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Abstract

The vast majority of genome-wide association (GWA) studies analyze a single trait while
large-scale multivariate data sets are available. As complex traits are highly polygenic, and
pleiotropy seems ubiquitous, it is essential to determine when multivariate association tests
(MATS) outperform univariate approaches in terms of power. We discuss the statistical
background of 19 MATSs and give an overview of their statistical properties. We address the
Type | error rates of these MATSs and demonstrate which factors can cause bias. Finally, we
examine, compare, and discuss the power of these MATS, varying the number of traits, the
correlational pattern between the traits, the number of affected traits, and the sign of the
genetic effects. Our results demonstrate under which circumstances specific MATSs perform
most optimal. Through sharing of flexible simulation scripts, we facilitate a standard

framework for comparing Type | error rate and power of new MATS to that of existing ones.
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Introduction

Genome-wide association (GWA) studies aim to identify single nucleotide polymorphisms
(SNPs) that are associated with (i.e., explain variation in) continuous traits (e.g., height, blood
pressure, BMI), or in the liability underlying dichotomous (disease) traits (e.g., schizophrenia,
cancer, Type Il diabetes). Most GWA studies are univariate in the sense that they focus on a
single trait. However, often data on multiple correlated traits are available and sometimes
traits treated as univariate are actually multivariate in nature. For instance, GWA studies on
metabolic syndrome (e.g., Zhu et al., 2017, Kristiansson et al., 2012) base the case-control
status on the joint evaluation of multiple measures (e.g., waist circumference, body mass
index, blood pressure, and various blood measures). Similarly, GWA studies on psychiatric
disorders like major depressive disorder (e.g., Howard et al, 2018, Wray et al., 2018)
generally use case-control status variables that originate in the joint evaluation of multiple
clinical criteria, and GWA studies on cognitive ability use cognitive scores that summarize
the performance on batteries of cognitive tests covering e.g., vocabulary, general knowledge,
and memory (e.g., Savage et al., 2018, Benyamin et al., 2014; Davis et al., 2010).

With increasing availability of multivariate information (e.g., UK Biobank), and
knowing that pleiotropy is wide-spread both within and between trait domains (Watanabe et
al., in revision), it is important to determine the circumstances in which a multivariate
approach has greater statistical power than the standard univariate test to detect an associated
SNP, which we henceforth will generally refer to as the genetic variants (GV, plural GVs). As
GWA studies use a stringent correction for multiple testing (usually a is set to 5 x 10, Pe’er
et al., 2008, Sham & Purcell, 2014), and effect sizes of individual GVs are expected to be
small (e.g. Visscher et al., 2012, 2017; Psychiatric GWAS Consortium, 2009), statistical
power remains a pivotal concern in GWA studies, despite increasing sample sizes. Besides
increasing study sample sizes, exploiting the multivariate nature of GWA data sets may under
some circumstances, as we will demonstrate here, increase the statistical power to detect
GVs.

Numerous multivariate association tests (MATS) are available. We define a MAT as
any test that formalizes the statistical association between a GV and a set of m traits that are
measured in the same individual. MATSs differ in several respects, such as their ability to
accommodate missing values or traits of different measurement levels (e.g., a mix of
continuous and dichotomous traits). The power of MATS has been subject of investigation,
but the scope of the settings in which power was studied was generally limited: simulation

scenarios often featured just a few (e.g., 2 or 3; He et al., 2013, Wu & Pankow, 2015),
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80 uniformly correlated traits, only GVs that affect all traits in the analysis (Galesloot et al.,
81  2014; Van der Sluis et al., 2013; Aschard et al., 2014, Suo et al., 2013; Yang et al., 2016), or
82  only same-sign GV effects (e.g., Porter & O’Reilly, 2017). Reality is, however, often more
83  complex, and the true genotype-phenotype model (i.e., the model describing the relations
84  between the m traits and the GV as they are in reality) is usually unknown. To determine the
85  circumstances in which MATS perform best in terms of power the following should be
86  considered: the number of traits in the simulations, the correlational patterns between the
87 traits (e.g., both uniform and block-wise), the generality of GV effects (i.e., the number of
88 traits affected by the GVs), and the sign of the GV effects (i.e., allowing the reality of
89  opposite effects).
90 The aim of this Review is to provide a classification of available MATS, to give an
91  overview of their defining characteristics, to inspect their Type | error rate, and to compare
92 their statistical power to detect GVs under a multitude of realistic circumstances. We classify
93  MATSs based on the underlying statistical model, and explicate their associated hypotheses.
94  We inspect Type | error rates in various circumstances, given various values of criterion level
95 «, and we identify the circumstances in which conducting multivariate analyses is
96 (dis)advantageous in terms of statistical power. We do so through extensive simulation in
97  which we investigate the effects of the factors mentioned above: the number of traits in the
98 analysis, the correlational pattern between the traits, and generality and sign of the GV effects.
99  We show that the power of MATS can vary considerably as a function of the true genotype-
100  phenotype model (e.g., in consequence of the presence of unaffected traits or opposite GV-
101 effects). Overall, these results facilitate the choice of the most appropriate and optimal MATS
102 in future multivariate GWA studies. Through sharing of flexible simulation scripts
103 (https://ctg.cncr.nl/software/), we facilitate prospective application of a standard verification
104  framework within which the statistical power and Type | error rate of new MATS can be
105  compared to that of existing ones.
106
107 1. Classification of MATs

108 A wide range of MATSs are available (see Table 1 for an overview of the MATS included in
109 this paper). Following Yang and Wang’s conceptual classification (Yang & Wang, 2012), we
110  distinguish transformation-based MATS, regression-based MATS, and combination tests. We
111 discuss each class of MATSs and provide a short statistical description of the MATS included
112 inthis review in Boxes 1-3. These descriptions provide a basic understanding of the statistical

113 properties of individual MATS, which furthers insight into their specific strengths and
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114  weaknesses. For a non-statistical overview of all included MATS, we refer to Table 1. Note
115  that in each MAT, the predictor of main interest is a single genetic variant, i.e., a potential

116  GV. In practice, however, additional predictors (i.e., covariates) are standardly included in the
117 model such as the age and sex of participants, and genetic principle components (obtained
118  using e.g. Eigenstrat (Price et al., 2006) or FlashPC2 (Abraham & Inouye, 2014)) to correct
119  for population stratification.

120

121 Transformation-based MATs

122 The simplest way to deal with a multivariate problem is by reducing it to a univariate problem
123 through transformation of the multivariate information. Given N subjects and m traits y;...Ym,

124  asingle new variate ¥ for subject i can be created that is a linear combination of these m

125  traits:

126

127 J; = b0+ byyy; + byyyi + -+ by [1]
128

129  where the weights b;...by, determine how much each original trait contributes to the new

130 variate. All transformation-based MATS are aimed at variable reduction. The following

131 transformation-based MATS are included in this review and their characteristics (e.g., how the
132 weights b;...by, in Eq 1 are determined) are described in Box 1: sum-score analysis, Principal
133 Component Analysis (PCA), the Combined Principal Components test (CPC, Asschard et al.,
134  2014), and common factor analysis. Important to note is that all transformation-based MATS
135  determine the weights in Eq. 1 independently of the association of the m traits with the GV
136  (e.g., in factor analysis, the weights depend on the correlations among the m phenotypes

137  only). That is, all transformation-based MATSs first transform the data solely based on the
138  phenotypic information, and only then consider the possible association of this new variate
139  with the GV (generally using a univariate regression model).

140

141  Regression-based MATs

142 In a multivariate GWA settings, one focusses on the association between a set of k predictors
143  (the GV and the covariates), and a set of m traits. Given N subject, m traits and k predictors,
144 this multivariate (referring to the number of dependent variables) multiple (referring to the
145  number of predictors) regression model can be represented as:

146

147 Y =XB+E [2]
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148

149  Here, Y is the N x m matrix of trait scores. X is the design matrix, i.e., a N x (k+1) matrix of
150  predictor scores in which the first column usually is a unit vector that serves to estimate the m
151  trait-specific intercepts. B is a (k+1) x m matrix of regression weights with the first row

152  containing m trait-specific intercepts, and the subsequent k rows containing m trait-specific
153  regression weights for the k predictors. The m regression weights on the row corresponding to
154  the GV are usually all freely estimated, giving rise to an m degrees of freedom (df) omnibus
155  test (i.e., the GV is allowed to affect the m traits differently). The m weights may be

156  constrained to be equal, thus giving rise to a 1-df test (i.e., the GV is assumed to affect all m
157  traits similarly: in this case, the m traits should be measured on, or be transformed to the same
158  scale). Finally, E is a N x m matrix of individual- and trait-specific zero-mean residuals, also
159  referred to as error or disturbance terms. Generally, homoscedasticity of the residuals is

160  assumed, and the m x m symmetrical background covariance matrix is denoted as E[E'E] =
161  Xe. That is, Xk is the residual variance-covariance matrix between the m traits conditional on
162  the k predictors, i.e., E captures all sources of residual (co)variability. Note that matrix Xg is
163  usually not diagonal because, conditional on the k predictors, the m traits are generally still
164  correlated. Regression-based MATSs mainly differ in their treatment of Xg (see Box 2). As
165  given in Eqg. 2, the multivariate multiple regression model is thus a system of univariate

166  regression equations. By combining them all within one model, specific hypotheses can be
167  tested, and the model can be simplified by introducing constraints in matrices B and E.

