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Abstract 1 

Cryo-electron microscopy is traditionally applied to samples purified to near homogeneity as 2 

current reconstruction algorithms are unable to handle heterogeneous mixtures of structures from 3 

many macromolecular complexes. We extend on long established methods and demonstrate that 4 

relating two-dimensional projection images by their common lines in a graphical framework is 5 

sufficient for partitioning distinct protein and multiprotein complexes within the same data set. 6 

Using this approach, we first group a large set of synthetic reprojections from 35 unique 7 

macromolecular structures ranging from ~30 – 3000 kDa into individual homogenous classes. We 8 

then apply our algorithm on cryo-EM data collected from a mixture of five protein complexes and 9 

use existing reconstruction methods to solve multiple three-dimensional structures ab initio. 10 

Incorporating methods to sort cryo-EM data from heterogeneous mixtures will alleviate the need 11 

for stringent purification and pave the way toward investigation of samples containing many 12 

unique structures.  13 
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Introduction 14 

Cryo-electron microscopy (cryo-EM) has undergone a revolutionary shift in the past few years. 15 

Increased signal in electron micrographs, as a result of direct electron detectors, has allowed for 16 

the near-atomic and atomic resolution structure determination of many macromolecules of various 17 

shapes and sizes (Kühlbrandt, 2014). These new detectors combined with automated data 18 

collection software and improvements in image processing suggest that cryo-EM could be utilized 19 

as a high-throughput approach to structural biology. One major obstacle remains: sorting through 20 

the immense heterogeneity present in a mixture of tens to hundreds to thousands of 21 

macromolecular assemblies.   22 

 We and others have shown that cellular extract can be mined for identification of multiple 23 

structures (Kastritis et al., 2017; Verbeke et al., 2018). More recently, we showed that it was 24 

possible to reconstruct macromolecular machines from the lysate of a single C. elegans embryo 25 

(Yi et al., 2018). These studies were limited to the identification of only the most abundant and 26 

easily identifiable protein and protein–nucleic acid complexes due to a lack of methods to 27 

efficiently categorize which two-dimensional (2D) projection images derive from which three-28 

dimensional (3D) assemblies on the basis of their structural features. While a number of 3D 29 

classification schemes exist, all failed to produce reliable reconstructions for the majority of 30 

particles in these complicated mixtures. This obstacle emphasizes the long-standing need to sort 31 

mixtures of structures in addition to their conformational and compositional heterogeneity. 32 

 Several methods have been successfully implemented for sorting limited heterogeneity in 33 

cryo-EM data. These approaches generally fall into three categories. Currently, the most popular 34 

approach for sorting heterogeneity in cryo-EM data utilizes a maximum likelihood estimation to 35 

optimize the correct classification of particles into multiple structures (Scheres, 2012; Sigworth, 36 

1998; Sigworth et al., 2010). Another approach is to estimate the covariance in cryo-EM data to 37 

search for regions of variability between the models and the data (Katsevich et al., 2015; Liao et 38 
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al., 2015; Penczek et al., 2006). The last approach involves computing similarities between 39 

projection images in the data before applying clustering methods to separate the data into 40 

homogenous subsets (Aizenbud and Shkolnisky, 2016; Herman and Kalinowski, 2008; Shatsky 41 

et al., 2010). All of these approaches have been demonstrated on samples containing a primary 42 

structure with multiple conformations or variable subunits. However, little work has been done for 43 

sorting heterogeneous samples containing multiple distinct structures. 44 

 Here, we develop a pipeline for building 3D reconstructions from a mixture of distinct 45 

particles by first grouping 2D projections into discrete, particle-specific classes using the principles 46 

of common lines and a novel graphical clustering framework. We demonstrate our method by 47 

partitioning reprojections from 35 previously solved X-ray crystal structures into their correct 48 

groups. Furthermore, we applied this pipeline to an experimental set of cryo-EM micrographs 49 

containing a mixture of several macromolecular complexes. We were able to reconstruct multiple 50 

