
Incorporating Gene Expression in Genome-wide Prediction of Chromatin 

Accessibility via Deep Learning 

Qiao Liu1,2, Wing Hung Wong2,* and Rui Jiang1,* 

1 Department of Automation, Tsinghua University, Beijing 100084, China; 
2 Department of Statistics, Stanford University, Stanford, CA 94305, USA 

whwong@stanford.edu, ruijiang@tsinghua.edu.cn 

Abstract. Regulatory elements (REs) in human genome are major sites of non-coding transcription which 
lack adequate interpretation. Although computational approaches have been complementing high-
throughput biological experiments towards the annotation of the human genome, it remains a big challenge 
to systematically and accurately characterize REs in the context of a specific cell type. To address this 
problem, we proposed DeepCAGE, an deep learning framework that incorporates transcriptome profile of 
human transcription factors (TFs) for accurately predicting the activities of cell type-specific REs. Our 
approach automatically learns the regulatory code of input DNA sequence incorporated with cell type-
specific TFs expression. In a series of systematic comparison with existing methods, we show the superior 
performance of our model in not only the classification of accessible regions, but also the regression of 
DNase-seq signals. A typical scenario of usage for our method is to predict the activities of REs in novel 
cell types, especially where the chromatin accessibility data is not available. To sum up, our study provides 
a fascinating insight into disclosing complex regulatory mechanism by integrating transcriptome profile of 
human TFs. 
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1.Introduction 

Identifying functional sites in human genome can help us understand regulatory mechanisms underlying 
genetic signals that are statistically associated with diseases [1]. However, a majority of known genetic 
variants lie in noncoding regions which lack adequate interpretation, making it imperative to character 
genome-wide regulatory elements (REs) and accurately decipher their implications in a comprehensive 
manner [2, 3]. It has been argued that a genetic variant may result in the disruption of its hosting regulatory 
element (RE) and hence predispose to the occurrence of a disease [4]. Currently, our inability to precisely 
and efficiently identify the regulatory elements in human genome impedes progress towards precision 
medicine to a large extend.  

Regulatory elements (REs) in human genome tent to be enriched in DNA accessible regions which often 
involve transcription factors (TFs), RNA polymerases and other cellular machines to regulate gene 
expression [5]. Recently, the exploration of regulatory landscape has been accelerated by the development 
of high-throughput technologies, such as DNase-seq [6], ChIP-seq [7] and ATAC-seq [8], making it 
possible for assaying accessible chromatin. So far, these technologies have only been applied to a small 
subset of all biological cell or tissue types. Towards this concern, researchers have proposed computational 
models for predicting various chromatin signals, such as DNA accessibility, transcription factor binding 
sites (TFBSs), histone markers, DNA methylation and chromatin interaction [9-14]. 

Here we investigate the problem of predicting chromatin accessibility by incorporating TFs gene 
expression data and deep learning technology. Deep learning models, especially deep neural networks, have 
achieved breakthrough in many fields, including speech recognition, visual object detection and natural 
language processing [15]. It inspires us to build DeepCAGE, a deep densely connected convolutional 
network for predicting chromatin accessibility by incorporating gene expression (Figure 1). DeepCAGE 
overcomes two major limitations of previous approaches. First, sequence-based methods, such as DeepSEA 
[16], DanQ [17] and Basset [18], are unable to make prediction of new cell types especially where the 
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chromatin accessibility data is not available. Second, expression-based methods, such like BIRD [19], fail 
to utilize the comprehensive DNA sequence information, hence cannot make prediction of new loci that are 
not contained in the training dataset. DeepCAGE takes both the DNA sequence information and TFs gene 
expression data into consideration and adopts the architecture of densely connected convolutional neural 
network which has been experimentally proved to alleviate vanishing-gradient problem [20]. In a series of 
systematic evaluation, DeepCAGE not only achieves state-of-the-arts performance in the binary chromatin 
accessible status classification experiments, but also recovers continuous DNase-seq signal in regression 
settings. To make DeepCAGE more understandable, we proposed a strategy for visualizing the weights in 
the first convolutional layer. Interestingly, many known motifs were successfully recovered by DeepCAGE. 
We finally summarize DeepCAGE, as an effective and precise predictive model for dissecting regulatory 
code, which could shed light on the understanding the comprehensive regulatory mechanism.  

