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ABSTRACT

Motivation: Differential network analysis, designed to highlight interaction changes
between conditions, is an important paradigm in network biology. However, network
analysis methods have been typically designed to compare between few conditions,
were rarely applied to protein interaction networks (interactomes). Moreover, large-
scale benchmarks for their evaluation have been lacking.

Results: Here, we assess five network analysis methods by applying them to 34 human
tissues interactomes. For this, we created a manually-curated benchmark of 6,499
tissue-specific, gene ontology biological processes, and analyzed the ability of each
method to expose these tissue-process associations. The four differential network
analysis methods outperformed the non-differential, expression-based method (AUCs
of 0.82-0.9 versus 0.69, respectively). We then created another benchmark, of 1,527
tissue-specific disease cases, and analyzed the ability of differential network analysis
methods to highlight additional disease-related genes. Compared to a non-differential
subnetworks surrounding a known disease-causing gene, the extremely-differential
subnetwork (top 1%) was significantly enriched for additional disease-causing genes in
18.6% of the cases (p<10e-3). In 5/10 tissues tested, including Muscle, nerve and heart
tissues (p = 2.54E-05, 2.71E-04, 3.63E-19), such enrichments were highly significant.
Summary: Altogether, our study demonstrates that differential network analysis of
human tissue interactomes is a powerful tool for highlighting processes and genes with
tissue-selective functionality and clinical impact. Moreover, it offers expansive
manually-curated datasets of tissue-selective processes and diseases that could serve
for benchmark and for analyses in many other studies.

Contact: estiyl@bgu.ac.il

INTRODUCTION

Knowledge of the molecular compositions of human tissues and cells has grown
immensely in recent years, owing to large-scale omics projects such as the Human
Protein Atlas (Uhlen et al., 2015), the Genotype-Tissue expression (GTEx Consortium,
2017) and, most recently, the Human Cell Atlas (Regev et al., 2017). To better
understand the functions of tissues and cells, continuous efforts were invested in
charting their underlying molecular interactions, particularly among human proteins
(Luck et al., 2017). To date, over 360,000 protein-protein interactions (PPIs) among

over 18,000 proteins have been detected experimentally and recorded in public
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databases. Integrating between these PPIs and tissue expression profiles enabled the
construction of network models (interactomes) of human tissues (Yeger-Lotem and
Sharan, 2015). Compared to a generic interactome, tissue interactomes were shown to
be useful for identifying tissue-specific protein functions (Greene et al., 2015), and for
prioritizing candidate disease-associated genes (Greene et al., 2015; Magger et al.,
2012; Kitsak et al., 2016).

The molecular profiling of human tissues revealed that distinct tissues share most
of their expressed genes with all other tissues (GTEx Consortium, 2017), and,
consequently, much of their underlying interactions (Barshir et al., 2014). This called
for analyses that will be able to explain tissue-specific phenotypes. Several such
methods focused on the identification of tissue-specific genes and interactions, used for
example to illuminate the molecular mechanisms underlying tissue-selective disease
manifestations (e.g., (Barshir et al., 2014), as well as other applications, as reviewed in
(Yaoetal., 2018). Also unique and often ignored, were genes and interactions that were
down-regulated in a certain tissue relative to other tissues. Such down-regulated genes
were recently associated with the predisposition of tissues to hereditary diseases
(Barshir et al., 2018).

Differential network (DN) analysis is a powerful paradigm that highlights genes
and interactions that are either up- or down-regulated in a specific context (Ideker and
Krogan, 2012). Accordingly, genes and interactions that are shared among contexts are
downplayed. Many of them could be carrying important house-keeping functions,
however, they have limited ability to illuminate the mechanisms underlying context-
specific phenotypes. In contrast, these mechanisms can be illuminated by focusing on
the altered genes and interactions (Bandyopadhyay et al., 2010). DN methods were
applied to multiple types of molecular network models, including genetic interaction
networks (Bandyopadhyay et al., 2010), co-expression networks (Ma et al., 2014;
Pierson et al., 2015), PPl networks (Basha, Barshir, et al., 2017), and regulatory
networks (Marbach et al., 2016). Computationally, DN methods focused on network
nodes (e.g., (Sonawane et al.,, 2017), (Basha, Barshir, et al., 2017)), network
interactions (e.g., (Basha, Shpringer, et al., 2017)), or network features such as node
connectivity (e.g., (Goenawan et al., 2016)). DN methods proved useful for prediction
of cancer genes (Islam et al., 2013; Warsow et al., 2013), drug targets (Zickenrott et
al., 2016), and plants’ stress response genes (Ma et al., 2014). Several DN methods
were implemented as open tools (e.g., (Gill et al., 2010; Landeghem et al., 2016;
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Gambardella et al., 2013; Ha et al., 2014)). In particular, we developed a DN method
for tissue interactomes and made it available through the DifferentialNet database
(Basha, Shpringer, et al., 2017). Specifically, each PPI within a tissue interactome was
associated with a score, reflecting the up- or down-regulation of the interacting proteins
relative to other tissues. Yet, a rigorous assessment of DN methods applied to PPI
networks in general and to tissue interactomes in particular has been lacking, mostly
for lack of suitable, large-scale benchmarks.

