicka E. Adherence of probiotic bacteria to  
695 human colon epithelial cells and inhibitory effect against enteric pathogens – *In vitro* study. Int  
696 J Dairy Technol. 2016;69(4):532–9.
- 697 49. Allonsius CN, van den Broek MFL, De Boeck I, Kiekens S, Oerlemans EFM, Kiekens F, et al.  
698 Interplay between *Lactobacillus rhamnosus* GG and *Candida* and the involvement of  
699 exopolysaccharides. Microb Biotechnol. 2017;10(6):1753–63.
- 700 50. Ruas-Madiedo P, Gueimonde M, Margolles A, de los Reyes-Gavilan CG, Salminen S.  
701 Exopolysaccharides Produced by Probiotic Strains Modify the Adhesion of Probiotics and  
702 Enteropathogens to Human Intestinal Mucus. J Food Prot [Internet]. 2006;69(8):2011–5.  
703 Available from: <http://jfoodprotection.org/doi/abs/10.4315/0362-028X-69.8.2011>
- 704 51. Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel FM.  
705 Distinct pathogenesis and host responses during infection of *C. elegans* by *P. aeruginosa* and  
706 *S. aureus*. PLoS Pathog. 2010;6(7):1–24.
- 707 52. Wu K, Conly J, McClure JA, Elsayed S, Louie T, Zhang K. *Caenorhabditis elegans* as a host  
708 model for community-associated methicillin-resistant *Staphylococcus aureus*. Clin Microbiol  
709 Infect. 2010;16(3):245–54.
- 710 53. Souza ACR, Fuchs BB, Alves V de S, Jayamani E, Colombo AL, Mylonakis E. Pathogenesis  
711 of the *Candida parapsilosis* complex in the model host *Caenorhabditis elegans*. Genes  
712 (Basel). 2018;9(8).
- 713 54. Oh S, Park MR, Ryu S, Maburutse BE, Oh NS, Kim SH, et al. Probiotic *Lactobacillus*  
714 *fermentum* strain JDFM216 stimulates the longevity and immune response of *Caenorhabditis*

- 715        *elegans* through a nuclear hormone receptor. *Sci Rep* [Internet]. 2018 [cited 2019 Jan  
716        3];8(1):7441. Available from: [www.nature.com/scientificreports/](http://www.nature.com/scientificreports/)
- 717        55. Kim Y, Mylonakis E. *Caenorhabditis elegans* immune conditioning with the probiotic  
718        bacterium *Lactobacillus acidophilus* strain ncfm enhances gram-positive immune responses.  
719        *Infect Immun*. 2012;80(7):2500–8.
- 720        56. Yu L, Yan X, Ye C, Zhao H, Chen X, Hu F, et al. Bacterial respiration and growth rates affect  
721        the feeding preferences, brood size and lifespan of *Caenorhabditis elegans*. *PLoS One*.  
722        2015;10(7):1–13.
- 723        57. So S, Miyahara K, Ohshima Y. Control of body size in *C. elegans* dependent on food and  
724        insulin/IGF-1 signal. *Genes to Cells* [Internet]. 2011 [cited 2018 Sep 23];16(6):639–51.  
725        Available from: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2443.2011.01514.x>
- 726        58. Ikeda T, Yasui C, Hoshino K, Arikawa K, Nishikawa Y. Influence of lactic acid bacteria on  
727        longevity of *Caenorhabditis elegans* and host defense against *Salmonella enterica* serovar  
728        Enteritidis. *Appl Environ Microbiol*. 2007;73(20):6404–9.
- 729        59. Zhao L, Zhao Y, Liu R, Zheng X, Zhang M, Guo H, et al. The transcription factor DAF-16 is  
730        essential for increased longevity in *C. elegans* Exposed to *Bifidobacterium longum* BB68. *Sci  
731        Rep* [Internet]. 2017;7(1):7408. Available from: <http://www.nature.com/articles/s41598-017-07974-3>
- 733        60. Zanni E, Laudenzi C, Schifano E, Palleschi C, Perozzi G, Uccelletti D, et al. Impact of a  
734        complex food microbiota on energy metabolism in the model organism *Caenorhabditis  
735        elegans*. *Biomed Res Int*. 2015;2015.
- 736        61. Guantario B, Zinno P, Schifano E, Roselli M, Perozzi G, Palleschi C, et al. *In Vitro* and *in*

- 737        *Vivo* selection of potentially probiotic lactobacilli from nocellara del belice table olives. *Front*  
738        *Microbiol.* 2018;9(MAR):595.
