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ABSTRACT 

Motivation: Differential network analysis, designed to highlight interaction changes 

between conditions, is an important paradigm in network biology. However, network 

analysis methods have been typically designed to compare between few conditions, 

were rarely applied to protein interaction networks (interactomes). Moreover, large-

scale benchmarks for their evaluation have been lacking.  

Results: Here, we assess five network analysis methods by applying them to 34 human 

tissues interactomes. For this, we created a manually-curated benchmark of 6,499 

tissue-specific, gene ontology biological processes, and analyzed the ability of each 

method to expose these tissue-process associations. The four differential network 

analysis methods outperformed the non-differential, expression-based method (AUCs 

of 0.82-0.9 versus 0.69, respectively). We then created another benchmark, of 1,527 

tissue-specific disease cases, and analyzed the ability of differential network analysis 

methods to highlight additional disease-related genes. Compared to a non-differential 

subnetworks surrounding a known disease-causing gene, the extremely-differential 

subnetwork (top 1%) was significantly enriched for additional disease-causing genes in 

18.6% of the cases (p10e-3). In 5/10 tissues tested, including Muscle, nerve and heart 

tissues (p = 2.54E-05, 2.71E-04, 3.63E-19), such enrichments were highly significant.  

Summary: Altogether, our study demonstrates that differential network analysis of 

human tissue interactomes is a powerful tool for highlighting processes and genes with 

tissue-selective functionality and clinical impact. Moreover, it offers expansive 

manually-curated datasets of tissue-selective processes and diseases that could serve 

for benchmark and for analyses in many other studies. 

Contact: estiyl@bgu.ac.il 

 

INTRODUCTION 

Knowledge of the molecular compositions of human tissues and cells has grown 

immensely in recent years, owing to large-scale omics projects such as the Human 

Protein Atlas (Uhlen et al., 2015), the Genotype-Tissue expression (GTEx Consortium, 

2017) and, most recently, the Human Cell Atlas (Regev et al., 2017). To better 

understand the functions of tissues and cells, continuous efforts were invested in 

charting their underlying molecular interactions, particularly among human proteins 

(Luck et al., 2017). To date, over 360,000 protein-protein interactions (PPIs) among 

over 18,000 proteins have been detected experimentally and recorded in public 
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databases. Integrating between these PPIs and tissue expression profiles enabled the 

construction of network models (interactomes) of human tissues (Yeger-Lotem and 

Sharan, 2015). Compared to a generic interactome, tissue interactomes were shown to 

be useful for identifying tissue-specific protein functions (Greene et al., 2015), and for 

prioritizing candidate disease-associated genes (Greene et al., 2015; Magger et al., 

2012; Kitsak et al., 2016).  

The molecular profiling of human tissues revealed that distinct tissues share most 

of their expressed genes with all other tissues (GTEx Consortium, 2017), and, 

consequently, much of their underlying interactions (Barshir et al., 2014). This called 

for analyses that will be able to explain tissue-specific phenotypes. Several such 

methods focused on the identification of tissue-specific genes and interactions, used for 

example to illuminate the molecular mechanisms underlying tissue-selective disease 

manifestations (e.g., (Barshir et al., 2014), as well as other applications, as reviewed in 

(Yao et al., 2018). Also unique and often ignored, were genes and interactions that were 

down-regulated in a certain tissue relative to other tissues. Such down-regulated genes 

were recently associated with the predisposition of tissues to hereditary diseases 

(Barshir et al., 2018).   

Differential network (DN) analysis is a powerful paradigm that highlights genes 

and interactions that are either up- or down-regulated in a specific context (Ideker and 

Krogan, 2012). Accordingly, genes and interactions that are shared among contexts are 

downplayed. Many of them could be carrying important house-keeping functions, 

however, they have limited ability to illuminate the mechanisms underlying context-

specific phenotypes. In contrast, these mechanisms can be illuminated by focusing on 

the altered genes and interactions (Bandyopadhyay et al., 2010). DN  methods were 

applied to multiple types of molecular network models, including genetic interaction 

networks (Bandyopadhyay et al., 2010), co-expression networks (Ma et al., 2014; 

Pierson et al., 2015), PPI networks (Basha, Barshir, et al., 2017), and regulatory 

networks (Marbach et al., 2016). Computationally, DN methods focused on network 

nodes (e.g., (Sonawane et al., 2017), (Basha, Barshir, et al., 2017)), network 

interactions (e.g., (Basha, Shpringer, et al., 2017)), or network features such as node 

connectivity (e.g., (Goenawan et al., 2016)). DN methods proved useful for prediction 

of cancer genes (Islam et al., 2013; Warsow et al., 2013), drug targets (Zickenrott et 

al., 2016), and plants’ stress response genes (Ma et al., 2014). Several DN methods 

were implemented as open tools (e.g., (Gill et al., 2010; Landeghem et al., 2016; 
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Gambardella et al., 2013; Ha et al., 2014)). In particular, we developed a DN method 

for tissue interactomes and made it available through the DifferentialNet database 