Here we assess the performance of a non-differential method and four node-based
and interaction-based DN methods, which we applied to analyze 34 human tissue
interactomes. To create these interactomes, we integrated the rich dataset of RNA-
sequenced human tissue profiles of gathered by GTEx (GTEx Consortium, 2017) with
data of over 333,000 experimentally detected PPIs. We implemented the five methods
and tested their ability to capture tissue-specific features. For this, we created a
manually curated dataset associating 6,499 gene ontology (GO) biological processes to
their relevant human tissues. DN methods performed better than a non-differential
method in accurately highlighting tissue-specific processes. We also evaluated node-
based versus interaction-based methods.

Next, we applied DN methods to illuminate the enigmatic tissue-selective
manifestation of hereditary diseases; though caused by aberration in genes that are
typically expressed across many tissues, hereditary diseases tend to manifest in few,
selected tissues (Barshir et al., 2014, 2018). Specifically, we tested whether the altered
sub-network that surrounds disease-causing genes in their respective disease-tissues is
enriched for additional disease-relevant genes. For this, we manually associated 1,185
tissue-selective hereditary disorders with their clinically manifesting tissues. In 18.6%
of the cases, enrichment of the top 1% altered subnetwork was highly statistically
significant, a fraction much higher than expected by chance based on permutation
testing (p<10e-3). Enrichment was specifically high in muscle, nerve and heart (p =
2.54E-05, 2.71E-04, 3.63E-19) tissues. Thus, DN analysis of tissue interactomes offers
a powerful filtering approach for identifying tissue-selective physiological processes

and disease genes.
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RESULTS
Constructing tissue interactomes

We started by creating an up-to-date version of the human interactome by
gathering experimentally-detected PPIs from multiple databases (see Methods). This
resulted in a generic interactome containing 18,542 proteins and 333,745 interactions
that were detected by well-established detection methods (Basha et al., 2015). To
construct interactome models for different human tissues, we used RNA-sequenced
profiles pertaining to 51 tissues that were gathered by GTEx (GTEx Consortium, 2017).
To avoid a bias toward brain regions, brain sub-regions were further merged into basal
ganglia, cerebellum, and ‘other’ (as in (Paulson et al., 2017)), resulting in 40 different
tissues (see Methods). Profiles were normalized as described elsewhere (Basha,
Barshir, et al., 2017). Our next step was to integrate the generic human interactome
with the tissue expression profiles to create tissue interactomes.

We implemented five different methods, including three node based and two
edge-based methods (see Methods and Table 1). The first was a non-differential, node-
based method, denoted expr_n, where each gene in a tissue interactome was assigned
with a weight that reflected its expression level in that tissue. Accordingly, genes with
high, uniform levels across tissues will be assigned high weights in all tissue
interactomes. Next, we implemented two differential node-based methods. In the first,
denoted pref _n, each gene in a tissue interactome was assigned with its preferential
expression in that tissue, as computed by (Sonawane et al., 2017). In the second,
denoted diff n, each gene in a tissue interactome was assigned with the difference
between its expression level in that tissue and its median expression level across all
tissues. In both methods, genes with high, uniform levels across tissues will be assigned
weights close to zero. Based on the two differential node-based methods, we
implemented two differential interaction-based methods. In the first, denoted pref i,
interaction weight reflected the summed preferential expression of the two pair-mates
in that tissue. In the second, denoted diff i, interaction weight was set to the summed
expression levels of the two pair mates in that tissue, minus the median summed weight
across tissues (Basha, Shpringer, et al., 2017).