3D structures after our clustering, improving on classification of all particles simultaneously using 51 

current 3D reconstruction software. These results are a necessary first step for moving cryo-EM 52 

towards high-throughput structural biology.  53 

 54 

Results 55 

Classifying projection images from multiple structures 56 

A major challenge facing “shotgun”-style cryo-EM is to reconstruct models from projection images 57 

arising from multiple distinct structures present in a mixture. To overcome this obstacle, we sought 58 

a method to computationally group heterogeneous projection images into discrete classes that 59 

each derive from the same structure. Two-dimensional projection images from the same 60 

asymmetric object can be related to each other if there is prior information of the three-61 

dimensional object (i.e. an initial model) using projection-matching algorithms. One approach that 62 

circumvents the need for a starting model is to relate the 2D projection images based on common 63 
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lines (Van Heel, 1987), derived from the projection-slice theorem, which states that any two 2D 64 

projections of the same 3D object must share a 1D line projection in common. In order to partition 65 

projection images into homogenous subsets, we developed an algorithm for detecting Shared 66 

Lines In Common Electron Maps (SLICEM). Using this algorithm, we score the similarity of 1D 67 

line projections between sets of 2D projection images without knowledge of the underlying 3D 68 

objects. Subsequently, these similarity scores can be put into a graphical framework and 69 

clustering algorithms can be applied to group related 2D projection images for subsequent 3D 70 

reconstructions (Figure 1). 71 

 72 

Synthetic data 73 

To test our approach using SLICEM, we generated synthetic reprojections from 35 previously 74 

solved X-ray crystal structures (see Methods) (Figure S1). The structures ranged in molecular 75 

weight from ~30 – 3000 kDa. Each structure was low-pass filtered to 9 Å and uniformly reprojected 76 

to create 12 2D projection images (Ludtke et al., 1999). Next, we combined reprojections from all 77 

models to simulate ideal 2D class averages from a heterogeneous cryo-EM dataset. The similarity 78 

of 1D line projections from each image was scored using 6 different metrics (see Methods). The 79 

precision and recall of correctly pairing 2D projection images from the same 3D structures was 80 

computed in order to determine the performance of each metric, and cosine similarity was 81 

determined to be the top performing metric (Figure 2A).  82 

 In order to identify sets of 2D projection images from the same 3D particles, we 83 

constructed a network from the comparisons between projection images as follows: Each 2D 84 

projection image was represented as a node in a directed graph, with each node connected by 85 

edges to the nodes corresponding to the 5 most closely-related 2D projection images based on 86 

the similarity of their 1D line projections. While the top-scoring metric in our precision/recall 87 

analysis was cosine similarity, the network generated from the Euclidean distance similarity most 88 
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clearly showed communities (clusters of 2D projections) correctly partitioned by 3D structure 89 

(Figure 2B). These results show that partitioning 2D projection images by scoring their common 90 

lines is a powerful, unsupervised approach for sorting cryo-EM data from distinct 3D structures 91 

within a heterogeneous mixture.  92 

 93 

Cryo-EM on a mixture of protein complexes 94 

After validating our SLICEM algorithm on a synthetic dataset, we performed cryo-EM on an 95 

experimental mixture of structures and tested our approach as a proof-of-principle. Our 96 

experimental mixture consisted of 40S, 60S and 80S ribosomes, apoferritin and β-galactosidase. 97 

We collected ~2,400 images and used a template-based particle picking scheme to select 98 

~523,000 particles from the entire data set (Roseman, 2004). Raw micrographs showed a mixture 99 

of disperse particles with varying size and shape (Figure S2). We then performed 2D classification 100 

on the entire set of particles using RELION (Scheres, 2012). After 1 round of filtering junk 101 

particles, the remaining ~203,000 particles were sorted into 100 classes using RELION. The class 102 

averages contained many characteristic ribosome projections and had distinct structural features 103 

(Figure S2). We were unable to identify any β-galactosidase particles in our collected images. 104 

 We then applied our SLICEM algorithm to the 100 2D class averages. The identity of each 105 

class average was manually annotated, where it was easily recognizable, to assess whether our 106 

algorithm was correctly separating the 2D projection images from our heterogeneous mixture 107 

(Figure 3). Based on these manual annotations, we again tested the 6 different metrics in a 108 

precision-recall framework to determine which metric performed better on experimental data 109 

