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Abstract 28 

The vast majority of genome-wide association (GWA) studies analyze a single trait while 29 

large-scale multivariate data sets are available. As complex traits are highly polygenic, and 30 

pleiotropy seems ubiquitous, it is essential to determine when multivariate association tests 31 

(MATs) outperform univariate approaches in terms of power. We discuss the statistical 32 

background of 19 MATs and give an overview of their statistical properties. We address the 33 

Type I error rates of these MATs and demonstrate which factors can cause bias. Finally, we 34 

examine, compare, and discuss the power of these MATs, varying the number of traits, the 35 

correlational pattern between the traits, the number of affected traits, and the sign of the 36 

genetic effects. Our results demonstrate under which circumstances specific MATs perform 37 

most optimal. Through sharing of flexible simulation scripts, we facilitate a standard 38 

framework for comparing Type I error rate and power of new MATs to that of existing ones. 39 

 40 

 41 

 42 

 43 

 44 
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Introduction 46 

Genome-wide association (GWA) studies aim to identify single nucleotide polymorphisms 47 

(SNPs) that are associated with (i.e., explain variation in) continuous traits (e.g., height, blood 48 

pressure, BMI), or in the liability underlying dichotomous (disease) traits (e.g., schizophrenia, 49 

cancer, Type II diabetes). Most GWA studies are univariate in the sense that they focus on a 50 

single trait. However, often data on multiple correlated traits are available and sometimes 51 

traits treated as univariate are actually multivariate in nature. For instance, GWA studies on 52 

metabolic syndrome (e.g., Zhu et al., 2017, Kristiansson et al., 2012) base the case-control 53 

status on the joint evaluation of multiple measures (e.g., waist circumference, body mass 54 

index, blood pressure, and various blood measures). Similarly, GWA studies on psychiatric 55 

disorders like major depressive disorder (e.g., Howard et al, 2018, Wray et al., 2018) 56 

generally use case-control status variables that originate in the joint evaluation of multiple 57 

clinical criteria, and GWA studies on cognitive ability use cognitive scores that summarize 58 

the performance on batteries of cognitive tests covering e.g., vocabulary, general knowledge, 59 

and memory (e.g., Savage et al., 2018, Benyamin et al., 2014; Davis et al., 2010).  60 

With increasing availability of multivariate information (e.g., UK Biobank), and 61 

knowing that pleiotropy is wide-spread both within and between trait domains (Watanabe et 62 

al., in revision), it is important to determine the circumstances in which a multivariate 63 

approach has greater statistical power than the standard univariate test to detect an associated 64 

SNP, which we henceforth will generally refer to as the genetic variants (GV, plural GVs). As 65 

GWA studies use a stringent correction for multiple testing (usually α is set to 5 x 10-8, Pe’er 66 

et al., 2008, Sham & Purcell, 2014), and effect sizes of individual GVs are expected to be 67 

small (e.g. Visscher et al., 2012, 2017; Psychiatric GWAS Consortium, 2009), statistical 68 

power remains a pivotal concern in GWA studies, despite increasing sample sizes. Besides 69 

increasing study sample sizes, exploiting the multivariate nature of GWA data sets may under 70 

some circumstances, as we will demonstrate here, increase the statistical power to detect 71 

GVs. 72 

Numerous multivariate association tests (MATs) are available. We define a MAT as 73 

any test that formalizes the statistical association between a GV and a set of m traits that are 74 

measured in the same individual. MATs differ in several respects, such as their ability to 75 

accommodate missing values or traits of different measurement levels (e.g., a mix of 76 

continuous and dichotomous traits). The power of MATs has been subject of investigation, 77 

but the scope of the settings in which power was studied was generally limited: simulation 78 

scenarios often featured just a few (e.g., 2 or 3; He et al., 2013, Wu & Pankow, 2015), 79 
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uniformly correlated traits, only GVs that affect all traits in the analysis (Galesloot et al., 80 

2014; Van der Sluis et al., 2013; Aschard et al., 2014, Suo et al., 2013; Yang et al., 2016), or 81 

only same-sign GV effects (e.g., Porter & O’Reilly, 2017). Reality is, however, often more 82 

complex, and the true genotype-phenotype model (i.e., the model describing the relations 83 

between the m traits and the GV as they are in reality) is usually unknown. To determine the 84 

circumstances in which MATs perform best in terms of power the following should be 85 

considered: the number of traits in the simulations, the correlational patterns between the 86 

traits (e.g., both uniform and block-wise), the generality of GV effects (i.e., the number of 87 

traits affected by the GVs), and the sign of the GV effects (i.e., allowing the reality of 88 

opposite effects). 89 

The aim of this Review is to provide a classification of available MATs, to give an 90 

overview of their defining characteristics, to inspect their Type I error rate, and to compare 91 

their statistical power to detect GVs under a multitude of realistic circumstances. We classify 92 

MATs based on the underlying statistical model, and explicate their associated hypotheses. 93 

We inspect Type I error rates in various circumstances, given various values of criterion level 94 

α, and we identify the circumstances in which conducting multivariate analyses is 95 

(dis)advantageous in terms of statistical power. We do so through extensive simulation in 96 

which we investigate the effects of the factors mentioned above: the number of traits in the 97 

analysis, the correlational pattern between the traits, and generality and sign of the GV effects. 98 

We show that the power of MATs can vary considerably as a function of the true genotype-99 

phenotype model (e.g., in consequence of the presence of unaffected traits or opposite GV-100 

effects). Overall, these results facilitate the choice of the most appropriate and optimal MATs 101 

in future multivariate GWA studies. Through sharing of flexible simulation scripts 102 

(https://ctg.cncr.nl/software/), we facilitate prospective application of a standard verification 103 

framework within which the statistical power and Type I error rate of new MATs can be 104 

compared to that of existing ones. 105 

 106 

1. Classification of MATs 107 

A wide range of MATs are available (see Table 1 for an overview of the MATs included in 108 

this paper). Following Yang and Wang’s conceptual classification (Yang & Wang, 2012), we 109 

distinguish transformation-based MATs, regression-based MATs, and combination tests. We 110 

discuss each class of MATs and provide a short statistical description of the MATs included 111 

in this review in Boxes 1-3. These descriptions provide a basic understanding of the statistical 112 

properties of individual MATs, which furthers insight into their specific strengths and 113 
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weaknesses. For a non-statistical overview of all included MATs, we refer to Table 1. Note 114 

that in each MAT, the predictor of main interest is a single genetic variant, i.e., a potential 115 

GV. In practice, however, additional predictors (i.e., covariates) are standardly included in the 116 

model such as the age and sex of participants, and genetic principle components (obtained 117 

using e.g. Eigenstrat (Price et al., 2006) or FlashPC2 (Abraham & Inouye, 2014)) to correct 118 

for population stratification.    119 

 120 

Transformation-based MATs 121 

The simplest way to deal with a multivariate problem is by reducing it to a univariate problem 122 

through transformation of the multivariate information. Given N subjects and m traits y1…ym, 123 

a single new variate 𝑦� for subject i can be created that is a linear combination of these m 124 

traits: 125 

 126 

𝑦�𝑖 = 𝑏0 +  𝑏1𝑦1𝑖 + 𝑏2𝑦2𝑖 + ⋯+ 𝑏𝑚𝑦𝑚𝑚       [1] 127 

 128 

where the weights b1…bm determine how much each original trait contributes to the new 129 

variate. All transformation-based MATs are aimed at variable reduction. The following 130 

transformation-based MATs are included in this review and their characteristics (e.g., how the 131 

weights b1…bm in Eq 1 are determined) are described in Box 1: sum-score analysis, Principal 132 

Component Analysis (PCA), the Combined Principal Components test (CPC, Asschard et al., 133 

2014), and common factor analysis. Important to note is that all transformation-based MATs 134 

determine the weights in Eq. 1 independently of the association of the m traits with the GV 135 

(e.g., in factor analysis, the weights depend on the correlations among the m phenotypes 136 

only). That is, all transformation-based MATs first transform the data solely based on the 137 

phenotypic information, and only then consider the possible association of this new variate 138 

with the GV (generally using a univariate regression model).  139 

 140 

Regression-based MATs 141 

In a multivariate GWA settings, one focusses on the association between a set of k predictors 142 

(the GV and the covariates), and a set of m traits. Given N subject, m traits and k predictors, 143 

this multivariate (referring to the number of dependent variables) multiple (referring to the 144 

number of predictors) regression model can be represented as: 145 

 146 

𝒀 = 𝑿𝑿 + 𝑬          [2] 147 
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 148 

Here, Y is the N x m matrix of trait scores. X is the design matrix, i.e., a N x (k+1) matrix of 149 

predictor scores in which the first column usually is a unit vector that serves to estimate the m 150 

trait-specific intercepts. B is a (k+1) x m matrix of regression weights with the first row 151 

containing m trait-specific intercepts, and the subsequent k rows containing m trait-specific 152 

regression weights for the k predictors. The m regression weights on the row corresponding to 153 

the GV are usually all freely estimated, giving rise to an m degrees of freedom (df) omnibus 154 

test (i.e., the GV is allowed to affect the m traits differently). The m weights may be 155 

constrained to be equal, thus giving rise to a 1-df test (i.e., the GV is assumed to affect all m 156 

traits similarly: in this case, the m traits should be measured on, or be transformed to the same 157 

scale). Finally, E is a N x m matrix of individual- and trait-specific zero-mean residuals, also 158 

referred to as error or disturbance terms. Generally, homoscedasticity of the residuals is 159 

assumed, and the m x m symmetrical background covariance matrix is denoted as E[EtE] = 160 