We created tissue interactomes by applying each method to the generic human
interactome. Since some genes were not found to be expressed in any tissue, the
resulting generic interactome included 16,177 nodes and 257,200 interactions. Notably,

all tissue interactomes contained the same nodes and edges, and differed from each

5


https://doi.org/10.1101/612143
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/612143; this version posted April 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

other only in the weights assigned to their nodes or interactions. In general, the different

methods resulted in normally-distributed weights per tissue (Fig. S1).

Table 1. The five different schemes to create tissue specific interactomes.

Method name Weighted Weighting method Differential
Entities

expr_n Nodes Gene Expression Non-differential

pref_n Nodes Preferential expression, developed Differential
by (Sonawane et al., 2017)

diff_n Nodes Computed as the difference between the Differential
expression level of a node in a tissue, and its
median expression level across tissues.

pref_i Interactions Computed as the sum of the preferential Differential
expression of the interacting nodes, based on
(Sonawane et al., 2017).

diff_i Interactions Computed as the difference between the Differential

summed expression levels of the interacting
nodes in the tissue and their median summed
expression across tissues (see methods).
Developed by (Basha, Shpringer, et al.,
2017).

Assessing the methods’ ability to highlight tissue-specific processes

We aimed to evaluate rigorously and at large-scale whether the different methods

helped illuminate the distinct features of each tissue. For this, we created a gold set of

tissue-specific GO biological process terms. Our preliminary dataset included GO

terms whose description contained tissue-related keywords (e.g., 'adipo’, 'fat’), as well

as previously published tissue-associated GO terms (Greene et al., 2015), which we

matched with the tissues profiled by GTEX. We then manually checked each GO term

to verify its tissue associations (Fig. 1A). In total, we associated 6,499 terms to 48
tissues through 7,718 associations (Fig. 1B and Table S1).
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Fig. 1. Manually-curated datasets of tissue-specific biological processes and hereditary disorders.
A. We manually associated 6,499 GO biological process terms with their relevant tissues in GTEXx, and
1,185 hereditary disorders with their disorder-manifesting tissue. For example, the process of synaptic
transmission was associated with the brain (right), and muscular dystrophy was associated with muscle
(left). B. The number of GO biological process terms that were associated with each tissue. C. The number
of hereditary disorders cases (disorder & causal gene) that were associated with each tissue. D. The
number of tissues that clinically manifest a disease (grey) or express a disease-causing gene (turquoise).
The tissue-selectivity of the 1,185 hereditary diseases stands in large contrast with the ubiquitous
expression of their 852 causal genes. A gene was considered expressed in a tissue if its expression value

was > 8 normalized counts.

Given this rich dataset, we checked whether the different tissue interactomes were
able to highlight their respective tissue-associated processes. For this, we converted
each interactome to a ranked gene list. For node-based methods, ranking was
determined by node weights in the respective tissue interactome, such that highly
expressed genes ranked at the top. For interaction-based methods, we assigned each
node with the median weight of its interactions in the respective tissue interactome.
Each ranked gene list was then subjected to GO enrichment analysis by using the
GOirilla tool (Eden et al., 2009), which allowed us to test per interactome and method
whether the corresponding gene list was enriched for GO terms that were associated
with the respective tissue. We then calculated per method the number of tissue

interactomes showing accurate enrichments (Fig. 2A). The non-differential approach,
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expr_n, had the smallest fraction of accurately enriched tissues (55%). The DN methods
had much higher fractions of accurately enriched tissues (73-91%), with diff i
performing best.

We further assessed the enrichment specificity of tissue interactomes. Explicitly,
we tested whether a given tissue interactome was not only enriched for its associated
GO terms, but was also more frequently enriched for these terms relative to terms
associated with other tissues, by using Fisher exact test (Fig. 2B, see Methods). We
then calculated per method the number of tissue interactomes showing significant
enrichment specificity (p<0.05, Fig. 2A). The non-differential method had the lowest
fraction of significant tissue interactomes, while diff i and pref_n had the highest
fractions (Fig. 2A; Table S2). We further compared the enrichment specificity of all
methods via a ROC analysis (Fig. 2C). The area under the curve (AUC) was smallest
for the non-differential method (AUC=0.69), while all differential methods performed
comparably well, especially in the low range of true-positive rate (AUCs of 0.82-0.9).
As shown in Fig. 2D for the diff_i method, differential tissue interactomes tended to be
most enriched for their respective tissue GO terms, or for terms associated with
physiologically-related tissues, such as brain and nerve, or skeletal muscle and heart.

