

Separating distinct structures of multiple macromolecular assemblies from cryo-EM projections

Eric J. Verbeke¹⁻³, Yi Zhou¹⁻³, Andrew P. Horton¹⁻³, Anna L. Mallam¹⁻³, David W. Taylor^{1-4*},
Edward M. Marcotte^{1-3*}

Affiliations:

¹Department of Molecular Biosciences

²Center for Systems and Synthetic Biology

³Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712,
USA

⁴LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX 78712, USA

*Correspondence: marcotte@icmb.utexas.edu (E.M.M), dtaylor@utexas.edu (D.W.T),

1 **Abstract**

2 Cryo-electron microscopy is traditionally applied to samples purified to near homogeneity as
3 current reconstruction algorithms are unable to handle heterogeneous mixtures of structures from
4 many macromolecular complexes. We extend on long established methods and demonstrate that
5 relating two-dimensional projection images by their common lines in a graphical framework is
6 sufficient for partitioning distinct protein and multiprotein complexes within the same data set.
7 Using this approach, we first group a large set of synthetic reprojections from 35 unique
8 macromolecular structures ranging from ~30 – 3000 kDa into individual homogenous classes. We
9 then apply our algorithm on cryo-EM data collected from a mixture of five protein complexes and
10 use existing reconstruction methods to solve multiple three-dimensional structures *ab initio*.
11 Incorporating methods to sort cryo-EM data from heterogeneous mixtures will alleviate the need
12 for stringent purification and pave the way toward investigation of samples containing many
13 unique structures.

14 **Introduction**

15 Cryo-electron microscopy (cryo-EM) has undergone a revolutionary shift in the past few years.
16 Increased signal in electron micrographs, as a result of direct electron detectors, has allowed for
17 the near-atomic and atomic resolution structure determination of many macromolecules of various
18 shapes and sizes (Kühlbrandt, 2014). These new detectors combined with automated data
19 collection software and improvements in image processing suggest that cryo-EM could be utilized
20 as a high-throughput approach to structural biology. One major obstacle remains: sorting through
21 the immense heterogeneity present in a mixture of tens to hundreds to thousands of
22 macromolecular assemblies.

23 We and others have shown that cellular extract can be mined for identification of multiple
24 structures (Kastritis et al., 2017; Verbeke et al., 2018). More recently, we showed that it was
25 possible to reconstruct macromolecular machines from the lysate of a single *C. elegans* embryo
26 (Yi et al., 2018). These studies were limited to the identification of only the most abundant and
27 easily identifiable protein and protein–nucleic acid complexes due to a lack of methods to
28 efficiently categorize which two-dimensional (2D) projection images derive from which three-
29 dimensional (3D) assemblies on the basis of their structural features. While a number of 3D
30 classification schemes exist, all failed to produce reliable reconstructions for the majority of
31 particles in these complicated mixtures. This obstacle emphasizes the long-standing need to sort
32 mixtures of structures in addition to their conformational and compositional heterogeneity.

33 Several methods have been successfully implemented for sorting limited heterogeneity in
34 cryo-EM data. These approaches generally fall into three categories. Currently, the most popular
35 approach for sorting heterogeneity in cryo-EM data utilizes a maximum likelihood estimation to
36 optimize the correct classification of particles into multiple structures (Scheres, 2012; Sigworth,
37 1998; Sigworth et al., 2010). Another approach is to estimate the covariance in cryo-EM data to
38 search for regions of variability between the models and the data (Katsevich et al., 2015; Liao et

39 al., 2015; Penczek et al., 2006). The last approach involves computing similarities between
40 projection images in the data before applying clustering methods to separate the data into
41 homogenous subsets (Aizenbud and Shkolnisky, 2016; Herman and Kalinowski, 2008; Shatsky
42 et al., 2010). All of these approaches have been demonstrated on samples containing a primary
43 structure with multiple conformations or variable subunits. However, little work has been done for
44 sorting heterogeneous samples containing multiple distinct structures.

45 Here, we develop a pipeline for building 3D reconstructions from a mixture of distinct
46 particles by first grouping 2D projections into discrete, particle-specific classes using the principles
47 of common lines and a novel graphical clustering framework. We demonstrate our method by
48 partitioning reprojections from 35 previously solved X-ray crystal structures into their correct
49 groups. Furthermore, we applied this pipeline to an experimental set of cryo-EM micrographs
50 containing a mixture of several macromolecular complexes. We were able to reconstruct multiple
51 3D structures after our clustering, improving on classification of all particles simultaneously using
52 current 3D reconstruction software. These results are a necessary first step for moving cryo-EM
53 towards high-throughput structural biology.

54

55 **Results**

56 Classifying projection images from multiple structures

57 A major challenge facing “shotgun”-style cryo-EM is to reconstruct models from projection images
58 arising from multiple distinct structures present in a mixture. To overcome this obstacle, we sought
59 a method to computationally group heterogeneous projection images into discrete classes that
60 each derive from the same structure. Two-dimensional projection images from the same
61 asymmetric object can be related to each other if there is prior information of the three-
62 dimensional object (i.e. an initial model) using projection-matching algorithms. One approach that
63 circumvents the need for a starting model is to relate the 2D projection images based on common

64 lines (Van Heel, 1987), derived from the projection-slice theorem, which states that any two 2D
65 projections of the same 3D object must share a 1D line projection in common. In order to partition
66 projection images into homogenous subsets, we developed an algorithm for detecting Shared
67 Lines In Common Electron Maps (SLICEM). Using this algorithm, we score the similarity of 1D
68 line projections between sets of 2D projection images without knowledge of the underlying 3D
69 objects. Subsequently, these similarity scores can be put into a graphical framework and
70 clustering algorithms can be applied to group related 2D projection images for subsequent 3D
71 reconstructions (Figure 1).

72

73 Synthetic data

74 To test our approach using SLICEM, we generated synthetic reprojections from 35 previously
75 solved X-ray crystal structures (see Methods) (Figure S1). The structures ranged in molecular
76 weight from ~30 – 3000 kDa. Each structure was low-pass filtered to 9 Å and uniformly reprojected
77 to create 12 2D projection images (Ludtke et al., 1999). Next, we combined reprojections from all
78 models to simulate ideal 2D class averages from a heterogeneous cryo-EM dataset. The similarity
79 of 1D line projections from each image was scored using 6 different metrics (see Methods). The
80 precision and recall of correctly pairing 2D projection images from the same 3D structures was
81 computed in order to determine the performance of each metric, and cosine similarity was
82 determined to be the top performing metric (Figure 2A).

83 In order to identify sets of 2D projection images from the same 3D particles, we
84 constructed a network from the comparisons between projection images as follows: Each 2D
85 projection image was represented as a node in a directed graph, with each node connected by
86 edges to the nodes corresponding to the 5 most closely-related 2D projection images based on
87 the similarity of their 1D line projections. While the top-scoring metric in our precision/recall
88 analysis was cosine similarity, the network generated from the Euclidean distance similarity most

89 clearly showed communities (clusters of 2D projections) correctly partitioned by 3D structure
90 (Figure 2B). These results show that partitioning 2D projection images by scoring their common
91 lines is a powerful, unsupervised approach for sorting cryo-EM data from distinct 3D structures
92 within a heterogeneous mixture.

93

94 Cryo-EM on a mixture of protein complexes

95 After validating our SLICEM algorithm on a synthetic dataset, we performed cryo-EM on an
96 experimental mixture of structures and tested our approach as a proof-of-principle. Our
97 experimental mixture consisted of 40S, 60S and 80S ribosomes, apoferritin and β -galactosidase.
98 We collected \sim 2,400 images and used a template-based particle picking scheme to select
99 \sim 523,000 particles from the entire data set (Roseman, 2004). Raw micrographs showed a mixture
100 of disperse particles with varying size and shape (Figure S2). We then performed 2D classification
101 on the entire set of particles using RELION (Scheres, 2012). After 1 round of filtering junk
102 particles, the remaining \sim 203,000 particles were sorted into 100 classes using RELION. The class
103 averages contained many characteristic ribosome projections and had distinct structural features
104 (Figure S2). We were unable to identify any β -galactosidase particles in our collected images.

