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Abstract

DNA-based molecular assays for determining mutational status in melanomas are time-
consuming and costly. As an alternative, we applied a deep convolutional neural network
(CNN) to histopathology images of tumors from 257 melanoma patients and developed a
fully automated model that first selects for tumor-rich areas (Area under the curve
AUC=0.98), and second, predicts for the presence of mutated BRAF or NRAS. Network
performance was enhanced on BRAF-mutated melanomas <1.0 mm (AUC=0.83) and on
non-ulcerated NRAS-mutated melanomas (AUC=0.92). Applying our models to
histological images of primary melanomas from The Cancer Genome Atlas database also
demonstrated improved performances on thinner BRAF-mutated melanomas and non-
ulcerated NRAS-mutated melanomas. We propose that deep learning-based analysis of
histological images has the potential to become integrated into clinical decision making

for the rapid detection of mutations of interest in melanoma.
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Introduction

Mutations in the BRAF oncogene are found in 50-60% of all melanomas’, while NRAS
mutations comprise an additional 15-20%. With the development of targeted therapies?®
3, determining the mutational status of BRAF and NRAS has become an integral
component for the management of Stage IlI/IV melanomas. DNA molecular assays such
as Sanger sequencing, pyrosequencing, and next generation sequencing (NGS) are the
current gold standard to determine mutational status*. However, these methods are costly
and time-consuming. Immunohistochemistry, real-time polymerase chain reaction (PCR),
and automated platforms® © 7 are rapid and less expensive alternatives, but are limited to
screening for specific mutations, such as BRAF-V600E/K or NRAS-Q61R/L, and may
potentially fail to identify rare mutational variants in patients that might have otherwise

benefited from adjuvant targeted therapy.

Deep Convolutional Neural Network (CNN) methods to predict mutational status have
been demonstrated in other solid tumors. CNNs utilize multiple layers of convolution
operations, pooling layers, and fully connected layers to perform classification of images
to classes of interest through identification of various image features often not directly
detectable by the human eye. Deep CNNs, which utilize non-linear learning algorithms,
have been successful in manipulating and processing large data sets, particularly for
image analysis®. Using images from The Cancer Genome Atlas (TCGA), a collaborative
cancer genomics database®, our group has previously developed a machine learning
algorithm that can predict for 6 different genes, including EGFR and STK11, in lung
carcinoma'®. In breast cancer, deep learning applied to tumor microarray images has

been shown to predict for ER status with an 84% accuracy".
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In this study, we adapt our previous deep learning algorithm to a different dataset
comprised of histopathology images of primary melanomas resected from patients
prospectively enrolled in a single-institution IRB-approved clinicopathological and
biorepository in order to develop a model from tissue specimens that are more
representative of what might be seen in routine clinical practice. While molecular testing
is typically performed on the most recent metastatic sample, testing on the primary tumor
can be performed if metastatic tissue is unavailable or carries a low tumor burden'® 13,
We present our deep learning models for the screening of BRAF and NRAS mutations in

primary melanomas, with the purpose of exploring its potential clinical utility.

Results

Patient characteristics

324 primary melanomas from 266 unique patients were included in this study and divided
into training (n=182), validation (n=43), and independent (n=41) cohorts, without overlap
between the patient subsets. Within each cohort, BRAF-mutant, NRAS-mutant, and
WT/WT melanomas were represented (Table 1). The average ages of patients with
BRAF-mutant melanoma were 59.4, 53.9, and 59-years old in training, validation, and
independent cohorts, respectively. For patients with NRAS-mutant melanoma, the
average ages were 61.2, 70.9, and 59.9-years old; and for WT/WT patients, the average

ages were 65.1, 68.5, and 65.1-years old.
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97  Dataset characteristics

98 365 formalin-fixed paraffin embedded (FFPE) hematoxylin and eosin (H&E)-stained
99  slides from 324 primary melanomas were digitized and reviewed for quality control. After
100  excluding images that were blurry, faded, or contained no tumor, 293 images from 257
101 melanomas were available for analysis. 103 BRAF-mutant, 94 NRAS-mutant, and 96
102 WT/WT melanomas images were included in the study. V60OE comprised 70% of the
103  BRAF mutations. NRAS Q61R/Q61K comprised 80% of the NRAS mutations.

104

105 Computational workflow for whole-slide histopathology image analysis

106  Our computational workflow with the CNN Inception v3 is shown in Fig. 1. and is common
107 across all our classifiers (see Methods). The aim of our analytical approach was to: (1) to
108 predict the presence of BRAF and NRAS mutations using manually annotated slides; and

109  (2) to automate the annotation process by the CNN.

H&E slide
0 |
f —pl |_.| ng l—. : Inception v3
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Figure 1. Computational Workflow To train the Inception v3 CNN, slides are tiled to non-overlapping
299x299 pixel tiles and assigned to training, validation and independent sets comprising of 70%, 15% and
15% of the total number of tiles, respectively. Tiles of slides belonging to the same patient are considered
together in a data set. After conversion to TF Record format, training is performed. The best performing model
on the validation data is evaluated on the independent set.
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112 Predicting BRAF and NRAS mutation on manually annotated whole-slide images

113 Because of tissue heterogeneity in skin specimens, tumor-rich areas were initially
114  manually annotated as regions of interest (ROI). Normal skin and associated
115 appendages, connective and subcutaneous tissue, necrosis, hemorrhage, and
116  aggregates of dense inflammation were excluded from training. The network was trained
117 on tiled images of manually annotated ROI, with 70% of images used for training, 15%
118  used for validation, and 15% used for independent testing (Supplemental Table 1).
119  Model performance achieved a per slide Area Under the Curve (AUC)=0.75 [95% CI:
120  0.60,0.90] for predicting BRAFM't (Supplemental Figure 1) and AUC=0.77 [95% CI:
121 0.58,0.96] for predicting NRASM' (Supplemental Figure 2).