Since the previous test relied on gene ranking, we developed an alternative test
that focused on interactions, which we applied to 2,332 query genes that were annotated
to tissue-specific processes (see Methods). For each query gene in its respective tissue,
we tested whether its interactions with proteins sharing its tissue-associated terms
weighted significantly more than its other interactions. Interaction weights
corresponded to the diff_i method, and statistical significance was tested via the Mann-
Whitney-U test. This was indeed the case for 376 (16%) query genes (adjusted p<0.05).
To obtain a view per tissue, we collated all query genes associated with the same tissue.
Next, we computed, per query gene, its median interaction weights with (i) proteins
sharing its tissue-associated terms, and (ii) other proteins, which we inserted into two
distinct lists. We focused on tissues with at least 20 query genes, and evaluated the
differences between the two lists via a Paired-Wilcoxon test. In all 11 tissues tested, the
difference between the two lists was statistically significant (adjusted p<0.05, , Fig 2E).
Altogether, these results indicate that differential tissue interactomes are better than a

non-differential interactome in highlighting tissue-specific features. This analysis also
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implies that tissue-specific processes tend to involve differentially up-regulated nodes

and interactions.
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Fig. 2. Assessing the ability of weighted tissue interactomes to uncover tissue-specific processes.

A. The fraction of weighted tissue interactomes out of the 34 tissue interactomes that were correctly

enriched for their respective tissue-associated GO terms (turquois, p<10E-3), or showed enrichment

specificity for these terms (dark color, p<0.05), per method. B. Illustration of the enrichment specificity

test. The number of tissue-associated GO terms that were accurately enriched in the corresponding tissue
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interactome (overlap area, colored turquoise) was assessed for statistical significance via Fisher exact
test. C. A ROC plot showing the prediction accuracy of each method. Differential methods outperformed
the non-differential method. D. Visualization of the enrichment specificity test for the diff_i approach.
Each dot represents the enrichment specificity of the tissue interactome (row) to tissue-associated GO
terms (column). Most differential tissue interactomes showed enrichment specificity for their respective
terms or for terms of physiologically related tissues. E. Analysis of differential interactions per query
gene, for each of the 11 tissues with over 20 query genes. Each dot represents a query gene in the
respective tissue. Its value corresponds to the difference between two medians: the median weight of its
interactions with proteins sharing its tissue-associated terms, and the median weight of its other
interactions. In most query genes, the difference was positive, meaning that interactions involving

proteins sharing tissue-associated terms weighted higher. Significance was assessed via paired Wilcoxon

test; * p<0.05, ** p<1E-5, *** p<1E-10.

Applying the differential approach to reveal genes causal for tissue-specific
disorders

Previous studies showed that hereditary disorders tend to manifest in few specific
tissues, although their causal genes are present and often expressed throughout the body
(Lage et al., 2008; Barshir et al., 2014, 2018). The molecular mechanisms underlying
hereditary disorders, and in particular their tissue selective manifestation, remain
unclear for most disorders. Here, we tested whether differential tissue interactomes may
help illuminate these underlying mechanisms. To enable a large-scale assessment, a
goldset of tissue associated diseases was needed, yet none were available. Therefore,
we manually associated phenotypic series from the OMIM database with the tissues in
which they manifest clinically by reviewing their description in OMIM and other
medical references (See Methods). A phenotypic series is a group of genetic diseases
that manifest with similar phenotype. We focused on disorders with known causal genes
and that were phenotypically related according to OMIM (Amberger et al., 2015)(see
Methods, Fig. 1A,C, Table S3). Altogether, we analyzed 1,185 disorders with 1,527
gene cases associated to 26 tissues and 852 causal genes. Notably, while most disorders
were highly tissue-specific, most of their causal genes were expressed widely across
tissues (Fig. 1D). Thus, it was intriguing to ask whether the differential interactions
surrounding causal genes in their respective disease-manifesting tissues could unravel
disorder-related mechanisms.