(Figure S3). Interestingly, the Euclidean distance and sum of the absolute difference scoring 110 

metric significantly outperformed the cosine similarity. Using the sum of the absolute difference 111 

scoring metric, the network naturally partitioned into 3 distinct communities, one for each 112 

ribosome, prior to employing any community detection algorithms (Figure 3). As part of our 113 
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algorithm, we evaluated two community detection methods, edge betweenness and walktrap, to 114 

determine if the network should be further subdivided (Latapy and Pons, 2004; Newman and 115 

Girvan, 2004). We chose to use community detection algorithms to prevent biasing the data by 116 

choosing the number of output clusters we expected. Using our SLICEM algorithm, we were able 117 

to correctly separate 2D projection images from 3 large, asymmetric macromolecular complexes 118 

from the same mixture. 119 

 120 

Relating summed pixel intensity to molecular weight 121 

Apart from partitioning 2D projection images into homogenous subsets for 3D reconstruction, one 122 

additional goal was to determine the identity of each projection image. In previous studies, we 123 

and others have leveraged mass spectrometry data to help identify electron microscopy 124 

reconstructions from a heterogeneous mixture, such as cell lysate, where the architecture of every 125 

protein or protein complex is not known (Kastritis et al., 2017; Verbeke et al., 2018). However, 126 

this combined MS-EM approach was only useful for identifying highly abundant and easily 127 

recognizable structures.  128 

 To provide evidence of macromolecular identity from the electron maps, we calculated the 129 

sum of pixel intensities in each manually annotated 2D class average as a proxy for molecular 130 

weight (Figure 4). We found that each of the three ribosomes and apoferritin had unique summed 131 

pixel intensities that could be used to distinguish the class averages. A least-squares fit to the 132 

mean of the summed pixel intensities showed a linear relationship between summed pixel 133 

intensity and protein molecular weight. The summed pixel intensities were therefore used as an 134 

additional filtering step by removing nodes in communities whose summed pixel intensities were 135 

outliers in that community. Using this filtering step, the apoferritin class average was removed 136 

from the community containing predominantly 40S ribosome reprojections. Our data suggest that, 137 

given an appropriate set of standards, summed pixel intensity can be correlated to molecular 138 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2019. ; https://doi.org/10.1101/611566doi: bioRxiv preprint 

https://doi.org/10.1101/611566
http://creativecommons.org/licenses/by/4.0/


  8 

weight. Thus, summed pixel intensity could be useful in narrowing down the possible identities for 139 

a set of electron densities, when combined with sequence information.  140 

 141 

3D classification of a mixture of protein complexes 142 

The ultimate goal of our pipeline is to reconstruct 3D models from our output of clustered 2D 143 

projection images. We chose to use cryoSPARC for 3D reconstructions because it can perform 144 

heterogeneous reconstruction without a priori information on structure or identity (Punjani et al., 145 

2017). We used the particles from each of our 3 distinct communities in addition to the isolated 146 

apoferritin node for ab initio reconstruction in cryoSPARC (Figure 5). The cluster containing 147 

primarily 40S ribosome particles was split into two classes to filter the additional junk particles 148 

present in the community. Comparison of our models reconstructed after clustering to the models 149 

produced using the entire data set as input for ab initio reconstruction in cryoSPARC with 4 150 

classes (one for each protein complex in the mixture) showed our pre-sorting procedure improved 151 

the resulting structures (Figure 5). In particular, we were able to build an apoferritin model that 152 

was missed in the 3D classification of all particles from cryoSPARC. Our 80S model also shows 153 

a more complete density for the small subunit than its counterpart in the model created without 154 

clustering. We also observe that changing the number of classes using ab initio reconstruction in 155 

cryoSPARC had a substantial impact on the quality of classification (Figure S4).  156 

