

1 **Fermentative *Escherichia coli* makes a substantial contribution to H₂ production in**
2 **coculture with phototrophic *Rhodopseudomonas palustris***

3
4 Amee A. Sangani^{1,2†}, Alexandra L. McCully^{1,3†}, Breah LaSarre¹, and James B. McKinlay¹

5
6 ¹Department of Biology, Indiana University, Bloomington, IN

7 ²Biology Undergraduate Program, Indiana University, Bloomington, IN

8 ³ Current address: Department of Civil and Environmental Engineering, Stanford University, CA

9 [†]Equal contributions.

10 *Corresponding author: James B. McKinlay, 1001 E 3rd St. Bloomington, IN 47405, Ph: 812-
11 855-0359, Fax: 812-855-6705, Email: jmckinla@indiana.edu

12 Keywords: Coculture, Hydrogen, Biofuel, Cross-feeding, Syntropy, *Rhodopseudomonas*
13 *palustris*, Formate hydrogenlyase

14
15 **Abstract**

16 Individual species within microbial communities can combine their attributes to produce services
17 that benefit society, such as the transformation of renewable resources into valuable chemicals.
18 Under defined genetic and environmental conditions, fermentative *Escherichia coli* and
19 phototrophic *Rhodopseudomonas palustris* exchange essential carbon and nitrogen, respectively,
20 to establish a mutualistic relationship. In this relationship, each species produces H₂ biofuel as a
21 byproduct of their metabolism. However, the extent to which each species contributes to H₂
22 production and the factors that influence their relative contributions were previously unknown.
23 By comparing H₂ yields in cocultures pairing *R. palustris* with either wild-type *E. coli* or a
24 formate hydrogenlyase mutant that is incapable of H₂ production, we determined the relative
25 contribution of each species to total H₂ production. Our results indicate that *E. coli* contributes
26 between 32% and 86% of the H₂ produced in coculture depending on the level of ammonium
27 excreted by the *R. palustris* partner. An *R. palustris* strain that stimulated rapid *E. coli* growth
28 through a high level of ammonium excretion resulted in earlier accumulation of formate and
29 acidic conditions that allowed *E. coli* to be the major contributor to H₂ production.

30
31 **Introduction**

32 The collective activities of microbial communities can be harnessed to benefit society in ways
33 ranging from the degradation of pollutants to the production of valuable chemicals and fuels
34 (Zuroff & Curtis, 2012, Johns *et al.*, 2016, Cavaliere *et al.*, 2017). Synthetic communities (i.e.,
35 cocultures) pairing fermentative and phototrophic purple nonsulfur bacteria have long been
36 viewed as an attractive means by which to convert carbohydrates to hydrogen gas (H₂) biofuel
37 (Odom & Wall, 1983). In such communities, fermentative bacteria often dedicate some electrons
38 extracted from carbohydrates to H₂ production, but most of the electrons end up in excreted

39 organic acids and alcohols. Purple nonsulfur bacteria can use energy from light to access
40 electrons in fermentation products and use these electrons for both biosynthesis and H₂
41 production, thereby increasing the total H₂ yield. While the advantages of such communities for
42 achieving a higher H₂ yield in a consolidated process have long been known (Odom & Wall,
43 1983), the contributions of each species to H₂ production and the underlying microbial
44 interactions have been difficult to characterize due to a lack of reproducibility and tractability in
45 these communities.

46
47 We previously developed a highly reproducible and tractable coculture between fermentative
48 *Escherichia coli* and the purple nonsulfur bacterium, *Rhodopseudomonas palustris* (LaSarre *et*
49 *al.*, 2017). As in previous cocultures of this kind, *E. coli* ferments glucose into excreted organic
50 acids and ethanol. One organic acid, formate, can be further converted by *E. coli* into H₂ and
51 CO₂ via formate hydrogenlyase (FHL) (Pinske & Sawers, 2016). Formate cannot be metabolized
52 by *R. palustris*, but *R. palustris* readily consumes the other organic acids, namely acetate, lactate,
53 and succinate. *R. palustris* does not metabolize sugars and is thus reliant on *E. coli* for the carbon
54 and electrons in these organic acids (LaSarre *et al.*, 2017). Stable coexistence of the species in
55 coculture is assured by requiring that *E. coli* rely on *R. palustris* for essential nitrogen. This
56 dependency is achieved by (i) providing N₂ gas as the sole nitrogen source, as only *R. palustris*
57 can convert N₂ into NH₄⁺ via nitrogenase, and (ii) by using *R. palustris* mutants that excrete
58 NH₄⁺ as a nitrogen source for *E. coli* (LaSarre *et al.*, 2017). These conditions also drive H₂
59 production by *R. palustris*, as H₂ an obligate byproduct of the nitrogenase reaction.

60
61 Here we use an *E. coli* mutant lacking FHL activity to assess the contribution of each species to
62 H₂ production in coculture. We find that either species can make the majority contribution to H₂
63 production depending on the level of NH₄⁺ excreted by the *R. palustris* partner. A highly
64 cooperative *R. palustris* partner, exhibiting a high level of NH₄⁺ excretion, leads to conditions
65 that result in *E. coli* being the major contributor to H₂ production.