ΣE. That is, ΣE is the residual variance-covariance matrix between the m traits conditional on 161 

the k predictors, i.e., E captures all sources of residual (co)variability. Note that matrix ΣE is 162 

usually not diagonal because, conditional on the k predictors, the m traits are generally still 163 

correlated. Regression-based MATs mainly differ in their treatment of ΣE (see Box 2). As 164 

given in Eq. 2, the multivariate multiple regression model is thus a system of univariate 165 

regression equations. By combining them all within one model, specific hypotheses can be 166 

tested, and the model can be simplified by introducing constraints in matrices B and E.  167 

The following regression-based techniques are described in Box 2: Multivariate 168 

Analysis of Variance (MANOVA), Generalized Estimating Equations (GEE), and MultiPhen 169 

(O’Reilly et al., 2012). Assuming an additive codominant genetic model, MANOVA, GEE 170 

models, and Linear Mixed Models (LMM, not included in this review, see Box 2) are specific 171 

instances of the model presented in Eq. 2. In contrast, the regression-based MAT MultiPhen is 172 

based on reversed ordinal regression with the m traits as the predictors and the GV as the 173 

dependent variable.  174 

 175 

Combination tests 176 

We define a combination test as any test that combines the p-values or test statistics obtained 177 

in m univariate analyses to test a multivariate hypothesis. The challenge characterizing 178 

combination tests is to optimally handle the correlations between the m p-values or m test 179 

statistics, resulting from the phenotypic correlations between the m traits. How the 180 

information obtained in univariate tests is combined is described in Box 3 for the following 181 
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tests: Nyholt-Šidák and Bonferroni corrected p-values (min-PNS, min-PBonf; Nyholt, 2004), the 182 

Simes test (Simes,1986), its adjusted version TATES (Trait-based Association Test that uses 183 

Extended Simes; Van der Sluis et al., 2013), two version of JAMP (Joint genetic Association 184 

of Multivariate Phenotypes: JAMPmult and JAMPmin (ctg.cncr.nl/software/), the meta-analysis 185 

inspired techniques SHom and SHet (Zhu et al., 2015), and the adjusted Fisher-combination test 186 

FC-Pearson (Yan et al., 2016). 187 

We emphasize the following important aspects of these combination tests. First, only 4 188 

of the combination tests truly create, based on the univariate test statistics, a new multivariate 189 

test statistics, and, as such, evaluate the joint association signal of the m traits to the GV 190 

(JAMPmult, SHom, SHet, FC-Pearson). The others essentially constitute various types of 191 

corrections for multiple testing. Second, Simes, TATES, min-PBonf, min-PNS and JAMPmin do 192 

not create a new test statistic, but simply select the smallest of m weighted univariate p-193 

values. Due to the weighting (i.e., effectively a correction for multiple testing), the p-values of 194 

these combination tests are always larger than the original univariate p-values on which they 195 

are based. 196 

 197 

These three classes of MATs are conceptually distinguished. Alternatively, all transformation-198 

based and regression-based tests, and some combination tests, can be described from a 199 

maximum-likelihood perspective, and within this framework, one could distinguish 1-df and 200 

m-df tests. Specifically, 1-df tests either reduce all m traits to a single new variate (i.e., sum-201 

score analysis, PCA using PC1 only, and factor scores obtained in a single common factor 202 

model), or constrain all m associations between the GV and the m-traits to be equal (SHom, and 203 

the 1-df versions of GEE and MANOVA). In all these tests, the association between the GV 204 

and the m traits is modelled via 1 parameter, which can be tested using a (1-df) likelihood 205 

ratio test. In contrast, in m-df tests, the associations between the GV and the m traits are 206 

allowed to vary, and the m parameters are subjected to a m-df likelihood ratio test, or a closely 207 

related (F-) test (standard MANOVA, CPC, and the m-df versions of GEE). An alternative 208 

classification, based on the underlying mathematical model and the structure of the resulting 209 

test statistic, that matches distinction of MATs based on degrees of freedom, is outlined in the 210 

Supplemental Information.  211 

Irrespective of their statistical foundation, all MATs need to deal with the fact that the m 212 

simultaneously modelled traits are often correlated conditional on the tested GV. The way 213 

they do so differs: combination tests use either permutation or a correction factor, regression-214 

based tests either treat the m traits as predictors, avoiding the issue altogether (MultiPhen), or 215 
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accommodate the residual trait correlations in a background covariance matrix ΣE 216 

(MANOVA, GEE, LMM), and transformation-based tests explicitly use the covariance 217 

between the m traits to create the new variate.  218 

 219 

2. Characteristics of MATS 220 

The classification in transformation-based tests, regression-based tests, and combination tests 221 

is based on the statistical properties of the MATs. They differ, however, in various respects 222 

that have a bearing on the their performance and applicability. We discuss these differences 223 

briefly, and refer to Table 1 for an extensive summary. 224 

 225 

Specific hypothesis tested 226 

While all MATs evaluate the statistical relationship between m traits and a GV, they differ 227 

with respect to the exact hypothesis that they test. First, MATs can evaluate the omnibus 228 

hypothesis that the joint association signal of the m traits to the GV deviates significantly 229 

from 0. This omnibus test can be an m-df test, allowing for heterogeneity in the m GV-effects 230 

regarding sign and size. By assuming the GV-effects to be homogeneous across the m traits, 231 

the omnibus test reduces to a 1-df test, which can be more powerful if the homogeneity 232 

assumption holds approximately. The 1-df tests are obtained through constraining of model 233 

parameters (e.g., the regression weights are constrained to be equal), or through the use of 234 

transformation-based techniques, in which the m traits are reduced to a single new variate 235 

under the assumption that this new variate is representative of what the m traits have in 236 

common. Second, MATs can test the hypothesis that at least one of the m traits is significantly 237 

associated with the GV. These MATs generally concern combination tests that evaluate the 238 

smallest of m weighted p-values as obtained in univariate GWA analyses.  239 

 240 

Measurement level of the m traits 241 

The choice of MAT is often largely dictated by the measurement levels of the m traits. 242 

Specifically, if all m traits are continuous (to reasonable approximation), PCA, CPC, and 243 

MANOVA can be used directly. All MATs suited for continuous data assume the data to be 244 

multivariate normally distributed. GEE-based generalized linear modeling can handle 245 

continuous or categorical traits, but current standard implementation (e.g., GEE in SPSS or 246 

the R library gee) cannot handle a mix of different measurement levels. Which measurement 247 

levels factor analysis can handle, depends on the software package (e.g., when conducted in 248 

MPlus (Muthén & Muthén, 2017) or OpenMx (Neale et al., 2016), factor analysis can in 249 
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principle handle all measurement levels as well as a mix). The sum score method is applicable 250 

to continuous  variables, or ordinal variables (including dichotomous) variables (i.e., “burden 251 

score”), as long as all m aggregated traits are measured on the same scale. If the m traits have 252 

different measurement levels, combination tests and MultiPhen can be used (but see Guo et 253 

al., 2015 on power losses in MultiPhen when traits are non-normally distributed). The 254 

strength of combination tests lies in their flexibility to combine results regardless of the traits’ 255 

measurement level. For instance, TATES has been shown to work well on a mix of non-256 

uniformly correlating dichotomous, ordinal, and continuous traits (Van der Sluis et al., 2013). 257 

The current implementation of the permutation-based combination tests of JAMP is suited for 258 

continuous data only, but is in principle amendable to traits with a mix of measurement levels. 259 

 260 

Missingness 261 

In univariate analyses, missing values simply result in a smaller effective sample size N. In a 262 

multivariate context, however, partial missingness can occur, i.e, participants having missing 263 

values on a subset of the m traits. Not all software can handle partial missingness; methods 264 

often resort to listwise deletion, basing analyses only on cases with complete data. As in 265 

practice the probability of at least 1 of the m scores being missing increases with m, listwise 266 

deletion can result in a substantial reduction of sample size and consequently a considerable 267 

reduction in statistical power. Alternatively, however, one can use packages like OpenMx 268 

(Neale et al., 2016) that use Full Information Maximum Likelihood (FIML, i.e., all available 269 

data are used) to specify a wide variety of multivariate models (including MANOVA, PCA, 270 

and factor analysis) while accommodating the missingness. This can, however, come with a 271 

prohibitive computational burden in the GWA settings.  272 

If one weights the m trait scores appropriately, sum scores can still be used if the data 273 

show partial missingness: e.g., each individual sum score may be divided by the number of 274 

observed trait scores. As this may result in heteroskedastic variance, weighted sum scores are 275 

generally used in combination with a cut off criterion (e.g., no more than 20% of the m scores 276 

can be missing), which also ensures approximate conceptual comparability between scores 277 

over subjects with different numbers of observed scores.   278 

The essentially univariate nature of the input of combination tests guarantees their 279 

ability to handle missingness. However, if sample sizes differ greatly between the m traits, a 280 

(sample size) weighted procedure (like SHom and SHet offer) is desirable.  281 

Generally, partial missingness lowers the power to detect GV, especially if the traits 282 

with a relative large percentage of missingness are the traits with the strongest genetic 283 
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association. Additionally, in using methods that can accommodate the missingness, one 284 

should realize that the multivariate association signal may be primarily driven by the traits 285 

with the lowest percentage of missingness.  286 

Imputation of the missing scores can be a convenient way to handle missing data, as 287 

replacement of the missing values with imputed ones facilitates the use of all MATs. 288 

Multivariate imputation, i.e., dealing with imputation of missing values in multiple variables 289 

at once, can be done in many ways, but comes with its own challenges and can yield biased 290 

results (see e.g. Nakai & Ke, 2011; van Buuren & Groothuis-Oudshoorn, 2011).  291 

