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Abstract 

 

Genome-wide association studies (GWAS) allows to dissect the genetic basis of complex traits at the 

population level1. However, despite the extensive number of trait-associated loci found, they often fail 

to explain a large part of the observed phenotypic variance2-4. One potential source of this discrepancy 

could be the preponderance of undetected low-frequency genetic variants in natural populations5,6. To 

increase the allele frequency of those variants and assess their phenotypic effects at the population level, 

we generated a diallel panel consisting of 3,025 hybrids, derived from pairwise crosses between a subset 

of natural isolates from a completely sequenced 1,011 Saccharomyces cerevisiae population. We 

examined each hybrid across a large number of growth traits, resulting in a total of 148,225 cross/trait 

combinations. Parental versus hybrid regression analysis showed that while most phenotypic variance 

is explained by additivity, a significant proportion (29%) is governed by non-additive effects. This is 

confirmed by the fact that a majority of complete dominance is observed in 25% of the traits. By 

performing GWAS on the diallel panel, we detected 1,723 significantly associated genetic variants, with 

16.3% of them being low-frequency variants in the initial population. These variants, which would not 

be detected using classical GWAS, explain 21% of the phenotypic variance on average. Altogether, our 

results demonstrate that low-frequency variants should be accounted for as they contribute to a large 

part of the phenotypic variation observed in a population.  
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Introduction 

 

Natural populations are characterized by an astonishing phenotypic diversity. Variation observed among 

individuals of the same species represent a powerful raw material to have a better insight into the relation 

existing between genetic variants and complex traits7. The advances of high-throughput sequencing and 

phenotyping technologies greatly enhance the power of determining the genetic basis of traits in various 

organisms8-11. Dissection of the genetic mechanisms underlying natural phenotypic diversity is within 

easy reach by using classical mapping approaches such as linkage analysis and genome-wide association 

studies (GWAS)7. Alongside these major advances, however, it must be noted that there are some 

limitations. All genotype-phenotype correlation studies in humans and other model eukaryotes identified 

causal loci in GWAS explaining relatively little of the heritability of most complex traits12,13. Multiple 

justifications for this missing heritability have been suggested, including the presence of low-frequency 

variants14-16 as well as the low power to estimate non-additive effects17-19. 

Among the model organisms, the budding yeast Saccharomyces cerevisiae is especially well suited to 

dissect variations observed across natural populations20,21. Because of their small and compact genomes, 

an unprecedented number of 1,011 S. cerevisiae natural isolates has recently been sequenced10, showing 

a high level of genetic diversity greater than that found in humans22. Yeast genome-wide association 

analyses have revealed functional Single Nucleotide Polymorphisms (SNPs), explaining a small fraction 

of the phenotypic variance10. However, these analyses highlighted the importance of the copy number 

variants (CNVs), which explain a larger proportion of the phenotypic variance and have greater effects 

on phenotypes compared to the SNPs. Nevertheless, even when CNVs and SNPs are taken together, the 

phenotypic variance explained is still low (around 17% on average) and consequently a large part of it 

is unexplained. Interestingly, much of the detected genetic polymorphisms in the 1,011 yeast genomes 

dataset are low-frequency variants with almost 92.7% of the polymorphic sites associated with a minor 

allele frequency (MAF) lower than 0.05. This trend is similar to the one observed in the human 

population8,16 and definitely raised the question of the impact of low-frequency variants on the 

phenotypic landscape within a population and on the missing heritability4. Here, we investigated the 

underlying genetic architecture of phenotypic variation as well as unraveling part of the missing 

heritability by accounting for low-frequency genetic variants at a population-wide scale and non-

additive effects controlled by a single locus. For this purpose, we generated and examined a large set of 

traits in 3,025 hybrids, derived from pairwise crosses between a subset of natural isolates from the 1,011 

S. cerevisiae population. This diallel crossing scheme allowed us to capture the fraction of the 

phenotypic variance controlled by both additive and non-additive phenomena as well as to infer the 

main modes of inheritance for each trait. We also took advantage of the intrinsic power of this diallel 

design to perform GWAS and assess the role of the low-frequency variants on complex traits. 
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Results 