122

123 We next sought to elucidate some of the parameters that could influence network
124 performance. To evaluate the role of tumor thickness, tumors from the independent cohort
125 were sorted by Breslow depth. Model performance for predicting mutated BRAF improved
126  for slides with a tumor thickness <1.0 mm, with an AUC=0.83 [95% CI: 0.45,1.0] (Fig. 2A,
127  left). Conversely, there were reductions in the AUC to 0.74 [95% CI: 0.58,0.89] for tumors
128  >1.0-5.0 mm, and to 0.75 [95% CI: 0.60,0.90] for very thick tumors >5.0-10mm. One
129  potential explanation for this difference is that BRAF-mutated melanomas are associated
130  with a distinctive epidermal component, such as increased pagetoid scatter and
131  intraepidermal nesting of melanocytes'. These histologic features may carry more weight
132 in thinner tumors compared to deeper and more invasive melanomas. NRAS mutation
133 prediction was not consistently dependent on tumor thickness (Fig 2B, left;

134  Supplemental Table 2).
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Figure 2. Exploration of parameters contributing to network performance A) BRAF mutation
prediction. ROC plots for melanomas <1.0 mm, >1.0-5.0 mm and >5.0-10mm with the network trained
on manually annotated slides demonstrate improved performance for thinner tumors (left). ROC plots
for melanomas based on ulceration status show improved performance if ulceration was present
(right). B) NRAS mutation prediction. ROC curves for melanomas based on Breslow depth show no
significant differences (left). NRAS mutation prediction is improved for melanomas without ulceration
(right).
136
137  We also examined whether ulceration status, as indicated by the original pathology report,
138 can affect network performance. For the BRAF prediction model, an AUC=0.79 [95% CI:
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139 0.56, 1.00] was achieved for melanomas with ulceration and an AUC=0.71 [95% CI: 0.50,
140  0.92] for melanomas without ulceration (Fig 2A, right). The opposite trend was observed
141 with the NRAS model, where ulcerated melanomas led to a decreased AUC to 0.45 [95%
142 Cl 0.07-0.83] and non-ulcerated melanomas had an increased AUC to 0.92 [95% CI:
143 0.81,1.00] (Fig 2B, right). Notably, these results were achieved on manually annotated
144 ROls that excluded areas of ulceration, indicating that the network is not learning from
145 the presence of an ulceration on the slide itself. Rather, elements in the tumor
146 microenvironment that influence the ulceration status are potentially playing an important
147 role in determining NRAS mutation status.

148

149 In order to confirm that tumor thickness and ulceration alone are not predictors of
150  mutational status, we built a multivariate logistic regression model where Breslow depth
151 and ulceration status are the predictive variables for the presence of mutated BRAF or
152 NRAS. The model was trained on the same training dataset used for our deep CNN. This
153  model performed at random for predicting either mutated BRAF and NRAS, with
154  AUC=0.53 [95% CI: 0.34,0.72] and AUC=0.52 [95% CI: 0.30,0.75], respectively
155  (Supplemental Figure 3). This demonstrates that the necessary features for predicting
156  mutation status are provided by the histopathological slide.

157

158  Performance for the mutation network can be visualized with a probability heat map,
159  where the presence of the mutation of interest is shown in red and intensity of color
160  corresponding to the probability of mutation. Fig. 3A demonstrates representative H&E

161  sections of melanomas with their corresponding probability heat maps for BRAF-mutant
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162 (left), and 2 correctly identified non-BRAF-mutant tumors: e.g. NRAS-mutant (center) and
163  WT/WT melanoma (right), respectively. Similarly, Fig. 3B demonstrates probability heat
164  maps for the NRAS prediction network, with correctly identified NRAS-mutant (left) and
165 non-NRAS-mutant melanoma. Interestingly, in both BRAF-mutant (center) and WT/WT
166  melanomas (right), there are regions identified by the network to harbor mutated NRAS,

167  raising the possibility of intratumoral heterogeneity.

A

Pertile probability

1 i 0.5 0.0

BRAF mut BRAF WT

Per tile probability
1.0 0.5 0.0

NRAS mut NRAS WT

Figure 3. Probability heat maps for mutation prediction A) H&E slide section and corresponding
heat map of a correctly classified BRAF™ melanoma (left), NRAS™! melanoma (center) and WT/WT
melanoma (right) slides by the BRAF mutation prediction network. B) H&E slide section and
corresponding heat map of a correctly classified NRAS™! melanoma (left), BRAF™ melanoma (center)
and WT/WT melanoma (right) slides by the NRAS mutation prediction network.
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170

171 Predicting mutated BRAF and NRAS using images from The Cancer Genome Atlas

172 database

173 An image dataset of digitized FFPE H&E-stained slides of primary melanomas were
174  retrieved from TCGA, a collaborative and publicly available research database comprised
175 of tumor tissue and genomic data from multiple cancer types®. This dataset was used as
176  an independent cohort, which comprised of 40 BRAF-mutant cases, 9 NRAS-mutant
177  cases, and 22 WT/WT cases, summing up to 71 cases in total. After quality control, 68
178  images were approved for the independent validation.

179

180  Breslow depth information was available for 32 out of the 68 slides'>. Melanomas from
181  the TCGA database were skewed towards very thick tumors with a median of 7.5mm.
182 There were no tumors less than 1.0mm in depth. In comparison, the median depths of
183 tumors in our training, validation and test cohorts were 2.00, 1.45, and 1.90, respectively
184  (Supplemental Figure 4). AUCs of mutation prediction were calculated for melanomas
185  <1.0 mm, >1.0-5.0 mm, >5.0-10 mm, >10-15mm, and >15-20mm for NYU and TCGA
186  cohorts (Supplemental Table 2). For BRAF mutation prediction on TCGA images, the
187  network performed better for melanomas < 5 mm. AUC values decreased with thicker
188 tumors. This trend is similar to the effect tumor thickness had on our NYU test cohort (Fig.
189 4A). Tumor thickness did not affect network predictive ability for mutated NRAS on TCGA
190  tumors, as was previously observed in our own cohort (Supplemental Table 2).