66
67 **Materials and Methods**

68 *Strains and growth conditions.* All *R. palustris* strains were derived from the type strain CGA009
69 (Larimer *et al.*, 2004). *R. palustris* Nx (CGA4005) has a *nifA* mutation that results in NH₄⁺
70 excretion during N₂ fixation, a *hupS* deletion to prevent H₂ oxidation, and a *uppE* deletion that
71 prevents biofilm formation (Fritts *et al.*, 2017, LaSarre *et al.*, 2017). *R. palustris* NxΔAmtB
72 (CGA4021) has the same mutations as the Nx strain and additional *amtB1* and *amtB2* deletions
73 that result in 3-fold more NH₄⁺ excretion than the Nx strain (LaSarre *et al.*, 2017). *E. coli*
74 MG1655 was the wild-type (WT) strain (Blattner *et al.*, 1997). The ΔFdhF strain was created by
75 transferring the *ΔfdhF::Km^R* mutation from *E. coli* JW4040 (Baba *et al.*, 2006) into *E. coli*
76 MG1655 using P1 phage transduction (Thomason *et al.*, 2007). Mutants were selected on LB
77 agar with 30 µg/mL kanamycin and were verified by PCR. Empty vector (pCA24N) and the
78 complementation vector (pCA24N_fdhF) (Kitagawa *et al.*, 2005) were electroporated into *E. coli*
79 ΔFdhF and transformants were selected on LB agar with 25 µg/mL chloramphenicol.
80 Monocultures and cocultures were grown in 10 mL of M9-derived coculture (MDC) medium
81 (LaSarre *et al.*, 2017) in 27-mL anaerobic test tubes. Where appropriate, MOPS was added
82 during the preparation of MDC medium using a 1M stock at pH 7 for a final concentration of
83 100 mM. Tubes were made anaerobic by bubbling with N₂ and were then sealed with rubber
84 stoppers and aluminum crimps, creating a headspace of 100% N₂. MDC medium was

85 supplemented with 1% v/v cation solution (100 mM MgSO₄, 10 mM CaCl₂) and 25 mM glucose.
86 For *E. coli* monocultures, 15 mM NH₄Cl was added. All anaerobic cultures were grown at 30°C,
87 lying flat with shaking at 150 rpm beneath a 60 W incandescent bulb. Starter monocultures and
88 cocultures were inoculated from single colonies suspended in 0.2 ml of MDC. Once fully grown,
89 0.1 mL of starter culture was inoculated into test conditions.
90

91 *Analytical Procedures.* Cell densities were quantified by optical density at 660nm (OD₆₆₀) using
92 a Genesys 20 spectrophotometer (Thermo-Fisher). Growth curves used cell densities measured in
93 the culture tubes. Growth rates were determined using values between 0.1 and 1.0 OD₆₆₀ where
94 there is linear correlation between OD₆₆₀ and cell density. Growth yields were determined using
95 OD₆₆₀ values from initial and final time points measured in cuvettes, with samples diluted into
96 the linear range as necessary. Glucose and soluble fermentation products were quantified using a
97 Shimadzu high-performance liquid chromatograph as described (McKinlay *et al.*, 2005). H₂ was
98 quantified using a Shimadzu gas chromatograph as described (Huang *et al.*, 2010). To determine
99 final pH values, whole cultures were centrifuged, the supernatants passed through 0.2 µm syringe
100 filters, and the pH of the filtrate measured using a pH meter.
101

102 Results

103 **Formate dehydrogenase-H is required for H₂ production by *E. coli*.** In cocultures pairing WT
104 *E. coli* with *R. palustris* Nx, a mutant that excretes NH₄⁺ during N₂ fixation, both species are
105 presumed to produce H₂ (Fig 1). However, the contribution of each species to H₂ production was
106 unknown. To determine the contribution of each species to H₂ production, we genetically
107 disrupted H₂ production in *E. coli*. We did not attempt to disrupt H₂ production in *R. palustris*
108 because H₂ is an obligate byproduct of nitrogenase during the conversion of N₂ to NH₄⁺;
109 consequently, *R. palustris* H₂ production cannot be eliminated without simultaneously disrupting
110 the NH₄⁺ cross-feeding that underpins the mutualism. In *E. coli*, H₂ is produced by the FHL
111 complex, composed of formate dehydrogenase-H and hydrogenase-3, which converts formate to
112 H₂ and CO₂ (Pinske & Sawers, 2016). Unlike other *E. coli* fermentation products, formate is not
113 consumed by *R. palustris* (Fig. 1).
114

115 It is well-known that *fdhF*, encoding formate dehydrogenase-H, is required for H₂ production by
116 *E. coli* (Pinske & Sawers, 2016). We therefore deleted *fdhF*, resulting in strain ΔFdhF, and
117 examined the effects of the *fdhF* deletion on fermentative growth and metabolic trends in
118 monoculture. The growth curves of WT and ΔFdhF *E. coli* monocultures were comparable (Fig.
119 2A), as were the growth yields (Fig. 2B) and growth rates (Fig. 2C). As expected, the ΔFdhF
120 mutant did not produce any detectable H₂ and had a higher formate yield than did the WT strain
121 (Fig. 2D). Other fermentation product yields were comparable in the WT and ΔFdhF cultures
122 (Fig. 2D). We verified that the loss of H₂ production and higher formate yield in the ΔFdhF
123 cultures were due to the lack of the *fdhF* gene and not due to polar effects of the deletion by
124 complementing the ΔFdhF mutant with a plasmid bearing *fdhF* under an IPTG-inducible
125 promoter (pCA24N_*fdhF*). Whereas the empty vector had no effect on product yields,
126 complementation with pCA24N_*fdhF* restored H₂ production and resulted in formate yields
127 similar to WT levels (Fig. 2D). Complementation with pCA24N_*fdhF* also resulted in a higher
128 lactate yield than the WT strain (Fig. 2D), though the reasons for this trend are not obvious.
129 Because formate accumulation can acidify the culture medium we also measured the culture pH
130 once growth had ceased. Despite the higher formate level in ΔFdhF cultures, there was no

