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 35 

Abstract 36 

DNA-based molecular assays for determining mutational status in melanomas are time-37 

consuming and costly. As an alternative, we applied a deep convolutional neural network 38 

(CNN) to histopathology images of tumors from 257 melanoma patients and developed a 39 

fully automated model that first selects for tumor-rich areas (Area under the curve 40 

AUC=0.98), and second, predicts for the presence of mutated BRAF or NRAS. Network 41 

performance was enhanced on BRAF-mutated melanomas 1.0 mm (AUC=0.83) and on 42 

non-ulcerated NRAS-mutated melanomas (AUC=0.92). Applying our models to 43 

histological images of primary melanomas from The Cancer Genome Atlas database also 44 

demonstrated improved performances on thinner BRAF-mutated melanomas and non-45 

ulcerated NRAS-mutated melanomas. We propose that deep learning-based analysis of 46 

histological images has the potential to become integrated into clinical decision making 47 

for the rapid detection of mutations of interest in melanoma. 48 

  49 
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Introduction 50 

Mutations in the BRAF oncogene are found in 50-60% of all melanomas1, while NRAS 51 

mutations comprise an additional 15-20%. With the development of targeted therapies2, 52 

3, determining the mutational status of BRAF and NRAS has become an integral 53 

component for the management of Stage III/IV melanomas. DNA molecular assays such 54 

as Sanger sequencing, pyrosequencing, and next generation sequencing (NGS) are the 55 

current gold standard to determine mutational status4. However, these methods are costly 56 

and time-consuming. Immunohistochemistry, real-time polymerase chain reaction (PCR), 57 

and automated platforms5, 6, 7 are rapid and less expensive alternatives, but are limited to 58 

screening for specific mutations, such as BRAF-V600E/K or NRAS-Q61R/L, and may 59 

potentially fail to identify rare mutational variants in patients that might have otherwise 60 

benefited from adjuvant targeted therapy. 61 

 62 
Deep Convolutional Neural Network (CNN) methods to predict mutational status have 63 

been demonstrated in other solid tumors. CNNs utilize multiple layers of convolution 64 

operations, pooling layers, and fully connected layers to perform classification of images 65 

to classes of interest through identification of various image features often not directly 66 

detectable by the human eye. Deep CNNs, which utilize non-linear learning algorithms, 67 

have been successful in manipulating and processing large data sets, particularly for 68 

image analysis8. Using images from The Cancer Genome Atlas (TCGA), a collaborative 69 

cancer genomics database9, our group has previously developed a machine learning 70 

algorithm that can predict for 6 different genes, including EGFR and STK11, in lung 71 

carcinoma10. In breast cancer, deep learning applied to tumor microarray images has 72 

been shown to predict for ER status with an 84% accuracy11.  73 
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 74 

In this study, we adapt our previous deep learning algorithm to a different dataset 75 

comprised of histopathology images of primary melanomas resected from patients 76 

prospectively enrolled in a single-institution IRB-approved clinicopathological and 77 

biorepository in order to develop a model from tissue specimens that are more 78 

representative of what might be seen in routine clinical practice. While molecular testing 79 

is typically performed on the most recent metastatic sample, testing on the primary tumor 80 

can be performed if metastatic tissue is unavailable or carries a low tumor burden12, 13. 81 

We present our deep learning models for the screening of BRAF and NRAS mutations in 82 

primary melanomas, with the purpose of exploring its potential clinical utility.  83 

 84 

Results  85 

Patient characteristics 86 

324 primary melanomas from 266 unique patients were included in this study and divided 87 

into training (n=182), validation (n=43), and independent (n=41) cohorts, without overlap 88 

between the patient subsets. Within each cohort, BRAF-mutant, NRAS-mutant, and 89 

WT/WT melanomas were represented (Table 1). The average ages of patients with 90 

BRAF-mutant melanoma were 59.4, 53.9, and 59-years old in training, validation, and 91 

independent cohorts, respectively. For patients with NRAS-mutant melanoma, the 92 

average ages were 61.2, 70.9, and 59.9-years old; and for WT/WT patients, the average 93 

ages were 65.1, 68.5, and 65.1-years old. 94 

 95 

 96 
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Dataset characteristics 97 

365 formalin-fixed paraffin embedded (FFPE) hematoxylin and eosin (H&E)-stained 98 

slides from 324 primary melanomas were digitized and reviewed for quality control. After 99 

excluding images that were blurry, faded, or contained no tumor, 293 images from 257 100 

melanomas were available for analysis. 103 BRAF-mutant, 94 NRAS-mutant, and 96 101 

WT/WT melanomas images were included in the study. V600E comprised 70% of the 102 

BRAF mutations. NRAS Q61R/Q61K comprised 80% of the NRAS mutations. 103 

 104 

Computational workflow for whole-slide histopathology image analysis 105 

Our computational workflow with the CNN Inception v3 is shown in Fig. 1. and is common 106 

across all our classifiers (see Methods). The aim of our analytical approach was to: (1) to 107 

predict the presence of BRAF and NRAS mutations using manually annotated slides; and 108 

(2) to automate the annotation process by the CNN.  109 

 

Figure 1. Computational Workflow To train the Inception v3 CNN, slides are tiled to non-overlapping 
299x299 pixel tiles and assigned to training, validation and independent sets comprising of 70%, 15% and 
15% of the total number of tiles, respectively. Tiles of slides belonging to the same patient are considered 
together in a data set. After conversion to TF Record format, training is performed. The best performing model 
on the validation data is evaluated on the independent set.  