MATERIAL AND METHODS 

Overview of DeepCAGE model 

DeepCAGE consists of a hybrid architecture which takes DNA sequence and gene expression data as inputs 
and predicts chromatin accessibility in a binary value (classification) or continuous signal (regression) 
(Figure 1). The input 1000 base pair (bp) DNA sequence is first extracted from the hg19 reference genome 
around the midpoint of a 200 bp bin and then converted to a one-hot matrix. The four columns of the matrix 
correspond to the four nucleotides A, C, G and T and each row represents a nucleotide in DNA sequence. 
For any position in DNA sequence with ‘N’, the corresponding row is filled with all zeros. After one-hot 
encoding, the DNA sequence then was fed to a densely connected deep convolutional neural network which 
contains three dense blocks. In each dense block, there are five layers and each layer connects to every 

 

Figure 1. The schematic of DeepCAGE model. On the one hand, the input DNA sequence is first converted to a 

one-hot matrix and goes through a densely connected deep convolutional neural network (DenseNet) which contains 

three dense blocks. On the other hand, the input DNA sequence is scanned with 402 non-redundant motifs and the 

motif scores are extracted. The expressions of the corresponding 402 human transcription factors (TFs) are extracted 

and quantile normalized. We combine normalized expression and motif scores in an element-wise product manner 

and then concatenated by the output of the DenseNet. The prediction is made based on the hybrid features. 
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other layer in a feed-forward fashion. If traditional convolutional networks with have L connections then 
densely connected deep convolutional neural network will have L(L+1)/2 connections. Each layer in a 
dense block is constructed by two convolution operations with small filters size 1 × 1 and 3 × 1 of which 
1 × 1 filters aim at reducing feature maps. Note that the first convolution operation is applied for reducing 
the concatenated channels to a fixed number. The dense block architecture has been proven to alleviate the 
vanishing-gradient problem and strengthen the feature propagation [20]. Between input and the first dense 
block, there is a transition module which contains a convolutional layer and max-pooling layer. The 
convolutional layer has 160 filters with size 4 × 15 for extracting low-level features and detecting DNA 
binding motifs while the max-pooling layer is applied for finding the most significant activation signal in a 
given sliding window of each filter. Between blocks, the similar transition module is utilized for extracting 
high-level features and dimension reduction. Note that the rectified linear units (ReLU) are used after each 
convolution operation for keeping positive activations and setting negative activation values to zeros. Batch 
normalization (https://arxiv.org/abs/1502.03167) and dropout strategy [21] are also applied after each 
ReLU function for reducing internal covariate shift and avoiding overfitting, respectively. Besides the 
neural network, the input DNA sequence is also scanned for searching potential transcription factors (TFs) 
binding sites with non-redundant motifs of 402 human core TFs from HOCOMOCO database [22] with 
HOMER motif finder tool from [23]. We then take the maximal score of all motif binding sites for each TF 
given a DNA sequence. For the gene expression input, only the gene expression levels (TPM values) of the 
above 402 human core TFs from a specific cell type are extracted. Next, the gene expression levels are log 
transformed after adding a pseudocount of 1 and then quantile normalized. Then we combine TFs gene 
expression data with motif score data in an element-wise product manner. Finally, we concatenate this 
feature to the output of the densely connected deep convolutional neural network, thus forming a hybrid 
feature. This hybrid feature will go through a fully connected layer with 512 hidden nodes and the final 
prediction is made by a sigmoid layer (see detailed hyperparameters in Supplementary Table 1). For 
DeepCAGE regression model, there are two major differences. First, the output layer directly applies a 
linear transformation as Y = 𝑊𝑇𝑋 instead of a sigmoid layer. Second, mean square error (MSE) is used as 
the loss function. 