105 We then applied our SLICEM algorithm to the 100 2D class averages. The identity of each
106 class average was manually annotated, where it was easily recognizable, to assess whether our
107 algorithm was correctly separating the 2D projection images from our heterogeneous mixture
108 (Figure 3). Based on these manual annotations, we again tested the 6 different metrics in a
109 precision-recall framework to determine which metric performed better on experimental data
110 (Figure S3). Interestingly, the Euclidean distance and sum of the absolute difference scoring
111 metric significantly outperformed the cosine similarity. Using the sum of the absolute difference
112 scoring metric, the network naturally partitioned into 3 distinct communities, one for each
113 ribosome, prior to employing any community detection algorithms (Figure 3). As part of our

114 algorithm, we evaluated two community detection methods, edge betweenness and walktrap, to
115 determine if the network should be further subdivided (Latapy and Pons, 2004; Newman and
116 Girvan, 2004). We chose to use community detection algorithms to prevent biasing the data by
117 choosing the number of output clusters we expected. Using our SLICEM algorithm, we were able
118 to correctly separate 2D projection images from 3 large, asymmetric macromolecular complexes
119 from the same mixture.

120

121 Relating summed pixel intensity to molecular weight

122 Apart from partitioning 2D projection images into homogenous subsets for 3D reconstruction, one
123 additional goal was to determine the identity of each projection image. In previous studies, we
124 and others have leveraged mass spectrometry data to help identify electron microscopy
125 reconstructions from a heterogeneous mixture, such as cell lysate, where the architecture of every
126 protein or protein complex is not known (Kastritis et al., 2017; Verbeke et al., 2018). However,
127 this combined MS-EM approach was only useful for identifying highly abundant and easily
128 recognizable structures.

129 To provide evidence of macromolecular identity from the electron maps, we calculated the
130 sum of pixel intensities in each manually annotated 2D class average as a proxy for molecular
131 weight (Figure 4). We found that each of the three ribosomes and apo ferritin had unique summed
132 pixel intensities that could be used to distinguish the class averages. A least-squares fit to the
133 mean of the summed pixel intensities showed a linear relationship between summed pixel
134 intensity and protein molecular weight. The summed pixel intensities were therefore used as an
135 additional filtering step by removing nodes in communities whose summed pixel intensities were
136 outliers in that community. Using this filtering step, the apo ferritin class average was removed
137 from the community containing predominantly 40S ribosome reprojections. Our data suggest that,
138 given an appropriate set of standards, summed pixel intensity can be correlated to molecular

139 weight. Thus, summed pixel intensity could be useful in narrowing down the possible identities for
140 a set of electron densities, when combined with sequence information.

141

142 3D classification of a mixture of protein complexes

143 The ultimate goal of our pipeline is to reconstruct 3D models from our output of clustered 2D
144 projection images. We chose to use cryoSPARC for 3D reconstructions because it can perform
145 heterogeneous reconstruction without *a priori* information on structure or identity (Punjani et al.,
146 2017). We used the particles from each of our 3 distinct communities in addition to the isolated
147 apoferritin node for *ab initio* reconstruction in cryoSPARC (Figure 5). The cluster containing
148 primarily 40S ribosome particles was split into two classes to filter the additional junk particles
149 present in the community. Comparison of our models reconstructed after clustering to the models
150 produced using the entire data set as input for *ab initio* reconstruction in cryoSPARC with 4
151 classes (one for each protein complex in the mixture) showed our pre-sorting procedure improved
152 the resulting structures (Figure 5). In particular, we were able to build an apoferritin model that
153 was missed in the 3D classification of all particles from cryoSPARC. Our 80S model also shows
154 a more complete density for the small subunit than its counterpart in the model created without
155 clustering. We also observe that changing the number of classes using *ab initio* reconstruction in
156 cryoSPARC had a substantial impact on the quality of classification (Figure S4).

157 Each model was refined and evaluated using the gold-standard 0.143 Fourier shell
158 correlation criterion (Figure S5). We obtained easily identifiable 40S, 60S, and 80S ribosome
159 structures at 12, 4, and 5.4 Å resolution, respectively. We were also able to reconstruct the
160 smaller, more compact apoferritin at 19 Å resolution. Notably, the 40S and 80S models contain
161 streaks in one dimension, indicating that we are missing several orientations of the particles. We
162 attribute this to preferential orientation of the particles in ice, rather than an inability of our
163 algorithm to properly sort particles into correct communities. Together, these results demonstrate

164 a functioning pipeline for sorting 2D projection images from a heterogeneous mixture of 3D
165 structures, allowing for single particle EM to be applied to samples containing multiple proteins or
166 protein complexes. Importantly, aside from choosing the most appropriate similarity measure, our
167 approach is fully unsupervised, requiring no user defined estimate of the number of existing
168 classes.

169

170 **Discussion**

171 As cryo-EM continues to rapidly advance, one potential application would be to perform high-
172 throughput structural biology. The ability to sort and classify heterogeneous mixtures will become
173 a necessary feature. One advantage of this approach would be to study closer-to-native proteins
174 directly from cell lysate without the need to purify or alter the sample. Currently, handling
175 compositional and conformational heterogeneity is a major challenge for the EM field, usually
176 requiring expert, time-consuming steps. In this study, we present an unsupervised algorithm,
177 SLICEM, which extends on previous methods and demonstrates that sorting 2D projection images
178 based on the similarity of their common lines is capable of correctly clustering 2D projection
179 images from a mixture of protein and protein-nucleic acid complexes. We first demonstrate that
180 the algorithm successfully sorts a synthetic dataset of reprojctions created from 35 unique
181 macromolecular structures. Next, we show the same algorithm can successfully partition 2D
182 projection images from an experimental data set containing multiple macromolecular complexes.
183 Pre-sorting 2D projection images prior to 3D classification allows current reconstruction
184 algorithms to be employed on datasets that would otherwise be too complex.

185 Although we demonstrated the feasibility of our approach on synthetic and experimental
186 data, we acknowledge that there are several limitations. In particular, our algorithm relies on the
187 quality of upstream 2D alignment, classification and averaging. As we observed during 2D
188 classification of our cryo-EM data, all apo ferritin particles were grouped into a single class

189 average. However, during our network generation step, each class average is given multiple
190 edges to the most similar classes, forcing the single apoferritin class average to have multiple
191 spurious edges. This error will occur any time the number of class averages of a given structure
192 is less than the number of edges used in the graph. Future modifications to the algorithm could
193 include searching for symmetric class averages, where this error is more likely to occur, and
194 removing them prior to community detection.

195 As we move cryo-EM towards structural determination of heterogeneous mixtures, several
196 other technical challenges will emerge, such as universal freezing conditions. In our mixture of 5
197 macromolecular complexes, we were unable to easily find freezing conditions that accommodated
198 all proteins. The result was a mixture missing β -galactosidase and containing orientation
199 preferences for the 40S and 80S ribosome. However, previous work has produced e.g. high-
200 resolution structures of fatty-acid synthase from fractionated cell lysate, suggesting it is possible
201 to find suitable cryo-conditions for solutions containing many macromolecular species (Kastritis
202 et al., 2017). An additional challenge will be developing particle picking algorithms specifically for
203 mixtures, where the particle shape may be unknown and, perhaps more importantly, non-uniform.
204 While in this study we used a template picking scheme, future studies with mixtures of unknown
205 composition will require more sophisticated approaches.

206 An expert might be able to manually sort the class averages from our cryo-EM data set;
207 however, as mixtures grow in complexity, manual sorting will certainly become infeasible.
208 Introducing algorithms such as SLICEM will provide an unbiased way to group 2D projection
209 images and can be easily implemented in conjunction with a variety of image processing and 3D
210 reconstruction packages. One additional utility of this algorithm could be to remove junk class
211 averages from data in a semi-supervised manner by removal of communities of projection images
212 that do not appear to have structural features. Our approach for sorting mixtures of structures
213 combined with previous approaches for sorting conformational heterogeneity could be a powerful

214 tool for deep classification. Development of methods to sort mixtures of structures in single
215 particle cryo-EM will allow us to solve more structures in parallel and alleviate time-consuming
216 protein purification and sample preparation.

217

218 **Materials and Methods**

219 Synthetic data generation

220 The following list of PDB entries were used to create the dataset of synthetic reprojections (1A0I,
221 1HHO, 1NW9, 1WA5, 3JCK, 5A63, 1A36, 1HNW, 1PJR, 2FFL, 3JCR, 5GJQ, 1AON, 1I6H, 1RYP,
222 2MYS, 3VKH, 5VOX, 1FA0, 1JLB, 1S5L, 2NN6, 4F3T, 6B3R, 1FPY, 1MUH, 1SXJ, 2SRC, 4V6C,
223 6D6V, 1GFL, 1NJI, 1TAU, 3JB9, 5A1A). Each PDB entry was low-pass filtered to 9 Å and
224 converted to a 3D EM density using ‘pdb2mrc’ in EMAN (Ludtke et al., 1999). These densities
225 were then uniformly reprojected using ‘project3d’ in EMAN to create 12 2D reprojections for each
226 structure (Ludtke et al., 1999). Reprojections were centered in 350 Å boxes.

