
✐

✐

“output” — 2019/4/17 — 5:19 — page 1 — #1
✐

✐

✐

✐

✐

✐

Advance Access Publication Date: Day Month Year

Applications Note

Genetics and Population Analysis

Sparse Project VCF: efficient encoding of

population genotype matrices

Michael F. Lin 1,∗, Xiaodong Bai 2, William J. Salerno 2 and Jeffrey G. Reid 2

1mlin.net LLC, San Jose, CA 95113, USA and
2Regeneron Genetics Center, Tarrytown, NY 10591, USA.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Summary: Variant Call Format (VCF), the prevailing representation for germline genotypes in population

sequencing, suffers rapid size growth as larger cohorts are sequenced and more rare variants are

discovered. We present Sparse Project VCF (spVCF), an evolution of VCF with judicious entropy

reduction and run-length encoding, delivering ∼10X size reduction for modern studies with practically

minimal information loss. spVCF interoperates with VCF efficiently, including tabix-based random access.

Availability and Implementation: Freely available at github.com/mlin/spVCF

Contact: dna@mlin.net

1 Introduction

Variant Call Format (VCF) is the prevailing representation for germline

variants discovered by high-throughput sequencing (Danecek et al., 2011).

In addition to capturing variants sequenced in one study participant, VCF

can represent the genotypes for many participants at all discovered variant

loci. This "Project VCF" (pVCF) form is a 2-D matrix with loci down

the rows and participants across the columns, filled in with each called

genotype and associated quality-control (QC) measures, such as read

depths, read strand ratios, and genotype likelihoods.

As the number of study participants N grows (columns), more variant

loci are also discovered (rows), leading to super-linear growth of the

pVCF genotype matrix. And, because cohort sequencing discovers mostly

rare variants, this matrix consists largely of reference-identical genotypes

and their high-entropy QC measures. In recent experiments with human

whole-exome sequencing (WES), doubling N from 25 000 to 50 000 also

increased the pVCF locus count by 43%, and 96% of all loci had non-

reference allele frequency below 0.1% (Lin et al., 2018). Empirically,

vcf.gz file sizes in WES and whole-genome sequencing (WGS) are

growing roughly with N1.5 in the largest studies as of this writing

(N ≈ 100 000). Unchecked, we project N = 1000 000 WGS will

yield petabytes of compressed pVCF.

2 Approach

We sought an incremental path to ameliorate the QC entropy and

size growth problems in existing pVCF-based pipelines, which may

be reluctant to adopt fundamentally different formats or data models

addressing these challenges (Layer et al., 2015; Li, 2015; Stilp et al., 2017;

LeFaive, 2017; Danek and Deorowicz, 2018; Klarqvist, 2018). To this end,

we developed an evolution of VCF, Sparse Project VCF (spVCF), which

begins with the same data model and text format, and adds three simple

ideas (Fig. 1):

(1) Squeezing: judiciously reducing QC entropy. In any cell with a

reference-identical (or non-called) genotype and QC measures indicating

zero reads supporting a variant (typically Allele Depth AD = d, 0 for any

d, but this depends on the upstream tools), we discard all fields except the

genotype and the read depth DP, which we also round down to a power of

two (0, 1, 2, 4, 8, 16, ...; configurable).

This QC squeezing convention, inspired by similar techniques for

read quality scores (Fritz et al., 2011; Illumina, 2014; Jun et al., 2015;

Bonfield et al., 2018), preserves full detail in all cells indicating any

appreciable evidence for a variant, even if a variant genotype is not actually

called; in other cells, it maintains a discretized lower bound on the reference

depth. We contend that this convention keeps nearly all useful information,

removing uninformative fluctuations in QC measures.

(2) Succinct, lossless encoding for runs of reference-identical cells

along both matrix dimensions. First we replace the contents of a reference-

identical (or non-called) cell with a quotation mark " if it’s identical to

the cell above it, compressing runs down the column for each sample.

Then we run-length encode these quotation marks across the rows, so for

example a stretch of 42 marks across a row is written <tab>"42 instead

of repeating <tab>" forty-two times.