 292 

Relateds 293 

GWA data sets may include data collected in families (e.g., trios of parents and one affected 294 

off-spring, data of twins and their family members). In univariate analyses, inclusion of 295 

family members can be useful to differentiate “between” from “within” family associations, 296 

the latter being free of any effects of population stratification (Fulker et al., 1999). Also, 297 

including all available data, even data of genetically similar monozygotic twin pairs, can be 298 

beneficial in terms of power to detect GV-effects (e.g., Minica et al., 2014). However, if data 299 

include family members, the data clustering induced by the relatedness must be 300 

accommodated statistically to avoid inflated Type I error rates. In the univariate setting, 301 

multiple linear mixed model approaches exist (see Eu-ahsunthornwattana et al., 2014 for 302 

comparisons). When data only include a few relateds, one can chose to “correct for” the 303 

familial relatedness rather than explicitly model it. For instance, PLINK (Purcell et al., 2007) 304 

offers the option to correct for relatedness in the data by running GEE, which involves a 305 

correction of standard errors1. In principle, these univariate procedures can be used in the 306 

context of transformation-based techniques (i.e., correcting the univariate analyses of the new 307 

variate), and in the context of combination tests, in which case the corrected model 308 

parameters of the m univariate GWA analyses are used as input for the combination tests (to 309 

our knowledge, only the performance of the combination test TATES has been studied in the 310 

context relatedness; Vroom et al., 2015). Combination tests using permutation, like JAMP, 311 
                                                           
1 Specifically, the working correlation matrix is by default set to “independent” in PLINK 
(i.e., the family scores are assumed independent conditional on the GV under study) to 
minimize computational intensity. GEE’s standard sandwich correction then corrects the 
standard errors of all estimated parameters for model misspecification induced by ignoring 
relatedness. This procedure works well in terms of Type I error rates, but Minica et al (2015, 
see also Vroom et al., 2016) showed that considerable statistical power can be gained if the 
working correlation matrix is set to unstructured, although this is computationally more 
demanding. 
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need to permute the data not on an individual level but on the family-level to retain the 312 

familial relatedness in the data. This is complicated if the families in the data set do not all 313 

have the same size and composition. 314 

In their standard form, MANOVA and MultiPhen cannot be used on data including 315 

relateds. Theoretically, in case of familial clustering, multivariate multilevel modelling can be 316 

used instead of MANOVA (Pituch and Stevens, 2016), and Structural Equation Modelling 317 

can be used instead of MultiPhen, treating the m traits as exogeneous variables. These 318 

approaches are, however, computationally intensive. 319 

As standard GEE software can handle only one source of clustering at the time, it can 320 

handle either familial relatedness in a univariate setting, or multivariate data in a sample of 321 

genetically unrelated individuals, but not both. In principle, LMM (Box 2) can handle 322 

multiple sources of clustering or correlation.  323 

 324 

Computational feasibility 325 

Given imputation of genetic variants, current GWA studies may include tens of millions of 326 

SNPs. Cluster computers offer large computation capacity, but computation burden is an 327 

important consideration in the choice of MAT. In theory, any of the MATs discussed here can 328 

be applied using standard software. However, in practice, the use of dedicated software like 329 

PLINK (Chang et al, 2015, Purcell et al, 2007) considerably facilitates running such vast 330 

amounts of statistical tests on files containing multiple terabytes of data. From a 331 

computational feasibility perspective, MATs that rely on univariate analyses (i.e., 332 

transformation-based tests and combination tests) or MATs that are built-in in dedicated 333 

software (Canonical Correlation Analysis, i.e., MANOVA (see Box 1) as part of PLINK) may 334 

be preferred over tests like GEE, MultiPhen, SHom and SHet, or permutation-based tests like 335 

JAMPmult and JAMPmin. Due to their increased computational intensity, these latter options 336 

are particularly attractive if they indeed come with clear advantages, like substantial gains in 337 

power. 338 

 339 

3. Type I error rates of MATs 340 

A correct Type I error rate is a primary requirement of any statistical test. We studied the 341 

Type I error rates of 17 MATs, excluding the JAMP-methods as the correctness of their Type 342 

I error rates is guaranteed by their reliance on permutation. The 17 MATs were studied in 20 343 

scenarios that are outlined in Table 2 (see Supplemental Information for simulation details). 344 

The 20 scenarios varied with respect to the number of included variables (m=4 or m=16), the 345 
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strength of the correlations between the traits, and the correlational structure, i.e., uniformly 346 

correlated traits (i.e., 1-factor model with compound symmetry), or two clusters of more or 347 

less strongly correlated traits (i.e., 2-factor model). All simulated traits were standard 348 

normally distributed. For each scenario, we ran Nsim=1,000,000 replications, allowing us to 349 

reliably evaluate Type I error rates at α-levels of .05, .01, and .001. All Type I results are 350 

available in Tables S7-S9.  351 

We note that the large number of replications provides high statistical power to detect 352 

small deviations from the expected Type 1 error rate (α), especially for the larger α values. 353 

For instance, with 1 million replications, the 99% confidence interval (CI99) for α=.05 is very 354 

narrow: .04944-.05056 (see Table S6 for the CI99 for all α-levels). As a result, merely 355 

considering which MATs show Type I errors outside the CI99 paints a gloomy picture (Figure 356 

S2a). Type I error rates of MANOVA, SHom, and all transformation-based (i.e., essentially 357 

univariate) MATs are virtually always correct. However, when considered across all 20 358 

scenarios and all three levels of α (.05, .01, .001, i.e., 60 scenarios in total), all other MATs 359 

showed Type I error rates outside the CI99, with overall percentages ranging from 22% (CPC) 360 

to 92% (FC Pearson) and 100% (GEEuns_m). 361 

Figure 1 shows the Type I error rates of the 17 MATs given α=.05 for 4 or 16 362 

variables, split for scenarios with mostly low or mostly high trait correlations (see Table S2). 363 

As many of these deviations outside the CI99 were (very) small (Tables S7-S9), we also 364 

looked beyond the CI99 by summing the deviations from the expected α across all scenarios, 365 

allowing us to determine which factors caused the largest deviations (Figure S2b). Overall, 366 

the largest deviations are observed for TATES, min-PNS, Simes, FC-Pearson, GEEuns_m, and 367 

min-PBonf. Interestingly, combination tests show mainly deviations from the expected when 368 

the m traits are highly correlated, while the number of traits m mainly drives the deviations in 369 

most other method. Taking the direction of the deviations into account, we see that CPC, 370 

Simes and min-PBonf are always conservative, while SHet, Tates and min-PNS are conservative 371 

when applied to many (highly correlated) traits, and liberal otherwise. All other methods that 372 

do show deviations from the expected, always show inflation, with Type I error rates of 373 

GEEuns_m and FC-Pearson especially being inflated when m is large, irrespective of the 374 

correlations between the phenotypes. 375 

Summarizing, due to the strong power to detect deviations from the expected, many 376 

methods showed Type I error rates outside the CI99. When considering the magnitude of the 377 

deviations, especially application of Simes, min-PBonf, FC-Pearson, and m-df versions of GEE 378 
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warrant careful consideration, although even here the actual deviations are often quite small 379 

(Tables S7-S9). 380 

 381 

4. Power of MATs 382 

The statistical power of a test is the probability that the null-hypothesis of no association is 383 

correctly rejected when the GV is indeed statistically associated with the trait(s). In de context 384 

of GWA studies, GV-effects are expected to be small, so in selecting a MAT for one’s 385 

analyses, power is an important consideration.  386 

We studied the power of 19 MATs in 15 scenarios covering 270 settings of the true 387 

genotype-phenotype model, which are summarized in Tables 3 and 4 (see Supplemental 388 

Information for simulation details). The scenarios varied with respect to the number of traits 389 

(m=4, 8, or 16, all standard normally distributed), the correlational structure (i.e., uniformly 390 

correlated or clustered, corresponding to 1- or 2-factor models), the strength and sign of the 391 

correlations between the m traits, the number of traits affected by the GV (1, half, or all m), 392 

and the presence or absence of opposite effects (i.e., GV affecting multiple traits but in 393 

opposite direction). For each setting, we ran 1,000 simulations with a GV explaining .1, .2 or 394 

.5% of the variance in each affected trait, and a sample size of N=2000.  395 

The full results of the power simulations are available in Table S10-S12. Below, we 396 

discuss the power results for a GV explaining .1% of the variance (Table S10), and emphasize 397 

that these main finding hold for GV of different effect sizes (Tables S11-S12). We excluded 398 

the 2 MATs with highly inflated Type I error rates (GEEuns_m, and FC-Pearson) from 399 

discussion as their power estimates can be biased upwards due to the inflated Type I error 400 

rates (but see Tables S10-S12 for all power results of these test). We did include the two 401 

conservative MATs (Simes, min-PBonf) in our discussion, as their deflated Type I error rates 402 

will result in under- rather than overestimation of power which we can interpret as a lower 403 

bound estimate. 404 

Figure 2 depicts the power of these 17 MATs in all 15 scenarios for 4 and 16 405 

variables.  We note that the power of MATs can be compared within, but not always directly 406 

between, scenarios as the total contribution of the GV to the m traits can differ across 407 

scenarios as a function of the correlations between the m traits.  408 

 409 

Univariate versus multivariate 410 

When testing the association of a GV to m traits, one could simply do m univariate analyses 411 

and correct the m resulting p-values for multiple testing. We consider the power results of the 412 
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combination test min-PBonf an approximation of this approach (although min-PBonf 413 

subsequently selects the smallest Bonferroni corrected p-value). The power results in Figure 2 414 

reveals that when all or half of the m traits are affected by the GV (scenarios 1-4, 6-13), 415 

