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ABSTRACT 14 

Identifying the traits that foster group survival in contrasting environments is important for 15 

understanding local adaptation in social systems.  Here we evaluate the relationship between the 16 

aggressiveness of social spider colonies and their persistence along an elevation gradient using 17 

the Amazonian spider, Anelosimus eximius. We found that colonies of A. eximius exhibit 18 

repeatable differences in their collective aggressiveness, and that colony aggressiveness is linked 19 

with persistence in a site-specific manner.  Less aggressive colonies are better able to persist at 20 

high-elevation sites, which lack colony-sustaining large-bodied prey, whereas colony aggression 21 

was not related to chance of persistence at low-elevation sites. This suggests resistance to 22 

resource limitation through docility promotes colony survival at high elevations. These data 23 

reveal that the collective phenotypes that relate to colony persistence vary by site, and thus, the 24 

path of social evolution in these environments is likely to be affected.  25 
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INTRODUCTION 27 

Although social evolution provides numerous benefits for group constituents (Krause & Ruxton, 28 

2002), social groups can also vary considerably in their success (ants: Gordon, 2013, social 29 

spiders: Aviles, 1986, honey bees: Watanabe, 2008). For a variety of social organisms, many or 30 

most of the social groups ever founded will swiftly end in their collective demise (Tibbetts & 31 

Reeve, 2003, Hahn & Tschinkel, 1997, Aviles & Tufino, 1998). In some taxa, even social groups 32 

in apparent good health can fall victim to colony extinction events (Pruitt, 2012). Thus, any 33 

feature that enables groups to persist in their environment is likely to foster their success. Social 34 

organisms provide an interesting case study for evolutionary ecologists, because trait differences 35 

occur at both the individual level and between groups, in terms of their collective traits (Jandt et 36 

al., 2014, Bengston & Jandt, 2014, Wray & Seeley, 2011). Like individual traits, a growing body 37 

of evidence conveys that group traits are often associated with group success (Shaffer et al., 38 

2016, Gordon, 2013, Wray et al., 2011), and that these links can vary between environments 39 

(Pruitt & Goodnight, 2014, Pruitt et al., 2018). Site-specific selection may therefore contribute to 40 

biodiversity by promoting intraspecific variation and local adaptation in group-level traits. 41 

 Social spiders are a useful model with which to explore the evolutionary ecology of 42 

group extinction events and collective behavior in general. This is because social spider groups 43 

emerge and disappear with high frequencies (reviewed in Aviles & Guevara, 2017). This, and 44 

because groups are inbred and composed of highly related individuals (Riechert & Roeloffs, 45 

1993, Aviles, 1993, Henschel et al., 1995), means that group success is a major determinant of 46 

individuals’ inclusive fitness. Here we explore the degree to which group behavior is linked with 47 

group persistence using a highly social spider, the Amazonian spider Anelosimus eximius 48 

(Araneae, Theridiidae). This species occurs across a range of habitat types from Panama to 49 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/610436doi: bioRxiv preprint 

https://doi.org/10.1101/610436
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lichtenstein et al. 4 

 

Argentina at varying elevations. We use this variation in elevation to examine whether the 50 

relationship between group behavior and persistence varies along an elevation gradient. In 51 

particular, we hypothesise that collective aggressiveness should be favored at sites with low prey 52 

availability (Pruitt et al., 2018). For A. eximius, high-elevation sites are reasoned to be resource-53 

limited because they harbor smaller average prey sizes (Yip et al., 2008, Powers & Aviles, 2007, 54 

Guevara & Aviles, 2007, Guevara & Aviles, 2015). By contrast, we predict that less aggressive 55 

colonies will be favored in high-resource and enemy-rich environments, like lowland rainforests 56 

(Purcell & Aviles, 2008). Thus, we predict that selection on collective aggressiveness will mimic 57 

the usual patterns observed in solitary spiders and other taxa, where low resources favor 58 

heightened aggression and responsiveness towards prey (Riechert, 1993, Magurran & Seghers, 59 

1991, Dunbrack et al., 1996). If this is so, then it would hint that theory developed for behavioral 60 

evolution in solitary organisms can be redeployed to correctly predict patterns of selection 61 

occurring at the level of collective traits. 62 

 63 

MATERIALS AND METHODS 64 

 65 

Focal species and sites: 66 

We measured collective foraging aggressiveness in colonies of A. eximius across the Ecuadorian 67 

Amazon in Oct.-Nov. 2017. A. eximius colonies build basket-shaped nests with large capture 68 

webs where they hunt collectively. We observed colonies at three sites on the e45 near 69 

