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Abstract

Biomolecular condensates form via phase transitions that combine phase separation or demixing
and networking of key protein and RNA molecules. Proteins that drive condensate formation are
either linear or branched multivalent proteins where multivalence refers to the presence of
multiple protein-protein or protein-nucleic acid interaction domains or motifs within a protein.
Recent work has shown that multivalent protein drivers of phase transitions are in fact biological
instantiations of associative polymers. Such systems can be characterized by stickers-and-
spacers architectures where stickers contribute to system-specific spatial hierarchies of
directional interactions and spacers control the concentration-dependent inhomogeneities in
densities of stickers around one another. The collective effects of interactions among stickers and
spacers lead to the emergence of dense droplet phases wherein the stickers form percolated
networks of polymers. To enable the calculation of system-specific phase diagrams of
multivalent proteins, we have developed LASSI (LAttice simulations of Sticker and Spacer
Interactions), which is an efficient open source computational engine for lattice-based polymer
simulations built on the stickers and spacers framework. In LASSI, a specific multivalent protein
architecture is mapped into a set of beads on the 3-dimensional lattice space with proper coarse-
graining, and specific sticker-sticker interactions are modeled as pairwise anisotropic interactions.
For efficient and broad search of the conformational ensemble, LASSI uses Monte Carlo
methods, and we optimized the move set so that LASSI can handle both dilute and dense systems.
Also, we developed quantitative measures to extract phase boundaries from LASSI simulations,
using known and hidden collective parameters. We demonstrate the application of LASSI to two
known archetypes of linear and branched multivalent proteins. The simulations recapitulate
observations from experiments and importantly, they generate novel quantitative insights that
augment what can be gleaned from experiments alone. We conclude with a discussion of the
advantages of lattice-based approaches such as LASSI and highlight the types of systems across
which this engine can be deployed, either to make predictions or to enable the design of novel
condensates.

Author Summary

Spatial and temporal organization of molecular matter is a defining hallmark of cellular
ultrastructure and recent attention has focused intensely on organization afforded by
membraneless organelles, which are referred to as biomolecular condensates. These condensates
form via phase transitions that combine phase separation and networking of condensate-specific
protein and nucleic acid molecules. Several questions remain unanswered regarding the driving
forces for condensate formation encoded in the architectures of multivalent proteins, the
molecular determinants of material properties of condensates, and the determinants of
compositional specificity of condensates. Building on recently recognized analogies between
associative polymers and multivalent proteins, we have developed and deployed LASSI, an open
source computational engine that enables the calculation of system-specific phase diagrams for
multivalent proteins. LASSI relies on a priori identification of stickers and spacers within a
multivalent protein and mapping the stickers onto a 3-dimensional lattice. A Monte Carlo engine
that incorporates a suite of novel and established move sets enables simulations that track density
inhomogeneities and changes to the extent of networking among stickers as a function of protein
concentration and interaction strengths. Calculation of distribution functions and other non-
conserved order parameters allow us to compute full phase diagrams for multivalent proteins
modeled using a stickers-and-spacers representation on simple cubic lattices. These predictions
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are shown to be system-specific and allow us to rationalize experimental observations while also
enabling the design of systems with bespoke phase behavior. LASSI can be deployed to study
the phase behavior of multicomponent systems, which allows us to make direct contact with
cellular biomolecular condensates that are in fact multicomponent systems.
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Introduction

Biomolecular condensates organize cellular matter into distinct non-stoichiometric
assemblies comprising of proteins and nucleic acids (1). Prominent condensates include nuclear
bodies (2) such as the nucleolus, nuclear speckles (3, 4), and germline granules (1, 5, 6).
Condensates also form in the cytoplasm. These include stress granules (7), membrane-anchored
signaling clusters (8, 9), and bodies in post-synaptic zones (10). All of these condensates share
key features: (i) they range in size from a few hundred nanometers to tens of microns (1, 2, 11);
(i1) they are multicomponent entities comprising of hundreds of distinct types of proteins and
nucleic acids; (ii1) and of the hundreds of different types of molecules that make up condensates,
a small number perform the role of scaffolds that seem to be essential for the formation of
condensates, while the remainder are clients that partition selectively into condensates once they
are formed (1, 12). The simplest feature that distinguishes protein scaffolds from clients is the
valence of interacting domains / motifs. Scaffolds have higher valence of interaction domains /
motifs when compared to clients (1, 12-14).

Biomolecular condensates form and dissolve in an all-or-none manner (2, 11, 15). The
reversible formation and dissolution of condensates can be controlled by the concentrations of
scaffold molecules; condensates form when concentrations of scaffold molecules cross scaffold-
specific threshold values known as saturation concentrations (15). The transitions that
characterize condensate formation bear the hallmarks of a sharp transition in scaffold density,
leading to the formation of a dense phase that is in equilibrium with a dilute phase. This type of
transition, known as phase separation, sets up two or more coexisting phases to equalize the
dense and dilute phase chemical potentials of scaffold molecules across phase boundaries (15).
Phase separation is reversible and this reversibility can be achieved by (i) changes to
concentrations of scaffold molecules (9, 16), (ii) changes to solution conditions that alter the
effective interaction strengths among scaffold molecules (17-20), (iii) altering saturation
concentrations through ligand binding — a phenomenon known as polyphasic linkage (21, 22), or
(iv) via biological regulation such as post-translational modifications of proteins (8, 12, 23).

Recent studies have focused on uncovering the defining features of scaffold proteins (13,
15, 17-19, 24-40) and RNA molecules (41-43). These studies suggest that scaffolds are
biological instantiations of associative polymers (44) characterized by a so-called stickers-and-
spacers architecture (45). Stickers contribute to a hierarchy of specific pairwise and higher-order
interactions whereas spacers control the concentration-dependent inhomogeneities in the
densities of stickers around one another. Stickers can be hot spots or sectors (46) on the surfaces
of folded proteins (15, 29) or short linear motifs within intrinsically disordered regions (15, 24,
47). Spacers are typically intrinsically disordered regions that contribute through their sequence-
specific effective solvation volumes to the interplay between density transitions (phase
separation) and networking transitions (percolation or gelation) (28, 29). Spacers can also be
folded domains that are akin to uniformly reactive colloidal particles, although this has not been
explored in any kind of detail. Protein scaffolds map to stickers-and-spacers architecture as linear
multivalent proteins, branched multivalent proteins, or some combination of the two (13, 15).

A typical two-component system comprises of the solvent (which includes all
components of the aqueous milieu) and a scaffold molecule. For fixed solution conditions, one
can generate phase diagrams (25) as a function of protein concentration, the valence of stickers,
the affinities of stickers, the sequence-specific effective solvation volumes of spacers, and the
lengths / stiffness of spacers. The resultant five-dimensional phase diagram can be projected onto
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a plane whereby one investigates the phase behavior while keeping the valence of stickers, the
lengths of spacers, and effective solvation volumes of spacers fixed while varying the
concentration of stickers and the affinities between stickers (29). Changes to protein
concentration will enable density fluctuations and above the saturation concentration, designated
as csat, the density inhomogeneities lead to separation of the system into coexisting phases. The
concentration of multivalent proteins in the dilute and dense phases will be denoted as ¢ and
Cdense, Tespectively. For a given bulk concentration cpyx between cgye and Cyense, the fraction of
molecules within each of the coexisting phases is governed by the lever rule (48).

Stickers also form reversible physical crosslinks and these crosslinks generate networks
of inter-connected proteins. The number of proteins within the largest network of the system
grows continuously as the protein concentration increases. Above a concentration threshold
known as the percolation threshold and designated as cperc, the single largest network spans the
entire system and this phenomenon is called percolation (49-51). If the percolated networks have
the rheological properties of viscous liquids or viscoelastic fluids, the fluids are referred to as
network fluids (15, 52).

Phase separation and percolation can be coupled to one another. The coupling will
depend on the values of Cgt, Cdense, and Cperc Telative to cpuik. If chui is smaller than all of cgai, Cdense,
and cperc, the system is in a single dilute phase with no large molecular networks (Fig 1a). If cpui
> Cpere ANd Cperc < Csat, then a system-spanning percolated network forms without phase separation
(Fig 1b). However, the system undergoes phase separation and a dense phase forms as a
percolated droplet if cpuk > (Csat, Cpere) ANd Csat < Cperc < Cdense (Fig 1c¢). Recent studies, using
three-dimensional lattice models designed to mimic the poly-SH3 and poly-PRM systems of Li
et al. (16), show that sequence-specific effective solvation volumes of linkers / spacers between
folded domains directly determine whether phase separation and percolation are coupled or if
percolation occurs without phase separation for linear multivalent proteins (28, 29). The coupling
between phase separation and percolation is controlled by the extent to which spacers / linkers
preferentially interact with the surrounding solvent.