DNase-seq data processing 

DNase-seq data across 55 different human cell types were downloaded from the ENCODE project [24] in 
narrowPeak and bam format for measuring chromatin accessibility (accession IDs are listed in 
Supplementary Data 1-2). The human hg19 reference genome was first divided into 200 base pair (bp) non-
overlapping bins. Considering the fact that one cell type may contain multiple replicates, we denote each 
bin (locus) as positive if it overlaps with the peak regions from at least half of the replicates, and denote as 
negative otherwise (Supplementary Figure 1). Binary label 𝑦𝑙𝑘  for locus 𝑙  in cell type 𝑘 represents the 
accessible state which was used for training and testing in classification experiments. For regression 
experiments, multiple replicates bam files from the same cell type are first pooled together. The number of 
pooled reads falling into each bin was counted for each cell type. To further eliminate the effect of different 
sequencing depths, bin read counts for each cell type were first divided by the total count 𝑁𝑘, and then 
multiplied by a constant 𝑁 (𝑁 =  𝑚𝑖𝑛{𝑁𝑘}), which is the minimal read count across all cell types. After 
such a procedure, the raw pooled read count 𝑛𝑙𝑘 for bin 𝑙 in cell type 𝑘 was converted into a normalized 
read count 𝑛̃𝑙𝑘 = 𝑁𝑛𝑙𝑘/𝑁𝑘 . The normalized read counts were further log transformed after adding a 
pseudocount of 1. The transformed data represent the level of DNase I hypersensitivity and were used for 
training and testing in the regression models.  

RNA-seq data processing 

RNA-seq data across the same 55 different human cell types were downloaded from the ENCODE project 
[24] in tsv format for quantifying gene expression level (accession IDs are listed in Supplementary Data 3). 
The expression levels of the 402 core human transcription factors (TF) were considered and extracted. After 
further log transformation and quantile normalization based on TPM values, the normalized expression 
within each cell type was averaged across multiple replicates and the mean expression profile of each cell 
type was finally used for training and testing the predictive models.  
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Training-test data partition  

We applied a five-fold cross-validation for randomly splitting training and test data. The 55 cell types were 
partitioned into a training dataset with 44 cell types and a test dataset with 11 cell types in each fold (see 
detailed five-fold partition in Supplementary Table 2-3). Due to the fact that not all genomic loci are 
regulatory elements, we defined ‘known loci’ which are denoted as positive in at least two training cell 
types, and we further defined ‘novel loci’ which are denoted as positive in at least two test cell types and 
do not overlap with ‘known loci’ in the meanwhile. Take the 5th fold for example, there are 1,435,610 
known loci and 54,171 novel loci respectively. The number of training examples can be as large as about 
63 million (1,435,610 × 44). We provided both single-GPU and multi-GPU model for implementing 
DeepCAGE.  In multi-GPU settings, the backpropagation process (GPU) and generation of the next batch 
of training data (CPU) is paralleled to ensure computing efficiency.  

Model evaluation 

Predictive models are evaluated based on test dataset. We defined two types of metrics in two perspectives, 
namely cell-type-wise evaluation metrics and locus-wise evaluation metrics respectively (see 
Supplementary Figure 1). Let 𝒀𝐿×𝐾 and 𝒀̂𝐿×𝐾 be the true label matrix and predicted matrix where 𝐿 and 𝐾 
denote the number of loci and test cell types, respectively. In the case of classification experiments, 𝑦𝑙𝑘 and 
𝑦̂𝑙𝑘 denote the true and predicted chromatin accessible state of locus 𝑙 in cell type 𝑘, respectively. Due to 
the extremely unbalanced datasets, we applied cell-type-wise auPR (area under Precision-Recall curve) and 
locus-wise auPR to evaluate the performance of classification models, where cell-type-wise auPR is 
calculated based on 𝒚∗𝑘 = (𝑦1𝑘 , 𝑦2𝑘 , … , 𝑦𝐿𝑘) and 𝒚̂∗𝑘 = (𝑦̂1𝑘 , 𝑦̂2𝑘 , … , 𝑦̂𝐿𝑘), locus-wise auPR is calculated 
based on 𝒚𝑙∗ = (𝑦𝑙1, 𝑦𝑙2, … , 𝑦𝑙𝐾) and 𝒚̂𝑙∗ = (𝑦̂𝑙1, 𝑦̂𝑙2, … , 𝑦̂𝑙𝐾). In the case of regression experiments, 𝑦𝑙𝑘 
and 𝑦̂𝑙𝑘 denote the true and predicted processed Dnase-seq signal. We applied cell-type-wise Pearson’s r 
and locus-wise Pearson’s r for evaluating the performance of regression models. Cell-type-wise Pearson’s 
r is calculated based on 𝒚∗𝑘 and 𝒚̂∗𝑘 while locus-wise Pearson’s r is calculated based on 𝒚𝑙∗ and 𝒚̂𝑙∗. We 
further introduced prediction squared error (PSR) which is calculated by PSR = ∑ ∑ (𝑦𝑙𝑘 − 𝑦̂𝑙𝑘)2