131 significant difference in final culture pH compared to WT cultures (Fig. 2E). Overall, all results
132 verified that deletion of *fdhF* abolishes H₂ production with a concomitant increase in formate
133 yield but without affecting other growth and metabolic trends.
134

135 ***E. coli* contributes to H₂ production in coculture with *R. palustris*.** As deletion of *fdhF*
136 abolished the conversion of formate to H₂ by *E. coli* without altering other growth or metabolic
137 trends, we deemed the Δ FdhF mutant suitable for assessing the contribution of *E. coli* to H₂
138 production in coculture. We grew the Δ FdhF mutant with *R. palustris* Nx (i.e., Nx+ Δ FdhF
139 coculture) and compared growth and metabolic trends to cocultures pairing *R. palustris* Nx with
140 WT *E. coli* (i.e., Nx+WT coculture). We observed no significant differences in the growth trends
141 between the Nx+WT and Nx+ Δ FdhF cocultures (Fig. 3A-C). The H₂ yield in Nx+ Δ FdhF
142 cocultures was significantly lower than that of Nx+WT cocultures, whereas the formate yield
143 was significantly higher (Fig. 3D). Despite that formate yields were significantly higher in
144 Nx+ Δ FdhF cocultures, the final pH was still similar to that of Nx+WT cocultures (Fig. 3E).
145 Since all growth and metabolic trends we assayed were statistically similar between the Nx+WT
146 and Nx+ Δ FdhF cocultures, except for formate and H₂ yields, we reasoned that the formate and
147 H₂ yields were unlikely to be influenced in any major way by factors other than the absence of
148 *fdhF*. Thus, we estimated the contribution of *E. coli* to H₂ production in coculture to be the
149 difference in the H₂ yield between the Nx+WT and Nx+ Δ FdhF cocultures. From this difference,
150 we estimated that *E. coli* produces 32 \pm 5% (SD) of the H₂ in an Nx+WT coculture.
151

152 **Higher NH₄⁺ excretion by *R. palustris* results in a larger *E. coli* contribution to H₂
153 production.** In the above cocultures with *R. palustris* Nx, the growth rates of the two species are
154 coupled (LaSarre *et al.*, 2017). Consequently, *E. coli* grows at \sim 20% of the growth rate that
155 would be possible if NH₄⁺ were saturating, decreasing the rate of formate accumulation and
156 acidification of the culture medium (LaSarre *et al.*, 2017). However, it is possible to uncouple
157 the growth rates and allow *E. coli* to grow faster by growing *E. coli* with the hyper-cooperative
158 *R. palustris* Nx Δ AmtB strain (LaSarre *et al.*, 2017). *R. palustris* Nx Δ AmtB lacks high-affinity
159 AmtB transporters responsible for NH₄⁺ import and thus excretes 3-times more NH₄⁺ than does
160 *R. palustris* Nx (LaSarre *et al.*, 2017). The higher level of NH₄⁺ cross-feeding increases the *E.*
161 *coli* growth rate in coculture and causes the rate of organic acid production by *E. coli* to exceed
162 the rate of organic acid consumption by *R. palustris*. As a result, consumable organic acids
163 accumulate along with formate and prematurely acidify the coculture and inhibit *R. palustris*
164 growth unless the buffering capacity of the medium is raised. However, even without additional
165 buffer, the coculture maintains reproducible trends through serial transfers (LaSarre *et al.*, 2017).
166 The conversion of formate to H₂ and CO₂ by *E. coli* FHL requires anaerobic conditions and a pH
167 below 7 and is influenced by the formate concentration (Rossmann *et al.*, 1991, Pinske &
168 Sawers, 2016). Thus, we hypothesized that the faster growth of *E. coli* in coculture with *R.*
169 *palustris* Nx Δ AmtB, and the associated acceleration of culture acidification and formate
170 accumulation, might trigger earlier FHL activity and thereby increase *E. coli*'s contribution to H₂
171 production.
172

173 We compared growth and metabolic trends in cocultures pairing *R. palustris* Nx Δ AmtB with
174 either WT *E. coli* (Nx Δ AmtB+WT) or the Δ FdhF mutant (Nx Δ AmtB+ Δ FdhF). Again, growth
175 trends in cocultures with *R. palustris* Nx Δ AmtB were not significantly affected by the absence of
176 *E. coli* *fdhF* (Fig. 4A-C). As expected, compared to cocultures with *R. palustris* Nx, cocultures

177 with *R. palustris* NxΔAmtB reached stationary phase more quickly (Fig. 3A vs. Fig 4A) due to
178 the increased growth rate of *E. coli* (LaSarre *et al.*, 2017). To take into account the shortened
179 growth period of *R. palustris* NxΔAmtB-containing cocultures in our comparisons with *R.*
180 *palustris* Nx-containing cocultures, we sampled *R. palustris* NxΔAmtB-containing cocultures at
181 two time points: (i) 96 h, which roughly matches the time that *R. palustris* Nx-containing
182 cocultures spent in stationary phase; and (ii) 167 h, which corresponds to the total time for
183 coculture experiments with *R. palustris* Nx.
184

