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Abstract

Cryo-electron microscopy is traditionally applied to samples purified to near homogeneity as
current reconstruction algorithms are unable to handle heterogeneous mixtures of structures from
many macromolecular complexes. We extend on long established methods and demonstrate that
relating two-dimensional projection images by their common lines in a graphical framework is
sufficient for partitioning distinct protein and multiprotein complexes within the same data set.
Using this approach, we first group a large set of synthetic reprojections from 35 unique
macromolecular structures ranging from ~30 — 3000 kDa into individual homogenous classes. We
then apply our algorithm on cryo-EM data collected from a mixture of five protein complexes and
use existing reconstruction methods to solve multiple three-dimensional structures ab initio.
Incorporating methods to sort cryo-EM data from heterogeneous mixtures will alleviate the need
for stringent purification and pave the way toward investigation of samples containing many

unique structures.
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Introduction

Cryo-electron microscopy (cryo-EM) has undergone a revolutionary shift in the past few years.
Increased signal in electron micrographs, as a result of direct electron detectors, has allowed for
the near-atomic and atomic resolution structure determination of many macromolecules of various
shapes and sizes (Kuhlbrandt, 2014). These new detectors combined with automated data
collection software and improvements in image processing suggest that cryo-EM could be utilized
as a high-throughput approach to structural biology. One major obstacle remains: sorting through
the immense heterogeneity present in a mixture of tens to hundreds to thousands of
macromolecular assemblies.

We and others have shown that cellular extract can be mined for identification of multiple
structures (Kastritis et al., 2017; Verbeke et al., 2018). More recently, we showed that it was
possible to reconstruct macromolecular machines from the lysate of a single C. elegans embryo
(Yi et al., 2018). These studies were limited to the identification of only the most abundant and
easily identifiable protein and protein—nucleic acid complexes due to a lack of methods to
efficiently categorize which two-dimensional (2D) projection images derive from which three-
dimensional (3D) assemblies on the basis of their structural features. While a number of 3D
classification schemes exist, all failed to produce reliable reconstructions for the majority of
particles in these complicated mixtures. This obstacle emphasizes the long-standing need to sort
mixtures of structures in addition to their conformational and compositional heterogeneity.

Several methods have been successfully implemented for sorting limited heterogeneity in
cryo-EM data. These approaches generally fall into three categories. Currently, the most popular
approach for sorting heterogeneity in cryo-EM data utilizes a maximum likelihood estimation to
optimize the correct classification of particles into multiple structures (Scheres, 2012; Sigworth,
1998; Sigworth et al., 2010). Another approach is to estimate the covariance in cryo-EM data to

search for regions of variability between the models and the data (Katsevich et al., 2015; Liao et
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al., 2015; Penczek et al., 2006). The last approach involves computing similarities between
projection images in the data before applying clustering methods to separate the data into
homogenous subsets (Aizenbud and Shkolnisky, 2016; Herman and Kalinowski, 2008; Shatsky
et al., 2010). All of these approaches have been demonstrated on samples containing a primary
structure with multiple conformations or variable subunits. However, little work has been done for
sorting heterogeneous samples containing multiple distinct structures.

Here, we develop a pipeline for building 3D reconstructions from a mixture of distinct
particles by first grouping 2D projections into discrete, particle-specific classes using the principles
of common lines and a novel graphical clustering framework. We demonstrate our method by
partitioning reprojections from 35 previously solved X-ray crystal structures into their correct
groups. Furthermore, we applied this pipeline to an experimental set of cryo-EM micrographs
containing a mixture of several macromolecular complexes. We were able to reconstruct multiple
3D structures after our clustering, improving on classification of all particles simultaneously using
current 3D reconstruction software. These results are a necessary first step for moving cryo-EM

towards high-throughput structural biology.

Results

Classifying projection images from multiple structures

A major challenge facing “shotgun”-style cryo-EM is to reconstruct models from projection images
arising from multiple distinct structures present in a mixture. To overcome this obstacle, we sought
a method to computationally group heterogeneous projection images into discrete classes that
each derive from the same structure. Two-dimensional projection images from the same
asymmetric object can be related to each other if there is prior information of the three-
dimensional object (i.e. an initial model) using projection-matching algorithms. One approach that

circumvents the need for a starting model is to relate the 2D projection images based on common
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lines (Van Heel, 1987), derived from the projection-slice theorem, which states that any two 2D
projections of the same 3D object must share a 1D line projection in common. In order to partition
projection images into homogenous subsets, we developed an algorithm for detecting Shared
Lines In Common Electron Maps (SLICEM). Using this algorithm, we score the similarity of 1D
line projections between sets of 2D projection images without knowledge of the underlying 3D
objects. Subsequently, these similarity scores can be put into a graphical framework and
clustering algorithms can be applied to group related 2D projection images for subsequent 3D

reconstructions (Figure 1).