- 739        62. Phelan JP, Rose MR. Why dietary restriction substantially increases longevity in animal  
740        models but won't in humans. *Ageing Res Rev.* 2005;4(3):339–50.
- 741        63. Smith ED, Kaeberlein TL, Lydum BT, Sager J, Welton KL, Kennedy BK, et al. Age- and  
742        calorie-independent life span extension from dietary restriction by bacterial deprivation in  
743        *Caenorhabditis elegans*. *BMC Dev Biol.* 2008;8:1–13.
- 744        64. Heestand BN, Shen Y, Liu W, Magner DB, Storm N, Meharg C, et al. Dietary Restriction  
745        Induced Longevity Is Mediated by Nuclear Receptor NHR-62 in *Caenorhabditis elegans*.  
746        *PLoS Genet.* 2013;9(7).
- 747        65. Komura T, Ikeda T, Yasui C, Saeki S, Nishikawa Y. Mechanism underlying prolongevity  
748        induced by bifidobacteria in *Caenorhabditis elegans*. *Biogerontology.* 2013;14(1):73–87.
- 749        66. Tullet JMA. DAF-16 target identification in *C. elegans*: past, present and future.  
750        *Biogerontology* [Internet]. 2015;16(2):221–34. Available from:  
751        <http://link.springer.com/10.1007/s10522-014-9527-y>
- 752        67. Grompone G, Martorell P, Llopis S, González N, Genovés S, Mulet AP, et al. Anti-  
753        Inflammatory *Lactobacillus rhamnosus* CNCM I-3690 Strain Protects against Oxidative Stress  
754        and Increases Lifespan in *Caenorhabditis elegans*. *PLoS One.* 2012;7(12).
- 755        68. Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E. Antifungal chemical  
756        compounds identified using a *C. elegans* pathogenicity assay. *PLoS Pathog.* 2007;3(2):0168–  
757        78.

- 758 69. Evrard B, Coudeyeras S, Dosgilbert A, Charbonnel N, Alamé J, Tridon A, et al. Dose-  
759 dependent immunomodulation of human dendritic cells by the probiotic *Lactobacillus*  
760 *rhamnosus* Lcr35. PLoS One. 2011;6(4):1–12.
- 761 70. Singh V, Aballay A. Regulation of DAF-16-mediated Innate Immunity in *Caenorhabditis*  
762 *elegans*. J Biol Chem [Internet]. 2009 Dec 18 [cited 2018 Dec 14];284(51):35580–7. Available  
763 from: <http://www.ncbi.nlm.nih.gov/pubmed/19858203>
- 764 71. Semple JI, Garcia-Verdugo R, Lehner B. Rapid selection of transgenic *C. elegans* using  
765 antibiotic resistance. Nat Methods [Internet]. 2010 Sep 22 [cited 2017 Apr 13];7(9):725–7.  
766 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/20729840>
- 767 72. Hoogewijs D, Houthoofd K, Matthijssens F, Vandesompele J, Vanfleteren JR. Selection and  
768 validation of a set of reliable reference genes for quantitative *sod* gene expression analysis in  
769 *C. elegans*. BMC Mol Biol [Internet]. 2008 Jan 22 [cited 2017 Apr 13];9:9. Available from:  
770 <http://www.ncbi.nlm.nih.gov/pubmed/18211699>
- 771 73. Nakagawa H, Shiozaki T, Kobatake E, Hosoya T, Moriya T, Sakai F, et al. Effects and  
772 mechanisms of longevity induced by *Lactobacillus gasseri* SBT2055 in *Caenorhabditis*  
773 *elegans*. Aging Cell. 2016;15(2):227–36.