185 As observed previously (LaSarre *et al.*, 2017), consumable organic acids accumulated in
186 cocultures with *R. palustris* NxΔAmtB (Fig. 4D). The average H₂ yield of the
187 NxΔAmtB+ΔFdhF cocultures across both time points was 0.10±0.01 mol/mole glucose (Fig.
188 4D), which is approximately one-third of that of the Nx+ΔFdhF cocultures (Fig. 3D). This H₂
189 yield, which reflects the contribution by *R. palustris* NxΔAmtB, is likely low due to the
190 inhibition of *R. palustris* growth and metabolism by acidification of the coculture before all
191 consumable organic acids could be consumed (Fig. 4D and E), as observed previously (LaSarre
192 *et al.*, 2017). In contrast, the NxΔAmtB+WT cocultures showed an increasing H₂ yield between
193 the two time points, eventually reaching levels comparable to those observed in Nx+WT
194 cocultures (Fig. 4D). Taking the difference between the H₂ yields of the NxΔAmtB+ΔFdhF and
195 the NxΔAmtB+WT cocultures, we estimated that *E. coli* contributed 70±20 % and 86±26 % of
196 the total H₂ observed at 96 and 167 hours, respectively. Thus, unlike in Nx+WT cocultures, *E.*
197 *coli* generated the majority of the H₂ in NxΔAmtB+WT cocultures. This higher percent
198 contribution by *E. coli* to H₂ production was due in part to inhibition of *R. palustris*, but it was
199 also due to *E. coli* having produced 2.4-times as much H₂ per glucose in cocultures with *R.*
200 *palustris* NxΔAmtB than in cocultures with *R. palustris* Nx (Fig. 5).
201

202 The increase in H₂ yield between time points in NxΔAmtB+WT cocultures corresponded with a
203 decrease in the formate yield (Fig. 4D), indicating conversion of formate into H₂ by WT *E. coli*.
204 This formate removal also explains why the pH was higher in NxΔAmtB+WT cocultures
205 compared to NxΔAmtB+ΔFdhF cocultures (Fig. 4E). The final pH of the NxΔAmtB+WT
206 cocultures was also higher than that observed in a previous study on NxΔAmtB+WT cocultures
207 (LaSarre *et al.*, 2017). Again, this difference is likely due to the removal of additional formate
208 during the prolonged incubation; in the current study we sacrificed cultures to measure pH at 167
209 h (Fig. 4E), whereas previously we sacrificed cultures to measure pH at 96 h (LaSarre *et al.*,
210 2017). The extended incubation time and difference in the final pH between the two cocultures
211 might also explain why the lactate yield was higher in the NxΔAmtB+ΔFdhF cocultures,
212 because a low pH and fermentative conditions are known to stimulate lactate dehydrogenase
213 activity in *E. coli* (Mat-Jan *et al.*, 1989, Jiang *et al.*, 2001).
214

215 The acidification of the medium in cocultures with *R. palustris* NxΔAmtB leaves some electron-
216 containing organic acids unconsumed that *R. palustris* could otherwise convert to H₂ via
217 nitrogenase. To determine how much additional H₂ could be made if *R. palustris* NxΔAmtB was
218 not inhibited by the low pH, we repeated the experiments in medium supplemented with 100 mM
219 MOPS, pH 7. This additional MOPS was not expected to inhibit *E. coli* FHL activity given that
220 the pH of the medium without MOPS also has at a pH of 7, and both media acidify as *E. coli*
221 grows fermentatively. Growth trends were similar between NxΔAmtB+WT and
222 NxΔAmtB+ΔFdhF cocultures supplemented with MOPS (Fig. 6A-C). The presence of

223 consumable organic acids at 94 h indicated that *E. coli* again grew rapidly and produced organic
224 acids faster than *R. palustris* could consume them (Fig. 6D). However, the mildly acidic pH, only
225 reaching 6.5 at 164 h (Fig. 6E), allowed *R. palustris* to eventually metabolize nearly all
226 consumable organic acids (Fig. 6D). From the difference in H₂ yields between MOPS-
227 supplemented NxΔAmtB+WT and NxΔAmtB+ΔFdhF cocultures, we estimated that *E. coli*
228 generated 63±10% of the H₂ in cocultures at 94 h, similar to the *E. coli* contribution at 96 hours
229 in Nx+WT cocultures (Fig. 4D). Thus, the additional MOPS buffer did not have a major
230 inhibitory effect on FHL activity. By 164 h, the *E. coli* H₂ contribution increased to 69±6% of
231 the H₂ produced, even though both species generated H₂ during this time; for comparison, the H₂
232 yield increased 1.4-fold between 94 and 164 h due to *R. palustris* nitrogenase activity alone in
233 NxΔAmtB+ΔFdhF cocultures (Fig. 4D). The lower percentage of H₂ contributed by *E. coli* in
234 MOPS-supplemented NxΔAmtB+ΔFdhF cocultures compared to cocultures without MOPS was
235 a result of increased H₂ production by *R. palustris* NxΔAmtB, as the *E. coli* H₂ yield was
236 estimated to be similar in NxΔAmtB+ΔFdhF cocultures with and without MOPS (Fig. 5). As *R.*
237 *palustris* NxΔAmtB was not the major H₂ contributor even when allowed to fully consume the
238 consumable organic acids, we conclude that the early exposure of *E. coli* to formate under FHL-
239 activating conditions allows *E. coli* to make a greater contribution to H₂ production than *R.*
240 *palustris* in NxΔAmtB+WT cocultures. However, one reason that *R. palustris* NxΔAmtB did not
241 make as much H₂ in MOPS-supplemented cocultures compared to *R. palustris* Nx in coculture is
242 because *R. palustris* NxΔAmtB shifted the *E. coli* fermentation balance towards ethanol,
243 increasing the ethanol yield more than 2-fold above that observed in Nx+WT cocultures (Fig. 3D
244 vs Fig. 4D and 6D). Because *R. palustris* does not consume ethanol in coculture, the high ethanol
245 yield detracted from the electrons that *R. palustris* could otherwise have devoted to H₂
246 production.