We considered for each causal gene the interactome subnetwork containing its

direct and secondary interactions (Fig. 3A, left panel). We focused only on subnetworks
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that included additional genes causal for a similar disorder. To test the ability of
differential tissue interactomes to reveal disorder-related mechanisms, we filtered each
subnetwork according to the differential interactome of the respective disorder-
manifesting tissue, which was calculated using the diff_i method. We included only
nodes adjacent to differential interactions scoring at the top 1% within the respective
tissue interactome (Fig. 3A, right panel). The top 1% filtered subnetworks were much
smaller than the unfiltered subnetworks, with a median of 34 versus 3,000 genes,
respectively. Next, we tested whether filtered subnetworks were more enriched for
additional causal genes relative to the unfiltered subnetworks (see Methods). We
collated causal genes according to tissues. For the 10 tissues with more than 30 genes,
we compared between the percentage of causal genes in the filtered and unfiltered
subnetworks using paired Wilcoxon test. In 5/10 tissues, filtered subnetworks were
significantly more enriched (p<0.05) (Fig. 3B). Next, we tested for enrichment in each
individual case. In 283 of the 1,527 cases (18.6%), the filtered subnetwork was enriched
significantly for additional causal genes (p<0.05, Fisher exact test, adjusted via
Benjamini-Hochberg procedure). This success rate was not uniform across tissues,
with some tissues showing high rates (e.g., heart 53%) and other tissues showing lower
rates (e.g., testis 9.5%; Table S5).To find if this success rate was expected by chance,
we permuted the disease-tissue associations and repeated this analysis 1,000 times (see
Methods), showing that this success rate was highly statistically significant (p<0.001,
Fig. 3C). We further tested how the enrichment of the disorder-manifesting tissue
interactome compared to the enrichments in other tissue interactomes. For that, we
compared the significance of the enrichment in the ‘accurate’ tissue to the median
significance of the enrichments in other tissues, using Mann-Whitney-U test between
the p-value in the disease tissue and the median p-value across all tissues. This
confirmed that the p-value in the disease tissue is significantly lower then the p-values
in other tissues (p = 6.19e-68).
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Fig. 3. Assessing the ability of differential tissue interactomes to uncover disorder-related genes. A.
Left: The interactome subnetwork surrounding the query gene KLH41 that is causal for spinocerebellar
ataxia included its direct and secondary interactions. The subnetwork amounted to 1,745 genes, including
8 other genes causal for nemaline myopathy. Right: The top 1% filtered subnetwork of KLH41 in skeletal
muscle, where nemaline myopathy is manifested. The subnetwork contained 144 genes, including 6/8 of
the other genes causal for nemaline myopathy (p=6.97E-06). Genes causal for nemaline myopathy appear
in red; KLHA41 is shaped as a diamond. B. Visualization of the tissue-based enrichment analysis. Each dot
represents a query gene in the unfiltered subnetwork (grey) and the top 1% filtered subnetwork of its
disease-manifesting tissue (red). The value of each dot corresponds to the percentage of genes causal for
the same disease as the query gene, out of the total number of nodes in that subnetwork. Data are shown
for the 10 tissues with at least 30 different causal genes. In 5/10 tissues the top 1% filtered subnetworks
were significantly enriched (paired Wilcoxon test; * p< 0.05, ** p< 5E-3, *** p< 1E-17). C. The
distribution of the numbers of successes in the 1,000 randomization runs, showing a median of 54

successes and maximal value of 86. In contrast, the tested diff i method had 283 successes (p<0.001)

which places it far beyond any of the randomized test.

The power of this analysis is demonstrated by the case of KLH41 (Fig. 3A). This
protein is involved in skeletal muscle development and maintenance processes.
Mutations in this gene cause nemaline myopathy (NM), a rare hereditary muscle
disorder. The interactome subnetwork of KLH41 included 1,745 nodes, among which
were eight other genes causal for NM. Upon filtering this subnetwork to include only
nodes with differential interactions scoring at the top 1%, we obtained a much smaller
subnetwork containing only 144 genes, yet, including six of the eight additional causal
genes (Fisher exact test p=6.97E-06, Fig. 3A). Notably, in the case of KLH41, some of
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the causal genes were only indirectly connected to each other, showing the ability of
differential interactomes to pull out meaningful secondary relationships. Additional
examples appear in Fig. 4. Thus, differential tissue interactomes appear to be effective

in illuminating disorder mechanisms.