MATs are very often (but not always!) more powerful than a for multiple testing corrected 416 

univariate analysis. MATs even often outperform univariate analyses when only 1 of the m 417 

trait is affected by the GV, especially when the trait correlations are generally high. Taken 418 

over all scenarios, it is safe to conclude that multivariate approaches towards identification of 419 

GV are generally worth pursuing.  420 

 421 

Equivalence of MATs 422 

So far, we classified MATs based on their underlying statistical approach, the descriptions in 423 

Boxes 1-3 outlining their differences. The power simulations, however, demonstrate that there 424 

are 3 groups of MATs that function very similarly, i.e., have very similar power across all or 425 

most of the scenarios (see Supplemental Information for detailed comparisons). First, the 426 

combination tests min-PNS, Simes, TATES, and JAMPmin demonstrate very similar power 427 

throughout all 15 scenarios, with min-PBonf showing a very similar yet consistently lower 428 

power profile. Second, the m-df tests MANOVA, CPC, and MultiPhen perform very similarly 429 

(and very similar to the m-df variants of GEE), with SHet generally does equally well or 430 

slightly worse. Third, in the context of uniformly correlated traits (scenarios 1-5), tests that 431 

can generally be referred to as 1-df tests group together, i.e., the transformation-based 432 

techniques sum-score, PCA, and factor scores, and the 1-df variants of the regression-based 433 

tests GEE (exchangeable and unstructured) and MANOVA. However, in the context of 434 

clustered traits (scenarios 6-15), PCA and the factor scores perform much worse than the 435 

other 1-df tests when the clusters correlate negatively. Interestingly, the combination test 436 

JAMPmult follows its own trend (which is very similar to that of the FC-Pearson test). 437 

 438 

Relative insensitivity to the true genotype-phenotype model 439 

The true genotype-phenotype model provides the multivariate context in which one tests the 440 

associations between the m traits and the GV. Our power simulations show that some MATs 441 

are relatively insensitive to this context, i.e., their power varies much less across the different 442 

scenarios compared to other MATs. These relatively insensitive MATs all concern 443 

combination tests that are based on selection of the minimum weighted p-value: min-PBonf, 444 

min-PNS, Simes, TATES, and JAMPpmin. Mainly in the context of many uniformly correlated 445 

traits and a pleiotropic variant affecting all m traits (scenarios 1-2), do these methods 446 
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demonstrate noticeable variation in power, i.e., their power to detect the GV decreases with 447 

increasing correlations between the m traits, irrespective of the presence of opposite effects. In 448 

all other scenarios, the power curves for these methods are rather flat, illustrating their relative 449 

insensitivity.  450 

This relative insensitivity to the true genotype-phenotype model can be advantageous: 451 

there are several settings in which these MATs generally outperform m-df tests and SHet (e.g., 452 

scenarios 1, 6, 7, 10, 11), factor scores and PCA (e.g., scenarios 6-9, 12 and 13), JAMPmult (3-453 

5,13-15), and sum scores, SHom and 1-df regression-based tests (e.g., 2-5,8,9,12 and 13). 454 

However, some MATs actually benefit from specific characteristics of the true genotype-455 

phenotype model, such as the presence of unaffected or oppositely affected variables in the 456 

analysis (see below). Under these circumstances, these relative insensitive MATs are, 457 

sometimes substantially, outperformed. Because of their relative insensitivity, we exclude 458 

these MATs from further discussion. 459 

 460 

Clustered versus uniformly correlated traits 461 

When the m traits are uniformly correlated, all transformation-based techniques have very 462 

similar power (scenarios 1-5). In this context, the power of transformation-based techniques 463 

increases with decreasing correlation among the m traits. Specifically, the variance of the new 464 

variates, summarizing the communality between the traits, is larger when the m traits correlate 465 

more strongly and the contribution of the GV to that common variance is in that case 466 

relatively small. That is, the signal-to-noise ratio is more optimal when the covariance 467 

between the traits conditional on the GV is low (see Supplemental Information for an 468 

elaborate discussion).  469 

In the context of clustered correlated traits, however, PCA and factor scores perform 470 

differently from the other transformation-based tests when the correlation between clusters of 471 

positively correlated traits is negative (scenarios 6-11). In that case, the first PC from PCA 472 

and the factor scores from a 1-factor model will only summarize 1 of the two clusters well, 473 

while they do not capture information from the other cluster. Interestingly, in the calculation 474 

of sum scores, the presence of negatively correlated variables can actually have a beneficial 475 

effect on the detection of GV-effects (scenarios 6-11): the negative covariances between pairs 476 

of traits reduce the total variance of the sum, which in turn improves the signal-to-noise ratio 477 

(see Supplemental Information).  478 

When the GV affects only half or 1 of the traits, the m-df tests MANOVA, MultiPhen 479 

and CPC perform better when the m traits are uniformly correlated than when they are 480 
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clustered (scenarios 3 and 5 versus 10-11 and 14-15), but when the GV affects all m traits or 481 

conveys opposite effects (scenarios 1,2,4 versus 6-7,8-9,12-13), the power of these tests does 482 

not seem to suffer much from the clustering in the data.  483 

In the context of uniformly correlated traits (scenarios 1-5), the power of JAMPmult is 484 

clearly a function of the trait correlations, with lower trait correlations resulting in higher 485 

power. Similar results are observed for the clustered scenarios, if one compares the power in 486 

the scenarios with within-cluster correlations of .3 (scenarios 6,8,10,12 and 14) to those with 487 

within-cluster correlations of .7 (scenarios 7,9,11,13 and 15: always lower). 488 

 489 

Pleiotropic versus local variants 490 

In evaluating GV-effects in a multivariate context, it is desirable to distinguish between the 491 

detection of pleiotropic or global genetic variants (i.e., variants that affect all or multiple of 492 

the m traits in the analysis) and local genetic variants (i.e., variants that effect only 1 or a few 493 

of the m traits in the analysis). As we defined a MAT as any test that formalizes the statistical 494 

association between a GV and a set of m traits that are measured in the same individual, one 495 

may argue that MATs should be assessed based on their power to detect global variants. 496 

Conducting multivariate analyses may then not only be lucrative with respect to power, but 497 

can also aid theoretical development and biological understanding by revealing shared 498 

underlying biology. However, a one-sided focus on global variants neglects the importance of 499 

identifying local variants, which may be a source of genetic heterogeneity. Identification of 500 

genetically homogeneous subsets of traits within the full set of m traits acknowledges the 501 

contribution of more local variants and may be biologically informative (e.g., Nagel et al., 502 

2018). 503 

In the context of uniformly correlated traits, the (transformation-based) 1-df tests work 504 

best for the identification of global variants that affect all phenotypes in the same direction 505 

(scenario 1), as these contribute most to the variance of the new variate. Here, the power to 506 

detect global GVs decreases as the conditional correlations between the m traits increase (i.e., 507 

the signal-to-noise ratio decreases). Yet, GVs that affect only half or 1 of the m traits 508 

(scenarios 3, 5) can hardly be detected through these 1-df tests: such GVs will generally 509 

contribute little to the variance of the new variate and will therefore be (very) difficult to 510 

identify using transformation-based approaches. When traits show clustering, we see a clear 511 

difference between sum scores and other 1-df MATs, which do well in detection global 512 

variants (scenarios 6,7), and PCA and factor scores, which do poorly. Clearly, the first PC and 513 

factor scores based on a 1-factor model do not capture the clustered nature of the data well. 514 
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Interestingly, in a clustered context, 1-df tests do best in detecting GV affecting only half of 515 

the m traits (scenarios 10,11), especially when the unaffected traits correlate negatively to the 516 

affected traits: in that case, the negatively correlations lower the variance of the new variate 517 

and as such improve the signal-to-noise ratio. Yet, truly local variants go undetected when 518 

transformation-based or 1-df MATs are used. 519 

Conceptually, MATs that evaluate the joint association signal of the m traits through 520 

m-df omnibus tests truly test for global variants, i.e., Cross Phenotype (CP) associations, i.e., 521 

whether a genetic variant is associated with more than one trait (i.e., pleiotropic, see Solovieff 522 

et al., 2013). Counter intuitively, however, our simulations demonstrate that in the context of 523 

both uniformly correlated and clustered traits (scenarios 1,6,7), those m-df MATs do not have 524 

the best power to detect global variants, and (like for all MATs) their power suffers especially 525 

when the m traits correlate substantially (Minica et al., 2010; Medland & Neale, 2010). When 526 

traits correlate uniformly, these m-df MATs do have the best power to detect local GVs 527 

(scenario 5) and GVs that affect only half of the m traits (scenarios 3). In case of clustered 528 

variables, the presence of negatively correlated variables can boost the power to detect global 529 

GVs (scenarios 6,7), but their power to detect GVs that affect only half (scenarios 10,11) or 1 530 

(scenarios 14,15) of the m traits is generally very low, although still superior to that of other 531 

MATs.  532 

JAMPmult is quite good at picking up global GVs, especially when the trait correlations 533 

are low (scenarios 1-4,6). In the context of uniformly correlated traits, JAMPmult has 534 

noticeably less power than the m-df tests to pick up GV that affect only 1 or half of the m 535 

traits, especially with increasing correlations between the m traits. In clustered settings, 536 

JAMPmult can perform slightly better than m-df tests when GV affect only half of m traits 537 

(e.g., scenarios 10,11). 538 

 539 

Presence of unassociated traits 540 

In psychology and clinical research, it is common to observe mean group differences in some 541 

but not all variables of a set of m moderately/highly correlated traits. For instance, Van der 542 