- 774

**A** $t = 0\text{h}$  $t = 2\text{h}$  $t = 4\text{h}$  $t = 6\text{h}$  $t = 24\text{h}$ **B**

**Figure 7**

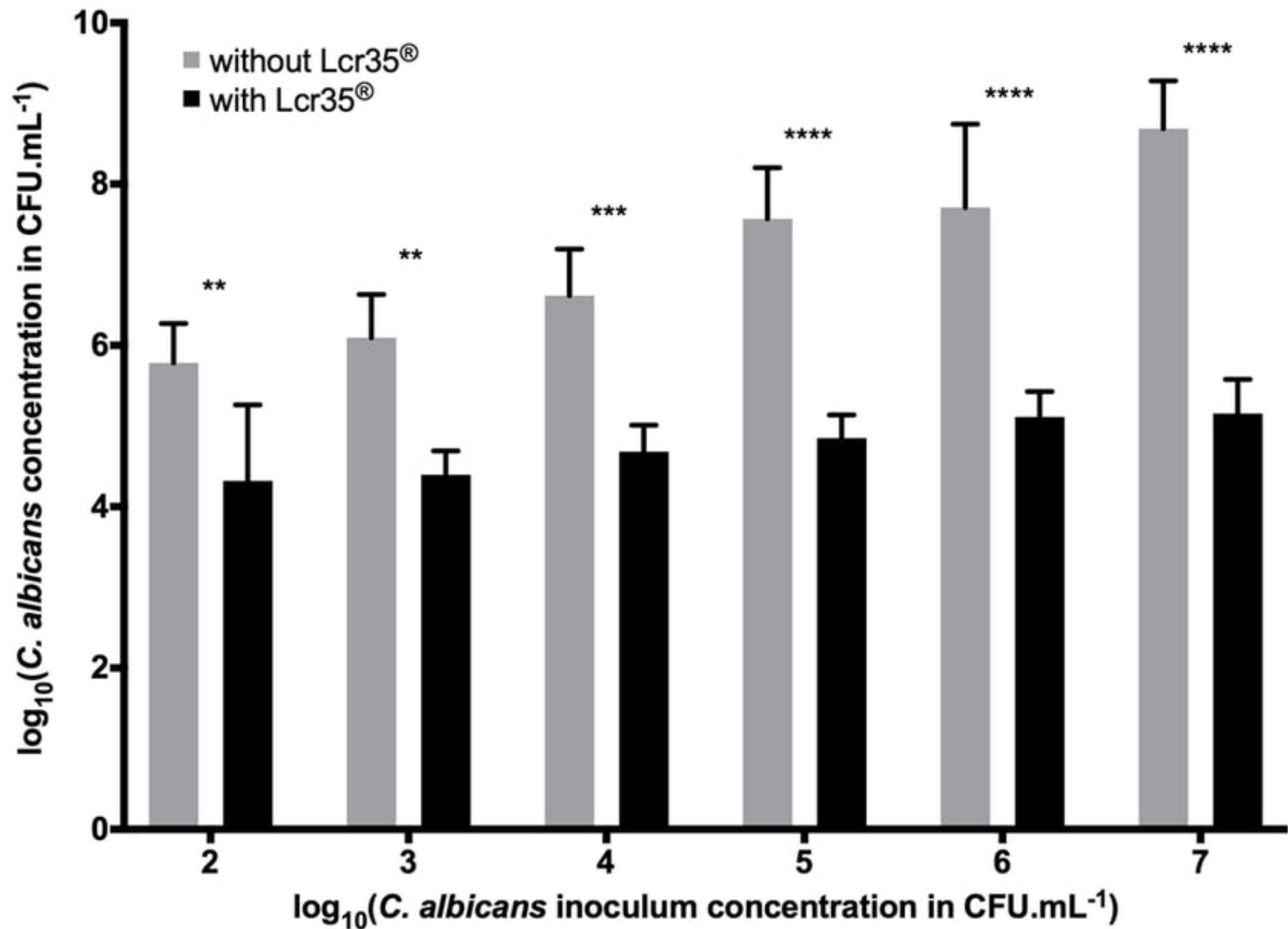



Figure 1

