

1 **A Deep Learning Approach for Rapid Mutational Screening in Melanoma**

2
3 Randie H. Kim^{1,2†}, Sofia Nomikou^{3†}, Zarmeena Dawood², George Jour^{1,2,4}, Douglas
4 Donnelly², Una Moran², Jeffrey S. Weber^{2,5}, Narges Razavian^{6,7}, Matija Snuderl⁴,
5 Richard Shapiro^{2,8}, Russell S. Berman^{2,8}, Nicolas Coudray^{3,9}, Iman Osman^{1,2,5*},
6 Aristotelis Tsirigos^{2,3,4*}

7
8 ¹The Ronald O. Perleman Department of Dermatology

9 ²Interdisciplinary Melanoma Cooperative Group

10 ³Applied Bioinformatics Laboratories

11 ⁴Department of Pathology

12 ⁵Department of Medicine

13 ⁶Department of Radiology

14 ⁷Department of Population Health

15 ⁸Department of Surgery

16 ⁹Skirball Institute Department of Cell Biology

17 New York University School of Medicine, New York, New York.

18 †These authors contributed equally to this work.

19
20 *Corresponding Authors:

21 Aristotelis Tsirigos, PhD

22 Associate Professor of Pathology

23 Director, Applied Bioinformatics Laboratories

24 New York University School of Medicine

25 227 East 30th Street

26 New York, New York

27 Phone: 646-501-2693

28 Email: Aristotelis.Tsirigos@nyulangone.org

29
30 Iman Osman, MD

31 NYU School of Medicine

32 522 First Avenue

33 Phone: 212-263-9075; Fax: 212-263-9090

34 Email: Iman.Osman@nyulangone.org

35

36 **Abstract**

37 DNA-based molecular assays for determining mutational status in melanomas are time-
38 consuming and costly. As an alternative, we applied a deep convolutional neural network
39 (CNN) to histopathology images of tumors from 257 melanoma patients and developed a
40 fully automated model that first selects for tumor-rich areas (Area under the curve
41 AUC=0.98), and second, predicts for the presence of mutated *BRAF* or *NRAS*. Network
42 performance was enhanced on *BRAF*-mutated melanomas ≤ 1.0 mm (AUC=0.83) and on
43 non-ulcerated *NRAS*-mutated melanomas (AUC=0.92). Applying our models to
44 histological images of primary melanomas from The Cancer Genome Atlas database also
45 demonstrated improved performances on thinner *BRAF*-mutated melanomas and non-
46 ulcerated *NRAS*-mutated melanomas. We propose that deep learning-based analysis of
47 histological images has the potential to become integrated into clinical decision making
48 for the rapid detection of mutations of interest in melanoma.

49

50 **Introduction**

51 Mutations in the *BRAF* oncogene are found in 50-60% of all melanomas¹, while *NRAS*
52 mutations comprise an additional 15-20%. With the development of targeted therapies²,
53 ³, determining the mutational status of *BRAF* and *NRAS* has become an integral
54 component for the management of Stage III/IV melanomas. DNA molecular assays such
55 as Sanger sequencing, pyrosequencing, and next generation sequencing (NGS) are the
56 current gold standard to determine mutational status⁴. However, these methods are costly
57 and time-consuming. Immunohistochemistry, real-time polymerase chain reaction (PCR),
58 and automated platforms^{5, 6, 7} are rapid and less expensive alternatives, but are limited to
59 screening for specific mutations, such as *BRAF*-V600E/K or *NRAS*-Q61R/L, and may
60 potentially fail to identify rare mutational variants in patients that might have otherwise
61 benefited from adjuvant targeted therapy.

62 Deep Convolutional Neural Network (CNN) methods to predict mutational status have
63 been demonstrated in other solid tumors. CNNs utilize multiple layers of convolution
64 operations, pooling layers, and fully connected layers to perform classification of images
65 to classes of interest through identification of various image features often not directly
66 detectable by the human eye. Deep CNNs, which utilize non-linear learning algorithms,
67 have been successful in manipulating and processing large data sets, particularly for
68 image analysis⁸. Using images from The Cancer Genome Atlas (TCGA), a collaborative
69 cancer genomics database⁹, our group has previously developed a machine learning
70 algorithm that can predict for 6 different genes, including *EGFR* and *STK11*, in lung
71 carcinoma¹⁰. In breast cancer, deep learning applied to tumor microarray images has
72 been shown to predict for *ER* status with an 84% accuracy¹¹.

74

75 In this study, we adapt our previous deep learning algorithm to a different dataset
76 comprised of histopathology images of primary melanomas resected from patients
77 prospectively enrolled in a single-institution IRB-approved clinicopathological and
78 biorepository in order to develop a model from tissue specimens that are more
79 representative of what might be seen in routine clinical practice. While molecular testing
80 is typically performed on the most recent metastatic sample, testing on the primary tumor
81 can be performed if metastatic tissue is unavailable or carries a low tumor burden^{12, 13}.
82 We present our deep learning models for the screening of *BRAF* and *NRAS* mutations in
83 primary melanomas, with the purpose of exploring its potential clinical utility.

84

85 **Results**

86 *Patient characteristics*

87 324 primary melanomas from 266 unique patients were included in this study and divided
88 into training (n=182), validation (n=43), and independent (n=41) cohorts, without overlap
89 between the patient subsets. Within each cohort, *BRAF*-mutant, *NRAS*-mutant, and
90 *WT/WT* melanomas were represented (**Table 1**). The average ages of patients with
91 *BRAF*-mutant melanoma were 59.4, 53.9, and 59-years old in training, validation, and
92 independent cohorts, respectively. For patients with *NRAS*-mutant melanoma, the
93 average ages were 61.2, 70.9, and 59.9-years old; and for *WT/WT* patients, the average
94 ages were 65.1, 68.5, and 65.1-years old.

95

96

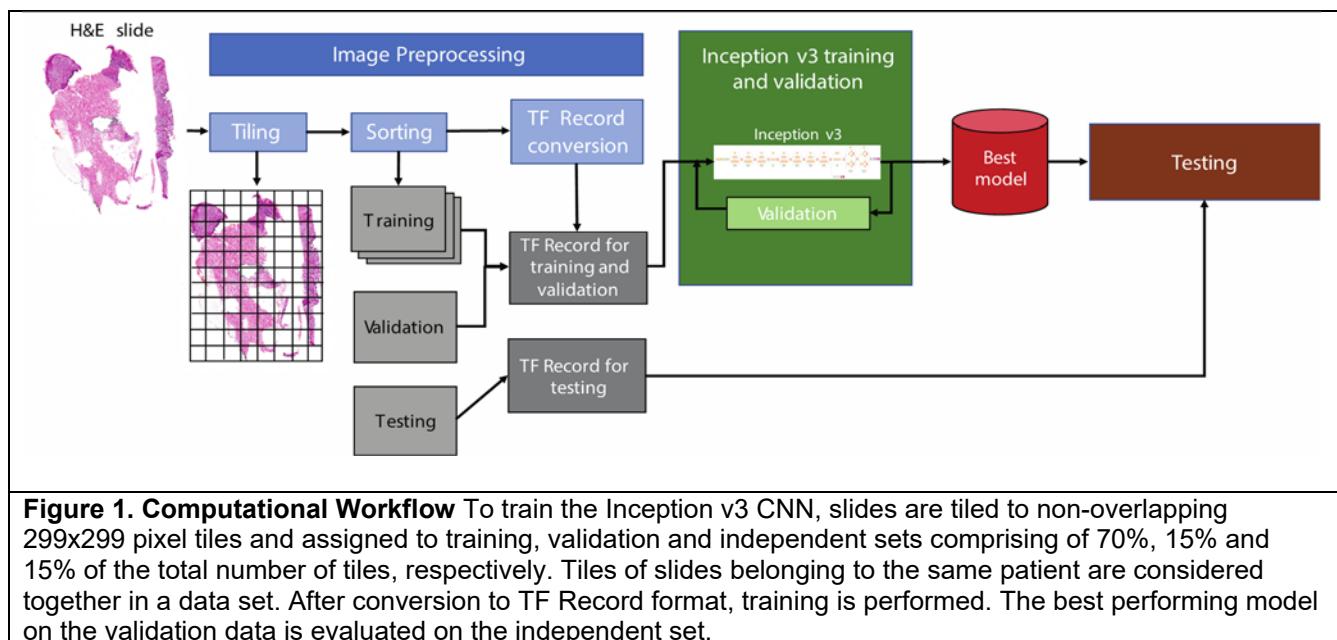
97 *Dataset characteristics*

98 365 formalin-fixed paraffin embedded (FFPE) hematoxylin and eosin (H&E)-stained
99 slides from 324 primary melanomas were digitized and reviewed for quality control. After
100 excluding images that were blurry, faded, or contained no tumor, 293 images from 257
101 melanomas were available for analysis. 103 *BRAF*-mutant, 94 *NRAS*-mutant, and 96
102 *WT/WT* melanomas images were included in the study. V600E comprised 70% of the
103 *BRAF* mutations. *NRAS* Q61R/Q61K comprised 80% of the *NRAS* mutations.

104

105 *Computational workflow for whole-slide histopathology image analysis*

106 Our computational workflow with the CNN Inception v3 is shown in **Fig. 1.** and is common
107 across all our classifiers (see Methods). The aim of our analytical approach was to: (1) to
108 predict the presence of *BRAF* and *NRAS* mutations using manually annotated slides; and
109 (2) to automate the annotation process by the CNN.



110

111

112 *Predicting BRAF and NRAS mutation on manually annotated whole-slide images*

113 Because of tissue heterogeneity in skin specimens, tumor-rich areas were initially

114 manually annotated as regions of interest (ROI). Normal skin and associated

115 appendages, connective and subcutaneous tissue, necrosis, hemorrhage, and

116 aggregates of dense inflammation were excluded from training. The network was trained

117 on tiled images of manually annotated ROI, with 70% of images used for training, 15%

118 used for validation, and 15% used for independent testing (**Supplemental Table 1**).

119 Model performance achieved a per slide Area Under the Curve (AUC)=0.75 [95% CI:

120 0.60,0.90] for predicting *BRAF^{Mut}* (**Supplemental Figure 1**) and AUC=0.77 [95% CI:

121 0.58,0.96] for predicting *NRAS^{Mut}* (**Supplemental Figure 2**).