191
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192 Regarding the effect of ulceration on network performance, TCGA melanomas without
193 ulceration (i.e., T2a, T3a and T4a, n=10) were compared to melanomas with ulceration
194 (i.e., T2b, T3b and T4b, n=56). The ulceration status of TCGA tumors did not have a
195  significant impact on BRAF mutation prediction (Supplemental Table 3), consistent with
196  our observations in the NYU cohort. Importantly, network performance for predicting
197 mutated NRAS was significantly enhanced for non-ulcerated melanomas with an
198  AUC=0.89 [95% CI: 0.67-1.0] compared to AUC=0.45 [95% CI: 0.24-0.67] for ulcerated
199  melanomas, reproducing the difference that ulceration status has on NRAS mutation

200  prediction in our own cohort (Fig. 4B, Supplemental Table 3).
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Figure 4. Validation of network performance on an independent cohort from TCGA. A) AUC
variation for different Breslow depth values on the independent NYU test set and the TCGA cohort.
BRAF mutation prediction is improved for thinner melanomas both on the NYU test set and the TCGA
external validation cohort. B) NRAS mutation prediction is improved for melanomas without ulcerations
both on the NYU independent cohort and on the TCGA external validation cohort.

201

202  Automated selection of primary melanomas on whole slide histopathology images

203  In order to improve the clinical application of our deep learning models, we attempted to
204 automate the identification of melanoma by processing tiled images as “in” the ROI or

205 “out” of the ROI. Model performance achieved a per slide AUC=0.98 [95% CI: 0.95,1.00]
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and a per tile AUC=0.92 [95% CI: 0.922,0.924] (Fig. 5A). H&E-stained non-annotated
whole slides of BRAF-mutant, NRAS-mutant and WT/WT melanomas are shown in Fig.
5B-D. along with their corresponding network-generated probability heat maps, where
orange indicates tumor, gray indicates non-tumor, and the intensity of the color correlates
with the probability gradient. Notably, there is excellent concordance between the
pathologist and the network. Network performance was independent of melanoma

mutational status (Supplemental Figure 5).

A ROC curve - Automated Tumor Selection
1.00

0.75-

&
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=PerSlide AUC=0.98
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0.00- }
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FPR
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L -
Tumor Surrounding

tissue

Figure 5. Automating tumor selection for a fully automated sequential workflow A) ROC and AUC for the
automated tumor selection network. H&E slide section and corresponding heat map of tumor annotation on B) a
BRAF-mutated slide C) a NRAS-mutated slide and D) a WT/WT slide.

We then examined whether the automated tumor selection network could be combined
with the mutation prediction networks in a sequential manner. The computational

workflow as outlined in Fig. 1. was repeated on all non-annotated images that were tiled
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221  and passed through the automated tumor selection network. Tiles assigned with a
222 probability of belonging to tumor area (probability >= 0.5) were filtered and split in training,
223 validation and independent sets. The Inception v3 architecture was re-trained on tiles
224  selected by the automated network for mutation prediction. Importantly, the 44 slides that
225  comprised the independent set for the algorithm trained on manually annotated images
226  were maintained as the independent set for the algorithm trained on network selected
227  tumors. In this fully automated network, model performance achieved an AUC=0.75 [95%
228  CI: 0.58, 0.89] for predicting mutated BRAF and an AUC=0.70 [95% CI: 0.47, 0.90] for
229  predicting mutated NRAS (Supplemental Figure 6). These results are consistent with
230 model performance trained on the manual annotations, indicating that the automated
231 tumor selection network performs as well as the dermatopathologist and does not impact
232 mutation prediction performance. Fig. 6. outlines the complete workflow of mutation
233 prediction for melanoma H&E histopathology slides using sequential networks for

234  automated tumor selection and mutation prediction.

Select automatically
annotated tumor area

Automated tumor BRAF vs non-BRAF NRAS vs non-NRAS

New H&E slide — annotation Mutation prediction Mutation prediction
network Network Network

) Slide _
Preprocessing
Per tile probability Per tile probability
1.0 05 0.0 1.0 0.5 0.0

ReEte pobabily P 1 [ -

'; 03 90 BRAFmUt  BRAFWT NRAS mut  NRAS WT
Tumor Surrounding
tissue l
Determine mutational status of
the slide
235 Figure 6. Fully Automated Sequential Workflow. Non-annotated whole slides are processed, tiled,

and passed through the automated tumor annotation network which assigns a probability to each tile
of belonging in the tumor. Tiles with probability > =0.5 are subsequently passed through the mutation
prediction network for determining the mutational status of the slide of interest.
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236 Association of network mutation localization with immunohistochemical analysis