 110 

 111 
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Predicting BRAF and NRAS mutation on manually annotated whole-slide images 112 

Because of tissue heterogeneity in skin specimens, tumor-rich areas were initially 113 

manually annotated as regions of interest (ROI). Normal skin and associated 114 

appendages, connective and subcutaneous tissue, necrosis, hemorrhage, and 115 

aggregates of dense inflammation were excluded from training. The network was trained 116 

on tiled images of manually annotated ROI, with 70% of images used for training, 15% 117 

used for validation, and 15% used for independent testing (Supplemental Table 1). 118 

Model performance achieved a per slide Area Under the Curve (AUC)=0.75 [95% CI: 119 

0.60,0.90] for predicting BRAFMut (Supplemental Figure 1) and AUC=0.77 [95% CI: 120 

0.58,0.96] for predicting NRASMut (Supplemental Figure 2).  121 

 122 

We next sought to elucidate some of the parameters that could influence network 123 

performance. To evaluate the role of tumor thickness, tumors from the independent cohort 124 

were sorted by Breslow depth. Model performance for predicting mutated BRAF improved 125 

for slides with a tumor thickness 1.0 mm, with an AUC=0.83 [95% CI: 0.45,1.0] (Fig. 2A, 126 

left). Conversely, there were reductions in the AUC to 0.74 [95% CI: 0.58,0.89] for tumors 127 

>1.0-5.0 mm, and to 0.75 [95% CI: 0.60,0.90] for very thick tumors >5.0-10mm. One 128 

potential explanation for this difference is that BRAF-mutated melanomas are associated 129 

with a distinctive epidermal component, such as increased pagetoid scatter and 130 

intraepidermal nesting of melanocytes14. These histologic features may carry more weight 131 

in thinner tumors compared to deeper and more invasive melanomas. NRAS mutation 132 

prediction was not consistently dependent on tumor thickness (Fig 2B, left; 133 

Supplemental Table 2).  134 
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 135 

 136 

We also examined whether ulceration status, as indicated by the original pathology report, 137 

can affect network performance. For the BRAF prediction model, an AUC=0.79 [95% CI: 138 

 

Figure 2. Exploration of parameters contributing to network performance A) BRAF mutation 
prediction. ROC plots for melanomas 1.0 mm, >1.0-5.0 mm and >5.0-10mm with the network trained 
on manually annotated slides demonstrate improved performance for thinner tumors (left). ROC plots 
for melanomas based on ulceration status show improved performance if ulceration was present 
(right). B) NRAS mutation prediction. ROC curves for melanomas based on Breslow depth show no 
significant differences (left). NRAS mutation prediction is improved for melanomas without ulceration 
(right). 
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0.56, 1.00] was achieved for melanomas with ulceration and an AUC= 0.71 [95% CI: 0.50, 139 

0.92] for melanomas without ulceration (Fig 2A, right). The opposite trend was observed 140 

with the NRAS model, where ulcerated melanomas led to a decreased AUC to 0.45 [95% 141 

CI 0.07-0.83] and non-ulcerated melanomas had an increased AUC to 0.92 [95% CI: 142 

0.81,1.00] (Fig 2B, right). Notably, these results were achieved on manually annotated 143 

ROIs that excluded areas of ulceration, indicating that the network is not learning from 144 

the presence of an ulceration on the slide itself. Rather, elements in the tumor 145 

microenvironment that influence the ulceration status are potentially playing an important 146 

role in determining NRAS mutation status.  147 

 148 

In order to confirm that tumor thickness and ulceration alone are not predictors of 149 

mutational status, we built a multivariate logistic regression model where Breslow depth 150 

and ulceration status are the predictive variables for the presence of mutated BRAF or 151 

NRAS. The model was trained on the same training dataset used for our deep CNN. This 152 

model performed at random for predicting either mutated BRAF and NRAS, with 153 

AUC=0.53 [95% CI: 0.34,0.72] and AUC=0.52 [95% CI: 0.30,0.75], respectively 154 

(Supplemental Figure 3). This demonstrates that the necessary features for predicting 155 

mutation status are provided by the histopathological slide. 156 

  157 

Performance for the mutation network can be visualized with a probability heat map, 158 

where the presence of the mutation of interest is shown in red and intensity of color 159 

corresponding to the probability of mutation. Fig. 3A demonstrates representative H&E 160 

sections of melanomas with their corresponding probability heat maps for BRAF-mutant 161 
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(left), and 2 correctly identified non-BRAF-mutant tumors: e.g. NRAS-mutant (center) and 162 

WT/WT melanoma (right), respectively. Similarly, Fig. 3B demonstrates probability heat 163 

maps for the NRAS prediction network, with correctly identified NRAS-mutant (left) and 164 

non-NRAS-mutant melanoma. Interestingly, in both BRAF-mutant (center) and WT/WT 165 

melanomas (right), there are regions identified by the network to harbor mutated NRAS, 166 

raising the possibility of intratumoral heterogeneity. 167 

 

Figure 3. Probability heat maps for mutation prediction A) H&E slide section and corresponding 
heat map of a correctly classified BRAFmut melanoma (left), NRASmut melanoma (center) and WT/WT 
melanoma (right) slides by the BRAF mutation prediction network.  B) H&E slide section and 
corresponding heat map of a correctly classified NRASmut melanoma (left), BRAFmut melanoma (center) 
and WT/WT melanoma (right) slides by the NRAS mutation prediction network.  

 168 

 169 
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 170 

Predicting mutated BRAF and NRAS using images from The Cancer Genome Atlas 171 

database 172 

An image dataset of digitized FFPE H&E-stained slides of primary melanomas were 173 

retrieved from TCGA, a collaborative and publicly available research database comprised 174 

of tumor tissue and genomic data from multiple cancer types9. This dataset was used as 175 

an independent cohort, which comprised of 40 BRAF-mutant cases, 9 NRAS-mutant 176 

cases, and 22 WT/WT cases, summing up to 71 cases in total. After quality control, 68 177 

images were approved for the independent validation.  178 

 179 

Breslow depth information was available for 32 out of the 68 slides15. Melanomas from 180 

the TCGA database were skewed towards very thick tumors with a median of 7.5mm. 181 

There were no tumors less than 1.0mm in depth. In comparison, the median depths of 182 

tumors in our training, validation and test cohorts were 2.00, 1.45, and 1.90, respectively 183 

(Supplemental Figure 4). AUCs of mutation prediction were calculated for melanomas 184 