227

228 Purification of apoferritin and β-galactosidase

229 Size-exclusion chromatography was performed at 4 °C on an AKTA FPLC (GE Healthcare).
230 Approximately 10 mg of apoferritin (Sigma A3660-1VL) and 5 mg of β-galactosidase G5635-5KU
231 were independently applied to a Superdex 200 10/300 GL analytical gel filtration column (GE
232 Healthcare) equilibrated in 20 mM HEPES KOH, 100 mM potassium acetate, 2.5 mM magnesium
233 acetate, pH 7.5 at a flow rate of 0.5 mL min-1. Fractions were collected every 0.5 mL.

234

235 SLICEM Algorithm

236 Our algorithm consists of five main steps: (1) Extracting 2D class average signal from background,
237 (2) Generating 1D line projections from the extracted 2D projection images, (3) Scoring the

238 similarity of all pairs of 1D line projections, (4) Building a nearest-neighbors graph of the 2D class
239 averages and (5) Partitioning communities within the graph.

240 (1) Extracting 2D class averages from background

241 The input to our algorithm is a set of centered and normalized 2D class averages. We then extract
242 the centered region of positive pixels values from the zero-mean normalized images to remove
243 background signal and extra densities that might be present in a class average.

244 (2) Generating 1D line projections from extracted 2D projection images

245 Each extracted class average is projected into 1D over 360 degrees in 5 degree intervals by
246 summing the pixel values along the projection axis. The 1D line projections are then
247 independently zero-mean normalized if the normalized cross-correlation or normalized Euclidean
248 scoring metric are selected.

249 (3) Scoring the similarity of all pairs of 1D line projections

250 To score the similarity of the 1D line projections we considered 6 different scoring metrics:
251 Euclidean distance, normalized Euclidean distance, cosine similarity, sum of the absolute
252 difference, cross-correlation and normalized cross-correlation. For the non-cross-correlation
253 metrics, the similarity of the 1D line projections is calculated for translations of the smaller 1D
254 projection across the larger 1D projection if there is a difference in projection size, analogous to
255 the ‘sliding’ feature of cross-correlations. The optimum score during the translations is kept for
256 each pair of 1D projections. After pairwise scoring of all 1D line projections, the similarity between
257 each pair of 2D class averages is defined by their respective highest scoring 1D line projections.

258 (4) Building a nearest-neighbors graph of the 2D class averages

259 SLICEM then constructs a directed graph using the similarity scores calculated for each pair of
260 2D class averages. Each node (2D class average) is connected to the 5 most similar (top scoring)
261 2D class averages. Each edge is assigned a weight computed as a z-score relative to all scores
262 for a given 2D class average.

263 (5) Partitioning communities within the graph.

264 The resulting graph is then subdivided using a community detection algorithm. Specifically, we
265 evaluated the edge-betweenness and walktrap algorithms to define clusters in the graph. Then,
266 the median absolute deviation of summed pixel intensities for each node is calculated to remove
267 outliers from the cluster. The final set of nodes in a cluster is then used as input for 3D
268 reconstruction in cryoSPARC.

269

270 Cryo-EM grid preparation and data collection

271 C-flat holey carbon grids (CF-1.2/1.3, Protochips Inc.) were pre-coated with a thin layer of freshly
272 prepared carbon film and glow-discharged for 30 seconds using a Gatan Solarus plasma cleaner
273 before addition of sample. 2.5 μ l of a mixture of 75 nM 40S ribosome, 150 nM 60S ribosome, 50
274 nM 80S ribosome, 125 nM apoferritin and 125 nM β -galactosidase were placed onto grids, blotted
275 for 3 seconds with a blotting force of 5 and rapidly plunged into liquid ethane using a FEI Vitrobot
276 MarkIV operated at 4 °C and 100% humidity. Data were acquired using an FEI Titan Krios
277 transmission electron microscope (Sauer Structural Biology Laboratory, University of Texas at
278 Austin) operating at 300 keV at a nominal magnification of $\times 22,500$ (1.1 Å pixel size) with defocus
279 ranging from -2.0 to -3.5 μ m. The data were collected using a total exposure of 6 s fractionated
280 into 20 frames (300 ms per frame) with a dose rate of ~8 electrons per pixel per second and a
281 total exposure dose of ~40 e⁻ Å⁻². A total of 2,423 micrographs were automatically recorded on a
282 Gatan K2 Summit direct electron detector operated in counting mode using the MSI Template
283 application within the automated macromolecular microscopy software LEGIONON (Suloway et al.,
284 2005).

285

286

287

288 Cryo-EM data processing

289 All image pre-processing was performed in Appion (Lander et al., 2009). Individual movie frames
290 were aligned and averaged using ‘MotionCor2’ drift-correction software (Zheng et al., 2017).
291 These drift-corrected micrographs were binned by 8, and bad micrographs and/or regions of
292 micrographs were removed using the ‘manual masking’ command within Appion. A total of
293 522,653 particles were picked with a template-based particle picker using a reference-free 2D
294 class average from a small subset of manually picked particles as templates. The contrast transfer
295 function (CTF) of each micrograph was estimated using CTFFIND4 (Rohou and Grigorieff, 2015).
296 Selected particles were extracted from micrographs using particle extraction within RELION
297 (Scheres, 2012) and the EMAN2 coordinates exported from Appion. Two rounds of reference free
298 2D classification with 100 classes for each sample were performed in RELION to remove junk
299 particles, resulting in a clean stack of 202,611 particle images.

300

301 **Author Contributions**

302 E.J.V. developed the code and performed all experiments. Y.Z. prepared samples and collected
303 the cryo-EM data. A.P.H. helped refine the code. A.L.M. helped with protein purification. E.J.V.,
304 D.W.T, and E.M.M. conceived of the experiments, analyzed the data, and wrote the manuscript.
305 D.W.T. and E.M.M. supervised and obtained funding for the work. All authors commented on the
306 manuscript.

307

308 **Acknowledgements**

309 We thank S. Musalgaonkar and A. Johnson for providing 40S and 60S yeast ribosomes; A. Dai
310 for expert cryo-EM assistance at the Sauer Structural Biology Laboratory at UT Austin; and
311 members of the Taylor and Marcotte laboratories for helpful discussions. D.W.T. is a CPRIT
312 Scholar supported by the Cancer Prevention and Research Institute of Texas (RR160088) and

313 an Army Young Investigator supported by the Army Research Office (WW911NF-19-10021). This
314 work was supported in part by Welch Foundation Research Grants F-1938 (to D.W.T.) and F-
315 1515 (to E.M.M.), Army Research Office Grant (W911NF-15-0120) (to D.W.T.), Robert J. Kleberg,
316 Jr. and Helen C. Kleberg Foundation Medical Research Award (to D.W.T.) and grants from the
317 National Institutes of Health (GM122480, DK110520, HD085901) to E.M.M..

318

319 **Data Availability**

320 The cryo-EM reconstructions of the 40S, 60S, 80S, and apoferritin have been deposited in the
321 Electron Microscopy Databank with accession codes EMD-20109, EMD-20110, EMD-20111 and
322 EMD-20112, respectively. The motion-corrected sum micrographs have been deposited into
323 EMPIAR with accession code EMPIAR-10268. Computer code for SLICEM is available at
324 <https://github.com/marcottelab/SLICEM>.

325

326 **References**

327 Aizenbud, Y., and Shkolnisky, Y. (2016). A max-cut approach to heterogeneity in cryo-electron
328 microscopy. *ArXiv160901100* Cs Math Q-Bio.

329 Cianfrocco, M.A., and Leschziner, A.E. (2015). Low cost, high performance processing of single
330 particle cryo-electron microscopy data in the cloud. *ELife* 4.

331 Herman, G.T., and Kalinowski, M. (2008). Classification of heterogeneous electron microscopic
332 projections into homogeneous subsets. *Ultramicroscopy* 108, 327–338.