Lattice models have also been adapted to model the phase transitions for other systems
comprising of different numbers of multivalent protein and RNA molecules (28-30, 43, 53-55).
In the present work, we provide a formal description of the design and implementation of
system-specific lattice models for simulating phase transitions of multivalent proteins. The
simulation engine, known as LASSI for LAttice simulations of Sticker and Spacer Interactions,
formalizes the approaches that have been developed and deployed in recent studies (28-30, 53,
54). We describe the design of LASSI, focusing first on the overall structure of the model, the
Monte Carlo sampling, and their justification for generic multivalent proteins. We further
describe the calculation of order parameters for quantifying phase separation and percolation.
Then, using two specific examples of linear and branched multivalent protein systems, we
illustrate the deployment of LASSI to two biologically relevant systems. In both systems, we
make a priori assumptions regarding the identities of stickers and spacers, which is a
requirement for the deployment of LASSI. Although we focus here primarily on systems with a
few components, it should be emphasized that the design of LASSI is able to handle a range of
multicomponent systems.

Materials and Methods
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Considerations that go into the development of a suitable lattice model include (a) the
choice of the mapping between a specific multivalent protein of interest and a lattice
representation, (b) the parameterization of the strengths and ranges of interactions for all unique
pairs of beads and vacancies, (c) the design of move sets and acceptance criteria for Monte Carlo
simulations that enable the sampling of local and collective motions of large numbers of lattice-
instantiated multivalent proteins, (d) the efficient titration of key parameters such as protein
concentrations and interaction strengths, and (e) the extraction of phase boundaries in terms of
known and hidden collective parameters, which become the relevant order parameters for phase
transitions of interest.

Generating lattice representations of multivalent proteins: For a given linear or
branched multivalent protein, we first choose a suitable mapping between the protein degrees of
freedom and a lattice representation. The conformational space is a simple cubic lattice with
periodic boundary conditions used to mimic a macroscopic system. Phase transitions represent
the collective effects of large numbers of molecules, and simulations have to include at least 10°
— 10" protein molecules to observe facsimiles of these collective transitions in finite sized
systems (56). Further, we need to be able to test for the effects of finite size artifacts and this
requires a titration of the effects of varying the numbers of molecules. In effect, the lattice has to
be large enough to accommodate at least 10° molecules of each type for the most dilute
concentrations. Often, we might need to increase the number of molecules to be of O(10%).
Accordingly, a one-to-one mapping between the protein degrees of freedom and a lattice
representation would lead to a computationally intractable model. Instead, we adopt system-
specific coarse-graining approaches, whereby the coarse-graining is guided by a priori rigorous
or phenomenological knowledge of the identities of stickers versus spacers. For disordered
proteins, the stickers within disordered regions often correspond to single amino acid residues or
short linear motifs. For multivalent folded proteins, the stickers are either an entire protein
domain or sectors on domain surfaces (28, 29). Residues corresponding to spacers may either be
modeled explicitly, where one or more spacer residues are modeled by a single bead on the
lattice site, or be modeled as phantom tethers, where the intrinsic lengths of tethers are calibrated
in terms of the numbers of lattice sites (28, 29). In both cases, the tethers can stretch, bend and
flex and these degrees of freedom contribute to density inhomogeneities that are the result of
altered patterns of inter-sticker interactions.

LASSI and Bond Fluctuation Models: The structure of LASSI is inspired by the bond
fluctuation model (BFM) for lattice polymers (57). This is a general lattice model for simulations
designed to extract equilibrium conformational distributions and dynamical attributes of
polymers in dilute solutions as well as dense melts. There are two versions of the BFM viz., the
Carmesin-Kremer BFM or CK-BFM (58) and the Shaffer BFM or S-BFM (57). Both models are
based on the use of simple cubic lattices, which discretizes the conformational space for
polymers.

In the CK-BFM (58), each repeating unit or monomer within a polymer is modeled as a
cube that occupies eight 3-dimensional lattice positions and bond vectors connect pairs of
monomers. Overlap of monomers is associated with an energetic penalty, and each bond vector
can have up to 108 distinct directions. The choice of bond vector set encodes the geometry of the
polymer and places constraints on the bond lengths and bond angles. All other interactions are
governed by the inter-monomer potentials, and evolution of the system through conformational
space is driven by the changes to the overall potential energy. In contrast, the S-BFM places each


https://doi.org/10.1101/611095
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/611095; this version posted April 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

monomer on a single lattice site. Covalently bonded monomers are connected by bonds that are

constrained to be of three types, leading to chains that have bonds of length 1, \/5 or \/g in
units of lattice size. Monte Carlo moves with suitable acceptance criteria can be designed for
both types of BFMs. The simulations are used to generate equilibrium conformational
distributions of lattice polymers in either dilute or dense phases. The move sets control the
overall polymer dynamics and the acceptance of different types of moves and the calculation of
correlation functions allows one to compute dynamical quantities for lattice polymers (57). If we
were to use either of the established BFMs without modification, then each amino acid residue
would be modeled as a monomer, and such an approach would be useful when the identities of

stickers and spacers remain ambiguous and this approach underlies a different simulation engine
known as PIMMS (43).

LASSI is a generalization of the S-BFM that also adapts features of the CK-BFM. Given
a choice of the mapping for the coarse-graining procedure, each multivalent protein is described
as a chain of non-overlapping monomers viz., beads that occupy sites on a 3-dimensional cubic
lattice. Note that the choice of a single site per bead is similar to that of the S-BFM, although the
bead, which is a sticker or spacer monomer, need not be the monomeric unit, i.e., an amino acid
residue in the case of proteins. Each sticker monomer is linked to its adjacent sticker on the chain
via either a phantom tether or a set of spacer beads that occupy individual lattice sites (28, 29). A

spacer / tether length of unity implies that adjacent monomers are within \/g lattice units of one
another (Fig 2). The choice of the spacer length will be sequence-specific.

Inter-monomer (sticker-sticker, sticker-spacer, and spacer-spacer) interactions are
modeled as contact-based pairwise interactions. A sticker monomer can bind to another sticker
monomer that occupies an adjacent lattice site with an interaction energy that depends on the
types of both monomers. Monomers are considered to be adjacent to one another if they are

within a lattice distance of \/g . By this criterion, each lattice site occupied by a sticker monomer
will have 26 adjacent lattice sites. This is reminiscent of the interaction geometry of a CK-BFM
for each monomer. In the current implementation of LASSI, the interactions are mutually
exclusive, implying that a sticker cannot interact simultaneously with more than one other sticker,
even though there are 26 adjacent sites that the interaction partner can occupy. The unoccupied
sites for each sticker will effectively contribute to an overlap cost, if the sticker is already
engaged in another inter-monomer interaction with stickers or spacers. The combination of the
geometry of the interaction sites per monomer and the single occupancy constraint leads to
anisotropic interactions between sticker interactions. This feature is unique to LASSI and it is not
incorporated in other variants of BFMs and allows us to deploy LASSI for modeling
heteropolymeric systems.

Setup of simulations: A system with » multivalent proteins is in reality an n+l
component system since the solvent is the hidden or implicit component. In LASSI, sites that are
not occupied by protein units automatically represent solvent sites. Although the interaction
potentials do not explicitly include terms between solvent and protein sites, the effective
interaction strengths between pairs of protein units represent an averaging over protein-protein,
protein-solvent, and solvent-solvent interactions. The solvent sites, i.e., the sites that are not
occupied by protein units, represent contributions from the solvent to the overall translational
and mixing entropies. Simulations are initiated by randomizing the positions of protein units,
subject to the constraints of chain connectivity.
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The parameters that are set at the start of each LASSI simulation include the total number
of molecules n; of type i and the size of the lattice L, from which we can calculate the total

number 7 of all protein components n = Zni and the concentration or number density of each

protein ¢; = n/L’. The setup also includes stipulations for the architectures of each of the protein
such as specification of the number of monomers per chain, the overall topology of each protein
(linear vs. branched), the lengths of spacers, and the types of spacers (implicit / phantom vs.
explicit) (28-30, 53, 54). The number of monomers will equal the sum of the number of stickers
and spacers if spacer residues are modeled explicitly. Alternatively, if spacers are modeled as
phantom tethers, then the number of explicitly modeled monomers will equal the number of
stickers. Specification of the energetics of the system includes specification of the simulation
temperature in normalized units, homotypic and heterotypic interaction strengths between pairs
of stickers, the energetic cost for the overlap of stickers, and the interaction strengths between
sticker and spacer sites if the spacers are modeled explicitly.