1.0 mm, >1.0-5.0 mm, >5.0-10 mm, >10-15mm, and >15-20mm for NYU and TCGA 185 

cohorts (Supplemental Table 2). For BRAF mutation prediction on TCGA images, the 186 

network performed better for melanomas  5 mm. AUC values decreased with thicker 187 

tumors. This trend is similar to the effect tumor thickness had on our NYU test cohort (Fig. 188 

4A). Tumor thickness did not affect network predictive ability for mutated NRAS on TCGA 189 

tumors, as was previously observed in our own cohort (Supplemental Table 2). 190 

 191 
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Regarding the effect of ulceration on network performance, TCGA melanomas without 192 

ulceration (i.e., T2a, T3a and T4a, n=10) were compared to melanomas with ulceration 193 

(i.e., T2b, T3b and T4b, n=56). The ulceration status of TCGA tumors did not have a 194 

significant impact on BRAF mutation prediction (Supplemental Table 3), consistent with 195 

our observations in the NYU cohort. Importantly, network performance for predicting 196 

mutated NRAS was significantly enhanced for non-ulcerated melanomas with an 197 

AUC=0.89 [95% CI: 0.67-1.0] compared to AUC=0.45 [95% CI: 0.24-0.67] for ulcerated 198 

melanomas, reproducing the difference that ulceration status has on NRAS mutation 199 

prediction in our own cohort (Fig. 4B, Supplemental Table 3). 200 

Figure 4. Validation of network performance on an independent cohort from TCGA. A) AUC 
variation for different Breslow depth values on the independent NYU test set and the TCGA cohort. 
BRAF mutation prediction is improved for thinner melanomas both on the NYU test set and the TCGA 
external validation cohort. B) NRAS mutation prediction is improved for melanomas without ulcerations 
both on the NYU independent cohort and on the TCGA external validation cohort. 

 201 

Automated selection of primary melanomas on whole slide histopathology images 202 

In order to improve the clinical application of our deep learning models, we attempted to 203 

automate the identification of melanoma by processing tiled images as “in” the ROI or 204 

“out” of the ROI. Model performance achieved a per slide AUC=0.98 [95% CI: 0.95,1.00] 205 
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and a per tile AUC=0.92 [95% CI: 0.922,0.924] (Fig. 5A). H&E-stained non-annotated 206 

whole slides of BRAF-mutant, NRAS-mutant and WT/WT melanomas are shown in Fig. 207 

5B-D. along with their corresponding network-generated probability heat maps, where 208 

orange indicates tumor, gray indicates non-tumor, and the intensity of the color correlates 209 

with the probability gradient. Notably, there is excellent concordance between the 210 

pathologist and the network. Network performance was independent of melanoma 211 

mutational status (Supplemental Figure 5). 212 

 213 

 214 

 215 

Automated sequential workflow for melanoma selection and mutation prediction 216 

 217 

We then examined whether the automated tumor selection network could be combined 218 

with the mutation prediction networks in a sequential manner. The computational 219 

workflow as outlined in Fig. 1. was repeated on all non-annotated images that were tiled 220 

Figure 5. Automating tumor selection for a fully automated sequential workflow A) ROC and AUC for the 
automated tumor selection network. H&E slide section and corresponding heat map of tumor annotation on B) a 
BRAF-mutated slide C) a NRAS-mutated slide and D) a WT/WT slide. 
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and passed through the automated tumor selection network. Tiles assigned with a 221 

probability of belonging to tumor area (probability >= 0.5) were filtered and split in training, 222 

validation and independent sets. The Inception v3 architecture was re-trained on tiles 223 

selected by the automated network for mutation prediction. Importantly, the 44 slides that 224 

comprised the independent set for the algorithm trained on manually annotated images 225 

were maintained as the independent set for the algorithm trained on network selected 226 

tumors. In this fully automated network, model performance achieved an AUC=0.75 [95% 227 

CI: 0.58, 0.89] for predicting mutated BRAF and an AUC=0.70 [95% CI: 0.47, 0.90] for 228 

predicting mutated NRAS (Supplemental Figure 6). These results are consistent with 229 

model performance trained on the manual annotations, indicating that the automated 230 

tumor selection network performs as well as the dermatopathologist and does not impact 231 

mutation prediction performance. Fig. 6. outlines the complete workflow of mutation 232 

prediction for melanoma H&E histopathology slides using sequential networks for 233 

automated tumor selection and mutation prediction. 234 

 235 Figure 6. Fully Automated Sequential Workflow. Non-annotated whole slides are processed, tiled, 
and passed through the automated tumor annotation network which assigns a probability to each tile 
of belonging in the tumor. Tiles with probability > =0.5 are subsequently passed through the mutation 
prediction network for determining the mutational status of the slide of interest. 
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Association of network mutation localization with immunohistochemical analysis  236 

To further corroborate network accuracy, we examined whether network-generated 237 

probability heat maps are true visual representations of mutation localization. An 238 

additional set of 39 BRAFV600E cases underwent automated algorithmic prediction and 239 

immunohistochemical (IHC) analysis with the monoclonal VE1 antibody, a reliable 240 

screening tool for detecting the specific V600E mutation16. The tumor selection algorithm 241 

was applied with a threshold of 0.1 to remove tiles with very low tumor probability. The 242 

top 10 cases predicted to be BRAFMut were subjected to IHC analysis for BRAFV600E 243 

staining. Regions of positive IHC staining were manually annotated by a single 244 

dermatopathologist blinded to the mutation status of the cases. In Fig. 7A, the annotated 245 

mask of positive IHC staining was overlaid on the network-generated probability heat map 246 

for our highest confidence prediction. The average probability of tiles falling inside vs. 247 

outside the selected mask was calculated (see Methods) and displayed as the 248 

corresponding box plot in Fig. 7B. Tiles containing BRAFMut were significantly more likely 249 

to fall within the IHC mask compared to outside the mask (p<3e-08), indicating that the 250 

network indeed localizes mutated BRAF. Similar results were obtained for the top 10 251 

ranked predicted BRAFV600E cases, for the majority of which there was statistically 252 

significant concordance between the heat map and IHC (Fig. 7C). Surprisingly, IHC failed 253 

to detect mutated BRAF in two of these ten high confidence cases (Fig. 7D).  254 
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 255 