Synthetic data

To test our approach using SLICEM, we generated synthetic reprojections from 35 previously
solved X-ray crystal structures (see Methods) (Figure S1). The structures ranged in molecular
weight from ~30 — 3000 kDa. Each structure was low-pass filtered to 9 A and uniformly reprojected
to create 12 2D projection images (Ludtke et al., 1999). Next, we combined reprojections from all
models to simulate ideal 2D class averages from a heterogeneous cryo-EM dataset. The similarity
of 1D line projections from each image was scored using 6 different metrics (see Methods). The
precision and recall of correctly pairing 2D projection images from the same 3D structures was
computed in order to determine the performance of each metric, and cosine similarity was
determined to be the top performing metric (Figure 2A).

In order to identify sets of 2D projection images from the same 3D particles, we
constructed a network from the comparisons between projection images as follows: Each 2D
projection image was represented as a node in a directed graph, with each node connected by
edges to the nodes corresponding to the 5 most closely-related 2D projection images based on
the similarity of their 1D line projections. While the top-scoring metric in our precision/recall

analysis was cosine similarity, the network generated from the Euclidean distance similarity most
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89  clearly showed communities (clusters of 2D projections) correctly partitioned by 3D structure
90 (Figure 2B). These results show that partitioning 2D projection images by scoring their common
91 lines is a powerful, unsupervised approach for sorting cryo-EM data from distinct 3D structures
92  within a heterogeneous mixture.

93

94 Cryo-EM on a mixture of protein complexes

95  After validating our SLICEM algorithm on a synthetic dataset, we performed cryo-EM on an
96 experimental mixture of structures and tested our approach as a proof-of-principle. Our
97  experimental mixture consisted of 40S, 60S and 80S ribosomes, apoferritin and -galactosidase.
98 We collected ~2,400 images and used a template-based particle picking scheme to select
99  ~5283,000 particles from the entire data set (Roseman, 2004). Raw micrographs showed a mixture
100  of disperse particles with varying size and shape (Figure S2). We then performed 2D classification
101  on the entire set of particles using RELION (Scheres, 2012). After 1 round of filtering junk
102 particles, the remaining ~203,000 particles were sorted into 100 classes using RELION. The class
103  averages contained many characteristic ribosome projections and had distinct structural features
104  (Figure S2). We were unable to identify any B-galactosidase particles in our collected images.

105 We then applied our SLICEM algorithm to the 100 2D class averages. The identity of each
106  class average was manually annotated, where it was easily recognizable, to assess whether our
107  algorithm was correctly separating the 2D projection images from our heterogeneous mixture
108  (Figure 3). Based on these manual annotations, we again tested the 6 different metrics in a
109  precision-recall framework to determine which metric performed better on experimental data
110  (Figure S3). Interestingly, the Euclidean distance and sum of the absolute difference scoring
111 metric significantly outperformed the cosine similarity. Using the sum of the absolute difference
112 scoring metric, the network naturally partitioned into 3 distinct communities, one for each

113 ribosome, prior to employing any community detection algorithms (Figure 3). As part of our
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114  algorithm, we evaluated two community detection methods, edge betweenness and walktrap, to
115  determine if the network should be further subdivided (Latapy and Pons, 2004; Newman and
116  Girvan, 2004). We chose to use community detection algorithms to prevent biasing the data by
117  choosing the number of output clusters we expected. Using our SLICEM algorithm, we were able
118  to correctly separate 2D projection images from 3 large, asymmetric macromolecular complexes
119  from the same mixture.

120

121 Relating summed pixel intensity to molecular weight

122 Apart from partitioning 2D projection images into homogenous subsets for 3D reconstruction, one
123 additional goal was to determine the identity of each projection image. In previous studies, we
124  and others have leveraged mass spectrometry data to help identify electron microscopy
125  reconstructions from a heterogeneous mixture, such as cell lysate, where the architecture of every
126  protein or protein complex is not known (Kastritis et al., 2017; Verbeke et al., 2018). However,
127  this combined MS-EM approach was only useful for identifying highly abundant and easily
128  recognizable structures.