Design of Monte Carlo move sets: The design objective of LASSI is to compute
sequence- and architecture-specific phase diagrams for systems comprising of one or more types
of linear or branched multivalent proteins. This requires a simulation strategy that enables the
sampling of the full spectrum of coexisting densities and networked states for multivalent
proteins. Accordingly, the conformations of randomly initialized systems of proteins on a simple
cubic lattice are sampled via a series of Markov Chain Monte Carlo (MCMC) moves that are
designed to ensure efficient sampling of changes in protein density and networking while
maintaining microscopic reversibility. We developed and deployed a collection of moves and
these are described below.

Monte Carlo sampling with biases: In LASSI, we have independent contributions from
two main energetic sources. Monomer units are not allowed to overlap, and this can be described
by a position-dependent energy E,,s where E,os = 0 or . On the other hand, inter-monomer
pairwise interactions also contribute to the total energy, and E,, denotes the sum over all of the
effective pairwise inter-monomer interaction energies. The subscript “rot”(rotational) indicates
the fact that for a pair of nearest neighbor stickers their interaction energies are actually governed
by their mutual orientations. Accordingly, the total system energy in a specific configuration i is
written as:

Ei = Ei,pos + Ei,rot ’ (1)
The equilibrium probability associated with configuration i is given by the Boltzmann
distribution as:

p, o< exp(~BE, ) = exp(~BE, . )Jexp(-BE, ,, ) @)

In equation (2), B is the inverse of the simulation temperature in units of the Boltzmann constant
(effectively, kz = 1 energy unit / temperature unit). The frequency with which a transition from
configuration i to j is proposed will be governed by the elements 7j; of the targeting matrix T.
The proposed transition is accepted / rejected based on the elements 4;; of the acceptance ratio
matrix A. A MCMC move that transitions the system from configuration i to j defines a flow in
configuration space and this flow has to satisfy detailed balance also referred to as microscopic
reversibility:
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Tydp, =T, 4,p,; )

If the targeting matrix is symmetric, then 7;; = Tj; and the acceptance ratios such as those
prescribed by Metropolis et al. (59) will ensure the preservation of detailed balance. However, if
biases are incorporated into the targeting matrix, which is often essential to enhance the sampling
of configurations that contribute to density inhomogeneities and the making / breaking of bonds
in dense networks, then the elements of the acceptance ratio matrix have to be designed to ensure
the preservation of detailed balance. We deploy a general strategy of using biased moves to
enhance the sampling of different mutual orientations among pairs of stickers. The incorporation
of these orientational biases is accounted for by modifying the acceptance criterion of Metropolis
et al. (59) whereby each element of A is written as:

3
Aji Tijpi
) T p.
such that: 4. = min< 1,2~
i ]’:Jpl

4

For a symmetric targeting matrix, we recover the standard acceptance ratio of Metropolis et al.

(59) viz.,
A . ,
S ) or A, = min 1,—p" ; (5)
ij
4, P, : )2

Since the moves within LASSI generally involve orientational biases, the elements 7} are
rewritten in terms of a Rosenbluth weighting factor ¥; (60, 61) whereby:

7},:%5 (6)

J

Substituting (6) into (4) leads to:

4,= min{l,%exp[—ﬁ(gw - EP)}} ; (7)

The specific form for the weighting factors W; will depend on the type of move because the
extent of asymmetry in the targeting matrix will depend on the nature of the bias incorporated
into the biasing move that proposes a transition from i to j. The specific forms for weighting
factors are discussed in the context of the move types that are introduced next.

Rotational moves: A monomer is in an associated or a dissociated state and in the
associated state it has a specified binding partner. This defines the rotational state of a monomer.
To change the rotational state, we randomly pick a monomer from the system, and exhaustively
sample all 26 adjacent sites to construct a list of potential binding partners. The rotational state of
the monomer is changed, at random, by drawing a random integer k& from a uniform distribution
between [0, b], where b is the number possible binding partners available to the monomer. If k£ =
0, the monomer is set to be in a dissociated state. Otherwise, the A™ candidate bond is formed and
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the state of the monomer is set to be in an associated state. If the monomer cannot be involved in
a rotational interaction, as would be the case for an explicitly modeled spacer, the rotational
move is rejected outright. The accessible volume for rotational interactions is within a cube of
unit volume centered on the randomly chosen monomer (see Fig 3 for a 2-dimensional

representation), and hence, each sticker monomer will have bm. = 3°—1 possible sites as
neighboring sites at most. Since this number is not large, we sample all 26 possible interaction
sites.

Local moves: This move serves as the basic unit of local displacement of monomers — be
they stickers or spacers. A randomly chosen monomer is moved from position r; to r; = r; + Ar.
Acceptance of the move is predicated on the move not leading to an overlap with a site occupied
by another monomer and the satisfaction of linker constraints. The choice for Ar is made by

uniformly sampling each component from the interval [-2,2] such that ‘Ar| < 2\/5 , as shown in

Fig 4. Note that these local moves are analogous to crankshaft or kink jump moves if the selected
monomer is in the interior of a molecule (62), and they become analogous to end rotation moves
if end monomers are selected (63).

Local moves have a rotational bias in LASSI and the Rosenbluth factor is calculated as
follows. Starting with equation (7), we shall designate the chosen monomer have index 4. In
configuration 7, assume that monomer k& has a binding partner of index /. The energy associated

with the bond between monomers & and / is written as €(0)° where #(x) indicates the type of

monomer x. The local move causes a change in binding partner, whereby the monomer £ now
binds to monomer m. The local move leads to a bond swap that causes a change in rotational
energy, which is written as:

E —E =¢

i,rot Jrot -

A6¥0) ™ ey ®)
Use of equation (8) in equation (6) leads to:
T. eXp(_Bgt(k)t(l))VVi;k

= ; )
T exp(_Bgz(k)t(m) ) W

In equation (9), each Rosenbluth weight has an additional index in the subscript to
indicate that the change in configuration is achieved by a change in the binding partner for the
monomer k. To accelerate the creation of density inhomogeneities in supersaturated systems and
facilitate the making and breaking of networks, we decompose W, as:

—Ww® d .
VV:‘;k - Wi;k + VVz(k ) (10)

The two terms in equation (10) respectively represent the contributions to the Rosenbluth
weights for monomers in associated (a) and dissociated states (d). First, we calculate the weight
factors for the interacting monomers as a partition function over all nearest neighbor
contributions, such that:

Wy = ;exp(_ﬁet(k)z(l)) ; (11)

10
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In equation (11), the summation runs over all potential binding partners / (nearest
neighbors) for the monomer 4. To illustrate how the Rosenbluth factor is calculated, we assume
that the system has only one type of interactions with the pairwise energy designated as €. If the
number of nearest neighbors for monomer £ in configuration i is designated as N, then the
Rosenbluth weight factor in equation (11) becomes:

W =N, exp(—pBe); (12)

Setting W@ =1 to incorporate a bias towards associated states, and using the
g ik rp g

simplification that leads to equation (12), we rewrite equation (9) as a definition of the
acceptance criterion for the move from configuration i to j via local move involving monomer &
as:

+1

Ay, =minj1, ]]\\ij;k +1 exp[_B(E./apos B Ei,pOS)} : (13)

ik

This choice for the acceptance criterion ensures that detailed balance is preserved while
enhancing the sampling of configurations characterized by the breaking of old bonds and the
forming of new ones.