Fig. 4. The top 1% differential subnetwork that surrounds a causal gene (red diamond) in its

P disorder-tissue interactomes is
A @ =& B

enriched for additional causal
genes. A. MYH6 is casual for
familial hypertrophic
o cardiomyopathy.  Its  filtered
subnetwork in heart contained 64
genes (compared to 2,277 in the

unfiltered subnetwork), including

ome &

all 9 genes casual for hypertrophic
sz G @ & cardiomyopathy in the unfiltered
, & & : subnetwork  (p=6.17E-15). B.
. /. = @& o . LHX4 is casual for pituitary
T Ple ® v ms hormone deficiency. Its filtered

: subnetwork in the pituitary
e contained 44 genes (compared to

< NYAPZ

1,800 genes in the unfiltered subnetwork), including all 3 genes causal for this disorder in the unfiltered
subnetwork (p= 1.31E-05). C. SDROC?7 is casual for autosomal recessive congenital Ichthyosis that
manifests in skin. Its filtered subnetwork in skin contained 40 genes (compared to 652 genes), including

4 of the 5 genes causal for this disorder in the unfiltered subnetwork (p=5.85E-05).

DISCUSSION

Differential network analysis is a powerful paradigm in network biology (ldeker
and Krogan, 2012), but has not been widely applied to tissue interactomes composed
of PPIs. This is partly because there were no large-scale quantitative data allowing for
interactome weighting in different contexts, and because benchmarks allowing for
evaluation of different schemes have been lacking. Here we show rigorously and at
large-scale the value of differential network analysis in highlighting tissue-specific
processes and disease mechanisms. To allow for large-scale assessments, we created
two manually-curated datasets. The first dataset includes 7,718 associates between
6,499 GO biological process terms and 48 tissues. The second dataset includes 1,527
associations between 1,185 hereditary disorders and 26 clinically-manifesting tissues

(Fig. 1). While these resources remain incomplete and are not distributed uniformly
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across tissues, they compose a uniquely extensive resource that may serve many other
future studies and applications focusing on the physiology and pathophysiology of
human tissues.

We implemented and assessed five different interactome weighting methods,
including four DN methods. We first analyzed the ability of each method to highlight
tissue-specific processes. The non-differential method of ranking genes by their
expression within a tissue (expr_n), was outperformed by DN methods, demonstrating
the value of differential weighting schemes in highlighting tissue-specific features (Fig.
2A). Both node-based and interaction-based DN methods performed well in
highlighting tissue-specific processes (Fig. 2C). The value of interaction-based
methods was also assessed using the gene-neighbors test (Fig. 2E). Given that
interactomes contain more interactions than nodes, scoring by interactions might be
more informative in some settings.

After identifying the power of the DN methods and establishing that tissue-
specific processes are well captured by focusing on differential interactions, we turned
to analyze hereditary disorders. Hereditary disorders tend to manifest clinically in few
tissues, while the aberrant gene is present and often expressed across the body (Fig. 1D)
(Lage, 2014; Barshir et al., 2014, 2018). However, the mechanisms underlying the
tissue-selective manifestation of hereditary disorders is well understood only in few
cases; for most disorders it remains enigmatic (Barshir et al., 2014). Previous efforts to
unravel the molecular basis of this phenomenon showed that in a considerable fraction
of hereditary disorders, clinically affected tissues are associated with elevated
expression of the causal gene (Barshir et al., 2014; Lage, 2014), tissue-specific
interactions (Barshir et al., 2014), and down-regulation of paralogs of the casual genes
correct this ref (Barbeira et al., 2018). These properties easily translate into differential
nodes and interactions within tissue interactomes, suggesting that differential
subnetworks surrounding causal genes could be informative of additional genes causal
for the same disorder.

To answer this challenge, we assessed whether differential network analysis can
effectively identify disorder-related genes. For this, we focused only on the top 1%
differential interactions surrounding causal genes. This stringent cutoff reduced
subnetworks sizes from ~3,000 genes to ~30 genes (Fig. 3A,D). In half of the tissues
tested, the differential subnetworks were enriched significantly for disorder-related

genes, relative to unfiltered subnetworks. In 18.6% of the individual cases, enrichment
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was highly significant, and the fraction of successful cases was much higher than
expected by chance (p<0.001). With the rapid accumulation of molecular interactions
data and the move towards precision medicine, differential and other context-sensitive
filtering approaches are becoming essential for meaningful interactome analyses and
interpretation (Gligorijevi¢ et al., 2016). The methods we described, the large-scale
resources, and the rigorous assessment tests that we put presented, may thus serve many

other future applications.

