

1 **Title**

2 **Mck1 defines a key S-phase checkpoint effector in response to various degrees of**
3 **replication threats**

4 **Authors**

5 Xiaoli Li¹, Xuejiao Jin^{3,4}, Sushma Sharma², Xiaojing Liu¹, Jiaxin Zhang¹, Yanling
6 Niu^{1,a}, Jiani Li^{1,b}, Zhen Li¹, Jingjing Zhang¹, Qinhong Cao¹, Beidong Liu^{3,4,*}, Huiqiang
7 Lou^{1,*}

8 **Affiliations**

9 ¹State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation
10 Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil
11 Microbiology, College of Biological Sciences, China Agricultural University, Beijing
12 100193, P.R. China.

13 ²Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87
14 Umeå, Sweden.

15 ³State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an,
16 Hangzhou 311300, China.

17 ⁴Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462,
18 Medicinaregatan 9E, S-413 90 Gothenburg, Sweden.

19 ^aCurrent address: Department of Pathology, UT Southwestern Medical Center, Dallas,
20 TX 75390-9072, USA.

21 ^bCurrent address: Department of Molecular and Human Genetics, Baylor College of
22 Medicine, Houston, TX 77030, USA.

23 *To whom correspondence should be addressed. E-mail: beidong.liu@cmb.gu.se, or
24 lou@cau.edu.cn.

25 **Run title**

1 A multi-level S-phase checkpoint

2

1 **Abstract**

2 The S-phase checkpoint plays an essential role in regulation of the ribonucleotide
3 reductase (RNR) activity to maintain the dNTP pools. How eukaryotic cells respond
4 appropriately to different levels of replication threats remains elusive. Here, we have
5 identified that a conserved GSK-3 kinase Mck1 cooperates with Dun1 in regulating this
6 process. Deleting *MCK1* sensitizes *dun1* Δ to hydroxyurea (HU) reminiscent of *mec1* Δ
7 or *rad53* Δ . As a kinase at the downstream of Rad53, Mck1 does not participate in the
8 post-translational regulation of RNR as Dun1 does, but Mck1 can release the Crt1
9 repressor from the promoters of *RNR2/3/4* by phosphorylation. Meanwhile, Hug1, an
10 Rnr2 inhibitor, is induced to fine-tune the dNTP levels. When cells suffer a more severe
11 threat, Mck1 can inhibit the transcription of *HUG1*. Importantly, only a combined
12 deletion of *HUG1* and *CRT1*, can confer a dramatic boost of dNTP levels and the
13 survival of *mck1* Δ *dun1* Δ or *mec1* Δ cells assaulted by a lethal dose of HU. These
14 findings reveal the division-of-labor between Mck1 and Dun1 at the S-phase checkpoint
15 pathway to fine-tune dNTP homeostasis.

16

17 **Key words:** The S-phase checkpoint/Replication checkpoint, ribonucleotide reductase,
18 hydroxyurea, dNTPs

19

20

1 **Author Summary**

2 The appropriate amount and balance of four dNTPs are crucial for all cells correctly
3 copying and passing on their genetic material generation by generation. Eukaryotes
4 have developed an alert and response system to deal with the disturbance. Here, we
5 uncovered a second-level effector branch. It is activated by the upstream surveillance
6 kinase cascade, which can induce the expression of dNTP-producing enzymes. It can
7 also reduce the inhibitor of these enzymes to further boost their activity according to
8 the degrees of threats. These findings suggest a multi-level response system to
9 guarantee dNTP supply, which is essential to maintain genetic stability under various
10 environmental challenges.

11

1 **Introduction**

2 To ensure the genome stability, the DNA replication process is under strict surveillance

3 by the S-phase checkpoint (also known as the intra-S or replication checkpoint) in all

4 eukaryotes [1-5]. The main kinases of the cascade, Mec1^{ATR} and Rad53^{CHK2}, are

5 activated in response to aberrations in DNA replication [6-10]. Among all the various

6 downstream effects, the essential role of Mec1-Rad53 has been demonstrated to be the

7 regulation of the activity of RNR in *Saccharomyces cerevisiae* [3, 11, 12].

8 RNR catalyzes the reduction of ribonucleoside diphosphates to their deoxy forms,

9 which is the rate-limiting step in the *de novo* synthesis of deoxyribonucleoside

10 triphosphates (dNTPs), the building blocks of DNA [13]. RNR is normally composed

11 of two large subunits R1 (Rnr1 homodimer) and two small subunits R2 (Rnr2 and Rnr4

12 heterodimer) in budding yeast. Proper and balanced cellular dNTP pools are essential

13 for genome integrity [14, 15]. Therefore, several RNR inhibitors such as hydroxyurea

14 (HU), clofarabine and gemcitabine have been exploited for the chemotherapy of several

15 types of cancers [16]. The RNR activity is strictly controlled by multi-layer

16 mechanisms in cells [15, 17]. First, RNR is allosterically regulated through the binding

17 of different forms of effector nucleotides, for example, ATP or dATP. Second, the

18 expression of *RNR1-4* genes is controlled at both transcriptional and post-

19 transcriptional levels. For instance, *RNR1* gene is activated during G₁/S transition by

20 the MBF transcription factor, whilst the excessive expression of *RNR2-4* is repressed

21 by Crt1 (constitutive RNR transcription 1) through recruiting the Ssn6-Tup1 co-

22 repressor complex to the promoter. Furthermore, *RNR3*, as a *RNR1* paralog, is

1 generally silenced till the release of Crt1 under stressed condition [18]. Third, the RNR
2 enzyme activity is post-translationally inhibited by several small intrinsically
3 disordered proteins such as Sml1, Dif1 and Hug1 in *S. cerevisiae* and Spd1 in
4 *Schizosaccharomyces pombe* [15]. Sml1 binds to cytosolic Rnr1 and disrupts the
5 regeneration of the Rnr1 catalytic site [19, 20]. Dif1 promotes the nuclear import of the
6 Rnr2/Rnr4 heterodimer, which is anchored by Wtm1 in the nucleus [21-23], precluding
7 Rnr2/Rnr4 from associating with Rnr1 or Rnr3 to form the RNR holo-enzyme in the
8 cytoplasm. Hug1, like Dif1, also contains a HUG domain, which can inhibit RNR
9 through binding Rnr2 [24, 25].

10 When cells encounter genotoxic agents, RNR is stimulated by the Mec1-Rad53-Dun1
11 kinase cascade at both transcriptional and post-translational levels to provide adequate
12 dNTPs for DNA replication/repair [13, 15, 26-29]. One of the key Mec1-Rad53-Dun1
13 targets is Crt1, which becomes hyperphosphorylated and therefore leaves the promoter
14 of damage-inducible genes such as *RNR2-4*, *HUG1* and *CRT1* itself [18]. Apart from
15 the Crt1 repressor, Dun1 also targets RNRs' protein inhibitors including Sml1 and Dif1
16 [21-23, 30, 31], both of which are hyperphosphorylated and degraded [22, 32]. Spd1 is
17 degraded in S phase and after DNA damage via the ubiquitin-proteasome pathway as
18 well [33]. Unlike Sml1 and Dif1, Hug1 is induced together with Rnr2-4 due to the
19 removal of the Crt1 repression from its promoter in the presence of genotoxic agents.
20 As a result, Hug1 acts in a distinct but undefined manner compared with its paralogs
21 Sml1 and Dif1 [25]. Intriguingly, the lethality of *mec1Δ* or *rad53Δ* can be suppressed
22 by deleting any of the negative regulators of RNR mentioned above (*CRT1*, *SML1*,

1 *DIF1* or *HUG1*) [9, 12, 34, 35]. All these findings highlight the importance of RNR
2 regulation by Mec1-Rad53-Dun1.
3 In this study, we identify that a combinational deletion of *MCK1* and *DUN1* displays a
4 synergistic effect, reminiscent of the extreme sensitivity of *mec1Δ* or *rad53Δ* to HU.
5 No effects are observed when we delete other glycogen synthase kinase-3 (GSK-3)
6 homologs such as *YGK3*, *MRK1* and *RIM11* in *S. cerevisiae*. Also, Rad53 kinase is able
7 to phosphorylate Mck1 *in vitro*. Moreover, deletion of *CRT1* suppresses the HU
8 sensitivity of *dun1Δmck1Δ*. Crt1 phosphorylation is significantly compromised in
9 *mck1Δ* accompanied with dissociation of Crt1 from the RNR promoters and reduction
10 of inducible *RNR3* expression. Apart from Crt1, Mck1 also negatively regulates the
11 *HUG1* transcription. Taken together with previous findings, these data suggest that
12 Mck1 and Dun1 define two non-redundant and cooperative branches of the Mec1-
13 Rad53 kinase cascade in fine-tuning RNR activity when cells encounter replication
14 stress.

15 **Results**

16 **Mck1 plays a vital role in coping with replication stress in the absence of Dun1**

17 Deletion of *SML1*, encoding an Rnr1 inhibitor, is known to suppress the lethality of
18 *mec1Δ* or *rad53Δ* cells [34] (Fig. 1A). Nevertheless, *mec1Δsml1Δ* or *rad53Δsml1Δ* are
19 extremely sensitive to HU (Fig. 1B). On the other hand, deletion of the only known
20 downstream kinase of Mec1-Rad53 [27], *DUN1*, resulted in a much lower HU
21 sensitivity than that of *mec1Δsml1Δ* or *rad53Δsml1Δ*. These data raise the possibility
22 that there might be Dun1-independent players downstream the Mec1-Rad53 pathway
23 working in parallel with Dun1 in response to the RNR inhibitor [18, 27] (Fig. 1A).

1 We identified candidates of the novel Mec1-Rad53 downstream players using the
2 synthetic genetic array approach [36, 37]. A *DUN1* null mutant was crossed with the
3 single deletion library. After acquiring the final double mutants through pinning on a
4 series of selective media, the growth of the double mutants was analyzed in the presence
5 or absence of HU. Gene mutants, when in combination with the *DUN1* deletion, that
6 showed a synthetically sick or lethal phenotype under the HU stress condition were
7 selected as the potential candidates of the Mec1-Rad53 downstream players. Among
8 them, the *mck1Δdun1Δ* double mutant grew normally in the absence of HU (Fig. 1B).
9 However, it showed a remarkable HU sensitivity similar to that of *rad53Δsml1Δ* or
10 *mec1Δsml1Δ*. The *mck1Δ* single mutant alone displayed mild sensitivity to 200 mM
11 HU. These results indicate that Mck1 might work in parallel with Dun1 and has a Dun1-
12 independent function in the cell's survival under the HU replication stress.
13 Given that *MCK1* encodes one of the GSK-3 family serine/threonine kinases in budding
14 yeast, we deleted its paralog *YGK3* and orthologs *MRK1* and *RIM11*. None of them
15 exhibited HU sensitivity (Fig. S1A) or synthetic interaction with *DUN1* (Fig. S1B),
16 indicating that GSK-3 kinase Mck1 might have a specific role in replication checkpoint,
17 and this function is not shared by its paralogs. Meanwhile, GSK-3 kinases regulate
18 transcription of the general stress responsive genes (e.g., glucose starvation, oxidative,
19 heat shock and low pH) through two partially redundant transcription activators Msn2
20 and Msn4 [38]. However, deletion of both *MSN2* and *MSN4* showed no additive effect
21 with *dun1Δ* (Fig. S1B), implying that Msn2/Msn4 is unlikely the major effectors of
22 Mck1 in response to HU.
23 In addition to *DUN1*, *MCK1* showed genetic interactions with checkpoint activators
24 and mediators as well. Deletion of *MCK1* markedly exacerbated the HU sensitivity of

1 *mre11Δ, ddc1Δ, mrc1Δ* or *rad9Δ* (Fig. S2A and S2B), further arguing for a critical role
2 of Mck1 in the S-phase checkpoint pathway.

3 **Mck1 is a downstream target of Rad53**

4 The synergistic HU sensitivity caused by the combined deletion of *MCK1* and *DUN1*
5 raises a possibility that they may function cooperatively in the Mec1-Rad53 pathway.