(Basha, Shpringer, et al., 2017). Specifically, each PPI within a tissue interactome was 

associated with a score, reflecting the up- or down-regulation of the interacting proteins 

relative to other tissues. Yet, a rigorous assessment of DN methods applied to PPI 

networks in general and to tissue interactomes in particular has been lacking, mostly 

for lack of suitable, large-scale benchmarks.  

Here we assess the performance of a non-differential method and four node-based 

and interaction-based DN methods, which we applied to analyze 34 human tissue 

interactomes. To create these interactomes, we integrated the rich dataset of RNA-

sequenced human tissue profiles of gathered by GTEx (GTEx Consortium, 2017) with 

data of over 333,000 experimentally detected PPIs. We implemented the five methods 

and tested their ability to capture tissue-specific features. For this, we created a 

manually curated dataset associating 6,499 gene ontology (GO) biological processes to 

their relevant human tissues. DN methods performed better than a non-differential 

method in accurately highlighting tissue-specific processes. We also evaluated node-

based versus interaction-based methods.  

Next, we applied DN methods to illuminate the enigmatic tissue-selective 

manifestation of hereditary diseases; though caused by aberration in genes that are 

typically expressed across many tissues, hereditary diseases tend to manifest in few, 

selected tissues (Barshir et al., 2014, 2018). Specifically, we tested whether the altered 

sub-network that surrounds disease-causing genes in their respective disease-tissues is 

enriched for additional disease-relevant genes. For this, we manually associated 1,185 

tissue-selective hereditary disorders with their clinically manifesting tissues. In 18.6% 

of the cases, enrichment of the top 1% altered subnetwork was highly statistically 

significant, a fraction much higher than expected by chance based on permutation 

testing (p10e-3). Enrichment was specifically high in muscle, nerve and heart (p = 

2.54E-05, 2.71E-04, 3.63E-19) tissues. Thus, DN analysis of tissue interactomes offers 

a powerful filtering approach for identifying tissue-selective physiological processes 

and disease genes.  
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RESULTS 

Constructing tissue interactomes  

We started by creating an up-to-date version of the human interactome by 

gathering experimentally-detected PPIs from multiple databases (see Methods). This 

resulted in a generic interactome containing 18,542 proteins and 333,745 interactions 

that were detected by well-established detection methods (Basha et al., 2015). To 

construct interactome models for different human tissues, we used RNA-sequenced 

profiles pertaining to 51 tissues that were gathered by GTEx (GTEx Consortium, 2017). 

To avoid a bias toward brain regions, brain sub-regions were further merged into basal 

ganglia, cerebellum, and ‘other’ (as in (Paulson et al., 2017)), resulting in 40 different 

tissues (see Methods). Profiles were normalized as described elsewhere (Basha, 

Barshir, et al., 2017). Our next step was to integrate the generic human interactome 

with the tissue expression profiles to create tissue interactomes.  

We implemented five different methods, including three node based and two 

edge-based methods (see Methods and Table 1). The first was a non-differential, node-

based method, denoted expr_n, where each gene in a tissue interactome was assigned 

with a weight that reflected its expression level in that tissue. Accordingly, genes with 

high, uniform levels across tissues will be assigned high weights in all tissue 

interactomes. Next, we implemented two differential node-based methods. In the first, 

denoted pref_n, each gene in a tissue interactome was assigned with its preferential 

expression in that tissue, as computed by (Sonawane et al., 2017). In the second, 

denoted diff_n, each gene in a tissue interactome was assigned with the difference 

between its expression level in that tissue and its median expression level across all 

tissues. In both methods, genes with high, uniform levels across tissues will be assigned 

weights close to zero. Based on the two differential node-based methods, we 

implemented two differential interaction-based methods. In the first, denoted pref_i, 

interaction weight reflected the summed preferential expression of the two pair-mates 

in that tissue. In the second, denoted diff_i, interaction weight was set to the summed 

expression levels of the two pair mates in that tissue, minus the median summed weight 

across tissues (Basha, Shpringer, et al., 2017).  

We created tissue interactomes by applying each method to the generic human 

interactome. Since some genes were not found to be expressed in any tissue, the 

resulting generic interactome included 16,177 nodes and 257,200 interactions. Notably, 

all tissue interactomes contained the same nodes and edges, and differed from each 
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other only in the weights assigned to their nodes or interactions. In general, the different 

methods resulted in normally-distributed weights per tissue (Fig. S1).  