122

123 We next sought to elucidate some of the parameters that could influence network

124 performance. To evaluate the role of tumor thickness, tumors from the independent cohort

125 were sorted by Breslow depth. Model performance for predicting mutated *BRAF* improved

126 for slides with a tumor thickness ≤ 1.0 mm, with an AUC=0.83 [95% CI: 0.45,1.0] (**Fig. 2A, left**). Conversely, there were reductions in the AUC to 0.74 [95% CI: 0.58,0.89] for tumors

127 >1.0 -5.0 mm, and to 0.75 [95% CI: 0.60,0.90] for very thick tumors >5.0 -10mm. One

129 potential explanation for this difference is that *BRAF*-mutated melanomas are associated

130 with a distinctive epidermal component, such as increased pagetoid scatter and

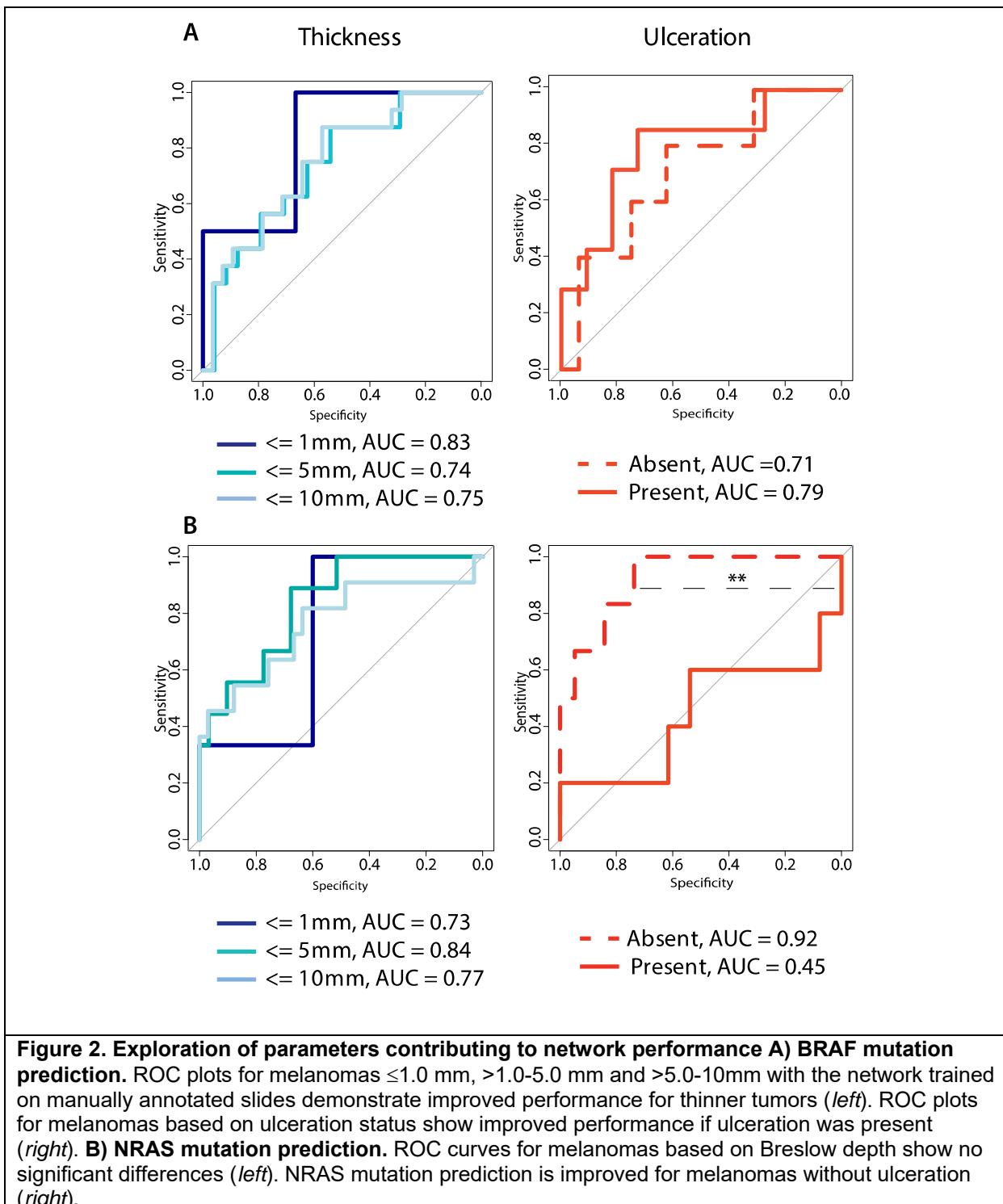
131 intraepidermal nesting of melanocytes¹⁴. These histologic features may carry more weight

132 in thinner tumors compared to deeper and more invasive melanomas. *NRAS* mutation

133 prediction was not consistently dependent on tumor thickness (**Fig 2B, left**;

134 **Supplemental Table 2**).

135



136

137 We also examined whether ulceration status, as indicated by the original pathology report,
138 can affect network performance. For the BRAF prediction model, an AUC=0.79 [95% CI:

139 0.56, 1.00] was achieved for melanomas with ulceration and an AUC= 0.71 [95% CI: 0.50,
140 0.92] for melanomas without ulceration (**Fig 2A, right**). The opposite trend was observed
141 with the NRAS model, where ulcerated melanomas led to a decreased AUC to 0.45 [95%
142 CI 0.07-0.83] and non-ulcerated melanomas had an increased AUC to 0.92 [95% CI:
143 0.81,1.00] (**Fig 2B, right**). Notably, these results were achieved on manually annotated
144 ROIs that excluded areas of ulceration, indicating that the network is not learning from
145 the presence of an ulceration on the slide itself. Rather, elements in the tumor
146 microenvironment that influence the ulceration status are potentially playing an important
147 role in determining *NRAS* mutation status.

148

149 In order to confirm that tumor thickness and ulceration alone are not predictors of
150 mutational status, we built a multivariate logistic regression model where Breslow depth
151 and ulceration status are the predictive variables for the presence of mutated *BRAF* or
152 *NRAS*. The model was trained on the same training dataset used for our deep CNN. This
153 model performed at random for predicting either mutated *BRAF* and *NRAS*, with
154 AUC=0.53 [95% CI: 0.34,0.72] and AUC=0.52 [95% CI: 0.30,0.75], respectively
155 (**Supplemental Figure 3**). This demonstrates that the necessary features for predicting
156 mutation status are provided by the histopathological slide.

157

158 Performance for the mutation network can be visualized with a probability heat map,
159 where the presence of the mutation of interest is shown in red and intensity of color
160 corresponding to the probability of mutation. **Fig. 3A** demonstrates representative H&E
161 sections of melanomas with their corresponding probability heat maps for *BRAF*-mutant

162 (*left*), and 2 correctly identified non-BRAF-mutant tumors: e.g. *NRAS*-mutant (*center*) and
163 *WT/WT* melanoma (*right*), respectively. Similarly, **Fig. 3B** demonstrates probability heat
164 maps for the *NRAS* prediction network, with correctly identified *NRAS*-mutant (*left*) and
165 non-*NRAS*-mutant melanoma. Interestingly, in both *BRAF*-mutant (*center*) and *WT/WT*
166 melanomas (*right*), there are regions identified by the network to harbor mutated *NRAS*,
167 raising the possibility of intratumoral heterogeneity.

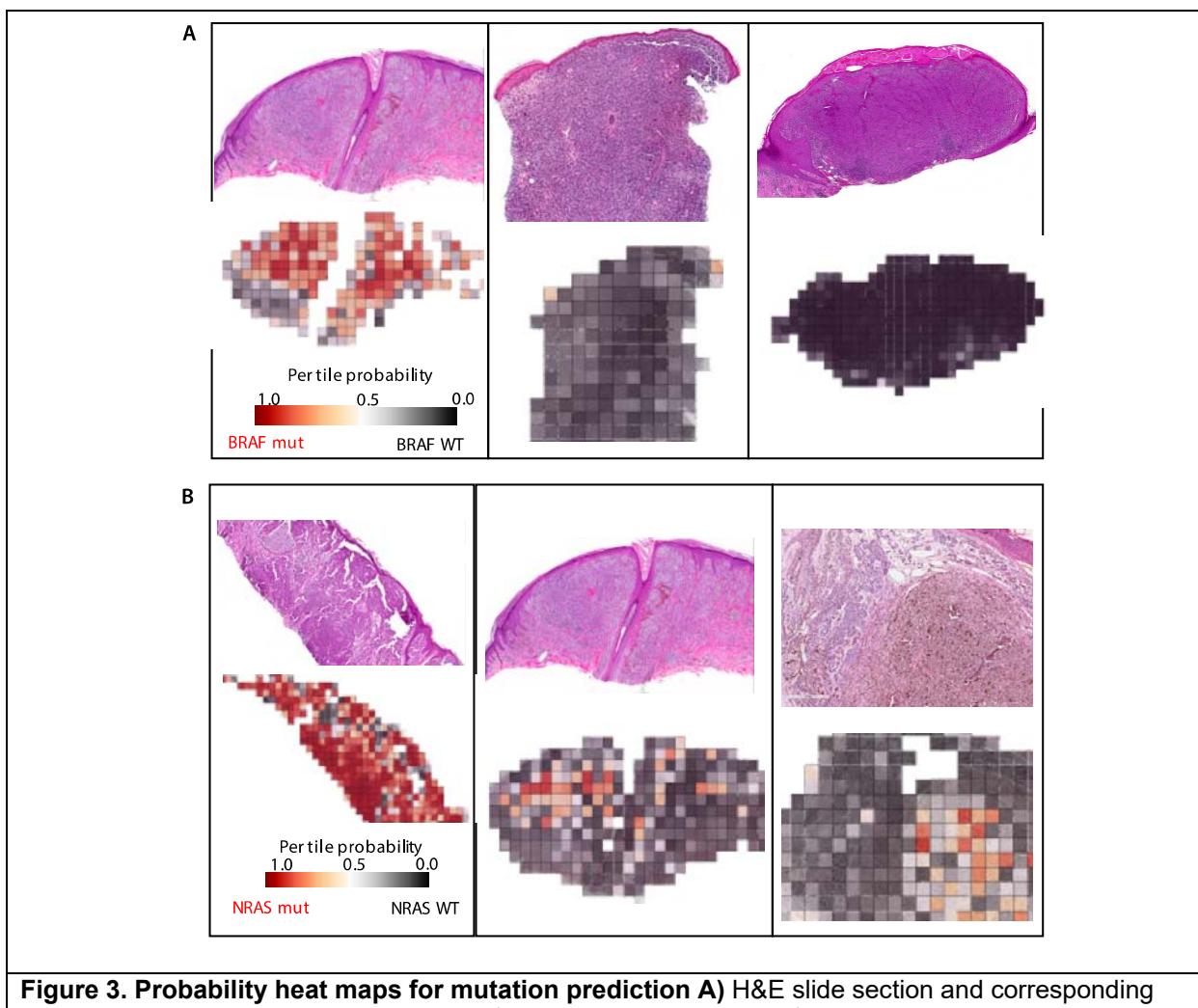


Figure 3. Probability heat maps for mutation prediction **A)** H&E slide section and corresponding heat map of a correctly classified *BRAF^{mut}* melanoma (*left*), *NRAS^{mut}* melanoma (*center*) and *WT/WT* melanoma (*right*) slides by the *BRAF* mutation prediction network. **B)** H&E slide section and corresponding heat map of a correctly classified *NRAS^{mut}* melanoma (*left*), *BRAF^{mut}* melanoma (*center*) and *WT/WT* melanoma (*right*) slides by the *NRAS* mutation prediction network.