 256 

 257 

 258 

 259 

 260 

Figure 7. BRAF V600E-predicted tumor areas overlap with immunohistochemical V600E 
antibody staining. A) Annotated regions of positive IHC staining demonstrating overlap with the 
network-generated probability heat map. H&E-stained tissue section (top left), IHC-stained tissue 
section (bottom left), probability heat map (top right), and overlay (bottom right) are shown. B) Boxplot 
of the probability distributions for tiles inside and outside the IHC mask. Tiles predicted to harbor 
BRAFMut were more likely to fall inside the IHC mask (p<3e-09). C) Boxplot distributions and IHC-heat 
map overlays of high-probability BRAFMut cases. P-values for statistically significant cases: Case 1: 
p=9e-08; Case 3: p=0.03; Case 5, right: p=0.012; Case 6: p=0.018; Case 10: p=6.6e-16. D) Case 2 
with representative H&E-stained section, IHC-stained section, and probability heat map and Case 9 
with representative H&E-stained section, IHC-stained section, and probability heat map. 
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Discussion  261 

In melanoma, deep learning has previously been applied to classify pigmented lesions as  262 

benign vs. malignant using clinical17 or dermoscopic18 images with impressive accuracy. 263 

Nevertheless, histopathological examination remains the gold standard for the diagnosis 264 

of melanoma. In patients with localized disease, surgical excision is curative. For 265 

advanced melanomas, the development of targeted therapies, such as BRAF and MEK 266 

inhibitors, and immunotherapies, such as anti-CTLA4 and anti-PD1 antibodies, have 267 

substantially increased median overall survival3. Selecting the optimal treatment in these 268 

patients depends, in part, on determining the mutational status of the BRAF oncogene. 269 

While the ideal treatment regimen for NRAS-mutated melanomas is still unclear, 270 

combination therapy with MEK inhibition is under investigation3.  Mutational testing is 271 

therefore routinely performed on Stage III and IV melanomas. Here, we use a deep 272 

learning approach on whole slide histopathology images to predict for BRAF and NRAS 273 

driver mutations in primary melanomas.  274 

 275 

Specific morphologic signatures associated with mutated BRAF have been described 276 

independently with dermoscopy19, reflectance confocal microscopy20, and histology14, 21. 277 

Histologic features include greater pagetoid scatter, intraepidermal nesting, epidermal 278 

thickening, better circumscription, larger rounder and more pigmented melanocytes, and 279 

less solar elastosis. However, attempts to develop binary decision trees to predict for the 280 

BRAF mutation using histology alone achieved a predictive accuracy of only 60.3%21. In 281 

our study, we corroborate that BRAF mutations lead to specific morphologic changes that 282 

can be detected through deep learning and demonstrate that network performance for 283 
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predicting mutated BRAF is improved with thinner tumors with an accuracy of 83%. As 284 

several of the morphologic features described to be specific for mutated BRAF 285 

predominantly affect the epidermis, it may be the case that it is easier for the network to 286 

detect these features in thinner tumors. In studies correlating BRAF mutations and tumor 287 

thickness, some have found BRAF mutations to be associated with thinner tumors22 while 288 

others have reported either an inverse23, 24 or no relationship25, 26 with Breslow depth.  289 

 290 

Evaluating the effect of ulceration status on our institutional cohort suggests an 291 

association between ulceration and mutated BRAF melanomas, as there was a modest 292 

improvement in AUC for predicting mutated BRAF in ulcerated melanomas. In a logistic 293 

regression model using clinicopathological features, only ulceration and histologic 294 

subtype were found to be significant predictors for mutated BRAF26. Ulceration may be 295 

due to downregulation of genes involved in cell adhesion pathways through copy number 296 

losses on chromosomes 6q and 10q. Losses at 10q23-26 have been connected with 297 

BRAF mutations27, providing support for an association with an ulcerative state. 298 

 299 

So far, NRAS-mutated melanomas have non-specific histologic findings, such as greater 300 

mitotic index28, fewer tumor-infiltrating lymphocytes29, and nodular histologic subtypes30. 301 

Not surprisingly, attempts to predict for NRAS mutation using pre-defined morphologic 302 

features performed at random14, 21 and studies examining NRAS-mutated melanomas 303 

and parameters such as tumor thickness and ulceration have yielded conflicting results25, 304 

31, 32. Using deep learning, we demonstrate that NRAS mutations can be predicted from 305 

histopathology images, indicating that these specific morphologic features have not yet 306 
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been fully described. It is possible these features are detectable on the nuclear or 307 

chromosomal level, as NRAS mutations more frequently exhibit chromosomal loss of the 308 

11q23.3-11q25 region, whereas BRAF mutations are associated with loss at 10q23-26 309 

and gains at chromosome 7 and 1q23-q2527. This provides a structural basis that could 310 

explain, in part, how our deep learning methods are able to classify these mutations. 311 

Intriguingly, in non-ulcerated melanomas, network performance to predict mutated NRAS 312 

reached AUC=0.92 in our institutional cohort. Ulceration may represent a distinct 313 

biological subtype as it is the second most significant prognostic factor in melanoma 314 

survival. In addition to genetic alterations, it has been proposed that the tumor-infiltrating 315 

lymphocytes (TILs) are a critical factor in ulcerated melanomas33. The importance of TILs 316 

for prognosis and response to treatment is an area of active investigation in 317 

immunooncology; and deep learning has been used to create spatial maps of TILs and 318 

correlating TIL patterns with survival34. Thus, there may be contributions from the tumor 319 

microenvironment that influence network performance in a more substantial manner for 320 