𝑙𝑘 /
∑ ∑ (𝑦𝑙𝑘 − 𝑦̅∗𝑘)2

𝑙𝑘 . Note that 𝑦̅∗𝑘  is the mean of 𝒚∗𝑘  ( 𝑦̅∗𝑘 = ∑ 𝑦𝑙𝑘𝑙 /𝐿 ) and PSR is a statistic which 
considers both cell-type-wise prediction and locus-wise prediction. Besides, we introduced two statistics, 
namely cell range and cell variability, to describe the activity of a locus based on the true DNase-seq signal 
across test cell types. Cell range of locus 𝑙 is calculated by max(𝒚𝑙∗) − min (𝒚𝑙∗) while cell variability of 
locus 𝑙 is defined by the standard deviation of 𝒚𝑙∗. The various metrics in both classification and regression 
experiments provide a comprehensive and systematical evaluation of predictive models. 

Models comparison 

Basset [18], DeepSEA [16] and DanQ [17] are three sequence-based neural network models which take 
DNA sequences as input. They cannot make cross-cell-type prediction without incorporating cell type 
specific information. BIRD [19] is an expression-based model which takes gene expression data as predictor 
variables. It can only estimate chromatin accessibility of pre-defined regions which may ignore potential 
novel regulatory elements (REs) that were not included in the pre-defined regions. ChromDragoNN [25] is 
a recently deep learning method which takes both DNA sequence and gene expression data as input. 
However, it ignores the motif information of each corresponding transcription factor (TF).  

Gradient importance score 

We proposed a strategy for prioritizing the importance of transcription factors (TFs) given a pair of cell 

type and a DNA locus. Typically, we first extended the locus to -100kb to 100kb from the midpoint. Then 

we calculated the average absolute gradient of predicted openness within above region with respect to TFs’ 

expression. 𝐺𝐼𝑆𝑘𝑖 =  1
|ℒ|

∑ |
𝜕𝑦̂𝑙𝑘
𝜕𝑔𝑘𝑖

|𝑙∈ℒ . Here, 𝑦̂𝑙𝑘 denotes the predicted openness of locus 𝑙 in cell type 𝑘. 𝑔𝑘𝑖 

denotes the expression of TF 𝑖 in cell type 𝑘. ℒ is the regulatory elements set that contains all loci within 
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the above region. Gradient importance scores (GIS) give an intuition of which transcription factors (TFs) 

can play an important role in a specific cell type. 

Motif analysis 

We converted the weights of the filters from the first convolutional layer into position weight matrices 

(PWMs) by counting subsequence occurrences in a set of input sequences that activate a filter to a threshold 

value. All subsequences with activation value that greater than the threshold of each filter were pooled 

together and aligned. Then the PWMs were composed by the frequencies of the 4 nucleotides (A, C, G and 

T) at each position. We regard a subsequence at position 𝑖 as activated if ∑ ∑ 𝑤𝑚,𝑛
𝑘 𝑥𝑖+𝑚,𝑛

𝑗𝑁−1
𝑛=0

𝑀−1
𝑚=0 > 𝛼 ∙

𝑀𝐴𝑉𝑘. 𝑀 × 𝑁 denotes the size of the filters which is 4 × 15 in the first convolutional layer. 𝑀𝐴𝑉𝑘 denotes 

the maximal activation value of filter 𝑘 which is represented by 𝑀𝐴𝑉𝑘 = max
𝑖,𝑗

(∑ ∑ 𝑤𝑚,𝑛
𝑘 𝑥𝑖+𝑚,𝑛

𝑗𝑁−1
𝑛=0

𝑀−1
𝑚=0 ). 