 

Table 1. The five different schemes to create tissue specific interactomes.   

Method name  Weighted 
Entities  

Weighting method  Differential 

expr_n  Nodes Gene Expression Non-differential  

pref_n  Nodes Preferential expression, developed 

by (Sonawane et al., 2017) 

Differential 

diff_n Nodes Computed as the difference between the 

expression level of a node in a tissue, and its 

median expression level across tissues. 

Differential 

pref_i Interactions Computed as the sum of the preferential 

expression of the interacting nodes, based on 

(Sonawane et al., 2017).  

Differential 

diff_i Interactions Computed as the difference between the 

summed expression levels of the interacting 

nodes in the tissue and their median summed 

expression across tissues (see methods). 

Developed by (Basha, Shpringer, et al., 

2017). 

Differential 

 

Assessing the methods’ ability to highlight tissue-specific processes  

We aimed to evaluate rigorously and at large-scale whether the different methods 

helped illuminate the distinct features of each tissue. For this, we created a gold set of 

tissue-specific GO biological process terms. Our preliminary dataset included GO 

terms whose description contained tissue-related keywords (e.g., 'adipo', 'fat'), as well 

as previously published tissue-associated GO terms (Greene et al., 2015), which we 

matched with the tissues profiled by GTEx. We then manually checked each GO term 

to verify its tissue associations (Fig. 1A). In total, we associated 6,499 terms to 48 

tissues through 7,718 associations (Fig. 1B and Table S1).  
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Fig. 1. Manually-curated datasets of tissue-specific biological processes and hereditary disorders. 

A. We manually associated 6,499 GO biological process terms with their relevant tissues in GTEx, and 

1,185 hereditary disorders with their disorder-manifesting tissue. For example, the process of synaptic 

transmission was associated with the brain (right), and muscular dystrophy was associated with muscle 

(left). B. The number of GO biological process terms that were associated with each tissue. C. The number 

of hereditary disorders cases (disorder & causal gene) that were associated with each tissue. D. The 

number of tissues that clinically manifest a disease (grey) or express a disease-causing gene (turquoise). 

The tissue-selectivity of the 1,185 hereditary diseases stands in large contrast with the ubiquitous 

expression of their 852 causal genes. A gene was considered expressed in a tissue if its expression value 

was  8 normalized counts.  

 

Given this rich dataset, we checked whether the different tissue interactomes were 

able to highlight their respective tissue-associated processes. For this, we converted 

each interactome to a ranked gene list. For node-based methods, ranking was 

determined by node weights in the respective tissue interactome, such that highly 

expressed genes ranked at the top. For interaction-based methods, we assigned each 

node with the median weight of its interactions in the respective tissue interactome. 

Each ranked gene list was then subjected to GO enrichment analysis by using the 

GOrilla tool (Eden et al., 2009), which allowed us to test per interactome and method 

whether the corresponding gene list was enriched for GO terms that were associated 

with the respective tissue. We then calculated per method the number of tissue 

interactomes showing accurate enrichments (Fig. 2A). The non-differential approach, 
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expr_n, had the smallest fraction of accurately enriched tissues (55%). The DN methods 

had much higher fractions of accurately enriched tissues (73-91%), with diff_i 

performing best.  

We further assessed the enrichment specificity of tissue interactomes. Explicitly, 

we tested whether a given tissue interactome was not only enriched for its associated 

GO terms, but was also more frequently enriched for these terms relative to terms 

associated with other tissues, by using Fisher exact test (Fig. 2B, see Methods). We 

then calculated per method the number of tissue interactomes showing significant 

enrichment specificity (p0.05, Fig. 2A). The non-differential method had the lowest 

fraction of significant tissue interactomes, while diff_i and pref_n had the highest 

fractions (Fig. 2A; Table S2). We further compared the enrichment specificity of all 

methods via a ROC analysis (Fig. 2C). The area under the curve (AUC) was smallest 

for the non-differential method (AUC=0.69), while all differential methods performed 

comparably well, especially in the low range of true-positive rate (AUCs of 0.82-0.9). 

As shown in Fig. 2D for the diff_i method, differential tissue interactomes tended to be 

most enriched for their respective tissue GO terms, or for terms associated with 

physiologically-related tissues, such as brain and nerve, or skeletal muscle and heart.  

Since the previous test relied on gene ranking, we developed an alternative test 

that focused on interactions, which we applied to 2,332 query genes that were annotated 

to tissue-specific processes (see Methods). For each query gene in its respective tissue, 

we tested whether its interactions with proteins sharing its tissue-associated terms 

weighted significantly more than its other interactions. Interaction weights 

corresponded to the diff_i method, and statistical significance was tested via the Mann-

Whitney-U test. This was indeed the case for 376 (16%) query genes (adjusted p0.05). 