333 Kastritis, P.L., O'Reilly, F.J., Bock, T., Li, Y., Rogon, M.Z., Buczak, K., Romanov, N., Betts, M.J.,
334 Bui, K.H., Hagen, W.J., et al. (2017). Capturing protein communities by structural proteomics in
335 a thermophilic eukaryote. *Mol. Syst. Biol.* 13, 936.

336 Katsevich, E., Katsevich, A., and Singer, A. (2015). Covariance Matrix Estimation for the Cryo-
337 EM Heterogeneity Problem. *SIAM J. Imaging Sci.* 8, 126–185.

338 Kühlbrandt, W. (2014). The resolution revolution. *Science* 343, 1443–1444.

339 Lander, G.C., Stagg, S.M., Voss, N.R., Cheng, A., Fellmann, D., Pulokas, J., Yoshioka, C.,
340 Irving, C., Mulder, A., Lau, P.-W., et al. (2009). Appion: An integrated, database-driven pipeline
341 to facilitate EM image processing. *J. Struct. Biol.* 166, 95–102.

342 Latapy, M., and Pons, P. (2004). Computing communities in large networks using random
343 walks. ArXivcond-Mat0412368.

344 Liao, H.Y., Hashem, Y., and Frank, J. (2015). Efficient Estimation of Three-Dimensional
345 Covariance and its Application in the Analysis of Heterogeneous Samples in Cryo-Electron
346 Microscopy. *Structure* *23*, 1129–1137.

347 Ludtke, S.J., Baldwin, P.R., and Chiu, W. (1999). EMAN: Semiautomated Software for High-
348 Resolution Single-Particle Reconstructions. *J. Struct. Biol.* *128*, 82–97.

349 Newman, M.E.J., and Girvan, M. (2004). Finding and evaluating community structure in
350 networks. *Phys. Rev. E* *69*.

351 Penczek, P.A., Frank, J., and Spahn, C.M.T. (2006). A method of focused classification, based
352 on the bootstrap 3D variance analysis, and its application to EF-G-dependent translocation. *J.*
353 *Struct. Biol.* *154*, 184–194.

354 Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017). cryoSPARC: algorithms for
355 rapid unsupervised cryo-EM structure determination. *Nat. Methods* *14*, 290–296.

356 Rohou, A., and Grigorieff, N. (2015). CTFFIND4: Fast and accurate defocus estimation from
357 electron micrographs. *J. Struct. Biol.* *192*, 216–221.

358 Roseman, A. (2004). FindEM—a fast, efficient program for automatic selection of particles from
359 electron micrographs. *J. Struct. Biol.* *145*, 91–99.

360 Russo, C.J., and Passmore, L.A. (2014). Ultrastable gold substrates for electron
361 cryomicroscopy. *Science* *346*, 1377–1380.

362 Scaiola, A., Peña, C., Weisser, M., Böhringer, D., Leibundgut, M., Klingauf-Nerurkar, P.,
363 Gerhardy, S., Panse, V.G., and Ban, N. (2018). Structure of a eukaryotic cytoplasmic pre-40S
364 ribosomal subunit. *EMBO J.* *13*.

365 Scheres, S.H.W. (2012). RELION: Implementation of a Bayesian approach to cryo-EM structure
366 determination. *J. Struct. Biol.* *180*, 519–530.

367 Shatsky, M., Hall, R.J., Nogales, E., Malik, J., and Brenner, S.E. (2010). Automated multi-model
368 reconstruction from single-particle electron microscopy data. *J. Struct. Biol.* *170*, 98–108.

369 Shen, P.S., Park, J., Qin, Y., Li, X., Parsawar, K., Larson, M.H., Cox, J., Cheng, Y., Lambowitz,
370 A.M., Weissman, J.S., et al. (2015). Rqc2p and 60S ribosomal subunits mediate mRNA-
371 independent elongation of nascent chains. *Science* *347*, 75–78.

372 Sigworth, F.J. (1998). A Maximum-Likelihood Approach to Single-Particle Image Refinement. *J.*
373 *Struct. Biol.* *122*, 328–339.

374 Sigworth, F.J., Doerschuk, P.C., Carazo, J.-M., and Scheres, S.H.W. (2010). An Introduction to
375 Maximum-Likelihood Methods in Cryo-EM. In *Methods in Enzymology*, (Elsevier), pp. 263–294.

376 Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe, J., Stagg, S., Potter,
377 C.S., and Carragher, B. (2005). Automated molecular microscopy: The new Leginon system. *J.*
378 *Struct. Biol.* *151*, 41–60.

379 Van Heel, M. (1987). Angular reconstitution: A posteriori assignment of projection directions for
380 3D reconstruction. *Ultramicroscopy* *21*, 111–123.

381 Verbeke, E.J., Mallam, A.L., Drew, K., Marcotte, E.M., and Taylor, D.W. (2018). Classification of
382 Single Particles from Human Cell Extract Reveals Distinct Structures. *Cell Rep.* *24*, 259-268.e3.

383 Yi, X., Verbeke, E.J., Chang, Y., Dickinson, D.J., and Taylor, D.W. (2018). Electron microscopy
384 snapshots of single particles from single cells. *J. Biol. Chem.* *jbc.RA118.006686*.

385 Zheng, S.Q., Palovcak, E., Armache, J.-P., Verba, K.A., Cheng, Y., and Agard, D.A. (2017).
386 MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron
387 microscopy. *Nat. Methods* *14*, 331–332.

388

389

390 **Figure Legends**

391 **Figure 1. Computational pipeline for SLICEM**

392 Individual particle images are averaged after reference-free 2D alignment and classification.
393 Using a Radon transform, 1D line projections are created from the 2D class averages (referred
394 to as 2D projections). Each 1D line projection from every 2D projection is then scored for
395 similarity. The top scores between each projection are used to form edges connecting 2D
396 projections that have a similar 1D line projection to form a graph. 2D projection images are then
397 partitioned into groups belonging to the same putative structure using a community detection
398 algorithm. Individual particle images belonging to each 2D projection within a community are
399 subjected to *ab initio* 3D reconstruction.

400

401 **Figure 2. Separating mixtures of synthetic 2D reprojections**

402 Synthetic reprojections were generated from 35 distinct X-ray crystal structures low-pass filtered
403 to 9 Å from complexes ranging in molecular weight from ~30 – 3000 kDa, prior to separation
404 using SLICEM. (A) Precision-recall plot ranking 6 different metrics at scoring the similarity
405 between 1D line projections from each 2D reprojection. (B) Network output displaying
406 communities of 2D reprojection images determined using SLICEM. Each node represents a 2D
407 reprojection with 5 connecting edges to the most similar reprojections as scored using
408 Euclidean distance. The color of each node matches the structure from which it was reprojected
409 (shown as a surface).

410

411 **Figure 3. Experimental 2D class averages and resulting network**

412 Cryo-EM data was collected on a mixture of 5 protein and protein-nucleic acid complexes. (A)
413 Representative 2D class averages of the 4 complexes identified in the mixture. The identity of

414 each class average was manually annotated where it could be easily identified. The class average
415 corresponding to apo ferritin was further subdivided into multiple classes for visualization. (B)
416 Network generated using SLICEM on the 100 2D class averages scored using the sum of the
417 absolute difference metric. Nodes representing each 2D class averages are colored by their
418 putative structural identity. The width of the box corresponds to 422 Å.

419

420 **Figure 4. Summed pixel intensities of 2D class averages correlate to molecular weight**

421 (A) 2D to 1D projections for representative 2D class averages of each structure present in the
422 mixture. 1D projection plots show the line profile for a single projection of each 2D class average.
423 Pixel heat maps show the intensity of the line profile at each pixel. (B) Distribution of the summed
424 1D projection pixel intensities, or integration of the 1D line profiles, calculated for each 2D class
425 average. Summed pixel intensities for each manually identified 2D class average are plotted
426 against their respective molecular weight. Black points are the mean summed pixel intensity for
427 each structure.