Diallel panel and phenotypic landscape 

 
Based on the genomic and phenotypic data from the 1,011 S. cerevisiae isolates collection10, we selected 

a subset of 55 isolates that are diploid, homozygous, genetically diverse (Supplementary Fig. 1a), and 

coming from a broad range of ecological sources (Supplementary Fig. 1b) (e.g. tree exudates, 

Drosophila, fruits, fermentation processes, clinical isolates) as well as geographical origins (Europe, 

America, Africa and Asia) (Supplementary Fig. 1c and Supplementary Table 1). A full diallel cross 

panel was constructed by systematically crossing the 55 selected isolates in a pairwise manner 

(Supplementary Fig. 1d). In total, we generated 3,025 hybrids, representing 2,970 heterozygous hybrids 

with a unique parental combination and 55 homozygous hybrids. All 3,025 hybrids were viable 

indicating no dominant lethal interactions existing between the parental isolates. We then screened the 

entire set of the parental isolates and hybrids for quantification of mitotic growth abilities across 49 

conditions that induce various physiological and cellular responses (Supplementary Fig. 2, 

Supplementary Fig. 3, Supplementary Table 2). We used growth as a proxy for fitness traits (see 

Methods) and this phenotyping step led to the characterization of 148,225 hybrid/trait combinations. 

 

Estimation of genetic variance components using the diallel panel (additive vs. non-additive) 

 
The diallel cross design allows for the estimation of additive vs. non-additive genetic components 

contributing to each trait variation by calculating the combining abilities following Griffing’s model23. 

For each trait, the General Combining Ability (GCA) for a given parent refers to the average fitness 

contribution of this parental isolate across all of its corresponding hybrid combinations, whereas the 

Specific Combining Ability (SCA) corresponds to the residual variation unaccounted from the sum of 

GCAs from the parental combination. Consequently, the phenotype of a given hybrid can be formulated 

as µ + GCAparent1 + GCAparent2 + SCAhybrid, where µ is the mean fitness of the population for a given trait. 

We found a near perfect correlation (Pearson’s r = 0.995, p-value < 2.2e-16) between expected and 

observed phenotypic values, confirming the accuracy of the model used (see Methods). Using GCA and 

SCA values, we estimated broad- (H2) and narrow-sense (h2) heritabilities for each trait (Fig. 1). Broad-

sense heritability is the fraction of phenotypic variance explained by genetic contribution. In a diallel 

cross, the total genetic variance is equal to the sum of GCA variance of both parents and the SCA 

variance in each condition. Narrow-sense heritability refers to the fraction of phenotypic variance that 

can be explained only by additive effects and corresponds to the variance of the GCA in each condition 

(Fig. 1a). The H2 values for each condition range from 0.64 to 0.98, with the lowest value observed for 

fluconazole (1 µg.ml-1) and the highest for sodium meta-arsenite (2.5 mM), respectively. The additive 

part (h2 values) ranges from 0.12 to 0.86, with the lowest value for fluconazole (1 µg.ml-1) and the 
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highest for sodium meta-arsenite (2.5 mM), respectively. While broad- and narrow-sense heritabilities 

are variable across conditions, we can also observe that on average, most of the phenotypic variance can 

be explained by additive effects (mean h2=0.55). However, non-additive components contribute 

significantly to some traits, explaining on average one third of the phenotypic variance observed (mean 

H2 - h2=0.29) (Fig. 1a). Despite a good correlation between broad- and narrow-sense heritabilities 

(Pearson’s r =0.809, p-value=1.921e-12) (Fig. 1c), some traits display a larger non-additive contribution, 

such as in galactose (2%) or ketoconazole (10 µg/ml). Interestingly, these two conditions revealed to be 

mainly controlled by dominance (see below). Altogether, our results highlight the main role of additive 

effects in shaping complex traits at a population-scale and clearly show that this is not restricted to the 

single yeast cross where this trend has been first observed24,25. Nonetheless, non-additive effects still 

explain a third of the observed phenotypic variance. 