168

169

170

171 *Predicting mutated BRAF and NRAS using images from The Cancer Genome Atlas*
172 *database*

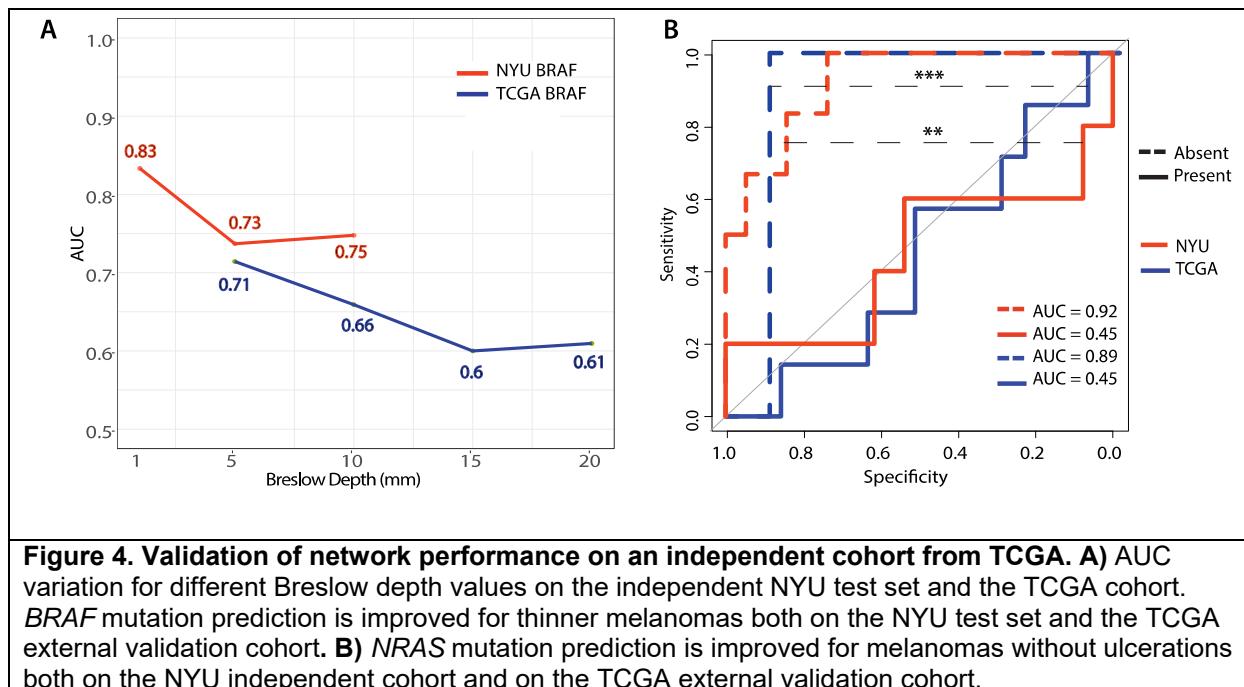
173 An image dataset of digitized FFPE H&E-stained slides of primary melanomas were
174 retrieved from TCGA, a collaborative and publicly available research database comprised
175 of tumor tissue and genomic data from multiple cancer types⁹. This dataset was used as
176 an independent cohort, which comprised of 40 *BRAF*-mutant cases, 9 *NRAS*-mutant
177 cases, and 22 *WT/WT* cases, summing up to 71 cases in total. After quality control, 68
178 images were approved for the independent validation.

179

180 Breslow depth information was available for 32 out of the 68 slides¹⁵. Melanomas from
181 the TCGA database were skewed towards very thick tumors with a median of 7.5mm.
182 There were no tumors less than 1.0mm in depth. In comparison, the median depths of
183 tumors in our training, validation and test cohorts were 2.00, 1.45, and 1.90, respectively
184 (**Supplemental Figure 4**). AUCs of mutation prediction were calculated for melanomas
185 ≤ 1.0 mm, $>1.0\text{-}5.0$ mm, $>5.0\text{-}10$ mm, $>10\text{-}15$ mm, and $>15\text{-}20$ mm for NYU and TCGA
186 cohorts (**Supplemental Table 2**). For *BRAF* mutation prediction on TCGA images, the
187 network performed better for melanomas ≤ 5 mm. AUC values decreased with thicker
188 tumors. This trend is similar to the effect tumor thickness had on our NYU test cohort (**Fig.**
189 **4A**). Tumor thickness did not affect network predictive ability for mutated *NRAS* on TCGA
190 tumors, as was previously observed in our own cohort (**Supplemental Table 2**).

191

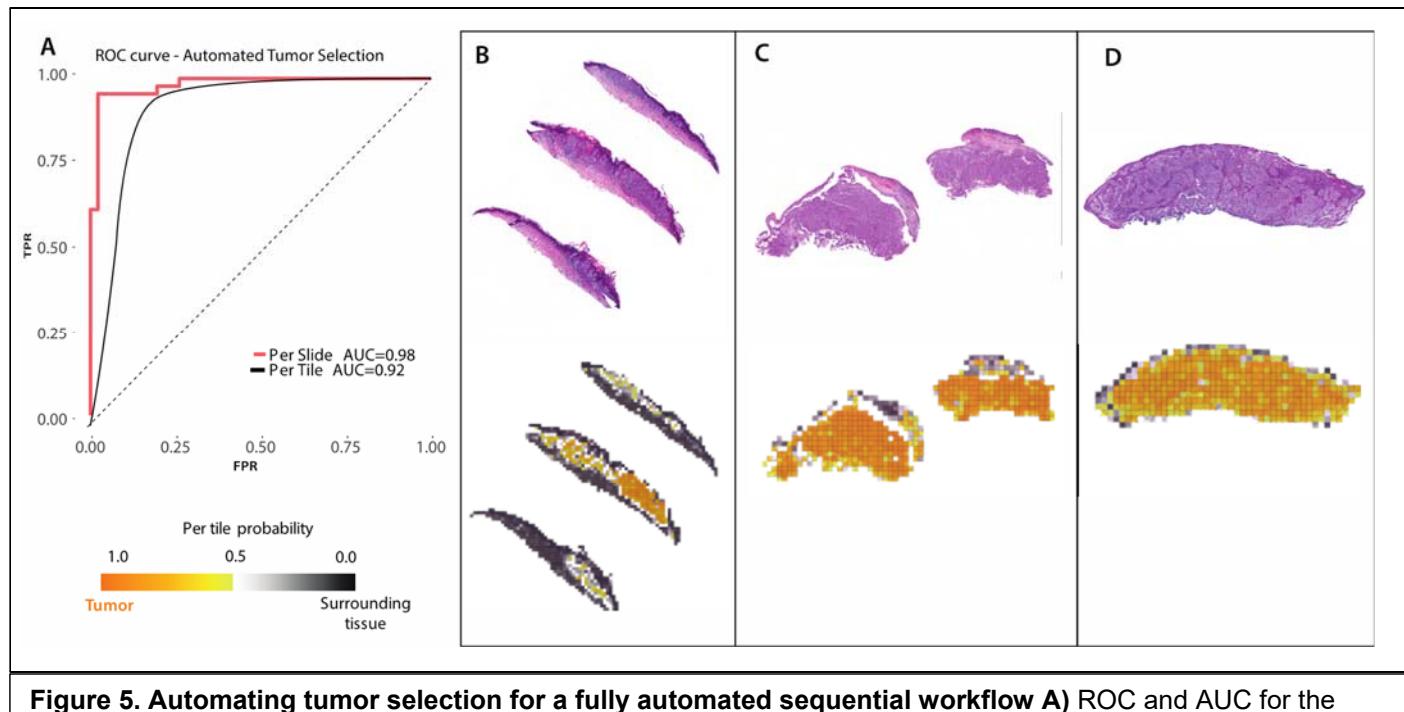
192 Regarding the effect of ulceration on network performance, TCGA melanomas without
193 ulceration (i.e., T2a, T3a and T4a, n=10) were compared to melanomas with ulceration
194 (i.e., T2b, T3b and T4b, n=56). The ulceration status of TCGA tumors did not have a
195 significant impact on BRAF mutation prediction (**Supplemental Table 3**), consistent with
196 our observations in the NYU cohort. Importantly, network performance for predicting
197 mutated *NRAS* was significantly enhanced for non-ulcerated melanomas with an
198 AUC=0.89 [95% CI: 0.67-1.0] compared to AUC=0.45 [95% CI: 0.24-0.67] for ulcerated
199 melanomas, reproducing the difference that ulceration status has on *NRAS* mutation
200 prediction in our own cohort (**Fig. 4B, Supplemental Table 3**).



201
202 *Automated selection of primary melanomas on whole slide histopathology images*
203 In order to improve the clinical application of our deep learning models, we attempted to
204 automate the identification of melanoma by processing tiled images as “in” the ROI or
205 “out” of the ROI. Model performance achieved a per slide AUC=0.98 [95% CI: 0.95,1.00]

206 and a per tile AUC=0.92 [95% CI: 0.922,0.924] (**Fig. 5A**). H&E-stained non-annotated
207 whole slides of *BRAF*-mutant, *NRAS*-mutant and *WT/WT* melanomas are shown in **Fig.**
208 **5B-D**, along with their corresponding network-generated probability heat maps, where
209 orange indicates tumor, gray indicates non-tumor, and the intensity of the color correlates
210 with the probability gradient. Notably, there is excellent concordance between the
211 pathologist and the network. Network performance was independent of melanoma
212 mutational status (**Supplemental Figure 5**).

213

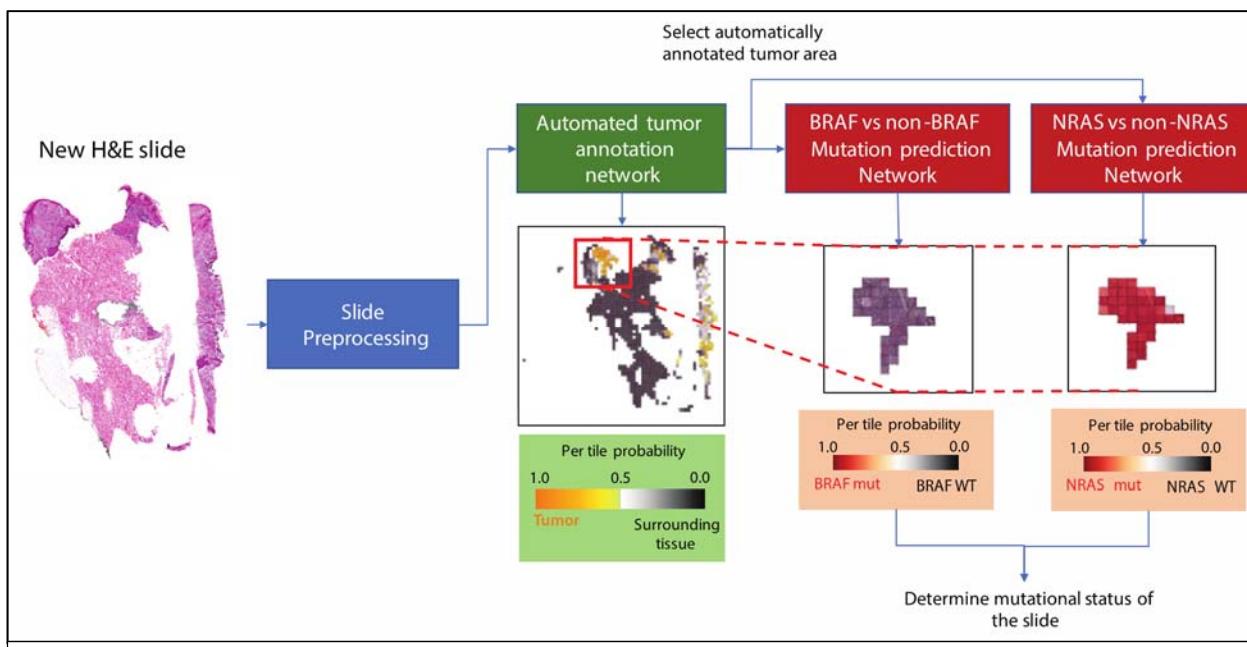


214
215 **Figure 5. Automating tumor selection for a fully automated sequential workflow** **A)** ROC and AUC for the
216 automated tumor selection network. H&E slide section and corresponding heat map of tumor annotation on **B)** a
BRAF-mutated slide **C)** a *NRAS*-mutated slide and **D)** a *WT/WT* slide.