247

248 Discussion

249 Our results indicate that *E. coli* can make a substantial contribution to H₂ production in
250 cocultures with *R. palustris*, with the contribution ranging from 32-86% depending on the level
251 of NH₄⁺ excretion by the *R. palustris* partner and the length of time that *E. coli* is exposed to
252 formate. Even in Nx+WT cocultures, wherein *E. coli* contributed the least (~32%) to H₂
253 production (Fig. 3D), the contribution was still considerable in view of the fact that *E. coli* makes
254 up only ~10% of the total population (LaSarre *et al.*, 2017, McCully *et al.*, 2017). This large
255 contribution of *E. coli* to H₂ on a ‘per cell’ basis reflects the difference in how electrons are
256 managed in fermentation versus in photoheterotrophic growth. During fermentation, most of the
257 electrons are disposed of in fermentation products, including H₂, to satisfy electron balance.
258 During photoheterotrophic growth by *R. palustris*, H₂ production also contributes to electron
259 balance, but most of the electrons are incorporated into new cell material (McKinlay &
260 Harwood, 2010, McKinlay & Harwood, 2011). Thus, the relative biosynthetic efficiency of each
261 species’ lifestyle plays a large role in determining its respective contributions to H₂ production.

262

263 The H₂ contribution by *E. coli* was greater in cocultures with *R. palustris* NxΔAmtB, in which
264 the conditions required for *E. coli* FHL activity were established relatively early, thereby
265 prolonging the period over which *E. coli* could convert formate to H₂ (Fig. 4D and 6D). The
266 greater *E. coli* contribution to H₂ yields in NxΔAmtB+WT cocultures compared to that in
267 Nx+WT cocultures could also be due in part to a larger *E. coli* population; *E. coli* makes up 30-
268 50% of the total population in NxΔAmtB+WT cocultures, with absolute *E. coli* populations

269 being ~2-fold larger in NxΔAmtB+WT cocultures compared to Nx+WT cocultures (LaSarre *et*
270 *al.*, 2017, McCully *et al.*, 2017).

271
272 The results herein could contribute to the rational design of H₂-producing communities. Much
273 research has focused on the potential use of purple nonsulfur bacteria to convert fermented
274 agricultural or municipal waste into H₂. Coculture systems like ours can be viewed as a precursor
275 for a consolidated process in which purple nonsulfur bacteria, like *R. palustris*, would be
276 integrated with a fermentative community *in situ*. In our coculture, *E. coli* serves as a proxy for a
277 fermentative community. While not all fermentative microbes generate H₂ (Odom & Wall,
278 1983), our results show that fermentative bacteria could be major contributors to H₂ production
279 in communities with purple nonsulfur bacteria. Although the highest H₂ yield observed in our
280 study was 0.6 mol H₂/mol glucose, or 5% of the theoretical maximum yield, it is possible that the
281 yield would be higher if more time were allowed for *E. coli* to convert remaining formate into
282 H₂. Continuous removal of H₂ from the headspace could also improve H₂ production by relieving
283 thermodynamic feedback on hydrogenase activity (Mandal *et al.*, 2006). It is also possible that
284 the *R. palustris* contribution to H₂ production could be increased by integrating *R. palustris* into
285 a fermentative community in a manner where its access to nitrogen could be controlled, for
286 example, using a latex biofilm (Gosse *et al.*, 2007, Gosse *et al.*, 2010, McKinlay & Harwood,
287 2010). We previously observed that nitrogen-starved *R. palustris* suspensions produced H₂ at
288 yields as high 66% of the theoretical maximum (McKinlay *et al.*, 2014). Similarly, in nitrogen-
289 limited cocultures we observed an H₂ yield of >4 mol H₂/mol glucose, or 33% of the theoretical
290 maximum yield (McCully *et al.*, 2017). Overall, our results illustrate how synthetic tractable
291 communities can be used to inform on the design and application of microbial communities to
292 benefit society.

293
294 **Funding.** This work was supported by the U.S. Army Research Office, grant W911NF-14-1-04.
295 AAS was supported by Indiana University's Cox Research Scholars Program and the Hutton
296 Honors College.

297
298 **References.**

299 Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL
300 & Mori H (2006) Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the
301 Keio collection. *Mol Syst Biol* 2: 2006 0008.

302 Blattner FR, Plunkett G, 3rd, Bloch CA, et al. (1997) The complete genome sequence of *Escherichia*
303 *coli* K-12. *Science* 277: 1453-1462.