𝛼 is the control coefficient which is set to 0.7 in the experiments. We identity motifs using the TomTom 

v4.12.0 tool [26] with the E-value threshold 0.01 with comparison to the known motifs in the JASPAR 

2018 database [27]. Besides, we calculated the information content (IC) of recovered motifs based on the 

information entropy. IC = ∑ (𝑝𝑖𝑗 log2 𝑝𝑖𝑗 − 𝑏𝑖 log2 𝑏𝑖)𝑖,𝑗  where 𝑝𝑖𝑗 is the element in PWM matrix and 𝑖, 𝑗 

denote the nucleotide type and position, respectively (i = 0,1,2,3). 𝑏𝑖 denotes the background frequency of 

nucleotide 𝑖 (default: 𝑏𝑖 = 0.25). 

RESULTS 

DeepCAGE accurately predicts binary chromatin accessibiity status 

We designed a series of experiments to systematically evaluate the performance of DeepCAGE in capturing 
genome accessibility code from the viewpoint of binary classification. DNase-seq and RNA-seq data across 
55 cell types were downloaded from the ENCODE project [24]. The 55 cell types were partitioned into a 
training dataset with 44 cell types and a test dataset with 11 cell types using five-fold cross-validation. We 
then defined ‘known loci’ and ‘novel loci’ as potential regulatory elements which are determined by training 
data and test data respectively (see Methods). Predictive models were trained under ‘known loci’ of training 

 

Figure 2. The performance of DeepCAGE classification model. (A) DeepCAGE achieves highest cell-type-wise 

auPR under both ‘known loci’ and ‘novel loci’ across test cell types compared to three baseline methods (Basset, 

DeepSEA, DanQ and ChromDragoNN). (B) The performance of DeepCAGE under loci with different activities 

across test cell types.  
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cell types and tested under both ‘known loci’ and ‘novel loci’ of test cell types. We compared DeepCAGE 
to four methods, including Basset [18], DeepSEA [16], DanQ [17] and ChromDragoNN [25]. First, we 
evaluated the performance of the predictive models under ‘known loci’ of test cell types. Due to the 
extremely unbalanced data with a proportion of positive loci from 2.6% to 29% across 55 cell types, these 
models were assessed in term of cell-type-wise auPR (area under Precision-Recall curve) (see Methods). 
DeepCAGE achieves the highest performance among all the baseline models with the mean cell-type-wise 
auPR of 0.418, compared to 0.166 of Basset, 0.195 of DeepSEA, 0.188 of DanQ and 0.319 of 
ChromDragoNN (Figure 2A). DeepCAGE outperforms baseline models, especially sequence-based models 
by a large margin as our model can discern the difference of openness landscape among test cell types while 
sequence-based models fail to capture the cell-type specific information. Second, we evaluated the 
predictive models under ‘novel loci’ of test cell types. It is a more difficult task as ‘novel loci’ are not 
included in the training process which can reflect the ability of cross-locus prediction. DeepCAGE also 
achieves the highest performance among all the baseline models with the mean cell-type-wise auPR of 
0.181, compared to 0.107 of Basset, 0.104 of DeepSEA, 0.110 of DanQ and 0.151 of ChromDragoNN 
(Figure 2A). We then assessed the performance of DeepCAGE in term of locus-wise auPR (see Methods). 
Note that locus-wise auPR does not exist in sequence-based baseline methods as they cannot make any 
different prediction of a locus in test cell types. We divided the ‘known loci’ into three groups based on the 
percentage of test cell types in which a locus is denoted as positive. For active test cell types less than 10%, 
DeepCAGE achieves a mean locus-wise auPR of 0.578. The mean locus-wise auPR continues to increase 
as the regarding loci are active in more test cell types (Figure 2B). To sum up, DeepCAGE substantially 
achieves both high cell-type-wise and locus-wise prediction accuracy after incorporating with gene 
expression data of human core transcription factors (TFs).  