Sluis et al (2008) observed significant gender differences in the means of 3 out of 12 543 

substantially positively correlated cognitive subtests of the WISC-R (Carroll, 1993). 544 

Similarly, gender differences in endorsement rates are often observed in some but not all of 545 

positively correlated depression symptoms (see e.g. Lux & Kendler, 2010). In genetic 546 

research, where GV-effects are generally small, it is likely that a GV affects correlated traits 547 

differently. For instance, in a set of 12 phenotypically correlated neuroticism items (.17-.54), 548 
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Nagel et al (2018) identified many item-specific genome-wide significant genetic regions (see 549 

their Supplementary Data 2). As the exact GV-trait relationship is generally unknown, it is 550 

important to consider the effect of the presence of unassociated traits in the set of m traits on 551 

the power of MATs.  552 

To study the effect of the presence of unaffected traits on the power to detect as GV of 553 

interest, we compare the power results of scenario 5 for 4, 8 and 16 variables, i.e., the power 554 

to detect a local GV-effect in the presence of 3, 7, or 15 unaffected variables, respectively 555 

(Table S10). In this context, the power to detect the GV is low for all methods, except the m-556 

df techniques MANOVA, MultiPhen and CPC, and SHet, which do have some power if the 557 

trait correlations are substantial (i.e., .5 or higher). For all MATs, the power to detect that 558 

local GV deteriorates when more unaffected uniformly correlated traits are added to the 559 

analysis. 560 

Interestingly, the m-df tests MANOVA, MultiPhen and CPC, and SHet have lower 561 

power to detect a GV that affects all m traits (scenario 1) than to detect a GV affecting half of 562 

the m traits (scenario 3), even though the total amount of signal is lower in the latter scenario. 563 

Specifically, the presence of unaffected traits can boost the power to detect GV effects 564 

considerably, but only if they are substantially correlated to the affected traits in the analysis. 565 

In the Supplemental Information, we show graphically for m=2 (inspired on Cole et al., 1994) 566 

how a GV that affects trait Y1 but not trait Y2 can aid discrimination between genotype 567 

groups (and thus detection of the GV). 568 

 569 

Opposite effects 570 

GV with opposite effects, in which an allele increases the value of/risk to one trait, while 571 

decreasing the value of/risk to another, are not uncommon (Solovieff et al., 2013). For 572 

instance, Sitora et al (2009) demonstrated such opposite effects in autoimmune diseases. 573 

Given the existence of GVs with opposite effects, it is important to determine which MATs 574 

can detect them.  575 

Our simulations show that the power of all 1-df MATs (both reduction and regression-576 

based techniques, and SHom) suffers seriously from the presence of opposite effects. The 577 

transformation-based tests all rely on the variance that is shared between the m traits, i.e., their 578 

communality. While concordant effects contribute to this communality, opposite effects do 579 

not and cancel out. Consequently, the opposite GV-effects are poorly represented in the new 580 

variate (depending on the ratio concordant-to-opposite effects), thus resulting in decreased 581 

power to detect them.  582 
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Under the assumptions that the GV-effects are concordant across all m traits, 1-df 583 

MATs constrain them to be equal and then test whether this single parameters deviates 584 

significantly from 0. When the assumption holds, this reduced model has increased power to 585 

detect the GV compared to univariate procedures (e.g., scenarios 1,6,7). However, if the GV-586 

effects are opposite in reality, constraining them to be identical will cancel individual effects 587 

out, thus drastically reducing the power of 1-df MATs (e.g., scenarios 2,4,12,13). 588 

Interestingly, when clusters of traits correlate negatively (e.g., scenarios 8,9), the GV-effects 589 

can contribute to the communality if the difference in sign of the GV-effect is in concordance 590 

with the difference in sign of the correlations, in which case GV with opposite effects can be 591 

picked up by these methods. 592 

In contrast, JAMPmult handles opposite effects much better than transformation-based 593 

and 1-df tests, while the m-df MATs MANOVA, MultiPhen, and CPC ,and SHet actually seem 594 

to benefit from the presence of opposite effects (scenarios 2,4,8,9,12,13). That is, the power to 595 

identify opposite-effect GVs that affect all or half of the m traits is actually higher than the 596 

power to detect a GV that has concordant effects on half or all of the m traits (pairwise 597 

compare scenarios 1 to 2, 3 to 4, 6 to 8, 7 to 9, 10 to 12, 11 to 13). As m-df tests evaluate the 598 

m association parameters individually, the effects do not cancel each other out. Cole et al 599 

(1994) already showed that for MANOVA, the critical consideration is not simply the sign of 600 

the GV-effects, but the sign of the correlation between the traits as well. In the Supplemental 601 

Information, we show graphically for m=2 (inspired on Cole et al., 1994) how a GV that 602 

increases the mean of trait Y1 while decreasing the mean of trait Y2 can aid discrimination 603 

between genotype groups (and thus detection of the GV) if these traits are positively 604 

correlated.  605 

 606 

Number of traits 607 

In planning multivariate analyses, one important question is whether the power to detect the 608 

GV depends on the number of traits. Our simulations show that when the GV affects only 1 of 609 

the m traits, the power is generally slightly better if m is smaller (scenario 5,14,15; Figure 2). 610 

For all other scenarios (i.e., scenarios concerning GVs that affect half or all of the m traits), 611 

including more traits is generally beneficial for the power of all MATs, except for the m-df 612 

tests. For the m-df tests, including more traits is only beneficial when the GV transmits 613 

opposite effects (scenarios 2,4,8,9,12,13). Yet, when a GV affects all of the m traits similarly 614 

(scenarios 1,6,7), or only 1 of the m traits (scenarios 5,14,15), then these m-df tests have better 615 

power when m is small because in that case the number of degrees of freedom is smaller. 616 
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 617 

 618 

5. Discussion 619 

Researchers often employ MATs with the aim to discover pleiotropic GVs, i.e., GVs that are 620 

statistically associated to multiple traits, which possibly points towards a shared biological 621 

substrate (Solovieff et al., 2013). The general finding of our simulations that the power to 622 

detect such global variants decreases for all MATs as the phenotypic correlations between the 623 

traits increase (e.g. Minica et al., 2010, Medland & Neale, 2010; as would be expected with 624 

increasing genetic relatedness), demonstrates that currently available MATs are actually not 625 

optimised to identify true pleiotropic GVs (see also Porter et al., 2017). 626 

The considerable variation in power displayed by MATs across multiple scenarios 627 

demonstrates that the choice of MAT is no trivial matter. The optimal choice is determined by 628 

multiple factors that define the true genotype-phenotype model, such as the strength and sign 629 

of the correlations between the traits, sign and generality of the GV-effect, and the presence of 630 

unaffected traits. Many of these factors are unknown prior to analysis, which hampers the 631 

formulation of globally applicable recommendations. As Zhou & Stephens (2014) noted “…in 632 

a GWAS setting no single test will be the most powerful to detect the many different types of 633 

genetic effects that could occur. Indeed, it is possible to manufacture simulations so that any 634 

given test is most powerful. Thus different multivariate and univariate tests should be viewed 635 

as complementary to one another, rather than competing.” Consequently, identifying the 636 

circumstances in which specific MATs perform strongly or poorly, and indicating which 637 

(classes of) MATs are most versatile, is the best we can do for now. Overall, the m-df MATs 638 

outperform both transformation-based tests and combination tests in 10 out of the 15 639 

scenarios (2-5, 8,9,12-15) represented in our study. That is, the m-df MATs are better at 640 

identifying GVs that convey opposite effects or GV that affect only a subset of the modelled 641 

traits, but are often outperformed when GV are truly pleiotropic (scenarios 1,6-7).  642 

 As previously pointed out concerning MANOVA (Cole et al., 1994), the power of m-643 

df MATs can, somewhat counter-intuitively, improve from the inclusion of traits that are 644 

unassociated to the GV, if these are correlated with the affected traits. In the context of 645 

experimental studies, this knowledge can be put to use given prior or theoretical knowledge of 646 

which traits are expected to be affected or unaffected by a given manipulation. In the context 647 

of GWAS, however, such theory to guide in- or exclusion of traits is usually lacking (see 648 

Supplemental Information for a short discussion on the (dis)advantages of increasing the 649 

number of traits m).  650 
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 In our simulations, we considered only additive codominant GVs and normally 651 

distributed continuous traits. These choices fit the (distributional) assumptions underlying 652 

most MATs. We note that Type I error rates of various techniques (e.g., MANOVA, 653 

univariate regression) may not be correct when standard assumptions are violated (e.g., 654 

severely non-normal or non-continuous data, see e.g. O’Reilly et al, 2012, Yang et al., 2016, 655 

Gasperik, 2010), and that some MATs may have better power to identify non-additive GVs 656 

than others. Yet for a selection of MATs, Porter & O’Reilly (2017) showed that for those 657 

methods amendable to dichotomous case-control data, the pattern of results was remarkably 658 

similar to that obtained using continuous data.  659 

 In the current review, we focused only on frequentist-based MATs that do not rely 660 

greatly on permutation or bootstrapping. MATs based on Bayesian modeling do, however 661 

exist (e.g. multivariate version of SNPtest (Marchini et al., 2007) and BIMBAM (Stephens, 662 

2013)) or bootstrapping (e.g., PCHAT, Klei et al, 2008), and we refer to Galesloot et al (2012) 663 

and Porter et al (2017) for power simulations including these MATs. Similarly, we focused on 664 

MATs that formalize the statistical association between a GV and a set of m traits that are all 665 

measured on the same individual. Recently, multiple methods were developed that allow 666 

estimation of the genetic covariance between traits using genome-wide association signal 667 