 

Relevance of dominance for non-additive effects 

 
To have a precise view of the non-additive components, the mode of inheritance and the relevance of 

dominance for genetic variance, we focused on the deviation of the hybrid phenotypes from the expected 

value under a full additive model. Under this model, the hybrid phenotype is expected to be equal to the 

mean between the two parental phenotypes, hereinafter as Mean Parental Value or Mid-Parent Value 

(MPV). Deviation from this MPV allows us to infer the respective mode of inheritance for each 

hybrid/trait combination26, i.e. additivity, partial and complete dominance towards one or the other 

parent and finally overdominance or underdominance (Supplementary Fig. 4, see Methods). Only 17.4% 

of all hybrid/trait combinations showed enough phenotypic separation between the parents and the 

corresponding hybrid, allowing the complete partitioning in the seven above-mentioned modes of 

inheritance. For the 82.6% remaining cases, only a separation of overdominance and underdominance 

can be achieved (Fig. 2a). Interestingly, these events are not as rare as previously described27, with 

11.6% of overdominance and 10.1% of underdominance (Fig. 2b). When a clear separation is possible 

(Fig. 2c), one third of the trait/cross combinations detected are purely additive whereas the rest displays 

a deviation towards one of the two parents, with no bias (Fig. 2c). When looking at the inheritance mode 

in each condition, most of the studied traits (33 out of 49) showed a prevalence of additive effects. 

However, 17 of them are not predominantly additive throughout the population. Indeed, a total of 12 

traits were detected as mostly dominant with 4 cases of best parent dominance, including galactose (2%) 

and ketoconazole (10 µg.ml-1), and 8 of worst parent dominance. The remaining 5 conditions display a 

majority of partial dominance (Fig. 2d). These results confirm the importance of additivity in the global 

architecture of traits. But more importantly, these results clearly demonstrate the major role of 

dominance as a driver for non-additive effects. Nevertheless, the presence of conditions with a high 
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proportion of partial dominance combined with the cases of over and underdominance may indicate a 

strong impact of epistasis on phenotypic variation. 

 

Diallel design allows mapping of low frequency variants in the population using GWAS 

 
Next, we explored the contribution of low-frequency genetic variants (MAF < 0.05) to the observed 

phenotypic variation in our population. Genetic variants considered by GWAS need to have a relatively 

high frequency in the population to be detectable, usually over 0.05 for relatively small datasets1. 

Consequently, low-frequency variants are evicted from classical GWAS. However, the diallel crossing 

scheme stands as a powerful design to assess the phenotypic impact of low-frequency variants present 

in the initial population as each parental genome is presented several times, creating haplotype mixing 

across the matrix and preserving the detection power in GWAS.  

To avoid issue due to population structure, we selected a subset of hybrids coming from 34 unrelated 

isolates in the original panel to perform GWAS (see Methods, Supplementary Table 1). By combining 

known parental genomes, we constructed in silico 595 hybrid genotypes matching one half matrix of 

the diallel plus the 34 homozygous diploids. We built a matrix of genetic variants for this panel and 

filtered SNPs to only retain biallelic variants with no missing calls. In addition, due to the small number 

of unique parental genotypes, extensive long-distance linkage disequilibrium was also removed (see 

Methods), leaving a total of 31,632 polymorphic sites in the diallel population. Overall, 3.8% (a total of 

1,180 SNPs) had a MAF lower than 0.05 in the initial population of the 1,011 S. cerevisiae isolates but 

surpass this threshold in the diallel panel, going up to a MAF of 0.32 (Fig. 3a-b). 