To obtain a view per tissue, we collated all query genes associated with the same tissue. 

Next, we computed, per query gene, its median interaction weights with (i) proteins 

sharing its tissue-associated terms, and (ii) other proteins, which we inserted into two 

distinct lists. We focused on tissues with at least 20 query genes, and evaluated the 

differences between the two lists via a Paired-Wilcoxon test. In all 11 tissues tested, the 

difference between the two lists was statistically significant (adjusted p0.05, , Fig 2E). 

Altogether, these results indicate that differential tissue interactomes are better than a 

non-differential interactome in highlighting tissue-specific features. This analysis also 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/612143doi: bioRxiv preprint 

https://doi.org/10.1101/612143
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

implies that tissue-specific processes tend to involve differentially up-regulated nodes 

and interactions.  

Fig. 2. Assessing the ability of weighted tissue interactomes to uncover tissue-specific processes.  

A. The fraction of weighted tissue interactomes out of the 34 tissue interactomes that were correctly 

enriched for their respective tissue-associated GO terms (turquois, p10E-3), or showed enrichment 

specificity for these terms (dark color, p≤0.05), per method. B. Illustration of the enrichment specificity 

test. The number of tissue-associated GO terms that were accurately enriched in the corresponding tissue 
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interactome (overlap area, colored turquoise) was assessed for statistical significance via Fisher exact 

test. C. A ROC plot showing the prediction accuracy of each method. Differential methods outperformed 

the non-differential method. D. Visualization of the enrichment specificity test for the diff_i approach. 

Each dot represents the enrichment specificity of the tissue interactome (row) to tissue-associated GO 

terms (column). Most differential tissue interactomes showed enrichment specificity for their respective 

terms or for terms of physiologically related tissues. E. Analysis of differential interactions per query 

gene, for each of the 11 tissues with over 20 query genes. Each dot represents a query gene in the 

respective tissue. Its value corresponds to the difference between two medians: the median weight of its 

interactions with proteins sharing its tissue-associated terms, and the median weight of its other 

interactions. In most query genes, the difference was positive, meaning that interactions involving 

proteins sharing tissue-associated terms weighted higher. Significance was assessed via paired Wilcoxon 

test; * p0.05, ** p1E-5, *** p1E-10.  

 

Applying the differential approach to reveal genes causal for tissue-specific 

disorders  

Previous studies showed that hereditary disorders tend to manifest in few specific 

tissues, although their causal genes are present and often expressed throughout the body 

(Lage et al., 2008; Barshir et al., 2014, 2018). The molecular mechanisms underlying 

hereditary disorders, and in particular their tissue selective manifestation, remain 

unclear for most disorders. Here, we tested whether differential tissue interactomes may 

help illuminate these underlying mechanisms. To enable a large-scale assessment, a 

goldset of tissue associated diseases was needed, yet none were available. Therefore, 

we manually associated phenotypic series from the OMIM database with the tissues in 

which they manifest clinically by reviewing their description in OMIM and other 

medical references (See Methods). A phenotypic series is a group of genetic diseases 

that manifest with similar phenotype. We focused on disorders with known causal genes 

and that were phenotypically related according to OMIM (Amberger et al., 2015)(see 

Methods, Fig. 1A,C, Table S3). Altogether, we analyzed 1,185 disorders with 1,527 

gene cases associated to 26 tissues and 852 causal genes. Notably, while most disorders 

were highly tissue-specific, most of their causal genes were expressed widely across 

tissues (Fig. 1D). Thus, it was intriguing to ask whether the differential interactions 

surrounding causal genes in their respective disease-manifesting tissues could unravel 

disorder-related mechanisms.  

We considered for each causal gene the interactome subnetwork containing its 

direct and secondary interactions (Fig. 3A, left panel). We focused only on subnetworks 
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that included additional genes causal for a similar disorder. To test the ability of 

differential tissue interactomes to reveal disorder-related mechanisms, we filtered each 

subnetwork according to the differential interactome of the respective disorder-

manifesting tissue, which was calculated using the diff_i method. We included only 

nodes adjacent to differential interactions scoring at the top 1% within the respective 

tissue interactome (Fig. 3A, right panel). The top 1% filtered subnetworks were much 

smaller than the unfiltered subnetworks, with a median of 34 versus 3,000 genes, 

respectively. Next, we tested whether filtered subnetworks were more enriched for 

additional causal genes relative to the unfiltered subnetworks (see Methods). We 

collated causal genes according to tissues. For the 10 tissues with more than 30 genes, 

we compared between the percentage of causal genes in the filtered and unfiltered 

subnetworks using paired Wilcoxon test. In 5/10 tissues, filtered subnetworks were 

significantly more enriched (p0.05) (Fig. 3B). Next, we tested for enrichment in each 

individual case. In 283 of the 1,527 cases (18.6%), the filtered subnetwork was enriched 

significantly for additional causal genes (p0.05, Fisher exact test, adjusted via 