428

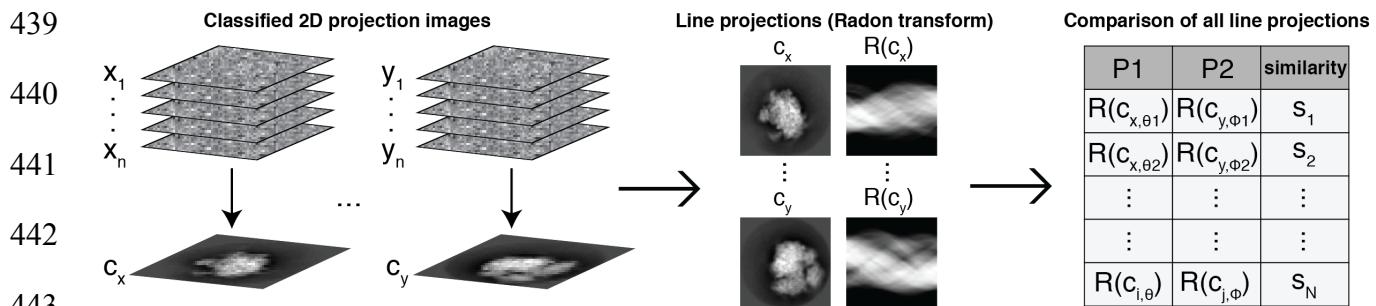
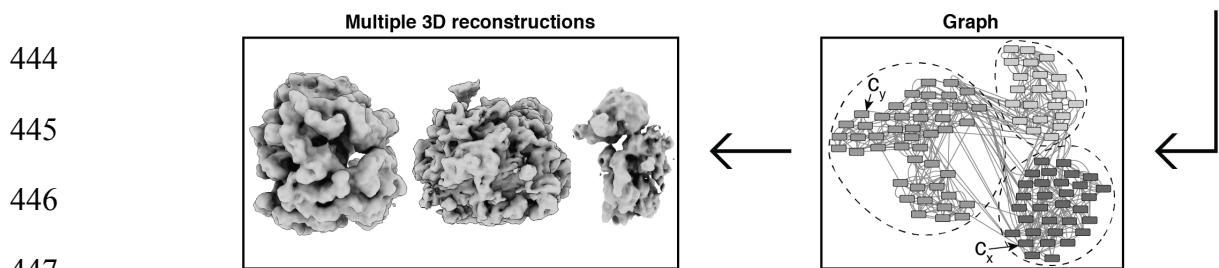
429 **Figure 5. *Ab initio* structures from an experimental mixture**

430 (A) High-resolution structures of the 80S ribosome EMD-2858 (Cianfrocco and Leschziner, 2015),
431 60S ribosome EMD-2811 (Shen et al., 2015), 40S ribosome EMD-4214 (Scaiola et al., 2018) and
432 apo ferritin EMD-2788 (Russo and Passmore, 2014). (B) 3D models of the 80S ribosome, 60S
433 ribosome, 40S ribosome and apo ferritin generated by sorting particles using SLICEM prior to *ab*
434 *initio* 3D reconstruction in cryoSPARC. (C) 3D models generated using *ab initio* reconstruction to
435 generate 4 classes in cryoSPARC without pre-sorting particles using SLICEM.