304 Cavaliere M, Feng S, Soyer OS & Jimenez JI (2017) Cooperation in microbial communities and their
305 biotechnological applications. *Environ Microbiol* 19: 2949-2963.

306 Fritts RK, LaSarre B, Stoner AM, Posto AL & McKinlay JB (2017) A *Rhizobiales*-specific unipolar
307 polysaccharide adhesin contributes to *Rhodopseudomonas palustris* biofilm formation across diverse
308 photoheterotrophic conditions. *Appl Environ Microbiol* 83: e03035-16.

309 Gosse JL, Engel BJ, Hui JC, Harwood CS & Flickinger MC (2010) Progress toward a biomimetic
310 leaf: 4,000 h of hydrogen production by coating-stabilized nongrowing photosynthetic
311 *Rhodopseudomonas palustris*. *Biotechnol Prog* 26: 907-918.

312 Gosse JL, Engel BJ, Rey FE, Harwood CS, Scriven LE & Flickinger MC (2007) Hydrogen
313 production by photoreactive nanoporous latex coatings of nongrowing *Rhodopseudomonas palustris*
314 CGA009. *Biotechnol Prog* 23: 124-130.

315 Huang JJ, Heiniger EK, McKinlay JB & Harwood CS (2010) Production of hydrogen gas from light
316 and the inorganic electron donor thiosulfate by *Rhodopseudomonas palustris*. *Appl Environ*
317 *Microbiol* 76: 7717-7722.

318 Jiang GR, Nikolova S & Clark DP (2001) Regulation of the *ldhA* gene, encoding the fermentative
319 lactate dehydrogenase of *Escherichia coli*. *Microbiology* 147: 2437-2446.

320 Johns NI, Blazejewski T, Gomes AL & Wang HH (2016) Principles for designing synthetic
321 microbial communities. *Curr Opin Microbiol* 31: 146-153.

322 Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H & Mori H (2005)
323 Complete set of ORF clones of *Escherichia coli* ASKA library (a complete set of *E. coli* K-12 ORF
324 archive): unique resources for biological research. *DNA Res* 12: 291-299.

325 Larimer FW, Chain P, Hauser L, et al. (2004) Complete genome sequence of the metabolically
326 versatile photosynthetic bacterium *Rhodopseudomonas palustris*. *Nat Biotechnol* 22: 55-61.

327 LaSarre B, McCully AL, Lennon JT & McKinlay JB (2017) Microbial mutualism dynamics
328 governed by dose-dependent toxicity of cross-fed nutrients. *ISME J* 11: 337-348.

329 Mandal B, Nath K & Das D (2006) Improvement of biohydrogen production under decreased partial
330 pressure of H₂ by *Enterobacter cloacae*. *Biotechnol Lett* 28: 831-835.

331 Mat-Jan F, Alam KY & Clark DP (1989) Mutants of *Escherichia coli* deficient in the fermentative
332 lactate dehydrogenase. *J Bacteriol* 171: 342-348.

333 McCully AL, LaSarre B & McKinlay JB (2017) Growth-independent cross-feeding modifies
334 boundaries for coexistence in a bacterial mutualism. *Environ Microbiol* 19: 3538-3550.

335 McCully AL, LaSarre B & McKinlay JB (2017) Recipient-biased competition for a cross-fed nutrient
336 is required for coexistence of microbial mutualists. *mBio* 8: e01620-17

337 McKinlay JB & Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. *Curr*
338 *Opin Biotechnol* 21: 244-251.

339 McKinlay JB & Harwood CS (2010) Carbon dioxide fixation as a central redox cofactor recycling
340 mechanism in bacteria. *Proc Natl Acad Sci U S A* 107: 11669-11675.

341 McKinlay JB & Harwood CS (2011) Calvin cycle flux, pathway constraints, and substrate oxidation
342 state together determine the H₂ biofuel yield in photoheterotrophic bacteria. *mBio* 2:
343 e00323-10

344 McKinlay JB, Zeikus JG & Vieille C (2005) Insights into *Actinobacillus succinogenes* fermentative
345 metabolism in a chemically defined growth medium. *Appl Environ Microbiol* 71: 6651-6656.

346 McKinlay JB, Oda Y, Ruhl M, Posto AL, Sauer U & Harwood CS (2014) Non-growing
347 *Rhodopseudomonas palustris* increases the hydrogen gas yield from acetate by shifting from the
348 glyoxylate shunt to the tricarboxylic acid cycle. *J Biol Chem* 289: 1960-1970.

349 Odom JM & Wall JD (1983) Photoproduction of H₂ from cellulose by an anaerobic bacterial
350 coculture. *Appl Environ Microbiol* 45: 1300-1305.

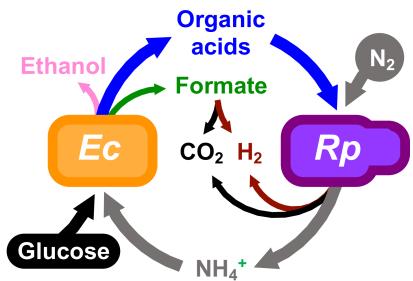
351 Pinske C & Sawers RG (2016) Anaerobic formate and hydrogen metabolism. *EcoSal Plus* 7.

352 Rossmann R, Sawers G & Bock A (1991) Mechanism of regulation of the formate-hydrogenlyase
353 pathway by oxygen, nitrate, and pH: definition of the formate regulon. *Mol Microbiol* 5: 2807-2814.