Archidona (n=14; S 0˚ 46.214, W 77˚ 46.604), the e20 towards Coca (n=10; S 0˚ 43.421, W 77˚ 70 

39.993), and near the Iyarina lodge (n=9; S 1˚ 4.027, W 77˚ 37.228). We further sampled two 71 

sites: roadsides, forest interiors, and waterways in the Yasuní National Park (n=16; S 0˚ 40.862, 72 
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W 76˚ 23.152) and waterways near the Cuyabeno Wildlife Reserve (n=21; S 0˚ 1.921, W 76˚ 73 

12.851). 74 

 75 

Collective aggressiveness: 76 

We measured colonies’ aggressiveness by placing dummy prey (1cm sections of dead leaf) 4cm 77 

from the rim of the nest basket, and vibrating it with a handheld vibratory device until spiders 78 

emerged and seized the dummy prey (Pruitt et al., 2017), between 1000-1600 hours. We 79 

recorded the latency of the first spider to contact the dummy. We subtracted the attack latency 80 

from 600 to obtain an aggression index where higher scores correspond to higher aggressiveness. 81 

We repeated these tests every day for four days on a subset of colonies at Archidona (n=11), 82 

Iyarina (n=4), and Yasuní (n=10), to assess the repeatability of colony aggressiveness. For the 83 

remaining colonies, aggressiveness was only measured once due to logistical constraints. 84 

Latency to attack prey is a common measure of foraging aggressiveness in solitary and social 85 

spiders (Riechert & Hedrick, 1993, Pruitt et al., 2013, Kralj-Fiser & Schneider, 2012, Kralj-Fiser 86 

et al., 2012), and it tightly linked with prey capture success and foraging performance in several 87 

species of group-living spiders (Kamath et al., 2018, Pinter-Wollman et al., 2017, Pruitt & 88 

Riechert, 2011). 89 

 90 

Habitat measurements and persistence: 91 

Immediately following aggressiveness assays, we also recorded habitat characteristics and 92 

marked colonies with aluminium tree tags. First, we recorded colony elevation and GPS 93 

coordinates (Garmin eTrex 30x). Then, the canopy cover over each colony was estimated with 94 

using the iPhone application Canopyapp (Davis et al., 2018). We assessed carnivorous ant 95 
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presence by measuring latency of ant recruitment to 35g of tuna within 2m of the web (Hoffman 96 

& Avilés, 2017), placed on the forest floor beneath the colony. A subset of colonies was run 97 

through two such ant-baiting tests, and microhabitat differences in ant recruit speed were found 98 

to be consistent through time even within a specific site (r = 0.86, 95% CI: 0.57-0.96, p < 0.0001, 99 

n = 21). Faster ant recruitment times were taken as evidence that the microhabitat immediately 100 

around the focal colony had a greater risk of attack by predatory ants.  101 

We estimated the volume of web baskets by measuring the size of the smallest possible 102 

orthotope that contained the basket, by first approximating the shape of each web (e.g., square 103 

base, circle base) and then taking the necessary measurements to compute the web volume. Web 104 

volume increases approximately linearly with group size in A. eximius (Yip et al., 2008, Powers 105 

& Aviles, 2007). To determine colony survival, we returned in Oct. 2018, eleven months later, 106 

and recorded whether the colony contained any remaining living individuals. This time interval 107 

corresponds to ~2 generations of A. eximius (Vollrath, 1982).  All aluminum tags were then 108 

removed. 109 

 110 

Statistical methods: 111 

We could not satisfactorily fit a generalised linear model simultaneously evaluating the influence 112 

of elevation, aggression and colony size on persistence. Moreover, neither colony aggression nor 113 

elevation could satisfactorily be transformed towards normality. Finally, aggressiveness was not 114 

repeatable within sites, r = 0 (95% CI: 0.0 - 0.157, p = 0.500), indicating that colonies’ behavior 115 

within each site are relatively independent. Therefore, we compared the elevation, 116 

aggressiveness, and web size of colonies that either persisted or not using Mann-Whitney U-117 

tests. We assessed the correlation between elevation and aggressiveness, and aggressiveness and 118 
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colony size using Spearman rank correlations. We took the log of basket volume as our index of 119 

colony size.  120 

To determine whether the relationship between colony persistence and aggression 121 

depended on the elevation of the colony, we split the data into “high” elevations (above 740m, 122 