DeepCAGE recovers continuous degree of chromatin accessibility 

In the above classification experiments, we only consider the binary status of a locus in a specific cell type. 
However, binary label cannot reflect the difference of accessibility among sequences that share the same 
label. To address this problem, we further proposed DeepCAGE regression model (see Methods) which can 
predict the continuous degree of chromatin accessibility of a locus in a specific cell type. We define the 
degree of accessibility of a DNA sequence as the normalized average raw reads count that fall into the 
corresponding region (see Methods). We evaluate whether DeepCAGE can help recover continuous degree 
of chromatin accessibility using the same datasets. First, we compared DeepCAGE to two baseline methods, 
BIRD [19] and ChromDragoNN [25]. Regression models were assessed in term of cell-type-wise Pearson’s 
r and prediction squared error (PSE) (see Methods). DeepCAGE achieves a mean cell-type-wise Pearson’s 
r of 0.785, compared to BIRD of 0.637 and ChromDragoNN of 0.735 (Figure 3A). DeepCAGE achieves 
cell-type-wise Pearson’s r larger than 0.85 in 18.2% of the test cell types and it even achieves cell-type-
wise Pearson’s r larger than 0.9 in two cell types (see examples in Figure 3B). DeepCAGE also achieves 
the minimal prediction square error (0.42) comparing to baseline methods (0.77 and 0.57) (Figure 3C). 
DeepCAGE again outperforms baseline models by a quite large margin.  

To further explore the performance of DeepCAGE under loci with difference properties, we introduced two 
statistics, cell range and cell variability (see Methods) for describing the activity of a considering locus 
based on the true DNase-seq signal cross test cell types. ‘Known loci’ and ‘novel loci’ were first divided 
into three groups based on the two statistics. ‘Low’ denotes the loci of which statistics were lower than the 
1st quartile and ‘high’ represents the loci of which statistics were higher than the 3rd quartile. ‘Median’ 
means that statistics of loci were between the 1st quartile and the 3rd quartile. Loci of ‘median’ cell range 
and cell variability are relatively easier to be predicted by DeepCAGE (Figure 3D), which is consistent to 
BIRD model [19]. For example, DeepCAGE achieves a median locus-wise Pearson’s of 0.512 under 
‘known loci’ with median cell range across test cell types, compared to 0.435 of ‘known loci’ with low cell 
range and 0.399 of ‘known loci’ with high cell range. Comparing ‘known loci’ to ‘novel loci’, DeepCAGE 
achieves a slight lower performance under the loci within the same statistics range. Take cell variability for 
example, DeepCAGE achieves a median locus-wise Pearson’s r of 0.384, 0.514 and 0.448 under ‘known 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/610642doi: bioRxiv preprint 

https://doi.org/10.1101/610642
http://creativecommons.org/licenses/by-nc-nd/4.0/


loci’ with three cell variability ranges (low, median, high) respectively. The performance decreases slightly 
when it comes to ‘novel loci’ with three cell variability ranges (0.320, 0.431 and 0.302). Based on the above 

 

Figure 3. The performance of DeepCAGE regression model. (A) DeepCAGE predicts DNase-seq signals in five 

test cell types. (B) Cell-type-wise Pearson’s r for three different methods across test cell types. *Two-sided 

Wilcoxon signed-rank test P-values=3.37 × 10−5 for comparing two methods. (C) The prediction square error for 

three difference methods. (D) Locus-wise Pearson’s r achieved by DeepCAGE considering two locus statistics 

under both ‘known loci’ and ‘novel loci’. (E) Locus-wise Pearson’s r achieved by DeepCAGE considering cell-

type specificity under ‘known loci’. (F) An example of true (green) and predicted (yellow) DNase-seq signal of 

three test cell types under a same genomic region (chr1:42.83-42.93M). ‘Mean’ signal (red) denotes the average 