217

218 We then examined whether the automated tumor selection network could be combined
219 with the mutation prediction networks in a sequential manner. The computational
220 workflow as outlined in **Fig. 1**. was repeated on all non-annotated images that were tiled

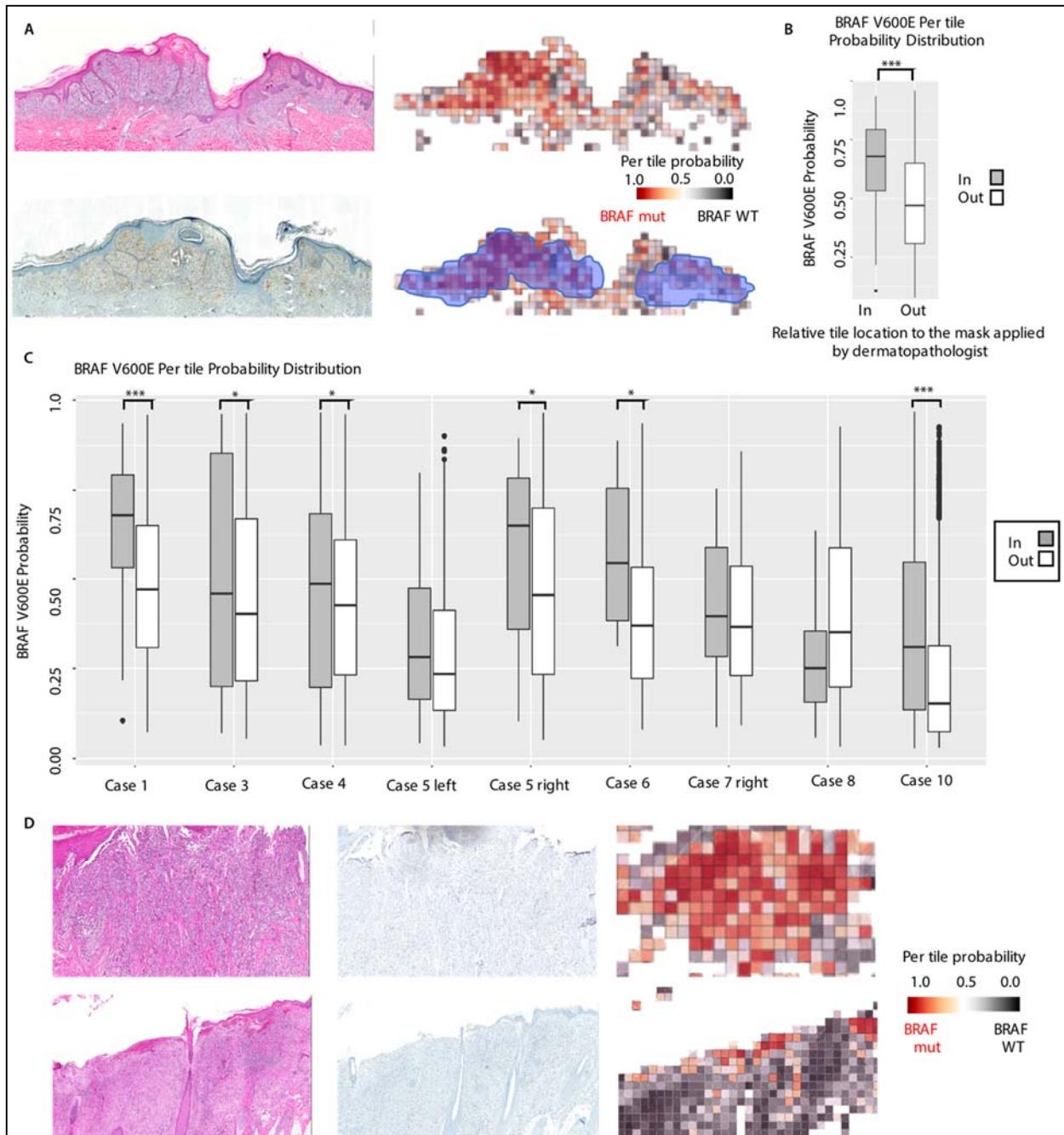
221 and passed through the automated tumor selection network. Tiles assigned with a
222 probability of belonging to tumor area (probability ≥ 0.5) were filtered and split in training,
223 validation and independent sets. The Inception v3 architecture was re-trained on tiles
224 selected by the automated network for mutation prediction. Importantly, the 44 slides that
225 comprised the independent set for the algorithm trained on manually annotated images
226 were maintained as the independent set for the algorithm trained on network selected
227 tumors. In this fully automated network, model performance achieved an AUC=0.75 [95%
228 CI: 0.58, 0.89] for predicting mutated *BRAF* and an AUC=0.70 [95% CI: 0.47, 0.90] for
229 predicting mutated *NRAS* (**Supplemental Figure 6**). These results are consistent with
230 model performance trained on the manual annotations, indicating that the automated
231 tumor selection network performs as well as the dermatopathologist and does not impact
232 mutation prediction performance. **Fig. 6.** outlines the complete workflow of mutation
233 prediction for melanoma H&E histopathology slides using sequential networks for
234 automated tumor selection and mutation prediction.



235 **Figure 6. Fully Automated Sequential Workflow.** Non-annotated whole slides are processed, tiled,
and passed through the automated tumor annotation network which assigns a probability to each tile
of belonging in the tumor. Tiles with probability ≥ 0.5 are subsequently passed through the mutation
prediction network for determining the mutational status of the slide of interest.

236 *Association of network mutation localization with immunohistochemical analysis*

237 To further corroborate network accuracy, we examined whether network-generated
238 probability heat maps are true visual representations of mutation localization. An
239 additional set of 39 *BRAF^{V600E}* cases underwent automated algorithmic prediction and
240 immunohistochemical (IHC) analysis with the monoclonal VE1 antibody, a reliable
241 screening tool for detecting the specific V600E mutation¹⁶. The tumor selection algorithm
242 was applied with a threshold of 0.1 to remove tiles with very low tumor probability. The
243 top 10 cases predicted to be *BRAF^{Mut}* were subjected to IHC analysis for *BRAF^{V600E}*
244 staining. Regions of positive IHC staining were manually annotated by a single
245 dermatopathologist blinded to the mutation status of the cases. In **Fig. 7A**, the annotated
246 mask of positive IHC staining was overlaid on the network-generated probability heat map
247 for our highest confidence prediction. The average probability of tiles falling inside vs.
248 outside the selected mask was calculated (see Methods) and displayed as the
249 corresponding box plot in **Fig. 7B**. Tiles containing *BRAF^{Mut}* were significantly more likely
250 to fall within the IHC mask compared to outside the mask ($p<3e-08$), indicating that the
251 network indeed localizes mutated *BRAF*. Similar results were obtained for the top 10
252 ranked predicted *BRAF^{V600E}* cases, for the majority of which there was statistically
253 significant concordance between the heat map and IHC (**Fig. 7C**). Surprisingly, IHC failed
254 to detect mutated *BRAF* in two of these ten high confidence cases (**Fig. 7D**).



255
256 **Figure 7. BRAF V600E-predicted tumor areas overlap with immunohistochemical V600E**
257 **antibody staining. A)** Annotated regions of positive IHC staining demonstrating overlap with the
258 network-generated probability heat map. H&E-stained tissue section (top left), IHC-stained tissue
259 section (bottom left), probability heat map (top right), and overlay (bottom right) are shown. **B)** Boxplot
with representative H&E-stained section, IHC-stained section, and probability heat map and Case 9
with representative H&E-stained section, IHC-stained section, and probability heat map.

261 **Discussion**

262 In melanoma, deep learning has previously been applied to classify pigmented lesions as
263 benign vs. malignant using clinical¹⁷ or dermoscopic¹⁸ images with impressive accuracy.
264 Nevertheless, histopathological examination remains the gold standard for the diagnosis
265 of melanoma. In patients with localized disease, surgical excision is curative. For
266 advanced melanomas, the development of targeted therapies, such as BRAF and MEK
267 inhibitors, and immunotherapies, such as anti-CTLA4 and anti-PD1 antibodies, have
268 substantially increased median overall survival³. Selecting the optimal treatment in these
269 patients depends, in part, on determining the mutational status of the *BRAF* oncogene.
270 While the ideal treatment regimen for *NRAS*-mutated melanomas is still unclear,
271 combination therapy with MEK inhibition is under investigation³. Mutational testing is
272 therefore routinely performed on Stage III and IV melanomas. Here, we use a deep
273 learning approach on whole slide histopathology images to predict for *BRAF* and *NRAS*
274 driver mutations in primary melanomas.

275

276 Specific morphologic signatures associated with mutated *BRAF* have been described
277 independently with dermoscopy¹⁹, reflectance confocal microscopy²⁰, and histology^{14, 21}.
278 Histologic features include greater pagetoid scatter, intraepidermal nesting, epidermal
279 thickening, better circumscription, larger rounder and more pigmented melanocytes, and
280 less solar elastosis. However, attempts to develop binary decision trees to predict for the
281 *BRAF* mutation using histology alone achieved a predictive accuracy of only 60.3%²¹. In
282 our study, we corroborate that *BRAF* mutations lead to specific morphologic changes that
283 can be detected through deep learning and demonstrate that network performance for

284 predicting mutated *BRAF* is improved with thinner tumors with an accuracy of 83%. As
285 several of the morphologic features described to be specific for mutated *BRAF*
286 predominantly affect the epidermis, it may be the case that it is easier for the network to
287 detect these features in thinner tumors. In studies correlating *BRAF* mutations and tumor
288 thickness, some have found *BRAF* mutations to be associated with thinner tumors²² while
289 others have reported either an inverse^{23, 24} or no relationship^{25, 26} with Breslow depth.

290

291 Evaluating the effect of ulceration status on our institutional cohort suggests an
292 association between ulceration and mutated *BRAF* melanomas, as there was a modest
293 improvement in AUC for predicting mutated *BRAF* in ulcerated melanomas. In a logistic
294 regression model using clinicopathological features, only ulceration and histologic
295 subtype were found to be significant predictors for mutated *BRAF*²⁶. Ulceration may be
296 due to downregulation of genes involved in cell adhesion pathways through copy number
297 losses on chromosomes 6q and 10q. Losses at 10q23-26 have been connected with
298 *BRAF* mutations²⁷, providing support for an association with an ulcerative state.