NRAS-mutated melanomas. 321 

 322 

Cross-validating our network on all images of primary melanomas from TCGA resulted in 323 

a reduced performance compared to our institutional cohort. TCGA primary melanoma 324 

specimens are enriched for thicker tumors, with a median of 2.7mm and a mean of 325 

4.9mm15. We verified that this cohort contained thicker melanomas, with a median depth 326 

of 7.5mm at the time of initial diagnosis. Our network model was trained on melanomas 327 

with a more equitable distribution among all tumor stages (Supplemental Figure 3). 328 

Nevertheless, we were able to corroborate some of the observed trends with subgroup 329 
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analysis. Although there were no TCGA melanomas thinner than 1.0 mm, network 330 

performance for predicting mutated BRAF was greatest in melanomas  5.0 mm, with a 331 

continual reduction of performance as tumor thickness increased. Interestingly, 332 

extrapolating BRAF network performance on the TCGA dataset in Fig 4A leads to a 333 

predicted AUC of approximately 0.80 on melanomas 1.0 mm, similar to the AUC of 0.83 334 

obtained on our institutional cohort. In addition, we again found that the absence of an 335 

ulceration is an important factor for predicting mutated NRAS, with an AUC=0.89 on 336 

TCGA images. 337 

 338 

With respect to existing rapid screening tests, it is unclear to what extent 339 

immunohistochemistry is being used in clinical practice. Although antibodies to detect 340 

BRAFV600E and NRASQ61R specific mutations have reported high sensitivities and 341 

specificities5, known limitations of interpretation include: variations in staining, equivocal 342 

or ambiguous staining in tumors with high melanin content (>10%), samples with <10% 343 

of tumor content35, and false negatives in inappropriately fixed tissue. Furthermore, 344 

despite shorter turnaround times6, sample preparation and slide cutting still incur 345 

additional time and cost. For these reasons, IHC requires optimized and standardized 346 

testing protocols36 and interpretation of results by an experienced pathologist.    347 

 348 

In our study, we utilize IHC analysis with the monoclonal VE1 antibody to further 349 

substantiate the accuracy of our model by assessing the overlay between positive IHC 350 

staining of BRAFV600E on tissue sections and network-generated probability heat maps. 351 

In 10 high probability BRAFMut cases, 6 cases demonstrated excellent concordance 352 
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between positive IHC staining and the heat map, 2 cases showed no statistically 353 

significant overlap, and 2 cases were misidentified by IHC as negative. One of these false 354 

negative cases was noted by the pathologist to contain high amounts of background 355 

pigment, highlighting certain advantages deep learning may have over current screening 356 

methods.  357 

 358 

Because whole slide image analysis will be a crucial feature for clinical adaptability, we 359 

fully automated our mutation prediction by first applying a tumor selection model on non-360 

annotated images, achieving an AUC=0.98. The high discriminatory power of our model 361 

is demonstrated by the ability of the network to identify melanomas independent of 362 

mutation status (Supplemental Figure 5). Importantly, the performance of the fully 363 

automated model was comparable to the manual annotation model across all our 364 

analyses.  365 

 366 

With the recent FDA approval of the first whole slide imaging system for primary diagnosis 367 

in pathology37, the digitization of slides seems poised to be integrated into routine clinical 368 

practice. In the context of our mutation prediction model, primary melanomas could be 369 

rapidly screened on initial H&E slides. While we did not utilize metastatic melanoma 370 

samples in this study over concerns of suboptimal training on a smaller dataset, a number 371 

of studies demonstrate mutational testing on the primary tumor is an acceptable 372 

alternative38, 39, 40. Our BRAF model could potentially be used in conjunction with IHC 373 

screening, where concordant cases do not require confirmatory sequencing. 374 

Alternatively, cases that were negative for the BRAFV600E mutation by IHC can be 375 
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analyzed by deep learning in order to identify false negatives or non-V600E BRAF 376 

mutants in patients who would benefit from targeted therapy. As others have advocated 377 

using multiple detection methods for challenging samples41 or to minimize technique-378 

related discordancy42, additional rapid and cost-effective mutational screening techniques 379 

would be highly valuable. Regarding our NRAS model, additional training with an 380 

increased sample size at 40x image magnification can improve overall network 381 

performance. Intriguingly, our network performs particularly well on non-ulcerated, NRAS-382 

mutated melanomas, suggesting there may be contributions in the tumor 383 

microenvironment that warrant further study.   384 

 385 

There is great promise for advanced computational approaches to be integrated into 386 

clinical care. Beyond predicting mutations, our study lays the groundwork for more 387 

sophisticated deep learning models based on histopathology images, such as predicting 388 

for treatment responders vs. non-responders or even survival outcomes, as has been 389 

previously demonstrated in lung cancers43 and gliomas44. We present a fully automated 390 

deep CNN model that accurately differentiates melanomas from benign tissue and uses 391 

morphologic features to predict the presence of BRAF or NRAS driver mutations. Not only 392 

has this approach provided additional insight into how these mutations may affect tumor 393 

structural characteristics and its surrounding environment, our models have the potential 394 

to complement existing mutation screening assays, with the advantage of significantly 395 

reducing costs, and importantly, expediting the decision-making process for treatment. 396 

 397 

 398 
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Materials and Methods 399 

Dataset of whole-slide images 400 

All patients were enrolled in an IRB-approved clinicopathological database and 401 

biorepository in the Interdisciplinary Melanoma Cooperative Group (IMCG) at NYU 402 

Langone Health. The IMCG collects prospective clinical, pathological, and follow-up data 403 

from melanoma patients who present for diagnosis and/or treatment45. 365 H&E-stained 404 

FFPE whole-slides from 324 primary melanomas diagnosed between 1994 to 2013 were 405 

retrieved and digitized at 20x magnification. A single board-certified dermatopathologist 406 

(RHK) reviewed all digitized slides for image quality and excluded images that were 407 

blurry, faded, or did not contain any tumor.  293 images from 257 melanomas were 408 

subsequently annotated by RHK for tumor-rich regions of interest (ROIs) using Aperio 409 