25 colonies) and “low” elevations (below 450m, 43 colonies). This split demarcates a natural 123 

break in our sampling distribution. We then compared the aggressiveness of colonies that 124 

persisted or not in each dataset separately using Mann Whitney-U tests. To determine how 125 

canopy cover and the presence of predator ants varied with elevation, we performed Spearman 126 

rank correlations between elevation and each of canopy cover and the latency for ants to arrive at 127 

the tuna bait. There were 71 focal colonies in total. However, three colonies did not have 128 

elevations recorded. Four colonies had no web size measurements, owing to their residing in 129 

relatively inaccessible microhabitats (e.g., suspended over cliffs). Otherwise, sample sizes for 130 

each group in each comparison are given below. The repeatability of colonies’ aggressiveness 131 

was assessed by fitting linear a mixed model with “aggressiveness” as the response variable, 132 

“colony ID”, “site”, and “trial iteration”, using the rptR package (Stoffel et al., 2017). This 133 

allows us to estimate the intra-class correlation coefficient of colony ID, while accounting for 134 

variance explained by site and trial iteration. We estimated 95% confidence intervals on 135 

repeatability estimates by running the linear mixed model though 1000 bootstrap iterations. As 136 

mentioned above, we aimed to measure 25 colonies across three sites four times each, although 137 

three colonies only received three measurements, giving 97 measurements across 25 colonies in 138 

total to assess repeatability. 139 

 140 

RESULTS 141 
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 142 

The influence of aggression on persistence depended on altitude. At high elevations, persisting 143 

colonies were less aggressive (mean = 505, n = 19) compared to colonies that vanished (mean = 144 

592, n = 6; Fig. 1; Wilcox test, W = 2, p < 0.001). At low elevations, colonies that persisted were 145 

more aggressive (mean = 582, n = 27) than colonies that vanished (mean = 562, n= 16) but this 146 

difference was not significant (W = 272, p = 0.165). Although we could not satisfactorily fit a 147 

glmm to our data, the results of a glmm analysis qualitatively matched the results presented here 148 

(model predicting colony survival [aggression x elevation]: Est = -13.9 ± 6.30, z = -2.21, p = 149 

0.027).  150 

Elevation did not influence colony persistence. The mean elevation of colonies that 151 

persisted and vanished was 584m and 479m respectively (Fig. S1; n = 46 & 22 respectively, 152 

Wilcox test W = 570, p =0.404). Colony web size did not predict persistence; colonies that 153 

persisted were no larger than those than did not. Medians (means are highly biased by a few 154 

large value) of volume were 143,918 cm3 for colonies that persisted and 90,450cm3 for colonies 155 

that vanished, but the median logged values are 11.87 and 11.41 respectively (Fig. S1; n = 46 & 156 

21 respectively, Wilcox test, W = 554, p = 0.344).  157 

Colonies’ aggressiveness was not related to their web size (Fig. S2; n = 67, Spearman 158 

rank correlation, S = 47550, p = 0.691, rho = 0.051), but colonies were more aggressive at lower 159 

elevations (Fig. S2; n = 68, Spearman rank correlation, S = 65398, p = 0.041, rho = -0.248). 160 

Colony aggression was repeatable, r = 0.26 (95% CI: 0.012 - 0.474, p = 0.003). 161 

Higher elevations were associated with reduced canopy cover (Spearman rank 162 

correlation, S = 66623, p = 0.006, rho = -0.329) and the slower recruitment of ants (Spearman 163 

rank correlation, S = 21568, p = 0.050, rho = 0.263). 164 
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 165 

DISCUSSION 166 

 167 

Understanding the forces that enable some groups to persist and proliferate when others crash or 168 

disband is helpful for predicting how social evolution proceeds in contrasting environments. For 169 

many social animals, this can be thought of as a kind of group-level viability selection.  Colonies 170 

of the Amazonian social spider A. eximius exhibit clinal variation in selection on aggressiveness. 171 

At odds with our a priori predictions, less aggressive colonies outperform their aggressive rivals 172 

at resource-poor high elevations. The opposite trend emerges at low elevations, although it was 173 

not statistically significant. Given this pattern of selection, one might predict that high elevation 174 

A. eximius should be less aggressive overall, either because of local adaptation or via on-going 175 

viability selection against aggressive colonies. Consistent with this prediction, we observed that 176 

colonies of A. eximius at higher elevation do indeed exhibit lower aggressiveness than their low-177 

elevation counterparts. In aggregate, this conveys that site-specific selection on colony 178 

aggressiveness could play a role in generating geographic variation in colony behavior, akin to 179 

patterns observed in solitary species (Drummond & Burghardt, 1983, Magurran & Seghers, 180 