299

300 So far, *NRAS*-mutated melanomas have non-specific histologic findings, such as greater
301 mitotic index²⁸, fewer tumor-infiltrating lymphocytes²⁹, and nodular histologic subtypes³⁰.
302 Not surprisingly, attempts to predict for *NRAS* mutation using pre-defined morphologic
303 features performed at random^{14, 21} and studies examining *NRAS*-mutated melanomas
304 and parameters such as tumor thickness and ulceration have yielded conflicting results^{25,}
305 ^{31, 32}. Using deep learning, we demonstrate that *NRAS* mutations can be predicted from
306 histopathology images, indicating that these specific morphologic features have not yet

307 been fully described. It is possible these features are detectable on the nuclear or
308 chromosomal level, as *NRAS* mutations more frequently exhibit chromosomal loss of the
309 11q23.3-11q25 region, whereas *BRAF* mutations are associated with loss at 10q23-26
310 and gains at chromosome 7 and 1q23-q25²⁷. This provides a structural basis that could
311 explain, in part, how our deep learning methods are able to classify these mutations.
312 Intriguingly, in non-ulcerated melanomas, network performance to predict mutated *NRAS*
313 reached AUC=0.92 in our institutional cohort. Ulceration may represent a distinct
314 biological subtype as it is the second most significant prognostic factor in melanoma
315 survival. In addition to genetic alterations, it has been proposed that the tumor-infiltrating
316 lymphocytes (TILs) are a critical factor in ulcerated melanomas³³. The importance of TILs
317 for prognosis and response to treatment is an area of active investigation in
318 immunooncology; and deep learning has been used to create spatial maps of TILs and
319 correlating TIL patterns with survival³⁴. Thus, there may be contributions from the tumor
320 microenvironment that influence network performance in a more substantial manner for
321 *NRAS*-mutated melanomas.

322
323 Cross-validating our network on all images of primary melanomas from TCGA resulted in
324 a reduced performance compared to our institutional cohort. TCGA primary melanoma
325 specimens are enriched for thicker tumors, with a median of 2.7mm and a mean of
326 4.9mm¹⁵. We verified that this cohort contained thicker melanomas, with a median depth
327 of 7.5mm at the time of initial diagnosis. Our network model was trained on melanomas
328 with a more equitable distribution among all tumor stages (**Supplemental Figure 3**).
329 Nevertheless, we were able to corroborate some of the observed trends with subgroup

330 analysis. Although there were no TCGA melanomas thinner than 1.0 mm, network
331 performance for predicting mutated *BRAF* was greatest in melanomas \leq 5.0 mm, with a
332 continual reduction of performance as tumor thickness increased. Interestingly,
333 extrapolating *BRAF* network performance on the TCGA dataset in **Fig 4A** leads to a
334 predicted AUC of approximately 0.80 on melanomas \leq 1.0 mm, similar to the AUC of 0.83
335 obtained on our institutional cohort. In addition, we again found that the absence of an
336 ulceration is an important factor for predicting mutated *NRAS*, with an AUC=0.89 on
337 TCGA images.

338

339 With respect to existing rapid screening tests, it is unclear to what extent
340 immunohistochemistry is being used in clinical practice. Although antibodies to detect
341 *BRAF*^{V600E} and *NRAS*^{Q61R} specific mutations have reported high sensitivities and
342 specificities⁵, known limitations of interpretation include: variations in staining, equivocal
343 or ambiguous staining in tumors with high melanin content (>10%), samples with <10%
344 of tumor content³⁵, and false negatives in inappropriately fixed tissue. Furthermore,
345 despite shorter turnaround times⁶, sample preparation and slide cutting still incur
346 additional time and cost. For these reasons, IHC requires optimized and standardized
347 testing protocols³⁶ and interpretation of results by an experienced pathologist.

348

349 In our study, we utilize IHC analysis with the monoclonal VE1 antibody to further
350 substantiate the accuracy of our model by assessing the overlay between positive IHC
351 staining of *BRAF*^{V600E} on tissue sections and network-generated probability heat maps.
352 In 10 high probability *BRAF*^{Mut} cases, 6 cases demonstrated excellent concordance

353 between positive IHC staining and the heat map, 2 cases showed no statistically
354 significant overlap, and 2 cases were misidentified by IHC as negative. One of these false
355 negative cases was noted by the pathologist to contain high amounts of background
356 pigment, highlighting certain advantages deep learning may have over current screening
357 methods.

358

359 Because whole slide image analysis will be a crucial feature for clinical adaptability, we
360 fully automated our mutation prediction by first applying a tumor selection model on non-
361 annotated images, achieving an AUC=0.98. The high discriminatory power of our model
362 is demonstrated by the ability of the network to identify melanomas independent of
363 mutation status (**Supplemental Figure 5**). Importantly, the performance of the fully
364 automated model was comparable to the manual annotation model across all our
365 analyses.

366

367 With the recent FDA approval of the first whole slide imaging system for primary diagnosis
368 in pathology³⁷, the digitization of slides seems poised to be integrated into routine clinical
369 practice. In the context of our mutation prediction model, primary melanomas could be
370 rapidly screened on initial H&E slides. While we did not utilize metastatic melanoma
371 samples in this study over concerns of suboptimal training on a smaller dataset, a number
372 of studies demonstrate mutational testing on the primary tumor is an acceptable
373 alternative^{38, 39, 40}. Our BRAF model could potentially be used in conjunction with IHC
374 screening, where concordant cases do not require confirmatory sequencing.
375 Alternatively, cases that were negative for the *BRAFV600E* mutation by IHC can be

376 analyzed by deep learning in order to identify false negatives or non-V600E *BRAF*
377 mutants in patients who would benefit from targeted therapy. As others have advocated
378 using multiple detection methods for challenging samples⁴¹ or to minimize technique-
379 related discordancy⁴², additional rapid and cost-effective mutational screening techniques
380 would be highly valuable. Regarding our *NRAS* model, additional training with an
381 increased sample size at 40x image magnification can improve overall network
382 performance. Intriguingly, our network performs particularly well on non-ulcerated, *NRAS*-
383 mutated melanomas, suggesting there may be contributions in the tumor
384 microenvironment that warrant further study.

385

386 There is great promise for advanced computational approaches to be integrated into
387 clinical care. Beyond predicting mutations, our study lays the groundwork for more
388 sophisticated deep learning models based on histopathology images, such as predicting
389 for treatment responders vs. non-responders or even survival outcomes, as has been
390 previously demonstrated in lung cancers⁴³ and gliomas⁴⁴. We present a fully automated
391 deep CNN model that accurately differentiates melanomas from benign tissue and uses
392 morphologic features to predict the presence of *BRAF* or *NRAS* driver mutations. Not only
393 has this approach provided additional insight into how these mutations may affect tumor
394 structural characteristics and its surrounding environment, our models have the potential
395 to complement existing mutation screening assays, with the advantage of significantly
396 reducing costs, and importantly, expediting the decision-making process for treatment.

397

398

399 **Materials and Methods**

400 *Dataset of whole-slide images*

401 All patients were enrolled in an IRB-approved clinicopathological database and
402 biorepository in the Interdisciplinary Melanoma Cooperative Group (IMCG) at NYU
403 Langone Health. The IMCG collects prospective clinical, pathological, and follow-up data
404 from melanoma patients who present for diagnosis and/or treatment⁴⁵. 365 H&E-stained
405 FFPE whole-slides from 324 primary melanomas diagnosed between 1994 to 2013 were
406 retrieved and digitized at 20x magnification. A single board-certified dermatopathologist
407 (RHK) reviewed all digitized slides for image quality and excluded images that were
408 blurry, faded, or did not contain any tumor. 293 images from 257 melanomas were
409 subsequently annotated by RHK for tumor-rich regions of interest (ROIs) using Aperio
410 ImageScope software. Driver mutations were previously determined by Sanger
411 sequencing.

412

413 *Software availability*

414 We utilized the adapted Tensorflow pipeline (<https://github.com/ncoudray/DeepPATH.git>)
415 to perform our analysis using the Inception v3 CNN architecture.

416

417 *Image pre-processing*

418 Whole-slide images were partitioned at 20x magnification into non-overlapping 299x299
419 pixel “tiles”. This process generated 794,588 total tiles in our dataset, after removing tiles
420 with more than 50% background (white area of slides). All tiles take the label of the slide
421 they belong to and are sorted in training, validation and independent sets comprising of

422 70%, 15% and 15% of the total number of tiles correspondingly. Tiles of images coming
423 from the same patient are all included in the same set. Tiles in the train and validation
424 sets were then converted to TF record format, which is necessary for training of Inception
425 v3, in groups of 1024 tiles in each TF record file for the training set and 128 tiles for the
426 validation set.

427

428 *Deep learning with Convolutional Neural Network*

429 The Inception v3 architecture is a Convolutional Neural Network (CNN) that utilizes
430 modules comprised of various convolutions with different kernel sizes and a max pooling
431 layer. The network was trained on 70% of the tiles from each data set, with 15% of the
432 tiles used for validation and 15% used for independent testing. The network was trained
433 for maximum 500,000 iterations on batches of 30 images with a step of 5,000 iterations.
434 The activation function used in the output layer was softmax. The network's performance
435 was monitored based on the precision on the validation set. The best performing model
436 was chosen when the difference between the precision of the current model and the
437 minimum precision of the previous 5 models was less than 0.01, indicating a plateau in
438 precision. The performance of the best model was then evaluated on the independent set
439 (44 slides) and the AUC was calculated. The network outputs a probability value for every
440 tile for each class of interest. The tile is assigned to the class with the highest probability.
441 A heat map for each slide in the test set is generated. The color intensity is analogous to
442 the probability value of the tile to belong in each class.

443

444

445 *Network performance on the data from The Cancer Genome Atlas*
446 71 FFPE slides of primary melanomas from the TCGA were downloaded and tiled into
447 non-overlapping tiles of 299x299 pixels. All tiles were sorted for testing and TFRecord
448 files were generated. The slides were passed through the mutation prediction networks
449 and the average probabilities per slide were used for the AUC calculation.

450

451 *Automated tumor selection*

452 Whole images were tiled in non-overlapping tiles of 299x299 pixels. The tiles were sorted
453 based on their position compared to the manual tumor selection applied by the
454 dermatopathologist as 'in' and 'out' tumor, and were divided in train, validation and
455 independent sets the same way as for the mutation prediction networks. The same 44
456 slides were kept as the independent set. The Inception v3 model was trained on these
457 two classes of tiles and the performance of the best performing model on the validation
458 set was measured on the independent set.

459

460 *Annotated and automated mutation prediction*

461 For the annotated model, only tiles belonging inside the annotated tumor area were taken
462 into consideration. For the automated model, only tiles belonging inside the tumor area
463 as determined by the tumor annotation network were selected for training. The tiles were
464 sorted in two categories depending on the mutation classification task and based on the
465 true label of the slide they belong to. They were also divided in train, validation and
466 independent set as before. Inception v3 was trained on the tiles and performance was

467 monitored based on the precision on the validation set. The best performing model was
468 obtained and evaluated on the independent set.

469

470 *Sequential network*

471 To apply the sequential model, non-annotated slides of interest were tiled in non-
472 overlapping 299x299 pixel tiles. The tiles were first passed through the automated tumor
473 selection network which will output a probability for each tile belonging in the tumor area.
474 Tiles with probability of belonging in the tumor higher or equal than 0.5 were obtained and
475 passed through the BRAF and NRAS mutation prediction networks to assess the
476 mutational profile of the slide.

477

478 *Statistical analysis*

479 After training and choosing the best performing model on the validation set, model
480 performance was evaluated using the independent dataset, which is comprised of a held-
481 out population of tiles coming from 44 slides. The probabilities for each slide were
482 aggregated by the average of probabilities of the corresponding tiles or by the percentage
483 of tiles positively classified. Receiver Operative Characteristic (ROC) curves and the
484 corresponding Area Under the Curve (AUC) were generated as a measure of accuracy.
485 Heat maps allowed visualization of probability differences and regions of interest.