6 We first tested whether *MCK1* is a dosage suppressor of the *mec1Δ* or *rad53Δ* lethality.

7 We constructed a high-copy number plasmid with a *URA3* marker (pRS426) expressing
8 *MCK1* and introduced it into diploid strains wherein one copy of *MEC1*, *RAD53* and

9 *SML1* was deleted. After sporulation, the tetrads were analyzed by microscopic
10 dissection. *mec1Δ* and *rad53Δ* spores could hardly grow unless carrying the pRS426-

11 *MCK1* plasmid or in the absence of *SML1* (Fig. S2C). To verify it, we induced loss of
12 this plasmid on a plate containing 5-fluoroorotic acid (5-FOA). Without the *MCK1*
13 overexpression plasmids, neither *mec1Δ* nor *rad53Δ* was able to survive (Fig. 1C).

14 These results indicate that *MCK1* overexpression is able to bypass the essential function
15 of *MEC1* and *RAD53*, validating the results of previous large scale screen [39].

16 We then examined whether there is physical interaction between Mck1 and Mec1 or
17 Rad53 using yeast two-hybrid assay and found that Mck1 shows positive interaction
18 with Rad53 (Fig. 1D). To determine which part of Rad53 is required for the interaction
19 with Mck1, we expressed the forkhead homology-associated domains (FHA1 and
20 FHA2) of Rad53 protein, which are known to mediate interaction with other proteins.

21 We found that FHA1 domain is sufficient to interact with Mck1. FHA1 preferentially
22 binds the phosphothreonine (pThr) peptides bearing a pThr-x-x-D/E/I/L motif (x stands
23 for any amino acid) [29]. Therefore, we mutated all six threonine residues to alanines
24 in Mck1 (mck1-T6A), resulting in abolished interaction with Rad53 (Fig. 1D). Among
25 these six threonine residues, the T218A mutation dramatically reduced the Mck1-

1 Rad53 interaction. These results suggest that Mck1 interacts with the FHA1 domain of
2 Rad53 through a canonical phosphorylation-mediated mechanism.
3 Given the physical association of Mck1 and Rad53, we tested whether Mck1 is a
4 substrate of Rad53. We expressed and purified Rad53 or rad53-KD (a kinase-dead
5 mutant, rad53-K227A) for *in vitro* kinase assays. Rad53 wild-type (WT), but not the
6 KD mutant, showed robust auto-phosphorylation as indicated by the incorporation of
7 ^{32}P and by the electrophoretic shift (Fig. 1E, upper panel, compare lane 1 with 8),
8 indicating that the robust kinase activity is Rad53-specific. Next, we isolated the
9 endogenous FLAG-tagged Mck1 as a substrate through immunoprecipitation via anti-
10 FLAG beads followed by FLAG peptide elution. With the increasing amounts of Rad53
11 kinase added in the reactions, more ^{32}P was transferred to Mck1 (Fig. 1E, middle panel,
12 lanes 2-6). On the other hand, rad53-KD completely failed to phosphorylate the Mck1
13 substrate (lane 7). A Coomassie brilliant blue (CBB) stained gel revealed nearly equal
14 loading of Mck1 substrates in each reaction (Fig. 1F, lower panel). These results
15 suggest that Rad53 kinase is able to phosphorylate Mck1 *in vitro*. Taken together with
16 the synthetic genetic interaction between *MCK1* and *DUN1*, these data also suggest that
17 Mck1 defines a new downstream branch of Rad53 in parallel with Dun1.

18 **Mck1 does not function through RNR sequesters including Sml1, Dif1 and Wtm1**
19 To investigate the exact role of Mck1 in the Mec1-Rad53 pathway, we first asked
20 whether *SML1* is a potent suppressor of *mck1* Δ as well. Surprisingly, deletion of *SML1*
21 was not able to suppress the checkpoint defect in *mck1* Δ , in stark contrast to its
22 capability to bypass the essentiality of *MEC1* or *RAD53* (Fig. 2A). Consistently, in the
23 absence of Mck1, Sml1 was not affected at either mRNA or protein level upon HU
24 treatment compared to WT (Fig. 2B and 2C). Interestingly, other known effectors of
25 Dun1, e.g., Dif1 and Wtm1, were not the suppressors of *mck1* Δ as well (Fig. 2A). These

1 results suggest that Sml1/Dif1/Wtm1 are not the downstream effector of Mck1, which
2 are mainly targeted by the Dun1 branch.

3 **Mck1 regulates genome stability in a Dun1-independent manner**

4 Besides these RNR sequesters, RNR is also controlled at the transcription level mainly
5 through the repressor Crt1 (also called Rfx1) [18]. Indeed, deletion of *CRT1*
6 significantly suppressed the sensitivity of *mck1Δ* and *dun1Δ* mutants to 200 mM and
7 50 mM HU, respectively (Fig. 2D). Intriguingly, deletion of *CRT1* conferred a better
8 growth of *mck1Δdun1Δ* double mutant than that of *dun1Δ* in the presence of up to 50
9 mM HU (compare lines 5 and 8). These results suggest that Crt1 is controlled by Dun1
10 and Mck1 in a non-redundant manner. Mck1 is required for efficient *RNR* induction
11 through antagonizing Crt1, particularly in the presence of high concentration of HU
12 (e.g., 200 mM).

13 The low RNR level causes insufficient dNTP supply, which leads to genome instability
14 such as the copy number change of ribosomal DNA (rDNA) located at chromosome
15 XII in *S. cerevisiae* [40]. Therefore, we examined the rDNA copy number by pulsed-
16 field gel electrophoresis (PFGE) followed by Southern blotting. Without HU treatment,
17 *mck1Δ* exhibited an rDNA copy number loss phenotype less than *dun1Δ* (Fig. 2E,
18 compare lanes 2 and 3). However, the *mck1Δdun1Δ* double mutant showed a more
19 severe rDNA repeat loss than each single mutant (lane 4). Moreover, deletion of *CRT1*
20 prominently ameliorated the rDNA instability phenotype of *dun1Δmck1Δ* (lane 6). The
21 degrees of rDNA copy number loss in these mutants correlated well with their growth
22 defects in the presence of HU (compare Fig. 2D and 2E). These data suggest that Mck1
23 and Dun1 contribute independently to rDNA/genome stability through regulating Crt1
24 and thus *RNR* expression.

25 **Mck1 is involved in Crt1 phosphorylation**

1 To address whether the kinase activity of Mck1 is required for *RNR* regulation, we
2 mutated two conserved residues within the catalytic core (D164) and activation-loop
3 (Y199) of Mck1 which have been demonstrated to be indispensable for its kinase
4 activity [41]. Both *mck1-D164A* and *mck1-Y199F* showed synthetic lethality with
5 *dun1Δ* in the presence of 50 mM HU (Fig. S3A), demonstrating that Mck1's kinase
6 activity is indispensable in response to replication stress.

7 It is known that the repression function of Crt1 is relieved through phosphorylation by
8 Dun1 [18]. Since *CRT1* is a common suppressor for both *mck1Δ* and *dun1Δ* as
9 mentioned above, we then hypothesized that Mck1 kinase may function through Crt1
10 phosphorylation as Dun1. To test this, we assessed the Crt1 phosphorylation levels
11 through western blotting. As reported previously [18], Crt1 displayed a slower mobility
12 shift (Crt1-P) after separation in a high resolution polyacrylamide gel (Fig. S3B). There
13 was a basal level of Crt1 phosphorylation, which was largely dependent on Mck1
14 (Compare lanes 2-4). The Crt1 phosphorylation level increased significantly following
15 200 mM HU treatment for 3 h in WT. Deletion of *RAD53* or *MCK1* caused a relatively
16 lower level of Crt1 phosphorylation than *DUN1* deletion, indicating the contribution of
17 the Rad53-Mck1 branch in targeting Crt1.

18 Because Crt1 phosphorylation is cell-cycle-regulated, we next examined its level in the
19 synchronized cell samples. Cells were synchronized by α-factor in G₁ and released into
20 the fresh media for the indicated time. Cell cycle progression was monitored by
21 fluorescence-activated cell sorting (FACS). Under normal condition, Crt1 occurred at
22 the beginning of S phase and reached a peak at the end of S phase (60 min) in WT (Fig.
23 3A, 3B and S3C). *MCK1* deletion caused a decrease in Crt1 phosphorylation, whereas
24 combined deletion of *MCK1* and *DUN1* nearly abolished Crt1 phosphorylation. These

1 results allow us to conclude that Mck1 and Dun1 function non-redundantly in Crt1
2 phosphorylation during normal S phase progression.

3 In the presence of 0.2 M HU, the cell cycle progression of all alleles was almost
4 completely halted within 150 min (Fig. 3C). This indicates an intact S phase arrest
5 function of the replication checkpoint in these mutants, consistent with a role of Mck1
6 and Dun1 downstream of Rad53. Importantly, Crt1 phosphorylation occurred more
7 slowly with a significant lower level in *mck1* Δ than in *dun1* Δ and WT (Fig. 3D, 3E and
8 S3C). These data suggest a critical role of Mck1 in Crt1 phosphorylation in both normal
9 and perturbed conditions.

10 **Phosphorylation-mimetic mutations of *CRT1* compensates the checkpoint defect
11 of *mck1* Δ**

12 To address the physiological significance of Mck1-mediated Crt1 phosphorylation, we
13 reasoned that Mck1 may target Crt1 to antagonize its repressor function.
14 We first tested whether Crt1 phosphorylation can suppress the ultra-sensitivity of
15 *dun1* Δ *mck1* Δ to HU as *crt1* Δ . Crt1 comprises nine putative Mck1 recognition motifs
16 (S1-S9, Fig. 4A), (S/T)-x-x-x-(pS/T)*, where * stands for the priming phosphorylated
17 residue and x for any amino acid [42]. We mutated these serine or threonine residues
18 to aspartic acids to mimic the phosphorylation state. To examine the suppression effect
19 of *crt1* mutations, the plasmids expressing various *crt1* alleles were transformed into
20 the *dun1* Δ *mck1* Δ *crt1* Δ triple mutant. Consistently, a plasmid expressing WT *CRT1*
21 prominently sensitized *dun1* Δ *mck1* Δ *crt1* Δ to 50 mM HU (Fig. 4B, compare lines 9 and
22 10). Through a series of different combinations, we found that phospho-mimetics of
23 many sites (e.g., S222/T226 and S295/S299) are capable to suppress the HU sensitivity
24 of the triple mutant to various extents (Fig. 4B, lines 3 and 13). These results suggest
25 that these putative Mck1 sites play partially redundant roles in the S-phase checkpoint.

1 Among them, *crt1-S5D* (*S295DS299D*) rescued the growth of the *dun1Δmck1Δcrt1Δ*
2 (Fig. 4B, compare line 13 to 9) triple and *mck1Δcrt1Δ* double mutants (Fig. S4) to an
3 extent comparable to the empty vector, indicating that we have isolated a complete loss-
4 of-function phospho-mimetic mutant of the Crt1 repressor. These results imply that
5 Mck1 kinase abrogates the repressor function of Crt1 through phosphorylation
6 (predominantly at the Mck1 kinase consensus sites S295/S299).

7 **Mck1-dependent phosphorylation of Crt1 abrogates its promoter binding**

8 Interestingly, the dominant Mck1 sites S295 and S299 are located within the DNA
9 binding domain of Crt1 (Fig. 4A), raising the possibility that phosphorylation of these
10 sites may regulate its DNA binding capability. Therefore, we next examined the binding
11 of Crt1 on the *RNR* promoters through chromatin immunoprecipitation (ChIP). Crt1
12 was significantly enriched at the promoter regions of both *RNR2* (Fig. 4C) and *RNR3*
13 (Fig. 4D), which was dramatically reduced after 0.2 M HU treatment. These results
14 indicate that Crt1 dissociates from the promoters of *RNR2* and *RNR3* in response to HU.
15 Nevertheless, the phospho-mimetic mutant proteins (*crt1-S5D*) retained only
16 approximately 20% enrichment of that of WT even in the absence of HU. Notably,
17 *Crt1-S5A* still maintained the response to HU, indicating that Crt1 bears other Mck1
18 sites (e.g., S222 and S226) and/or phosphorylation sites of kinases other than Mck1
19 (e.g., Dun1 and Rad53). Taken together, these data suggest that Mck1-mediated Crt1
20 phosphorylation compromises the DNA binding activity and thereby regulates the
21 repressor function of Crt1.