Benjamini-Hochberg procedure). This  success rate was not uniform across tissues, 

with some tissues showing high rates (e.g., heart 53%) and other tissues showing lower 

rates (e.g., testis 9.5%; Table S5).To find if this success rate was expected by chance, 

we permuted the disease-tissue associations and repeated this analysis 1,000 times (see 

Methods), showing that this success rate was highly statistically significant (p0.001, 

Fig. 3C). We further tested how the enrichment of the disorder-manifesting tissue 

interactome compared to the enrichments in other tissue interactomes. For that, we 

compared the significance of the enrichment in the ‘accurate’ tissue to the median 

significance of the enrichments in other tissues, using Mann-Whitney-U test between 

the p-value in the disease tissue and the median p-value across all tissues. This 

confirmed that the p-value in the disease tissue is significantly lower then the p-values 

in other tissues (p = 6.19e-68).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/612143doi: bioRxiv preprint 

https://doi.org/10.1101/612143
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Fig. 3. Assessing the ability of differential tissue interactomes to uncover disorder-related genes. A. 

Left: The interactome subnetwork surrounding the query gene KLH41 that is causal for spinocerebellar 

ataxia included its direct and secondary interactions. The subnetwork amounted to 1,745 genes, including 

8 other genes causal for nemaline myopathy. Right: The top 1% filtered subnetwork of KLH41 in skeletal 

muscle, where nemaline myopathy is manifested. The subnetwork contained 144 genes, including 6/8 of 

the other genes causal for nemaline myopathy (p=6.97E-06). Genes causal for nemaline myopathy appear 

in red; KLH41 is shaped as a diamond. B. Visualization of the tissue-based enrichment analysis. Each dot 

represents a query gene in the unfiltered subnetwork (grey) and the top 1% filtered subnetwork of its 

disease-manifesting tissue (red). The value of each dot corresponds to the percentage of genes causal for 

the same disease as the query gene, out of the total number of nodes in that subnetwork. Data are shown 

for the 10 tissues with at least 30 different causal genes. In 5/10 tissues the top 1% filtered subnetworks 

were significantly enriched (paired Wilcoxon test; * p≤ 0.05, ** p≤ 5E-3, *** p≤ 1E-17). C. The 

distribution of the numbers of successes in the 1,000 randomization runs, showing a median of 54 

successes and maximal value of 86. In contrast, the tested diff_i method had 283 successes (p0.001) 

which places it far beyond any of the randomized test. 

 

The power of this analysis is demonstrated by the case of KLH41 (Fig. 3A). This 

protein is involved in skeletal muscle development and maintenance processes. 

Mutations in this gene cause nemaline myopathy (NM), a rare hereditary muscle 

disorder. The interactome subnetwork of KLH41 included 1,745 nodes, among which 

were eight other genes causal for NM. Upon filtering this subnetwork to include only 

nodes with differential interactions scoring at the top 1%, we obtained a much smaller 

subnetwork containing only 144 genes, yet, including six of the eight additional causal 

genes (Fisher exact test p=6.97E-06, Fig. 3A). Notably, in the case of KLH41, some of 
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the causal genes were only indirectly connected to each other, showing the ability of 

differential interactomes to pull out meaningful secondary relationships. Additional 

examples appear in Fig. 4. Thus, differential tissue interactomes appear to be effective 

in illuminating disorder mechanisms.  

Fig. 4. The top 1% differential subnetwork that surrounds a causal gene (red diamond) in its 

disorder-tissue interactomes is 

enriched for additional causal 

genes. A. MYH6 is casual for 

familial hypertrophic 

cardiomyopathy. Its filtered 

subnetwork in heart contained 64 

genes (compared to 2,277 in the 

unfiltered subnetwork), including 

all 9 genes casual for hypertrophic 

cardiomyopathy in the unfiltered 

subnetwork (p=6.17E-15). B. 

LHX4 is casual for pituitary 

hormone deficiency. Its filtered 

subnetwork in the pituitary 

contained 44 genes (compared to 

1,800 genes in the unfiltered subnetwork), including all 3 genes causal for this disorder in the unfiltered 

subnetwork (p= 1.31E-05). C. SDR9C7 is casual for autosomal recessive congenital Ichthyosis that 

manifests in skin. Its filtered subnetwork in skin contained 40 genes (compared to 652 genes), including 

4 of the 5 genes causal for this disorder in the unfiltered subnetwork (p=5.85E-05). 