Reptation — or slithering snake — moves: In dense configurations, it becomes difficult to
realize large-scale translational or rotational motions of polymers. The slithering snake move is a
Monte Carlo instantiation of reptation as first conceived by de Gennes (64). In this move, a chain
is chosen at random, and the monomer at one end of the target chain is moved to a new position.
The remaining monomers within the target chain are then successively moved such that
monomer m along the chain moves into the previous position of monomer m—1 (Fig 5). This
move relies on an inherent symmetry of chain molecules, because bond lengths between
monomers are the same; if one swaps monomers across chains, the identity of the chain remains
invariant. However, this move cannot be used if the molecule has heterogeneous bond lengths or
if it is a branched polymer.

The reptation move is rotationally biased, and this is true for every monomer in a chain.
The bias is independent for each monomer and accordingly, the Rosenbluth factor for a single
reptation move can be calculated from the Rosenbluth factors for each monomer-specific local
move. In configuration i we obtain:

w,=T1,, =T1(V,,+1); (14)

In equation (14), the product runs over all monomers m within the chain of interest. The
acceptance criterion for a reptation move takes the form:

N. +1
4, =min 1,M exXp| B(E, o = Epn) | (15)

H(Nl.’m +1)

m

The inclusion of the bias for every interacting monomer, rather than just the end monomers, is to
emulate how a real transiently bonded polymer would slither along its contours. Note that for
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strict detailed balance, the Rosenbluth factors for the two end monomers should be calculated
and added to the acceptance criterion, but the current implementation of LASSI uses the first trial
position that satisfies the position constraints.

Double pivot moves: These moves swap a part of a chain with the corresponding part of
another chain of the same type. A monomer is picked at random; it is denoted as i,,, where i is
the monomer index within a chain, and m is the chain index. A search is then performed around
the monomer within a prescribed distance for a monomer within the same type of chain. The
requirement for the search is that the monomer of interest be one index ahead along its own
chain, (i+1),. Next a check is performed to ensure that the distance between i, and (i+1), is
within the bond constraint connecting i,, to (i+1),, and that the distance between (i+1),, and i, is
within the bond constraint for i, and (i+1),. Each monomer (i+1), that satisfies each of these
constraints is stored and one of these is randomly picked for the double pivot move (Fig 6). The
move is always accepted if there is a candidate because only connectivity changes unless bonds
are modeled using elastic springs.

The purpose of this move is to engender large configurational changes in dense polymer
melts, which approximate the dense phases formed upon phase separation. In dense regions the
rate of acceptance of local moves decrease precipitously. At high enough densities, polymers
become entangled and local moves reduce to slithering-snake moves and polymers are restricted
to motions along tubes around one another (65, 66). Therefore, rather than physically moving
polymers to create a change in configurations, we incorporate move sets that break and recreate
bonds while ensuring that monomers do not overlap, and that bond constraints are always
satisfied. If two chains are close enough to each other that the bonds between two monomers can
be swapped, then such the double pivot move results in a large configurational change for both
chains, and for the system.

Chain and cluster translation moves: The chain translation move is designed to move
single chains while forming new bonds at the proposed location. This move attempts to translate

. 3L . .
the center of mass of a chain i from r; to r; = r; + Ar where ‘Ar| < 4 and L is the size of the

simulation cell. Multiple trial displacements are proposed until a trial position that does not result
in steric clash for the entire molecule is generated. The move is then attempted. As with the
slithering snake move, each monomer in the molecule that is translated will have an orientational
bias. Accordingly, the Rosenbluth factors are calculated as in equations (14) and (15). The
translational move results in large displacements for single chains and correctly biases the
system for efficient sampling of configurations with alternate interaction patterns.

Translational moves can also be applied to clusters of molecules. A connected cluster
refers to a collection of unique chains connected via rotational interactions. A proposed move
only results in a translation, and the move is readily accepted if there is no steric clash. Since no
new physical bonds are created at the proposed location, the cluster remains invariant and the
move is accepted. Naively this move might seem unnecessary as this move simply moves
clusters around. However, once a physical bond has formed between two molecules, it is highly
unlikely for any of the non-cluster translation moves to move the centers-of-masses of clusters
closer together. Cluster moves are essential in that they mimic the Ostwald ripening process
whereby large droplets consume smaller ones (67). Without cluster moves, ripening is quenched
because a single large droplet cannot form, especially at lower simulation temperatures.
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Identifying phase boundaries using measures for density inhomogeneities: In order
to detect the onset of phase separation, we can calculate excess chemical potentials using the
Widom particle insertion method (68) and equalize these chemical potentials across distinct
phases. This process requires a priori knowledge of the densities of both phases. An efficient
variant of this approach, based on fast Fourier transforms, was recently developed and deployed
by Qin and Zhou (69). They demonstrated their method for calculation of liquid-liquid
coexistence curves for a patchy colloid model of yII-cyrstallin. Given that LASSI simulations are
lattice-based and that we do not have a priori knowledge of the density within the dense phase
that forms upon phase separation, we instead rely on properties of pair distribution functions that
help us diagnose the onset of phase separation and compute phase boundaries. Pair distribution
functions are helpful because phase separation is the result of the system partitioning into phases
of different densities. The pair distribution, which is a reduced-dimension partition function,
serves as a rigorous thermodynamic and structural measure of local density and inhomogeneities
of density. To first order, the density fluctuations are quantified by averaging over all
orientations. Accordingly, the pair distribution function can be converted to a radial distribution
function that allows us to probe local densities and local structural organization of molecules
around one another. However, the normalization of the pair distribution function requires some
caution. The system contains polymer molecules and using a prior distribution that assumes an
ideal gas of the chain monomers to normalize the pair distribution function is problematic
because it does not accurately capture the effects of non-idealities due to chain connectivity. We
leverage the efficient sampling of polymer fluids in LASSI and obtain suitable prior distributions
by simulating the system of interest in the absence of sticker-sticker interactions.

The pair distribution function P (r) quantifies the equilibrium distribution of distances
between chain monomers, where 7 is the inter-monomer distance. If PO(2)(r) denotes the prior

pair distribution function calculated from simulations where the inter-sticker interactions are
ignored (see Fig 7a), then the normalized radial distribution function is written as:

P(r).
P(z)(r) ’

0

g(r)= (15)

The function g(r) is a direct measure of the local density of the protein of interest. Since

. .. . . . . N3L .
LASSI uses periodic boundary conditions, the maximal inter-monomer distance is > Given

this normalized g(r) , we note that if the system has short-range ordering like a canonical liquid,

the radial distribution function will oscillate around unity but eventually approach one as » — .
Conversely, if the system undergoes a density transition, g(r) will have two distinct spatial

regimes (Fig 7b): for small 7, g(r) will be characterized by a tall and broad peak such that
g(r) >1 until g(r) intersects the g(r) =1 line; this region corresponds to the dense phase and
we shall denote the value of 7 at this intersection to be » = r,. For r > ry, g(r) will be between 0

and 1, and for lattices that are large enough to avoid finite size artifacts, g(r) will converge to a
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value lower than one that corresponds to the dilute phase region. Furthermore, g(r) can be used

to estimate the densities within the dense and dilute phases.

To quantify the global density inhomogeneity we introduce a simple measure, &, which is

calculated as follows:
é:(%) 2 ]g(r)—l\V(%)dr; (15)

In equation (17), V(r/Lx), the volume element for the normalized radial distance x=r/L defined
as:

&

© Sy

4mx’, if0<xS%

~

V(x)= 2mx(3-4x), if%<x£7 ; (15)
2x(3m—12f;(x)+ £,(x)), if T-<x<

fi(x)= arctan(\/ 4x° —1),

andf( |- ran 2x(4x2—3) ; (15)
= arctan
AT EREE Vax? -2 (dx* +1)

If & = 0, the global density inhomogeneity in the system is small and this will be characteristic of
a single homogeneous phase dominating the simulation volume. As  increases beyond zero, the
system accommodates density inhomogeneities. Currently, to draw the phase diagrams we use a
cutoff value of § = 0.025, which is universal to all systems, to delineate between a homogeneous
system and one that has phase separated.