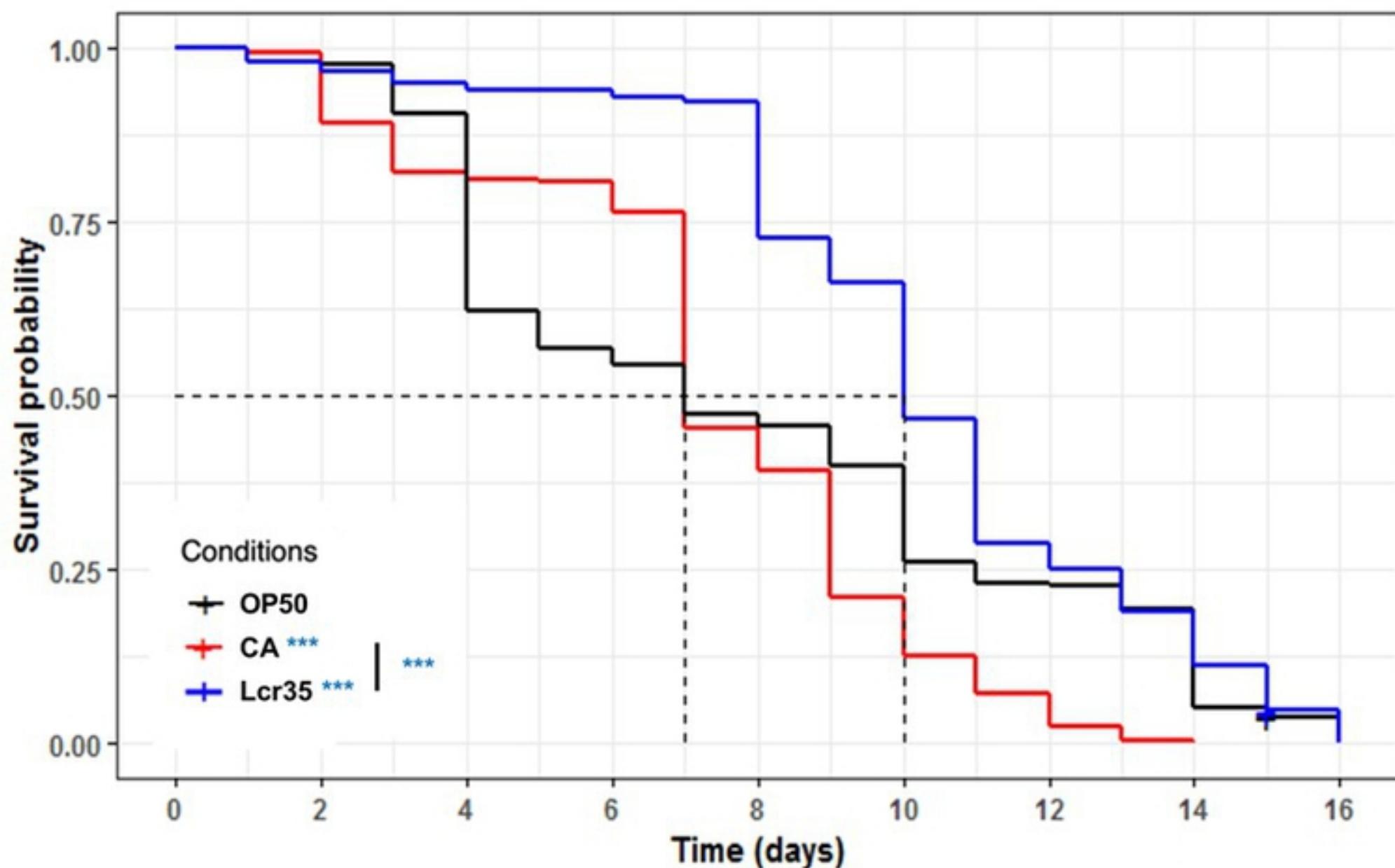
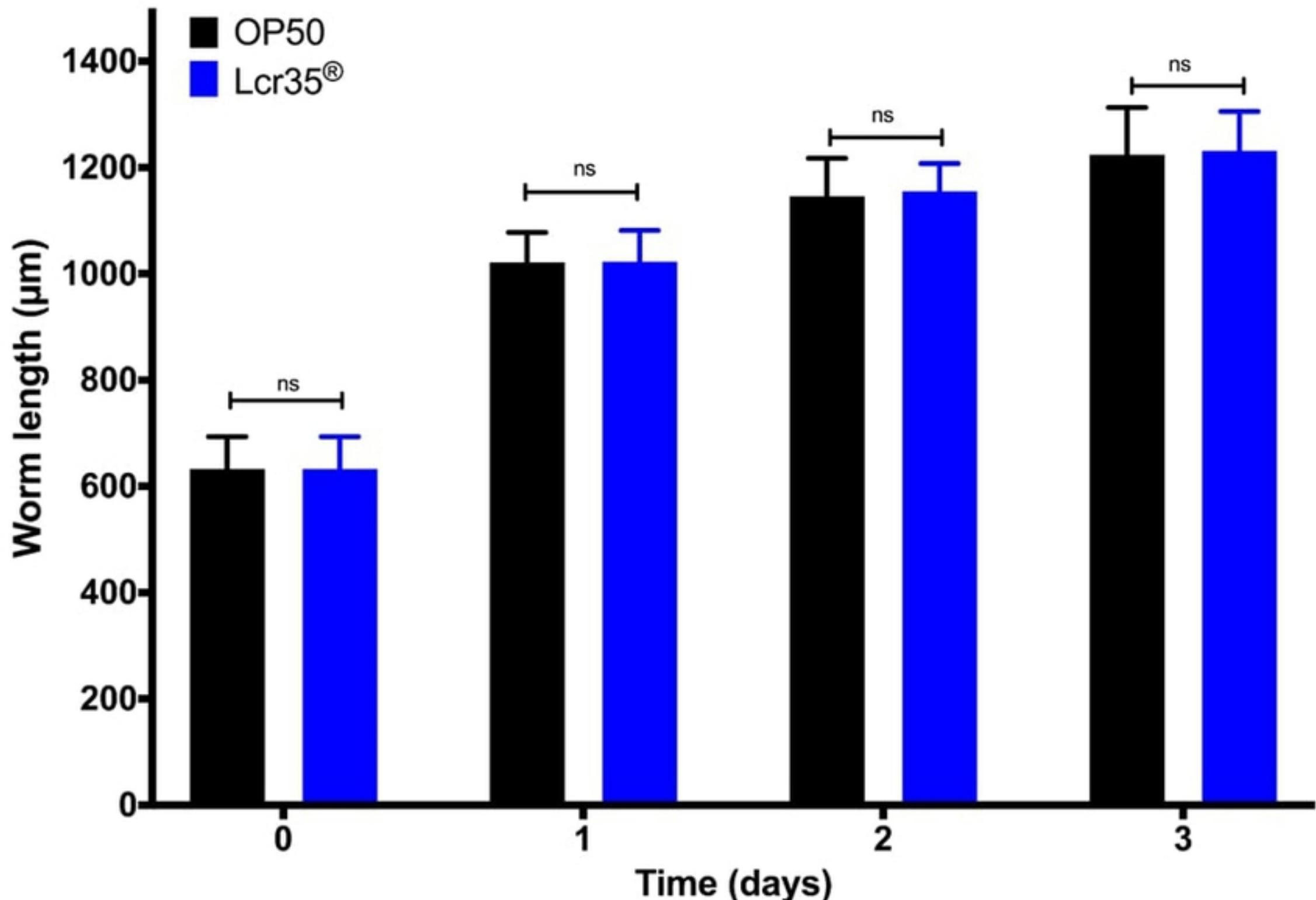