 Each model was refined and evaluated using the gold-standard 0.143 Fourier shell 157 

correlation criterion (Figure S5). We obtained easily identifiable 40S, 60S, and 80S ribosome 158 

structures at 12, 4, and 5.4 Å resolution, respectively. We were also able to reconstruct the 159 

smaller, more compact apoferritin at 19 Å resolution. Notably, the 40S and 80S models contain 160 

streaks in one dimension, indicating that we are missing several orientations of the particles. We 161 

attribute this to preferential orientation of the particles in ice, rather than an inability of our 162 

algorithm to properly sort particles into correct communities. Together, these results demonstrate 163 
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a functioning pipeline for sorting 2D projection images from a heterogeneous mixture of 3D 164 

structures, allowing for single particle EM to be applied to samples containing multiple proteins or 165 

protein complexes. Importantly, aside from choosing the most appropriate similarity measure, our 166 

approach is fully unsupervised, requiring no user defined estimate of the number of existing 167 

classes.  168 

 169 

Discussion 170 

As cryo-EM continues to rapidly advance, one potential application would be to perform high-171 

throughput structural biology. The ability to sort and classify heterogeneous mixtures will become 172 

a necessary feature. One advantage of this approach would be to study closer-to-native proteins 173 

directly from cell lysate without the need to purify or alter the sample. Currently, handling 174 

compositional and conformational heterogeneity is a major challenge for the EM field, usually 175 

requiring expert, time-consuming steps. In this study, we present an unsupervised algorithm, 176 

SLICEM, which extends on previous methods and demonstrates that sorting 2D projection images 177 

based on the similarity of their common lines is capable of correctly clustering 2D projection 178 

images from a mixture of protein and protein-nucleic acid complexes. We first demonstrate that 179 

the algorithm successfully sorts a synthetic dataset of reprojections created from 35 unique 180 

macromolecular structures. Next, we show the same algorithm can successfully partition 2D 181 

projection images from an experimental data set containing multiple macromolecular complexes. 182 

Pre-sorting 2D projection images prior to 3D classification allows current reconstruction 183 

algorithms to be employed on datasets that would otherwise be too complex. 184 

 Although we demonstrated the feasibility of our approach on synthetic and experimental 185 

data, we acknowledge that there are several limitations. In particular, our algorithm relies on the 186 

quality of upstream 2D alignment, classification and averaging. As we observed during 2D 187 

classification of our cryo-EM data, all apoferritin particles were grouped into a single class 188 
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average. However, during our network generation step, each class average is given multiple 189 

edges to the most similar classes, forcing the single apoferritin class average to have multiple 190 

spurious edges. This error will occur any time the number of class averages of a given structure 191 

is less than the number of edges used in the graph. Future modifications to the algorithm could 192 

include searching for symmetric class averages, where this error is more likely to occur, and 193 

removing them prior to community detection.  194 

 As we move cryo-EM towards structural determination of heterogeneous mixtures, several 195 

other technical challenges will emerge, such as universal freezing conditions. In our mixture of 5 196 

macromolecular complexes, we were unable to easily find freezing conditions that accommodated 197 

all proteins. The result was a mixture missing β-galactosidase and containing orientation 198 

preferences for the 40S and 80S ribosome. However, previous work has produced e.g. high-199 

resolution structures of fatty-acid synthase from fractionated cell lysate, suggesting it is possible 200 

to find suitable cryo-conditions for solutions containing many macromolecular species (Kastritis 201 

et al., 2017). An additional challenge will be developing particle picking algorithms specifically for 202 

mixtures, where the particle shape may be unknown and, perhaps more importantly, non-uniform. 203 

While in this study we used a template picking scheme, future studies with mixtures of unknown 204 

composition will require more sophisticated approaches. 205 

 An expert might be able to manually sort the class averages from our cryo-EM data set; 206 

however, as mixtures grow in complexity, manual sorting will certainly become infeasible. 207 

Introducing algorithms such as SLICEM will provide an unbiased way to group 2D projection 208 

images and can be easily implemented in conjunction with a variety of image processing and 3D 209 

reconstruction packages. One additional utility of this algorithm could be to remove junk class 210 

averages from data in a semi-supervised manner by removal of communities of projection images 211 

that do not appear to have structural features. Our approach for sorting mixtures of structures 212 

combined with previous approaches for sorting conformational heterogeneity could be a powerful 213 
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tool for deep classification. Development of methods to sort mixtures of structures in single 214 

particle cryo-EM will allow us to solve more structures in parallel and alleviate time-consuming 215 

protein purification and sample preparation. 216 

 217 

Materials and Methods 218 

Synthetic data generation 219 

The following list of PDB entries were used to create the dataset of synthetic reprojections (1A0I, 220 