ImageScope software. Driver mutations were previously determined by Sanger 410 

sequencing. 411 

 412 

Software availability 413 

We utilized the adapted Tensorflow pipeline (https://github.com/ncoudray/DeepPATH.git) 414 

to perform our analysis using the Inception v3 CNN architecture.  415 

 416 

Image pre-processing 417 

Whole-slide images were partitioned at 20x magnification into non-overlapping 299x299 418 

pixel “tiles”. This process generated 794,588 total tiles in our dataset, after removing tiles 419 

with more than 50% background (white area of slides). All tiles take the label of the slide 420 

they belong to and are sorted in training, validation and independent sets comprising of 421 
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70%, 15% and 15% of the total number of tiles correspondingly. Tiles of images coming 422 

from the same patient are all included in the same set. Tiles in the train and validation 423 

sets were then converted to TF record format, which is necessary for training of Inception 424 

v3, in groups of 1024 tiles in each TF record file for the training set and 128 tiles for the 425 

validation set.  426 

 427 

Deep learning with Convolutional Neural Network 428 

The Inception v3 architecture is a Convolutional Neural Network (CNN) that utilizes 429 

modules comprised of various convolutions with different kernel sizes and a max pooling 430 

layer. The network was trained on 70% of the tiles from each data set, with 15% of the 431 

tiles used for validation and 15% used for independent testing. The network was trained 432 

for maximum 500,000 iterations on batches of 30 images with a step of 5,000 iterations. 433 

The activation function used in the output layer was softmax. The network’s performance 434 

was monitored based on the precision on the validation set. The best performing model 435 

was chosen when the difference between the precision of the current model and the 436 

minimum precision of the previous 5 models was less than 0.01, indicating a plateau in 437 

precision. The performance of the best model was then evaluated on the independent set 438 

(44 slides) and the AUC was calculated. The network outputs a probability value for every 439 

tile for each class of interest. The tile is assigned to the class with the highest probability. 440 

A heat map for each slide in the test set is generated. The color intensity is analogous to 441 

the probability value of the tile to belong in each class.  442 

 443 

 444 
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Network performance on the data from The Cancer Genome Atlas 445 

71 FFPE slides of primary melanomas from the TCGA were downloaded and tiled into 446 

non-overlapping tiles of 299x299 pixels. All tiles were sorted for testing and TFRecord 447 

files were generated. The slides were passed through the mutation prediction networks 448 

and the average probabilities per slide were used for the AUC calculation.  449 

 450 

Automated tumor selection 451 

Whole images were tiled in non-overlapping tiles of 299x299 pixels. The tiles were sorted 452 

based on their position compared to the manual tumor selection applied by the 453 

dermatopathologist as ‘in’ and ‘out’ tumor, and were divided in train, validation and 454 

independent sets the same way as for the mutation prediction networks. The same 44 455 

slides were kept as the independent set. The Inception v3 model was trained on these 456 

two classes of tiles and the performance of the best performing model on the validation 457 

set was measured on the independent set.  458 

 459 

Annotated and automated mutation prediction 460 

For the annotated model, only tiles belonging inside the annotated tumor area were taken 461 

into consideration. For the automated model, only tiles belonging inside the tumor area 462 

as determined by the tumor annotation network were selected for training. The tiles were 463 

sorted in two categories depending on the mutation classification task and based on the 464 

true label of the slide they belong to.  They were also divided in train, validation and 465 

independent set as before. Inception v3 was trained on the tiles and performance was 466 
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monitored based on the precision on the validation set. The best performing model was 467 

obtained and evaluated on the independent set.  468 

 469 

Sequential network 470 

To apply the sequential model, non-annotated slides of interest were tiled in non-471 

overlapping 299x299 pixel tiles. The tiles were first passed through the automated tumor 472 

selection network which will output a probability for each tile belonging in the tumor area. 473 

Tiles with probability of belonging in the tumor higher or equal than 0.5 were obtained and 474 

passed through the BRAF and NRAS mutation prediction networks to assess the 475 

mutational profile of the slide.  476 

 477 

Statistical analysis 478 

After training and choosing the best performing model on the validation set, model 479 

performance was evaluated using the independent dataset, which is comprised of a held-480 

out population of tiles coming from 44 slides. The probabilities for each slide were 481 

aggregated by the average of probabilities of the corresponding tiles or by the percentage 482 

of tiles positively classified. Receiver Operative Characteristic (ROC) curves and the 483 

corresponding Area Under the Curve (AUC) were generated as a measure of accuracy. 484 

Heat maps allowed visualization of probability differences and regions of interest. 485 

 486 

Multivariate model 487 

The multivariate logistic regression model was built using the glm function in R from the 488 

package ROCR.  489 
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 490 

Receiver Operating Characteristic Curves 491 

ROC curves were generated using the pROC package in R and the p-values were 492 

calculated using the roc.test() function. 493 

 494 

Immunohistochemical analysis of mutated BRAF V600E  495 

Immunohistochemistry (IHC) was performed on 10% neutral buffered FFPE, 4-µm human 496 

archival melanoma sample sections collected on plus slides (Fisher Scientific, Cat# 22-497 

042-924) and stored at room temperature. Unconjugated, mouse anti-human Serine-498 

Threonine-Protein Kinase B-raf (BRAF) V600E, clone VE1 (Abcam Cat# ab228461, Lot# 499 

GR32335840-6) raised against a synthetic peptide within human BRAF (amino acids 550-500 

650) containing the glutamic acid substitution, was used for IHC38, 46.  BRAF antibody was 501 

optimized on known positive and negative colon samples and subsequently validated on 502 

a mixed set 20 known positive/negative samples.  Chromogenic immunohistochemistry 503 

was performed on a Ventana Medical Systems Discovery Ultra using Ventana’s reagents 504 

and detection kits unless otherwise noted. In brief, slides were deparaffinized online and 505 

antigen retrieved for 24 minutes at 95°C using Cell Conditioner 1 (Tris-Borate-EDTA 506 

pH8.5).  BRAF was diluted 1:50 in Ventana antibody diluent (Ventana Medical Systems, 507 