436

437 **Figures:**

438 **Figure 1**



451

452

453

454

455

456

457

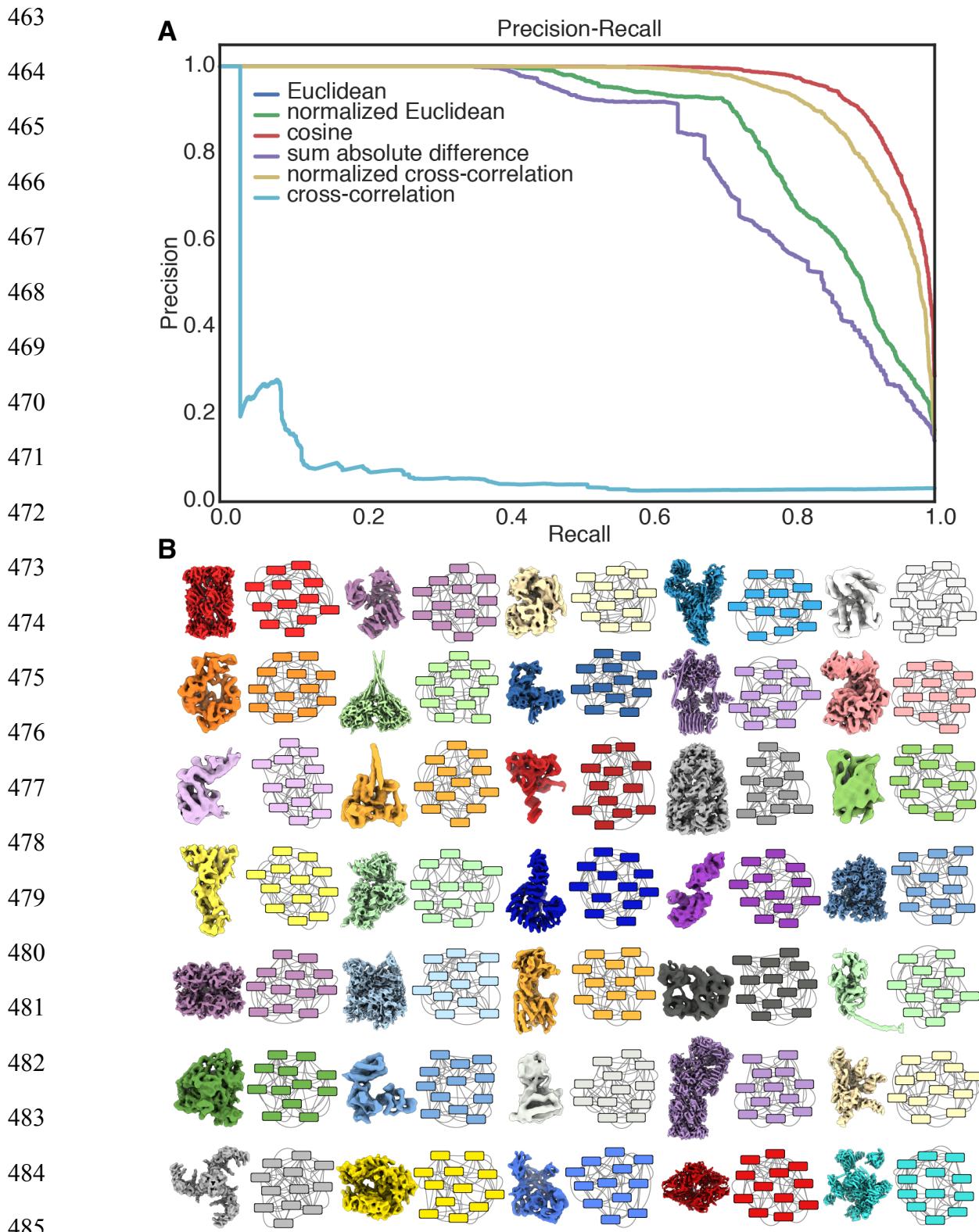
458

459

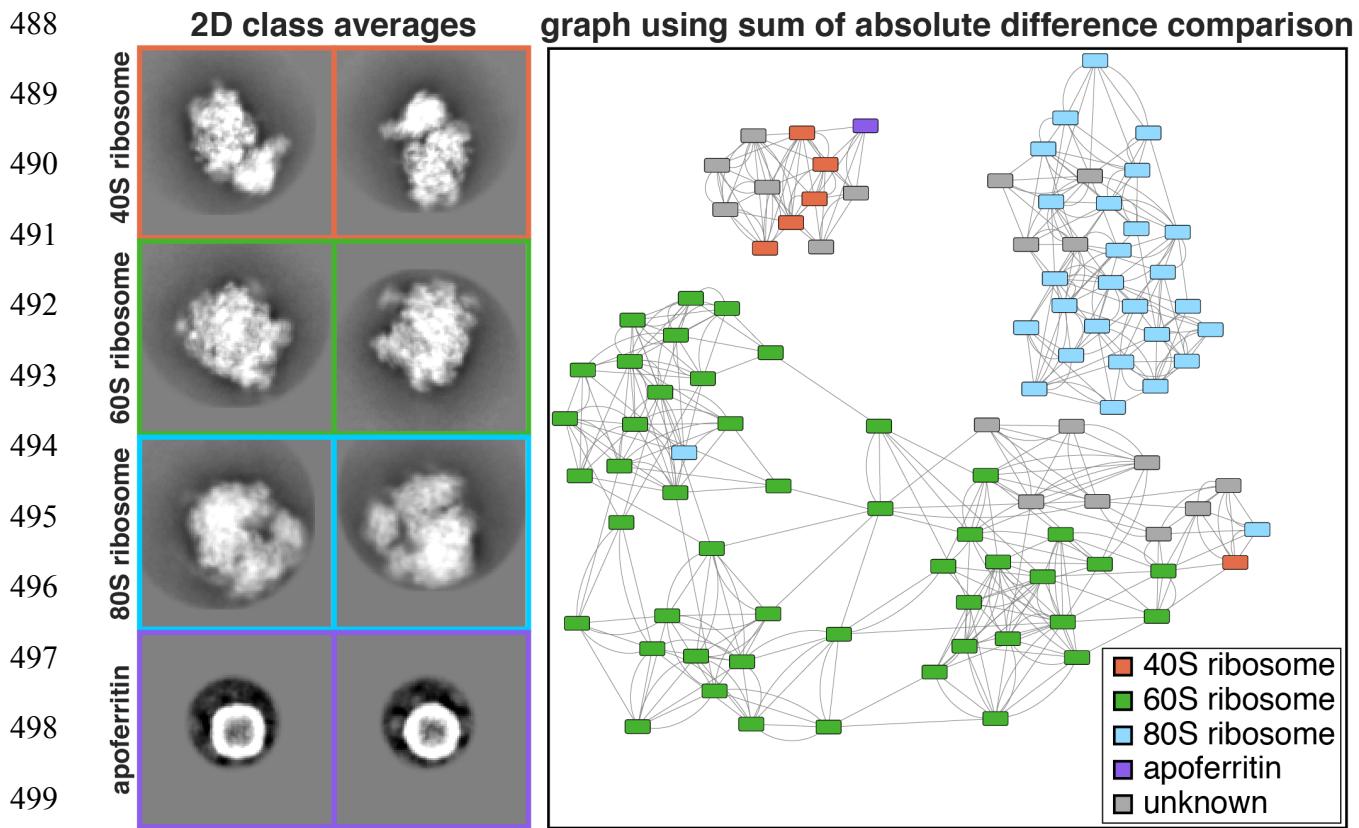
460

461

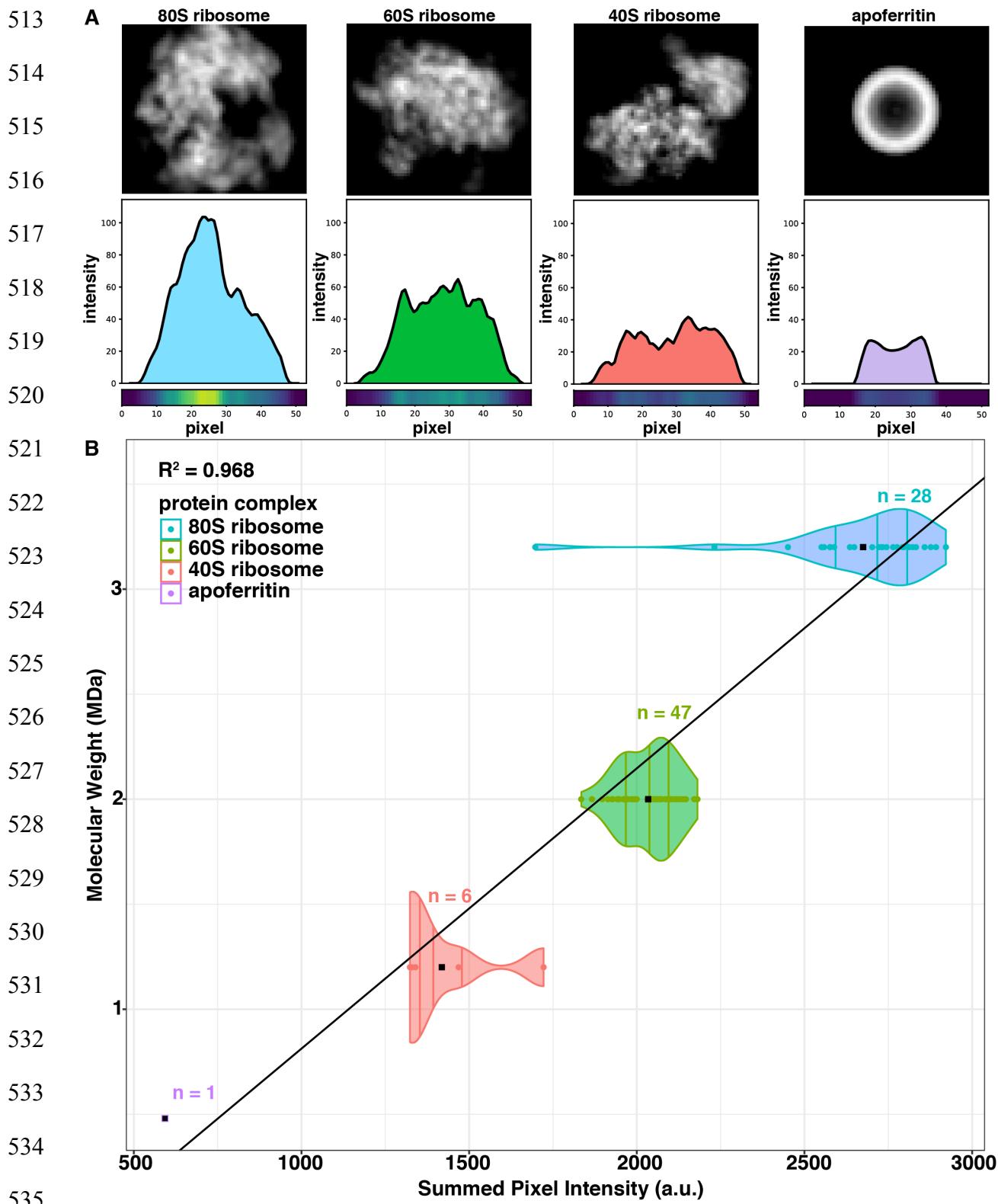
462 **Figure 2**



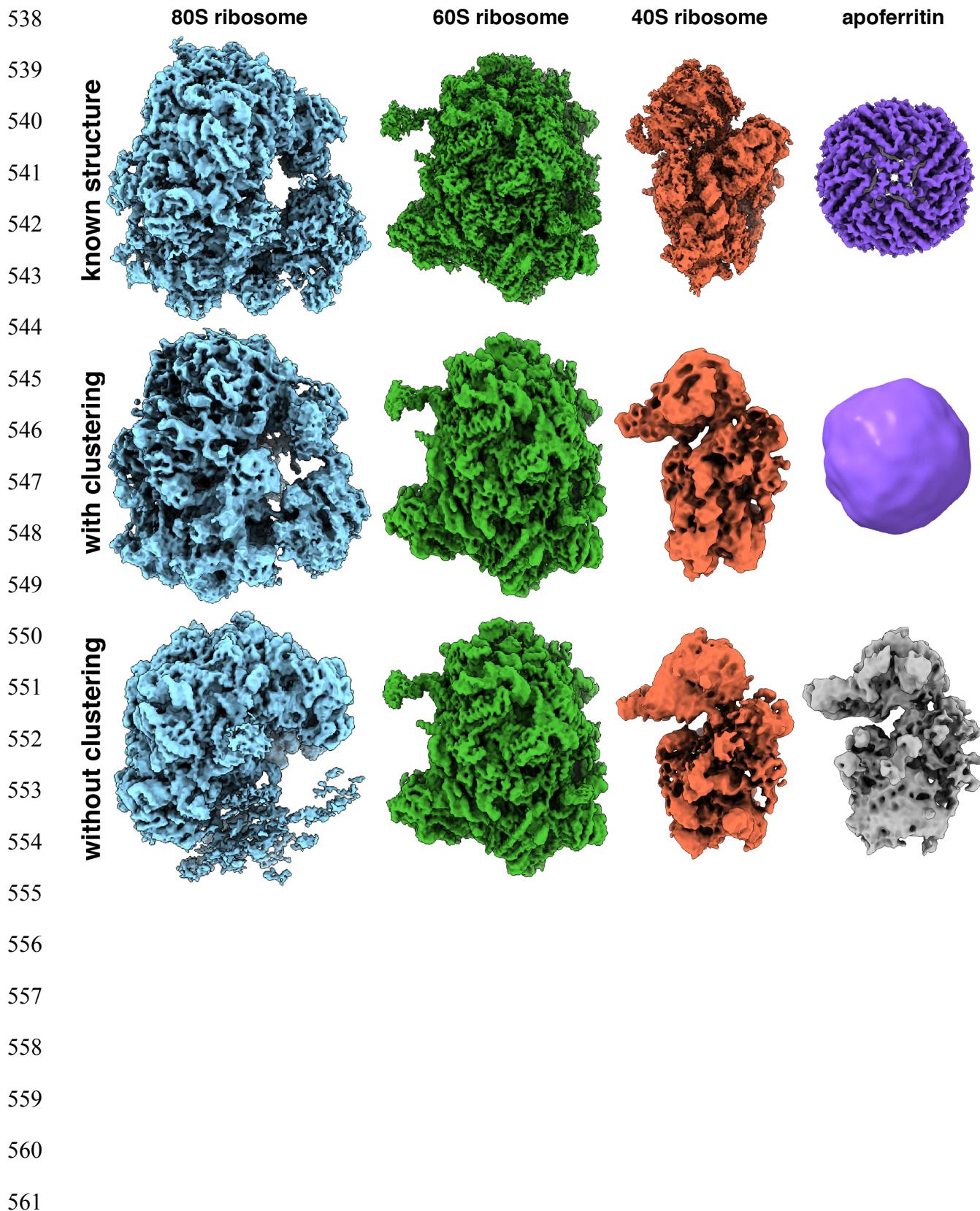
487 **Figure 3**



512 **Figure 4**



537 **Figure 5**



562 **Supplemental Information**

563 Figure S1. 2D reprojections from synthetic dataset

564 Subset of 2D reprojections from 12 of the 35 structures in our synthetic dataset. Box size
565 corresponds to 300 Å.

566

567 Figure S2. 2D classification of particles using RELION

568 (A) Representative raw micrograph of a mixture containing 40S, 60S and 80S ribosomes,
569 apoferritin and β-galactosidase. (B) Reference-free 2D class averages generated using RELION
570 of ~203,000 template-picked particle images. Box size corresponds to 422 Å.