1HHO, 1NW9, 1WA5, 3JCK, 5A63, 1A36, 1HNW, 1PJR, 2FFL, 3JCR, 5GJQ, 1AON, 1I6H, 1RYP, 221 

2MYS, 3VKH, 5VOX, 1FA0, 1JLB, 1S5L, 2NN6, 4F3T, 6B3R, 1FPY, 1MUH, 1SXJ, 2SRC, 4V6C, 222 

6D6V, 1GFL, 1NJI, 1TAU, 3JB9, 5A1A). Each PDB entry was low-pass filtered to 9 Å and 223 

converted to a 3D EM density using ‘pdb2mrc’ in EMAN (Ludtke et al., 1999). These densities 224 

were then uniformly reprojected using ‘project3d’ in EMAN to create 12 2D reprojections for each 225 

structure (Ludtke et al., 1999). Reprojections were centered in 350 Å boxes. 226 

 227 

Purification of apoferritin and β-galactosidase 228 

Size-exclusion chromatography was performed at 4 ºC on an AKTA FPLC (GE Healthcare). 229 

Approximately 10 mg of apoferritin (Sigma A3660-1VL) and 5 mg of β-galactosidase G5635-5KU 230 

were independently applied to a Superdex 200 10/300 GL analytical gel filtration column (GE 231 

Healthcare) equilibrated in 20 mM HEPES KOH, 100 mM potassium acetate, 2.5 mM magnesium 232 

acetate, pH 7.5 at a flow rate of 0.5 mL min-1. Fractions were collected every 0.5 mL. 233 

 234 

SLICEM Algorithm 235 

Our algorithm consists of five main steps: (1) Extracting 2D class average signal from background, 236 

(2) Generating 1D line projections from the extracted 2D projection images, (3) Scoring the 237 
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similarity of all pairs of 1D line projections, (4) Building a nearest-neighbors graph of the 2D class 238 

averages and (5) Partitioning communities within the graph. 239 

(1) Extracting 2D class averages from background 240 

The input to our algorithm is a set of centered and normalized 2D class averages. We then extract 241 

the centered region of positive pixels values from the zero-mean normalized images to remove 242 

background signal and extra densities that might be present in a class average. 243 

(2) Generating 1D line projections from extracted 2D projection images 244 

Each extracted class average is projected into 1D over 360 degrees in 5 degree intervals by 245 

summing the pixel values along the projection axis. The 1D line projections are then 246 

independently zero-mean normalized if the normalized cross-correlation or normalized Euclidean 247 

scoring metric are selected. 248 

(3) Scoring the similarity of all pairs of 1D line projections 249 

To score the similarity of the 1D line projections we considered 6 different scoring metrics: 250 

Euclidean distance, normalized Euclidean distance, cosine similarity, sum of the absolute 251 

difference, cross-correlation and normalized cross-correlation. For the non-cross-correlation 252 

metrics, the similarity of the 1D line projections is calculated for translations of the smaller 1D 253 

projection across the larger 1D projection if there is a difference in projection size, analogous to 254 

the ‘sliding’ feature of cross-correlations. The optimum score during the translations is kept for 255 

each pair of 1D projections. After pairwise scoring of all 1D line projections, the similarity between 256 

each pair of 2D class averages is defined by their respective highest scoring 1D line projections.   257 

(4) Building a nearest-neighbors graph of the 2D class averages 258 

SLICEM then constructs a directed graph using the similarity scores calculated for each pair of 259 

2D class averages. Each node (2D class average) is connected to the 5 most similar (top scoring) 260 

2D class averages. Each edge is assigned a weight computed as a z-score relative to all scores 261 

for a given 2D class average. 262 
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(5) Partitioning communities within the graph. 263 