486

487 *Multivariate model*

488 The multivariate logistic regression model was built using the *glm* function in R from the
489 package ROCR.

490

491 *Receiver Operating Characteristic Curves*

492 ROC curves were generated using the pROC package in R and the p-values were
493 calculated using the roc.test() function.

494

495 *Immunohistochemical analysis of mutated BRAF V600E*

496 Immunohistochemistry (IHC) was performed on 10% neutral buffered FFPE, 4- μ m human
497 archival melanoma sample sections collected on plus slides (Fisher Scientific, Cat# 22-
498 042-924) and stored at room temperature. Unconjugated, mouse anti-human Serine-
499 Threonine-Protein Kinase B-raf (BRAF) V600E, clone VE1 (Abcam Cat# ab228461, Lot#
500 GR32335840-6) raised against a synthetic peptide within human BRAF (amino acids 550-
501 650) containing the glutamic acid substitution, was used for IHC^{38, 46}. BRAF antibody was
502 optimized on known positive and negative colon samples and subsequently validated on
503 a mixed set 20 known positive/negative samples. Chromogenic immunohistochemistry
504 was performed on a Ventana Medical Systems Discovery Ultra using Ventana's reagents
505 and detection kits unless otherwise noted. In brief, slides were deparaffinized online and
506 antigen retrieved for 24 minutes at 95°C using Cell Conditioner 1 (Tris-Borate-EDTA
507 pH8.5). BRAF was diluted 1:50 in Ventana antibody diluent (Ventana Medical Systems,
508 Cat# 251-018) and incubated for 16 minutes at 36°C. Endogenous peroxidase activity
509 was post-primary blocked with 3% hydrogen peroxide for 4 minutes. Primary antibody
510 was detected using Optiview linker followed by multimer-HRP incubated for 8 minutes
511 each, respectively. The complex was visualized with 3,3 diaminobenzidene for 8 minutes
512 and enhanced with copper sulfate for 4 minutes. Slides were counterstained online with

513 hematoxylin for 8 minutes and blued for 4 minutes. Slides were washed in distilled water,
514 dehydrated and mounted with permanent media. Positive and negative (diluent only)
515 controls were run in parallel with study sections. Blinded analysis of staining was
516 performed by a single dermatopathologist (GJ).

517

518 *Calculation of BRAF V600E-predicted tumor areas overlap with immunohistochemical*
519 *V600E antibody staining.*

520 By looking at the relative positioning between the IHC and H&E slides, a direction of shift
521 was chosen and the slides were shifted by a small shift of 1 or maximum 2 tiles towards
522 the observed direction to better align the slides for overlap. Next, the probability
523 distributions for the tiles falling into the mask applied by a dermatopathologist to select
524 for the V600E antibody stained area and the probabilities of the ones outside of the mask
525 were generated. The p value was calculated using a one-sided Wilcoxon rank sum test.
526 The p values were also adjusted for the number of potential conformations for each slide
527 (shift by 1, shift by 2 and no-shift) by multiplication with a factor of 3 (multiple testing
528 correction).

529

530

531

532 **Supplementary Materials**

533 Fig. S1. Mutation prediction classifiers with manual annotation.

534 Fig. S2. Multivariate logistic regression model evaluating Breslow depth and ulceration
535 as predictors for mutational status.

536 Fig S3. Distribution of Breslow Depth for NYU and TCGA cohorts.

537 Fig S4. Performance of automated tumor selection network.

538 Fig. S5. Performance of mutation networks after manual vs. automated tumor selection.

539 Table S1. Distribution of patients and slides within training, validation, and test cohorts.

540 Table S2. Prediction AUC on melanomas stratified by thickness.

541 Table S3. Prediction AUC on melanomas stratified by ulceration.

542

543

544

545 **References:**

- 546 1. Ascierto PA, *et al.* The role of BRAF V600 mutation in melanoma. *J Transl Med* **10**, 85
547 (2012).
- 548 2. Sun J, Zager JS, Eroglu Z. Encorafenib/binimatinib for the treatment of BRAF-mutant
549 advanced, unresectable, or metastatic melanoma: design, development, and potential
550 place in therapy. *Onco Targets Ther* **11**, 9081-9089 (2018).
- 552 3. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies:
553 optimizing outcomes in melanoma. *Nat Rev Clin Oncol* **14**, 463-482 (2017).
- 555 4. Cheng L, Lopez-Beltran A, Massari F, MacLennan GT, Montironi R. Molecular testing for
556 BRAF mutations to inform melanoma treatment decisions: a move toward precision
557 medicine. *Mod Pathol* **31**, 24-38 (2018).
- 559 5. Barel F, Guibourg B, Lambros L, Le Flahec G, Marcorelles P, Uguen A. Evaluation of a
560 Rapid, Fully Automated Platform for Detection of BRAF and NRAS Mutations in
561 Melanoma. *Acta Derm Venereol* **98**, 44-49 (2018).
- 563 6. Bisschop C, *et al.* Rapid BRAF mutation tests in patients with advanced melanoma:
564 comparison of immunohistochemistry, Droplet Digital PCR, and the Idylla Mutation
565 Platform. *Melanoma Res* **28**, 96-104 (2018).
- 567 7. Colomba E, *et al.* Detection of BRAF p.V600E mutations in melanomas: comparison of
568 four methods argues for sequential use of immunohistochemistry and pyrosequencing. *J
569 Mol Diagn* **15**, 94-100 (2013).
- 571 8. Khosravi P, Kazemi E, Imielinski M, Elemento O, Hajirasouliha I. Deep Convolutional
572 Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images.
573 *EBioMedicine* **27**, 317-328 (2018).
- 575 9. Wang Z, Jensen MA, Zenklusen JC. A Practical Guide to The Cancer Genome Atlas
576 (TCGA). *Methods Mol Biol* **1418**, 111-141 (2016).
- 578 10. Coudray N, *et al.* Classification and mutation prediction from non-small cell lung cancer
579 histopathology images using deep learning. *Nat Med* **24**, 1559-1567 (2018).
- 581 11. Couture HD, *et al.* Image analysis with deep learning to predict breast cancer grade, ER
582 status, histologic subtype, and intrinsic subtype. *NPJ Breast Cancer* **4**, 30 (2018).
- 584 12. Menzies AM, *et al.* Intrapatient homogeneity of BRAFV600E expression in melanoma.
585 *Am J Surg Pathol* **38**, 377-382 (2014).
- 587 13. Cormican D, Kennedy C, Murphy S, Werner R, Power DG, Heffron C. High concordance
588 of BRAF mutational status in matched primary and metastatic melanoma. *J Cutan Pathol*
589 **46**, 117-122 (2019).
- 591 14. Viros A, *et al.* Improving melanoma classification by integrating genetic and morphologic
592 features. *PLoS Med* **5**, e120 (2008).

595 15. Cancer Genome Atlas N. Genomic Classification of Cutaneous Melanoma. *Cell* **161**,
596 1681-1696 (2015).

597 16. Capper D, et al. Assessment of BRAF V600E mutation status by immunohistochemistry
599 with a mutation-specific monoclonal antibody. *Acta Neuropathol* **122**, 11-19 (2011).

600 17. Esteva A, et al. Dermatologist-level classification of skin cancer with deep neural
602 networks. *Nature* **542**, 115-118 (2017).

603 18. Haenssle HA, et al. Man against machine: diagnostic performance of a deep learning
605 convolutional neural network for dermoscopic melanoma recognition in comparison to 58
606 dermatologists. *Ann Oncol* **29**, 1836-1842 (2018).

607 19. Armengot-Carbo M, Nagore E, Garcia-Casado Z, Botella-Estrada R. The association
609 between dermoscopic features and BRAF mutational status in cutaneous melanoma:
610 significance of the blue-white veil. *J Am Acad Dermatol*, (2018).

612 20. Colombino M, et al. Dermoscopy and confocal microscopy for metachronous multiple
613 melanomas: morphological, clinical, and molecular correlations. *Eur J Dermatol* **28**, 149-
614 156 (2018).

616 21. Broekaert SM, et al. Genetic and morphologic features for melanoma classification.
617 *Pigment Cell Melanoma Res* **23**, 763-770 (2010).

619 22. Liu W, et al. Distinct clinical and pathological features are associated with the
620 BRAF(T1799A(V600E)) mutation in primary melanoma. *J Invest Dermatol* **127**, 900-905
621 (2007).

623 23. Ponti G, et al. BRAF, NRAS and C-KIT Advanced Melanoma: Clinico-pathological
624 Features, Targeted-Therapy Strategies and Survival. *Anticancer Res* **37**, 7043-7048
625 (2017).

627 24. Mitchell B, Leone DA, Feller JK, Yang S, Mahalingam M. BRAF and epithelial-
628 mesenchymal transition in primary cutaneous melanoma: a role for Snail and E-
629 cadherin? *Hum Pathol* **52**, 19-27 (2016).

631 25. Hepp MV, et al. Prognostic significance of BRAF and NRAS mutations in melanoma: a
632 German study from routine care. *BMC Cancer* **17**, 536 (2017).

634 26. Spathis A, et al. BRAF Mutation Status in Primary, Recurrent, and Metastatic Malignant
635 Melanoma and Its Relation to Histopathological Parameters. *Dermatol Pract Concept* **9**,
636 54-62 (2019).

638 27. Lazar V, et al. Marked genetic differences between BRAF and NRAS mutated primary
639 melanomas as revealed by array comparative genomic hybridization. *Melanoma Res* **22**,
640 202-214 (2012).

642 28. Devitt B, et al. Clinical outcome and pathological features associated with NRAS
643 mutation in cutaneous melanoma. *Pigment Cell Melanoma Res* **24**, 666-672 (2011).

645 29. Thomas NE, et al. Association Between NRAS and BRAF Mutational Status and
646 Melanoma-Specific Survival Among Patients With Higher-Risk Primary Melanoma.
647 *JAMA Oncol* **1**, 359-368 (2015).

648

649 30. Lee JH, Choi JW, Kim YS. Frequencies of BRAF and NRAS mutations are different in
650 histological types and sites of origin of cutaneous melanoma: a meta-analysis. *Br J*
651 *Dermatol* **164**, 776-784 (2011).

652

653 31. Si L, et al. Prevalence of BRAF V600E mutation in Chinese melanoma patients: large
654 scale analysis of BRAF and NRAS mutations in a 432-case cohort. *Eur J Cancer* **48**, 94-
655 100 (2012).

656

657 32. Ellerhorst JA, et al. Clinical correlates of NRAS and BRAF mutations in primary human
658 melanoma. *Clin Cancer Res* **17**, 229-235 (2011).

659

660 33. de Moll EH, et al. Immune biomarkers are more accurate in prediction of survival in
661 ulcerated than in non-ulcerated primary melanomas. *Cancer Immunol Immunother* **64**,
662 1193-1203 (2015).

663

664 34. Saltz J, et al. Spatial Organization and Molecular Correlation of Tumor-Infiltrating
665 Lymphocytes Using Deep Learning on Pathology Images. *Cell Rep* **23**, 181-193 e187
666 (2018).

667

668 35. Fisher KE, Cohen C, Siddiqui MT, Palma JF, Lipford EH, 3rd, Longshore JW. Accurate
669 detection of BRAF p.V600E mutations in challenging melanoma specimens requires
670 stringent immunohistochemistry scoring criteria or sensitive molecular assays. *Hum*
671 *Pathol* **45**, 2281-2293 (2014).

