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Abstract

Summary: Variant Call Format (VCF), the prevailing representation for germline genotypes in population
sequencing, suffers rapid size growth as larger cohorts are sequenced and more rare variants are
discovered. We present Sparse Project VCF (spVCF), an evolution of VCF with judicious entropy
reduction and run-length encoding, delivering ~10X size reduction for modern studies with practically
minimal information loss. spVCF interoperates with VCF efficiently, including tabix-based random access.
Availability and Implementation: Freely available at github.com/mlin/spVCF

Contact: dna@mlin.net

1 Introduction

Variant Call Format (VCF) is the prevailing representation for germline
variants discovered by high-throughput sequencing ,).
In addition to capturing variants sequenced in one study participant, VCF
can represent the genotypes for many participants at all discovered variant
loci. This "Project VCF" (pVCF) form is a 2-D matrix with loci down
the rows and participants across the columns, filled in with each called
genotype and associated quality-control (QC) measures, such as read
depths, read strand ratios, and genotype likelihoods.

As the number of study participants /N grows (columns), more variant
loci are also discovered (rows), leading to super-linear growth of the
pVCEF genotype matrix. And, because cohort sequencing discovers mostly
rare variants, this matrix consists largely of reference-identical genotypes
and their high-entropy QC measures. In recent experiments with human
whole-exome sequencing (WES), doubling N from 25000 to 50000 also
increased the pVCF locus count by 43%, and 96% of all loci had non-
reference allele frequency below 0.1% , m). Empirically,
vcf.gz file sizes in WES and whole-genome sequencing (WGS) are
growing roughly with N1-% in the largest studies as of this writing
(N ~ 100000). Unchecked, we project N = 1000000 WGS will
yield petabytes of compressed pVCFE.

2 Approach

We sought an incremental path to ameliorate the QC entropy and
size growth problems in existing pVCF-based pipelines, which may
be reluctant to adopt fundamentally different formats or data models

(Layer erall R01314 2015 [Stilp er atl 2017;

addressing these challenges

© The Author 2019.

LeFaivd. 2017 Danek and Deorowicz, 2018 Klargvist 2018). To this end,
we developed an evolution of VCF, Sparse Project VCF (spVCF), which
begins with the same data model and text format, and adds three simple
ideas (Fig. 1):

(1) Squeezing: judiciously reducing QC entropy. In any cell with a
reference-identical (or non-called) genotype and QC measures indicating
zero reads supporting a variant (typically Allele Depth AD = d, O for any
d, but this depends on the upstream tools), we discard all fields except the
genotype and the read depth DP, which we also round down to a power of
two (0, 1, 2, 4, 8, 16, ...; configurable).

This QC squeezing convention, inspired by similar techniques for
read quality scores (Fritz et all, m; lumind, m; Uun et all, m;
, ), preserves full detail in all cells indicating any

appreciable evidence for a variant, even if a variant genotype is not actually

called; in other cells, it maintains a discretized lower bound on the reference
depth. We contend that this convention keeps nearly all useful information,
removing uninformative fluctuations in QC measures.

(2) Succinct, lossless encoding for runs of reference-identical cells
along both matrix dimensions. First we replace the contents of a reference-
identical (or non-called) cell with a quotation mark " if it’s identical to
the cell above it, compressing runs down the column for each sample.
Then we run-length encode these quotation marks across the rows, so for
example a stretch of 42 marks across a row is written <tab>"42 instead
of repeating <tab>" forty-two times.

Even without QC squeezing, identical runs down pVCF columns
are a common byproduct of "gVCF merging" tools such as GATK

MMWM) GenotypeGVCFs and GLnexus
, ), when they analyze many closely-spaced loci in large

cohorts. The QC squeezing not only reduces the data size prior to
run-encoding, but also synergistically lengthens the available runs.
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(A) pVCF

#CHROM POS REF ALT FORMAT Alyssa Ben Cy

22 1000 A G GT:DP:AD:PL 0/0:35:35,0:0,117,402 0/0:29:29,0:0,109, 387 0/0:22:22,0:0,63,188

22 1012 CT C GT:DP:AD:PL 0/0:35:35,0:0,117,402 0/0:31:31,0:0,117,396 0/1:28:17,11:74,0,188

22 1018 G A  GT:DP:AD:PL 0/0:35:35,0:0,117,402 0/0:31:31,0:0,117,396 1/1:27:0,27:312,87,0

22 1074 T C,G GT:DP:AD:PL 0/0:33:33,0,0:0,48,62,52,71,94 ./.:0:0,0:.,.,.,.,.,. 1/2:42:4,20,18:93,83,76,87,0,77
(B) spVCF

#CHROM POS REF ALT FORMAT Alyssa Ben Cy

22 1000 A G GT:DP:AD:PL 0/0:32 0/0:16 0/0:16

22 1012 CT C GT:DP:AD:PL "2 0/1:28:17,11:74,0,188

22 1018 G A GT:DP:AD:PL "2 1/1:27:0,27:312,87,0

22 1074 T C,G GT:DP:AD:PL " ./.:0 1/2:42:4,20,18:93,83,76,87,0,77

Fig. 1. spVCF encoding example. (A) Illustrative pVCF of four variant loci in three sequenced study participants, with matrix entries encoding called genotypes and several numeric QC

measures. Some required VCF fields are omitted for brevity. (B) spVCF encoding of the same example. QC values for reference-identical and non-called cells are reduced to a power-of-two

lower bound on read depth DP. Runs of identical entries down columns are abbreviated using quotation marks, then runs of these marks across rows are length-encoded. Cy’s entries are

shown column-aligned for clarity; the encoded text matrix is ragged.