DNase-seq signal across training cell types.  
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observation. we further divided ‘known loci’ into five groups based on the number of active test cell types 
when considering a locus. If a locus within a test cell type is denoted as active if the true normalized DNase-
seq signal is greater than 1, and denoted as inactive otherwise, we found that the performance of DeepCAGE 
varies a lot under the loci with different number of active test cell types (Figure 3E). DeepCAGE tents to 
have a worse performance under loci of which the number of active/inactive test cell types is less than 2. 
The reason might be that the training dataset contains most of the ‘median’ type locus, thus DeepCAGE 
has a more powerful generalization ability when making a prediction under ‘median’ type locus. We also 
provided a vivid example of which we visualized both the true (green) and predicted (yellow) DNase-seq 
signal of a same genomic region across three test cell types (GM12878, HepG2 and H1-hESC) in the UCSC 
genome browser [28] (Figure 3F). Note that we also provided the ‘mean signal’ (red) as a reference which 
was calculated by taking the average DNase-seq signals across all training cell types. Obviously, 
DeepCAGE can well discriminate the difference of DNase-seq signals among test cell types while ‘mean 
signal’ fails.  

Gradient importance score helps prioritize cell-type related TFs 

We proposed a simple strategy for prioritizing cell-type related transcription factor (TF) according to the 
absolute gradient with regard to the expression of each TF (Figure 4A, see Methods). Take the K562 cell 
line for example, we calculated the average gradient importance score (GIS) of all TFs from all test loci 
within up-streaming 100k bp to down-streaming 100k bp of p53 gene, which was proved to have a key role 
in myeloid blast transformation [29]. 402 human core TFs were then prioritized by the average GIS score 
in K562 cell line (Figure 4B). Interestingly, many top ranked TFs in K562 cell type are related to functions 
in leukemia cell validated by previous literatures (Figure 4B). E.g. EGR-1 (rank1st) is involved in regulating 
PMA-induced megakaryocytic differentiation of K562 cell line [30], the inhibition of E2F7 (rank3rd) may 
lead to a reduction of miRNAs involved in leukemic cell lines [31], JunB (rank5th) gene expression is 
inactivated by methylation in chronic myeloid leukemia [32]. The GO terms enriched by the top 5% 
prioritized TFs coding genes contain biological processes of leukocyte differentiation and hematopoietic 
development (Figure 4C). The gradient importance score gives us an intuitive explanation of which TF can 
play an important role in predicting the chromatin accessibility given a specific cell type and a region.  

Model ablation analysis of DeepCAGE 

In order to evaluate contributions of DNA sequence, TFs’ gene expression and TF motif scores to the 
performance of DeepCAGE, we performed a model ablation analysis by removing the TFs’ gene expression 
or TF motif scores. Take the DeepCAGE regression model for example, the mean cell-type-wise Pearson’s 
correlation decreases by 11.2% and 1.4% when removing gene expression and motif scores of 402 core 
human TFs, respectively (Supplementary Figure 2). Gene expression data can significantly help improves 
the performance of DeepCAGE in cross cell type prediction while TFs motif scores achieve slight 

 

Figure 4. The gradient importance score (GIS) helps identify important transcription factors (TFs). (A) The GIS 

heatmap of 402 human core transcription factors (TFs) across 55 cell types. (B) The gradient importance score (GIS) 

of 20 top ranked TFs in K562 cell type. (C) Enriched GO terms by top ranked TFs in K562 cell type.  
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incremental performance. The potential reason is that a large proportion of DNA sequence motifs have 
already been learned in the convolution layers of neural network. The motif scores can only achieve 
complementary contribution when contained in the prediction task. 