To map additive as well as non-additive variants impacting phenotypic variation, we performed GWA 

using two different models28 (see Methods). We used a classical additive model, encoding for SNPs 

where linear relationship between trait and genotype is searched, i.e. every locus has a different encoding 

for each genotype. To account for non-additive inheritance, we also used an overdominant model, which 

only considers differences between heterozygous and homozygous thus revealing overdominant and 

dominant effects. For each of these two models, we performed mixed-model association analysis of the 

49 growth traits with FaST-LMM29. Overall, GWAS revealed 1,723 significantly associated SNPs 

(Supplementary Table 3) by detecting from 2 to 103 significant SNPs by condition, with an average of 

39 SNPs per trait. Minor allele frequencies of the significantly associated SNPs were determined in the 

1,011 sequenced genomes, from which the diallel parents were selected (Fig. 3). Interestingly, 16.3% 

of the significant SNPs (281 in total) correspond to low-frequency variants (MAF<0.05), with 19.5% of 

them (55 SNPs) being rare variants (MAF<0.01). This trend is the same and maintained for both models, 

with 19.3% and 15.2% of low-frequency variants for the additive and overdominant models. Because 

of the scheme used, it is important to note that it is possible to increase the MAF of low-frequency 

variants at a detectable threshold in the diallel panel and to query their effects but it is still difficult for 
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truly rare variants (MAF<0.01), probably leading to an underestimation. However, these results clearly 

show that low-frequency variants indeed play a significant part in the phenotypic variance at the 

population-scale. We then estimated the contribution of the significant variants to total phenotypic 

variation (see Methods) and found that detected SNPs could explain 15% to 32% of the variance, with 

a median of 20% (Fig. 3b). When looking at the variance explained by each variant over their respective 

allele frequency, it is noteworthy that low-frequency variants explain a slightly but significantly higher 

proportion of the phenotypic variation (median of 20.2%) than the common SNPs (median of 19.6%) 

(Fig. 3b). In addition, the variance explained by the associated rare variants is also higher on average 

than the rest of the detected SNPs (Supplementary Fig. 5). It is noteworthy that this trend is robust and 

conserved across the two used encoding models, accounting for additive and overdominant effects 

(Supplementary Fig. 5). 

To gain insight into the biological relevance of the set of associated SNPs, we first looked at the 

distribution across the genome and we found that 62.5% of them are in coding regions (with coding 

regions representing a total of 72.9% of the S. cerevisiae genome) (Supplementary Fig. 6a) and all these 

SNPs are distributed over a set of 546 genes. Over the last decade, an impressive number of quantitative 

trait locus (QTL) mapping experiments were performed on a myriad of phenotypes in yeast leading to 

the identification of 178 quantitative trait genes (QTG)30 and we found that 27 of the genes we detected 

are part of this list (Supplementary Fig. 6b). In addition, 23 associated genes were also found as 

overlapping with a recent large-scale linkage mapping survey in yeast31 (Supplementary Fig. 6b). We 

then asked whether the associated genes were enriched for specific gene ontology (GO) categories 

(Supplementary Table 4). This analysis revealed an enrichment (p-value= 5.39x10-5) in genes involved 

in “response to stimulus” and “response to stress”, which is in line with the different tested conditions 

leading to various physiological and cellular responses. 

SGD1 and the mapping of a low frequency variant 

 
Finally, we focused on one of the most strongly associated genetic variant out of the 281 low-frequency 

variants significantly associated with a phenotype. The chosen variant consists of two adjacent SNPs in 

the SGD1 gene and has been detected in 6-azauracile (100 µg.ml-1) with a p-value of 2.75e-8 with the 

overdominant encoding and 6.26e-5 with the additive encoding. Their MAF in the initial population is 

only 2.5% and goes up to 9% in the diallel panel with three genetically distant strains carrying it (Fig. 

6c). The SNPs are in the coding sequence of SGD1, an essential gene encoding a nuclear protein. The 

minor allele (AA) induces a synonymous change (TTG (Leu) → TTA (Leu)) for the first position and a 

non-synonymous mutation (GAA (Glu)→ AAA (Lys)) for the second position (Supplementary Fig. 7a). 

The phenotypic advantage conferred by this allele can be observed with significant differences between 

the homozygous for the minor allele, heterozygous and homozygous for the major allele (Supplementary 

Fig. 7b). To functionally validate the phenotypic effect of this low-frequency variant, CRISPR-Cas9 
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genome-editing was used in the three strains carrying the minor allele (AA) in order to switch it to the 

major allele (GG) and assess its phenotypic impact. Both mating types have been assessed for each 

strain. When phenotyping the wildtype strains containing the minor allele and the mutated strains with 

the major allele, we could see that the minor allele confers a phenotypic advantage of 0.2 growth ratio 

compared to the major allele (Supplementary Fig. 7c) therefore validating the important phenotypic 

impact of this low-frequency variant. However, no assumptions can be made regarding the exact effect 

of this allele at the protein-level because no precise characterization has ever been carried out on Sgd1p 

and no particular domain has been highlighted. 