168 The following regression-based techniques are described in Box 2: Multivariate

169  Analysis of VVariance (MANOVA), Generalized Estimating Equations (GEE), and MultiPhen
170  (O’Reilly et al., 2012). Assuming an additive codominant genetic model, MANOVA, GEE
171 models, and Linear Mixed Models (LMM, not included in this review, see Box 2) are specific
172 instances of the model presented in Eq. 2. In contrast, the regression-based MAT MultiPhen is
173 based on reversed ordinal regression with the m traits as the predictors and the GV as the

174  dependent variable.

175

176  Combination tests

177  We define a combination test as any test that combines the p-values or test statistics obtained
178  in munivariate analyses to test a multivariate hypothesis. The challenge characterizing

179  combination tests is to optimally handle the correlations between the m p-values or m test

180  statistics, resulting from the phenotypic correlations between the m traits. How the

181  information obtained in univariate tests is combined is described in Box 3 for the following
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182  tests: Nyholt-Sidak and Bonferroni corrected p-values (min-Pys, min-Pgonr; Nyholt, 2004), the
183  Simes test (Simes,1986), its adjusted version TATES (Trait-based Association Test that uses
184  Extended Simes; Van der Sluis et al., 2013), two version of JAMP (Joint genetic Association
185  of Multivariate Phenotypes: JAMPn,: and JAMPin (ctg.cner.nl/software/), the meta-analysis
186  inspired techniques Spom and Spet (Zhu et al., 2015), and the adjusted Fisher-combination test
187  FC-Pearson (Yan et al., 2016).

188 We emphasize the following important aspects of these combination tests. First, only 4
189  of the combination tests truly create, based on the univariate test statistics, a new multivariate
190 test statistics, and, as such, evaluate the joint association signal of the m traits to the GV

191 (JAMPmuit, Shom, Shet, FC-Pearson). The others essentially constitute various types of

192  corrections for multiple testing. Second, Simes, TATES, min-Pgons, min-Pns and JAMP i, do
193  not create a new test statistic, but simply select the smallest of m weighted univariate p-

194  values. Due to the weighting (i.e., effectively a correction for multiple testing), the p-values of
195 these combination tests are always larger than the original univariate p-values on which they
196  are based.

197

198  These three classes of MATS are conceptually distinguished. Alternatively, all transformation-
199  based and regression-based tests, and some combination tests, can be described from a

200 maximume-likelihood perspective, and within this framework, one could distinguish 1-df and
201 m-df tests. Specifically, 1-df tests either reduce all m traits to a single new variate (i.e., sum-
202  score analysis, PCA using PC1 only, and factor scores obtained in a single common factor
203  model), or constrain all m associations between the GV and the m-traits to be equal (Syom, and
204  the 1-df versions of GEE and MANOVA). In all these tests, the association between the GV
205 and the m traits is modelled via 1 parameter, which can be tested using a (1-df) likelihood

206  ratio test. In contrast, in m-df tests, the associations between the GV and the m traits are

207  allowed to vary, and the m parameters are subjected to a m-df likelihood ratio test, or a closely
208  related (F-) test (standard MANOVA, CPC, and the m-df versions of GEE). An alternative
209  classification, based on the underlying mathematical model and the structure of the resulting
210  test statistic, that matches distinction of MATSs based on degrees of freedom, is outlined in the
211 Supplemental Information.

212 Irrespective of their statistical foundation, all MATSs need to deal with the fact that the m
213 simultaneously modelled traits are often correlated conditional on the tested GV. The way

214  they do so differs: combination tests use either permutation or a correction factor, regression-

215  based tests either treat the m traits as predictors, avoiding the issue altogether (MultiPhen), or
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216  accommodate the residual trait correlations in a background covariance matrix Xg

217 (MANOVA, GEE, LMM), and transformation-based tests explicitly use the covariance
218  between the m traits to create the new variate.

219

220 2. Characteristics of MATS

221 The classification in transformation-based tests, regression-based tests, and combination tests
222 is based on the statistical properties of the MATS. They differ, however, in various respects
223  that have a bearing on the their performance and applicability. We discuss these differences
224  briefly, and refer to Table 1 for an extensive summary.

225

226  Specific hypothesis tested

227  While all MATSs evaluate the statistical relationship between m traits and a GV, they differ
228  with respect to the exact hypothesis that they test. First, MATS can evaluate the omnibus

229  hypothesis that the joint association signal of the m traits to the GV deviates significantly

230 from 0. This omnibus test can be an m-df test, allowing for heterogeneity in the m GV-effects
231  regarding sign and size. By assuming the GV-effects to be homogeneous across the m traits,
232 the omnibus test reduces to a 1-df test, which can be more powerful if the homogeneity

233 assumption holds approximately. The 1-df tests are obtained through constraining of model
234  parameters (e.g., the regression weights are constrained to be equal), or through the use of
235 transformation-based techniques, in which the m traits are reduced to a single new variate
236 under the assumption that this new variate is representative of what the m traits have in

237 common. Second, MATS can test the hypothesis that at least one of the m traits is significantly
238  associated with the GV. These MATSs generally concern combination tests that evaluate the
239 smallest of m weighted p-values as obtained in univariate GWA analyses.

240

241 Measurement level of the m traits

242 The choice of MAT is often largely dictated by the measurement levels of the m traits.

243 Specifically, if all m traits are continuous (to reasonable approximation), PCA, CPC, and

244  MANOVA can be used directly. All MATSs suited for continuous data assume the data to be
245  multivariate normally distributed. GEE-based generalized linear modeling can handle

246  continuous or categorical traits, but current standard implementation (e.g., GEE in SPSS or
247  the R library gee) cannot handle a mix of different measurement levels. Which measurement
248 levels factor analysis can handle, depends on the software package (e.g., when conducted in
249  MPIlus (Muthén & Muthén, 2017) or OpenMx (Neale et al., 2016), factor analysis can in
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250  principle handle all measurement levels as well as a mix). The sum score method is applicable
251  tocontinuous variables, or ordinal variables (including dichotomous) variables (i.e., “burden
252 score”), as long as all m aggregated traits are measured on the same scale. If the m traits have
253  different measurement levels, combination tests and MultiPhen can be used (but see Guo et
254  al., 2015 on power losses in MultiPhen when traits are non-normally distributed). The

255  strength of combination tests lies in their flexibility to combine results regardless of the traits’
256 measurement level. For instance, TATES has been shown to work well on a mix of non-

257  uniformly correlating dichotomous, ordinal, and continuous traits (\Van der Sluis et al., 2013).
258  The current implementation of the permutation-based combination tests of JAMP is suited for
259  continuous data only, but is in principle amendable to traits with a mix of measurement levels.
260

261  Missingness

262 Inunivariate analyses, missing values simply result in a smaller effective sample size N. In a
263 multivariate context, however, partial missingness can occur, i.e, participants having missing
264  values on a subset of the m traits. Not all software can handle partial missingness; methods
265  often resort to listwise deletion, basing analyses only on cases with complete data. As in

266  practice the probability of at least 1 of the m scores being missing increases with m, listwise
267  deletion can result in a substantial reduction of sample size and consequently a considerable
268  reduction in statistical power. Alternatively, however, one can use packages like OpenMx
269  (Neale et al., 2016) that use Full Information Maximum Likelihood (FIML, i.e., all available
270  data are used) to specify a wide variety of multivariate models (including MANOVA, PCA,
271 and factor analysis) while accommodating the missingness. This can, however, come with a
272 prohibitive computational burden in the GWA settings.

273 If one weights the m trait scores appropriately, sum scores can still be used if the data
274 show partial missingness: e.g., each individual sum score may be divided by the number of
275  observed trait scores. As this may result in heteroskedastic variance, weighted sum scores are
276  generally used in combination with a cut off criterion (e.g., no more than 20% of the m scores
277  can be missing), which also ensures approximate conceptual comparability between scores
278  over subjects with different numbers of observed scores.

279 The essentially univariate nature of the input of combination tests guarantees their

280  ability to handle missingness. However, if sample sizes differ greatly between the m traits, a
281  (sample size) weighted procedure (like Spom and Syt Offer) is desirable.

282 Generally, partial missingness lowers the power to detect GV, especially if the traits

283  with a relative large percentage of missingness are the traits with the strongest genetic
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284  association. Additionally, in using methods that can accommodate the missingness, one

285  should realize that the multivariate association signal may be primarily driven by the traits
286  with the lowest percentage of missingness.

287 Imputation of the missing scores can be a convenient way to handle missing data, as
288  replacement of the missing values with imputed ones facilitates the use of all MATS.

289  Multivariate imputation, i.e., dealing with imputation of missing values in multiple variables
290  at once, can be done in many ways, but comes with its own challenges and can yield biased
291  results (see e.g. Nakai & Ke, 2011; van Buuren & Groothuis-Oudshoorn, 2011).