(e.g., GCTA (Yang et al., 2011), BOLT-REML (Loh et al., 2015), LD Score Regression 668 

(Bulik-Sullivan et al., 2015)), alongside multivariate methods like Multi-Trait Analysis of 669 

GWAS (MTAG: Turley et al., 2018) and genomic SEM (Grotzinger et al., in press), which 670 

use this genetic covariance among traits to boost the statistical power to detect GVs for (sets 671 

of) target traits. As these techniques are not primarily SNP-level multivariate tests of traits 672 

measured on the same individual (although genomic SEM can be used as such), they were not 673 

included in this review.  674 

Summarizing, we presented a classification on MATs based on both their underlying 675 

statistical approach and the associated degrees of freedom, alongside a summary of their main 676 

characteristics. We showed that MATS vary considerably in their power to detect associated 677 

GVs, that under many circumstances, MATs are often more powerful than multiple testing 678 

corrected univariate analyses even when only 1 of the m traits is affected by the GV, and that 679 

in many scenarios m-df MATs are the most powerful. We also demonstrated for all current 680 

MATs, the power to identify truly pleiotropic GVs decreases with increasing trait-681 

correlations, i.e., particularly when pleiotropy is expected. With increasing availability of 682 

multivariate information from large publicly accessible biobanks (e.g., UK Biobank, 683 

23andMe, deCODE), and knowing that pleiotropy is wide-spread both within and between 684 
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trait domains (Watanabe et al., in revision), we believe that development of new MATs that 685 

focus specifically on detection of pleiotropic GVs is crucial. Through sharing of flexible 686 

simulation scripts, we facilitate a standard framework for comparing Type I error rate and 687 

power of new MATs to that of existing ones. 688 

 689 

  690 
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Figure 1: Type I error. 

Type I error rates for 17 MATs given Nvar=4 or Nvar=16, plotted separately for scenarios with mostly low and scenarios with mostly 

high correlations (see Supplemental Table S2). Methods are numbered: 1=MANOVA, 2=factor score, 3=PCA, 4=sum score, 5=SHom, 

6=CPC, 7=SHet, 8=GEEex-1, 9=MultiPhen, 10=MANOVA 1df, 11=GEEun-1, 12=TATES, 13=min-PNS, 14=Simes, 15=FCPearson, 

16=GEEun-m, 17=min-PBonf. See Supplemental Tables for Type I error rates given α=.01 and α=.001. Note: the two JAMP-methods 

were excluded from the Type I error rate study as the correctness of their Type I error rates is guaranteed by their reliance on 

permutation. 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/610287doi: bioRxiv preprint 

https://doi.org/10.1101/610287
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

Figure 2: Power 

Panels a and b show the power to detect a GV that explains .1% of the variance (see Supplemental Information) as a function of the 

number of traits (4 or 16; see Table S10 for results for 8 traits) and the correlations among the traits. Power curves are shown for 17 

MATs in the 15 scenarios outlined in Table 4. 
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Table 1 - Classification of multivariate methods 
Method Input Permutation HA Data type Short summary df Type I 
Reduction-
based 

       

Sum scores Raw data No Joint effect Any except 
nominal, but 
should be the 
same for all 
phenotypes 

All observed scores on the m traits are summed and this sum is 
regressed on the DSL. 
 

1 OK 

PCA Raw data No Joint effect Continuous The first principal component (PC1) obtained in regular Principal 
Component Analysis (PCA) is the weighted linear combination of 
the m traits that maximizes the amount of variation accounted 
for in the original data. PC1 is regressed on the DSL.  

1 OK 

CPC  Raw data No Joint effect Continuous Regular PCA on m traits yields maximally m orthogonal PCs. The 
association signals of all m individual PCs with the DSL are 
combined to form a non-central m df χ2 test. 

m OK 

Factor 
analysis 

Raw data No Joint effect Continuous A factor score is obtained in factor analysis by fitting a single 
common factor model to the m traits, where the factor maximally 
explains the variance common to the m phenotypes. Individual 
scores on this factor are regressed on the DSL. 

1 OK 

        
Regression-
based 

       

MANOVA  Raw data No Joint effect Continuous A multivariate regression model that tests the association 
between m traits and a DSL (i.e., treated as a 0/1/2 coded 
continuous predictor, assuming an additive codominant model), 
while accounting for the residual variance of and covariances 
between the m traits. In MANOVA, all elements in this residual 
covariance matrix are estimated freely, and an omnibus test 
determines whether the DSL affects the m traits. 

m OK 

alternative 
MANOVA 

Raw data No Joint effect Continuous  
 

A 1-df MANOVA, in which the m regression weights of the DSL 
are constrained to be equal, and the statistical significance of this 
one regression coefficient is evaluated. This model can be fitted 
in dedicated software like OpenMx (Neale et al., 2016). 

1 OK 

Generalized 
Estimating 
Equation 

Raw data No Joint effect Continuous or 
categorical 
(but not a mix) 

A generalized linear model that estimates the association 
between m traits and a DSL while accounting for the residual 
variances of and covariances between the traits. This residual 
matrix can be set to exchangeable, assuming all residual 
covariances to be equal, or to unstructured, estimating all 
residual covariances freely. Unlike MANOVA, standard GEE 
software assumes the variances of all m traits to be equal, and 
uses sandwich correction of the standard errors of estimated 
parameters to correct for misspecification in the residual 
variance-covariance matrix. In GEE, the associations between the 
DSL and the m traits can be estimated freely (m-df test) or 
constrained to be equal (1-df test). 

1 or 
m** 

The m-df 
variants can 
be liberal 

MultiPhen  Raw data No Joint effect Any The 0/1/2 coded DSL functions as an ordinal dependent variable 
and the m traits as predictors (i.e., proportional odds logistic 

m* OK 
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regression model). An omnibus test is performed to test whether 
the full set of predictors is significantly associated to the DSL.  

        
Combination 
tests 

       

Min-PBonf Univariate 
p-values 

No At least 1 of m 
traits 

Any  The m p-values obtained in univariate regressions of the m traits 
on the DSL, are Bonferroni corrected to account for multiple 
testing, and then the smallest corrected p-value is selected. 
  

NA Can be 
conservative 

Min-PNS Univariate 
p-values 

No At least 1 of m 
traits 

Any  The m p-values obtained in univariate regressions of the m traits  
on the DSL, are Nyholt-Šidák corrected to account for multiple 
testing, and then the smallest corrected p-value is selected. 

NA Can be 
liberal or 
conservative, 
depending 
on trait 
correlations 
and number 
of traits 

Simes Univariate 
p-values 

No At least 1 of m 
traits 

Any Each jth p-value of the m p-values obtained in univariate 
regressions of the m phenotypes on the DSL, is weighted by m/j. 
The p-value of the Simes test then corresponds to the smallest 
weighted p-value. 

 Can be 
conservative 

TATES Univariate 
p-values 
and the 
phenotypic 
correlation 
matrix 

No At least 1 of m 
traits 

Any In an iterative procedure, the top j of the m p-values obtained in 
univariate regressions of the m traits on the DSL, are sorted and 
weighted as a function of the eigenvalues of the correlation 
matrix between the top j traits. The p-value of the TATES test 
then corresponds to the smallest weighted p-value. 

NA Can be 
liberal or 
conservative, 
depending 
on trait 
correlations 
and number 
of traits 

Shom Univariate 
t-statistics 

No Joint effect Continuous 
and 
dichotomous 

In a meta-analytic fashion, the Wald test statistics obtained in m 
univariate regressions (and possibly across k cohorts) are used to 
create a new test statistic that follows a χ2 distribution with 1 df, 
while accounting for heterogeneity in sample size and for 
correlations between the test statistics. SHom constraints all DSL 
effects to be equal, and then evaluates the statistical significance 
of this one parameter. 

1 OK 

Shet Univariate 
t-statistics 

No Joint effect Continuous 
and binary 

Unlike SHom, SHet handles heterogeneity in DSL-effects across the 
m traits by calculating the new test statistic only for the subset of 
traits showing a Wald statistic above a certain threshold. This 
new test statistic is calculated for a range of thresholds, and the 
maximally obtained value corresponds to SHet, which is evaluated 
against a gamma distribution. 

NA OK 

JAMPmin Raw data Yes At least 1 of m 
traits 

Any In the original data, the smallest of the m p-values, obtained in 
univariate regressions of the m traits on the DSL, is determined. 
Then, the multivariate trait scores are permuted K times across 
genotypes, retaining the correlations between the m traits. For 
each permutation, the smallest of the m p-value is determined. 
The smallest p-value from the original data is then evaluated 
against the p-values obtained in the K permutations.  

NA OK 

JAMPmult Raw data Yes Joint effect Any In the original data, the sum of the -log10 transformed p-values, 
obtained in univariate regressions of the m traits on the DSL, is 
calculated across all m traits. Then, the multivariate trait scores 
are permuted K times across genotypes, retaining the correlation 
between the m traits. For each permutation, the Σ(-log10(p)) is 

NA OK 
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calculated for the specific DSL. Finally, the number of hits (H) is 
calculated for each specific DSL by dividing the number of times 
the Σ(-log10(p)) obtained after permutation exceeds or equals 
the Σ(-log10(p)) from the original analysis. The empirical p-value 
is calculated as H/K.  

FC-Pearson  Univariate 
p-values 
and the 
phenotypic 
correlation 
matrix 

No Joint effect Any The original Fisher combination test defines test statistic T as the 
sum of the m -2log transformed p-values obtained in the 
univariate regressions of the m traits on the DSL. When the m p-
values are not independent (e.g., because the m traits are 
correlated), T follows a gamma distribution with shape μ2/σ2 and 
scale σ2/μ, where μ and σ2 are the expected mean and variance 
of T.  