22 To directly test this, we next checked the expression of the Crt1-controlled genes. In
23 *crt1-S5D*, *RNR3* was constitutively expressed in significantly higher level than in WT
24 and *crt1-S5A* even in the absence of HU (Fig. 4E). This result is consistent with its
25 suppression effects on *mck1Δ* shown in Fig. 4B and S4, indicating that phospho-

1 mimetic mutation of these Mck1 sites is sufficient to abrogate the repression by Crt1.
2 Similarly, the induction of *RNR3* upon HU treatment was significantly compromised in
3 *mck1* Δ though to a lesser extent than in *dun1* Δ at both transcriptional (Fig. 4E and 4F)
4 and translational levels (Fig. 4G), which is congruent with their relative HU sensitivity
5 (Fig. 2D). To further address the contribution of Mck1 and Dun1 in *RNR3* induction,
6 we performed time course analysis of *RNR3* transcription. In the absence of HU, *RNR3*
7 was barely expressed in G₁-arrested cells (Fig. 4H). After release into 200 mM HU for
8 30 min, the *RNR3* transcripts were gradually elevated, which was prominently impaired
9 in *dun1* Δ . Intriguingly, there was a stark rise in the *RNR3* mRNA levels around 90 min
10 in WT cells, which was significantly compromised when *MCK1* was deleted. However,
11 unlike *dun1* Δ , *mck1* Δ did not show an apparent effect during the initial induction stage
12 (0-60 min), indicating that Mck1 likely functions kinetically later than Dun1 or through
13 an indirect effect in response to HU (Fig. 4H). This is also in good agreement with the
14 observations that *mck1* Δ does not display sick growth in the presence of the moderate
15 concentrations of HU (Fig. 1 and 2). Taken together, these results argue for a critical
16 role of Mck1 in antagonizing the Crt1 repression of *RNR* genes. These data also
17 implicate that Dun1 acts as a primary kinase in initiating *RNR3* induction, while Mck1
18 might be required for the additional augment when more *RNR* expression is needed
19 (e.g., severe and/or persistent stress).

20 **Mck1 also regulates the Rnr2 inhibitor Hug1**

21 As shown in Fig. 2D, *CRT1* deletion only shows a partial suppression of the *mck1* Δ
22 phenotype. This raises a possibility that there are additional Mck1 targets besides Crt1.
23 To test this, we carefully compared the suppression effects of all known negative
24 regulators of RNR.

1 Consistent with the results shown in Fig. 2A, if we removed only one of the RNR-
2 hijacking proteins including Sml1, Hug1, Dif1 and Wtm1, there was no detectable
3 effects in both *mck1* Δ (Fig. 5A and S5A) and *mck1* Δ *dun1* Δ mutants (Fig. S5B). The
4 possible reasons are: 1) Mck1 does not mainly contribute to regulating the RNR protein
5 localization and/or nuclear-cytoplasmic trafficking; 2) the effects of Mck1 in RNR post-
6 translational regulation may be masked by its dominant effects on the *RNR* expression
7 level.

8 To test these possibilities, we next eliminated each RNR-binding protein together with
9 the major suppressor Crt1. Consistently, *CRT1* deletion showed suppression in either
10 *mck1* Δ (Fig. 5A, line 4), *dun1* Δ (Fig. S5C, line 3) or *mck1* Δ *dun1* Δ (Fig. S5B, line 8).
11 Further removal of Sml1, Dif1 or Wtm1 had no additive effects with *crt1* Δ on either
12 *mck1* Δ (Fig. 5A, lines 5, 7 and 8; Fig. S5D) or *dun1* Δ (Fig. S5C, lines 4-7). When we
13 deleted *CRT1* and *HUG1* in combination, we found a synergistic rescue on *mck1* Δ (Fig.
14 5A, compare line 6 to 4) and *mck1* Δ *dun1* Δ (Fig. 5B, compare line 8 to 7). On the
15 contrary, *hug1* Δ *crt1* Δ exhibited no more suppression for *dun1* Δ than *crt1* Δ alone (Fig.
16 5B, compare line 6 to 5). Although *HUG1* locates adjacent to *SML1* on the genome,
17 *HUG1* deletion did not reduce *SML1* transcription (Fig. 5C). Moreover, despite the
18 short length of *HUG1* gene (207 bp), it indeed acted as a protein because a nonsense
19 mutation of the sole start codon (ATG replaced by TAG) led to the same suppression
20 as *hug1* Δ (Fig. 5D). These results suggest that besides Crt1, Hug1 protein is an
21 additional key downstream effector of Mck1.

22 To confirm this, we then examined the Hug1 protein levels in these mutants. Under
23 normal condition, Hug1 protein was barely detectable in WT (Fig. 6A, lane 1).
24 Knockout of *MCK1*, but not *DUN1*, elevated the Hug1 levels, though to a lesser extent
25 than *crt1* Δ (compare lanes 2, 3 and 9). Apart from the previously reported repression

1 by Crt1 at the transcriptional level [18], these results indicate that *HUG1* is also
2 repressed by Mck1 kinase in normal condition. Under 200 mM HU treatment, *mck1* Δ
3 caused a prominent increase comparable to *crt1* Δ , whereas the *mck1* Δ *crt1* Δ double
4 mutant resulted in a synergistic augment of the Hug1 level (Fig. 6A, compare lanes 6,
5 13 and 14). On the contrary, deletion *DUN1* antagonized the *HUG1* induction caused
6 by *crt1* Δ (compare lanes 13 and 15) and *mck1* Δ (compare lanes 6, 8, 14 and 16). These
7 data suggest that Mck1 regulates *HUG1* expression in a Crt1-independent manner.

8 **Mck1 negatively controls Hug1 at the transcriptional level**

9 Next, we asked how Mck1 regulates the cellular levels of Hug1. Hug1 is unlikely a
10 substrate of Mck1 kinase since there are no Mck1 consensus recognition sites. Thus,
11 we examined the *HUG1* mRNA levels after 200 mM HU treatment for 3 h. Consistently,
12 deletion of *MCK1* and *CRT1* individually led to an increase of nearly 100% and 150%
13 in the *HUG1* mRNA levels compared to WT, respectively, whereas deletion of *MCK1*
14 and *CRT1* in combination resulted in an approximately 400% increase (Fig. 6B). On
15 the other hand, *dun1* Δ eliminated induced *HUG1* transcription in *crt1* Δ and *mck1* Δ , but
16 not in *crt1* Δ *mck1* Δ double mutant. Further removal of *CRT1* led to a maximum *HUG1*
17 induction, confirming that *HUG1* is repressed by Crt1 which is relieved by Dun1. In
18 good agreement with the protein levels of Hug1 mentioned above, these data allow us
19 to conclude that Mck1 inhibits the *HUG1* induction at the transcriptional level.

20 Next, we quantitated the *HUG1* mRNA levels at 30-min intervals after 0.2 M HU
21 treatment. Transcription of *HUG1* was elevated more than 1000-fold within 2 h after
22 HU treatment (Fig. 6C). In the absence of *MCK1*, the induction of *HUG1* nearly
23 doubled than WT at each time point. Putting together, these data suggest that *HUG1*
24 transcription is exquisitely controlled by a pair of antagonistic mechanisms of the S-

1 phase checkpoint, induction by elimination of the Crt1 repressor function (mainly
2 through Dun1 kinase) and direct inhibition by Mck1 kinase.
3 Since *mck1Δdun1Δ* was identified to mimic *mec1Δ* or *rad53Δ* in response to HU (Fig.
4 1B), we then tested whether deletion of the main targets of Mck1 and Dun1 is able to
5 suppress the HU sensitivity of their upstream kinase mutants as well. Deletion of *CRT1*
6 alone was sufficient to afford *mec1Δ* to resist 7 mM HU, whereas *SML1* deletion could
7 not (Fig. 6D, compare lines 2, 3 and 4). Combined deletion of *CRT1* and *SML1* slightly
8 facilitated HU resistance of *mec1Δ* (line 5). We further deleted *HUG1*, and found
9 significant enhanced HU resistance in *mec1Δ* (Fig. 6D, lines 6 and 7) as well as
10 *mck1Δdun1Δ* double mutant (line 8). These data suggest that Crt1, Hug1 and Sml1
11 represent the major effectors of the Mec1-Rad53-Dun1/Mck1 kinase cascade in RNR
12 regulation.

13 **Mck1 directly participates in the stress-induced dNTP regulation**

14 We next directly compared intracellular dNTP pools in WT or *mck1Δ*-related mutants.
15 Because the dNTP levels are cell-cycle controlled, cells were first arrested in G₁ before
16 release into S phase in the presence of 200 mM HU. Considering that Mck1 may
17 function kinetically later as shown in Fig. 4H, we collected the cells after HU treatment
18 for 0, 3 and 6 h for dNTP measurement. In the G₁ cells before HU assault (0 h), all
19 strains carrying *mck1Δ* had a moderately increase in dNTP pools compared with WT
20 (Fig. 7A), suggesting a role of Mck1 in regulating the dNTPs levels and balance in
21 normal condition. Chronic HU treatment elicited a dramatic decrease of dNTP pools,
22 with the highest decrease in dATP, which thus became the most limiting of the four
23 dNTPs instead of dGTP in the normal condition (Fig. 7B and 7C) (Kumar et al, 2010).
24 These indicate that HU causes dNTP imbalance as well as depletion. In WT and *dun1Δ*
25 cells, dNTP levels were partially restored in 6 h. However, dNTP restoration was

1 abolished in *mck1Δ* and *mck1Δdun1Δ*. Strikingly, dATP remained extremely low in
2 both mutants. These results indicate that the recovery of dNTP homeostasis (including
3 both levels and balance) is dependent on Mck1 in the presence of high concentration
4 HU assault.

5 *CRT1* deletion alone led to only a mild elevation of the dNTP levels in the presence of
6 200 mM HU (Fig. 7B). Strikingly, when *HUG1* was further deleted, we observed a
7 dramatic expansion of dNTP pools, congruent with the percentages of *HUG1* induction
8 in the *mck1Δdun1Δcrt1Δ* triple mutant shown in Fig. 6. Among them, dATP was
9 augmented most significantly, suggesting that Hug1 is also able to restore the balance
10 of four dNTPs impaired by HU. These results indicate that Hug1 is a potent suppressor
11 of the RNR activity, particularly when Crt1 repressor function is abrogated. Importantly,
12 the recovery of dNTP levels correlated with the growth of these mutants in the presence
13 of HU (Fig. 5A, 5B and 6D). Putting together, we propose that Mck1 defines a
14 secondary effector branch of the Mec1-Rad53 cascade and plays a crucial role for cells
15 coping with a more severe and/or long-lasting replication insult (Fig. 7D).

16 Discussion

17 Dun1-independent *RNR* induction in response to either exogenous or endogenous
18 replication stress have been observed by different groups [18, 43]. Nearly two decades
19 after the initial report, here we have identified that Mck1 is a new downstream kinase
20 of Rad53 and functions in the Dun1-independent pathway in dNTP regulation.
21 Cells need to maintain the appropriate amount and balance of all four dNTPs, an even
22 more challenging task when they suffer exogenous or endogenous replication stress.
23 Moreover, cells should have multi-layer response systems to deal with various degrees
24 of stress. Here we prove that Mck1 and Dun1 kinases cooperate with each other to
25 achieve this. Under unperturbed condition, Crt1 represses the expression of *RNR* genes

1 to avoid overproducing dNTPs. Under moderate perturbed condition, the Mec1-Rad53
2 cascade activates Mck1 and Dun1. At the post-translational level, Dun1 is responsible
3 for releasing the caged Rnr1 (by Sml1) and Rnr2/4 (by Dif1 and Wtm1), which allows
4 more RNR holo-enzyme formation. At the transcriptional level, Dun1 and Mck1
5 alleviate the repressor function of Crt1 through phosphorylation at different sites with
6 different kinetics, allowing a gradual de-repression of *RNR2/3/4*. Meanwhile, Crt1-
7 controled *HUG1* is also induced, which very likely prevents overproducing dNTPs
8 under this condition. Excessive dNTPs have been demonstrated to have an effect on
9 increasing mutation risk and thus impair cell growth [43, 44]. However, the higher
10 levels of RNR activity may be required to produce enough dNTPs if cells suffer a more
11 severe and/or persistent assault (i.e. more than 150 mM HU). Mck1 operates under this
12 circumstance through inhibiting the induction of *HUG1* in a Crt1-independent manner.
13 Apart from the dNTP levels, the Mck1-Hug1 pathway also regulates the dNTP balance
14 under replication stress induced by HU. Although molecular details regarding how
15 Mck1 and Hug1 achieve these need further investigation, our findings reveal a multi-
16 level response system to a wide range of replication threats.
17 It is also noteworthy to point out that the low dNTP levels are unlikely the sole reason
18 underlying the high HU sensitivity of *mck1Δdun1Δ*. Therefore, it will be interesting to
19 search for additional roles of Mck1 in maintaining genome stability other than the
20 mechanism reported here. Intriguingly, apart from the RNR regulation function
21 reported here, Mck1/GSK-3 has been well-established as phosphodegrons of an array
22 of vast substrates including cell cycle proteins like Cdc6 [45], Sld2 [46], Hst3 [47],
23 Eco1 [48] in yeasts, and Bcl3, c-JUN, Mdm2, c-Myc, Rb and PTEN in mammals [49],
24 which are all important for cell growth and proliferation.