 

Conclusion 

 

Understanding the source of the missing heritability is essential to precisely address and dissect the 

genetic architecture of complex traits. The contribution of rare and low-frequency variants to traits is 

largely unexplored. In humans, these genetic variants are widespread but only few of them have been 

associated with some specific traits and diseases16. Recently, it has been shown that the missing 

heritability of height and body mass index is accounted for by rare variants32. We also recently found in 

yeast that most of the QTNs (Quantitative Trait Nucleotides) previously identified by linkage mapping 

were at low allele frequency in the 1,011 S. cerevisiae population10,33,34. This observation was 

corroborated by additional mapped loci via linkage mapping and analyses31. It also raised the question 

of whether these rare and large effect size alleles discovered in specific crosses are really relevant to the 

variation across most of the population. Here, we quantified the contribution of low-frequency variants 

across a large number of traits and found that among all the detected genetic variants by GWAS on a 

diallel panel, 16.3% of them have a low-frequency in the initial population and explain a significant part 

of the phenotypic variance (21% on average). This particular diallel design also presents an intrinsic 

power to evaluate the additive vs. non-additive genetic components contributing to the phenotypic 

variation. We assessed the effect of intra-locus dominance on the non-additive genetic component and 

showed that dominance at the single locus level contribute to the phenotypic variation observed. 

However, other more complicated inter-loci interactions may still be involved. Altogether, these results 

have major implications for our understanding of the genetic architecture of traits in the context of the 

unexplained heritability. 
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Methods 

 

Construction of the diallel panel 

 

Selected Saccharomyces cerevisiae isolates 

Out of the collection of 1,011 strains10, a total of 53 natural isolates were carefully selected to be 

representative of the Saccharomyces cerevisiae species. We selected isolates from a broad ecological 

origins and we prioritized for strains that are diploid, homozygous, euploid and genetically as diverse 

as possible, i.e. up to 1% of sequence divergence. All the isolate details, including ecological and 

geographical origins, are listed in Supplementary table 1. In addition to these 53 isolates, we included 

two laboratory strains, namely ∑1278b and the reference S288c strain. 

 

Generation of stable haploids 

For each selected parental strain, stable haploid strains were obtained by deleting the HO locus. The HO 

deletions were performed using PCR fragments containing drug resistance markers flanked by 

homology regions up and down stream of the HO locus, using standard yeast transformation method 

(ref). Two resistance cassettes, KanMX and ClonNAT, were used for MATa and MAT  haploids, 

respectively. The mating-type (MATa and MAT  of antibiotic-resistant clones was determined using 

testers of well-known mating type. For each genetic background, we selected a MATa and MAT  clone 

that are resistant to G418 or nourseothricin, respectively.  

Phenotyping of the parental haploid strains was performed to check for mating type specific fitness 

effects. All MATa and MAT  parental strains were tested on all 49 growth conditions (see below) using 

the same procedure as the phenotyping assay of the hybrid matrix. The overall correlation between the 

MATa and MAT  parental strains was 0.967 (Pearson, p-value < 1e-324), with an average correlation 

per strain of 0.976 across different conditions (Supplementary Fig. 8). No significant mating type 

specificity was identified. 