237  To further corroborate network accuracy, we examined whether network-generated
238  probability heat maps are true visual representations of mutation localization. An
239 additional set of 39 BRAFV6E cases underwent automated algorithmic prediction and
240  immunohistochemical (IHC) analysis with the monoclonal VE1 antibody, a reliable
241  screening tool for detecting the specific VBOOE mutation'®. The tumor selection algorithm
242 was applied with a threshold of 0.1 to remove tiles with very low tumor probability. The
243  top 10 cases predicted to be BRAFM' were subjected to IHC analysis for BRAFY600E
244  staining. Regions of positive IHC staining were manually annotated by a single
245 dermatopathologist blinded to the mutation status of the cases. In Fig. 7A, the annotated
246  mask of positive IHC staining was overlaid on the network-generated probability heat map
247  for our highest confidence prediction. The average probability of tiles falling inside vs.
248  outside the selected mask was calculated (see Methods) and displayed as the
249  corresponding box plot in Fig. 7B. Tiles containing BRAFM' were significantly more likely
250  to fall within the IHC mask compared to outside the mask (p<3e-08), indicating that the
251  network indeed localizes mutated BRAF. Similar results were obtained for the top 10
252 ranked predicted BRAFV®0E cases, for the majority of which there was statistically
253 significant concordance between the heat map and IHC (Fig. 7C). Surprisingly, IHC failed

254 to detect mutated BRAF in two of these ten high confidence cases (Fig. 7D).
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Figure 7. BRAF V600E-predicted tumor areas overlap with immunohistochemical V600E
256 antibody staining. A) Annotated regions of positive IHC staining demonstrating overlap with the
network-generated probability heat map. H&E-stained tissue section (top left), IHC-stained tissue
section (bottom left), probability heat map (top right), and overlay (bottom right) are shown. B) Boxplot
257 of the probability distributions for tiles inside and outside the IHC mask. Tiles predicted to harbor
BRAFM were more likely to fall inside the IHC mask (p<3e-09). C) Boxplot distributions and IHC-heat
258 map overlays of high-probability BRAFM" cases. P-values for statistically significant cases: Case 1:
p=9e-08; Case 3: p=0.03; Case 5, right: p=0.012; Case 6: p=0.018; Case 10: p=6.6e-16. D) Case 2
259 with representative H&E-stained section, IHC-stained section, and probability heat map and Case 9
with representative H&E-stained section, IHC-stained section, and probability heat map.
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261  Discussion

262 In melanoma, deep learning has previously been applied to classify pigmented lesions as
263 benign vs. malignant using clinical'” or dermoscopic’® images with impressive accuracy.
264  Nevertheless, histopathological examination remains the gold standard for the diagnosis
265 of melanoma. In patients with localized disease, surgical excision is curative. For
266 advanced melanomas, the development of targeted therapies, such as BRAF and MEK
267 inhibitors, and immunotherapies, such as anti-CTLA4 and anti-PD1 antibodies, have
268  substantially increased median overall survival®. Selecting the optimal treatment in these
269  patients depends, in part, on determining the mutational status of the BRAF oncogene.
270  While the ideal treatment regimen for NRAS-mutated melanomas is still unclear,
271 combination therapy with MEK inhibition is under investigation3. Mutational testing is
272 therefore routinely performed on Stage Il and IV melanomas. Here, we use a deep
273 learning approach on whole slide histopathology images to predict for BRAF and NRAS
274 driver mutations in primary melanomas.

275

276  Specific morphologic signatures associated with mutated BRAF have been described
277  independently with dermoscopy'?, reflectance confocal microscopy?®, and histology' 21.
278  Histologic features include greater pagetoid scatter, intraepidermal nesting, epidermal
279 thickening, better circumscription, larger rounder and more pigmented melanocytes, and
280  less solar elastosis. However, attempts to develop binary decision trees to predict for the
281  BRAF mutation using histology alone achieved a predictive accuracy of only 60.3%?2". In
282 our study, we corroborate that BRAF mutations lead to specific morphologic changes that

283  can be detected through deep learning and demonstrate that network performance for
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284  predicting mutated BRAF is improved with thinner tumors with an accuracy of 83%. As
285  several of the morphologic features described to be specific for mutated BRAF
286  predominantly affect the epidermis, it may be the case that it is easier for the network to
287  detect these features in thinner tumors. In studies correlating BRAF mutations and tumor
288 thickness, some have found BRAF mutations to be associated with thinner tumors?? while
289  others have reported either an inverse?3 24 or no relationship?® 26 with Breslow depth.
290

291  Evaluating the effect of ulceration status on our institutional cohort suggests an
292 association between ulceration and mutated BRAF melanomas, as there was a modest
293 improvement in AUC for predicting mutated BRAF in ulcerated melanomas. In a logistic
294  regression model using clinicopathological features, only ulceration and histologic
295  subtype were found to be significant predictors for mutated BRAF?%. Ulceration may be
296  due to downregulation of genes involved in cell adhesion pathways through copy number
297 losses on chromosomes 6q and 10qg. Losses at 10923-26 have been connected with
298  BRAF mutations?’, providing support for an association with an ulcerative state.

299

300 So far, NRAS-mutated melanomas have non-specific histologic findings, such as greater
301 mitotic index?®, fewer tumor-infiltrating lymphocytes?®, and nodular histologic subtypes=°.
302 Not surprisingly, attempts to predict for NRAS mutation using pre-defined morphologic
303 features performed at random' 2" and studies examining NRAS-mutated melanomas
304 and parameters such as tumor thickness and ulceration have yielded conflicting results?>
305 3132 Using deep learning, we demonstrate that NRAS mutations can be predicted from

306  histopathology images, indicating that these specific morphologic features have not yet
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307 been fully described. It is possible these features are detectable on the nuclear or
308 chromosomal level, as NRAS mutations more frequently exhibit chromosomal loss of the
309 11923.3-11925 region, whereas BRAF mutations are associated with loss at 10q23-26
310 and gains at chromosome 7 and 1923-g252’. This provides a structural basis that could
311 explain, in part, how our deep learning methods are able to classify these mutations.
312 Intriguingly, in non-ulcerated melanomas, network performance to predict mutated NRAS
313 reached AUC=0.92 in our institutional cohort. Ulceration may represent a distinct
314  biological subtype as it is the second most significant prognostic factor in melanoma
315 survival. In addition to genetic alterations, it has been proposed that the tumor-infiltrating
316 lymphocytes (TILs) are a critical factor in ulcerated melanomas33. The importance of TILs
317 for prognosis and response to treatment is an area of active investigation in
318  immunooncology; and deep learning has been used to create spatial maps of TILs and
319  correlating TIL patterns with survival®4. Thus, there may be contributions from the tumor
320 microenvironment that influence network performance in a more substantial manner for
321 NRAS-mutated melanomas.