1 Although there are no apparent orthologs of Hug1 in higher eukaryotes, several other
2 studies have provided some hints that the role of Mck1/GSK-3 in the S phase
3 checkpoint might be conserved. An unusual feature of GSK-3 is that it is generally
4 active under unperturbed condition and primarily regulated by inhibition in response to
5 extracellular signals (e.g. growth factors, insulin) through signaling pathways like Akt
6 and mTOR (Target Of Rapamycin)[50]. The TOR kinase, which belongs to the highly
7 conserved family of phosphatidylinositol-3-kinase-related kinases (PIKKs) as Mec1^{ATR},
8 has been shown to be required for DNA damage-induced expression of *RNR1* and *RNR3*
9 in yeasts [51, 52]. In mammalian cells, the translation of large and small RNR subunits
10 RRM1 and RRM2 is cap-dependent, which is regulated by phosphorylation of
11 eukaryotic translation initiation factor 4E (EIF4E)-binding protein 1 (4E-BP1) by
12 mTORC1 [53].

13 Thus, further investigation of the role of GSK-3 in the S-phase checkpoint and RNR
14 regulation in vertebrates may help to establish crosstalk among glucose metabolism,
15 DNA metabolism and cell proliferation. In consideration of the clinical usage of HU
16 and pharmaceutical interest in the inhibitors of the cell cycle checkpoint proteins
17 including Gsk-3 kinases for neoplastic and non-neoplastic disease treatments [7, 54-
18 56], the studies based on our results reported here may have potential implications for
19 drug design.

20 **Materials and Methods**

21 **Yeast strains and plasmids**

22 *S. cerevisiae* strains congenic with BY4741/4742 and plasmids constructed in this study
23 are listed in Table S1 and Table S2, respectively.

24 **Synthetic genetic array (SGA)**

1 The *dun1Δ* (MAT α) single mutant was crossed with a non-essential deletion collection
2 of cell cycle-related genes for synthetic genetic screens as previously described [57, 58].
3 The obtained double mutant colonies were then examined for their growth in the
4 presence or absence of 15 mM HU.

5 **HU sensitivity assay (Spot assay)**

6 Fivefold serial dilution of log phase growing cells (initial OD₆₀₀ = 0.4) were spotted on
7 YPD (yeast extract/peptone/dextrose) or synthetic media plates in the presence of
8 indicated concentrations of HU. Plates were incubated at 30°C for 48 h before
9 photography.

10 ***In Vitro* Kinase Assay**

11 To expressed His6-Rad53 and His6-rad53-KD, the pET-15b-*RAD53* (a kind gift from
12 Dr. John Diffley) and pET-15b-*rad53-KD* (K227A) plasmids were introduced in BL21-
13 codon-plus(DE3)-RIL E. coli strain (Stratagene). Early log phase culture was treated
14 with 0.2 mM IPTG to induce the protein expression. After 3 h of incubation at 25°C,
15 cells were harvested. The proteins were purified using Ni²⁺-beads (GE Healthcare) and
16 eluted by 250 mM imidazole. pRS-313-pADH1-*MCK1-5FLAG* plasmid was
17 transformed into *mck1Δ* strain. Mck1-5FLAG was purified by 20 µl anti-FLAG M2
18 beads (Sigma) and eluted by 150 µl of 1 µg/µl FLAG peptide. In a typical kinase assay,
19 50 mM Tris, pH 7.5, 150 mM NaCl, 0.1% Tween-20, 10 mM MgCl₂, 5 µCi of γ-³²P-
20 ATP were used. Each kinase reaction contained His6-Rad53 (0-10 µg) or His6-Rad53-
21 KD (10 µg) and Mck1-5FLAG (10 µl) in 40 µl reaction volume and incubated for 30
22 min at 30°C. Kinase assay was stopped by heating at 100°C for 5 min in SDS sample
23 buffer. Samples were then subject to SDS-PAGE. Phosphorylation was detected by ³²P
24 autoradiography. The amount of proteins loaded was detected by CBB staining.

25 **Protein detection**

1 For immunoblot analysis, 5 ml of culture was grown in YPD to an OD₆₀₀ of 1 and
2 harvested. Indicated culture was treated with 200 mM HU for 3h before being harvested.
3 Yeast extracts were prepared using the trichloroacetic acid (TCA) precipitation for
4 analysis in SDS-gels. The Crt1-13MYC, Rnr3-13MYC, Hug1-13MYC protein levels
5 were detected with mouse anti-MYC antibody (1:1000, ORIGENE) and HRP-
6 conjugated anti-mouse IgG as the secondary antibody (1:10000, Sigma). Tubulin as
7 loading control was detected with anti-tubulin (1:10000, MBL) and HRP-conjugated
8 anti-rabbit IgG as the secondary antibody (1:10000, Sigma). For detecting the
9 hyperphosphorylation of Crt1-13MYC, the special 30% Acrylamide Solution
10 (acrylamide : N’N’-bis-methylene-acrylamide = 149:1) was used.

11 **Pulsed field gel electrophoresis (PFGE) and southern blot**

12 Stationary phase cells (2.5×10^7) were washed and re-suspended in 50 μ l of Lyticase
13 buffer (10 mM Phosphate buffer pH 7.0, 50 mM EDTA), and then solidified in blocks
14 with 50 μ l 1% low melting temperature agarose (Sigma). These were digested with 75
15 U/ml lyticase in Lyticase buffer for 24 h at 37°C, then with 2 mg/ml Proteinase K
16 (Amresco) in 100 mM EDTA, 1% sodium lauryl sarcosine for 48 h at 42°C. After four
17 washes with TE50 (10 mM Tris, pH7.0, 50 mM EDTA), plugs were run on 1% agarose
18 gels on in 1× TBE at 3 V/cm, 300-900 s switch time, for 68 h. PFGE was carried out in
19 a CHEF-MAPPER system (BioRad) for 68 h at 14°C. Chromosomes were visualized
20 with ethidium bromide prior to treatment with 0.25 M HCl for 20 min, water for 5 min
21 twice. DNA was transferred to HyBond N⁺ in transfer buffer (0.4 M NaOH, 1 M NaCl)
22 and UV cross-linked before hybridization with a random primed probe (Takara)
23 overnight at 42°C and washed twice for 20 min with 0.5× SSC 0.1% SDS at 65°C.

1 **Quantitative RT-PCR**

2 Total RNAs extraction was performed using a commercial TRIzon Reagent (CoWin
3 Biosciences) and the manufacturer's instructions with slight modifications. After
4 centrifugation, cells were added to 100 μ l TRIzon Reagent together with 100 μ l of
5 sterile glass beads (0.5 mm in diameter). The cells were then disrupted by vertexing for
6 60 s followed by cooling on ice for 60 s. This step was repeated four times. The
7 extraction was then continued according to the manufacturer's instructions (CoWin
8 Biosciences). For reverse transcription-PCR (RT-PCR) analysis, reverse transcription
9 with Oligo (dT) Primer was performed with 2 μ g of total RNA, 1 mM dNTPs, 1 μ l RT
10 and 0.5 μ l RNasin for 60 min at 42°C, which was followed by a 15 min heat inactivation
11 at 95°C. For each gene, real-time quantitative PCR amplification (95°C for 10 min
12 followed by 95°C for 15 s and 60°C for 1 min for 40 cycles) was performed using
13 SYPR-Green on a QuantStudio 6 Flex system (Life).

14 **Chromatin Immunoprecipitation (ChIP)**

15 Logarithmically growing cells were treated with formaldehyde prior to lysis.
16 ChIP was carried out according to the methods used in previous studies with slight
17 modifications. In brief, 100 ml stationary phase cells were treated with or without 0.2
18 M HU for 1 hr at 30°C. 1% formaldehyde was used for crosslinking for 20 min at room
19 temperature. Cells were lysated and sonicated. Endogenous Crt1 proteins carrying a
20 Myc13 tag were precipitated by an anti-Myc antibody (9E10) overnight at 4°C. The
21 immune complexes were harvested by the addition of 50 μ l of protein G dynabeads.
22 Formaldehyde crosslinks were reversed by incubation at 65°C for 5 hr, followed by
- .

1 protease K treatment at 42°C for 2 hr. Then co-precipitated genomic DNA was purified
2 using a phenol-chloroform extraction and subjected to quantitative real-time PCR
3 SYPR-Green on a QuantStudio 6 Flex system (Life).

4 **dNTP Measurement**

5 dNTP extraction and quantification were carried out as described [59].

6 **Supporting information**

7 Supporting information (Tables S1-S2, Figures S1-S5) are available online.

8 **Author contributions**

9 X.Li. performed most of the experiments; X.J and S.S. measured dNTP pools; X.Liu,
10 J.Z. and Q.C. helped in strain/plasmid constructions, phenotyping and phosphorylation
11 assays; Y.N. and J.L. initiated this study and identified the synthetic HU sensitivity
12 between *mck1Δ* and *dun1Δ*; Z.L. carried out the mass spectrometry analysis. H.L., X.Li.
13 and B.L designed the experiments and wrote the paper.

14 **Acknowledgments**

15 We thank Dr. Andrei Chabes for helping with dNTP pool analysis and critical
16 comments, Dr. John Diffley for sharing plasmids, Drs. Li-Lin Du, Judith L. Campbell,
17 Cong Liu and members of the Lou lab for helpful discussion.

18 **Funding**

19 This work was supported by the National Natural Science Foundation of China
20 31630005, 31770084, 31771382 and 31800066; China Postdoctoral Science
21 Foundation 2018M640201; Opening Project of the State Key Laboratory of Microbial
22 Resources; Project Program of the State Key Laboratory of Agrobiotechnology
23 2019SKLAB1-7 and 2018SKLAB6-4. BL is supported by grants from the Swedish

1 Cancer Society (CAN 2015/406 and CAN 2017/643), the Swedish Natural Research
2 Council (VR 2015-04984).

3 **Competing interest statement**

4 The authors declare no competing financial interests.

5 **References**

- 6 1. Branzei D, Foiani M. The checkpoint response to replication stress. *DNA Repair*.
7 2009;8(9):1038-46. doi: <https://doi.org/10.1016/j.dnarep.2009.04.014>.
- 8 2. Segurado M, Tercero JA. The S-phase checkpoint: targeting the replication fork.
9 *Biology of the Cell*. 2009;101(11):617-27. doi: 10.1042/BC20090053.
- 10 3. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives.
11 *Molecular cell*. 2010;40(2):179-204. Epub 2010/10/23. doi:
12 10.1016/j.molcel.2010.09.019. PubMed PMID: 20965415; PubMed Central PMCID:
13 PMC2988877.
- 14 4. Errico A, Costanzo V. Mechanisms of replication fork protection: a safeguard for
15 genome stability. *Critical Reviews in Biochemistry and Molecular Biology*.
16 2012;47(3):222-35. doi: 10.3109/10409238.2012.655374.
- 17 5. Labib K, De Piccoli G. Surviving chromosome replication: the many roles of the S-
18 phase checkpoint pathway. *Philosophical transactions of the Royal Society of London*
19 *Series B, Biological sciences*. 2011;366(1584):3554-61. doi: 10.1098/rstb.2011.0071.
20 PubMed PMID: 22084382; PubMed Central PMCID: PMC3203454.
- 21 6. Zeman MK, Cimprich KA. Causes and consequences of replication stress. *Nature*
22 *cell biology*. 2014;16(1):2-9. doi: 10.1038/ncb2897.
- 23 7. Yazinski SA, Zou L. Functions, Regulation, and Therapeutic Implications of the
24 ATR Checkpoint Pathway. *Annual Review of Genetics*. 2016;50:155-73. doi:
25 10.1146/annurev-genet-121415-121658
- 26 8. Muñoz S, Méndez J. DNA replication stress: from molecular mechanisms to human
27 disease. *Chromosoma*. 2017;126(1):1-15. doi: 10.1007/s00412-016-0573-x.
- 28 9. Giannattasio M, Branzei D. S-phase checkpoint regulations that preserve
29 replication and chromosome integrity upon dNTP depletion. *Cellular and molecular life*
30 *sciences : CMLS*. 2017;74(13):2361-80. doi: 10.1007/s00018-017-2474-4. PubMed
31 PMID: 28220209; PubMed Central PMCID: PMC5487892.
- 32 10. Pardo B, Crabbé L, Pasero P. Signaling pathways of replication stress in yeast.
33 *FEMS Yeast Research*. 2017;17(2):fow101-fow. doi: 10.1093/femsyr/fow101.
- 34 11. Hoch NC, Chen ESW, Buckland R, Wang S-C, Fazio A, Hammet A, et al. Molecular
35 Basis of the Essential S Phase Function of the Rad53 Checkpoint Kinase. *Molecular and*
36 *cellular biology*. 2013;33(16):3202-13. doi: 10.1128/MCB.00474-13. PubMed PMID:
37 PMC3753913.
- 38 12. Feng W. Mec1/ATR, the Program Manager of Nucleic Acids Inc. *Genes*. 2017;8(1).
39 doi: 10.3390/genes8010010. PubMed PMID: 28036033; PubMed Central PMCID:
40 PMC5295005.
- 41 13. Sanvisens N, de Llanos R, Puig S. Function and regulation of yeast ribonucleotide
42 reductase: cell cycle, genotoxic stress, and iron bioavailability. *Biomedical journal*.
43 2013;36(2):51-8. doi: 10.4103/2319-4170.110398. PubMed PMID: 23644233.
- 44 14. Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L. Survival of
45 DNA Damage in Yeast Directly Depends on Increased dNTP Levels Allowed by Relaxed