292

293  Relateds

294  GWA data sets may include data collected in families (e.qg., trios of parents and one affected
295  off-spring, data of twins and their family members). In univariate analyses, inclusion of

296  family members can be useful to differentiate “between” from “within” family associations,
297  the latter being free of any effects of population stratification (Fulker et al., 1999). Also,

298 including all available data, even data of genetically similar monozygotic twin pairs, can be
299  beneficial in terms of power to detect GV-effects (e.g., Minica et al., 2014). However, if data
300 include family members, the data clustering induced by the relatedness must be

301 accommodated statistically to avoid inflated Type | error rates. In the univariate setting,

302  multiple linear mixed model approaches exist (see Eu-ahsunthornwattana et al., 2014 for

303  comparisons). When data only include a few relateds, one can chose to “correct for” the

304  familial relatedness rather than explicitly model it. For instance, PLINK (Purcell et al., 2007)
305  offers the option to correct for relatedness in the data by running GEE, which involves a

306  correction of standard errors®. In principle, these univariate procedures can be used in the
307  context of transformation-based techniques (i.e., correcting the univariate analyses of the new
308 variate), and in the context of combination tests, in which case the corrected model

309 parameters of the m univariate GWA analyses are used as input for the combination tests (to
310  our knowledge, only the performance of the combination test TATES has been studied in the

311  context relatedness; Vroom et al., 2015). Combination tests using permutation, like JAMP,

! Specifically, the working correlation matrix is by default set to “independent” in PLINK
(i.e., the family scores are assumed independent conditional on the GV under study) to
minimize computational intensity. GEE’s standard sandwich correction then corrects the
standard errors of all estimated parameters for model misspecification induced by ignoring
relatedness. This procedure works well in terms of Type | error rates, but Minica et al (2015,
see also VVroom et al., 2016) showed that considerable statistical power can be gained if the
working correlation matrix is set to unstructured, although this is computationally more
demanding.
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312  need to permute the data not on an individual level but on the family-level to retain the

313  familial relatedness in the data. This is complicated if the families in the data set do not all
314  have the same size and composition.

315 In their standard form, MANOVA and MultiPhen cannot be used on data including
316 relateds. Theoretically, in case of familial clustering, multivariate multilevel modelling can be
317  used instead of MANOVA (Pituch and Stevens, 2016), and Structural Equation Modelling
318  can be used instead of MultiPhen, treating the m traits as exogeneous variables. These

319  approaches are, however, computationally intensive.

320 As standard GEE software can handle only one source of clustering at the time, it can
321 handle either familial relatedness in a univariate setting, or multivariate data in a sample of
322 genetically unrelated individuals, but not both. In principle, LMM (Box 2) can handle

323 multiple sources of clustering or correlation.

324

325  Computational feasibility

326  Given imputation of genetic variants, current GWA studies may include tens of millions of
327  SNPs. Cluster computers offer large computation capacity, but computation burden is an

328 important consideration in the choice of MAT. In theory, any of the MATS discussed here can
329  be applied using standard software. However, in practice, the use of dedicated software like
330 PLINK (Chang et al, 2015, Purcell et al, 2007) considerably facilitates running such vast

331 amounts of statistical tests on files containing multiple terabytes of data. From a

332  computational feasibility perspective, MATS that rely on univariate analyses (i.e.,

333 transformation-based tests and combination tests) or MATS that are built-in in dedicated

334  software (Canonical Correlation Analysis, i.e., MANOVA (see Box 1) as part of PLINK) may
335  be preferred over tests like GEE, MultiPhen, Syom and Sy, Or permutation-based tests like
336  JAMPqui: and JAMPin. Due to their increased computational intensity, these latter options

337 are particularly attractive if they indeed come with clear advantages, like substantial gains in

338  power.
339
340 3. Type | error rates of MATSs

341 A correct Type | error rate is a primary requirement of any statistical test. We studied the

342 Type | error rates of 17 MATS, excluding the JAMP-methods as the correctness of their Type
343 | error rates is guaranteed by their reliance on permutation. The 17 MATS were studied in 20
344  scenarios that are outlined in Table 2 (see Supplemental Information for simulation details).

345  The 20 scenarios varied with respect to the number of included variables (m=4 or m=16), the
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346  strength of the correlations between the traits, and the correlational structure, i.e., uniformly
347  correlated traits (i.e., 1-factor model with compound symmetry), or two clusters of more or
348 less strongly correlated traits (i.e., 2-factor model). All simulated traits were standard

349  normally distributed. For each scenario, we ran Nsjm=1,000,000 replications, allowing us to
350 reliably evaluate Type I error rates at a-levels of .05, .01, and .001. All Type I results are

351 available in Tables S7-S9.

352 We note that the large number of replications provides high statistical power to detect
353  small deviations from the expected Type 1 error rate (a), especially for the larger a values.
354  For instance, with 1 million replications, the 99% confidence interval (Clgg) for 0=.05 is very
355  narrow: .04944-.05056 (see Table S6 for the Clgg for all a-levels). As a result, merely

356  considering which MATSs show Type I errors outside the Clgg paints a gloomy picture (Figure
357  S2a). Type | error rates of MANOVA, Syom, and all transformation-based (i.e., essentially
358 univariate) MATSs are virtually always correct. However, when considered across all 20

359  scenarios and all three levels of a (.05, .01, .001, i.e., 60 scenarios in total), all other MATs
360 showed Type | error rates outside the Clgg, with overall percentages ranging from 22% (CPC)
361 10 92% (FC Pearson) and 100% (GEEns m).

362 Figure 1 shows the Type I error rates of the 17 MATSs given a=.05 for 4 or 16

363  variables, split for scenarios with mostly low or mostly high trait correlations (see Table S2).
364  As many of these deviations outside the Clgg were (very) small (Tables S7-S9), we also

365 looked beyond the Clgg by summing the deviations from the expected a across all scenarios,
366 allowing us to determine which factors caused the largest deviations (Figure S2b). Overall,
367 the largest deviations are observed for TATES, min-Pys, Simes, FC-Pearson, GEEyns m, and
368  min-Pgynt. Interestingly, combination tests show mainly deviations from the expected when
369 the m traits are highly correlated, while the number of traits m mainly drives the deviations in
370  most other method. Taking the direction of the deviations into account, we see that CPC,

371 Simes and min-Pgo, are always conservative, while Sy, Tates and min-Pys are conservative
372 when applied to many (highly correlated) traits, and liberal otherwise. All other methods that
373  do show deviations from the expected, always show inflation, with Type I error rates of

374  GEEuns_m and FC-Pearson especially being inflated when m is large, irrespective of the

375  correlations between the phenotypes.

376 Summarizing, due to the strong power to detect deviations from the expected, many
377  methods showed Type | error rates outside the Clgg. When considering the magnitude of the

378  deviations, especially application of Simes, min-Pgqns, FC-Pearson, and m-df versions of GEE
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379  warrant careful consideration, although even here the actual deviations are often quite small
380 (Tables S7-S9).

381

382 4. Power of MATSs

383  The statistical power of a test is the probability that the null-hypothesis of no association is

384  correctly rejected when the GV is indeed statistically associated with the trait(s). In de context
385  of GWA studies, GV-effects are expected to be small, so in selecting a MAT for one’s

386 analyses, power is an important consideration.

387 We studied the power of 19 MATS in 15 scenarios covering 270 settings of the true
388  genotype-phenotype model, which are summarized in Tables 3 and 4 (see Supplemental

389  Information for simulation details). The scenarios varied with respect to the number of traits
390 (m=4, 8, or 16, all standard normally distributed), the correlational structure (i.e., uniformly
391  correlated or clustered, corresponding to 1- or 2-factor models), the strength and sign of the
392  correlations between the m traits, the number of traits affected by the GV (1, half, or all m),
393  and the presence or absence of opposite effects (i.e., GV affecting multiple traits but in

394  opposite direction). For each setting, we ran 1,000 simulations with a GV explaining .1, .2 or
395  .5% of the variance in each affected trait, and a sample size of N=2000.

396 The full results of the power simulations are available in Table S10-S12. Below, we
397  discuss the power results for a GV explaining .1% of the variance (Table S10), and emphasize
398 that these main finding hold for GV of different effect sizes (Tables S11-S12). We excluded
399  the 2 MATs with highly inflated Type I error rates (GEEuns_m, and FC-Pearson) from

400  discussion as their power estimates can be biased upwards due to the inflated Type I error
401  rates (but see Tables S10-S12 for all power results of these test). We did include the two

402  conservative MATS (Simes, min-Pgons) in our discussion, as their deflated Type | error rates
403  will result in under- rather than overestimation of power which we can interpret as a lower
404  bound estimate.

405 Figure 2 depicts the power of these 17 MATS in all 15 scenarios for 4 and 16

406  variables. We note that the power of MATSs can be compared within, but not always directly
407  between, scenarios as the total contribution of the GV to the m traits can differ across

408  scenarios as a function of the correlations between the m traits.