DeepCAGE automatically learns the binding motifs of TFs 

We explored the features that were automatically learned by DeepCAGE by investigating the weights of 
160 filters from the first convolutional layer. The weights were converted into 160 position weight matrices 
(PWMs) through a proposed strategy (see Methods). We then compared to PWMs learned by DeepCAGE 
to the known motifs from JASPAR 2018 database [27]. 30% of the learned motifs can be matched to known 
motifs in JASPAR database with an E-value threshold of 0.01. Among the 48 matched filters, 52% have at 
least one matched core human TF used in DeepCAGE model. We first calculated the information content 
based on information entropy (see Methods) and set each of the filter weights to zeros and denoted the 
decreased cell-type-wise Pearson’s correlation as the influence score for each motif. We showed several 
learned unmatched motifs that have high influence score (Figure 5A) and illustrates a few examples of 
learned motifs that could be matched to known motifs in JASPAR database (Figure 5B). The results 
demonstrated that DeepCAGE can not only help us find potential binding motifs, but also has the potential 
to guide us to find novel motifs which are not discovered by experiments yet. 

DISCUSSION 

Accurately predicting regulatory elements (REs) has become a fundamental problem in computation 
biology. In this paper, we demonstrated that the combination in software (CNNs), hardware (GPUs) and 
abundant genomic data can enable drastic performance boost on such problems. We introduced DeepCAGE, 
a deep learning framework that integrates a densely connected convolutional neural network to 
automatically extract DNA sequence signatures, capture TF binding motifs and implicate driving activity 
of transcription factors (TFs). DeepCAGE showed superior performance in both classification and 
regression settings. More importantly, it overcomes the limitations of previous sequence-based methods 
and expression-based methods. DeepCAGE could not only make cross cell type prediction, but also enables 
genome-wide prediction of chromatin accessibility, including novel loci that are not contained in the 
training set. A typical scenario to use DeepCAGE is to predict the activities of genome-wide regulatory 
elements in cell types where the chromatin accessibility data is not available.  

To make DeepCAGE more understandable, we proposed two perspectives for model interpretation. First, 
the gradient importance score can give us an intuitional measurement of each transcription factor (TF) that 

 

Figure 5. The convolutional layer in DeepCAGE recovers both known and novel motifs. (A) Green dots and yellow 

dots represent known motifs and novel motifs recovered by DeepCAGE, respectively. The x-axis describes the 

information content (see Methods) and the y-axis denotes the influence score, which is calculated by setting the 

filter weights to zeros and taking average changes of openness over test cell types. (B) we display matched motifs 

with an E-value threshold 0.01 in the format of sequence logos (above: known motif from the JASPAR database, 

below: motif learned by DeepCAGE). 
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contributes to the prediction take of each test cell type with regard to a specific locus. Second, the 
visualization of kernel weights in the first convolutional layer proves to contain abundant known and novel 
TF binding motifs. Model interpretation can help DeepCAGE well dissect regulatory landscape under 
various cell conditions.  

Certainly, our model can be further improved from many aspects. First, DeepCAGE only considers the 
gene expression of 402 transcription factors (TFs) of which non-redundant binding motif could be found in 
HOCOMOCO database. Surely we can collect motif information of more TFs as prior knowledge by 
integrating multiple motif databases such as JASPAR [27], TRANSFAC [44] and UniPROBE [45] together. 
Second, we ignored the expression of genes which direct the synthesis of non-TF proteins. However, some 
proteins such as chromatin regulators (CRs), a class of enzymes with specialized function domains, can 
shape and maintain the epigenetic state in a cell context-dependent fashion [46], thus could also provide 
information for inferring chromatin accessible state. Third, DeepCAGE could not further determine the 
functions of a predicted region under a specific cell type currently. With the annotation of cis-regulatory 
elements in genome such as promoters, enhancers and silencers. DeepCAGE may further uncover the 
relationship between different kind of genomic regulatory elements and the genome-wide transcriptome 
profile.  

To sum up, with DeepCAGE, a research can infer the chromatin accessibility code of the cell types with 
interests given corresponding gene expression data (RNA-seq, DNA microarray, etc.). We expect to see 
wide downstream applications of DeepCAGE with either public or in-house gene expression samples. We 
also hope DeepCAGE could help unveil the complex regulatory mechanism underlying various genetic 
signals. 
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