1 Feedback Inhibition of Ribonucleotide Reductase. *Cell*. 2003;112(3):391-401. doi:
2 [https://doi.org/10.1016/S0092-8674\(03\)00075-8](https://doi.org/10.1016/S0092-8674(03)00075-8).

3 15. Guarino E, Salguero I, Kearsey SE. Cellular regulation of ribonucleotide reductase
4 in eukaryotes. *Seminars in Cell & Developmental Biology*. 2014;30(Supplement C):97-
5 103. doi: <https://doi.org/10.1016/j.semcd.2014.03.030>.

6 16. Aye Y, Li M, Long MJC, Weiss RS. Ribonucleotide reductase and cancer: biological
7 mechanisms and targeted therapies. *Oncogene*. 2015;34(16):2011-21. doi:
8 10.1038/onc.2014.155.

9 17. Hofer A, Crona M, Logan DT, Sjöberg B-M. DNA building blocks: keeping control
10 of manufacture. *Critical Reviews in Biochemistry and Molecular Biology*.
11 2012;47(1):50-63. doi: 10.3109/10409238.2011.630372. PubMed PMID: PMC3267527.

12 18. Huang M, Zhou Z, Elledge SJ. The DNA replication and damage checkpoint
13 pathways induce transcription by inhibition of the Crt1 repressor. *Cell*. 1998;94(5):595-
14 605. Epub 1998/09/19. PubMed PMID: 9741624.

15 19. Chabes A, Domkin V, Thelander L. Yeast Sml1, a Protein Inhibitor of
16 Ribonucleotide Reductase. *Journal of Biological Chemistry*. 1999;274(51):36679-83.
17 doi: 10.1074/jbc.274.51.36679.

18 20. Zhang Z, Yang K, Chen C-C, Feser J, Huang M. Role of the C terminus of the
19 ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by
20 Sml1. *Proceedings of the National Academy of Sciences*. 2007;104(7):2217-22. doi:
21 10.1073/pnas.0611095104.

22 21. Lee YD, Elledge SJ. Control of ribonucleotide reductase localization through an
23 anchoring mechanism involving Wtm1. *Genes & Development*. 2006;20(3):334-44. doi:
24 10.1101/gad.1380506.

25 22. Lee YD, Wang J, Stubbe J, Elledge SJ. Dif1 is a DNA-damage-regulated facilitator
26 of nuclear import for ribonucleotide reductase. *Molecular cell*. 2008;32(1):70-80. doi:
27 10.1016/j.molcel.2008.08.018. PubMed PMID: 18851834; PubMed Central PMCID:
28 PMC3245869.

29 23. Wu X, Huang M. Dif1 controls subcellular localization of ribonucleotide reductase
30 by mediating nuclear import of the R2 subunit. *Molecular and cellular biology*.
31 2008;28(23):7156-67. doi: 10.1128/MCB.01388-08. PubMed PMID: 18838542;
32 PubMed Central PMCID: PMC2593381.

33 24. Basrai MA, Velculescu VE, Kinzler KW, Hieter P. NORF5/HUG1 is a component of
34 the MEC1-mediated checkpoint response to DNA damage and replication arrest in
35 *Saccharomyces cerevisiae*. *Molecular and cellular biology*. 1999;19(10):7041-9. Epub
36 1999/09/22. PubMed PMID: 10490641; PubMed Central PMCID: PMCPmc84699.

37 25. Meurisse J, Bacquin A, Richet N, Charbonnier JB, Ochsenbein F, Peyroche A. Hug1
38 is an intrinsically disordered protein that inhibits ribonucleotide reductase activity by
39 directly binding Rnr2 subunit. *Nucleic acids research*. 2014;42(21):13174-85. doi:
40 10.1093/nar/gku1095. PubMed PMID: 25378334; PubMed Central PMCID:
41 PMC4245953.

42 26. Zhou Z, Elledge SJ. DUN1 encodes a protein kinase that controls the DNA damage
43 response in yeast. *Cell*. 1993;75(6):1119-27. doi: [http://dx.doi.org/10.1016/0092-8674\(93\)90321-G](http://dx.doi.org/10.1016/0092-8674(93)90321-G).

45 27. de la Torre Ruiz M-A, Lowndes NF. DUN1 defines one branch downstream of
46 RAD53 for transcription and DNA damage repair in *Saccharomyces cerevisiae*. *FEBS
47 Letters*. 2000;485(2-3):205-6. doi: 10.1016/S0014-5793(00)02198-0.

48 28. Bashkirov VI, Bashkirova EV, Haghnazari E, Heyer WD. Direct Kinase-to-Kinase
49 Signaling Mediated by the FHA Phosphoprotein Recognition Domain of the Dun1 DNA
50 Damage Checkpoint Kinase. *Molecular and cellular biology*. 2003;23(4):1441-52. doi:
51 10.1128/mcb.23.4.1441-1452.2003.

1 29. Lee H, Yuan C, Hammet A, Mahajan A, Chen ESW, Wu M-R, et al.
2 Diphosphothreonine-Specific Interaction between an SQ/TQ Cluster and an FHA
3 Domain in the Rad53-Dun1 Kinase Cascade. *Molecular cell*. 2008;30(6):767-78. doi:
4 <http://dx.doi.org/10.1016/j.molcel.2008.05.013>.

5 30. Zhao X, Rothstein R. The Dun1 checkpoint kinase phosphorylates and regulates
6 the ribonucleotide reductase inhibitor Sml1. *Proceedings of the National Academy of
7 Sciences of the United States of America*. 2002;99(6):3746-51. doi:
8 10.1073/pnas.062502299. PubMed PMID: PMC122595.

9 31. Sanvisens N, Romero AM, Zhang C, Wu X, An X, Huang M, et al. Yeast Dun1 Kinase
10 Regulates Ribonucleotide Reductase Small Subunit Localization in Response to Iron
11 Deficiency. *Journal of Biological Chemistry*. 2016;291(18):9807-17. doi:
12 10.1074/jbc.M116.720862.

13 32. Andeson BL, Gupta A, Georgieva BP, Rothstein R. The ribonucleotide reductase
14 inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response
15 to DNA damage. *Nucleic acids research*. 2010;38(19):6490-501. doi:
16 10.1093/nar/gkq552. PubMed PMID: 20566477; PubMed Central PMCID: PMC2965251.

17 33. Nestoras K, Mohammed AH, Schreurs A-S, Fleck O, Watson AT, Poitelea M, et al.
18 Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms. *Genes
& Development*. 2010;24(11):1145-59. doi: 10.1101/gad.561910.

20 34. Zhao X, Muller EGD, Rothstein R. A Suppressor of Two Essential Checkpoint Genes
21 Identifies a Novel Protein that Negatively Affects dNTP Pools. *Molecular cell*.
22 1998;2(3):329-40. doi: [https://doi.org/10.1016/S1097-2765\(00\)80277-4](https://doi.org/10.1016/S1097-2765(00)80277-4).

23 35. Iyer D, Rhind N. The Intra-S Checkpoint Responses to DNA Damage. *Genes*.
24 2017;8(2):74. PubMed PMID: doi:10.3390/genes8020074.

25 36. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, et al. Systematic
26 genetic analysis with ordered arrays of yeast deletion mutants. *Science (New York,
27 NY)*. 2001;294(5550):2364-8. Epub 2001/12/18. doi: 10.1126/science.1065810.
28 PubMed PMID: 11743205.

29 37. Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, et al. A
30 global genetic interaction network maps a wiring diagram of cellular function. *Science (New York,
31 NY)*. 2016;353(6306):aaf1420. doi: 10.1126/science.aaf1420.

32 38. Hirata Y, Andoh T, Asahara T, Kikuchi A. Yeast glycogen synthase kinase-3
33 activates Msn2p-dependent transcription of stress responsive genes. *Molecular biology
34 of the cell*. 2003;14(1):302-12. doi: 10.1091/mbc.E02-05-0247. PubMed PMID:
35 12529445; PubMed Central PMCID: PMC140246.

36 39. Desany BA, Alcasabas AA, Bachant JB, Elledge SJ. Recovery from DNA replicational
37 stress is the essential function of the S-phase checkpoint pathway. *Genes &
38 development*. 1998;12(18):2956-70. Epub 1998/09/23. PubMed PMID: 9744871;
39 PubMed Central PMCID: PMCPmc317167.

40 40. Houseley J, Tollervey D. Repeat expansion in the budding yeast ribosomal DNA
41 can occur independently of the canonical homologous recombination machinery.
42 *Nucleic acids research*. 2011;39(20):8778-91. doi: 10.1093/nar/gkr589. PubMed PMID:
43 21768125; PubMed Central PMCID: PMC3203602.

44 41. Rayner TF, Gray JV, Thorner JW. Direct and novel regulation of cAMP-dependent
45 protein kinase by Mck1p, a yeast glycogen synthase kinase-3. *The Journal of biological
46 chemistry*. 2002;277(19):16814-22. doi: 10.1074/jbc.M112349200. PubMed PMID:
47 11877433.

48 42. Cohen P, Frame S. The renaissance of GSK3. *Nature reviews Molecular cell biology*.
49 2001;2(10):769-76. Epub 2001/10/05. doi: 10.1038/35096075. PubMed PMID:
50 11584304.

1 43. Davidson MB, Katou Y, Keszthelyi A, Sing TL, Xia T, Ou J, et al. Endogenous DNA
2 replication stress results in expansion of dNTP pools and a mutator phenotype. *The
3 EMBO journal*. 2012;31(4):895-907. doi: 10.1038/emboj.2011.485.

4 44. Buckland RJ, Watt DL, Chittoor B, Nilsson AK, Kunkel TA, Chabes A. Increased and
5 Imbalanced dNTP Pools Symmetrically Promote Both Leading and Lagging Strand
6 Replication Infidelity. *PLoS genetics*. 2014;10(12):e1004846. doi:
7 10.1371/journal.pgen.1004846.

8 45. Ikui AE, Rossio V, Schroeder L, Yoshida S. A yeast GSK-3 kinase Mck1 promotes
9 Cdc6 degradation to inhibit DNA re-replication. *PLoS genetics*. 2012;8(12):e1003099.
10 doi: 10.1371/journal.pgen.1003099. PubMed PMID: 23236290; PubMed Central
11 PMCID: PMC3516531.

12 46. Reusswig KU, Zimmermann F, Galanti L, Pfander B. Robust Replication Control Is
13 Generated by Temporal Gaps between Licensing and Firing Phases and Depends on
14 Degradation of Firing Factor Sld2. *Cell reports*. 2016;17(2):556-69. doi:
15 10.1016/j.celrep.2016.09.013. PubMed PMID: 27705801.