The resulting graph is then subdivided using a community detection algorithm. Specifically, we 264 

evaluated the edge-betweenness and walktrap algorithms to define clusters in the graph. Then, 265 

the median absolute deviation of summed pixel intensities for each node is calculated to remove 266 

outliers from the cluster. The final set of nodes in a cluster is then used as input for 3D 267 

reconstruction in cryoSPARC. 268 

 269 

Cryo-EM grid preparation and data collection 270 

C-flat holey carbon grids (CF-1.2/1.3, Protochips Inc.) were pre-coated with a thin layer of freshly 271 

prepared carbon film and glow-discharged for 30 seconds using a Gatan Solarus plasma cleaner 272 

before addition of sample. 2.5 μl of a mixture of 75 nM 40S ribosome, 150 nM 60S ribosome, 50 273 

nM 80S ribosome, 125 nM apoferritin and 125 nM β-galactosidase were placed onto grids, blotted 274 

for 3 seconds with a blotting force of 5 and rapidly plunged into liquid ethane using a FEI Vitrobot 275 

MarkIV operated at 4 °C and 100% humidity. Data were acquired using an FEI Titan Krios 276 

transmission electron microscope (Sauer Structural Biology Laboratory, University of Texas at 277 

Austin) operating at 300 keV at a nominal magnification of ×22,500 (1.1 Å pixel size) with defocus 278 

ranging from -2.0 to -3.5 μm. The data were collected using a total exposure of 6 s fractionated 279 

into 20 frames (300 ms per frame) with a dose rate of ~8 electrons per pixel per second and a 280 

total exposure dose of ~40 e– Å–2. A total of 2,423 micrographs were automatically recorded on a 281 

Gatan K2 Summit direct electron detector operated in counting mode using the MSI Template 282 

application within the automated macromolecular microscopy software LEGINON (Suloway et al., 283 

2005). 284 

 285 

 286 

 287 
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Cryo-EM data processing 288 

All image pre-processing was performed in Appion (Lander et al., 2009). Individual movie frames 289 

were aligned and averaged using ‘MotionCor2’ drift-correction software (Zheng et al., 2017). 290 

These drift-corrected micrographs were binned by 8, and bad micrographs and/or regions of 291 

micrographs were removed using the ‘manual masking’ command within Appion. A total of 292 

522,653 particles were picked with a template-based particle picker using a reference-free 2D 293 

class average from a small subset of manually picked particles as templates. The contrast transfer 294 

function (CTF) of each micrograph was estimated using CTFFIND4 (Rohou and Grigorieff, 2015). 295 

Selected particles were extracted from micrographs using particle extraction within RELION 296 

(Scheres, 2012) and the EMAN2 coordinates exported from Appion. Two rounds of reference free 297 

2D classification with 100 classes for each sample were performed in RELION to remove junk 298 

particles, resulting in a clean stack of 202,611 particle images.  299 

 300 
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Data Availability 319 

The cryo-EM reconstructions of the 40S, 60S, 80S, and apoferritin have been deposited in the 320 

Electron Microscopy Databank with accession codes EMD-20109, EMD-20110, EMD-20111 and 321 

EMD-20112, respectively. The motion-corrected sum micrographs have been deposited into 322 

EMPIAR with accession code EMPIAR-10268. Computer code for SLICEM is available at 323 

https://github.com/marcottelab/SLICEM.  324 
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Figure Legends 390 

Figure 1. Computational pipeline for SLICEM 391 

Individual particle images are averaged after reference-free 2D alignment and classification. 392 

Using a Radon transform, 1D line projections are created from the 2D class averages (referred 393 

to as 2D projections). Each 1D line projection from every 2D projection is then scored for 394 

similarity. The top scores between each projection are used to form edges connecting 2D 395 

projections that have a similar 1D line projection to form a graph. 2D projection images are then 396 

partitioned into groups belonging to the same putative structure using a community detection 397 

algorithm. Individual particle images belonging to each 2D projection within a community are 398 

subjected to ab initio 3D reconstruction. 399 

 400 

Figure 2. Separating mixtures of synthetic 2D reprojections 401 

Synthetic reprojections were generated from 35 distinct X-ray crystal structures low-pass filtered 402 

to 9 Å from complexes ranging in molecular weight from ~30 – 3000 kDa, prior to separation 403 

using SLICEM. (A) Precision-recall plot ranking 6 different metrics at scoring the similarity 404 

between 1D line projections from each 2D reprojection. (B) Network output displaying 405 

communities of 2D reprojection images determined using SLICEM. Each node represents a 2D 406 

reprojection with 5 connecting edges to the most similar reprojections as scored using 407 