129 To provide evidence of macromolecular identity from the electron maps, we calculated the
130  sum of pixel intensities in each manually annotated 2D class average as a proxy for molecular
131  weight (Figure 4). We found that each of the three ribosomes and apoferritin had unique summed
132 pixel intensities that could be used to distinguish the class averages. A least-squares fit to the
133 mean of the summed pixel intensities showed a linear relationship between summed pixel
134  intensity and protein molecular weight. The summed pixel intensities were therefore used as an
135  additional filtering step by removing nodes in communities whose summed pixel intensities were
136  outliers in that community. Using this filtering step, the apoferritin class average was removed
137  from the community containing predominantly 40S ribosome reprojections. Our data suggest that,

138  given an appropriate set of standards, summed pixel intensity can be correlated to molecular
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139  weight. Thus, summed pixel intensity could be useful in narrowing down the possible identities for
140  a set of electron densities, when combined with sequence information.
141

142 3D classification of a mixture of protein complexes

143 The ultimate goal of our pipeline is to reconstruct 3D models from our output of clustered 2D
144  projection images. We chose to use cryoSPARC for 3D reconstructions because it can perform
145  heterogeneous reconstruction without a priori information on structure or identity (Punjani et al.,
146  2017). We used the particles from each of our 3 distinct communities in addition to the isolated
147  apoferritin node for ab initio reconstruction in cryoSPARC (Figure 5). The cluster containing
148  primarily 40S ribosome particles was split into two classes to filter the additional junk particles
149  presentin the community. Comparison of our models reconstructed after clustering to the models
150  produced using the entire data set as input for ab initio reconstruction in cryoSPARC with 4
151  classes (one for each protein complex in the mixture) showed our pre-sorting procedure improved
152 the resulting structures (Figure 5). In particular, we were able to build an apoferritin model that
153  was missed in the 3D classification of all particles from cryoSPARC. Our 80S model also shows
154  a more complete density for the small subunit than its counterpart in the model created without
155  clustering. We also observe that changing the number of classes using ab initio reconstruction in
156  cryoSPARC had a substantial impact on the quality of classification (Figure S4).

157 Each model was refined and evaluated using the gold-standard 0.143 Fourier shell
158  correlation criterion (Figure S5). We obtained easily identifiable 40S, 60S, and 80S ribosome
159 structures at 12, 4, and 5.4 A resolution, respectively. We were also able to reconstruct the
160  smaller, more compact apoferritin at 19 A resolution. Notably, the 40S and 80S models contain
161  streaks in one dimension, indicating that we are missing several orientations of the particles. We
162  attribute this to preferential orientation of the particles in ice, rather than an inability of our

163  algorithm to properly sort particles into correct communities. Together, these results demonstrate
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164  a functioning pipeline for sorting 2D projection images from a heterogeneous mixture of 3D
165  structures, allowing for single particle EM to be applied to samples containing multiple proteins or
166  protein complexes. Importantly, aside from choosing the most appropriate similarity measure, our
167  approach is fully unsupervised, requiring no user defined estimate of the number of existing
168  classes.

169

170  Discussion

171  As cryo-EM continues to rapidly advance, one potential application would be to perform high-
172 throughput structural biology. The ability to sort and classify heterogeneous mixtures will become
173  anecessary feature. One advantage of this approach would be to study closer-to-native proteins
174  directly from cell lysate without the need to purify or alter the sample. Currently, handling
175  compositional and conformational heterogeneity is a major challenge for the EM field, usually
176  requiring expert, time-consuming steps. In this study, we present an unsupervised algorithm,
177  SLICEM, which extends on previous methods and demonstrates that sorting 2D projection images
178  based on the similarity of their common lines is capable of correctly clustering 2D projection
179  images from a mixture of protein and protein-nucleic acid complexes. We first demonstrate that
180  the algorithm successfully sorts a synthetic dataset of reprojections created from 35 unique
181  macromolecular structures. Next, we show the same algorithm can successfully partition 2D
182  projection images from an experimental data set containing multiple macromolecular complexes.
183 Pre-sorting 2D projection images prior to 3D classification allows current reconstruction
184  algorithms to be employed on datasets that would otherwise be too complex.