16 47. Edenberg ER, Vashisht AA, Topacio BR, Wohlschlegel JA, Toczyski DP. Hst3 is
17 turned over by a replication stress-responsive SCF(Cdc4) phospho-degron.
18 *Proceedings of the National Academy of Sciences of the United States of America*.
19 2014;111(16):5962-7. Epub 2014/04/10. doi: 10.1073/pnas.1315325111. PubMed
20 PMID: 24715726; PubMed Central PMCID: PMCPmc4000829.

21 48. Lyons NA, Fonslow BR, Diedrich JK, Yates JR, 3rd, Morgan DO. Sequential primed
22 kinases create a damage-responsive phosphodegron on Eco1. *Nature structural &*
23 *molecular biology*. 2013;20(2):194-201. doi: 10.1038/nsmb.2478. PubMed PMID:
24 23314252; PubMed Central PMCID: PMC3565030.

25 49. Sutherland C. What Are the bona fide GSK3 Substrates? *International Journal of
26 Alzheimer's Disease*. 2011;2011:505607. doi: 10.4061/2011/505607. PubMed PMID:
27 PMC3100594.

28 50. Manning BD, Toker A. AKT/PKB Signaling: Navigating the Network. *Cell*.
29 2017;169(3):381-405. doi: <https://doi.org/10.1016/j.cell.2017.04.001>.

30 51. Shen C, Lancaster CS, Shi B, Guo H, Thimmaiah P, Bjornsti M-A. TOR Signaling Is
31 a Determinant of Cell Survival in Response to DNA Damage. *Molecular and cellular
32 biology*. 2007;27(20):7007-17. doi: 10.1128/mcb.00290-07.

33 52. Schonbrun M, Laor D, López-Maury L, Bähler J, Kupiec M, Weisman R. TOR
34 Complex 2 Controls Gene Silencing, Telomere Length Maintenance, and Survival under
35 DNA-Damaging Conditions. *Molecular and cellular biology*. 2009;29(16):4584-94. doi:
36 10.1128/mcb.01879-08.

37 53. Bjornsti M-A, Houghton PJ. The tor pathway: a target for cancer therapy.
38 2004;4:335. doi: 10.1038/nrc1362.

39 54. Manic G, Obrist F, Sistigu A, Vitale I. Trial Watch: Targeting ATM-CHK2 and ATR-
40 CHK1 pathways for anticancer therapy. *Molecular & Cellular Oncology*.
41 2015;2(4):e1012976. doi: 10.1080/23723556.2015.1012976.

42 55. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. *Nat
43 Rev Cancer*. 2017;17(2):93-115. doi: 10.1038/nrc.2016.138

44 <http://www.nature.com/nrc/journal/v17/n2/abs/nrc.2016.138.html#supplementary-information>.

45 56. Walz A, Ugolkov A, Chandra S, Kozikowski A, Carneiro BA, O'Halloran TV, et al.
46 Molecular Pathways: Revisiting Glycogen Synthase Kinase-3 β as a Target for the
47 Treatment of Cancer. *Clinical Cancer Research*. 2017;23(8):1891-7. doi:
48 10.1158/1078-0432.ccr-15-2240.

1 57. Zhang J, Shi D, Li X, Ding L, Tang J, Liu C, et al. Rtt101-Mms1-Mms22 coordinates
2 replication - coupled sister chromatid cohesion and nucleosome assembly. EMBO
3 reports. 2017;18(8):1294-305. doi: 10.15252/embr.201643807.
4 58. Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, et al.
5 Exploration of the function and organization of the yeast early secretory pathway
6 through an epistatic miniarray profile. Cell. 2005;123(3):507-19. Epub 2005/11/05. doi:
7 10.1016/j.cell.2005.08.031. PubMed PMID: 16269340.
8 59. Jia S, Marjavaara L, Buckland R, Sharma S, Chabes A. Determination of
9 Deoxyribonucleoside Triphosphate Concentrations in Yeast Cells by Strong Anion-
10 Exchange High-Performance Liquid Chromatography Coupled with Ultraviolet
11 Detection. In: Vengrova S, Dalgaard J, editors. DNA Replication: Methods and
12 Protocols. New York, NY: Springer New York; 2015. p. 113-21.

13

14

1 **Figure legends**

2 **Figure 1. *MCK1* is indispensable for *dun1* Δ cells dealing with replication stress**

3 (A) Regulation of cellular dNTP levels by the S phase checkpoint in *S. cerevisiae*.
4 (B) 5-fold serial dilutions of WT, *rad53* Δ *sml1 Δ , *mec1* Δ *sml1 Δ , *chk1* Δ , *dun1* Δ , *mck1* Δ ,
5 *dun1* Δ *mck1* Δ (Table S1) cells were spotted onto a YPD plate supplemented with the
6 indicated concentrations of HU. Plates were incubated at 30°C for 48h before
7 photograph.**

8 (C) Overexpression of *MCK1* rescues the lethality of *mec1* Δ or *rad53* Δ . 5-fold serial
9 dilutions of the indicated strains were spotted onto SC-URA or SC+5FOA (5-
10 fluoroorotic acid) plates and grown at 30°C for 48h. The plasmid expressing WT
11 *MCK1/URA3* was lost in the presence of 5-FOA.

12 (D) Physical interaction between Mck1 and Rad53. *MCK1* and *RAD53* were cloned into
13 pGADT7 and pGBKT7 vectors, respectively. AH109 strains transformed with the
14 indicated plasmids were grown on the SC-Trp-Leu or SC-Trp-Leu-His plates. 0.5 mM
15 3-amino-triazole (3AT) was added to inhibit the leaky *HIS3* expression.

16 (E) Rad53 phosphorylates Mck1 *in vitro*. Mck1-5FLAG was precipitated from yeast
17 cells and incubated with purified recombinant His6-RAD53 and His6-rad53-KD
18 (K227A) in the presence of γ -³²P-ATP as detailed in Methods. After resolved in an 8%
19 polyacrylamide gel with SDS, the samples were subjected to autoradiography. Then,
20 the gel was stained by Coomassie Brilliant Blue (CBB) to show the amount of the
21 loaded protein in each reaction.

22 **Figure 2. *crt1* Δ , but not *sml1* Δ , suppresses the checkpoint deficiency of *mck1* Δ**

23 (A) Deletion of *SML1*, *DIF1* or *WTM1* has no apparent suppression of the HU
24 sensitivity of *mck1* Δ . WT, *mck1* Δ , *mck1* Δ *sml1 Δ , *mck1* Δ *dif1 Δ , *mck1* Δ *wtm1 Δ (Table S1)***

1 were tested for the growth in the presence of the indicated concentrations of HU by
2 serial dilution analysis as described in Fig.1A.

3 (B) Measurement of the *SML1* mRNA levels in *mck1Δ* by qPCR. Cells were grown in
4 rich media with or without 200 mM HU for 3h. The total mRNA was prepared as
5 described in Methods and Materials. The relative levels of *SML1* to *ACT1* mRNAs were
6 determined by qPCR analyses. Error bars represent standard deviations from at least
7 three biological repeats. No significance was found by student *t*—test.

8 (C) Mck1 is not involved in Sml1 degradation. The Sml1 protein levels in *mck1Δ* were
9 examined after 200 mM HU treatment for the indicated times. YFP-Sml1 and Tubulin
10 were detected by immunoblots.

11 (D) Deletion of *CRT1* partially suppresses the HU sensitivity of *mck1Δ* and
12 *mck1Δdun1Δ*. WT, *crt1Δ*, *mck1Δ*, *mck1Δcrt1Δ*, *dun1Δ*, *dun1Δcrt1Δ*, *dun1Δmck1Δ*,
13 *dun1Δmck1Δcrt1Δ* (Table S1) were tested for the HU sensitivity by serial dilution
14 analysis as described in (A).

15 (E) Mck1 and Dun1 play non-redundant roles in the rDNA copy number maintenance.
16 Genomic DNA was prepared in an agar plug and separated on a 1% pulsed field gel.
17 Ethidium bromide staining of yeast chromosomes is shown in the lower panel. Upper
18 panel shows chromosome XII by hybridization with a probe against 18S rDNA.

19 **Figure 3. Mck1 is responsible for both cell-cycle-dependent and HU-induced Crt1
20 phosphorylation**

21 (A) A representative cell cycle profile of the samples used for time course analysis of
22 Crt1 phosphorylation in (B).

23 (B) Phosphorylation of Crt1 in normal S phase. Cells were synchronized in G₁ by α-
24 factor before release into fresh media for the indicated times. The cell cycle progression
25 was analyzed by FACS. Lysates were prepared from WT and *mck1Δ* cells. The protein

1 levels of Crt1-13MYC were detected by immunoblots using an anti-MYC antibody as
2 described as in Fig. 2D. The Crt1-P/Crt1 ratio was indicated below each lane for the
3 first cell cycle.

4 (C) A representative cell cycle profile of the indicated strains in the presence of 200
5 mM HU.

6 (D) HU-induced Crt1 phosphorylation. Cells were synchronized in G₁ by α-factor
7 before release into fresh media containing 200 mM HU for the indicated times. The cell
8 cycle progression was analyzed by FACS. Lysates were prepared from WT and *mck1Δ*
9 cells. The protein levels of Crt1-13MYC were detected by immunoblots using an anti-
10 MYC antibody as described as in Fig. 2D. See Fig. S3C for the results of biological
11 repeats.

12 (E) Quantitation of the relative levels of Crt1 phosphorylation from biological repeats.

13 **Figure 4. Crt1 phosphorylation affects its binding to the promoters of RNR genes**
14 **and thereby reduces RNR induction**

15 (A) A schematic diagram of the consensus Mck1 kinase recognition motifs in Crt1.
16 Crt1 bears eight clusters of (S/T)-X-X-X-(pS/T)*, where * stands for the priming
17 phosphorylated residue and X for any amino acid. S1 (S58, S62); S2 (S167, S171, S173,
18 S174); S3 (T197, T199); S4 (S222, T226); S5 (S295, S299); S6 (S388, S389, S391,
19 S393, S394); S7 (S412, S414, T416, S418); S8 (T488, S492); S9 (S556, S558, S560,
20 S562).

21 (B) Phospho-mimic mutations of several putative Mck1 sites in Crt1 rescue the HU
22 sensitivity of *mck1Δdun1Δ* to a similar extent as *crt1Δ*. The *dun1Δmck1Δcrt1Δ* triple
23 mutant was transformed with pRS313 vector, WT *CRT1* or the indicated mutants. Five-
24 fold dilution of the cells were grown at 30°C for 48 h.

1 (C) ChIP-qPCR assays of Crt1 localization at the *RNR2* promoter in various alleles in
2 the presence or absence of 200 mM HU.
3 (D) ChIP-qPCR assays of Crt1 localization at the *RNR3* promoter in various alleles in
4 the presence or absence of 200 mM HU.
5 (E, F) Measurement of the *RNR3* mRNA levels in various mutants by qPCR. Cells were
6 grown in rich media with or without 200 mM HU for 3h. The total mRNA was prepared
7 as Methods and Materials. The relative levels of *RNR3* to *ACT1* mRNAs were
8 determined by qPCR analyses. The value of untreated WT was set to 1.0. Error bars
9 represent standard deviations from at least three biological repeats. *P*-value <0.01 and
10 0.05 are denoted as “***” and “*”, respectively.
11 (G) Western blotting of the Rnr3 protein levels in various mutants with or without 200
12 mM HU treatment for 3 h. Mck1 is necessary for efficient Rnr3 induction. Cells were
13 grown and treated as above. Rnr3-13MYC and Tubulin were detected by immunoblots.
14 (H) Time course measurement of the *RNR3* mRNA levels by RT-PCR after HU
15 treatment for the indicated time. Three biologically repeated experiments were
16 basically performed as described in (E).

17 **Figure 5. Hug1 suppresses the HU sensitivity of *mck1* Δ as a protein**

18 (A, B) *HUG1* deletion, in combination with *CRT1* deletion, shows additive suppression
19 effects on *mck1* Δ (A) and *mck1* Δ *dun1* Δ (B), but not on *dun1* Δ (B). Yeast strains with
20 the indicated genotype (Table S1) were tested for the HU sensitivity by serial dilution
21 analysis as described in Fig.1A.
22 (C) *HUG1* deletion does not reduce *SML1* transcription. RT-PCR analysis of *SML1*
23 mRNA in *hug1* Δ with or without HU treatment for 3 h.

1 (D) Hug1 acts as a protein. A strain carrying TAG-*HUG1*, with its start codon (ATG)
2 replaced by a stop codon (TAG) was tested in parallel with *hug1* Δ for the HU sensitivity
3 in the indicated genotypes as described in (A).