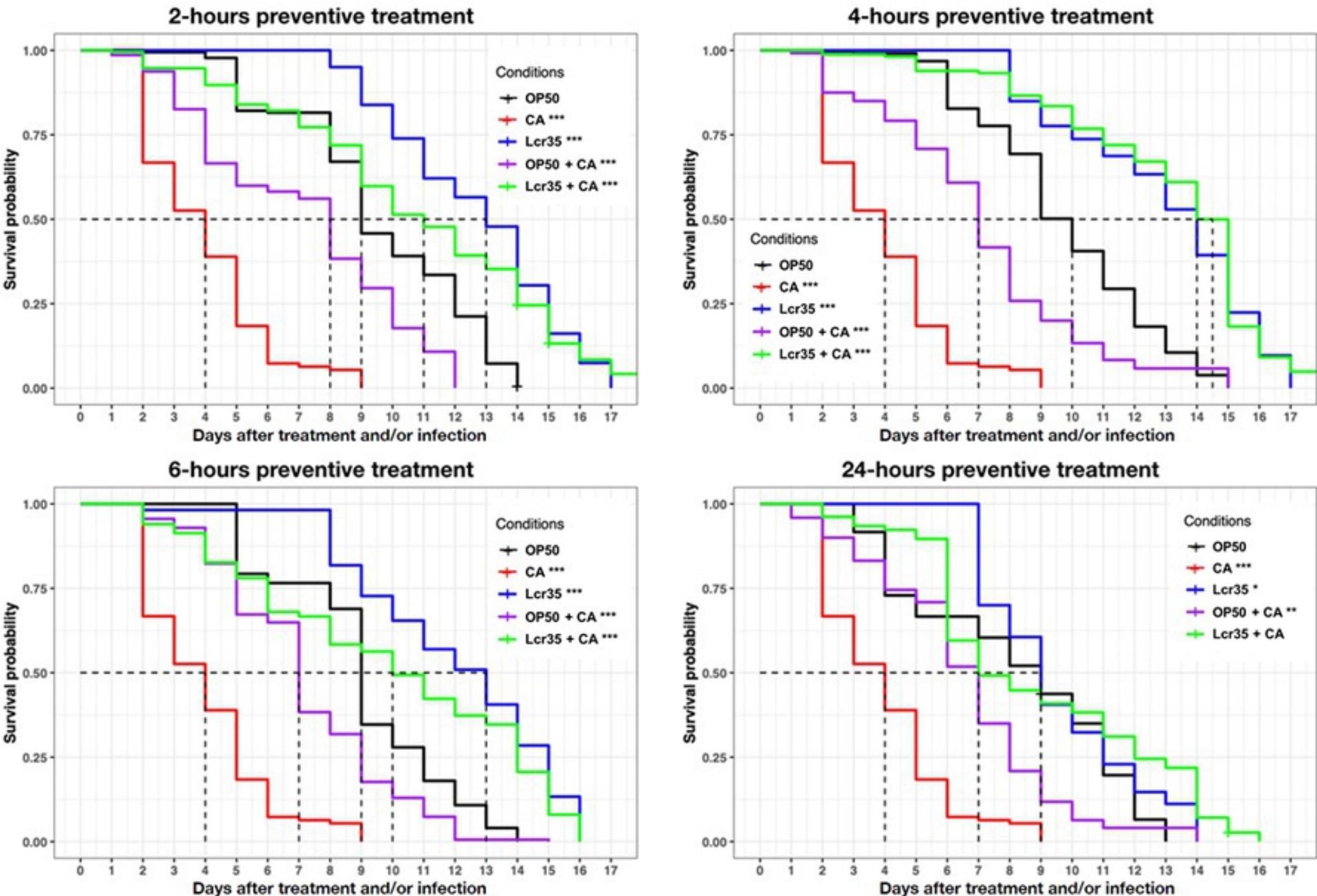
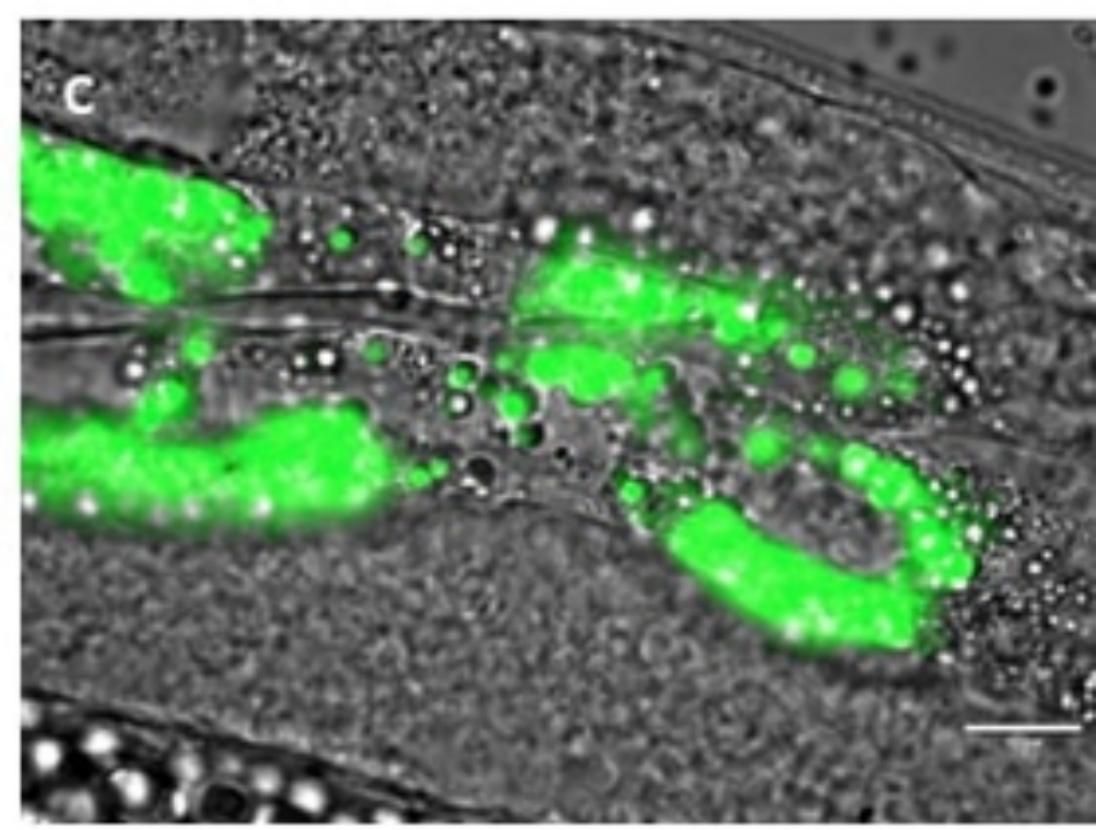