185 Although we demonstrated the feasibility of our approach on synthetic and experimental
186  data, we acknowledge that there are several limitations. In particular, our algorithm relies on the
187  quality of upstream 2D alignment, classification and averaging. As we observed during 2D

188  classification of our cryo-EM data, all apoferritin particles were grouped into a single class
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189  average. However, during our network generation step, each class average is given multiple
190  edges to the most similar classes, forcing the single apoferritin class average to have multiple
191  spurious edges. This error will occur any time the number of class averages of a given structure
192 s less than the number of edges used in the graph. Future modifications to the algorithm could
193  include searching for symmetric class averages, where this error is more likely to occur, and
194  removing them prior to community detection.

195 As we move cryo-EM towards structural determination of heterogeneous mixtures, several
196  other technical challenges will emerge, such as universal freezing conditions. In our mixture of 5
197  macromolecular complexes, we were unable to easily find freezing conditions that accommodated
198 all proteins. The result was a mixture missing B-galactosidase and containing orientation
199  preferences for the 40S and 80S ribosome. However, previous work has produced e.g. high-
200  resolution structures of fatty-acid synthase from fractionated cell lysate, suggesting it is possible
201  to find suitable cryo-conditions for solutions containing many macromolecular species (Kastritis
202  etal., 2017). An additional challenge will be developing particle picking algorithms specifically for
203  mixtures, where the particle shape may be unknown and, perhaps more importantly, non-uniform.
204  While in this study we used a template picking scheme, future studies with mixtures of unknown
205 composition will require more sophisticated approaches.

206 An expert might be able to manually sort the class averages from our cryo-EM data set;
207  however, as mixtures grow in complexity, manual sorting will certainly become infeasible.
208  Introducing algorithms such as SLICEM will provide an unbiased way to group 2D projection
209 images and can be easily implemented in conjunction with a variety of image processing and 3D
210  reconstruction packages. One additional utility of this algorithm could be to remove junk class
211  averages from data in a semi-supervised manner by removal of communities of projection images
212 that do not appear to have structural features. Our approach for sorting mixtures of structures

213 combined with previous approaches for sorting conformational heterogeneity could be a powerful

10
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214 tool for deep classification. Development of methods to sort mixtures of structures in single
215  particle cryo-EM will allow us to solve more structures in parallel and alleviate time-consuming
216  protein purification and sample preparation.

217

218  Materials and Methods

219 Synthetic data generation

220  The following list of PDB entries were used to create the dataset of synthetic reprojections (1A0l,
221  1HHO, 1INW9, 1WA5, 3JCK, 5A63, 1A36, 1THNW, 1PJR, 2FFL, 3JCR, 5GJQ, 1AON, 116H, 1RYP,
222 2MYS, 3VKH, 5VOX, 1FA0, 1JLB, 1S5L, 2NN6, 4F3T, 6B3R, 1FPY, 1MUH, 1SXJ, 2SRC, 4V6C,
223 6D6V, 1GFL, 1NJI, 1TAU, 3JB9, 5A1A). Each PDB entry was low-pass filtered to 9 A and
224 converted to a 3D EM density using ‘pdb2mrc’ in EMAN (Ludtke et al., 1999). These densities
225  were then uniformly reprojected using ‘project3d’ in EMAN to create 12 2D reprojections for each
226 structure (Ludtke et al., 1999). Reprojections were centered in 350 A boxes.

227

228 Purification of apoferritin and B-galactosidase

229  Size-exclusion chromatography was performed at 4 °C on an AKTA FPLC (GE Healthcare).
230  Approximately 10 mg of apoferritin (Sigma A3660-1VL) and 5 mg of B-galactosidase G5635-5KU
231  were independently applied to a Superdex 200 10/300 GL analytical gel filtration column (GE
232 Healthcare) equilibrated in 20 mM HEPES KOH, 100 mM potassium acetate, 2.5 mM magnesium
233 acetate, pH 7.5 at a flow rate of 0.5 mL min-1. Fractions were collected every 0.5 mL.

234

235 SLICEM Algorithm

236  Our algorithm consists of five main steps: (1) Extracting 2D class average signal from background,

237  (2) Generating 1D line projections from the extracted 2D projection images, (3) Scoring the

11
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238  similarity of all pairs of 1D line projections, (4) Building a nearest-neighbors graph of the 2D class
239  averages and (5) Partitioning communities within the graph.

240 (1) Extracting 2D class averages from background

241  Theinput to our algorithm is a set of centered and normalized 2D class averages. We then extract
242 the centered region of positive pixels values from the zero-mean normalized images to remove
243 background signal and extra densities that might be present in a class average.