571

572 Figure S3. Precision-recall curves for experimental cryo-EM data

573 Precision-recall plot displaying 6 different metrics for scoring the similarity between 1D line
574 projections from the entire set of 2D class averages.

575

576 Figure S4. *Ab initio* reconstructions in cryoSPARC with varying class number

577 3D reconstructions using *ab initio* reconstruction in cryoSPARC from the entire data set with K =
578 3, 4, 5 and 6 classes, respectively.

579

580 Figure S5. Fourier shell correlations curves

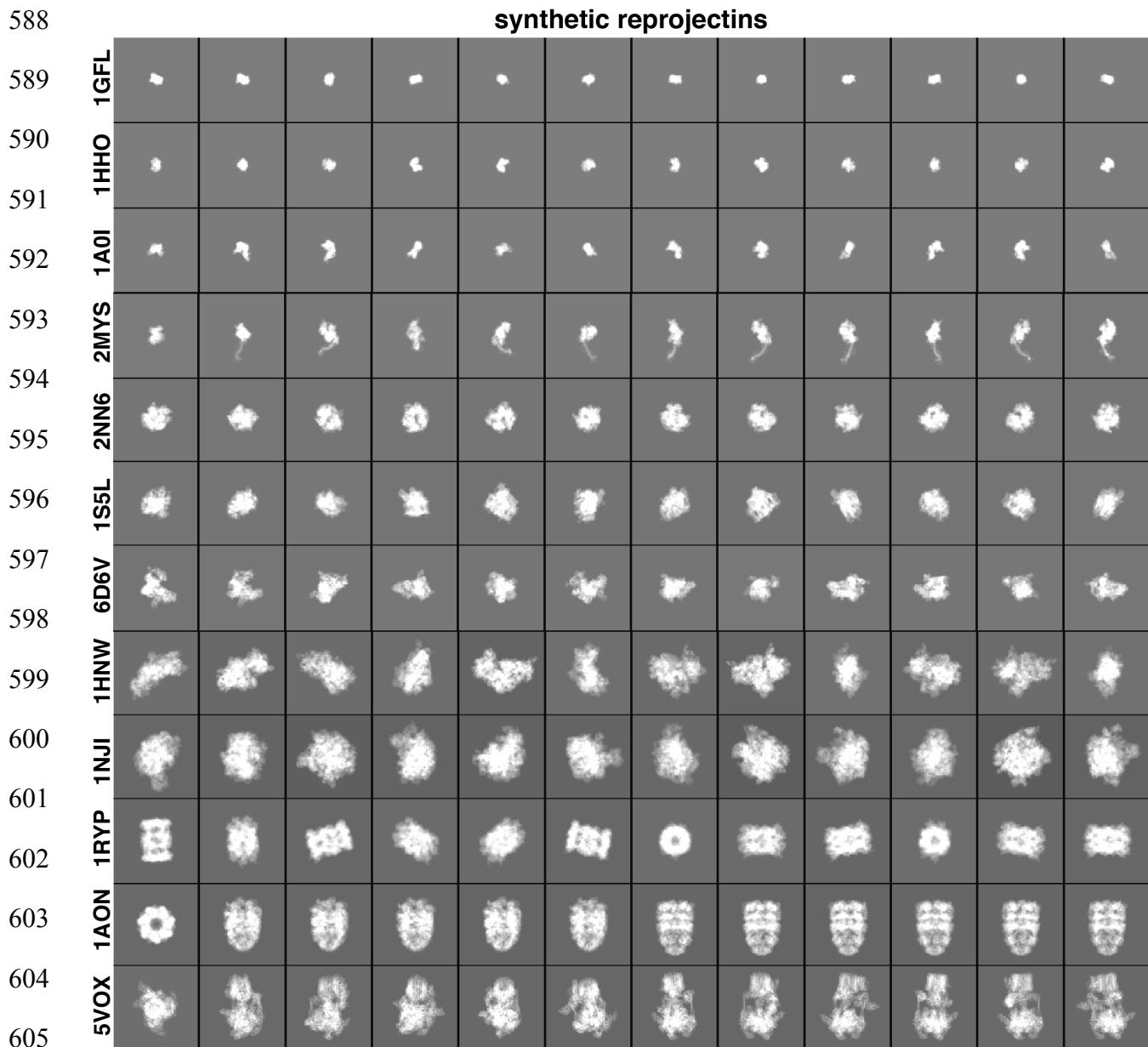
581 FSC curves for our clustered 80S ribosome (blue), 60S ribosome (green), 40S ribosome (red)
582 and apoferritin (purple) shown in Figure 5B. Nominal resolutions were estimated to be 5.4, 4, 12
583 and 19 Å, respectively, using the 0.143 gold-standard FSC criterion.