672

673 36. Long E, et al. Why and how immunohistochemistry should now be used to screen for the
674 BRAFV600E status in metastatic melanoma? The experience of a single institution
675 (LCEP, Nice, France). *J Eur Acad Dermatol Venereol* **29**, 2436-2443 (2015).

676

677 37. Evans AJ, et al. US Food and Drug Administration Approval of Whole Slide Imaging for
678 Primary Diagnosis: A Key Milestone Is Reached and New Questions Are Raised. *Arch*
679 *Pathol Lab Med*, (2018).

680

681 38. Nielsen LB, Dabrosin N, Sloth K, Bonnelykke-Behrndtz ML, Steiniche T, Lade-Keller J.
682 Concordance in BRAF V600E status over time in malignant melanoma and
683 corresponding metastases. *Histopathology* **72**, 814-825 (2018).

684

685 39. Manfredi L, et al. Highly Concordant Results Between Immunohistochemistry and
686 Molecular Testing of Mutated V600E BRAF in Primary and Metastatic Melanoma. *Acta*
687 *Derm Venereol* **96**, 630-634 (2016).

688

689 40. Boursault L, et al. Tumor homogeneity between primary and metastatic sites for BRAF
690 status in metastatic melanoma determined by immunohistochemical and molecular
691 testing. *PLoS One* **8**, e70826 (2013).

692

693 41. Uguen A, et al. Dual NRASQ61R and BRAFV600E mutation-specific
694 immunohistochemistry completes molecular screening in melanoma samples in a routine
695 practice. *Hum Pathol* **46**, 1582-1591 (2015).

696

697 42. Bruno W, et al. Heterogeneity and frequency of BRAF mutations in primary melanoma:
698 Comparison between molecular methods and immunohistochemistry. *Oncotarget* **8**,
699 8069-8082 (2017).

700

701 43. Yu KH, et al. Predicting non-small cell lung cancer prognosis by fully automated
702 microscopic pathology image features. *Nat Commun* **7**, 12474 (2016).

703

704 44. Mobadersany P, et al. Predicting cancer outcomes from histology and genomics using
705 convolutional networks. *Proc Natl Acad Sci U S A* **115**, E2970-E2979 (2018).

706

707 45. Wich LG, et al. Developing a multidisciplinary prospective melanoma biospecimen
708 repository to advance translational research. *Am J Transl Res* **1**, 35-43 (2009).

709

710 46. Piris A, Mihm MC, Jr., Hoang MP. BAP1 and BRAFV600E expression in benign and
711 malignant melanocytic proliferations. *Hum Pathol* **46**, 239-245 (2015).

712

713

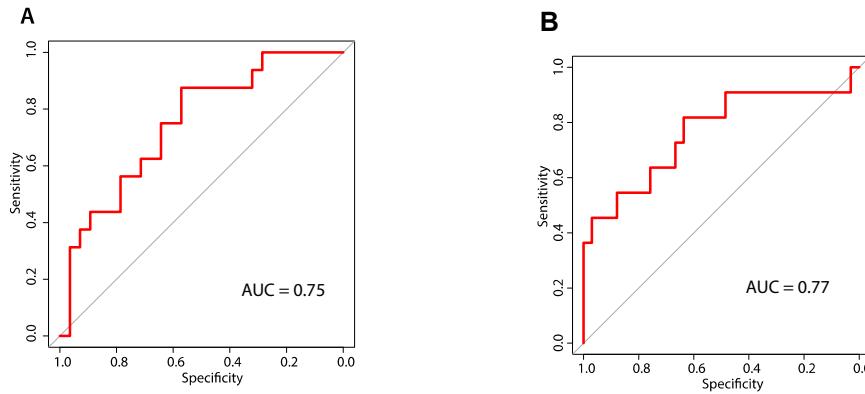
714

715 **Acknowledgments:** We thank Luis Chiriboga from the NYU Experimental Pathology
716 Immunohistochemistry Core Laboratory. The results shown here are in whole or part based upon data
717 generated by the TCGA Research Network: <https://www.cancer.gov/tcga>. **Funding:** This research was
718 supported, in part, by the NYU School of Medicine Orbuch-Brand Pilot Grant Program for Cancers of the
719 Skin; by the Laura and Isaac Perlmutter Cancer Center Support Grant; NIH/NCI P30CA016087; and by the
720 National Institutes of Health S10 Grants; NIH/ORIP S10OD01058 and S10OD018338. AT is supported by
721 the American Cancer Society (RSG-15-189-01-RMC). **Author contributions:** Study concept and design:
722 RHK, SN, IO, AT. Acquisition of data: RHK, SN, ZD, GJ, UM, RLS, RSB. Analysis and interpretation of
723 data: RHK, SN, NC, GJ, JSW, NR, IO, AT; Study supervision: NC, IO, AT. **Competing interests:** JSW
724 declares the following competing interests:
725 Stock or Other Ownership: Altor BioScience, Biond, CytomX Therapeutics, Protean Biodiagnostics
726 Honoraria: Bristol-Myers Squibb, Merck, Genentech, AbbVie, AstraZeneca, Daiichi Sankyo, GlaxoSmithKline, Eisai, Altor BioScience, Amgen, Roche, Ichor Medical Systems, Celldex, CytomX Therapeutics, Nektar, Novartis, Sellas, WindMIL, Takeda, Protean Biodiagnostics
727 Consulting or Advisory Role: Celldex, Ichor Medical Systems, Biond, Altor BioScience, Bristol-Myers Squibb, Merck, Genentech, Roche, Amgen, AstraZeneca, GlaxoSmithKline, Daiichi Sankyo, AbbVie, Eisai, CytomX Therapeutics, Nektar, Novartis, Sellas, WindMIL, Takeda
728 Research Funding (to the Institution): Bristol-Myers Squibb, Merck, GlaxoSmithKline, Genentech, Astellas Pharma, Incyte, Roche, Novartis
729 Travel, Accommodations, Expenses: Bristol-Myers Squibb, GlaxoSmithKline, Daiichi Sankyo, Roche, Celldex, Amgen, Merck, AstraZeneca, Genentech, Novartis, WindMIL, Takeda
730
731
732
733
734
735
736
737
738

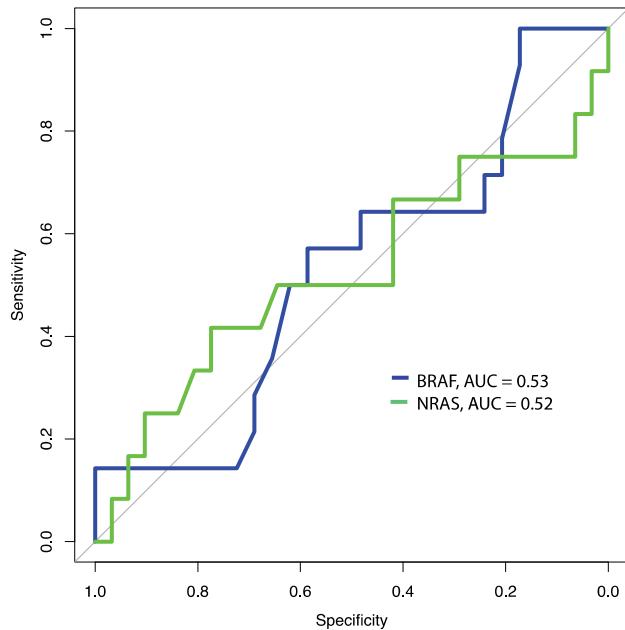
Table 1. Patient characteristics

Cohorts		Training			Validation			Independent											
Unique Patients (n)		182			43			41											
Mutation		BRAF	NRAS	WT/WT	BRAF	NRAS	WT/WT	BRAF	NRAS	WT/WT									
		n	%	n	%	n	%	n	%	n	%								
Year of Diagnosis	<2000	56	30.8	65	35.7	61	33.5	14	32.6	12	27.9	17	39.5	21	51.2	9	22.0	11	26.8
	2001 - 2010	50	89.3	48	73.8	52	85.2	8	57.1	12	100	12	70.6	19	90.5	9	100	11	100
	>2010	4	7.1	13	20.0	8	13.1	3	21.4	0	0	4	23.5	1	4.8	0	0	0	0
Age, Avg. +/- Std.		59.4 +/- 16.7		61.2 +/- 17.2		65.1 +/- 14.9		53.9 +/- 19.9		70.9 +/- 16.0		68.5 +/- 14.1		59.0 +/- 14.8		59.9 +/- 14.4		65.1 +/- 12.8	
Sex	Female	23	41.1	29	44.6	24	39.3	9	64.3	7	58.3	7	41.2	6	28.6	6	66.7	2	18.2
	Male	33	58.9	36	55.4	37	60.7	5	35.7	5	41.7	10	58.8	15	71.4	3	33.3	9	81.8
Thickness	<1.01 mm	8	14.3	18	27.7	20	32.8	2	14.3	3	27.3	3	17.6	3	14.3	2	22.2	3	27.3
	1.01 - 2.0 mm	14	25.0	19	29.2	15	24.6	6	42.9	4	36.4	7	41.2	6	28.6	5	55.6	2	18.2
	2.01 - 4.0 mm	18	32.1	20	30.8	15	24.6	5	35.7	1	9.1	4	23.5	5	23.8	1	11.1	4	36.5
	> 4.0	16	28.6	8	12.3	11	18.0	1	7.1	3	27.3	3	17.6	7	33.3	1	11.1	2	18.2
Thickness, Median (IQR)		2.7 (1.7 – 4.6)		1.8 (1 – 2.7)		1.7 (0.9 – 3.0)		1.4 (1.2 – 3.3)		1.8 (1.0 – 3.9)		1.5 (1.1 – 3.0)		2.7 (1.6 – 5.5)		1.5 (1.0 – 1.9)		2.3 (1.1 – 3.0)	
Histologic subtype	Superficial Spreading	22	39.3	29	44.6	32	52.5	8	57.1	6	50.0	9	52.9	9	42.9	4	44.4	5	45.5
	Nodular	31	55.4	34	52.3	25	41.0	6	42.9	6	50.0	8	47.1	12	57.1	5	55.6	6	54.5
	Lentigo Maligna	0	0.0	0	0.0	1	1.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
	Desmoplastic	3	5.4	1	1.5	3	4.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
	Unknown	0	0.0	1	1.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Ulceration	Absent	30	53.6	44	67.7	40	65.6	9	64.3	7	58.3	11	64.7	11	52.4	6	66.7	6	54.5
	Present	25	44.6	20	30.8	21	34.4	5	35.7	5	41.7	6	35.3	10	47.6	3	33.3	5	45.5
	Unknown	1	1.8	1	1.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Mitotic Index	Absent	8	14.3	8	12.3	12	19.7	2	14.3	1	8.3	2	11.8	4	19.0	0	0.0	1	9.1
	Few	14	25.0	23	35.4	25	41.0	1	7.1	3	25.0	5	29.4	3	14.3	7	77.8	5	45.5
	Moderate	16	28.6	14	21.5	10	16.4	6	42.9	3	25.0	5	29.4	5	23.8	1	11.1	2	18.2
	Many	17	30.4	20	30.8	14	23.0	5	35.7	5	41.7	5	29.4	9	42.9	1	11.1	3	27.3
	Unknown	1	1.8	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
AJCC Stage	I	15	26.8	31	47.7	31	50.8	7	50.0	7	58.3	8	47.1	6	28.6	6	66.7	3	27.3
	II	23	41.1	21	32.3	18	29.5	1	7.1	2	16.7	6	35.3	9	42.9	2	22.2	3	27.3
	III	18	32.1	12	18.5	12	19.7	6	42.9	3	25.0	3	17.6	6	28.6	1	11.1	5	45.5
	IV	0	0.0	1	1.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Anatomic Site	Axial	29	51.8	21	32.3	27	44.3	3	21.4	3	25.0	7	41.2	11	52.4	4	44.4	4	36.4
	Extremity	17	30.4	34	52.3	22	36.1	10	71.4	9	75.0	9	52.9	7	33.3	5	55.6	2	18.2
	Head and Neck	10	17.9	10	15.4	12	19.7	1	7.1	0	0.0	1	5.9	3	14.3	0	0.0	5	45.5
Status	Alive	33	58.9	40	58.9	42	58.9	9	58.9	8	58.9	12	58.9	11	58.9	8	58.9	6	54.5
	Died of Melanoma	20	37.0	18	27.7	14	25.5	5	45.5	4	30.8	1	5.3	9	47.4	1	12.5	5	71.4
	Died of Other Cause	3	5.1	7	9.7	5	7.6	0	0.0	0	0.0	4	19.0	1	4.5	0	0.0	0	0.0
Recurrence	No	31	55.4	40	61.5	36	59.0	6	42.9	9	75.0	14	82.4	9	42.9	7	77.8	2	18.2
	Yes	25	44.6	25	38.5	25	41.0	8	57.1	3	25.0	3	17.6	12	57.1	2	22.2	9	81.8