322

323 Cross-validating our network on all images of primary melanomas from TCGA resulted in
324  a reduced performance compared to our institutional cohort. TCGA primary melanoma
325  specimens are enriched for thicker tumors, with a median of 2.7mm and a mean of
326  4.9mm’S. We verified that this cohort contained thicker melanomas, with a median depth
327 of 7.5mm at the time of initial diagnosis. Our network model was trained on melanomas
328  with a more equitable distribution among all tumor stages (Supplemental Figure 3).

329  Nevertheless, we were able to corroborate some of the observed trends with subgroup
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330 analysis. Although there were no TCGA melanomas thinner than 1.0 mm, network
331  performance for predicting mutated BRAF was greatest in melanomas < 5.0 mm, with a
332 continual reduction of performance as tumor thickness increased. Interestingly,
333 extrapolating BRAF network performance on the TCGA dataset in Fig 4A leads to a
334  predicted AUC of approximately 0.80 on melanomas <1.0 mm, similar to the AUC of 0.83
335  obtained on our institutional cohort. In addition, we again found that the absence of an
336  ulceration is an important factor for predicting mutated NRAS, with an AUC=0.89 on
337  TCGA images.

338

339 With respect to existing rapid screening tests, it is unclear to what extent
340  immunohistochemistry is being used in clinical practice. Although antibodies to detect
341 BRAFVY8%%E and NRASQ6IR gpecific mutations have reported high sensitivities and
342 specificities®, known limitations of interpretation include: variations in staining, equivocal
343 or ambiguous staining in tumors with high melanin content (>10%), samples with <10%
344 of tumor content®®, and false negatives in inappropriately fixed tissue. Furthermore,
345  despite shorter turnaround times®, sample preparation and slide cutting still incur
346  additional time and cost. For these reasons, IHC requires optimized and standardized
347  testing protocols3® and interpretation of results by an experienced pathologist.

348

349 In our study, we utilize IHC analysis with the monoclonal VE1 antibody to further
350  substantiate the accuracy of our model by assessing the overlay between positive IHC
351  staining of BRAFV6%%E on tissue sections and network-generated probability heat maps.

352 In 10 high probability BRAFM!t cases, 6 cases demonstrated excellent concordance
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353  between positive IHC staining and the heat map, 2 cases showed no statistically
354  significant overlap, and 2 cases were misidentified by IHC as negative. One of these false
355 negative cases was noted by the pathologist to contain high amounts of background
356  pigment, highlighting certain advantages deep learning may have over current screening
357  methods.

358

359  Because whole slide image analysis will be a crucial feature for clinical adaptability, we
360  fully automated our mutation prediction by first applying a tumor selection model on non-
361  annotated images, achieving an AUC=0.98. The high discriminatory power of our model
362 is demonstrated by the ability of the network to identify melanomas independent of
363 mutation status (Supplemental Figure 5). Importantly, the performance of the fully
364 automated model was comparable to the manual annotation model across all our
365  analyses.

366

367  With the recent FDA approval of the first whole slide imaging system for primary diagnosis
368 in pathology®’, the digitization of slides seems poised to be integrated into routine clinical
369  practice. In the context of our mutation prediction model, primary melanomas could be
370  rapidly screened on initial H&E slides. While we did not utilize metastatic melanoma
371  samples in this study over concerns of suboptimal training on a smaller dataset, a number
372 of studies demonstrate mutational testing on the primary tumor is an acceptable
373 alternative®® 3% 49, Our BRAF model could potentially be used in conjunction with IHC
374  screening, where concordant cases do not require confirmatory sequencing.

375 Alternatively, cases that were negative for the BRAFV600E mutation by IHC can be
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376  analyzed by deep learning in order to identify false negatives or non-V60OE BRAF
377  mutants in patients who would benefit from targeted therapy. As others have advocated
378  using multiple detection methods for challenging samples*' or to minimize technique-
379  related discordancy*?, additional rapid and cost-effective mutational screening techniques
380 would be highly valuable. Regarding our NRAS model, additional training with an
381 increased sample size at 40x image magnification can improve overall network
382 performance. Intriguingly, our network performs particularly well on non-ulcerated, NRAS-
383 mutated melanomas, suggesting there may be contributions in the tumor
384  microenvironment that warrant further study.

385

386  There is great promise for advanced computational approaches to be integrated into
387  clinical care. Beyond predicting mutations, our study lays the groundwork for more
388  sophisticated deep learning models based on histopathology images, such as predicting
389  for treatment responders vs. non-responders or even survival outcomes, as has been
390  previously demonstrated in lung cancers*® and gliomas**. We present a fully automated
391  deep CNN model that accurately differentiates melanomas from benign tissue and uses
392 morphologic features to predict the presence of BRAF or NRAS driver mutations. Not only
393 has this approach provided additional insight into how these mutations may affect tumor
394  structural characteristics and its surrounding environment, our models have the potential
395  to complement existing mutation screening assays, with the advantage of significantly
396  reducing costs, and importantly, expediting the decision-making process for treatment.
397

398
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399  Materials and Methods

400 Dataset of whole-slide images

401  All patients were enrolled in an IRB-approved clinicopathological database and
402  biorepository in the Interdisciplinary Melanoma Cooperative Group (IMCG) at NYU
403  Langone Health. The IMCG collects prospective clinical, pathological, and follow-up data
404  from melanoma patients who present for diagnosis and/or treatment*°. 365 H&E-stained
405  FFPE whole-slides from 324 primary melanomas diagnosed between 1994 to 2013 were
406  retrieved and digitized at 20x magnification. A single board-certified dermatopathologist
407  (RHK) reviewed all digitized slides for image quality and excluded images that were
408  blurry, faded, or did not contain any tumor. 293 images from 257 melanomas were
409  subsequently annotated by RHK for tumor-rich regions of interest (ROIs) using Aperio
410 ImageScope software. Driver mutations were previously determined by Sanger
411  sequencing.