 

DISCUSSION 

Differential network analysis is a powerful paradigm in network biology (Ideker 

and Krogan, 2012), but has not been widely applied to tissue interactomes composed 

of PPIs. This is partly because there were no large-scale quantitative data allowing for 

interactome weighting in different contexts, and because benchmarks allowing for 

evaluation of different schemes have been lacking. Here we show rigorously and at 

large-scale the value of differential network analysis in highlighting tissue-specific 

processes and disease mechanisms. To allow for large-scale assessments, we created 

two manually-curated datasets. The first dataset includes 7,718 associates between 

6,499 GO biological process terms and 48 tissues. The second dataset includes 1,527 

associations between 1,185 hereditary disorders and 26 clinically-manifesting tissues 

(Fig. 1). While these resources remain incomplete and are not distributed uniformly 
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across tissues, they compose a uniquely extensive resource that may serve many other 

future studies and applications focusing on the physiology and pathophysiology of 

human tissues.  

We implemented and assessed five different interactome weighting methods, 

including four DN methods. We first analyzed the ability of each method to highlight 

tissue-specific processes. The non-differential method of ranking genes by their 

expression within a tissue (expr_n), was outperformed by DN methods, demonstrating 

the value of differential weighting schemes in highlighting tissue-specific features (Fig. 

2A). Both node-based and interaction-based DN methods performed well in 

highlighting tissue-specific processes (Fig. 2C). The value of interaction-based 

methods was also assessed using the gene-neighbors test (Fig. 2E). Given that 

interactomes contain more interactions than nodes, scoring by interactions might be 

more informative in some settings.  

After identifying the power of the DN methods and establishing that tissue-

specific processes are well captured by focusing on differential interactions, we turned 

to analyze hereditary disorders. Hereditary disorders tend to manifest clinically in few 

tissues, while the aberrant gene is present and often expressed across the body (Fig. 1D) 

(Lage, 2014; Barshir et al., 2014, 2018). However, the mechanisms underlying the 

tissue-selective manifestation of hereditary disorders is well understood only in few 

cases; for most disorders it remains enigmatic (Barshir et al., 2014). Previous efforts to 

unravel the molecular basis of this phenomenon showed that in a considerable fraction 

of hereditary disorders, clinically affected tissues are associated with elevated 

expression of the causal gene (Barshir et al., 2014; Lage, 2014), tissue-specific 

interactions (Barshir et al., 2014), and down-regulation of paralogs of the casual genes 

correct this ref (Barbeira et al., 2018). These properties easily translate into differential 

nodes and interactions within tissue interactomes, suggesting that differential 

subnetworks surrounding causal genes could be informative of additional genes causal 

for the same disorder.  

To answer this challenge, we assessed whether differential network analysis can 

effectively identify disorder-related genes. For this, we focused only on the top 1% 

differential interactions surrounding causal genes. This stringent cutoff reduced 

subnetworks sizes from ~3,000 genes to ~30 genes (Fig. 3A,D). In half of the tissues 

tested, the differential subnetworks were enriched significantly for disorder-related 

genes, relative to unfiltered subnetworks. In 18.6% of the individual cases, enrichment 
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was highly significant, and the fraction of successful cases was much higher than 

expected by chance (p0.001). With the rapid accumulation of molecular interactions 

data and the move towards precision medicine, differential and other context-sensitive 

filtering approaches are becoming essential for meaningful interactome analyses and 

interpretation (Gligorijević et al., 2016). The methods we described, the large-scale 

resources, and the rigorous assessment tests that we put presented, may thus serve many 

other future applications. 

 

METHODS 

Tissue expression data: RNA sequencing profiles were obtained from the GTEx portal 

(version 7) (GTEx Consortium, 2017), resulting in 11,216 samples from 51 tissues. 

Only genes with more than 5 read counts in at least 10 samples were included in the 

analysis. Raw read counts were normalized for sample library size via the TMM method 

by edgeR (Robinson et al., 2010) to produce counts per million (cpm). Only genes with 

cpm values ≥8 in at least 10 samples were considered henceforth, and their cpm values 

were log2 transformed to obtain normal distributions. Samples per tissue were merged 

such that the expression of each gene was set to its median expression value across 

samples. Similarly to (Paulson et al., 2017), brain sub-regions were further merged into 

three regions, named basal ganglia, cerebellum, and ‘other’.  