409

410  Univariate versus multivariate

411  When testing the association of a GV to m traits, one could simply do m univariate analyses

412  and correct the m resulting p-values for multiple testing. We consider the power results of the
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413  combination test min-Pggns an approximation of this approach (although min-Pgons

414  subsequently selects the smallest Bonferroni corrected p-value). The power results in Figure 2
415  reveals that when all or half of the m traits are affected by the GV (scenarios 1-4, 6-13),

416  MATSs are very often (but not always!) more powerful than a for multiple testing corrected
417  univariate analysis. MATSs even often outperform univariate analyses when only 1 of the m
418 trait is affected by the GV, especially when the trait correlations are generally high. Taken
419  over all scenarios, it is safe to conclude that multivariate approaches towards identification of
420 GV are generally worth pursuing.

421

422  Equivalence of MATs

423  So far, we classified MATS based on their underlying statistical approach, the descriptions in
424  Boxes 1-3 outlining their differences. The power simulations, however, demonstrate that there
425 are 3 groups of MATS that function very similarly, i.e., have very similar power across all or
426  most of the scenarios (see Supplemental Information for detailed comparisons). First, the

427  combination tests min-Pys, Simes, TATES, and JAMPmin demonstrate very similar power
428  throughout all 15 scenarios, with min-Pggns Showing a very similar yet consistently lower

429  power profile. Second, the m-df tests MANOVA, CPC, and MultiPhen perform very similarly
430  (and very similar to the m-df variants of GEE), with Sy generally does equally well or

431  slightly worse. Third, in the context of uniformly correlated traits (scenarios 1-5), tests that
432  can generally be referred to as 1-df tests group together, i.e., the transformation-based

433  techniques sum-score, PCA, and factor scores, and the 1-df variants of the regression-based
434  tests GEE (exchangeable and unstructured) and MANOVA. However, in the context of

435  clustered traits (scenarios 6-15), PCA and the factor scores perform much worse than the

436  other 1-df tests when the clusters correlate negatively. Interestingly, the combination test

437  JAMP, follows its own trend (which is very similar to that of the FC-Pearson test).

438

439  Relative insensitivity to the true genotype-phenotype model

440  The true genotype-phenotype model provides the multivariate context in which one tests the
441  associations between the m traits and the GV. Our power simulations show that some MATSs
442  are relatively insensitive to this context, i.e., their power varies much less across the different
443  scenarios compared to other MATS. These relatively insensitive MATS all concern

444  combination tests that are based on selection of the minimum weighted p-value: min-Pgns,
445  min-Pys, Simes, TATES, and JAMPpnmin. Mainly in the context of many uniformly correlated

446  traits and a pleiotropic variant affecting all m traits (scenarios 1-2), do these methods
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447  demonstrate noticeable variation in power, i.e., their power to detect the GV decreases with
448  increasing correlations between the m traits, irrespective of the presence of opposite effects. In
449  all other scenarios, the power curves for these methods are rather flat, illustrating their relative
450  insensitivity.

451 This relative insensitivity to the true genotype-phenotype model can be advantageous:
452  there are several settings in which these MATSs generally outperform m-df tests and Sy (e.9.,
453  scenarios 1, 6, 7, 10, 11), factor scores and PCA (e.g., scenarios 6-9, 12 and 13), JAMP it (3-
454  5,13-15), and sum scores, Syom and 1-df regression-based tests (e.g., 2-5,8,9,12 and 13).

455  However, some MATS actually benefit from specific characteristics of the true genotype-

456  phenotype model, such as the presence of unaffected or oppositely affected variables in the
457  analysis (see below). Under these circumstances, these relative insensitive MATS are,

458  sometimes substantially, outperformed. Because of their relative insensitivity, we exclude
459  these MATS from further discussion.

460

461  Clustered versus uniformly correlated traits

462  When the m traits are uniformly correlated, all transformation-based techniques have very
463  similar power (scenarios 1-5). In this context, the power of transformation-based techniques
464  increases with decreasing correlation among the m traits. Specifically, the variance of the new
465  variates, summarizing the communality between the traits, is larger when the m traits correlate
466  more strongly and the contribution of the GV to that common variance is in that case

467  relatively small. That is, the signal-to-noise ratio is more optimal when the covariance

468  between the traits conditional on the GV is low (see Supplemental Information for an

469  elaborate discussion).

470 In the context of clustered correlated traits, however, PCA and factor scores perform
471  differently from the other transformation-based tests when the correlation between clusters of
472 positively correlated traits is negative (scenarios 6-11). In that case, the first PC from PCA
473  and the factor scores from a 1-factor model will only summarize 1 of the two clusters well,
474  while they do not capture information from the other cluster. Interestingly, in the calculation
475  of sum scores, the presence of negatively correlated variables can actually have a beneficial
476  effect on the detection of GV-effects (scenarios 6-11): the negative covariances between pairs
477  of traits reduce the total variance of the sum, which in turn improves the signal-to-noise ratio
478  (see Supplemental Information).

479 When the GV affects only half or 1 of the traits, the m-df tests MANOVA, MultiPhen

480 and CPC perform better when the m traits are uniformly correlated than when they are
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481  clustered (scenarios 3 and 5 versus 10-11 and 14-15), but when the GV affects all m traits or
482  conveys opposite effects (scenarios 1,2,4 versus 6-7,8-9,12-13), the power of these tests does
483  not seem to suffer much from the clustering in the data.

484 In the context of uniformly correlated traits (scenarios 1-5), the power of JAMP i iS

485  clearly a function of the trait correlations, with lower trait correlations resulting in higher

486  power. Similar results are observed for the clustered scenarios, if one compares the power in
487  the scenarios with within-cluster correlations of .3 (scenarios 6,8,10,12 and 14) to those with
488  within-cluster correlations of .7 (scenarios 7,9,11,13 and 15: always lower).

489

490  Pleiotropic versus local variants

491  In evaluating GV-effects in a multivariate context, it is desirable to distinguish between the
492  detection of pleiotropic or global genetic variants (i.e., variants that affect all or multiple of
493  the m traits in the analysis) and local genetic variants (i.e., variants that effect only 1 or a few
494  of the m traits in the analysis). As we defined a MAT as any test that formalizes the statistical
495  association between a GV and a set of m traits that are measured in the same individual, one
496  may argue that MATS should be assessed based on their power to detect global variants.

497  Conducting multivariate analyses may then not only be lucrative with respect to power, but
498  can also aid theoretical development and biological understanding by revealing shared

499  underlying biology. However, a one-sided focus on global variants neglects the importance of
500 identifying local variants, which may be a source of genetic heterogeneity. Identification of
501  genetically homogeneous subsets of traits within the full set of m traits acknowledges the

502  contribution of more local variants and may be biologically informative (e.g., Nagel et al.,
503  2018).

504 In the context of uniformly correlated traits, the (transformation-based) 1-df tests work
505 best for the identification of global variants that affect all phenotypes in the same direction
506  (scenario 1), as these contribute most to the variance of the new variate. Here, the power to
507  detect global GVs decreases as the conditional correlations between the m traits increase (i.e.,
508 the signal-to-noise ratio decreases). Yet, GVs that affect only half or 1 of the m traits

509  (scenarios 3, 5) can hardly be detected through these 1-df tests: such GVs will generally

510 contribute little to the variance of the new variate and will therefore be (very) difficult to

511 identify using transformation-based approaches. When traits show clustering, we see a clear
512  difference between sum scores and other 1-df MATS, which do well in detection global

513  variants (scenarios 6,7), and PCA and factor scores, which do poorly. Clearly, the first PC and

514  factor scores based on a 1-factor model do not capture the clustered nature of the data well.
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515 Interestingly, in a clustered context, 1-df tests do best in detecting GV affecting only half of
516  the m traits (scenarios 10,11), especially when the unaffected traits correlate negatively to the
517  affected traits: in that case, the negatively correlations lower the variance of the new variate
518 and as such improve the signal-to-noise ratio. Yet, truly local variants go undetected when
519 transformation-based or 1-df MATS are used.

520 Conceptually, MATSs that evaluate the joint association signal of the m traits through
521  m-df omnibus tests truly test for global variants, i.e., Cross Phenotype (CP) associations, i.e.,
522  whether a genetic variant is associated with more than one trait (i.e., pleiotropic, see Solovieff
523 etal., 2013). Counter intuitively, however, our simulations demonstrate that in the context of
524  both uniformly correlated and clustered traits (scenarios 1,6,7), those m-df MATSs do not have
525 the best power to detect global variants, and (like for all MATS) their power suffers especially
526  when the m traits correlate substantially (Minica et al., 2010; Medland & Neale, 2010). When
527  traits correlate uniformly, these m-df MATSs do have the best power to detect local GVs

528  (scenario 5) and GVs that affect only half of the m traits (scenarios 3). In case of clustered
529 variables, the presence of negatively correlated variables can boost the power to detect global
530 GVs (scenarios 6,7), but their power to detect GVs that affect only half (scenarios 10,11) or 1
531  (scenarios 14,15) of the m traits is generally very low, although still superior to that of other
532  MATSs.

533 JAMP i IS quite good at picking up global GVs, especially when the trait correlations
534  are low (scenarios 1-4,6). In the context of uniformly correlated traits, JAMPmy; has

535  noticeably less power than the m-df tests to pick up GV that affect only 1 or half of the m

536 traits, especially with increasing correlations between the m traits. In clustered settings,

537  JAMP,i; can perform slightly better than m-df tests when GV affect only half of m traits

538  (e.g., scenarios 10,11).