412

413 Software availability

414  We utilized the adapted Tensorflow pipeline (https://github.com/ncoudray/DeepPATH.qit)

415 to perform our analysis using the Inception v3 CNN architecture.

416

417 Image pre-processing

418  Whole-slide images were partitioned at 20x magnification into non-overlapping 299x299
419  pixel “tiles”. This process generated 794,588 total tiles in our dataset, after removing tiles
420  with more than 50% background (white area of slides). All tiles take the label of the slide

421  they belong to and are sorted in training, validation and independent sets comprising of
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422 70%, 15% and 15% of the total number of tiles correspondingly. Tiles of images coming
423 from the same patient are all included in the same set. Tiles in the train and validation
424  sets were then converted to TF record format, which is necessary for training of Inception
425 v3, in groups of 1024 tiles in each TF record file for the training set and 128 tiles for the
426  validation set.

427

428  Deep learning with Convolutional Neural Network

429  The Inception v3 architecture is a Convolutional Neural Network (CNN) that utilizes
430  modules comprised of various convolutions with different kernel sizes and a max pooling
431  layer. The network was trained on 70% of the tiles from each data set, with 15% of the
432 tiles used for validation and 15% used for independent testing. The network was trained
433 for maximum 500,000 iterations on batches of 30 images with a step of 5,000 iterations.
434  The activation function used in the output layer was softmax. The network’s performance
435 was monitored based on the precision on the validation set. The best performing model
436 was chosen when the difference between the precision of the current model and the
437  minimum precision of the previous 5 models was less than 0.01, indicating a plateau in
438  precision. The performance of the best model was then evaluated on the independent set
439 (44 slides) and the AUC was calculated. The network outputs a probability value for every
440 tile for each class of interest. The tile is assigned to the class with the highest probability.
441 A heat map for each slide in the test set is generated. The color intensity is analogous to
442 the probability value of the tile to belong in each class.

443

444
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445  Network performance on the data from The Cancer Genome Atlas

446 71 FFPE slides of primary melanomas from the TCGA were downloaded and tiled into
447  non-overlapping tiles of 299x299 pixels. All tiles were sorted for testing and TFRecord
448  files were generated. The slides were passed through the mutation prediction networks
449  and the average probabilities per slide were used for the AUC calculation.

450

451 Automated tumor selection

452 Whole images were tiled in non-overlapping tiles of 299x299 pixels. The tiles were sorted
453  based on their position compared to the manual tumor selection applied by the
454  dermatopathologist as ‘in’ and ‘out’ tumor, and were divided in train, validation and
455  independent sets the same way as for the mutation prediction networks. The same 44
456  slides were kept as the independent set. The Inception v3 model was trained on these
457  two classes of tiles and the performance of the best performing model on the validation
458  set was measured on the independent set.

459

460  Annotated and automated mutation prediction

461  For the annotated model, only tiles belonging inside the annotated tumor area were taken
462  into consideration. For the automated model, only tiles belonging inside the tumor area
463  as determined by the tumor annotation network were selected for training. The tiles were
464  sorted in two categories depending on the mutation classification task and based on the
465  true label of the slide they belong to. They were also divided in train, validation and

466  independent set as before. Inception v3 was trained on the tiles and performance was
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467  monitored based on the precision on the validation set. The best performing model was
468  obtained and evaluated on the independent set.

469

470  Sequential network

471  To apply the sequential model, non-annotated slides of interest were tiled in non-
472 overlapping 299x299 pixel tiles. The tiles were first passed through the automated tumor
473 selection network which will output a probability for each tile belonging in the tumor area.
474  Tiles with probability of belonging in the tumor higher or equal than 0.5 were obtained and
475  passed through the BRAF and NRAS mutation prediction networks to assess the
476 mutational profile of the slide.

477

478  Statistical analysis

479  After training and choosing the best performing model on the validation set, model
480  performance was evaluated using the independent dataset, which is comprised of a held-
481  out population of tiles coming from 44 slides. The probabilities for each slide were
482  aggregated by the average of probabilities of the corresponding tiles or by the percentage
483  of tiles positively classified. Receiver Operative Characteristic (ROC) curves and the
484  corresponding Area Under the Curve (AUC) were generated as a measure of accuracy.
485  Heat maps allowed visualization of probability differences and regions of interest.

486

487  Multivariate model

488  The multivariate logistic regression model was built using the gim function in R from the

489  package ROCR.
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490

491  Receiver Operating Characteristic Curves

492 ROC curves were generated using the pROC package in R and the p-values were
493  calculated using the roc.test() function.