PPI data: Human PPIs were gathered from BioGrid (Chatr-Aryamontri et al., 2017), 

DIP (Salwinski et al., 2004), MINT (Ceol et al., 2010) and IntAct (Aranda et al., 2010) 

by using the MyProteinNet web-server (Basha et al., 2015). The MyProteinNet web-

server ensures that only PPIs detected by well-established methods for physical 

interactions detection were considered.  

Construction of tissue interactomes: All tissue interactomes contained the same 

number of nodes and interactions and differed only in the weights that they were 

associated with. We used five different weighting methods, as described below. Let 𝑒𝑖
𝑡𝑘 

denote the normalized read counts of gene 𝑖 in tissue 𝑡𝑘.  

1. The non-differential method, expr_n: In the interactome of tissue 𝑡𝑘, each node was 

assigned with a weight that reflects its expression level in that tissue, 𝑒𝑖
𝑡𝑘.  

2. The differential node method, diff_n: In the interactome of tissue 𝑡𝑘 , each node was 

assigned with a weight, denoted 𝑤𝑖
𝑡𝑘 , that reflects its differential expression level in that 

tissue relative to its median expression level across all tissues (equation 1): 
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(1) 𝑤𝑖
𝑡𝑘 =  𝑒𝑖

𝑡𝑘 − 𝑒𝑖
𝑚𝑒𝑑𝑖𝑎𝑛 

3. The differential node method, pref_n: In the interactome of tissue 𝑡𝑘 , each node was 

assigned with a weight, denoted 𝑝𝑖
𝑡𝑘 , that reflects its preferential expression in that 

tissue as computed by (Sonawane et al., 2017).  

4. The differential interaction method, pref_i: In the interactome of tissue 𝑡𝑘 , an 

interaction between genes 𝑖 and 𝑗 was assigned a weight, denoted 𝑤𝑖𝑗
𝑡𝑘 , that was set to 

the sum of the preferential weight of the two nodes (equation 2): 

(2) 𝑤𝑖𝑗
𝑡𝑘 =  𝑝𝑖

𝑡𝑘 + 𝑝𝑗
𝑡𝑘 

5. The differential interaction method, diff_i: In the interactome of tissue 𝑡𝑘 , an 

interaction between genes 𝑖  and 𝑗  was assigned a weight, denoted 𝑤′𝑖𝑗
𝑡𝑘 , that was 

designed to reflect the probability for interaction given 𝑖  and 𝑗  expression levels 

(Basha, Shpringer, et al., 2017). This was approximated by 𝑒𝑖
𝑡𝑘 ∗ 𝑒𝑗

𝑡𝑘 , namely the sum 

of their log2 normalized counts values (equation 3). We further normalized this weight 

relative to the maximal interaction weight in that tissue, to fit the range of [0,1] 

(equation 4). The differential weight of that interaction, denoted 𝑤𝑖𝑗
𝑡𝑘 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙

, was 

computed by subtracting the median weight for that interaction across all tissues 

(equation 5).   

(3) 𝑤′𝑖𝑗
𝑡𝑘 =  𝑒𝑖

𝑡𝑘 + 𝑒𝑗
𝑡𝑘 

(4) 𝑤𝑖𝑗
𝑡𝑘 =  

𝑤′𝑖𝑗

𝑡𝑘

max (𝑤′
𝑖𝑗

𝑡𝑘)
 

(5) 𝑤𝑖𝑗
𝑡𝑘 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙

= 𝑤𝑖𝑗
𝑡𝑘 − 𝑤𝑖𝑗

𝑚𝑒𝑑𝑖𝑎𝑛 

Associating GO terms with tissues: We created a list of tissue-related keywords; for 

example, heart-related keywords included ‘myo’ and ‘cardiac’ (full list is in Table S4). 

We associated GO biological process terms to tissues by searching the GO term names 

for tissue-related keywords. We included associations of GO term to tissues created by 

(Greene et al., 2015), after mapping BRENDA tissues to GTEx tissues. Lastly, we 

manual checked each GO term – tissue association (Fig. 1A,B, Table S1). 

Interactomes GO enrichment tests: All GO enrichments were conducted in GOrilla 

(Eden et al., 2009) using the ranked list option. The GOrilla web-server calculates GO 

enrichment for a ranked list by taking the optimal hypergeometric tail probability that 

is found over all possible partitions induced by the gene ranking and corrected for 
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multiple hypothesis testing (Eden et al., 2007). Only processes with p-values lower than 

10-3 were considered enriched. To test the GO enrichment of a tissue interactome, we 

converted each interactome into a ranked list of genes. For node-based methods, the list 

was ordered in descending order according to node weights. For interaction-based 

methods, we assigned each node its median weight across all of its interactions in the 

interactome, and the list was ordered in descending order according to these weights. 