Even without QC squeezing, identical runs down pVCF columns

are a common byproduct of "gVCF merging" tools such as GATK

(DePristo et al., 2011; Poplin et al., 2018) GenotypeGVCFs and GLnexus

(Lin et al., 2018), when they analyze many closely-spaced loci in large

cohorts. The QC squeezing not only reduces the data size prior to

run-encoding, but also synergistically lengthens the available runs.

© The Author 2019. 1

.CC-BY 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 17, 2019. ; https://doi.org/10.1101/611954doi: bioRxiv preprint 

dna@mlin.net
https://doi.org/10.1101/611954
http://creativecommons.org/licenses/by/4.0/


✐

✐

“output” — 2019/4/17 — 5:19 — page 2 — #2
✐

✐

✐

✐

✐

✐

2 Lin et al.

(A) pVCF

#CHROM POS REF ALT FORMAT Alyssa Ben Cy

22 1000 A G GT:DP:AD:PL 0/0:35:35,0:0,117,402 0/0:29:29,0:0,109,387 0/0:22:22,0:0,63,188

22 1012 CT C GT:DP:AD:PL 0/0:35:35,0:0,117,402 0/0:31:31,0:0,117,396 0/1:28:17,11:74,0,188

22 1018 G A GT:DP:AD:PL 0/0:35:35,0:0,117,402 0/0:31:31,0:0,117,396 1/1:27:0,27:312,87,0

22 1074 T C,G GT:DP:AD:PL 0/0:33:33,0,0:0,48,62,52,71,94 ./.:0:0,0:.,.,.,.,.,. 1/2:42:4,20,18:93,83,76,87,0,77

(B) spVCF

#CHROM POS REF ALT FORMAT Alyssa Ben Cy

22 1000 A G GT:DP:AD:PL 0/0:32 0/0:16 0/0:16

22 1012 CT C GT:DP:AD:PL "2 0/1:28:17,11:74,0,188

22 1018 G A GT:DP:AD:PL "2 1/1:27:0,27:312,87,0

22 1074 T C,G GT:DP:AD:PL " ./.:0 1/2:42:4,20,18:93,83,76,87,0,77

Fig. 1. spVCF encoding example. (A) Illustrative pVCF of four variant loci in three sequenced study participants, with matrix entries encoding called genotypes and several numeric QC

measures. Some required VCF fields are omitted for brevity. (B) spVCF encoding of the same example. QC values for reference-identical and non-called cells are reduced to a power-of-two

lower bound on read depth DP. Runs of identical entries down columns are abbreviated using quotation marks, then runs of these marks across rows are length-encoded. Cy’s entries are

shown column-aligned for clarity; the encoded text matrix is ragged.

(3) Checkpointing to facilitate random access by genome range (row)

within a spVCF file. While all variant genotype cells are readily accessible

from a given spVCF row, fully decoding the reference-identical and non-

called cells would require information from an unpredictable number of

prior rows. To expedite random access, the spVCF encoder periodically

skips run-encoding a row, instead emitting a row identical to the squeezed

pVCF. Subsequent run-encoded rows can be decoded by looking back no

farther than this checkpoint row. Every run-encoded row has an additional

informational field with the position of the previous checkpoint. Genome

range access proceeds by locating the first desired row, following its pointer

back to a checkpoint, and reversing the run-encoding from the checkpoint

through the desired row(s).

3 Reference implementation

Our Unix command-line tool spvcf provides efficient transcoding

between pVCF and spVCF, typically arranged in a shell pipeline to

gunzip the input and bgzip the output. Different invocations of the

tool can cause it to (i) squeeze and run-encode pVCF to spVCF, (ii) run-

encode pVCF losslessly without squeezing, (iii) squeeze pVCF without

run-encoding (producing valid pVCF that is typically much smaller, albeit

not as small as spVCF), or (iv) decode spVCF back to pVCF.

If a spVCF file is compressed using bgzip, then tabix can create

a random-access index for it (Li, 2011), as the encoding does not affect

the necessary locus-level VCF fields. A subcommand of spvcf used

instead oftabix can then access rows by genome position, consulting the

checkpoints to formulate a spVCF "slice" that can be decoded standalone.