539

540  Presence of unassociated traits

541  In psychology and clinical research, it is common to observe mean group differences in some
542  but not all variables of a set of m moderately/highly correlated traits. For instance, Van der
543  Sluis et al (2008) observed significant gender differences in the means of 3 out of 12

544  substantially positively correlated cognitive subtests of the WISC-R (Carroll, 1993).

545  Similarly, gender differences in endorsement rates are often observed in some but not all of
546  positively correlated depression symptoms (see e.g. Lux & Kendler, 2010). In genetic

547  research, where GV-effects are generally small, it is likely that a GV affects correlated traits

548  differently. For instance, in a set of 12 phenotypically correlated neuroticism items (.17-.54),


https://doi.org/10.1101/610287
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/610287; this version posted April 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

549  Nagel et al (2018) identified many item-specific genome-wide significant genetic regions (see
550 their Supplementary Data 2). As the exact GV-trait relationship is generally unknown, it is
551  important to consider the effect of the presence of unassociated traits in the set of m traits on
552  the power of MATS.

553 To study the effect of the presence of unaffected traits on the power to detect as GV of
554 interest, we compare the power results of scenario 5 for 4, 8 and 16 variables, i.e., the power
555  to detect a local GV-effect in the presence of 3, 7, or 15 unaffected variables, respectively
556  (Table S10). In this context, the power to detect the GV is low for all methods, except the m-
557  df technigues MANOVA, MultiPhen and CPC, and Sye, Which do have some power if the
558 trait correlations are substantial (i.e., .5 or higher). For all MATS, the power to detect that

559  local GV deteriorates when more unaffected uniformly correlated traits are added to the

560 analysis.

561 Interestingly, the m-df tests MANOVA, MultiPhen and CPC, and Sy have lower

562  power to detect a GV that affects all m traits (scenario 1) than to detect a GV affecting half of
563  the m traits (scenario 3), even though the total amount of signal is lower in the latter scenario.
564  Specifically, the presence of unaffected traits can boost the power to detect GV effects

565  considerably, but only if they are substantially correlated to the affected traits in the analysis.
566  Inthe Supplemental Information, we show graphically for m=2 (inspired on Cole et al., 1994)
567 how a GV that affects trait Y1 but not trait Y2 can aid discrimination between genotype

568  groups (and thus detection of the GV).

569

570  Opposite effects

571 GV with opposite effects, in which an allele increases the value of/risk to one trait, while

572  decreasing the value of/risk to another, are not uncommon (Solovieff et al., 2013). For

573 instance, Sitora et al (2009) demonstrated such opposite effects in autoimmune diseases.

574  Given the existence of GVs with opposite effects, it is important to determine which MATSs
575  can detect them.

576 Our simulations show that the power of all 1-df MATSs (both reduction and regression-
577  based techniques, and Syom) suffers seriously from the presence of opposite effects. The

578 transformation-based tests all rely on the variance that is shared between the m traits, i.e., their
579  communality. While concordant effects contribute to this communality, opposite effects do
580 not and cancel out. Consequently, the opposite GV-effects are poorly represented in the new
581 variate (depending on the ratio concordant-to-opposite effects), thus resulting in decreased

582  power to detect them.
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583 Under the assumptions that the GV-effects are concordant across all m traits, 1-df

584  MATS constrain them to be equal and then test whether this single parameters deviates

585  significantly from 0. When the assumption holds, this reduced model has increased power to
586  detect the GV compared to univariate procedures (e.g., scenarios 1,6,7). However, if the GV-
587  effects are opposite in reality, constraining them to be identical will cancel individual effects
588  out, thus drastically reducing the power of 1-df MATSs (e.g., scenarios 2,4,12,13).

589 Interestingly, when clusters of traits correlate negatively (e.g., scenarios 8,9), the GV-effects
590 can contribute to the communality if the difference in sign of the GV-effect is in concordance
591  with the difference in sign of the correlations, in which case GV with opposite effects can be
592  picked up by these methods.

593 In contrast, JAMP i handles opposite effects much better than transformation-based
594  and 1-df tests, while the m-df MATs MANOVA, MultiPhen, and CPC ,and Sy actually seem
595 to benefit from the presence of opposite effects (scenarios 2,4,8,9,12,13). That is, the power to
596 identify opposite-effect GVs that affect all or half of the m traits is actually higher than the
597  power to detect a GV that has concordant effects on half or all of the m traits (pairwise

598 compare scenarios 1t02,3t04,6t08,7t09,10to 12, 11 to 13). As m-df tests evaluate the
599  m association parameters individually, the effects do not cancel each other out. Cole et al

600  (1994) already showed that for MANOVA, the critical consideration is not simply the sign of
601 the GV-effects, but the sign of the correlation between the traits as well. In the Supplemental
602  Information, we show graphically for m=2 (inspired on Cole et al., 1994) how a GV that

603  increases the mean of trait Y1 while decreasing the mean of trait Y2 can aid discrimination
604  between genotype groups (and thus detection of the GV) if these traits are positively

605  correlated.

606

607  Number of traits

608  In planning multivariate analyses, one important question is whether the power to detect the
609 GV depends on the number of traits. Our simulations show that when the GV affects only 1 of
610 the m traits, the power is generally slightly better if m is smaller (scenario 5,14,15; Figure 2).
611  For all other scenarios (i.e., scenarios concerning GVs that affect half or all of the m traits),
612  including more traits is generally beneficial for the power of all MATS, except for the m-df
613  tests. For the m-df tests, including more traits is only beneficial when the GV transmits

614  opposite effects (scenarios 2,4,8,9,12,13). Yet, when a GV affects all of the m traits similarly
615  (scenarios 1,6,7), or only 1 of the m traits (scenarios 5,14,15), then these m-df tests have better

616  power when m is small because in that case the number of degrees of freedom is smaller.
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617

618

619 5. Discussion

620  Researchers often employ MATSs with the aim to discover pleiotropic GVs, i.e., GVs that are
621  statistically associated to multiple traits, which possibly points towards a shared biological
622  substrate (Solovieff et al., 2013). The general finding of our simulations that the power to

623  detect such global variants decreases for all MATS as the phenotypic correlations between the
624  traits increase (e.g. Minica et al., 2010, Medland & Neale, 2010; as would be expected with
625 increasing genetic relatedness), demonstrates that currently available MATS are actually not
626  optimised to identify true pleiotropic GVs (see also Porter et al., 2017).

627 The considerable variation in power displayed by MATS across multiple scenarios

628  demonstrates that the choice of MAT is no trivial matter. The optimal choice is determined by
629  multiple factors that define the true genotype-phenotype model, such as the strength and sign
630  of the correlations between the traits, sign and generality of the GV-effect, and the presence of
631  unaffected traits. Many of these factors are unknown prior to analysis, which hampers the

632  formulation of globally applicable recommendations. As Zhou & Stephens (2014) noted “...in
633 a GWAS setting no single test will be the most powerful to detect the many different types of
634  genetic effects that could occur. Indeed, it is possible to manufacture simulations so that any
635  given test is most powerful. Thus different multivariate and univariate tests should be viewed
636  as complementary to one another, rather than competing.” Consequently, identifying the

637  circumstances in which specific MATSs perform strongly or poorly, and indicating which

638  (classes of) MATSs are most versatile, is the best we can do for now. Overall, the m-df MATSs
639  outperform both transformation-based tests and combination tests in 10 out of the 15

640  scenarios (2-5, 8,9,12-15) represented in our study. That is, the m-df MATS are better at

641 identifying GVs that convey opposite effects or GV that affect only a subset of the modelled
642  traits, but are often outperformed when GV are truly pleiotropic (scenarios 1,6-7).

643 As previously pointed out concerning MANOVA (Cole et al., 1994), the power of m-
644  df MATSs can, somewhat counter-intuitively, improve from the inclusion of traits that are

645  unassociated to the GV, if these are correlated with the affected traits. In the context of

646  experimental studies, this knowledge can be put to use given prior or theoretical knowledge of
647  which traits are expected to be affected or unaffected by a given manipulation. In the context
648 of GWAS, however, such theory to guide in- or exclusion of traits is usually lacking (see

649  Supplemental Information for a short discussion on the (dis)advantages of increasing the

650  number of traits m).
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651 In our simulations, we considered only additive codominant GVs and normally

652  distributed continuous traits. These choices fit the (distributional) assumptions underlying

653  most MATSs. We note that Type | error rates of various techniques (e.g., MANOVA,

654  univariate regression) may not be correct when standard assumptions are violated (e.g.,

655  severely non-normal or non-continuous data, see e.g. O’Reilly et al, 2012, Yang et al., 2016,
656  Gasperik, 2010), and that some MATs may have better power to identify non-additive GVs
657  than others. Yet for a selection of MATS, Porter & O’Reilly (2017) showed that for those

658  methods amendable to dichotomous case-control data, the pattern of results was remarkably
659  similar to that obtained using continuous data.