Cat# 251-018) and incubated for 16 minutes at 36°C. Endogenous peroxidase activity 508 

was post-primary blocked with 3% hydrogen peroxide for 4 minutes. Primary antibody 509 

was detected using Optiview linker followed by multimer-HRP incubated for 8 minutes 510 

each, respectively. The complex was visualized with 3,3 diaminobenzidene for 8 minutes 511 

and enhanced with copper sulfate for 4 minutes. Slides were counterstained online with 512 
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hematoxylin for 8 minutes and blued for 4 minutes. Slides were washed in distilled water, 513 

dehydrated and mounted with permanent media. Positive and negative (diluent only) 514 

controls were run in parallel with study sections. Blinded analysis of staining was 515 

performed by a single dermatopathologist (GJ).  516 

 517 

Calculation of BRAF V600E-predicted tumor areas overlap with immunohistochemical 518 

V600E antibody staining. 519 

By looking at the relative positioning between the IHC and H&E slides, a direction of shift 520 

was chosen and the slides were shifted by a small shift of 1 or maximum 2 tiles towards 521 

the observed direction to better align the slides for overlap. Next, the probability 522 

distributions for the tiles falling into the mask applied by a dermatopathologist to select 523 

for the V600E antibody stained area and the probabilities of the ones outside of the mask 524 

were generated. The p value was calculated using a one-sided Wilcoxon rank sum test. 525 

The p values were also adjusted for the number of potential conformations for each slide 526 

(shift by 1, shift by 2 and no-shift) by multiplication with a factor of 3 (multiple testing 527 

correction). 528 

 529 

 530 

531 
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Supplementary Materials 532 

Fig. S1. Mutation prediction classifiers with manual annotation. 533 

Fig. S2. Multivariate logistic regression model evaluating Breslow depth and ulceration 534 
as predictors for mutational status. 535 

Fig S3. Distribution of Breslow Depth for NYU and TCGA cohorts. 536 

Fig S4. Performance of automated tumor selection network. 537 

Fig. S5. Performance of mutation networks after manual vs. automated tumor selection. 538 

Table S1. Distribution of patients and slides within training, validation, and test cohorts. 539 

Table S2. Prediction AUC on melanomas stratified by thickness. 540 

Table S3. Prediction AUC on melanomas stratified by ulceration. 541 

 542 

 543 
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Table 1. Patient characteristics 

Cohorts Training Validation Independent 

Unique Patients (n) 182 43 41 

Mutation  BRAF NRAS WT/WT BRAF NRAS WT/WT BRAF NRAS WT/WT 

n % n % n % n % n % n % n % n % n % 

56 30.8 65 35.7 61 33.5 14 32.6 12 27.9 17 39.5 21 51.2 9 22.0 11 26.8 

Year of 
Diagnosis 

<2000 2 3.6 4 6.2 1 6.2 3 21.4 0 0 1 5.9 1 4.8 0 0 0 0 

2001 - 2010 50 89.3 48 73.8 52 85.2 8 57.1 12 100 12 70.6 19 90.5 9 100 11 100 

>2010 4 7.1 13 20.0 8 13.1 3 21.4 0 0 4 23.5 1 4.8 0 0 0 0 

Age, Avg. +/- Std.  59.4 +/- 
16.7 

61.2 +/- 
17.2 

65.1 +/- 
14.9 

53.9 +/- 
19.9 

70.9 +/- 
16.0 

68.5 +/- 
14.1 

59.0 +/- 
14.8 

59.9 +/- 
14.4 

65.1 +/- 
12.8 

Sex Female 23 41.1 29 44.6 24 39.3 9 64.3 7 58.3 7 41.2 6 28.6 6 66.7 2 18.2 

Male 33 58.9 36 55.4 37 60.7 5 35.7 5 41.7 10 58.8 15 71.4 3 33.3 9 81.8 

Thickness <1.01 mm 8 14.3 18 27.7 20 32.8 2 14.3 3 27.3 3 17.6 3 14.3 2 22.2 3 27.3 

1.01 - 2.0 mm 14 25.0 19 29.2 15 24.6 6 42.9 4 36.4 7 41.2 6 28.6 5 55.6 2 18.2 

2.01 - 4.0 mm 18 32.1 20 30.8 15 24.6 5 35.7 1 9.1 4 23.5 5 23.8 1 11.1 4 36.5 

> 4.0 16 28.6 8 12.3 11 18.0 1 7.1 3 27.3 3 17.6 7 33.3 1 11.1 2 18.2 

Thickness, Median (IQR) 2.7 (1.7 – 
4.6) 

1.8 (1 – 
2.7) 

1.7 (0.9 – 
3.0) 

1.4 (1.2 – 
3.3) 

1.8 (1.0 -
3.9) 

1.5 (1.1 – 
3.0) 

2.7 (1.6 – 
5.5) 

1.5 (1.0-
1.9) 

2.3 (1.1 – 
3.0) 

Histologic 
subtype 

Superficial 
Spreading 

22 39.3 29 44.6 32 52.5 8 57.1 6 50.0 9 52.9 9 42.9 4 44.4 5 45.5 

Nodular 31 55.4 34 52.3 25 41.0 6 42.9 6 50.0 8 47.1 12 57.1 5 55.6 6 54.5 

Lentigo 
Maligna 

0 0.0 0 0.0 1 1.6 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 

Desmoplastic 3 5.4 1 1.5 3 4.9 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 

Unknown 0 0.0 1 1.5 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 

Ulceration Absent 30 53.6 44 67.7 40 65.6 9 64.3 7 58.3 11 64.7 11 52.4 6 66.7 6 54.5 