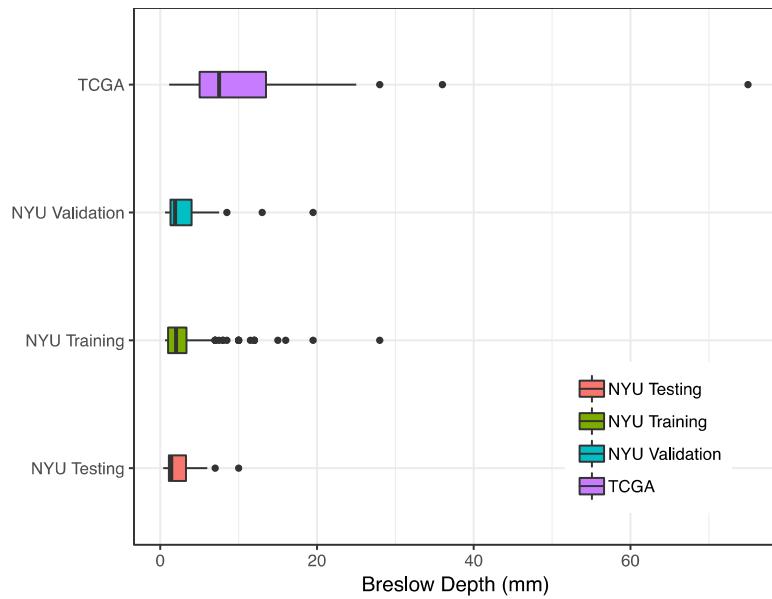
Supplemental Material



Supplemental Figure 1. Mutation prediction classifiers with manual annotation. **A)** Receiver Operating Characteristic curve (ROC) and AUC for BRAF vs “non-BRAF” mutation prediction on the entire independent set. **B)** Receiver Operating Characteristic curve (ROC) and AUC for NRAS vs “non-NRAS” mutation prediction on the entire independent set.

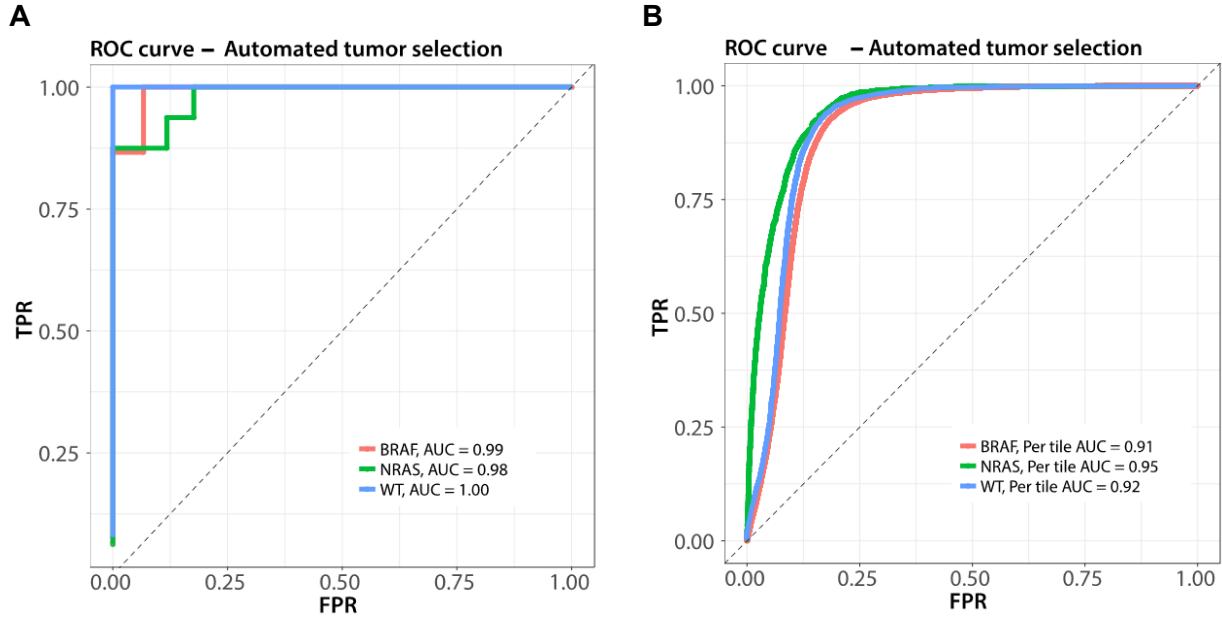


Supplemental Figure 2. ROC curves for the multivariate logistic regression model. The Breslow depth and ulceration variables are not sufficient alone to predict BRAF and NRAS mutations in melanomas, yielding random AUCs.



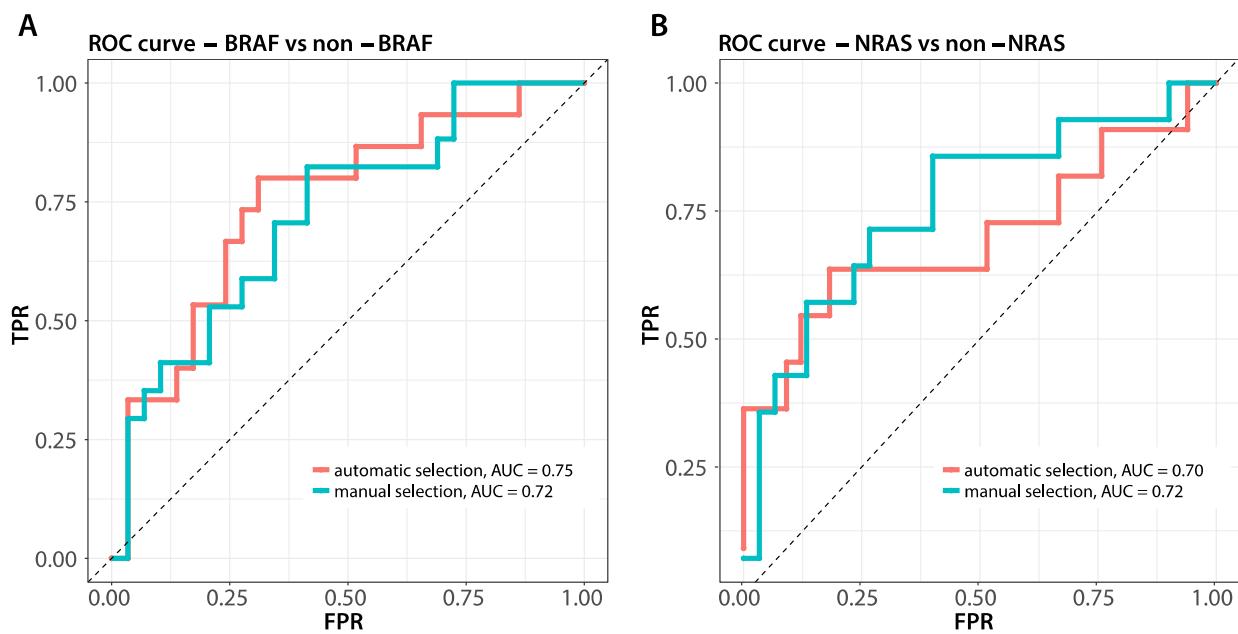
Supplemental figure 3

Breslow depth distribution for our NYU cohorts and the external TCGA validation cohort. It can be observed that the TCGA melanomas are overall much thicker than the ones in our cohort.



Supplemental Figure 4. Performance of automated tumor selection network.

A) AUC aggregated per slide
 B) AUC per tile



Supplemental Figure 5. Performance of mutation networks after manual vs. automated tumor selection

A) BRAF mutation model
 B) NRAS mutation model

Supplemental Table 1

The distribution of the number of patients and the corresponding number of slides within each cohort are shown. No patients within the training and validation cohorts overlap with those in the independent cohort.

	Number of Patients				Number of slides			
	WT	BRAF	NRAS	TOTAL	WT	BRAF	NRAS	TOTAL
Train/Validation	72	73	75	220	80	87	82	249
Independent	15	13	9	37	16	16	12	44
TOTAL	87	86	84	257	96	103	94	293

Supplemental Table 2

BRAF and *NRAS* prediction AUCs on the independent NYU test set and the TCGA FFPE cohort for different values of Breslow depth.

	AUC value for BRAF mutation prediction		AUC value for NRAS mutation prediction	
Tumor stage	NYU cohort	TCGA cohort	NYU cohort	TCGA cohort
<=1mm	0.83 95% CI[0.45-1]	-	0.73 95% CI[0.32-1]	-
<=5mm	0.74 95% CI[-0.58-0.89]	0.71 95% CI[0.35-1]	0.84 95% CI[0.70-0.98]	0.54 95% CI[0.07 - 1]
<=10mm	0.75 95% CI[0.60-0.90]	0.66 95% CI[0.41-0.91]	0.77 95% CI[0.58-0.96]	0.68 95% CI[0.32-1]
<=15mm	-	0.6 95% CI[0.37-0.83]	-	0.66 95% CI[0.40-0.92]
<=20mm	-	0.61 95% CI[0.39-0.83]	-	0.66 95% CI[0.40-0.92]

Supplemental Table 3

BRAF and *NRAS* prediction AUCs on the independent NYU test set and the TCGA FFPE cohort for slides with different ulceration status.

	AUC value for BRAF mutation prediction		AUC value for NRAS mutation prediction	
Ulceration	NYU cohort	TCGA cohort	NYU cohort	TCGA cohort
Present	0.79 95% CI[0.56-1]	0.55 95% CI[0.35-0.71]	0.45 95% CI[0.07-0.83]	0.45 95% CI[0.24-0.67]
Absent	0.71 95% CI[0.50-0.92]	0.6 95% CI[0.22-0.98]	0.92 95% CI[0.81-1]	0.89 95% CI[0.67-1]