We repeated this analysis upon assigning each node with its maximal interaction 

weight, but results were inferior compared to the median (data not shown).  

Enrichment specificity tests: To determine if a ranked list was enriched specifically 

for tissue-specific GO biological process terms we used Fisher’s exact test. For this, we 

assessed the overlap between the GO terms associated with the tissue, and the GO terms 

associated with any tissue that were enriched in the ranked list (Fig. 2B). Tests with a 

p-value  0.05 were considered successful.  

Differential interactions tests: GO terms and associations were gathered from the 

MyGene.info web-service (Xin et al., 2015) (Sep 2018). We considered only genes with 

(i) manually curated tissue-associated GO biological process terms, (ii) ≥ 5 interactors 

related to any of these tissue-associated GO terms, and (iii) ≥ 5 interactors that were 

not related to any of these tissue-associated GO terms. For each such query gene, we 

divided its interactions into two groups: Group A contained interactions with interactors 

that were annotated to a tissue-associated GO term as the query gene itself, and group 

B contained all its other interactions. Interactions weights were calculated using the 

diff_i method. To test the null hypothesis that the weights of interactions in group A 

were not significantly higher than the weights of interactions in group B, we performed 

the Mann-Whitney-U test. To check for a general trend per tissue, we collapsed together 

all the interactions for the same query gene, by computing the median of each A and B 

group. We applied this procedure to query genes belonging to tissues with ≥ 20 query 

genes. To test for a statistically significant difference between the groups per tissue, we 

applied paired Wilcoxon test to the two lists of medians per tissue (Fig. 2E). All p-

values were adjusted for multiple hypothesis testing by using Benjamini-Hochberg 

procedure. 

Genetic disorders and causal genes datasets: Data of genetic disorders and causal 

genes with known molecular basis were downloaded from OMIM on January 2018 

(Amberger et al., 2015). To associate genetic disorders with tissues we used the 
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phenotypic series data from OMIM. A phenotypic series is an aggregation of genetic 

disorders with a common phenotype. We associated each phenotypic series with its 

clinically manifesting tissues (Fig. 1A,C) by manually reviewing the information in 

OMIM (disorder description and clinical phenotypes) and other sources, such as NIH 

Genetic Home Reference (National Library of Medicine, 2013) and the Genetic and 

Rare Disease Information Center (GARD) (Lewis et al., 2017). A phenotypic series 

could be classified to more than one tissue. Causal genes for similar disorders were 

considered related (Table S3). Disorder-associated tissues were manually matched with 

relevant GTEx tissues. 

Differential interactome enrichment for disorder-related genes: We define a 

disorder case as a tuple (disorder; causal gene; manifesting tissue). For each case, we 

considered an interactome subnetwork composing the direct and secondary interactions 

of the casual gene (denoted query gene). We limited our analyses to causal genes whose 

interactome subnetwork contained other genes causal for a similar disorder. We filtered 

each subnetwork, such that it contained only nodes with differential interactions that 

weighted at the top 1% according to the diff_i method. We calculated the significance 

of the enrichment of the filtered subnetwork for genes causal for a similar disorder as 

the query gene, by using Fisher exact test with p-values adjusted for multiple hypothesis 

testing by Benjamini-Hochberg procedure. We then assessed the overlap of disorder 

causal genes between the nodes connected by interactions in top 1% weights and nodes 

connected by less weighted interactions. Cases with adjusted p-value ≤ 0.05 were 

considered significantly enriched.  

To test the null hypothesis that enrichments in the disorder-manifesting tissue was not 

more significant than enrichments in other tissues, we compared between the 

enrichment p-value obtained in the disorder-manifesting tissue and the median 

enrichment p-value across all tissues, using the Mann-Whitney-U test.  

To check the trend per tissue, we analyzed tissues with over 30 cases. For each tissue 

we two groups: (A) the percentage of disease genes in the unfiltered subnetwork and 

(B) the percentage of disease genes in the filtered subnetwork. We performed a Paired-

Wilcoxon test between groups A and B, to test the null hypothesis that the fraction of 

the causal genes in the unfiltered subnetwork (group A) does not differ from the fraction 

of causal genes in the filtered subnetwork (group B). 
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To test the null hypothesis that the number of filtered subnetworks that were enriched 

significantly (p  0.05), denoted num_s, was not higher than expected by chance, we 

carried randomization tests. In each test, for each causal gene we selected a tissue at 

random and tested whether the filtered subnetwork of the randomly selected tissue 

interactome was enriched significantly for additional causal genes. We repeated this for 

each causal gene and recorded the number of significantly enriched random 

subnetworks, num_r. We repeated this procedure 1,000 times. The significance of 

num_s was calculated as the fraction of randomized runs with num_r  num_s. 
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