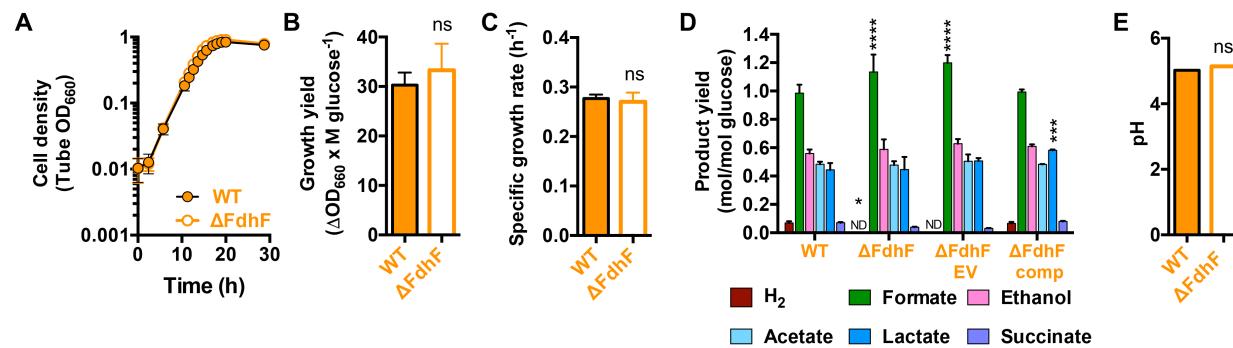
354 Thomason LC, Costantino N & Court DL (2007) *E. coli* genome manipulation by P1 transduction.
355 *Curr Protoc Mol Biol Chapter 1: Unit 1 17.*

356 Zuroff TR & Curtis WR (2012) Developing symbiotic consortia for lignocellulosic biofuel
357 production. *Appl Microbiol Biotechnol* 93: 1423-1435.

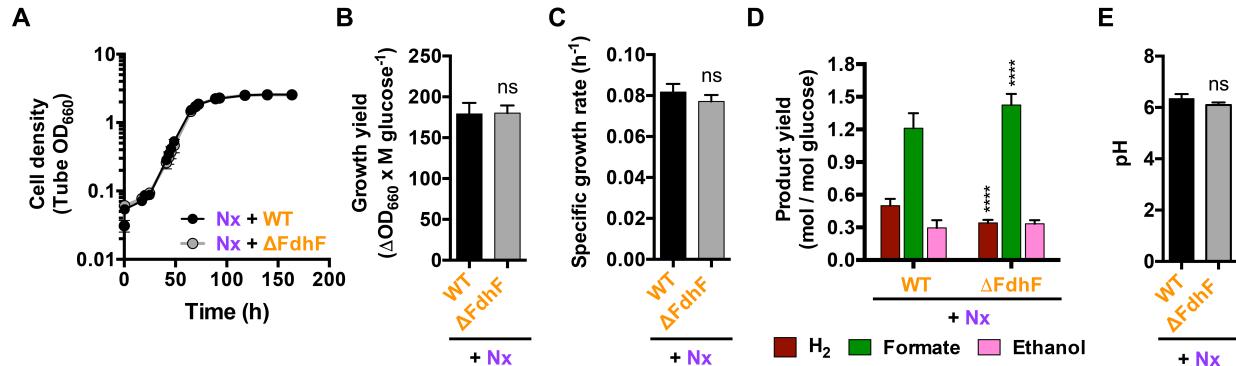
358


359

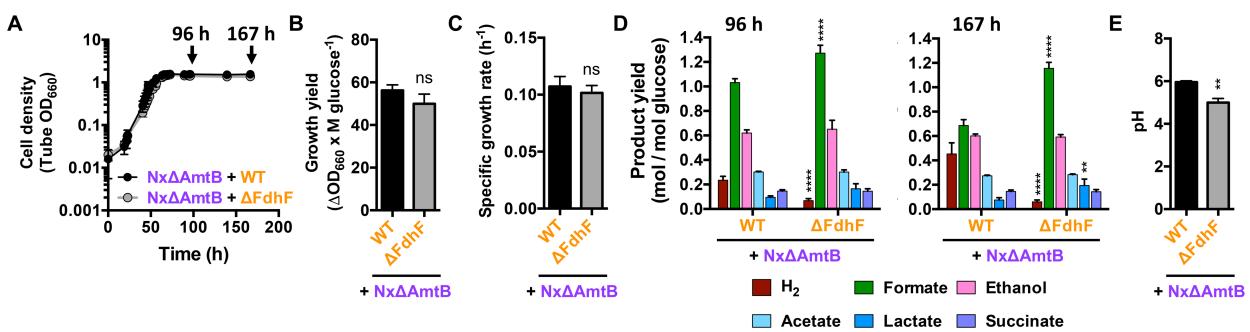
360


361

362


363 **Figures**

364
365 **Fig. 1. A mutualistic H_2 -producing coculture between WT *E. coli* (*Ec*) and *R. palustris* (*Rp*)**
366 *Nx*. *E. coli* ferments glucose into organic acids that serve as an essential carbon source for *R.*
367 *palustris*. Ethanol and formate accumulate, but WT *E. coli* can convert formate into H_2 and CO_2
368 using FHL. *R. palustris* *Nx* converts N_2 gas into NH_4^+ via nitrogenase and excretes some NH_4^+
369 that serves as an essential nitrogen source for *E. coli*. *R. palustris* produces H_2 as a byproduct of
370 the nitrogenase reaction.
371