Euclidean distance. The color of each node matches the structure from which it was reprojected 408 

(shown as a surface). 409 

 410 

Figure 3. Experimental 2D class averages and resulting network 411 

Cryo-EM data was collected on a mixture of 5 protein and protein-nucleic acid complexes. (A) 412 

Representative 2D class averages of the 4 complexes identified in the mixture. The identity of 413 
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each class average was manually annotated were it could be easily identified. The class average 414 

corresponding to apoferritin was further subdivided into multiple classes for visualization. (B) 415 

Network generated using SLICEM on the 100 2D class averages scored using the sum of the 416 

absolute difference metric. Nodes representing each 2D class averages are colored by their 417 

putative structural identity. The width of the box corresponds to 422 Å. 418 

 419 

Figure 4. Summed pixel intensities of 2D class averages correlate to molecular weight 420 

(A) 2D to 1D projections for representative 2D class averages of each structure present in the 421 

mixture. 1D projection plots show the line profile for a single projection of each 2D class average. 422 

Pixel heat maps show the intensity of the line profile at each pixel. (B) Distribution of the summed 423 

1D projection pixel intensities, or integration of the 1D line profiles, calculated for each 2D class 424 

average. Summed pixel intensities for each manually identified 2D class average are plotted 425 

against their respective molecular weight. Black points are the mean summed pixel intensity for 426 

each structure. 427 

 428 

Figure 5. Ab initio structures from an experimental mixture 429 

(A) High-resolution structures of the 80S ribosome EMD-2858 (Cianfrocco and Leschziner, 2015), 430 

60S ribosome EMD-2811 (Shen et al., 2015), 40S ribosome EMD-4214 (Scaiola et al., 2018) and 431 

apoferritin EMD-2788 (Russo and Passmore, 2014). (B) 3D models of the 80S ribosome, 60S 432 

ribosome, 40S ribosome and apoferritin generated by sorting particles using SLICEM prior to ab 433 

initio 3D reconstruction in cryoSPARC. (C) 3D models generated using ab initio reconstruction to 434 

generate 4 classes in cryoSPARC without pre-sorting particles using SLICEM. 435 

  436 
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Figures: 437 

Figure 1 438 
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Figure 2 462 
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Figure 3 487 
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Figure 4 512 
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Figure 5 537 
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Supplemental Information 562 

Figure S1. 2D reprojections from synthetic dataset 563 

Subset of 2D reprojections from 12 of the 35 structures in our synthetic dataset. Box size 564 

corresponds to 300 Å.   565 

 566 

Figure S2. 2D classification of particles using RELION 567 

(A) Representative raw micrograph of a mixture containing 40S, 60S and 80S ribosomes, 568 

apoferritin and β-galactosidase. (B) Reference-free 2D class averages generated using RELION 569 

of ~203,000 template-picked particle images. Box size corresponds to 422 Å.  570 

 571 

Figure S3. Precision-recall curves for experimental cryo-EM data 572 

Precision-recall plot displaying 6 different metrics for scoring the similarity between 1D line 573 

projections from the entire set of 2D class averages. 574 

 575 

Figure S4. Ab initio reconstructions in cryoSPARC with varying class number  576 

3D reconstructions using ab initio reconstruction in cryoSPARC from the entire data set with K = 577 

3, 4, 5 and 6 classes, respectively.  578 

 579 

Figure S5. Fourier shell correlations curves 580 

FSC curves for our clustered 80S ribosome (blue), 60S ribosome (green), 40S ribosome (red) 581 

and apoferritin (purple) shown in Figure 5B. Nominal resolutions were estimated to be 5.4, 4, 12 582 

and 19 Å, respectively, using the 0.143 gold-standard FSC criterion. 583 

 584 
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Figure S1 587 
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Figure S2 612 
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Figure S3 637 
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Figure S4  662 
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Figure S5 687 
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