Present 25 44.6 20 30.8 21 34.4 5 35.7 5 41.7 6 35.3 10 47.6 3 33.3 5 45.5 

Unknown 1 1.8 1 1.5 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 

Mitotic 
Index 

Absent 8 14.3 8 12.3 12 19.7 2 14.3 1 8.3 2 11.8 4 19.0 0 0.0 1 9.1 

Few 14 25.0 23 35.4 25 41.0 1 7.1 3 25.0 5 29.4 3 14.3 7 77.8 5 45.5 

Moderate 16 28.6 14 21.5 10 16.4 6 42.9 3 25.0 5 29.4 5 23.8 1 11.1 2 18.2 

Many 17 30.4 20 30.8 14 23.0 5 35.7 5 41.7 5 29.4 9 42.9 1 11.1 3 27.3 

Unknown 1 1.8 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 

AJCC 
Stage 

I 15 26.8 31 47.7 31 50.8 7 50.0 7 58.3 8 47.1 6 28.6 6 66.7 3 27.3 

II 23 41.1 21 32.3 18 29.5 1 7.1 2 16.7 6 35.3 9 42.9 2 22.2 3 27.3 

III 18 32.1 12 18.5 12 19.7 6 42.9 3 25.0 3 17.6 6 28.6 1 11.1 5 45.5 
IV 0 0.0 1 1.5 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 

Anatomic 
Site 

Axial 29 51.8 21 32.3 27 44.3 3 21.4 3 25.0 7 41.2 11 52.4 4 44.4 4 36.4 

Extremity 17 30.4 34 52.3 22 36.1 10 71.4 9 75.0 9 52.9 7 33.3 5 55.6 2 18.2 

Head and 
Neck 

10 17.9 10 15.4 12 19.7 1 7.1 0 0.0 1 5.9 3 14.3 0 0.0 5 45.5 

Status Alive 33 58.9 40 58.9 42 58.9 9 58.9 8 58.9 12 58.9 11 58.9 8 58.9 6 54.5 

Died of 
Melanoma 

20 37.0 18 27.7 14 25.5 5 45.5 4 30.8 1 5.3 9 47.4 1 12.5 5 71.4 

Died of Other 
Cause  

3 5.1 7 9.7 5 7.6 0 0.0 0 0.0 4 19.0 1 4.5 0 0.0 0 0.0 

Recurrence No 31 55.4 40 61.5 36 59.0 6 42.9 9 75.0 14 82.4 9 42.9 7 77.8 2 18.2 

Yes 25 44.6 25 38.5 25 41.0 8 57.1 3 25.0 3 17.6 12 57.1 2 22.2 9 81.8 
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Supplemental Material 
 
 

                       
 
Supplemental Figure 1. Mutation prediction classifiers with manual annotation. A) Receiver 
Operating Characteristic curve (ROC) and AUC for BRAF vs “non-BRAF” mutation prediction on the 
entire independent set. B) Receiver Operating Characteristic curve (ROC) and AUC for NRAS vs “non-
NRAS” mutation prediction on the entire independent set.  
 
 

 
Supplemental Figure 2. ROC curves for the multivariate logistic regression model. The Breslow depth 
and ulceration variables are not sufficient alone to predict BRAF and NRAS mutations in melanomas, 
yielding random AUCs.  

 
 
 
 
 

AUC = 0.75 AUC = 0.77

B 
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Supplemental figure 3 
Breslow depth distribution for our NYU cohorts and the external TCGA validation cohort. It can be 
observed that the TCGA melanomas are overall much thicker than the ones in our cohort.  
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Supplemental Figure 4. Performance of automated tumor selection network. 

A) AUC aggregated per slide 
B) AUC per tile 

 
Supplemental Figure 5. Performance of mutation networks after manual vs. automated tumor 
selection 

A) BRAF mutation model 
B) NRAS mutation model 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/610311doi: bioRxiv preprint 

https://doi.org/10.1101/610311
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplemental Table 1 
The distribution of the number of patients and the corresponding number of slides within each cohort are 
shown. No patients within the training and validation cohorts overlap with those in the independent 
cohort.  
 

 Number of Patients Number of slides 
WT BRAF NRAS TOTAL WT BRAF NRAS TOTAL 

Train/Validation 72 73 75 220 80 87 82 249 
Independent 15 13 9 37 16 16 12 44 
TOTAL 87 86 84 257 96 103 94 293 

 

Supplemental Table 2 
BRAF and NRAS prediction AUCs on the independent NYU test set and the TCGA FFPE cohort for 
different values of Breslow depth.  
 

 
AUC value for BRAF mutation prediction AUC value for NRAS mutation prediction 

Tumor stage NYU cohort TCGA cohort NYU cohort TCGA cohort 

<=1mm 0.83  
95% CI[0.45-1] 

- 0.73  
95% CI[0.32-1] 

- 

<=5mm 0.74  
95% CI[-0.58-0.89] 

0.71  
95% CI[0.35-1] 

0.84  
95% CI[0.70-0.98] 

0.54  
95% CI[0.07 - 1] 

<=10mm 0.75  
95% CI[0.60-0.90] 

0.66  
95% CI[0.41-0.91] 

0.77  
95% CI[0.58-0.96] 

0.68  
95% CI[0.32-1] 

<=15mm - 0.6  
95% CI[0.37-0.83] 

- 0.66  
95% CI[0.40-0.92] 

<=20mm - 0.61  
95% CI[0.39-0.83] 

- 0.66  
95% CI[0.40-0.92] 

 
 
 
Supplemental Table 3 
BRAF and NRAS prediction AUCs on the independent NYU test set and the TCGA FFPE cohort for slides 
with different ulceration status.  
 

 
AUC value for BRAF mutation prediction AUC value for NRAS mutation prediction 

Ulceration  NYU cohort TCGA cohort NYU cohort TCGA cohort 

Present 0.79  
95% CI[0.56-1] 

0.55  
95% CI[0.35-0.71] 

0.45  
95% CI[0.07-0.83] 

0.45  
95% CI[0.24-0.67] 

Absent 0.71  
95% CI[0.50-0.92] 

0.6  
95% CI[0.22-0.98] 

0.92  
95% CI[0.81-1] 

0.89  
95% CI[0.67-1] 
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