244 (2) Generating 1D line projections from extracted 2D projection images

245  Each extracted class average is projected into 1D over 360 degrees in 5 degree intervals by
246  summing the pixel values along the projection axis. The 1D line projections are then
247  independently zero-mean normalized if the normalized cross-correlation or normalized Euclidean
248  scoring metric are selected.

249 (3) Scoring the similarity of all pairs of 1D line projections

250  To score the similarity of the 1D line projections we considered 6 different scoring metrics:
251 Euclidean distance, normalized Euclidean distance, cosine similarity, sum of the absolute
252  difference, cross-correlation and normalized cross-correlation. For the non-cross-correlation
253  metrics, the similarity of the 1D line projections is calculated for translations of the smaller 1D
254  projection across the larger 1D projection if there is a difference in projection size, analogous to
255  the ‘sliding’ feature of cross-correlations. The optimum score during the translations is kept for
256  each pair of 1D projections. After pairwise scoring of all 1D line projections, the similarity between
257  each pair of 2D class averages is defined by their respective highest scoring 1D line projections.

258 (4) Building a nearest-neighbors graph of the 2D class averages

259  SLICEM then constructs a directed graph using the similarity scores calculated for each pair of
260 2D class averages. Each node (2D class average) is connected to the 5 most similar (top scoring)
261 2D class averages. Each edge is assigned a weight computed as a z-score relative to all scores

262  for a given 2D class average.

12
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263 (5) Partitioning communities within the graph.

264  The resulting graph is then subdivided using a community detection algorithm. Specifically, we
265  evaluated the edge-betweenness and walktrap algorithms to define clusters in the graph. Then,
266  the median absolute deviation of summed pixel intensities for each node is calculated to remove
267 outliers from the cluster. The final set of nodes in a cluster is then used as input for 3D
268  reconstruction in cryoSPARC.

269

270 Cryo-EM garid preparation and data collection

271  C-flat holey carbon grids (CF-1.2/1.3, Protochips Inc.) were pre-coated with a thin layer of freshly
272  prepared carbon film and glow-discharged for 30 seconds using a Gatan Solarus plasma cleaner
273  before addition of sample. 2.5 pl of a mixture of 75 nM 40S ribosome, 150 nM 60S ribosome, 50
274  nM 80S ribosome, 125 nM apoferritin and 125 nM B-galactosidase were placed onto grids, blotted
275  for 3 seconds with a blotting force of 5 and rapidly plunged into liquid ethane using a FEI Vitrobot
276  MarklV operated at 4 °C and 100% humidity. Data were acquired using an FEI Titan Krios
277  transmission electron microscope (Sauer Structural Biology Laboratory, University of Texas at
278  Austin) operating at 300 keV at a nominal magnification of x22,500 (1.1 A pixel size) with defocus
279  ranging from -2.0 to -3.5 um. The data were collected using a total exposure of 6 s fractionated
280 into 20 frames (300 ms per frame) with a dose rate of ~8 electrons per pixel per second and a
281 total exposure dose of ~40 e~ A, A total of 2,423 micrographs were automatically recorded on a
282  Gatan K2 Summit direct electron detector operated in counting mode using the MSI Template
283  application within the automated macromolecular microscopy software LEGINON (Suloway et al.,
284  2005).

285

286

287

13
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288  Cryo-EM data processing

289  Allimage pre-processing was performed in Appion (Lander et al., 2009). Individual movie frames
290  were aligned and averaged using ‘MotionCor2’ drift-correction software (Zheng et al., 2017).
291  These drift-corrected micrographs were binned by 8, and bad micrographs and/or regions of
292 micrographs were removed using the ‘manual masking’ command within Appion. A total of
293 522,653 particles were picked with a template-based particle picker using a reference-free 2D
294 class average from a small subset of manually picked particles as templates. The contrast transfer
295  function (CTF) of each micrograph was estimated using CTFFIND4 (Rohou and Grigorieff, 2015).
296  Selected particles were extracted from micrographs using particle extraction within RELION
297  (Scheres, 2012) and the EMAN2 coordinates exported from Appion. Two rounds of reference free
298 2D classification with 100 classes for each sample were performed in RELION to remove junk
299  particles, resulting in a clean stack of 202,611 particle images.
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Figure Legends
Figure 1. Computational pipeline for SLICEM

Individual particle images are averaged after reference-free 2D alignment and classification.
Using a Radon transform, 1D line projections are created from the 2D class averages (referred
to as 2D projections). Each 1D line projection from every 2D projection is then scored for
similarity. The top scores between each projection are used to form edges connecting 2D
projections that have a similar 1D line projection to form a graph. 2D projection images are then
partitioned into groups belonging to the same putative structure using a community detection
algorithm. Individual particle images belonging to each 2D projection within a community are

subjected to ab initio 3D reconstruction.