660 In the current review, we focused only on frequentist-based MATS that do not rely
661  greatly on permutation or bootstrapping. MATS based on Bayesian modeling do, however
662  exist (e.g. multivariate version of SNPtest (Marchini et al., 2007) and BIMBAM (Stephens,
663  2013)) or bootstrapping (e.g., PCHAT, Klei et al, 2008), and we refer to Galesloot et al (2012)
664  and Porter et al (2017) for power simulations including these MATS. Similarly, we focused on
665  MATS that formalize the statistical association between a GV and a set of m traits that are all
666  measured on the same individual. Recently, multiple methods were developed that allow

667  estimation of the genetic covariance between traits using genome-wide association signal

668 (e.g., GCTA (Yangetal., 2011), BOLT-REML (Loh et al., 2015), LD Score Regression

669  (Bulik-Sullivan et al., 2015)), alongside multivariate methods like Multi-Trait Analysis of
670 GWAS (MTAG: Turley et al., 2018) and genomic SEM (Grotzinger et al., in press), which
671  use this genetic covariance among traits to boost the statistical power to detect GVs for (sets
672  of) target traits. As these techniques are not primarily SNP-level multivariate tests of traits
673  measured on the same individual (although genomic SEM can be used as such), they were not
674  included in this review.

675 Summarizing, we presented a classification on MATSs based on both their underlying
676  statistical approach and the associated degrees of freedom, alongside a summary of their main
677  characteristics. We showed that MATS vary considerably in their power to detect associated
678  GVs, that under many circumstances, MATS are often more powerful than multiple testing
679  corrected univariate analyses even when only 1 of the m traits is affected by the GV, and that
680  in many scenarios m-df MATS are the most powerful. We also demonstrated for all current
681  MATS, the power to identify truly pleiotropic GVs decreases with increasing trait-

682  correlations, i.e., particularly when pleiotropy is expected. With increasing availability of

683  multivariate information from large publicly accessible biobanks (e.g., UK Biobank,

684  23andMe, deCODE), and knowing that pleiotropy is wide-spread both within and between
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685 trait domains (Watanabe et al., in revision), we believe that development of new MATS that
686  focus specifically on detection of pleiotropic GVs is crucial. Through sharing of flexible
687  simulation scripts, we facilitate a standard framework for comparing Type | error rate and
688  power of new MATS to that of existing ones.

689

690
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Type I error rates for 17 MATS given Nvar=4 or Nvar=16, plotted separately for scenarios with mostly low and scenarios with mostly
high correlations (see Supplemental Table S2). Methods are numbered: 1=MANOVA, 2=factor score, 3=PCA, 4=sum score, 5=SHom,
6=CPC, 7=SHet, 8=GEEex-1, 9=MultiPhen, 10=MANOVA 1df, 11=GEEun-1, 12=TATES, 13=min-PNS, 14=Simes, 15=FCPearson,
16=GEEun-m, 17=min-PBonf. See Supplemental Tables for Type I error rates given 0=.01 and 0=.001. Note: the two JAMP-methods
were excluded from the Type | error rate study as the correctness of their Type | error rates is guaranteed by their reliance on
permutation.
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Figure 2: Power

Panels a and b show the power to detect a GV that explains .1% of the variance (see Supplemental Information) as a function of the
number of traits (4 or 16; see Table S10 for results for 8 traits) and the correlations among the traits. Power curves are shown for 17
MATSs in the 15 scenarios outlined in Table 4.
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Table 1 - Classification of multivariate methods

Method Input Permutation | Ha Data type Short summary df Type |
Reduction-
based
Sum scores Raw data No Joint effect Any except All observed scores on the m traits are summed and this sum is 1 OK
nominal, but regressed on the DSL.
should be the
same for all
phenotypes
PCA Raw data No Joint effect Continuous The first principal component (PC1) obtained in regular Principal 1 OK
Component Analysis (PCA) is the weighted linear combination of
the m traits that maximizes the amount of variation accounted
for in the original data. PC1 is regressed on the DSL.
CPC Raw data No Joint effect Continuous Regular PCA on m traits yields maximally m orthogonal PCs. The m OK
association signals of all m individual PCs with the DSL are
combined to form a non-central m df x2 test.
Factor Raw data No Joint effect Continuous A factor score is obtained in factor analysis by fitting a single 1 OK
analysis common factor model to the m traits, where the factor maximally
explains the variance common to the m phenotypes. Individual
scores on this factor are regressed on the DSL.
Regression-
based
MANOVA Raw data No Joint effect Continuous A multivariate regression model that tests the association m OK
between m traits and a DSL (i.e., treated as a 0/1/2 coded
continuous predictor, assuming an additive codominant model),
while accounting for the residual variance of and covariances
between the m traits. In MANOVA, all elements in this residual
covariance matrix are estimated freely, and an omnibus test
determines whether the DSL affects the m traits.
alternative Raw data No Joint effect Continuous A 1-df MANOVA, in which the m regression weights of the DSL 1 OK
MANOVA are constrained to be equal, and the statistical significance of this
one regression coefficient is evaluated. This model can be fitted
in dedicated software like OpenMx (Neale et al., 2016).
Generalized Raw data No Joint effect Continuous or A generalized linear model that estimates the association 1 or The m-df
Estimating categorical between m traits and a DSL while accounting for the residual m** variants can
Equation (but not a mix) | variances of and covariances between the traits. This residual be liberal
matrix can be set to exchangeable, assuming all residual
covariances to be equal, or to unstructured, estimating all
residual covariances freely. Unlike MANOVA, standard GEE
software assumes the variances of all m traits to be equal, and
uses sandwich correction of the standard errors of estimated
parameters to correct for misspecification in the residual
variance-covariance matrix. In GEE, the associations between the
DSL and the m traits can be estimated freely (m-df test) or
constrained to be equal (1-df test).
MultiPhen Raw data No Joint effect Any The 0/1/2 coded DSL functions as an ordinal dependent variable m* OK

and the m traits as predictors (i.e., proportional odds logistic
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regression model). An omnibus test is performed to test whether
the full set of predictors is significantly associated to the DSL.

Combination
tests

Min-Pgonf Univariate No At least 1 of m Any The m p-values obtained in univariate regressions of the m traits NA Can be
p-values traits on the DSL, are Bonferroni corrected to account for multiple conservative

testing, and then the smallest corrected p-value is selected.

Min-Pns Univariate No At least 1 of m Any The m p-values obtained in univariate regressions of the m traits NA Can be
p-values traits on the DSL, are Nyholt-Sidak corrected to account for multiple liberal or

testing, and then the smallest corrected p-value is selected. conservative,
depending
on trait
correlations
and number
of traits

Simes Univariate No At least 1 of m Any Each j™ p-value of the m p-values obtained in univariate Can be
p-values traits regressions of the m phenotypes on the DSL, is weighted by m/j. conservative

The p-value of the Simes test then corresponds to the smallest
weighted p-value.

TATES Univariate No At least 1 of m Any In an iterative procedure, the top j of the m p-values obtained in NA Can be
p-values traits univariate regressions of the m traits on the DSL, are sorted and liberal or
and the weighted as a function of the eigenvalues of the correlation conservative,
phenotypic matrix between the top j traits. The p-value of the TATES test depending
correlation then corresponds to the smallest weighted p-value. on trait
matrix correlations

and number
of traits

Shom Univariate No Joint effect Continuous In a meta-analytic fashion, the Wald test statistics obtained in m 1 OK
t-statistics and univariate regressions (and possibly across k cohorts) are used to

dichotomous create a new test statistic that follows a X? distribution with 1 df,
while accounting for heterogeneity in sample size and for
correlations between the test statistics. Syom constraints all DSL
effects to be equal, and then evaluates the statistical significance
of this one parameter.

Shet Univariate No Joint effect Continuous Unlike Syom, Shet handles heterogeneity in DSL-effects across the NA OK
t-statistics and binary m traits by calculating the new test statistic only for the subset of

traits showing a Wald statistic above a certain threshold. This
new test statistic is calculated for a range of thresholds, and the
maximally obtained value corresponds to Syet, Which is evaluated
against a gamma distribution.

JAMP 1in Raw data Yes At least 1 of m Any In the original data, the smallest of the m p-values, obtained in NA OK

traits univariate regressions of the m traits on the DSL, is determined.
Then, the multivariate trait scores are permuted K times across
genotypes, retaining the correlations between the m traits. For
each permutation, the smallest of the m p-value is determined.
The smallest p-value from the original data is then evaluated
against the p-values obtained in the K permutations.
JAMP i Raw data Yes Joint effect Any In the original data, the sum of the -log10 transformed p-values, NA OK

obtained in univariate regressions of the m traits on the DSL, is
calculated across all m traits. Then, the multivariate trait scores
are permuted K times across genotypes, retaining the correlation
between the m traits. For each permutation, the Z(-log10(p)) is
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calculated for the specific DSL. Finally, the number of hits (H) is
calculated for each specific DSL by dividing the number of times
the Z(-log10(p)) obtained after permutation exceeds or equals
the Z(-log10(p)) from the original analysis. The empirical p-value
is calculated as H/K.