494

495 Immunohistochemical analysis of mutated BRAF V600E

496  Immunohistochemistry (IHC) was performed on 10% neutral buffered FFPE, 4-um human
497  archival melanoma sample sections collected on plus slides (Fisher Scientific, Cat# 22-
498  042-924) and stored at room temperature. Unconjugated, mouse anti-human Serine-
499  Threonine-Protein Kinase B-raf (BRAF) V600E, clone VE1 (Abcam Cat# ab228461, Lot#
500 GR32335840-6) raised against a synthetic peptide within human BRAF (amino acids 550-
501  650) containing the glutamic acid substitution, was used for IHC38 46, BRAF antibody was
502  optimized on known positive and negative colon samples and subsequently validated on
503 a mixed set 20 known positive/negative samples. Chromogenic immunohistochemistry
504  was performed on a Ventana Medical Systems Discovery Ultra using Ventana’s reagents
505  and detection kits unless otherwise noted. In brief, slides were deparaffinized online and
506  antigen retrieved for 24 minutes at 95°C using Cell Conditioner 1 (Tris-Borate-EDTA
507 pHB8.5). BRAF was diluted 1:50 in Ventana antibody diluent (Ventana Medical Systems,
508  Cat# 251-018) and incubated for 16 minutes at 36°C. Endogenous peroxidase activity
509  was post-primary blocked with 3% hydrogen peroxide for 4 minutes. Primary antibody
510  was detected using Optiview linker followed by multimer-HRP incubated for 8 minutes
511  each, respectively. The complex was visualized with 3,3 diaminobenzidene for 8 minutes

512 and enhanced with copper sulfate for 4 minutes. Slides were counterstained online with
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513 hematoxylin for 8 minutes and blued for 4 minutes. Slides were washed in distilled water,
514 dehydrated and mounted with permanent media. Positive and negative (diluent only)
515 controls were run in parallel with study sections. Blinded analysis of staining was
516  performed by a single dermatopathologist (GJ).

517

518  Calculation of BRAF V600E-predicted tumor areas overlap with immunohistochemical
519  V600E antibody staining.

520 By looking at the relative positioning between the IHC and H&E slides, a direction of shift
521  was chosen and the slides were shifted by a small shift of 1 or maximum 2 tiles towards
522 the observed direction to better align the slides for overlap. Next, the probability
523 distributions for the tiles falling into the mask applied by a dermatopathologist to select
524  for the V60OE antibody stained area and the probabilities of the ones outside of the mask
525  were generated. The p value was calculated using a one-sided Wilcoxon rank sum test.
526  The p values were also adjusted for the number of potential conformations for each slide
527 (shift by 1, shift by 2 and no-shift) by multiplication with a factor of 3 (multiple testing
528  correction).

529

530

531
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532 Supplementary Materials
533 Fig. S1. Mutation prediction classifiers with manual annotation.

534  Fig. S2. Multivariate logistic regression model evaluating Breslow depth and ulceration
535  as predictors for mutational status.

536  Fig S3. Distribution of Breslow Depth for NYU and TCGA cohorts.

537  Fig S4. Performance of automated tumor selection network.

538  Fig. S5. Performance of mutation networks after manual vs. automated tumor selection.
539  Table S1. Distribution of patients and slides within training, validation, and test cohorts.
540  Table S2. Prediction AUC on melanomas stratified by thickness.

541  Table S3. Prediction AUC on melanomas stratified by ulceration.

542

543
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Table 1. Patient characteristics