4 **Figure 6. Mck1 regulates the transcription of *HUG1* in a Crt1-independent way**

5 (A) Mck1 and Crt1 co-regulate the Hug1 protein level. Cells were grown and treated as
6 Fig. 4C. Hug1-13MYC and Tubulin were immunoblotted with anti-MYC and anti-
7 tubulin antibodies, respectively.
8 (B, C) RT-PCR analysis of the *HUG1* mRNA levels relative to *ACT* in various alleles
9 after HU treatment for 3 h (D) or the indicated time points (E). The value of untreated
10 WT was set to 1.0.

11 (D) Combinational deletion of *SML1*, *CRT1* and *HUG1* displays additive suppression
12 effects on *mec1* Δ and *mck1* Δ *dun1* Δ . Yeast strains with the indicated genotype (Table
13 S1) were tested for the HU sensitivity by serial dilution analysis as described in (A).

14 **Figure 7. Mck1 regulates cellular dNTP pools in response to a lethal dose of HU**

15 (A, B, C) dNTP (A), dGTP (B) or dATP (C) levels correlate with HU-resistant
16 phenotypes of the mutants. dNTPs were measured for cell cultures of the indicated
17 genotypes. Cells were arrested in G₁ and then released into 200 mM HU for 0, 3 and 6
18 h. dNTP levels were normalized to NTP levels in each sample, and then divided by total
19 number of cells used for the preparation. Error bars reflect standard deviation (SD) of
20 the three biological repeats.

21 (D) A proposed model for the roles of Mck1 as the downstream kinase of Mec1-Rad53
22 in response to replication stress. Under perturbed condition, Mck1, together with Dun1,
23 antagonizes the repressor function of Crt1 via phosphorylation, which in turn allows
24 the derepression of *RNR2/3/4* transcription. Meanwhile, Mck1 inhibits the expression
25 of Rnr2-hijacking protein Hug1, which is concomitantly induced due to the elimination

1 of the Crt1 repressor. Therefore, Mck1 defines a Dun1-independent pathway in fine-
2 tuning RNR activity to maintain appropriate dNTP pools according to the degrees of
3 replication threats. For simplicity, the effectors known to be targeted mainly by Dun1
4 (i.e., Sml1, Dif1, Wtm1) are not shown here.

5

1 **Supporting information captions**

2 **S1 Fig (Related to Fig 1). HU sensitivity analysis of Gsk-3 homologs and their**
3 **double mutants**

4 Yeast strains with the indicated genotype (Table S1) were tested for the HU sensitivity
5 by serial dilution analysis as described in Fig.1A.

6 **S2 Fig (Related to Fig 1). Mck1 shows synthetic interactions with checkpoint**
7 **factors in response to HU.**

8 (A, B) Yeast strains with the indicated genotype (Table S1) were tested for the HU
9 sensitivity by serial dilution analysis as described in Fig.1A.

10 (C) Representative tetrad dissection analyzed using the diploid cells with the indicated
11 genotype.

12 **S3 Fig (Related to Fig 3). Mck1 acts as a kinase in response to HU.**

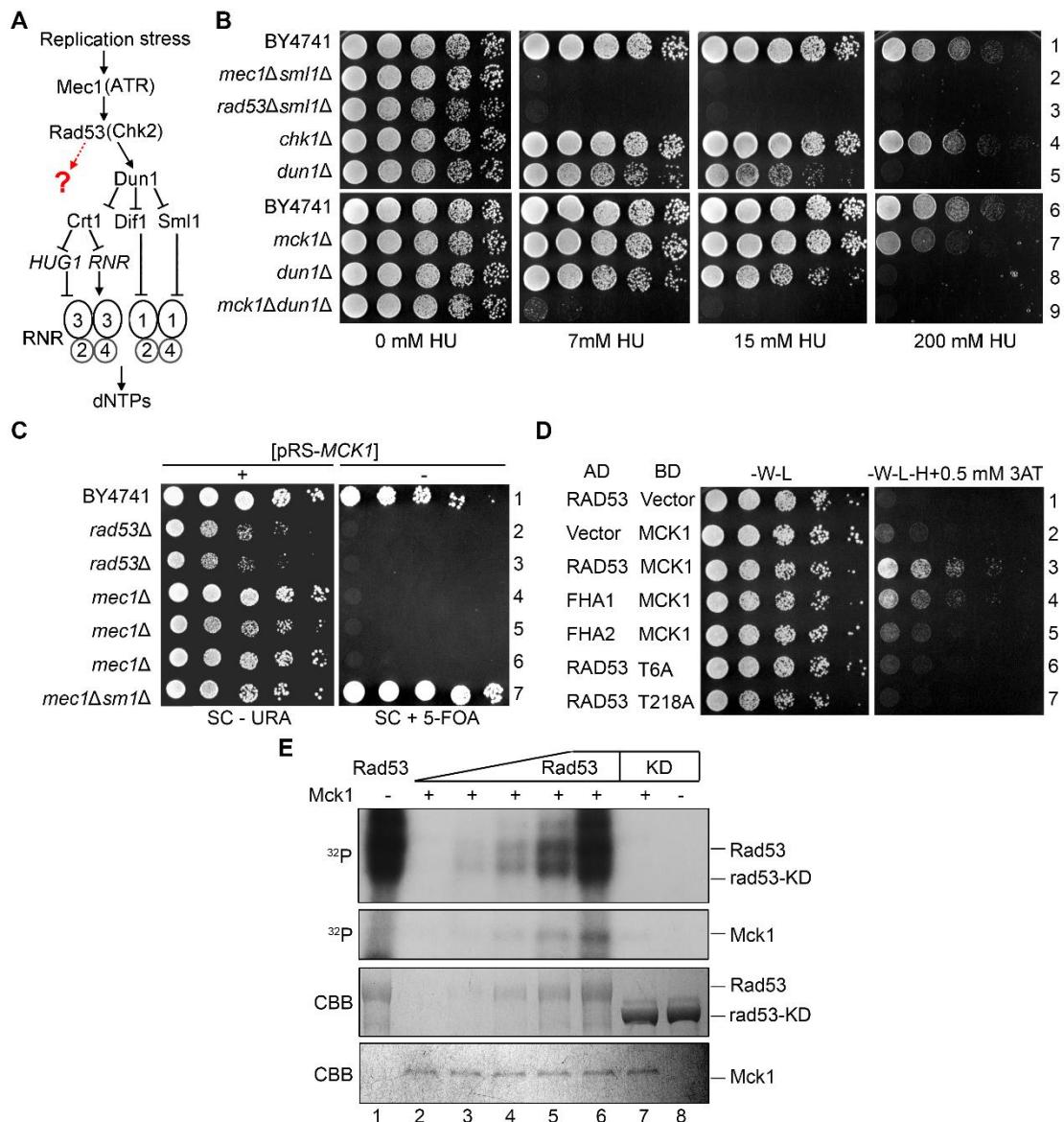
13 (A) Mck1 acts as a kinase in response to HU. The *dun1Δmck1Δ* strain was transformed
14 with pRS316 empty vector, WT *MCK1* or *mck1* alleles (the catalytic mutant allele,
15 D164A; the activation-loop mutant allele, Y199F). Strains were spotted onto SC-Ura
16 media with or without 50 mM HU and grown at 30°C for 48 h.

17 (B) Mck1 affects Crt1 phosphorylation. Cells were grown to stationary phase. Lysates
18 were prepared and resolved by a 7% polyacrylamide (acrylamide : N’N’-bis-
19 methylene-acrylamide = 149:1) gel containing SDS. The phosphorylation of Crt1-
20 13MYC were detected by immunoblots using an anti-MYC antibody. Tubulin was
21 applied as a loading control.

22 (C) Biological repeats of Figure 3D.

23 **S4 Fig (Related to Fig 4). HU sensitivity analysis of the suppression effects of *crt1-***
24 **5D mutant.**

1 Yeast strains with the indicated genotype (Table S1) were tested for the HU sensitivity
2 by two-fold serial dilution analysis.

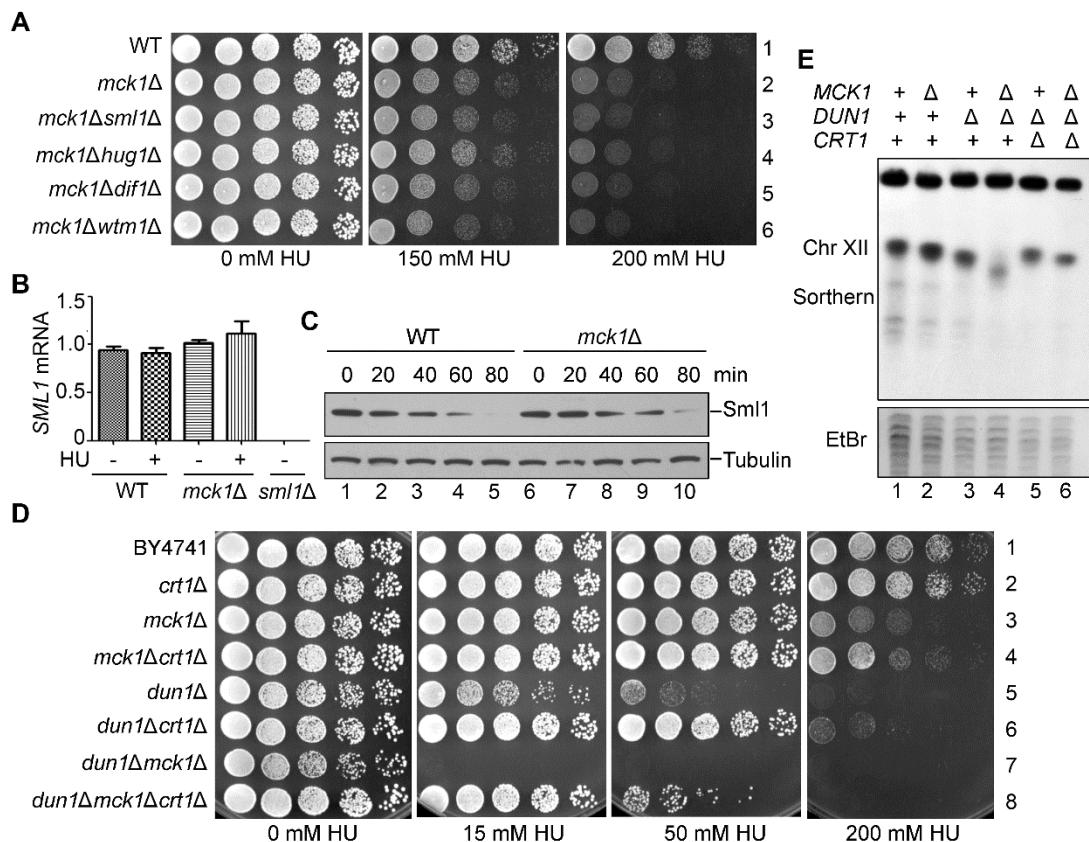

3 **S5 Fig (Related to Fig 5). HU sensitivity analysis of the suppression effects on**
4 **various mutants.**

5 Yeast strains with the indicated genotype (Table S1) were tested for the HU sensitivity
6 by serial dilution analysis as described in Fig.1A.