METHODS

Tissue expression data: RNA sequencing profiles were obtained from the GTEX portal
(version 7) (GTEx Consortium, 2017), resulting in 11,216 samples from 51 tissues.
Only genes with more than 5 read counts in at least 10 samples were included in the
analysis. Raw read counts were normalized for sample library size via the TMM method
by edgeR (Robinson et al., 2010) to produce counts per million (cpm). Only genes with
cpm values >8 in at least 10 samples were considered henceforth, and their com values
were log2 transformed to obtain normal distributions. Samples per tissue were merged
such that the expression of each gene was set to its median expression value across
samples. Similarly to (Paulson et al., 2017), brain sub-regions were further merged into
three regions, named basal ganglia, cerebellum, and ‘other’.

PPI data: Human PPIs were gathered from BioGrid (Chatr-Aryamontri et al., 2017),
DIP (Salwinski et al., 2004), MINT (Ceol et al., 2010) and IntAct (Aranda et al., 2010)
by using the MyProteinNet web-server (Basha et al., 2015). The MyProteinNet web-
server ensures that only PPIls detected by well-established methods for physical
interactions detection were considered.

Construction of tissue interactomes: All tissue interactomes contained the same

number of nodes and interactions and differed only in the weights that they were
associated with. We used five different weighting methods, as described below. Let ef"

denote the normalized read counts of gene i in tissue t.

1. The non-differential method, expr_n: In the interactome of tissue t;, each node was
assigned with a weight that reflects its expression level in that tissue, el.t".

2. The differential node method, diff_n: In the interactome of tissue t;, each node was
assigned with a weight, denoted wl.t", that reflects its differential expression level in that

tissue relative to its median expression level across all tissues (equation 1):
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) Witk _ eitk — gedian
3. The differential node method, pref_n: In the interactome of tissue ¢, each node was
assigned with a weight, denoted pf", that reflects its preferential expression in that
tissue as computed by (Sonawane et al., 2017).
4. The differential interaction method, pref_i: In the interactome of tissue t;, an
interaction between genes i and j was assigned a weight, denoted wl.tj", that was set to
the sum of the preferential weight of the two nodes (equation 2):

2w = p* + p}*
5. The differential interaction method, diff_i: In the interactome of tissue t;, an
interaction between genes i and j was assigned a weight, denoted w’f]’.‘, that was
designed to reflect the probability for interaction given i and j expression levels
(Basha, Shpringer, et al., 2017). This was approximated by eit" * ejt", namely the sum
of their log2 normalized counts values (equation 3). We further normalized this weight

relative to the maximal interaction weight in that tissue, to fit the range of [0,1]

ty dif ferential

(equation 4). The differential weight of that interaction, denoted W , Was

computed by subtracting the median weight for that interaction across all tissues
(equation 5).

(3) w’fj’.‘ = eit" + ejtk

W’tk
¢ K
(4) Wl'jk = — l]’tk
max(w ij)
ty dif ferential _  tg _ median
(5) Wi =Wy T Wy

Associating GO terms with tissues: We created a list of tissue-related keywords; for
example, heart-related keywords included ‘myo’ and ‘cardiac’ (full list is in Table S4).
We associated GO biological process terms to tissues by searching the GO term names
for tissue-related keywords. We included associations of GO term to tissues created by
(Greene et al., 2015), after mapping BRENDA tissues to GTEX tissues. Lastly, we
manual checked each GO term — tissue association (Fig. 1A,B, Table S1).

Interactomes GO enrichment tests: All GO enrichments were conducted in GOrilla
(Eden et al., 2009) using the ranked list option. The GOrilla web-server calculates GO
enrichment for a ranked list by taking the optimal hypergeometric tail probability that

is found over all possible partitions induced by the gene ranking and corrected for
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multiple hypothesis testing (Eden et al., 2007). Only processes with p-values lower than
10 were considered enriched. To test the GO enrichment of a tissue interactome, we
converted each interactome into a ranked list of genes. For node-based methods, the list
was ordered in descending order according to node weights. For interaction-based
methods, we assigned each node its median weight across all of its interactions in the
interactome, and the list was ordered in descending order according to these weights.
We repeated this analysis upon assigning each node with its maximal interaction
weight, but results were inferior compared to the median (data not shown).
Enrichment specificity tests: To determine if a ranked list was enriched specifically
for tissue-specific GO biological process terms we used Fisher’s exact test. For this, we
assessed the overlap between the GO terms associated with the tissue, and the GO terms
associated with any tissue that were enriched in the ranked list (Fig. 2B). Tests with a
p-value < 0.05 were considered successful.