Estimating the percolation transition line that delineates percolated and non-
percolated networks: Associative polymers form networks characterized by physical crosslinks
among stickers. Accordingly, we use the concept of a cluster, viz., a collection of unique chains
connected via rotational interactions, to define the extent of percolation. In polymer melt
simulations, the extent of percolation, known as the gel fraction in the polymer literature, is
defined as the fraction of polymers participating in a percolating network that spans the
simulation box in at least one direction (70). More generally, we can use the fraction of polymers
that make up the single largest cluster to quantify the onset of percolation and the changes to the
extent of networking beyond the percolation threshold (71). A molecular network cannot
percolate the whole simulation cell when dilute and dense phases coexist. Accordingly, we
choose the second definition for the order parameter that describes the percolation transition, and
we denote this as 0. (29).
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Semenov and Rubinstein demonstrated that a percolation transition is not a
thermodynamic phase transition, but is instead purely a connectivity transition (45). This implies
that the identification of the percolation threshold is not achievable using a bona fide order
parameter but instead relies on a suitable topological description. Here, we employ the midpoint
of the ¢. vs. concentration curve to assess the onset of percolation and the percolation line is
obtained as the locus of points in the phase diagram for which ¢, = 0.5. In a system where finite
size artifacts are minimized, the percolation transition is sharp having either a hyperbolic or
sigmoidal shape as a function of concentration. Accordingly, the location of the percolation line
will be relatively robust to the choice one makes for the percolation threshold.

Results

We demonstrate the use of LASSI by applying it to study two archetypal systems that are
known to undergo phase separation (24, 31, 33). The systems are instantiations of linear and
branched multivalent protein systems, respectively. The simulation results obtained for linear
multivalent proteins illustrate how phase diagrams are generated when protein concentration (at a
fixed stoichiometry) and temperature are the independent variables. In the second example that
includes a branched multivalent protein and a linear peptide, the temperature is fixed, and the
concentrations of the individual components are varied. The simulation parameters used in both
simulations are summarized in Table 1. For each system, we conducted 5 independent
simulations, each of which consists of 5x10° MC steps after 5x10° equilibration steps. The data
were taken over the last half of the trajectories at a frequency of 5x10° steps.

FUS as an example of a linear multivalent protein: Wang et al. (24) recently
uncovered the molecular grammar that contributes to the driving forces for phase separation of

the FUS family proteins. They showed that, to first order, c_, oc(sYsR )_l, where ¢, 1S the

measured saturation concentration of the FUS family proteins and s, and s, are the number of

tyrosine (Tyr) and arginine (Arg) residues, respectively. In FUS and other proteins under
investigation, the Tyr residues are located primarily within the N-terminal disordered prion-like
domain (PLD), whereas the Arg residues are located primarily within the partially disordered C-
terminal RNA binding domain (RBD).

Wang et al. showed that Tyr and Arg residues are the stickers in the FUS family proteins.
Accordingly, the zeroth-order stickers and spacers representation used to model FUS in LASSI
comprises of two parts: An N-terminal mimic of the PLD encompassing Tyr residues as stickers
and a C-terminal mimic of the RBD that encompasses Arg residues as stickers. Wang et al. also
measured cg, for a 1:1 mixture of independent PLDs and RBDs interacting in trans. The cg, for
this system is approximately twice that of the cq for full-length FUS. Given the block
copolymeric architecture of FUS, we denote the PLD and RBD as A, and B,, respectively for A
and B-blocks of valence n. The model system of PLDs and RBDs interacting in trans is denoted
as A,tB, (Fig 8a), whereas the system mimicking full-length FUS where the stickers can
interact in cis and in frans is denoted as A,-B, (Fig 8b).

Within A, and B, blocks, spacers provide a uniform spacing of six lattice sites between
stickers along the chain. We model spacers using a hybrid approach whereby a neutral spacer
monomer is attached to each sticker with spacing of a single lattice site (Fig 8¢). This choice was
made to provide a distinction between A,-B, and A,+B,. Accordingly, the relative concentration
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of neutral beads will be higher in A,-B, when compared to A,+B,. This allows us to incorporate
linker-mediated differences between the driving forces for phase separation for A,-B, vs. Ap+tBy

Computed phase diagrams are consistent with experiments: Fig 9 shows phase
diagrams for the A,+B, and A,-B, systems calculated using LASSI. In panels (a) and (b), the
phase diagram is projected onto a plane, where the ordinate quantifies the reduced temperatures

T" calculated as 7" =—2— where € is the effective energy of pairwise interactions between
c gy p

stickers from the A, and B, blocks. Panel (a) shows results for the A,+B, system. The bulk

concentration in the A,+B, system is quantified along the abscissa as c, , =,/c, ¢, where

c, andc, are the bulk concentrations of A, and B, respectively. Panel (b) shows the phase

n n

diagram for the A,-B, system where the abscissa represents the bulk concentration of this system.

Experiments show that the driving forces for phase separation are roughly twice as large
for the full-length FUS compared to the system comprising of a 1:1 mixture of PLDs and RBDs
(24). This feature is recapitulated in LASSI simulations. For example, the width of the two-phase
regime is larger for the A,-B, system compared to the A,+B, system for all values of T~ as
shown in panel (c) of Fig 9. The critical temperature is higher for the A,-B, vs. Ay+B, system

(T" =0.56 vs. T. =0.36, respectively). The valence of stickers is the main determinant of the

concentration at the critical point whereas the interactions mediated by spacers determine the
density inhomogeneities and hence the critical temperature. The impact of the longer chain
length and increased valence of stickers per chain is also evident from the percolation threshold,
which is crossed at approximately two-fold lower bulk protein concentrations for the A,-B,
system when compared to the A,+B, system, across all the simulation temperatures. Differences
between the two systems are also evident in the degree of cooperativity of phase separation and
the percolation transition as shown in panels (d) and (e) of Fig 9.

For each system, the intersection of the percolation threshold line with the two-phase
regime shows that the dense phase predominantly forms a percolated droplet (panels (a) and (b)
in Fig 9). Accordingly, for associative polymers, the condensed phase sans percolation within the
droplet is a metastable phase. Unlike homopolymers, which are polymers made up entirely of
stickers or spacers, associative polymers comprise of a mixture of stickers and spacers. Stickers
provide the driving forces for networking and the spacers ensure that these driving forces lead to
condensation. The importance of the sticker-driven percolation is evidenced in the persistence of
percolated networks for both systems at high values of 7"

The observation that dense phases form percolated droplets has several implications: (1)
on timescales that are concordant with or smaller than the average lifetime of physical crosslinks
between stickers, the condensate will have elastic properties; this will be replaced by viscous
behavior on timescales that are longer than the average lifetime of physical crosslinks (72); (2)
condensates will have an intrinsic tendency for viscoelasticity (73) and long-lived crosslinks will
cause hardening behavior that is observed in many systems (1, 6, 7, 11, 22, 24, 39-41); (3) the
extent of crosslinking above the percolation threshold will change continuously with
concentration (16, 29), and this will govern the overall structure, mechanics, and porosity of
condensates; (4) reactions within condensates are likely to be constrained by the network
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topology formed as a result of inter-sticker interactions (74); these constraints can create a
variety of interesting kinetic signatures for reactions (75), including temporal memories as has
been demonstrated recently for a system that undergoes thermoresponsive phase behavior (76).
The results obtained from LASSI simulations provide a richer assessment of the overall phase
behavior and further analysis of these phase transitions, across a multitude of similar systems
should lead to the development of coherent theoretical explanations for the comparative driving
forces for phase transitions of linear multivalent proteins.

Move set frequencies and diagnostics of converged simulations: We used results from
simulations of the linear multivalent protein system to assess the design of LASSI. The
frequencies of the different move sets for simulations of the linear multivalent protein system are
summarized in Table 2. Considerations that go into the design of move sets include the
achievement of converged equilibrium distributions, with maximal computational efficiency, for
each bulk concentration. Diagnostics from short simulations are often useful to optimize the
move set frequencies especially if multiple short trials are performed using very different starting
configurations.