The encoder checkpoints at a regular, configurable period and at the

start of each chromosome; more-strategic checkpointing might improve

compression slightly in the future.

The Apache-licensed code, compiled Linux executable, and detailed

format documentation are available from: github.com/mlin/spVCF

4 Applied tests

We tested spVCF on two sizeable WES studies using different upstream

variant-calling pipelines.

First, using N = 50 000 WES from the DiscovEHR study

(Dewey et al., 2016), we reduced a GATK-based pVCF file with 620 782

chromosome 2 variant loci from 79GiB vcf.gz to a 5.2GiB spvcf.gz

file, 15X size reduction. Most of this (6.9X) was achieved by the

QC squeezing, while the run-encoding contributed an additional 2.2X.

Experiments with nested subsets of these N = 50 000 WES indicate

spvcf.gz file sizes growing roughly with N1.1, compared to N1.5

for the original pvcf.gz. (VCF’s binary equivalent, BCF, reduces this

example by 1.2X losslessly and exhibits the same N1.5 scaling.)

Second, with N = 49 960 WES from UK Biobank (Bycroft et al.,

2018; Van Hout et al., 2019), the 75GiB vcf.gz for chromosome

1 reduced to 9.2GiB spvcf.gz, 8.2X reduction (4.1X from QC

squeezing and 2.0X from run-encoding). This dataset was produced

using an upstream pipeline that already omits genotype likelihoods

in most reference-identical cells, leaving less to be removed by QC

squeezing compared to DiscovEHR; spVCF delivered marked size

reduction nonetheless.

In these tests, spvcf squeezed and run-encoded the uncompressed

pVCF at more than twice the speed of bgzip compressing the same input

(each on a single x86-64 thread; both tools also have multithread modes).

The decoder, with inputs and outputs both much smaller than the original

pVCF, is several times faster still. Thus, it would be practical – and possibly

advantageous – to store spVCF and decode it to pVCF only transiently,

whenever downstream analyses require it. The smaller squeezed pVCF

also tends to speed up tools consuming it.

5 Discussion

spVCF’s interoperability with VCF – resulting from its identical data

model and performant transcoder – makes it a practical "next step" for

storage and transfer in ongoing cohort sequencing projects. At N ≈

50 000, most size reduction results from QC squeezing rather than sparse

run-encoding. We expect run-encoding’s relative contribution to increase

with N as variant loci become more closely spaced, extending runs with

similar read depth. spVCF’s better-controlled growth – though still slightly

super-linear in N , owing to residual depth fluctuations – clears the way to

scale up the VCF data model to N = 1000 000 WGS studies in the near

future.

Decoding spVCF to pVCF for downstream analysis implies runtime

scaling with the less-favorable pVCF growth trend. In principle, many

downstream analyses can be computed from the run-encoded spVCF

directly, albeit with specialized coding. Upstream, we plan to improve

GLnexus scalability by generating spVCF directly without materializing

pVCF. Meanwhile many investigators – motivated by advances in linked-

and long-read sequencing – are developing haplotype-centric paradigms

which may eventually replace VCF.

.CC-BY 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 17, 2019. ; https://doi.org/10.1101/611954doi: bioRxiv preprint 

https://doi.org/10.1101/611954
http://creativecommons.org/licenses/by/4.0/


✐

✐

“output” — 2019/4/17 — 5:19 — page 3 — #3
✐

✐

✐

✐

✐

✐

Sparse Project VCF 3

Acknowledgements

We thank contributors to the Global Alliance for Genomics and Health,

Large-Scale Genomics Work Stream for motivating discussions and early

feedback on this work; particularly Albert Smith, Yossi Farjoun, Louis

Bergelson, Chris Vittal, Cotton Seed, Cristina Gonzalez, Petr Danecek,

Marcus Klarqvist, Rishi Nag, Richard Durbin, Thomas Keane, and Ewan

Birney.

References

Bonfield, J. K. et al. (2018). Crumble: reference free lossy

compression of sequence quality values. Bioinformatics, 35(2),

337–339. URL: https://dx.doi.org/10.1093/bioinformatics/bty608,

doi:10.1093/bioinformatics/bty608.