584

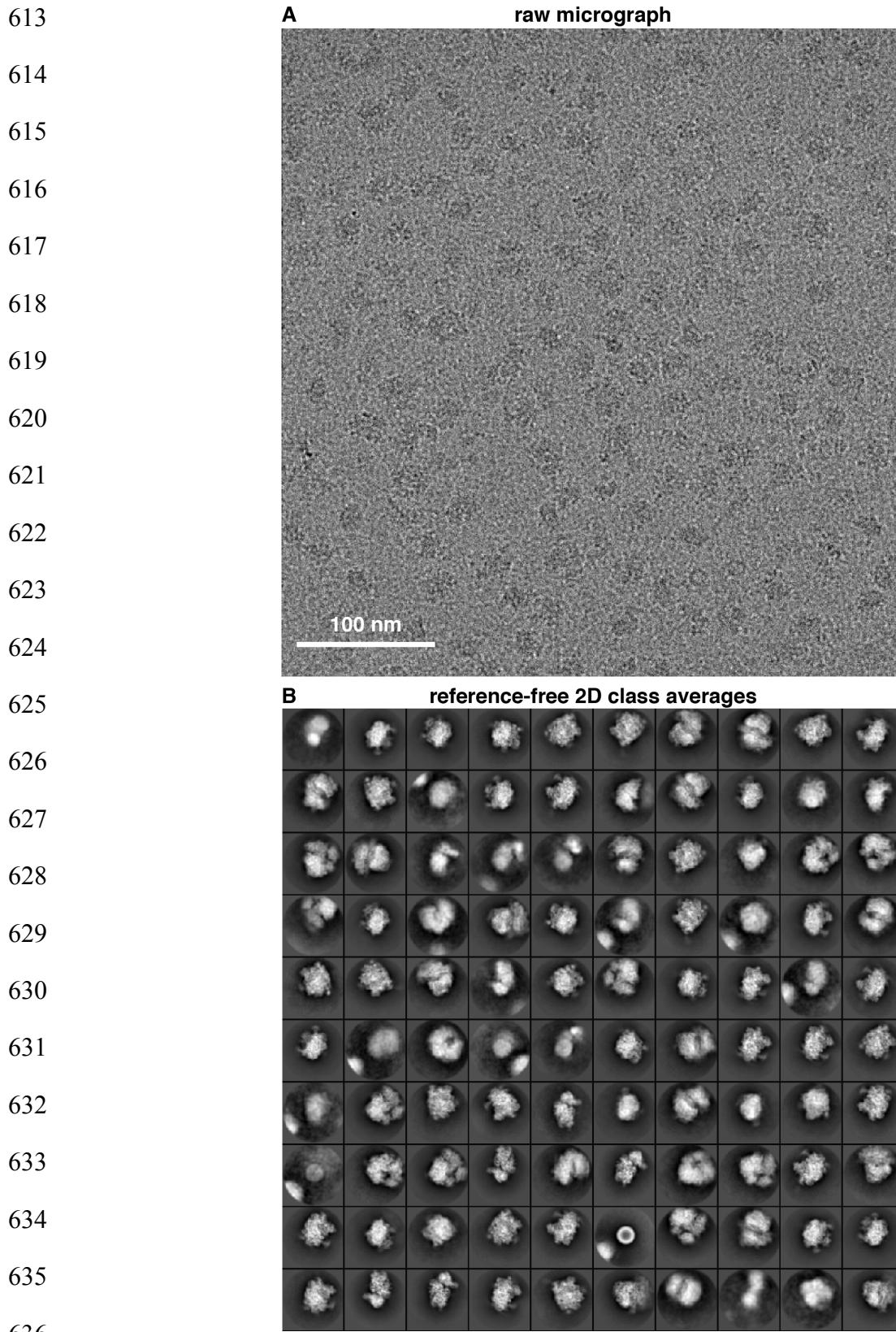
585

586

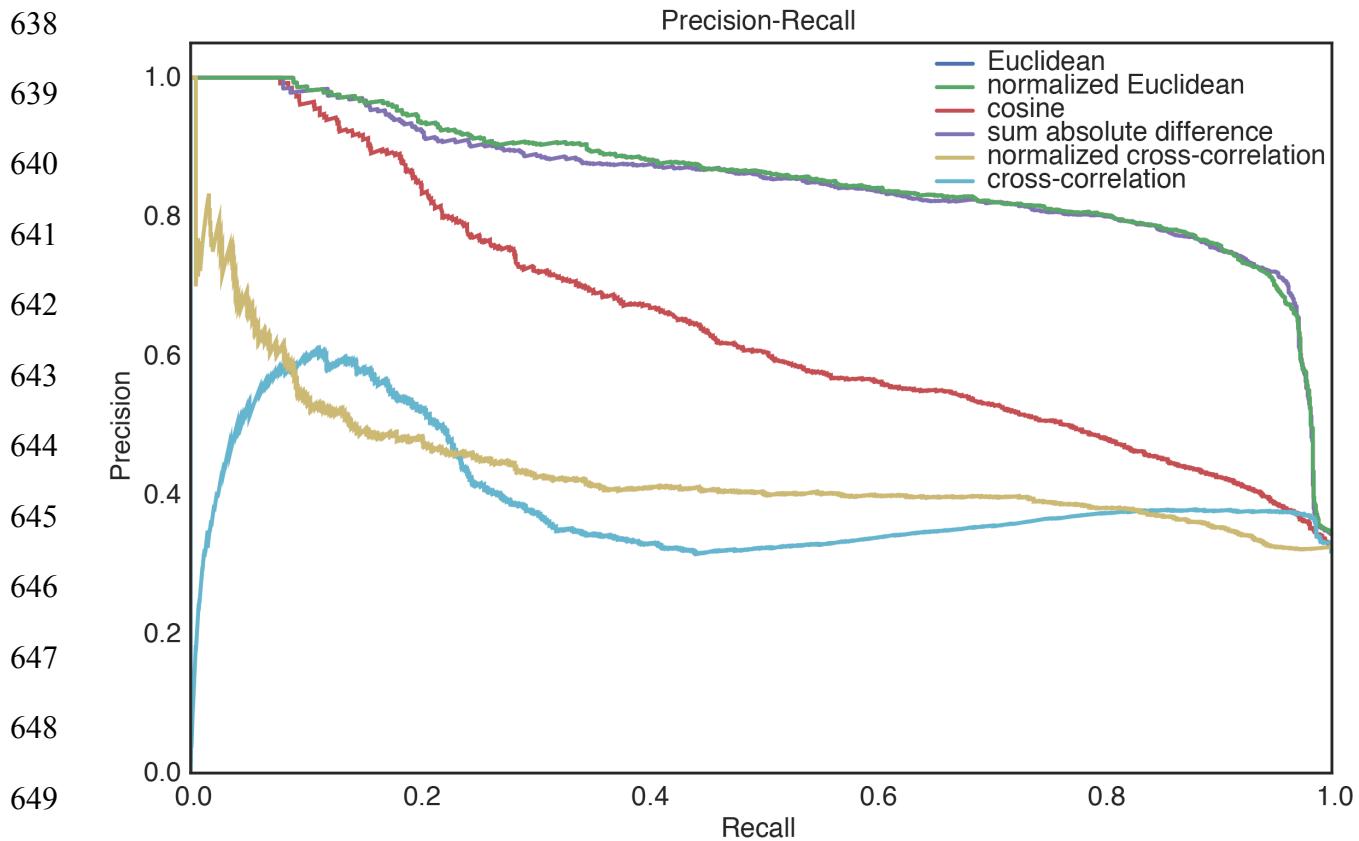
587 **Figure S1**



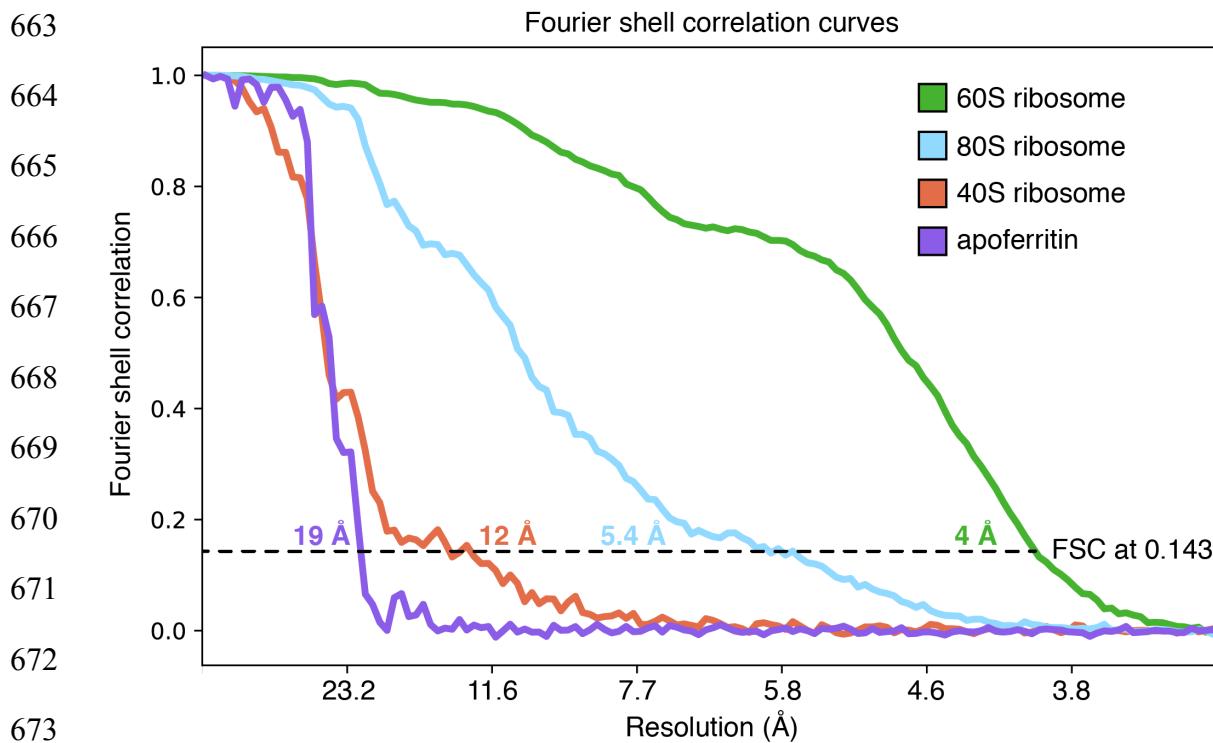
612 **Figure S2**



637 **Figure S3**



662 **Figure S4**



687 **Figure S5**