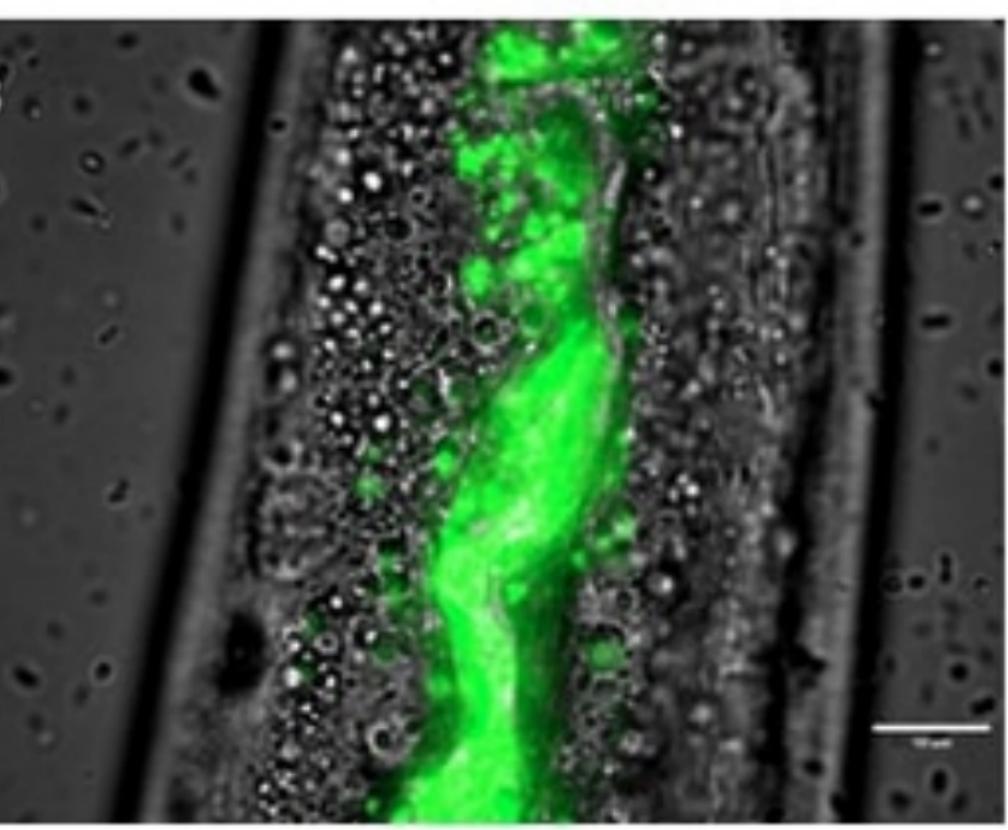
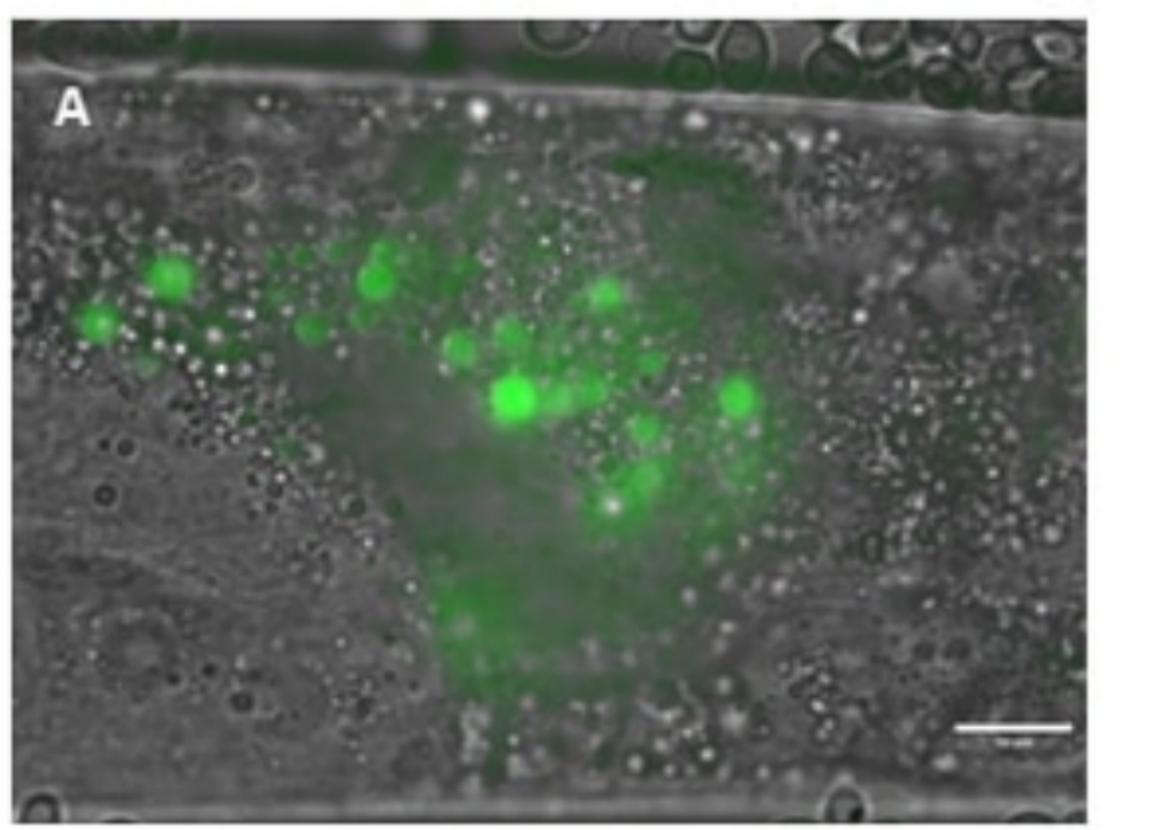
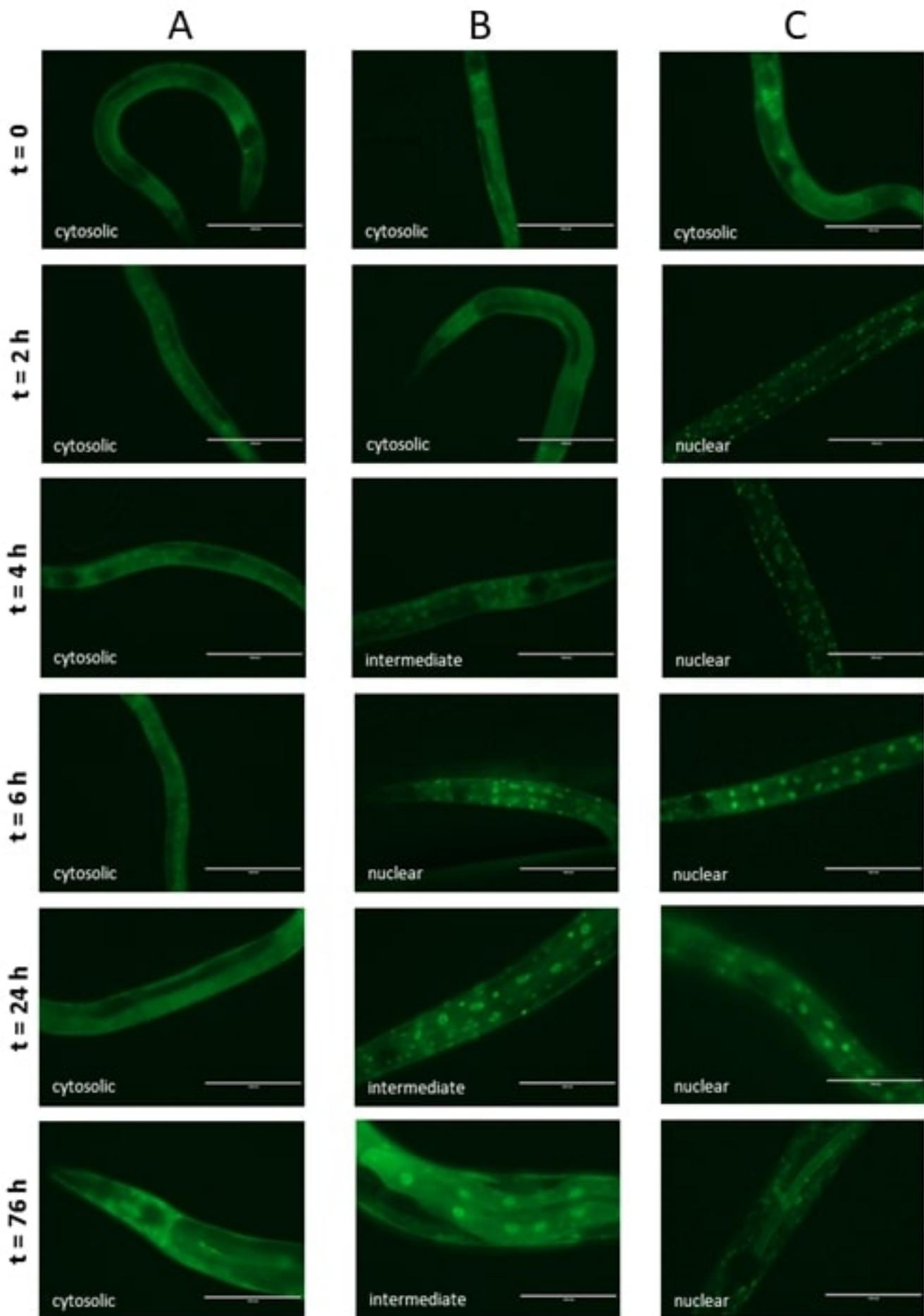



Figure 2



Figure 3

# Figure 4





**Figure 5**



**Figure 6**