7

1

Li_Fig1



2

3

1

Li_Fig2

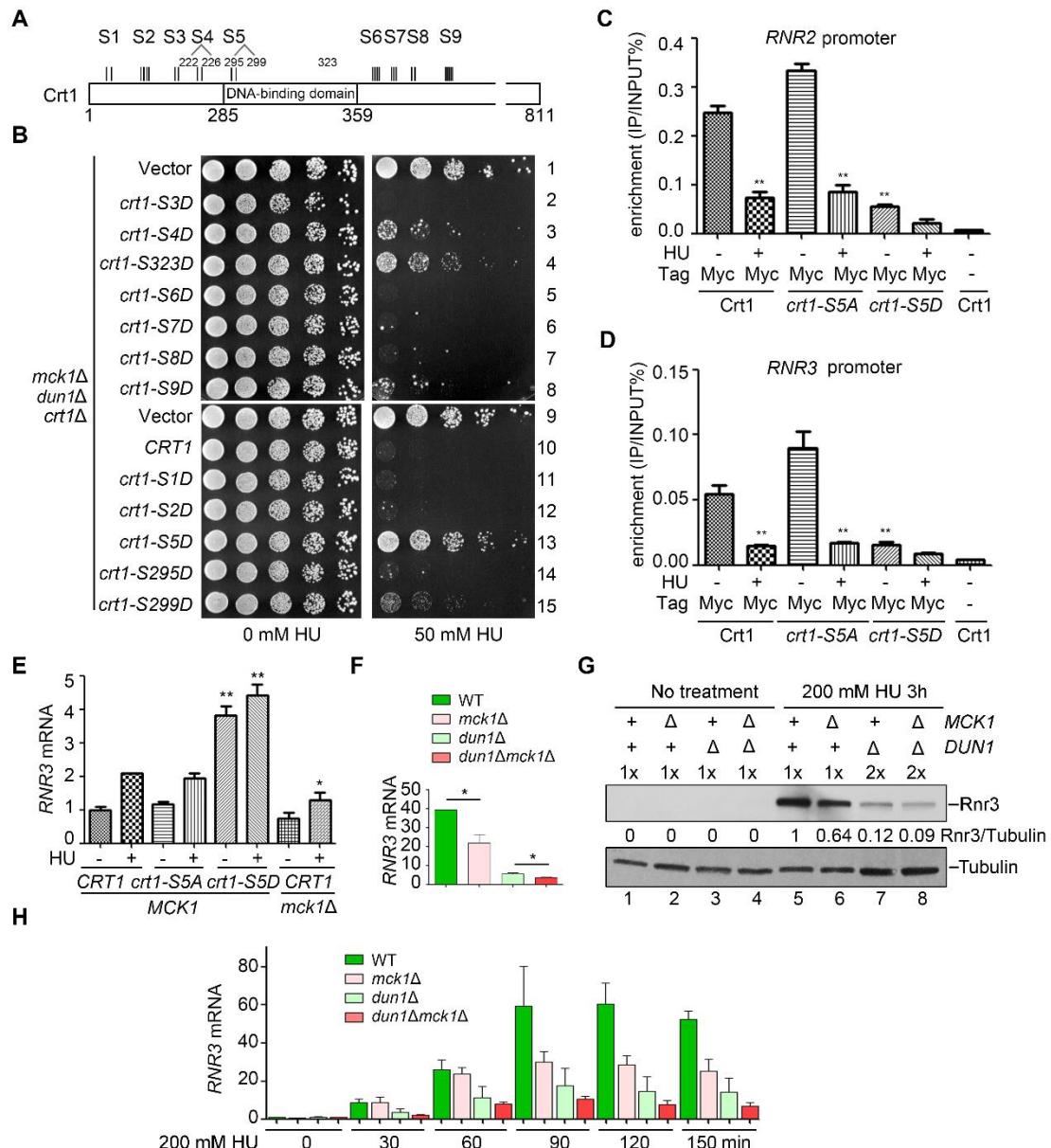


2

3

1

Li_Fig3

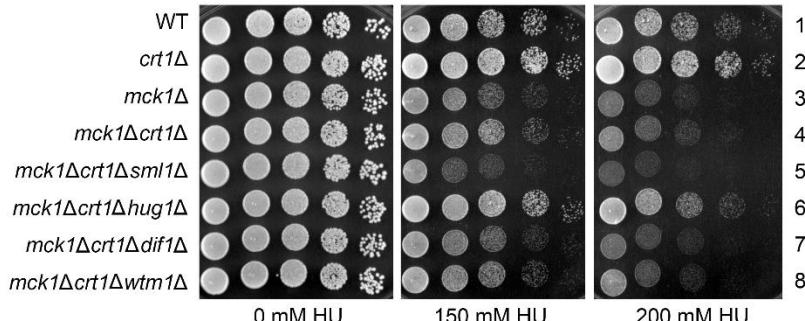

2

3

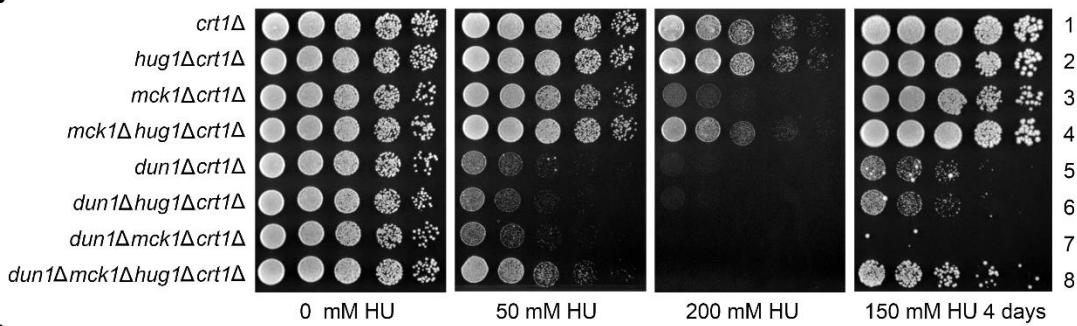
4

1

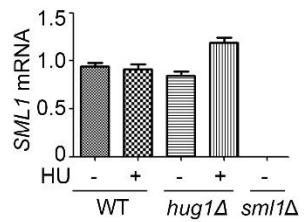
Li_Fig4

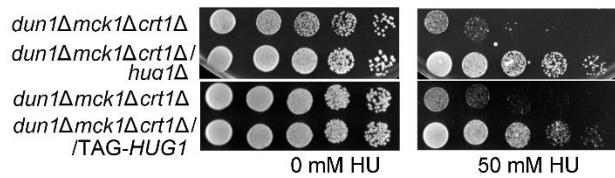

2

3


1

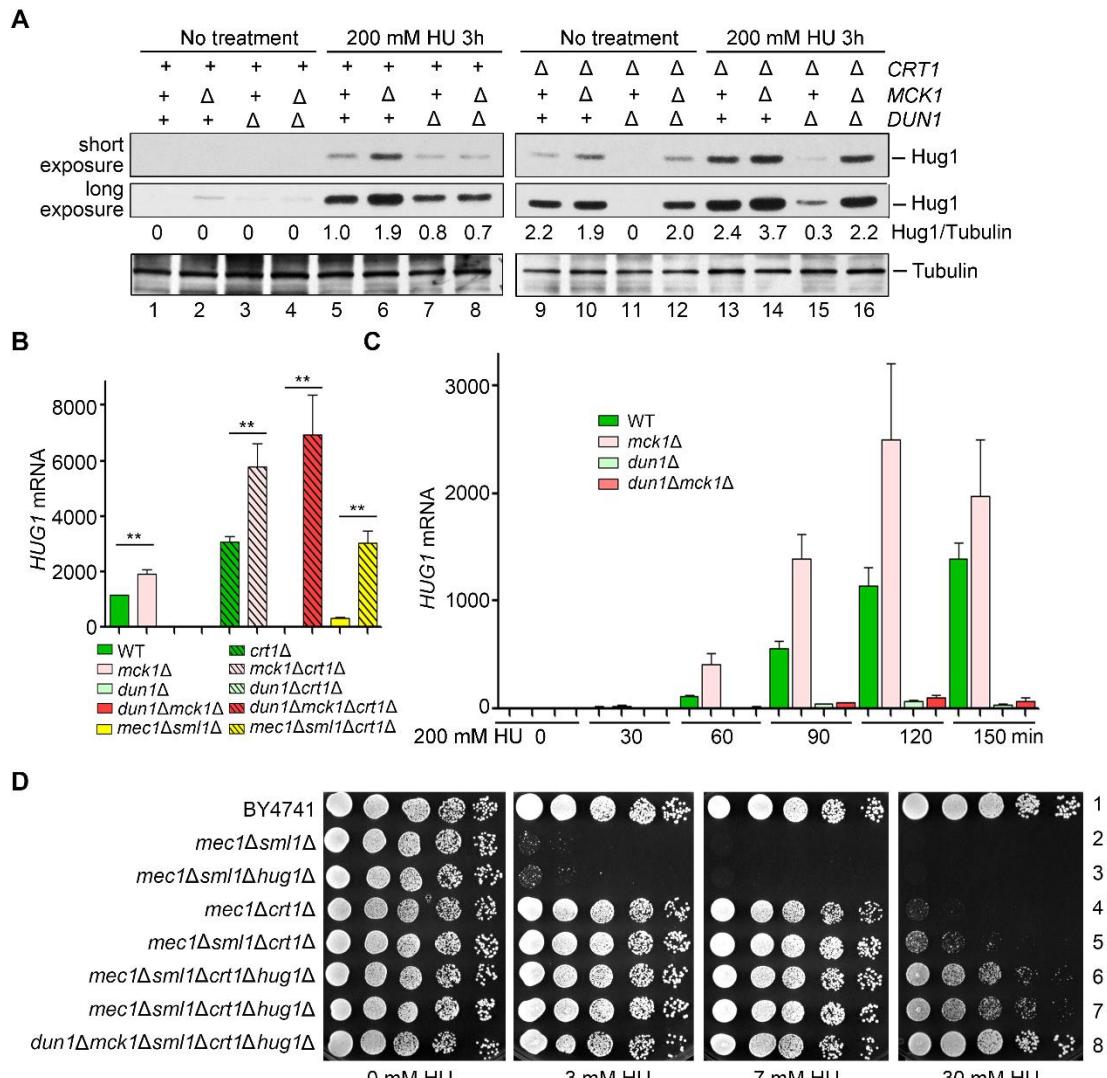
Li_Fig5


A


B

C

D

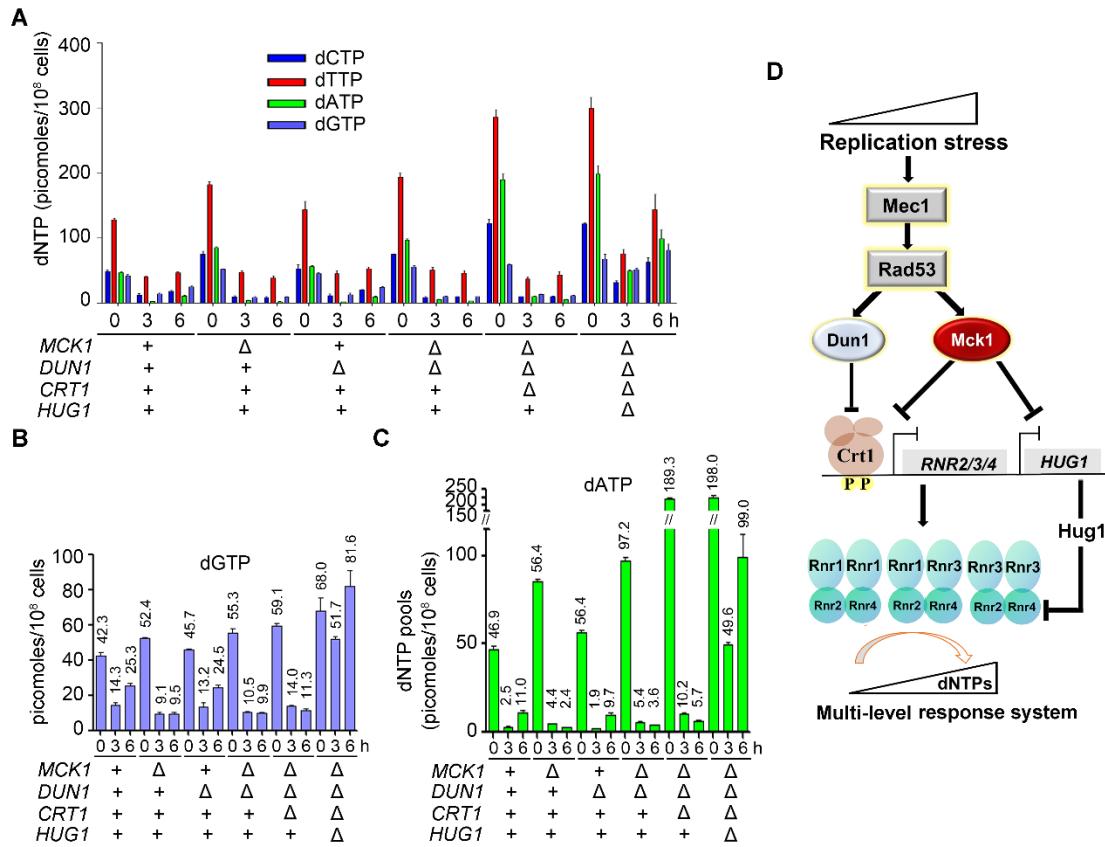


2

3

1

Li_Fig6



2

3

1

Li_Fig7

2

3