NA Can be 
liberal 

Note. HA: The alternative hypothesis of each MAT: the MATs either test whether at least 1 of the m traits is associated to the DSL, or they evaluate the joint effect of the DSL on all 
m traits. Data type: Does the method allow only continuous traits or also (a mix of) traits with different measurement levels (e.g., ordinal, dichotomous). Df: When described from 
a maximum-likelihood perspective, most tests can be classified as a 1-df test or an m-df test. Type I: denotes whether the Type I error rate, or false positive rate, of a MAT was 
found to be correct in our simulations. 
* Ordinal predictors need to be properly dummy-coded. When the m traits contain g ordinal phenotypes with i levels each, the number of degrees of freedom equals (m-g)+g(i-1). 
** In these techniques, one can allow the DSL effect to vary across phenotypes (m-df test) or constrain it to be identical for each phenotype (1 df test). 
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Table 2 – Overview Type I simulation settings 
     
 Uniform (1-factor) 
# variables 4 16   
Phenotypic correlations .1 .85   
     
 Clustered (2-factor) 
# variables 4  16  
Phenotypic correlations within .3 .7   
Phenotypic correlations between -.9 -.15 .15 .9 
Note. All Type I simulations were run 1 million times with sample size of N=2000. 
 

 

Table 3 - Overview Power simulation settings  
        
 Uniform (1-factor) 
# variables 4 8 16     
Phenotypic correlations .1 .3 .6 .85    
Affected All Half 1     
Effect size .01 .02 .05     
Opposite True False      
        
 Clustered (2-factor) 
# variables 4 8 16     
Phenotypic correlations within .3 .7      
Phenotypic correlations between -.9 -.5 -.15 0 .15 .5 .9 
Affected All Half 1     
Effect size .01 .02 .05     
Opposite True False      
Note. All power simulations were run 1000 times with sample size of N=2000. 
The effect size is expressed as percentage of variance explained in each affected  
standardized trait (see Supplemental Information for details).  
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Table 4 – Overview 15 main power simulation scenarios 
Scenario Structure data Location DSL effect Opposite effects Corr_within 
1 Uniform All F NA 
2 Uniform All T NA 
3 Uniform Half F NA 
4 Uniform Half T NA 
5 Uniform 1 NA NA 
     
6 Clustered All F .3 
7 Clustered All F .7 
8 Clustered All T .3 
9 Clustered All T .7 
10 Clustered Half F .3 
11 Clustered Half F .7 
12 Clustered Half T .3 
13 Clustered Half T .7 
14 Clustered 1 NA NA 
15 Clustered 1 NA NA 
     
Note. Structure data: Uniform refer to data with a phenotypic 1-factor structure and uniformly correlated traits. Clustered refers to a phenotypic 2-factor 
structure with traits that correlate either .3 or .7 within clusters, while correlation between clusters vary. Location DSL effect: refers to whether the DSL affects 
1, half or all the simulated traits. Opposite effects: refers to whether the DSL affects some traits positively and some negatively (opposite is True: T) or whether 
the DSL-effect has the same sign for all affected traits (Opposite is FALSE: F). Corr_Within: describes the values of the correlations between traits belonging to 
the same cluster (i.e., loading on the same factor). NA refer to “Not Applicable”. 
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Box 1 – Transformation-based techniques 
 
Sum-scores. In psychology and psychiatry, sum scores are often used to summarize multivariate 
responses to items on tests (e.g., cognitive ability), questionnaires (e.g., personality), and clinical 
instruments and interviews (e.g., depression). In psychiatric studies, the sum-score is often dichotomized 
to obtain a binary case-control status variable, although this may lower the power to detect a possible 
GV (e.g. Van der Sluis et al., 2012; Lee & Wray, 2013).  In the case of an unweighted sum score (i.e., b1 to 
bm in Eq 1 are set to one), the variance of a sum score equals the sum of all entries of the m x m variance-
covariance matrix of the m traits. How well the GV can be detected through the sum score thus not only 
depends on the effect size of the GV, but also on the number of traits it affects. The contribution of 
global GVs, i.e., GVs that affect all or multiple of the m traits,  to the variance of the sum is generally 
larger than to the variance of the underlying elements, so that the power to detect global GVs can 
benefit from using a sum-score. In contrast, GVs that affect only 1 or a few of the traits (i.e., local 
variants) contribute relatively little to the variance of the sum. Importantly, however: how well a sum-
score reflects the GV-effect(s) also depends on the magnitude of the variances and covariances 
conditional on the GV: if these conditional (co)variances are relatively small, then the signal-to-noise 
ratio will be better than if the conditional (co)variances are large (see Supplemental Information for a 
more formal discussion of this topic). 
 
Principal Component Analysis (PCA). PCA is used to transform a set of m correlated standardized traits 
into a set of maximally m orthogonal (i.e., uncorrelated) linear combinations of these traits, the new 
variates being denoted as Principal Components (PC). For the first PC (PC1), the weights b1…bm in Eq. 1 
are chosen such that the variance of PC1 is maximized. If the correlations between the m traits are equal 
(i.e., homogeneous), then PC1 will correlate 1 with the sumscore (as, b1 = b2 =...=bm). PC1 provides a 
summary of the full set of m traits. Additional PCs may be considered if the variance of PC1 is judged to 
be too small. In the psychometric context, where the m traits are generally items measuring a given 
latent trait (e.g., neuroticism), PC1 is viewed as a proxy of that latent trait. Assuming that PCA was used 
to reduce multivariate information, we focus on the analysis of PC1 (see Supplemental Information). 
 
Combined PC test (CPC test). As PCA is conducted on the trait information and does not involve genetic 
information, of all PCs obtainable in PCA of a set of m traits, PC1 does not necessarily have the strongest 
association with the GV. In PCA’s iterative procedure, the variance in y1…ym that is not accounted for by 
preceding PCs, can be accounted for by successive PCs. The weights of successive PCs are chosen such 
that again their variance is maximized and that they are uncorrelated with preceding PCs. Capitalizing on 
the fact that the m extracted PCs are uncorrelated (orthogonal), the combined PC test (CPC test) 
evaluates the association of the GV to all m PCs simultaneously by reference to a χ2-distribution with m 
degrees of freedom (Aschard et al., 2014).  
 
Common factor analysis. As a data transformation method, factor analysis resembles PCA: just like one 
may use PC1, one can also fit a single common factor model to the m traits, calculate the scores on the 
common factor (i.e., factor scores), and use this factor score as dependent variable in GWA studies. In 
the single common factor model, the weights b1…bm in Eq. 1 are chosen such that the variance explained 
by the new variate 𝑦� in the set of m traits is maximized, i.e., 𝑦� maximally represent the variance common 
to the m traits. While PCA concerns the total variance of the traits, factor analysis thus focusses on the 
covariance shared by the m traits (also denoted as ‘communality’). This common factor obtained in 
factor analysis may be viewed as a substantive variable: a common cause of (and as such a source of 
covariance among) the m traits (Lawley & Maxwell, 1971). For instance, the covariance between m 
neuroticism symptoms is assumed to originate in the fact that all m symptoms are caused by the 
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underlying latent trait “neuroticism”. PCA and factor analysis are thus conceptually different: PCA 
components are merely statistically optimal linear variates, while the factors in factor analysis are often 
assumed to actually represent a theoretical construct (e.g., neuroticism). In addition, the residuals of the 
m traits, i.e., the unique parts of y1…ym that are not explained by the variate 𝑦�, are assumed to be 
uncorrelated in factor analysis, while no such assumption is made in PCA. In practice, however, PCA and 
factor analysis often yield very similar result, e.g. when the communality of the traits is high (i.e., the 
variance shared by the m traits is high compared to the unique variance of the traits). Assuming that 
factor analysis was used to reduce multivariate information, we focus on the analysis of factor scores 
obtained in a single common factor model (see Supplemental Information). 
 
Canonical Correlation Analysis. Canonical Correlation Analysis (CCA) extracts for each GV under study the 
linear combination of m traits (i.e., variate) that explains the largest amount of covariance with that 
specific GV (Solovieff et al., 2013). The weights of the new variate thus differ between GV, and reveal 
which traits are the most strongly associated to a specific GV. CCA is thus the only transformation-based 
technique that uses the information from the GV to create the new variate. CCA is implemented in the 
widely used GWA package PLINK (Ferreira & Purcell, 2009). However, assuming an additive codominant 
genetic model in which the GV, coded 0/1/2 for the number of minor alleles, is treated as a continuous 
predictor (i.e., a “covariate”, rather than a “factor”), CCA is known to perform identically to MANOVA 
and therefore does not feature as a separate MAT in our study. 
 
 

Box 2 – Regression-based techniques 
 
All regression-based techniques described here assume that conditional on the effect of the GV, the data 
of the m traits follow a multivariate normal distribution. 
 
MANOVA. In standard MANOVA, the m x m symmetrical background covariance matrix ΣE is 
unconstrained, i.e., it has ((m+1)*m)/2 freely estimated elements (covariances and variances). In terms 
of a likelihood ratio test (asymptotically equal to the F-test used to evaluate MANOVA), standard 
MANOVA is an m-df omnibus test of the null hypothesis that the m regression coefficients are all zero 
(no association). For comparison, we also ran simulations for a 1-df MANOVA (fitted in the R package 
OpenMx (Neale et al., 2016), in which the m regression weights of the GV are constrained to be equal, 
and the null-hypothesis is that this regression coefficient is zero (no association).  
 