Bycroft, C. et al. (2018). The uk biobank resource with deep phenotyping

and genomic data. Nature, 562(7726), 203.

Danecek, P. et al. (2011). The variant call format

and VCFtools. Bioinformatics, 27(15), 2156–2158.

URL: https://dx.doi.org/10.1093/bioinformatics/btr330,

doi:10.1093/bioinformatics/btr330.

Danek, A. and Deorowicz, S. (2018). GTC: how to maintain huge

genotype collections in a compressed form. Bioinformatics, 34(11),

1834–1840. URL: https://dx.doi.org/10.1093/bioinformatics/bty023,

doi:10.1093/bioinformatics/bty023.

DePristo, M. A. et al. (2011). A framework for variation discovery and

genotyping using next-generation dna sequencing data. Nature genetics,

43(5), 491.

Dewey, F. E. et al. (2016). Distribution and clinical

impact of functional variants in 50,726 whole-exome

sequences from the discovehr study. Science, 354(6319).

URL: http://science.sciencemag.org/content/354/6319/aaf6814,

doi:10.1126/science.aaf6814.

Fritz, M. H.-Y. et al. (2011). Efficient storage of

high throughput dna sequencing data using reference-

based compression. Genome Research, 21(5), 734–

740. URL: http://genome.cshlp.org/content/21/5/734.abstract,

doi:10.1101/gr.114819.110.

Illumina (2014). Reducing whole-genome data

storage footprint. Accessed: 2019-02-26. URL:

https://www.illumina.com/documents/products/whitepapers/whitepaper_datacompression.pdf.

Jun, G. et al. (2015). An efficient and scalable analysis

framework for variant extraction and refinement from population

scale dna sequence data. Genome Research. URL:

http://genome.cshlp.org/content/early/2015/04/14/gr.176552.114.abstract,

doi:10.1101/gr.176552.114.

Klarqvist, M. D. R. (2018). Tachyon: High-level api for storing

and querying sequence variant data. Accessed: 2019-03-24. URL:

https://github.com/mklarqvist/tachyon.

Layer, R. M. et al. (2015). Efficient genotype compression and analysis

of large genetic-variation data sets. Nature methods, 13(1), 63.

LeFaive, J. (2017). Sparse allele vectors specification. Accessed: 2019-02-

26. URL: https://github.com/statgen/savvy/blob/d11d790/sav_spec.md.

Li, H. (2011). Tabix: fast retrieval of sequence features from

generic TAB-delimited files. Bioinformatics, 27(5), 718–

719. URL: https://dx.doi.org/10.1093/bioinformatics/btq671,

doi:10.1093/bioinformatics/btq671.

Li, H. (2015). Bgt: efficient and flexible genotype query across many

samples. Bioinformatics, 32(4), 590–592.

Lin, M. F. et al. (2018). Glnexus: joint variant

calling for large cohort sequencing. bioRxiv. URL:

https://www.biorxiv.org/content/early/2018/06/11/343970,

doi:10.1101/343970.

Poplin, R. et al. (2018). Scaling accurate genetic variant

discovery to tens of thousands of samples. bioRxiv.

URL: https://www.biorxiv.org/content/early/2018/07/24/201178,

doi:10.1101/201178.

Stilp, A. et al. (2017). SeqArray—a storage-efficient high-performance

data format for WGS variant calls. Bioinformatics, 33(15),

2251–2257. URL: https://dx.doi.org/10.1093/bioinformatics/btx145,

doi:10.1093/bioinformatics/btx145.

Van Hout, C. V. et al. (2019). Whole exome

sequencing and characterization of coding variation in

49,960 individuals in the uk biobank. bioRxiv. URL:

https://www.biorxiv.org/content/early/2019/03/09/572347,

doi:10.1101/572347.

.CC-BY 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 17, 2019. ; https://doi.org/10.1101/611954doi: bioRxiv preprint 

https://doi.org/10.1101/611954
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Approach
	Reference implementation
	Applied tests
	Discussion