1991, Riechert, 1993, Walsh et al., 2016).  181 

 The mechanisms underlying the success of non-aggressive colonies at high elevation 182 

remain elusive. We predicted that low-resource conditions would favor colonies with swifter 183 

foraging responses because, in trap-building predators, foraging is a time-sensitive opportunity. 184 

Thus, colonies at high elevations should maximize on the limited foraging opportunities that are 185 

available to them (Powers & Aviles, 2007, Guevara & Aviles, 2007). This is often the case for 186 

individual-level aggressiveness (Riechert, 1993, Magurran & Seghers, 1991, Dunbrack et al., 187 
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1996). However, it is perhaps equally plausible that low-resource conditions could favor reduced 188 

aggressiveness. If more aggressive colonies engage in more infighting, exhibit higher metabolic 189 

rates, or are otherwise more susceptible to starvation, then selection may favor less aggressive 190 

colonies under low resource conditions because it enables them to persist through times of 191 

resource scarcity. This mode of competition is often referred to as Tilman’s R* Rule (Tilman, 192 

1982). Consistent with this hypothesis, there is evidence that both aggressive social Anelosimus 193 

(Lichtenstein & Pruitt, 2015) and Stegodyphus (Lichtenstein et al., 2017) are more susceptible to 194 

starvation, and that non-aggressive Stegodyphus colonies can outperform their rivals when 195 

resources fall below a critical level (Pruitt et al., in press). Alternatively, smaller average prey 196 

sizes at high elevation sites might merely not require the same levels of aggressiveness to subdue 197 

than the larger prey of low elevation sites. More detailed work within sites is needed to tease 198 

apart the mechanisms responsible for this among-site result.  199 

 We found that ants recruited more quickly to tuna baits at lower elevations. This suggests 200 

that the threat of predation from ants, or perhaps the degree of indirect resource competition from 201 

ants, will be higher at lower elevations. Either of these could select for higher aggressiveness (or, 202 

at least, against docility) in social spiders, which are more frequently attacked by ants a low-203 

elevation sites (Purcell & Aviles, 2008, Hoffman & Avilés, 2017), and this may help to explain 204 

the patterns of selection that we observed. We also observed reduced canopy cover at higher 205 

elevations. While this seems unlikely to directly influence spider colony survival, it may 206 

influence the availability of prey (i.e. decreased cover may decrease the number of flying 207 

invertebrates) or increase web damage costs, and thus, have consequences for the benefits of 208 

colony aggression. 209 
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 At odds with previous work, group size was not a significant predictor of colony 210 

persistence in our field data on A. eximius. The formation of larger coalitions is frequently 211 

associated with reduced group failure rate in social arthropods, and this fact is thought to 212 

underlie the formation of social life history trajectories like foundress coalitions in wasps and 213 

ants (Fewell & Page, 1999, Seppa et al., 2002, Tibbetts & Reeve, 2003, Miller et al., 2018). 214 

Group size dependent survival has also been documented in a number of social (Bilde et al., 215 

2007, Aviles & Tufino, 1998) and transitionally social species of spiders (Lichtenstein et al., 216 

2018). We reason that this discrepancy between findings is because colonies of the smallest size 217 

classes (one to a few dozen spiders) are largely missing from our data set, and the persistence 218 

benefits of increasing group size are most pronounced at the smallest colony sizes (Lichtenstein 219 

et al., 2018, Aviles & Tufino, 1998).   220 

 In summary we detected a site-specific relationship between colony aggressiveness and 221 

persistence in a social spider. Furthermore, we found a cline in aggression with elevation that 222 

suggests that the selective benefits to reduced aggression at higher elevations are strong enough 223 

to promote appropriate fit between colony traits and the habitats in which they reside. 224 

 225 
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Figures & Supplementary Figures: 375 

 376 

Figure 1. The aggressiveness of colonies that either survived or died, at low (< 450m) or high 377 

(>740m) elevation sites. Aggression was 600 minus the latency to attack (maximum 600 378 

seconds) hence is unitless. 379 

 380 
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 381 

Figure S1. The difference in elevation (metres, a.) and colony size (the log the basket volume, 382 

b.) of colonies that either survived or perished. Neither elevation nor colony size differed 383 

between colonies that survived or perished.  384 
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 385 

 386 

Figure S2. The relationship between colony aggression and colony size (log of basket volume, 387 

a.), and elevation (metres, b.). Aggression was not related to colony size, while it is weakly 388 

negatively correlated with elevation. 389 
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