FC-Pearson Univariate No Joint effect Any The original Fisher combination test defines test statistic T as the NA Can be
p-values sum of the m -2log transformed p-values obtained in the liberal
and the univariate regressions of the m traits on the DSL. When the m p-
phenotypic values are not independent (e.g., because the m traits are
correlation correlated), T follows a gamma distribution with shape p?/0® and
matrix scale 0®/u, where u and o® are the expected mean and variance
of T.

Note. Ha: The alternative hypothesis of each MAT: the MATSs either test whether at least 1 of the m traits is associated to the DSL, or they evaluate the joint effect of the DSL on all
m traits. Data type: Does the method allow only continuous traits or also (a mix of) traits with different measurement levels (e.g., ordinal, dichotomous). Df: When described from
a maximume-likelihood perspective, most tests can be classified as a 1-df test or an m-df test. Type I: denotes whether the Type | error rate, or false positive rate, of a MAT was
found to be correct in our simulations.

* Ordinal predictors need to be properly dummy-coded. When the m traits contain g ordinal phenotypes with i levels each, the number of degrees of freedom equals (m-g)+g(i-1).
** In these techniques, one can allow the DSL effect to vary across phenotypes (m-df test) or constrain it to be identical for each phenotype (1 df test).
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Table 2 — Overview Type | simulation settings

Uniform (1-factor)

# variables 4 16
Phenotypic correlations 1 .85

Clustered (2-factor)

# variables 4 16
Phenotypic correlations within .3 7
Phenotypic correlations between -.9 -.15 .15 .9

Note. All Type | simulations were run 1 million times with sample size of N=2000.

Table 3 - Overview Power simulation settings

Uniform (1-factor)

# variables 4 8 16
Phenotypic correlations 1 .3 .6 .85
Affected All Half 1

Effect size .01 .02 .05
Opposite True False

Clustered (2-factor)

# variables 4 8 16

Phenotypic correlations within .3 7

Phenotypic correlations between -.9 -.5 -.15 0 15 5 .9
Affected All Half 1

Effect size .01 .02 .05

Opposite True False

Note. All power simulations were run 1000 times with sample size of N=2000.
The effect size is expressed as percentage of variance explained in each affected
standardized trait (see Supplemental Information for details).
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Table 4 — Overview 15 main power simulation scenarios

Scenario Structure data Location DSL effect Opposite effects Corr_within
1 Uniform All F NA
2 Uniform All T NA
3 Uniform Half F NA
4 Uniform Half T NA
5 Uniform 1 NA NA
6 Clustered All F .3
7 Clustered All F 7
8 Clustered All T .3
9 Clustered All T 7
10 Clustered Half F .3
11 Clustered Half F 7
12 Clustered Half T .3
13 Clustered Half T 7
14 Clustered 1 NA NA
15 Clustered 1 NA NA

Note. Structure data: Uniform refer to data with a phenotypic 1-factor structure and uniformly correlated traits. Clustered refers to a phenotypic 2-factor
structure with traits that correlate either .3 or .7 within clusters, while correlation between clusters vary. Location DSL effect: refers to whether the DSL affects
1, half or all the simulated traits. Opposite effects: refers to whether the DSL affects some traits positively and some negatively (opposite is True: T) or whether
the DSL-effect has the same sign for all affected traits (Opposite is FALSE: F). Corr_Within: describes the values of the correlations between traits belonging to
the same cluster (i.e., loading on the same factor). NA refer to “Not Applicable”.
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Box 1 — Transformation-based techniques

Sum-scores. In psychology and psychiatry, sum scores are often used to summarize multivariate
responses to items on tests (e.g., cognitive ability), questionnaires (e.g., personality), and clinical
instruments and interviews (e.g., depression). In psychiatric studies, the sum-score is often dichotomized
to obtain a binary case-control status variable, although this may lower the power to detect a possible
GV (e.g. Van der Sluis et al., 2012; Lee & Wray, 2013). In the case of an unweighted sum score (i.e., b; to
b, in Eq 1 are set to one), the variance of a sum score equals the sum of all entries of the m x m variance-
covariance matrix of the m traits. How well the GV can be detected through the sum score thus not only
depends on the effect size of the GV, but also on the number of traits it affects. The contribution of
global GVs, i.e., GVs that affect all or multiple of the m traits, to the variance of the sum is generally
larger than to the variance of the underlying elements, so that the power to detect global GVs can
benefit from using a sum-score. In contrast, GVs that affect only 1 or a few of the traits (i.e., local
variants) contribute relatively little to the variance of the sum. Importantly, however: how well a sum-
score reflects the GV-effect(s) also depends on the magnitude of the variances and covariances
conditional on the GV: if these conditional (co)variances are relatively small, then the signal-to-noise
ratio will be better than if the conditional (co)variances are large (see Supplemental Information for a
more formal discussion of this topic).

Principal Component Analysis (PCA). PCA is used to transform a set of m correlated standardized traits
into a set of maximally m orthogonal (i.e., uncorrelated) linear combinations of these traits, the new
variates being denoted as Principal Components (PC). For the first PC (PC1), the weights b;...b,, in Eq. 1
are chosen such that the variance of PC1 is maximized. If the correlations between the m traits are equal
(i.e., homogeneous), then PC1 will correlate 1 with the sumscore (as, b, = b, =...=b,;). PC1 provides a
summary of the full set of m traits. Additional PCs may be considered if the variance of PC1 is judged to
be too small. In the psychometric context, where the m traits are generally items measuring a given
latent trait (e.g., neuroticism), PC1 is viewed as a proxy of that latent trait. Assuming that PCA was used
to reduce multivariate information, we focus on the analysis of PC1 (see Supplemental Information).

Combined PC test (CPC test). As PCA is conducted on the trait information and does not involve genetic
information, of all PCs obtainable in PCA of a set of m traits, PC1 does not necessarily have the strongest
association with the GV. In PCA’s iterative procedure, the variance in y;...y., that is not accounted for by
preceding PCs, can be accounted for by successive PCs. The weights of successive PCs are chosen such
that again their variance is maximized and that they are uncorrelated with preceding PCs. Capitalizing on
the fact that the m extracted PCs are uncorrelated (orthogonal), the combined PC test (CPC test)
evaluates the association of the GV to all m PCs simultaneously by reference to a y*-distribution with m
degrees of freedom (Aschard et al., 2014).

Common factor analysis. As a data transformation method, factor analysis resembles PCA: just like one
may use PC1, one can also fit a single common factor model to the m traits, calculate the scores on the
common factor (i.e., factor scores), and use this factor score as dependent variable in GWA studies. In
the single common factor model, the weights b;...b,, in Eq. 1 are chosen such that the variance explained
by the new variate ¥ in the set of m traits is maximized, i.e., ¥ maximally represent the variance common
to the m traits. While PCA concerns the total variance of the traits, factor analysis thus focusses on the
covariance shared by the m traits (also denoted as ‘communality’). This common factor obtained in
factor analysis may be viewed as a substantive variable: a common cause of (and as such a source of
covariance among) the m traits (Lawley & Maxwell, 1971). For instance, the covariance between m
neuroticism symptoms is assumed to originate in the fact that all m symptoms are caused by the
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underlying latent trait “neuroticism”. PCA and factor analysis are thus conceptually different: PCA
components are merely statistically optimal linear variates, while the factors in factor analysis are often
assumed to actually represent a theoretical construct (e.g., neuroticism). In addition, the residuals of the
m traits, i.e., the unique parts of y;...y,, that are not explained by the variate ¥, are assumed to be
uncorrelated in factor analysis, while no such assumption is made in PCA. In practice, however, PCA and
factor analysis often yield very similar result, e.g. when the communality of the traits is high (i.e., the
variance shared by the m traits is high compared to the unique variance of the traits). Assuming that
factor analysis was used to reduce multivariate information, we focus on the analysis of factor scores
obtained in a single common factor model (see Supplemental Information).

Canonical Correlation Analysis. Canonical Correlation Analysis (CCA) extracts for each GV under study the
linear combination of m traits (i.e., variate) that explains the largest amount of covariance with that
specific GV (Solovieff et al., 2013). The weights of the new variate thus differ between GV, and reveal
which traits are the most strongly associated to a specific GV. CCA is thus the only transformation-based
technique that uses the information from the GV to create the new variate. CCA is implemented in the
widely used GWA package PLINK (Ferreira & Purcell, 2009). However, assuming an additive codominant
genetic model in which the GV, coded 0/1/2 for the number of minor alleles, is treated as a continuous
predictor (i.e., a “covariate”, rather than a “factor”), CCA is known to perform identically to MANOVA
and therefore does not feature as a separate MAT in our study.

Box 2 — Regression-based techniques

All regression-based techniques described here assume that conditional on the effect of the GV, the data
of the m traits follow a multivariate normal distribution.

MANOVA. In standard MANOVA, the m x m symmetrical background covariance matrix Zg is
unconstrained, i.e., it has ((m+1)*m)/2 freely estimated elements (covariances and variances). In terms
of a likelihood ratio test (asymptotically equal to the F-test used to evaluate MANOVA), standard
MANOVA is an m-df omnibus test of the null hypothesis that the m regression coefficients are all zero
(no association). For comparison, we also ran simulations for a 1-df MANOVA (fitted in the R package
OpenMx (Neale et al., 2016), in which the m regression weights of the GV are constrained to be equal,
and the null-hypothesis is that this regression coefficient is zero (no association).