Cohorts Training Validation Independent
Unique Patients (n) 182 43 41
Mutation BRAF NRAS WT/WT BRAF NRAS WT/WT BRAF NRAS WT/WT
n % n % n % n % n % n % n % n % n %
56 308 |65 357 |61 335|114 326 |12 279 |17 395]|21 512 |9 220 | 11 268
Year of <2000 2 3.6 4 6.2 1 6.2 3 214 ] 0 0 1 5.9 1 48 | 0 0 0 0
Diagnosis
2001 - 2010 50 893 |48 738 |52 8.2] 8 57112 100 |12 706 |19 9.5 |9 100 | 11 100
>2010 4 7.1 13 200 | 8 131 3 214 ] 0 0 4 235 1 48 | 0 0 0 0
Age, Avg. +/- Std. 59.4 +/- 61.2 +/- 65.1 +/- 53.9 +/- 70.9 +/- 68.5 +/- 59.0 +/- 59.9 +/- 65.1 +/-
16.7 17.2 14.9 19.9 16.0 14.1 14.8 144 12.8
Sex Female 23 411 |29 446 |24 393| 9 643 | 7 583 |7 412] 6 286 |6 667 | 2 182
Male 33 589 |36 554 |37 6075 37 |5 417 |10 58815 714 |3 333 | 9 818
Thickness <1.01 mm 8 143 |18 277 |20 328| 2 143 |3 273 | 3 176} 3 143 |2 222 | 3 273
1.01-2.0 mm 14 250 |19 292 |15 246 | 6 429 | 4 364 | 7 412]) 6 286 |5 556 | 2 182
2.01-4.0 mm 18 321 |20 308 |15 246 | 5 357 | 1 9.1 4 23515 238|1 111 ]| 4 365
>4.0 16 286 | 8 123 |11 180 | 1 7.1 3 2733 176 7 333 |1 111 2 182
Thickness, Median (IQR) 27(1.7- 1.8(1- 1.7(09-|14(12- | 1.8(1.0- | 1.5(11-] 27(1.6—- | 1.5(1.0- | 23 (1.1 -
4.6) 2.7) 3.0) 3.3) 3.9) 3.0) 5.5) 1.9) 3.0)
Histologic Superficial 22 393 |29 446 |32 525| 8 571 | 6 500| 9 529 9 429 |4 444 | 5 455
subtype Spreading
Nodular 31 554 |34 523 |25 410 6 429 | 6 500| 8 471 )12 571 556 | 6 545
Lentigo 0 0.0 0 0.0 1 1.6 0.0 0 0.0 0 0.0 0 00 |0 0.0 0 0.0
Maligna
Desmoplastic 3 5.4 1 1.5 3 4.9 0 0.0 0 0.0 0 0.0 0 00 |0 0.0 0 0.0
Unknown 0 0.0 1 1.5 0 0.0 0 0.0 0 0.0 0 0.0 0 00 |0 0.0 0 0.0
Ulceration Absent 30 536 |44 677 |40 656 9 643 | 7 583 |11 647 |11 524 |6 667 | 6 545
Present 25 446 |20 308 |21 344 | 5 357 |5 47| 6 35310 476 |3 333 | 5 455
Unknown 1 1.8 1 1.5 0 0.0 0 0.0 0 0.0 0 0.0 0 00 |0 0.0 0 0.0
Mitotic Absent 8 143 | 8 123 |12 197 ]| 2 143 | 1 8.3 2 18] 4 190|0 0.0 1 9.1
Index
Few 14 250 |23 354 |25 410 1 7.1 3 250| 5 294 | 3 143 |7 778 | 5 455
Moderate 16 286 |14 215 |10 164 | 6 429 | 3 250 | 5 294]| 5 238 |1 111 2 182
Many 17 304 |20 308 |14 230 5 357 | 5 417 | 5 294 9 429 |1 111 3 273
Unknown 1 1.8 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 00 |0 0.0 0 0.0
AJCC | 15 268 | 31 477 |31 508 7 500 | 7 583 | 8 471]| 6 286 |6 667 | 3 273
Stage | 23 411 |21 323 |18 295]| 1 7.1 2 167 | 6 353| 9 429 |2 222| 3 273
] 18 321 |12 185 |12 197 | 6 429 | 3 250| 3 176 6 286 |1 111 5 455
v 0 0.0 1 1.5 0 0.0 0 0.0 0 0.0 0 0.0 0 00 |0 0.0 0 0.0
Anatomic Axial 29 518 |21 323 |27 443| 3 214 | 3 250 | 7 41211 524 |4 444 | 4 364
Site Extremity 17 304 | 34 523 |22 361|110 714 | 9 750 | 9 529) 7 333 |5 556 | 2 182
Head and 10 179 |10 154 |12 197 | 1 7.1 0 0.0 1 5.9 3 143 |0 00 5 455
Neck
Status Alive 33 589 |40 589 |42 589 9 589 | 8 589 |12 589|111 589 |8 589 | 6 545
Died of 20 370 |18 277 |14 255]| 5 455 | 4 308 | 1 5.3 9 474 |1 125 | 5 714
Melanoma
Died of Other 3 5.1 7 9.7 5 7.6 0 0.0 0 0.0 4 190 | 1 45 |0 0.0 0 0.0
Cause
Recurrence | No 31 554 |40 615 |36 590| 6 429 | 9 750 |14 824 | 9 429 |7 778 | 2 182
Yes 25 446 |25 385 |25 40)] 8 571 | 3 250| 3 176 |12 571 |2 222 | 9 818
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Supplemental Figure 1. Mutation prediction classifiers with manual annotation. A) Receiver
Operating Characteristic curve (ROC) and AUC for BRAF vs “non-BRAF” mutation prediction on the
entire independent set. B) Receiver Operating Characteristic curve (ROC) and AUC for NRAS vs “non-
NRAS” mutation prediction on the entire independent set.
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Supplemental Figure 2. ROC curves for the multivariate logistic regression model. The Breslow depth
and ulceration variables are not sufficient alone to predict BRAF and NRAS mutations in melanomas,
yielding random AUCs.
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Supplemental figure 3
Breslow depth distribution for our NYU cohorts and the external TCGA validation cohort. It can be

observed that the TCGA melanomas are overall much thicker than the ones in our cohort.
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Supplemental Figure 4. Performance of automated tumor selection network.
A) AUC aggregated per slide

B) AUC per tile
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Supplemental Figure 5. Performance of mutation networks after manual vs. automated tumor

selection

A) BRAF mutation model
B) NRAS mutation model
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Supplemental Table 1
The distribution of the number of patients and the corresponding number of slides within each cohort are
shown. No patients within the training and validation cohorts overlap with those in the independent
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cohort.
Number of Patients Number of slides
WT BRAF NRAS | TOTAL | WT BRAF NRAS | TOTAL
Train/Validation 72 73 75 220 80 87 82 249
Independent 15 13 9 37 16 16 12 44
TOTAL 87 86 84 257 96 103 94 293
Supplemental Table 2

BRAF and NRAS prediction AUCs on the independent NYU test set and the TCGA FFPE cohort for
different values of Breslow depth.

AUC value for BRAF mutation prediction | AUC value for NRAS mutation prediction
Tumor stage | NYU cohort TCGA cohort NYU cohort TCGA cohort
<=lmm 0.83 - 0.73 -
95% CI[0.45-1] 95% CI[0.32-1]
<=5mm 0.74 0.71 0.84 0.54
95% CI[-0.58-0.89] | 95% CI[0.35-1] 95% CI1[0.70-0.98] 95% CI[0.07 - 1]
<=10mm 0.75 0.66 0.77 0.68
95% CI1[0.60-0.90] 95% CI[0.41-0.91] | 95% CI[0.58-0.96] 95% CI[0.32-1]
<=15mm - 0.6 - 0.66
95% CI[0.37-0.83] 95% CI[0.40-0.92]
<=20mm - 0.61 - 0.66
95% CI[0.39-0.83] 95% CI[0.40-0.92]
Supplemental Table 3

BRAF and NRAS prediction AUCs on the independent NYU test set and the TCGA FFPE cohort for slides
with different ulceration status.

AUC value for BRAF mutation prediction

AUC value for NRAS mutation prediction

Ulceration | NYU cohort TCGA cohort NYU cohort TCGA cohort
Present 0.79 0.55 0.45 0.45

95% CI[0.56-1] 95% CI[0.35-0.71] 95% CI[0.07-0.83] 95% CI[0.24-0.67]
Absent 0.71 0.6 0.92 0.89

95% CI[0.50-0.92] | 95% CI1]0.22-0.98] 95% CI[0.81-1] 95% CI[0.67-1]
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