372
373 **Fig. 2. Growth and metabolic trends of WT *E. coli* and ΔFdhF mutant monocultures.**
374 Growth curves (n=3) (A), growth yields (n=6) (B), and growth rates (n=3) (C) of WT and ΔFdhF
375 *E. coli* strains. (D) Fermentation product yields(n=6). Asterisks indicate a statistical difference
376 from corresponding WT value with $P<0.05$ (*), $P<0.001$ (**), $P<0.0001$ (***), determined by
377 two-way ANOVA with Sidak posttest. EV, empty vector (pCA24N); comp, complementation
378 vector (pCA24N_fdhF). (E) Final pH (n=3). (A-E) Error bars, SD. (B, C, E) Statistical
379 differences from WT trends were determined using an unpaired, two-tailed t test; ns, non-
380 significant.
381

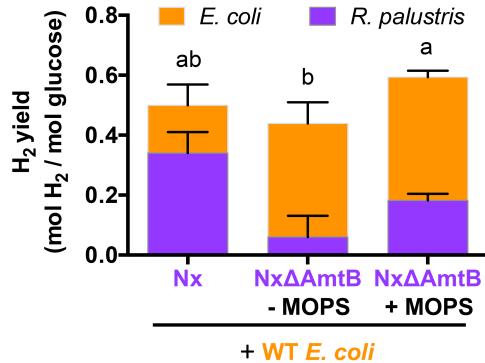

383
384
385
386
387
388
389
390
391

Fig. 3. Growth and metabolic trends of cocultures pairing *R. palustris* Nx with either WT *E. coli* or the $\Delta FdhF$ mutant. Coculture growth curves (A), growth yields (B), growth rates (C), product yields (D), and final pH (E) ($n=3$). (D) Acetate, lactate, and succinate were not detected, as these organic acids are consumed by *R. palustris* Nx (LaSarre *et al.*, 2017). ****, statistical difference from corresponding Nx+WT value ($P<0.0001$), determined by two-way ANOVA with Sidak posttest. (A-E) Error bars, SD. (B, C, E) Statistical differences were determined using an unpaired, two-tailed t test; ns, non-significant.

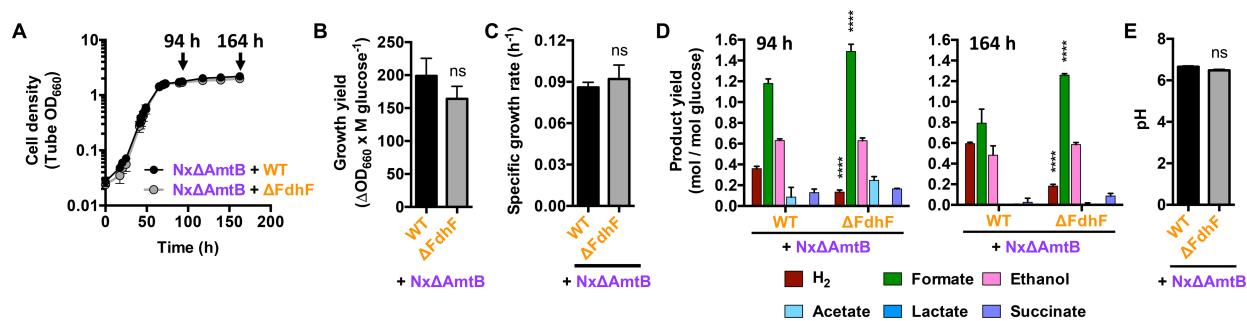

392
393
394
395
396
397
398
399

Fig. 4. Growth and metabolic trends of cocultures pairing *R. palustris* NxΔAmtB with either WT *E. coli* or the $\Delta FdhF$ mutant. Coculture growth curves (A), growth yields (B), growth rates (C), product yields (D), and final pH (E) ($n=3$). (D) Asterisks indicate a statistical difference from the corresponding NxΔAmtB+WT value, with $P<0.0001$ (****) or $P<0.01$ (**), determined by two-way ANOVA with Sidak posttest. (A-E) Error bars, SD. (B, C, E) Statistical differences were determined using an unpaired, two-tailed t test; ns, non-significant; $P<0.01$ (**).

400
401
402
403
404
405
406
407
408
409

Fig. 5. Species-level comparison of H₂ yields in coculture. Yields were determined at the final time points shown in Figures 3, 4, and 6. The contribution of each species is estimated from the difference between cocultures with WT *E. coli*, which produces H₂, and those with *E. coli* ΔFdhF, which does not produce H₂. Different letters indicate a statistical difference between total H₂ yields (P<0.05), determined using one-way ANOVA with Tukey's multiple comparisons posttest.

410
411
412
413
414
415
416
417
418

Fig. 6. Growth and metabolic trends of cocultures pairing *R. palustris* NxΔAmtB with either WT *E. coli* or the ΔFdhF mutant in medium supplemented with 100 mM MOPS, pH 7. Coculture growth curves (A), growth yields (B), growth rates (C), product yields (D), and final pH (E) (n=3). (D) Asterisks indicate a statistical difference from the corresponding NxΔAmtB+WT value, with P<0.0001 (****), determined by two-way ANOVA with Sidak posttest. (A-E) Error bars, SD. (B, C, E) Statistical differences were determined using an unpaired, two-tailed t test; ns, non-significant.