(3) Checkpointing to facilitate random access by genome range (row)
within a spVCEF file. While all variant genotype cells are readily accessible
from a given spVCF row, fully decoding the reference-identical and non-
called cells would require information from an unpredictable number of
prior rows. To expedite random access, the spVCF encoder periodically
skips run-encoding a row, instead emitting a row identical to the squeezed
pVCE. Subsequent run-encoded rows can be decoded by looking back no
farther than this checkpoint row. Every run-encoded row has an additional
informational field with the position of the previous checkpoint. Genome
range access proceeds by locating the first desired row, following its pointer
back to a checkpoint, and reversing the run-encoding from the checkpoint
through the desired row(s).

3 Reference implementation

Our Unix command-line tool spvcf provides efficient transcoding
between pVCF and spVCE, typically arranged in a shell pipeline to
gunzip the input and bgzip the output. Different invocations of the
tool can cause it to (i) squeeze and run-encode pVCF to spVCEF, (ii) run-
encode pVCF losslessly without squeezing, (iii) squeeze pVCF without
run-encoding (producing valid pVCF that is typically much smaller, albeit
not as small as spVCF), or (iv) decode spVCF back to pVCF.

If a spVCF file is compressed using bgzip, then tabix can create
a random-access index for it (D, M), as the encoding does not affect
the necessary locus-level VCF fields. A subcommand of spvcf used
instead of t albix can then access rows by genome position, consulting the
checkpoints to formulate a spVCF "slice" that can be decoded standalone.
The encoder checkpoints at a regular, configurable period and at the
start of each chromosome; more-strategic checkpointing might improve
compression slightly in the future.

The Apache-licensed code, compiled Linux executable, and detailed
format documentation are available from: github.com/mlin/spVCF

4 Applied tests

We tested spVCF on two sizeable WES studies using different upstream
variant-calling pipelines.
First, using N = 50000 WES from the DiscovEHR study
Jﬂ), we reduced a GATK-based pVCF file with 620 782
chromosome 2 variant loci from 79GiB vcf . gz to a 5.2GiB spvcf.gz
file, 15X size reduction. Most of this (6.9X) was achieved by the
QC squeezing, while the run-encoding contributed an additional 2.2X.

Experiments with nested subsets of these N = 50000 WES indicate
spvef.gz file sizes growing roughly with N1, compared to N1-®
for the original pvcf.gz. (VCF’s binary equivalent, BCF, reduces this
example by 1.2X losslessly and exhibits the same N'1-5 scaling.)

Second, with N = 49960 WES from UK Biobank (Bycroft ef all,
; , ), the 75GiB vcf.gz for chromosome
1 reduced to 9.2GiB spvcf.gz, 8.2X reduction (4.1X from QC
squeezing and 2.0X from run-encoding). This dataset was produced
using an upstream pipeline that already omits genotype likelihoods
in most reference-identical cells, leaving less to be removed by QC
squeezing compared to DiscovEHR; spVCF delivered marked size
reduction nonetheless.

In these tests, spvcf squeezed and run-encoded the uncompressed
pVCF at more than twice the speed of bgz ip compressing the same input
(each on a single x86-64 thread; both tools also have multithread modes).
The decoder, with inputs and outputs both much smaller than the original
pVCE, is several times faster still. Thus, it would be practical — and possibly
advantageous — to store spVCF and decode it to pVCF only transiently,
whenever downstream analyses require it. The smaller squeezed pVCF
also tends to speed up tools consuming it.

5 Discussion

spVCF’s interoperability with VCF — resulting from its identical data
model and performant transcoder — makes it a practical "next step" for
storage and transfer in ongoing cohort sequencing projects. At N =~
50 000, most size reduction results from QC squeezing rather than sparse
run-encoding. We expect run-encoding’s relative contribution to increase
with N as variant loci become more closely spaced, extending runs with
similar read depth. spVCF’s better-controlled growth — though still slightly
super-linear in IV, owing to residual depth fluctuations — clears the way to
scale up the VCF data model to N = 1 000 000 WGS studies in the near
future.

Decoding spVCF to pVCF for downstream analysis implies runtime
scaling with the less-favorable pVCF growth trend. In principle, many
downstream analyses can be computed from the run-encoded spVCF
directly, albeit with specialized coding. Upstream, we plan to improve
GLnexus scalability by generating spVCF directly without materializing
pVCE. Meanwhile many investigators — motivated by advances in linked-
and long-read sequencing — are developing haplotype-centric paradigms
which may eventually replace VCFE.
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