The structure of each move set also serves as a guide for selecting an optimal set of
frequencies. This leads to a set of heuristics that are as follows: (i) the cluster move picks a
random chain from the system, performs a networking analysis on that chain, and then proposes
a displacement of the cluster. As the cluster size grows it is more likely that a randomly picked
chain will be part of the largest cluster which itself will probably result in a steric clash after the
proposed move. Therefore, the frequency of the cluster move should be low, if not the lowest, in
the entire set. (ii) The translational move picks a random chain from the system for translation;
as the size of the largest cluster increases it becomes less likely for a proposed translation move
to be accepted. However, unlike the cluster move the translation move is rotationally biased and
thus results in new interactions being formed. Hence, translational moves enable single-molecule
to cluster-surface interactions. Therefore, this move should be proposed more often than the
cluster move, although not as often as rotational or local moves. (iii) The rotation move is
computationally inexpensive and it enables the switching of physical bonds and should thus be
proposed fairly frequently. (iv) Similarly, local moves and slithering snake moves are also
rotationally biased, and they help with the local rearrangements of physical bonds. Local moves
are the primary route to enable local conformational changes, and to enable local physical bond
rearrangements. Therefore, local moves should be proposed most frequently. The slithering
snake move is particularly effective because it allows for large local physical bond
rearrangements in dense configurations. Thus, this move should also be proposed frequently, less
so than local moves but more so than translation moves. Note that in a system where some
molecules are non-linear or have heterogeneous linker lengths, the frequency would need to be
higher since the move is rejected if an incorrect molecule is picked at random. (v) The double
pivot move allows for large-scale changes to conformations within dense configurations and
accordingly, this move should be proposed more frequently than both cluster and translation
moves. One can track the acceptance ratios of each move over a very rough initial sweep across
the relevant system parameters. Moves that are always rejected do not enable any changes in
configuration and only add computational costs. Therefore, the frequency for that particular
move should be lowered. This is especially the case for the cluster move in high-density systems.
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Fig 10 shows the concentration dependence of acceptance ratios for each of the move
types, diagnosed for simulations of the A,+B, and A,;-B, systems. The acceptance ratios show
similar qualitative trends for both systems, even though there are clear quantitative differences
between the systems. The move with the highest acceptance ratio in the dense regime is the
double pivot move, signifying that the systems are transitioning into a pure polymer melt where
the proteins become increasingly entangled. The second most accepted move is the local move;
extrapolating from the higher concentrations it is expected that the acceptance of local moves
should also become small and that the double pivot move is the most dominant interacting mode,
since even to move one monomer, multiple monomers from multiple chains would need to be
moved. Both systems have similar qualitative trends for the translation move where we see a
transition from being accepted at low concentrations to not being accepted at higher
concentrations. Since the proteins in the A,-B, system are twice long as the A,+B, system, the
absolute acceptance ratio of the translation move in always lower in the A,-B, system.

Cluster moves have high acceptance ratios in the dilute regime whereas the acceptance
ratio nearly vanishes as the concentration increases. This is intuitive since the likelihood of steric
clashes increases with a decrease in available volume and this is coupled to the simultaneous
increase in the fraction of molecules in the largest cluster. We note here that the cluster moves
have the most dramatic change in acceptance ratios from values near 1 to values near 0. This
behavior is expected since the cluster move is the primary mechanism by which the condensates
coarsen. However, the apparent inefficiency of cluster moves in dense configurations cannot be
used as a rationale to quench such moves. In fact, as shown in Fig 11, phase separation is
suppressed if cluster moves are not part of the move set. This highlights the importance of cluster
moves for generating bona fide phase separation within finite-sized systems and has a bearing on
the collective coordinate over which density inhomogeneities are created and grown in systems
that undergo phase separation.

Mixtures of N130 and the rpL5 peptide as an example of a branched multivalent
protein system: LASSI can also be deployed to study the phase behavior of branched
multivalent proteins. Examples of branched multivalent proteins are molecules that form
symmetric, stable oligomers such as nucleophosmin 1 (NPM1) and synthetic systems such as the
corelets designed by Bracha et al. (77). NPMI is a key molecule within the granular component
(GC) of the nucleolus (78). Three coexisting layers define the nucleolus and the GC is the
outermost layer. Within the GC, NPM1 appears to form facsimiles of percolated droplets in
complex ribosomal proteins with Arg-rich motifs (17, 30). A minimalist system that mimics the
phase behavior of the GC comprises of a truncated version of NPM1, referred to as N130, and an
Arg-rich peptide, designated as rpL5 (31-33). Both NPM1 and N130 form symmetric pentamers
in the presence of Arg-rich peptides (79). The pentamer formed by the association of folded
domains serves as a scaffold for displaying disordered C-terminal tails that are defined by two
distinct acidic tracts. The system also features an N-terminal disordered region with a well-
defined acidic motif.

In the LASSI representation, N130 pentamers with disordered tails are modeled using a
five-armed structure. This approach follows the computational strategy of Feric et al. (30), which
was based on the fact that pentamers do not dissociate under conditions where NPM1 / N130

undergo phase separation. Each arm comprises of two sticker sites to mimic the presence of the
Al and A2 acidic tracts within the disordered tails of NPM1 / N130. Therefore, each N130
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pentamer displays a total of ten sticker sites. The spacers between each Al tract and the N130
core as well as between each pair of Al and A2 tracts on a disordered tail are phantom tethers,
which means that their effective solvation volumes (29) are set to zero. Each rpL5 peptide has
two sticker sites corresponding to the two Arg-rich motifs along the sequence. Schematic
representations of the minimalist coarse-grained architecture used for N130 and rpL5 are shown
in Fig 12.

Computed phase diagrams and their geometric shapes: Given that the phase behavior of
the N130 + rpL5 system is driven by heterotypic interactions involving the Al / A2 tracts from
the N130 tails and the Arg-motifs from rpL5, we constructed phase diagrams by keeping the
simulation temperature fixed and varied the concentrations of N130 and rpL5 molecules.
Projections of phase diagrams onto planes defined by N130 concentration along the abscissa and
rpL5 concentration along the ordinate are shown in panel (a) of Fig 13. The general shape of the
phase diagram is comparable with that of the experimentally determined phase diagram (33),
even though direct comparison is not straightforward because the scarcity of experimental data
points does not yield a full phase diagram. Therefore, instead of direct comparison with
experiment, we provide a detailed discussion on the shapes of the percolation line and the phase
boundary.

The percolation line, constructed as a function of the concentrations of two multivalent
molecules, has an overall parabolic shape. This feature may be explained as follows: Let f; and f>
denote the fractions of N130 and rpL5 molecules that are bound in a network; s; and s, will
denote the corresponding valence of stickers on N130 and rpL5, respectively (for the current
implementation of the N130 + rpL5 system, s; = 10 and s, = 2). The percolation threshold is
crossed when fif2(s1—1)(so—1) > 1. If we keep (s;—1)(s2—1) constant, the threshold concentration
for percolation will be governed by the product fif;. Accordingly, if there is a large excess of
N130 (component 1) compared to rpL5 (component 2), then /i — 0 and /, — 1, and the system
does not undergo a percolation transition. In this scenario, every rpL5 molecule is crosslinked to
two sticker sites from one or two N130 molecules. However, since the relative stoichiometry
favors N130 molecules, there is a vast excess of un-crosslinked N130 molecules and the network
cannot grow. Percolation is also inhibited when the converse situation arises, i.e., when there is a
large excess of component 2 with respect to component 1. Accordingly, the percolation line takes
on a parabolic form in the plane defined by the concentrations of N130 and rpL5.

While the percolation line is parabolic, the phase boundary, defined by the density
transition, is elliptical thus forming a closed loop in the plane defined by the concentrations c;
and c; of N130 and rpL5, respectively. In associative polymers, the phase behavior is governed
by the affinity between stickers, the valence of stickers, and the effective solvation volumes of
spacers (28, 29). For fixed c; that intersects the two-phase regime an increase in ¢, will show
evidence of two saturation concentrations for component 2 (rpL5). The lower saturation
concentration corresponds to the first density transition governed by ¢, approaching c;. Beyond
the second saturation concentration, there is a growing excess of rpL5 molecules and not enough
N130 molecules to drive the density transition via inter-sticker interactions. Similar reasoning
applies to describe the reentrant behavior that will result by keeping ¢, fixed at a value that
intersects the two-phase regime and increasing c¢;. The density transition will have a closed loop
structure because the differences between the saturation concentrations for the two components
decrease with increasing values of c,yx. Therefore, beyond an apparent threshold value of cpyi,
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the system will exit into the homogeneous one-phase regime. A portion of this one-phase regime
will be defined by percolation without phase separation as shown in panel (a) of Fig 13.