Generalized Estimating Equations (GEE). In GEE, one can specify various structures for ΣE, which is 
modeled as ΔEPEΔE, where PE is the residual correlation matrix between the m traits conditional on all 
predictors in the model, and ΔE is a diagonal matrix with the m residual standard deviations of the m 
traits constrained to be equal. In GEE, the structure of correlation matrix PE, i.e., the working correlation 
matrix, is user-specified. In order of parsimony, plausible choices for PE are “independent” (PE =I; the m 
traits show no correlation conditional on the GV), “exchangeable” (all conditional correlations between 
the m traits are equal), and “unstructured” (i.e., all conditional correlation are freely estimated). 
Standard GEE software uses sandwich correction of the standard errors of estimated parameters to 
correct for the possible misspecification of ΣE (ref Dobson). As demonstrated elsewhere (e.g., Minica et 
al. 2015), the degree of misspecification does have a bearing on the power of the sandwich corrected 
test. In our simulations, we specified 1-df versions of ‘exchangeable’ and ‘unstructured’ GEE models (i.e., 
the m regression weights of the modelled GV were constrained to be identical). As m-df versions of 
‘exchangeable’ and ‘unstructured’ GEE models yield identical results (see Supplemental Information), we 
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only included the results of GEE-unstructured m-df models in our main discussion, but results for the GEE 
‘exchangeable’ m-df model are available in the Tables S7-S12. 
 
Linear Mixed Models (LMM): Linear mixed effects models are an extension of the multivariate regression 
model, in which fixed effects are used to estimate the effects of the GV, and additional random effects 
account for the correlations among the m phenotypes (see e.g., Yang & Wang, 2012). In the genetics 
literature, LMM are frequently employed to model population substructure and relatedness in a 
univariate settings (e.g., EMMAX, GenABEL, FaST-LMM, Mendel, GEMMA and MMM, see Eu-
ahsunthornwattan et al (2014) for comparisons, and Yang et al (2014) for a discussion of potential 
pitfalls), but LMM can also be used to model e.g. multivariate gene-environment interaction (Moore et 
al., 2018) or to accommodate multivariate data (e.g., Zhou & Stephens, 2014). In principle, LMM can 
handle multiple sources of clustering or correlation (e.g., multivariate data and familial relatedness or 
population substructure simultaneously). Because LMM often failed to converge in our simulations 
(especially with larger m), and Type I error rates were severely off for the m-df variant, we excluded 
LMM from our main discussion, but all results are available in the Tables S7-S12. 
 
Multiphen: reversed ordinal multiple regression. The MultiPhen procedure (O’Reilly et al., 2012) reverses 
the regression model by treating the GV as an ordinal dependent variable, and the m traits as predictors. 
This has the practical advantage of rendering distributional assumption concerning the phenotypes (e.g., 
conditional multivariate normality, see Table 1) unnecessary; the m phenotypes can be a mix of 
continuous and categorical (appropriately dummy-coded) variables. The procedure is implemented in an 
R-package (‘MultiPhen’). MultiPhen tests the m df null-hypothesis that the m regression coefficients are 
zero.  
 

Box 3 – Combination tests 
 
Minimal p-values: min-PNS and min-PBonf. Minimal p-value approaches use the m p-values obtained in 
univariate analyses, correct these p-values for multiple testing, and then select the smallest. Specifically, 
to obtain the Bonferroni-corrected minimal p-value, min-PBonf, first all original p-values are multiplied by 
m to obtain the Bonferroni-corrected p-values, and then the minimal Bonferroni-corrected p-value is 
selected (Simes, 1986). To obtain the Nyholt-Šidák corrected minimal p-value, min-PNS (O’Reilly et al., 
2012), one first establishes the effective number of traits me, and this effective number of traits is then 
used to calculate the Sidak-corrected p-values as (1 − �1 − 𝑝𝑜𝑜𝑜�)𝑚𝑒. Nyholt (2004) proposed to 
calculate me as a function of the variance of all eigen values, which can be derived from the correlation 
matrix between the m traits.  
 
Simes. To obtain the p-value for the original Simes test (Simes, 1986), PS, the m p-values obtained in m 
univariates association tests are first sorted ascendingly. Subsequently, each jth p-value (j running from 1 
to m) is weighted with m/j, such that the lowest p-value is weighted with the largest weight (i.e., m/1) 
and the highest p-value is weighted with the smallest weight (i.e., m/m=1). The Simes p-value then 
corresponds to the smallest weighted p-value, i.e., 𝑃𝑆 = min (𝑚𝑝𝑗

𝑗
). 

 
TATES: adjusted Simes test. As the original Simes test is conservative (Simes, 1986), and becomes more 
so with increasing correlations and increasing m (van der Sluis et al., 2018), Van der Sluis et al (2012) 
developed an adjusted Simes procedure denoted TATES (Trait-based Association Test that uses Extended 
Simes: based on Li et al., 2011). TATES weights in a fashion similar to Simes, except that the observed 
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number of p-values m and j are replaced with the effective number of p-values me and mej. Specifically, 

the TATES p-value PT is obtained as 𝑃𝑇 = 𝑚𝑚𝑚 �𝑚𝑒𝑝𝑗
𝑚𝑒𝑒

�, where me denotes the effective number of 

independent p-values, and mej the effective number of p-values among the top j p-values. The effective 
number of p-values me and mej is established from eigenvalue decomposition of the correlation matrix 
between the m p-values, which can be approximated from the correlation matrix between the m traits 
(see Van der Sluis et al., 2012, 2018). 
 
JAMP: The permutation-based software tool JAMP (Joint genetic Association of Multivariate Phenotypes, 
https://ctg.cncr.nl/software/jamp) incorporates two different multivariate tests: one that tests whether 
at least one of the m traits is associated to the GV (JAMPmin), and one that assesses the joint association 
signal of the m traits to the GV (JAMPmult) 2. Specifically, to calculate the empirical p-value for 
multivariate association, JAMPmult uses permutation to control the Type I error rate and to adjust for 
correlations between the m traits. First, the univariate associations between the m traits and a GV are 
evaluated, and the GV-specific statistic Go is calculated as  𝐺𝑜 = ∑ −𝑙𝑙𝑙10(𝑝𝑖)𝑚

𝑖=1 , aggregating the signal 
across the m traits. Second, the m traits scores are permuted J times across the GV, keeping the 
correlations between the m traits intact. For each permutation, 𝐺𝐽 = ∑ −𝑙𝑙𝑙10(𝑝𝑖)𝑚

𝑖=1  is calculated for 
the specific GV. Finally, the number of hits (H) is calculated for each GV by dividing the number of times 
GJ obtained on permuted data exceeds or equals Go obtained on the original data. The empirical p-value 
(Pmult) is then calculated as 𝑃𝑚𝑚𝑚𝑚 = 𝐻/𝐽.  

In contrast, JAMPmin produces an empirical p-value (Pmin) associated with the hypothesis that at 
least one of the m traits is significantly associated with the GV. For each GV, the smallest of the m 
univariate p-values obtained in the original data is evaluated against the smallest of m univariate p-
values obtained in each of the J permutations. In our simulations, the number of permutations J was set 
to 1000. 
 
SHom. In a meta-analytic fashion, SHom (Zhu et al., 2015) uses the Wald test statistics obtained in m 
univariate GWASs (and possibly across k cohorts) to create a new test statistic that follows a χ2 
distribution with 1 df. SHom accounts for heterogeneity in sample size and for correlations between the 
test statistics. As a 1 df test, SHom constraints all GV effects to be the same, and then tests the omnibus 
hypothesis that this 1 GV-parameter is 0. SHom is thus most powerful when the GV effects are 
homogeneous in size and sign across the m traits. 
 
SHet. SHet is equivalent to SHom but specifically handles heterogeneity in GV-effects across the m traits by 
calculating the new test statistic only for the subset of traits showing a Wald statistic above a certain 
threshold. This new test statistic is calculated for a range of thresholds, and the maximally obtained 
value corresponds to SHet. The significance of SHet is obtained through simulation of a Gamma distribution 
(see Supplemental Information for details). Like SHom, SHet tests the omnibus hypothesis that all included 
effects are zero. Because of the selection, SHet is expected to be more powerful than SHom when the GV-
effects are heterogeneous in size and/or sign across the m traits. 
 
FC-Pearson test: adjusted Fisher Combination test. Let p1…pm be the p-values obtained in the univariate 
regressions of the m traits on a GV. The original FC- test is calculated as 𝑇 = −2∑ ln (𝑝𝑖)𝑚

𝑖=1  (Fisher, 

                                                           
2 Note that the JAMP software also calculates an empirical p-value that controls for the family wise error due to 
testing multiple SNPs. This family-wise corrected p-value tends to be less conservative than the Bonferroni 
corrected p-value, as it properly takes into account the correlational structure of the genomic data. This family-wise 
corrected p-value was not used in the current study. 
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1932). If the m traits are uncorrelated, the original FC test statistic T is chi-squared distributed with 2m 
dfs. However, if the m traits are correlated, this original test has highly inflated Type I error rate (Fisher, 
1932; van der Sluis et al., 2012). For m correlated traits, it can be shown (Brown and Yang, ref 27/28 in 
Yang et al, 2016) that, under the null hypothesis of no association between the GV and the m traits, T 
follows a scaled chi-squared distribution, or equivalently a specific gamma distribution with shape 
parameter that can be derived from the mean (µ) and variance (σ2) of test statistic T. Yang et al. (2016) 
established an approximation of µ and σ in case of m continuous correlated traits. Just like the original 
FC-test, this adjusted test, referred to as the FC-Pearson test, tests the hypothesis that the aggregated 
GV-signal present in the set of m traits deviates significantly from 0.  
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