Differential interactions tests: GO terms and associations were gathered from the
MyGene.info web-service (Xin etal., 2015) (Sep 2018). We considered only genes with
(i) manually curated tissue-associated GO biological process terms, (ii) > 5 interactors
related to any of these tissue-associated GO terms, and (iii) > 5 interactors that were
not related to any of these tissue-associated GO terms. For each such query gene, we
divided its interactions into two groups: Group A contained interactions with interactors
that were annotated to a tissue-associated GO term as the query gene itself, and group
B contained all its other interactions. Interactions weights were calculated using the
diff_i method. To test the null hypothesis that the weights of interactions in group A
were not significantly higher than the weights of interactions in group B, we performed
the Mann-Whitney-U test. To check for a general trend per tissue, we collapsed together
all the interactions for the same query gene, by computing the median of each A and B
group. We applied this procedure to query genes belonging to tissues with > 20 query
genes. To test for a statistically significant difference between the groups per tissue, we
applied paired Wilcoxon test to the two lists of medians per tissue (Fig. 2E). All p-
values were adjusted for multiple hypothesis testing by using Benjamini-Hochberg
procedure.

Genetic disorders and causal genes datasets: Data of genetic disorders and causal
genes with known molecular basis were downloaded from OMIM on January 2018

(Amberger et al., 2015). To associate genetic disorders with tissues we used the
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phenotypic series data from OMIM. A phenotypic series is an aggregation of genetic
disorders with a common phenotype. We associated each phenotypic series with its
clinically manifesting tissues (Fig. 1A,C) by manually reviewing the information in
OMIM (disorder description and clinical phenotypes) and other sources, such as NIH
Genetic Home Reference (National Library of Medicine, 2013) and the Genetic and
Rare Disease Information Center (GARD) (Lewis et al., 2017). A phenotypic series
could be classified to more than one tissue. Causal genes for similar disorders were
considered related (Table S3). Disorder-associated tissues were manually matched with
relevant GTEX tissues.

Differential interactome enrichment for disorder-related genes: We define a
disorder case as a tuple (disorder; causal gene; manifesting tissue). For each case, we
considered an interactome subnetwork composing the direct and secondary interactions
of the casual gene (denoted query gene). We limited our analyses to causal genes whose
interactome subnetwork contained other genes causal for a similar disorder. We filtered
each subnetwork, such that it contained only nodes with differential interactions that
weighted at the top 1% according to the diff_i method. We calculated the significance
of the enrichment of the filtered subnetwork for genes causal for a similar disorder as
the query gene, by using Fisher exact test with p-values adjusted for multiple hypothesis
testing by Benjamini-Hochberg procedure. We then assessed the overlap of disorder
causal genes between the nodes connected by interactions in top 1% weights and nodes
connected by less weighted interactions. Cases with adjusted p-value < 0.05 were
considered significantly enriched.

To test the null hypothesis that enrichments in the disorder-manifesting tissue was not
more significant than enrichments in other tissues, we compared between the
enrichment p-value obtained in the disorder-manifesting tissue and the median
enrichment p-value across all tissues, using the Mann-Whitney-U test.

To check the trend per tissue, we analyzed tissues with over 30 cases. For each tissue
we two groups: (A) the percentage of disease genes in the unfiltered subnetwork and
(B) the percentage of disease genes in the filtered subnetwork. We performed a Paired-
Wilcoxon test between groups A and B, to test the null hypothesis that the fraction of
the causal genes in the unfiltered subnetwork (group A) does not differ from the fraction

of causal genes in the filtered subnetwork (group B).
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To test the null hypothesis that the number of filtered subnetworks that were enriched
significantly (p < 0.05), denoted num_s, was not higher than expected by chance, we
carried randomization tests. In each test, for each causal gene we selected a tissue at
random and tested whether the filtered subnetwork of the randomly selected tissue
interactome was enriched significantly for additional causal genes. We repeated this for
each causal gene and recorded the number of significantly enriched random
subnetworks, num_r. We repeated this procedure 1,000 times. The significance of

num_s was calculated as the fraction of randomized runs with num_r > num_s.
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