Taken together, the parabolic percolation lines and elliptic forms for two-phase regimes
define conic sections that highlight the reentrant phase behavior whereby fixing the
concentration of component 1 and increasing the concentration of the second species can lead to
phase separation and percolation at a low threshold concentration of component 2 and exit into
the one-phase, non-percolated regime beyond a second higher threshold concentration for
component 2. This type of reentrant phase behavior has been reported for a model protein +
RNA system (80). It is worth emphasizing, however, that reentrant phase behavior will be a
generic attribute of multicomponent systems comprising of associative polymers. It is not unique
to protein / RNA systems or systems governed by electrostatic interactions. These findings,
which emerge naturally from LASSI simulations, should enable the development of a general
theory for the shapes of multidimensional phase diagrams and predictions for novel ways to
regulate phase transitions within cells.

Apparent stoichiometric ratios can be different from effective stoichiometric ratios:
Stoichiometry of scaffold molecules is another key parameter that determines the functions of
biomolecular condensates formed by multicomponent systems (81). The apparent stoichiometric
ratio is calculated as the ratio of the concentrations of stickers of types s; and s, for N130 and

. c ) . ) C e
rpL5, respectively such that v’ =—L. However, the effective stoichiometric ratio v can be
c
52
different from V%" if excluded volume effects modulate the effective concentration of stickers.

We fit an ellipse to the two-phase boundary and determined the major axis of this ellipse. The

effective stoichiometric ratio should be unity along the major axis. As shown in panel (a) of Fig

eff

,, and angle

13, the major axis deviates from the line along whichv{}* =1. Therefore, vi?" # v

between the major axis and the line along which v{)’ =1 quantifies the impact of excluded

volume on changes to effective concentrations of stickers that in turn modifies the stoichiometric
ratios. This calculation demonstrates the utility of having access to the full phase diagram, which
is made possible by LASSI.

The synergy between stoichiometry and phase behavior can be analyzed by quantifying
the order parameter & and the topological parameter ¢ as a function of apparent stoichiometry
for fixed bulk concentration. Along each gray line in panel (a) of Fig 13 the total concentration
defined as cpu = (c1c2)” is fixed, although the stoichiometries will vary. The mean values of
cpu along L1, L2, and L3 are 2.09x10 % (voxel '), 2.46x10~ (voxel '), and 3.33x10* (voxel ),

respectively and the value of v ranges from 0.36 to 22.62 along each of L1, L2, and L3.

12
Panels (b) and (c) in Fig 13 show the variation of § and ¢ as Vi increases along L1, L2, and L3,
respectively. Along L1, the value of § is essentially zero irrespective of stoichiometry because
L1 lies above the second threshold point and is outside the two-phase regime. However, a system
spanning percolated network forms for stoichiometries in the range 1.2 <v;,< 13 along L1. This
is because the concentrations of both components are well above the percolation threshold along
L1 thus ensuring that stickers readily find one another even without a density transition. In direct
contrast, along L3, we observe phase separation, characterized by values of & > 0.025 for a range
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of stoichiometries, but none of these support the formation of a percolated droplet (¢. < 0.5 for
all stoichiometries). Along L2, we observe phase separation for stoichiometries in the range 1.15
< vi2< 16 and percolation for stoichiometries in the range 2.14 < v;» < 11.3 such that phase
separation enables the formation of a percolated droplet.

In panel (d) of Fig 13, we introduce a new structural parameter A, which we define as a
convolution of & and ¢, such that A=E®¢_. Here, the convolution is calculated as a logical

AND gate, which becomes a simple product. The parameter A quantifies the convolution of the
density and network transition and quantifies the extent to which the phase separation and
percolation are coupled as the apparent stoichiometry is varied for a fixed bulk concentration.
The profile of A is reminiscent of the profile measured by Case et al. (81) for the dwell time of
signaling molecules as a function of stoichiometric ratios that govern the formation of
condensates at membranes. This suggests that dwell times, which are experimentally accessible
parameters, might in fact be proxies for a more fundamental quantity, viz., the structural features
of the condensates as measured by the convolution between phase separation and percolation and
the extent of network formation within the condensate.

The key finding is that the combination of the bulk concentration and stoichiometric ratio
(as opposed to stoichiometry alone) will determine the quench depth into the two-phase regime.
This in turn determines whether a system-spanning network forms without phase separation or if
phase separation enables the formation of a droplet-spanning network. The structure of
condensates and the overall phase behavior cannot be fully described in terms of cpux or Viz
alone. Instead, this requires the consideration of both parameters jointly and relative to the
saturation concentrations as well as the percolation threshold. This is important because the
extent of crosslinking and the time scales associated with crosslinks will determine the material
properties of the condensate. This in turn should contribute to parameters such as the dwell times
of clients within condensates (81) as well as the temporal and spatial control of the exchange
clients between condensates and the surrounding milieu.

Discussion

In this work, we have built on the established connection between multivalent proteins
and associative polymers (44, 45, 74) with their stickers-and-spacers architecture (15, 17, 24, 28,
29, 40, 43, 47) to develop and deploy LASSI, a lattice-based open source computational engine
that enables the simulation of system-specific phase diagrams of single and multi-component
systems. The foundations of LASSI derive from the formalism of the bond fluctuation model (57,
58, 82) and what we report here is a formalization of recent ad hoc deployments LASSI. Also,
we demonstrated the application of LASSI to archetypal linear and branched multivalent proteins.
These are pseudo one- and two-component systems inasmuch as the sites on lattices not occupied
by protein modules are in fact solvent sites. This allows us to capture the effects of mixing
entropies, through the excluded volume of vacant sites. Further, the pairwise interaction
strengths between protein sites are effective interactions that represent the three-way interplay
among protein-protein, protein-solvent, and solvent-solvent interactions.

We demonstrate how canonical ensemble Monte Carlo simulations with appropriately
designed move sets and analysis of order parameters derived from the distribution functions
allow us to calculate full phase diagrams as a function of protein concentration and interaction
strengths. These phase diagrams help us capture the interplay between sticker driven and spacer

21


https://doi.org/10.1101/611095
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/611095; this version posted April 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

mediated phase separation and percolation, a distinctive feature of associative polymers (29, 45,
72). LASSI allows us to query the impact of overall and intrinsic valence of stickers, interaction
strengths between stickers, the spatial ranges of these interactions, the effective solvation
volumes and lengths of spacers, and protein concentrations. These titrations generate
multidimensional phase diagrams. Here, we have shown how insights can be gleaned by
projecting multidimensional phase diagrams onto the two-dimensional space. Going forward, it
would be helpful to generate mathematical and geometrical descriptions of phase behavior in
higher than two dimensions, especially since all biomolecular condensates have hundreds of
distinct molecular components. The calculation of pair and higher order distribution functions
should afford multiscale descriptions of the structural organization of molecular components
within condensates. The acceptance ratios associated with different move sets and the length
scales spanned by distinct move sets open the door to analyzing the dynamics of phase
separation, percolation and the interplay between the two. It should also allow us to explore the
dynamics of molecular exchange and the dynamical evolution of interaction stoichiometries
within condensates. Another major direction of future application for LASSI is to uncover the
determinants of compositional specificity of condensates (1, 12).

The choice of a lattice-based approach for coarse-graining and modeling phase behavior
of multivalent proteins is guided by the established advantages of lattice models (83) for
polymeric systems and the disadvantages of off-lattice coarse-grained models. To titrate across
the full range of volume fractions, one needs to balance considerations of finite size artifacts —
which requires large numbers of molecules — with large simulation volumes — which makes it
difficult to observe density fluctuations that can grow into density inhomogeneities. Stylized,
slab-like geometries need to be incorporated into oftf-lattice simulations to enable the calculation
of full phase diagrams (84). Such approaches raise concerns about using O(10%) and confined
volumes to generate phase diagrams. Lattices help us work around these problems because the
conformational space is discretized, the calculation of interaction potentials can be made to be
very efficient through the use of look up tables, and a better balance between limiting finite size
artifacts and the need for large simulation volumes can be achieved because of the optimal
scaling of computational cost with system size. Additionally, lattice-based simulations are
readily generalized to incorporate directional interactions, increased intrinsic and overall valence,
modeling the interplay between density and networking transitions, and the incorporation of
multiple components.

The approaches deployed in LASSI have been applied to model a variety of
multicomponent systems, including mimics of RNA molecules (24, 28-30, 43, 53). These
approaches allow for hybrid representations and can be generalized to systems of arbitrary
complexity. What is required is the development of approaches that enable systematic coarse-
graining and adaptation of machine learning based methods to parameterize interaction potentials
(85). Engineering LASSI to be interoperable to cell-based modeling suites (86) will also allow
for larger scale deployment of the overall framework.
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Figure Legends
Fig 1. Characteristic phases in the stickers and spacers formalism.