Figure 2. Separating mixtures of synthetic 2D reprojections

Synthetic reprojections were generated from 35 distinct X-ray crystal structures low-pass filtered
to 9 A from complexes ranging in molecular weight from ~30 — 3000 kDa, prior to separation
using SLICEM. (A) Precision-recall plot ranking 6 different metrics at scoring the similarity
between 1D line projections from each 2D reprojection. (B) Network output displaying
communities of 2D reprojection images determined using SLICEM. Each node represents a 2D
reprojection with 5 connecting edges to the most similar reprojections as scored using
Euclidean distance. The color of each node matches the structure from which it was reprojected

(shown as a surface).

Figure 3. Experimental 2D class averages and resulting network

Cryo-EM data was collected on a mixture of 5 protein and protein-nucleic acid complexes. (A)

Representative 2D class averages of the 4 complexes identified in the mixture. The identity of
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414  each class average was manually annotated were it could be easily identified. The class average
415  corresponding to apoferritin was further subdivided into multiple classes for visualization. (B)
416  Network generated using SLICEM on the 100 2D class averages scored using the sum of the
417  absolute difference metric. Nodes representing each 2D class averages are colored by their

418  putative structural identity. The width of the box corresponds to 422 A.
419
420  Figure 4. Summed pixel intensities of 2D class averages correlate to molecular weight

421  (A) 2D to 1D projections for representative 2D class averages of each structure present in the
422 mixture. 1D projection plots show the line profile for a single projection of each 2D class average.
423 Pixel heat maps show the intensity of the line profile at each pixel. (B) Distribution of the summed
424 1D projection pixel intensities, or integration of the 1D line profiles, calculated for each 2D class
425 average. Summed pixel intensities for each manually identified 2D class average are plotted
426  against their respective molecular weight. Black points are the mean summed pixel intensity for

427  each structure.
428
429  Figure 5. Ab initio structures from an experimental mixture

430  (A) High-resolution structures of the 80S ribosome EMD-2858 (Cianfrocco and Leschziner, 2015),
431  60S ribosome EMD-2811 (Shen et al., 2015), 40S ribosome EMD-4214 (Scaiola et al., 2018) and
432  apoferritin EMD-2788 (Russo and Passmore, 2014). (B) 3D models of the 80S ribosome, 60S
433  ribosome, 40S ribosome and apoferritin generated by sorting particles using SLICEM prior to ab
434 initio 3D reconstruction in cryoSPARC. (C) 3D models generated using ab initio reconstruction to
435  generate 4 classes in cryoSPARC without pre-sorting particles using SLICEM.

436
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Figure 5
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562  Supplemental Information

563 Figure S1. 2D reprojections from synthetic dataset

564  Subset of 2D reprojections from 12 of the 35 structures in our synthetic dataset. Box size
565  corresponds to 300 A.
566

567 Figure S2. 2D classification of particles using RELION

568 (A) Representative raw micrograph of a mixture containing 40S, 60S and 80S ribosomes,
569  apoferritin and B-galactosidase. (B) Reference-free 2D class averages generated using RELION
570  of ~203,000 template-picked particle images. Box size corresponds to 422 A.

571

572 Figure S3. Precision-recall curves for experimental cryo-EM data

573  Precision-recall plot displaying 6 different metrics for scoring the similarity between 1D line
574  projections from the entire set of 2D class averages.
575

576 Figure S4. Ab initio reconstructions in cryoSPARC with varying class number

577 3D reconstructions using ab initio reconstruction in cryoSPARC from the entire data set with K =
578 3, 4, 5 and 6 classes, respectively.
579

580 Figure S5. Fourier shell correlations curves

581 FSC curves for our clustered 80S ribosome (blue), 60S ribosome (green), 40S ribosome (red)
582  and apoferritin (purple) shown in Figure 5B. Nominal resolutions were estimated to be 5.4, 4, 12
583  and 19 A, respectively, using the 0.143 gold-standard FSC criterion.

584

585

586
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Figure S4

Fourier shell correlation curves
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687  Figure S5

688 cryoSPARC models
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