Generalized Estimating Equations (GEE). In GEE, one can specify various structures for Zg¢, which is
modeled as AgPeAg, Where P is the residual correlation matrix between the m traits conditional on all
predictors in the model, and A is a diagonal matrix with the m residual standard deviations of the m
traits constrained to be equal. In GEE, the structure of correlation matrix Pg, i.e., the working correlation
matrix, is user-specified. In order of parsimony, plausible choices for P¢ are “independent” (Pg =I; the m
traits show no correlation conditional on the GV), “exchangeable” (all conditional correlations between
the m traits are equal), and “unstructured” (i.e., all conditional correlation are freely estimated).
Standard GEE software uses sandwich correction of the standard errors of estimated parameters to
correct for the possible misspecification of Z¢ (ref Dobson). As demonstrated elsewhere (e.g., Minica et
al. 2015), the degree of misspecification does have a bearing on the power of the sandwich corrected
test. In our simulations, we specified 1-df versions of ‘exchangeable’ and ‘unstructured’ GEE models (i.e.,
the m regression weights of the modelled GV were constrained to be identical). As m-df versions of
‘exchangeable’ and ‘unstructured’ GEE models yield identical results (see Supplemental Information), we
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only included the results of GEE-unstructured m-df models in our main discussion, but results for the GEE
‘exchangeable’ m-df model are available in the Tables S7-S12.

Linear Mixed Models (LMM): Linear mixed effects models are an extension of the multivariate regression
model, in which fixed effects are used to estimate the effects of the GV, and additional random effects
account for the correlations among the m phenotypes (see e.g., Yang & Wang, 2012). In the genetics
literature, LMM are frequently employed to model population substructure and relatedness in a
univariate settings (e.g., EMMAX, GenABEL, FaST-LMM, Mendel, GEMMA and MMM, see Eu-
ahsunthornwattan et al (2014) for comparisons, and Yang et al (2014) for a discussion of potential
pitfalls), but LMM can also be used to model e.g. multivariate gene-environment interaction (Moore et
al., 2018) or to accommodate multivariate data (e.g., Zhou & Stephens, 2014). In principle, LMM can
handle multiple sources of clustering or correlation (e.g., multivariate data and familial relatedness or
population substructure simultaneously). Because LMM often failed to converge in our simulations
(especially with larger m), and Type | error rates were severely off for the m-df variant, we excluded
LMM from our main discussion, but all results are available in the Tables S7-512.

Multiphen: reversed ordinal multiple regression. The MultiPhen procedure (O’Reilly et al., 2012) reverses
the regression model by treating the GV as an ordinal dependent variable, and the m traits as predictors.
This has the practical advantage of rendering distributional assumption concerning the phenotypes (e.g.,
conditional multivariate normality, see Table 1) unnecessary; the m phenotypes can be a mix of
continuous and categorical (appropriately dummy-coded) variables. The procedure is implemented in an
R-package (‘MultiPhen’). MultiPhen tests the m df null-hypothesis that the m regression coefficients are
zero.

Box 3 — Combination tests

Minimal p-values: min-Pys and min-Pg,,. Minimal p-value approaches use the m p-values obtained in
univariate analyses, correct these p-values for multiple testing, and then select the smallest. Specifically,
to obtain the Bonferroni-corrected minimal p-value, min-Pg,,s, first all original p-values are multiplied by
m to obtain the Bonferroni-corrected p-values, and then the minimal Bonferroni-corrected p-value is
selected (Simes, 1986). To obtain the Nyholt-Sidak corrected minimal p-value, min-Pys (O’Reilly et al.,
2012), one first establishes the effective number of traits m., and this effective number of traits is then
used to calculate the Sidak-corrected p-values as (1 — (1 - porg))me. Nyholt (2004) proposed to
calculate m, as a function of the variance of all eigen values, which can be derived from the correlation
matrix between the m traits.

Simes. To obtain the p-value for the original Simes test (Simes, 1986), Ps, the m p-values obtained in m
univariates association tests are first sorted ascendingly. Subsequently, each jth p-value (j running from 1
to m) is weighted with m/j, such that the lowest p-value is weighted with the largest weight (i.e., m/1)
and the highest p-value is weighted with the smallest weight (i.e., m/m=1). The Simes p-value then

corresponds to the smallest weighted p-value, i.e., P; = min(@).

TATES: adjusted Simes test. As the original Simes test is conservative (Simes, 1986), and becomes more
so with increasing correlations and increasing m (van der Sluis et al., 2018), Van der Sluis et al (2012)
developed an adjusted Simes procedure denoted TATES (Trait-based Association Test that uses Extended
Simes: based on Li et al., 2011). TATES weights in a fashion similar to Simes, except that the observed
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number of p-values m and j are replaced with the effective number of p-values m. and m;. Specifically,

the TATES p-value P;is obtained as Pr = min ("r:p.j), where m, denotes the effective number of

ej
independent p-values, and m,; the effective number of p-values among the top j p-values. The effective
number of p-values m, and m,; is established from eigenvalue decomposition of the correlation matrix
between the m p-values, which can be approximated from the correlation matrix between the m traits

(see Van der Sluis et al., 2012, 2018).

JAMP: The permutation-based software tool JAMP (Joint genetic Association of Multivariate Phenotypes,
https://ctg.cncr.nl/software/jamp) incorporates two different multivariate tests: one that tests whether
at least one of the m traits is associated to the GV (JAMP,,,), and one that assesses the joint association
signal of the m traits to the GV (JAMP ) 2, Specifically, to calculate the empirical p-value for
multivariate association, JAMP,,,; uses permutation to control the Type | error rate and to adjust for
correlations between the m traits. First, the univariate associations between the m traits and a GV are
evaluated, and the GV-specific statistic G, is calculated as G, = Y.j~; —log,¢(p;), aggregating the signal
across the m traits. Second, the m traits scores are permuted J times across the GV, keeping the
correlations between the m traits intact. For each permutation, G; = Y%, —log;o(p;) is calculated for
the specific GV. Finally, the number of hits (H) is calculated for each GV by dividing the number of times
G, obtained on permuted data exceeds or equals G, obtained on the original data. The empirical p-value
(Pmutt) is then calculated as Py, = H/J.

In contrast, JAMP,,;, produces an empirical p-value (P,) associated with the hypothesis that at
least one of the m traits is significantly associated with the GV. For each GV, the smallest of the m
univariate p-values obtained in the original data is evaluated against the smallest of m univariate p-
values obtained in each of the J permutations. In our simulations, the number of permutations J was set
to 1000.

Shom- IN @ meta-analytic fashion, Syom (Zhu et al., 2015) uses the Wald test statistics obtained in m
univariate GWASs (and possibly across k cohorts) to create a new test statistic that follows a x>
distribution with 1 df. Sy,, accounts for heterogeneity in sample size and for correlations between the
test statistics. As a 1 df test, Sy, cOnstraints all GV effects to be the same, and then tests the omnibus
hypothesis that this 1 GV-parameter is 0. S0, is thus most powerful when the GV effects are
homogeneous in size and sign across the m traits.

Shet- Shet IS €quivalent to Sy but specifically handles heterogeneity in GV-effects across the m traits by
calculating the new test statistic only for the subset of traits showing a Wald statistic above a certain
threshold. This new test statistic is calculated for a range of thresholds, and the maximally obtained
value corresponds to Sy.:. The significance of Sy is obtained through simulation of a Gamma distribution
(see Supplemental Information for details). Like Syom, Ste: tests the omnibus hypothesis that all included
effects are zero. Because of the selection, Sy is expected to be more powerful than S, when the GV-
effects are heterogeneous in size and/or sign across the m traits.

FC-Pearson test: adjusted Fisher Combination test. Let p....p,, be the p-values obtained in the univariate
regressions of the m traits on a GV. The original FC- test is calculated as T = —2 Y12 In(p;) (Fisher,

> Note that the JAMP software also calculates an empirical p-value that controls for the family wise error due to
testing multiple SNPs. This family-wise corrected p-value tends to be less conservative than the Bonferroni
corrected p-value, as it properly takes into account the correlational structure of the genomic data. This family-wise
corrected p-value was not used in the current study.
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1932). If the m traits are uncorrelated, the original FC test statistic T is chi-squared distributed with 2m
dfs. However, if the m traits are correlated, this original test has highly inflated Type | error rate (Fisher,
1932; van der Sluis et al., 2012). For m correlated traits, it can be shown (Brown and Yang, ref 27/28 in
Yang et al, 2016) that, under the null hypothesis of no association between the GV and the m traits, T
follows a scaled chi-squared distribution, or equivalently a specific gamma distribution with shape
parameter that can be derived from the mean (p) and variance (6°) of test statistic T. Yang et al. (2016)
established an approximation of u and o in case of m continuous correlated traits. Just like the original
FC-test, this adjusted test, referred to as the FC-Pearson test, tests the hypothesis that the aggregated
GV-signal present in the set of m traits deviates significantly from 0.
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