(a) Dispersed solution phase where the polymers are uniformly mixed in solution. (b) Percolated
fluid wherein the polymer chains form a percolated, system-spanning network through physical
crosslinks among stickers results. (c) Droplet wherein the network formation also causes the
polymers to collapse onto each other.

Fig 2. 2-dimensional representation of the LASSI architecture.

The beads with arms denote stickers where arms denote that the monomers are capable of
orientational interactions, and the curved lines connecting the monomers represent phantom
tethers, which are allowed to freely overlap (implicit spacer model). Different colors denote
different sticker and spacer species respectively. Note that the physical bonds are allowed to
overlap (dashed circle). For the rest of this paper, physical bonds will not be labeled and will
only be depicted as overlapping orientational arms.

Fig 3. 2-dimensional representation of rotation move.

For a given randomly selected monomer (middle orange bead), 3°-1 nearest lattice sites (yellow
box) are checked for possible interaction candidates, where eligible candidates have a non-zero
interaction energy with the selected monomer. In this figure, orange stickers interact with blue
stickers and thus this sticker has 3 possible candidates. The end orientational state of the
monomer is then picked using the metropolis criterion, which also includes the non-interacting
state.

Fig 4. 2-dimensional representation of local move.

For a given randomly selected monomer, a new location is proposed by sampling +2 lattice sites
in each coordinate (brown box) and picking a lattice site that is empty. If an empty lattice site is
found within a pre-determined number of trials, the numbers of interacting candidates are
calculated at the old and proposed location (yellow boxes). Then the move is accepted or rejected
using the modified Metropolis criterion that considers orientational bias (see text).

Fig 5. 2-dimensional representation of reptation move.

For a given randomly selected chain that has the same linker lengths between each monomer, an
end is randomly picked. Then, a version of the local move is performed where the selected end is
moved to a new random location that is an empty lattice site within 2 lattice sites in each
coordinate (brown box). If an empty site is found within a predetermined number of trials, the
number of orientational candidates is calculated for the whole chain in the old and the new
configuration (yellow boxes). The modified metropolis criterion is then used to determine if the
move is accepted or rejected. Note that since the whole chain is orientationally biased, monomers
may have a different orientational state after the move is accepted, as shown in the figure.
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Fig 6. 2-dimensional representation of double pivot move.

For a randomly selected monomer, a 2x2x2 cube around the monomer is searched for
appropriate bridging candidates (brown box), where an appropriate bridging candidate is the next
monomer from a different chain, is within a linker length of the selected monomer as shown by
the dashed line connecting i,, and (i+1),. Furthermore, the distance between (i+1),, and i, must
also be within a linker length as depicted by the upper dashed line. A list of all possible
candidates is calculated and then a randomly chosen candidate is used to break and remake
covalent bonds. This results in a large conformational change for both polymers. If the selected
polymer is not linear, the move is rejected outright.

Fig 7. Distribution functions used for calculation of density inhomogeneity.

The data shown are obtained from 5 independent A,-B, simulations with total protein
concentration ¢ = 6.89x10 voxels™ and reduced temperature 7* = 0.383. Error bars indicate
standard deviations. (a) Pair distribution functions P”(+) and Po'”(r), where the former is from
the interacting system and the latter from the non-interacting system with chain connectivity
(prior pair distribution function). Note that P?(r) shows two peaks, the first of which indicates

dense phase formation. (b) Radial distribution function g(r) . This captures the droplet formation
by a sharp and broad peak in the beginning. The inset shows r, where g(r) intersects the line
corresponding to g(r)zlline, delineating between the dense and solution phases. The global

density inhomogeneity measure, &, is obtained by integration of absolute deviation of g(r) from
1.

Fig 8. Architecture of the linear multivalent systems.

(a, b) Cartoons to depict the A,+B, and A,-B, systems, respectively. Different colors of beads
denote different species of stickers. Note that A,-B, can be simply considered as A,+B, where
the two different sections of the proteins are joined together. (c¢) Linker lengths involved in the
architecture (see also Table 1). Each sticker has a neighboring spacer bead that is 1 lattice site
apart whereas the neighboring spacer beads are 4 lattice sites apart. This means that consecutive
stickers are 6 lattice sites apart and also that the linkers connecting the two have a positive
effective solvation volume.

Fig 9. Phase behavior of the linear multivalent systems.

(a, b) Phase diagrams for the A,+B, and A,-B, systems, respectively. The purple line is a 2-
dimensional linear interpolation for § = 0.025, and the area encapsulated by the purple line are
where the systems have large density inhomogeneities and are thus considered to be phase
separated. The green line is a 2-dimensional linear interpolation for ¢, = 0.5 and thus is the proxy
for the percolation line. (c, d) £ and @, curves as a function of concentrations at 7* = 0.383 (solid
lines in (a) and (b)). (e) Width of the two-phase regime, w(7*), as a function of the reduced
temperature. Not only does the A,-B, system have a higher critical temperature (7* ~ 0.6 vs. T*
~ 0.4), but also has a wider two-phase regime than the A,+B,, system.
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Fig 10. Move acceptance ratios.

Curves with different colors indicate acceptance ratios of different types of moves. The dashed
lines show the saturation concentrations. The data are obtained from simulations with 7* = (0.383.

Fig 11. Importance of cluster translation moves.

(a) & and (b) ¢, curves for the A,+B, (purple) and A,-B,, systems (green) at 7* = 0.383. The sold
lines are identical with the curves in panels (c) and (d) of Figure 9. The dotted lines show the
simulation results under the same system conditions but the frequency for cluster translation
moves is set to zero. Not only do the systems phase separate and percolate at higher saturation
concentrations, but also we can see that both percolation and separation are suppressed highly.
Furthermore, errors are generally higher, due to the systems being highly dependent on the initial
conditions of the system.

Fig 12. Architecture of an archetypal branched multivalent system.

(a) Schematic to depict the overall architecture. The pentamer with 10 orange stickers represents
the N130 molecule where the gray central oligomerization domain is modeled as a neutral spacer
monomer, and the rpL5 peptide is modeled as a linear molecule with 2 blue stickers. (b) Relevant
length scales for the architecture (see also Table 1). For the rpL5 molecule a linker length of 3
was chosen between the two stickers, and for the N130 molecule the first sticker (modeling the
Al tract) is 1 lattice site away from the hub spacer whereas the second sticker (modeling the A2
tract) is 3 lattice sites away from the first sticker.

Fig 13. Phase behaviors of the branched multivalent systems for 7% = 0.25.

(a) Full phase diagram, where the purple line denotes the proxy for the binodal and the green line
is the proxy for the percolation line (see also the caption for Figure 9). The phase-separated
region has an elliptical shape and we have a closed loop, which demonstrates re-entrant phase
behavior, whereas the percolation line has a conical shape extending into much higher densities.
The solid black lines denote contours of constant total concentration where L1 is the lowest
concentration and L3 is the highest concentration. Note that both axes are represented in the log
scale. (b, ¢) & and @, curves as a function of relative stoichiometric ratio of N130 and rpL5 along

the constant-concentration contours. (d) Plot of A vs. the apparent stoichiometry along lines L1,
L2, and L3.
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Table 1. Simulation parameters for system description.

Linear multivalent system Branched multivalent system
(see Figure 8c¢) (see Figure 12b)
Bead notations A/B: stickers A/B: stickers
N: neutral spacers N: neutral hub spacers
Number of stickers s; sa=5,s8=5 sa=10,s8=5
Linker length IU Iin=1,gn=1,k\n=4 Ina=1,laa=3,/gg=3
(in lattice units)
Position-dependent energy oo, ifri=n oo, ifr =r;
Epos(r1, 12) 0, otherwise 0, otherwise
Pairwise interaction energy &; eag=-3,€;=0,en=0 eap=-3,€;=0,egn=0
(in temperature units)

Table 2. Move frequencies according to their types. They are normalized to the sum of all
frequencies used in each simulation.

Linear multivalent system Branched multivalent system
Cluster translation move 1 1
Chain translation move 10 10
Rotation move 100 100
Local move 250 250
Reptation move 0 50
Double pivot move 50 10
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