 

Diallel scheme 

Parental strains were arrayed and pregrown in liquid YPD (1% yeast extract, 2% peptone and 2% 

glucose) overnight. Mating was performed with ROTOR™ (Singer Instruments) by pinning and mixing 

MATa over MAT  parental strains on solid YPD. The parental strains, i.e. 55 MATa HO::∆KanMX and 

55 MAT  HO::∆ClonNAT strains were arrayed and mated in a pairwise manner on YPD for 24 hours 

at 30°C. The mating mixtures were replicated on YPD supplemented with G418 (200 µg.ml-1) and 

nourseothricin (100 µg.ml-1) for double selection of hybrid individuals. After 24 hours, plates were 

replicated again on the same media to eliminate potential residuals of non-hybrids cells. In total, we 

generated 3,025 hybrids, representing 2,970 heterozygous hybrids with a unique parental combination 

and 55 homozygous hybrids. 
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High-throughput phenotyping and growth quantification 

 

Quantitative phenotyping was performed using endpoint colony growth on solid media. Strains were 

pregrown in liquid YPD medium and pinned onto a solid SC (Yeast Nitrogen Base with ammonium 

sulfate 6.7 g.l-1, amino acid mixture 2 g.l-1, agar 20 g.l-1, glucose 20 g.l-1) matrix plate to a 1,536 density 

format using the replicating ROTOR™ robot (Singer Instruments). Two replicates of each parental 

strain were present on every plate and six replicates were present for each hybrid. The resulting matrix 

plates were incubated overnight to allow sufficient growth, which were then replicated onto 49 media 

conditions, plus SC as a pinning control (Supplementary Fig. 2, Supplementary Table 2). The selected 

conditions impact a broad range of cellular responses, and multiple concentrations were tested for each 

compound (Supplementary Fig. 3). Most tested conditions displayed distinctive phenotypic patterns, 

suggesting different genetic basis for each of them (Supplementary Fig. 3). The plates were incubated 

for 24 hours at 30°C (except for 14°C phenotyping) and were scanned with a resolution of 600 dpi at 

16-bit grayscale. Quantification of the colony size was performed using the R package Gitter35 and the 

fitness of each strain on the corresponding condition was measured by calculating the normalized growth 

ratio between the colony size on a condition and the colony size on SC. As each hybrid is present in six 

replicates, the value considered for its phenotype is the median of all its replicates, thus smoothing the 

effects of pinning defect or contamination. This phenotyping step led to the determination of 148,225 

hybrid/trait combinations. 

 

Diallel combining abilities and heritabilities 

 

Combining ability values were calculated using half diallel with unique parental combinations, 

excluding homozygous hybrids from identical parental strains. For each hybrid individual, the fitness 

value is expressed using Griffing’s model23: 

 

𝑧𝑖𝑗 =  𝜇 + 𝑔𝑖 +  𝑔𝑗 + 𝑠𝑖𝑗 + 𝑒 

 

Where 𝑧𝑖𝑗  is the fitness value of the hybrid resulting from the combination of ith and jth parental strains, 

𝜇 is the mean population fitness, 𝑔𝑖  and 𝑔𝑗 are the general combining ability for the ith and jth parental 

strains , 𝑠𝑖𝑗 is the specific combining ability associated with the 𝑖 × 𝑗 hybrid, and e is the error term (i = 

1...N, j = 1…N, N = 55). General combining ability for the ith parent is calculated as: 

 

𝑔𝑖̂ = (
𝑁 − 1

𝑁 − 2
) × (𝑧𝑖∙ − 𝜇) 
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Where N is the total number of parental types, 𝑧𝑖∙̅ is the mean fitness value of all half sibling hybrids 

involving the ith parent, and 𝜇 is the population mean. The error term associated with 𝑔𝑖  is: 

 

𝑒𝑔𝑖
= √

(𝑁 − 1) × 𝜎2𝑧𝑖𝑗∙

𝑛 × 𝑁 × (𝑁 − 2)
 

 

Where N is the total number of parental types, n is the number of replicates for the 𝑖 × 𝑗 hybrid, and 

𝜎2𝑧𝑖𝑗∙ is the variance of fitness values from a full-sib family involving the ith and jth parents, which is 

expressed as:  

 

𝜎2𝑧𝑖𝑗∙ = 𝜎2𝑧𝑖 + 𝜎2𝑧𝑗 + 𝜎2𝑧𝑖𝑗 + 2 × 𝑐𝑜𝑣(𝑧𝑖 , 𝑧𝑗) 

 

Specific combining ability for the 𝑖 × 𝑗 hybrid combination therefore: 

 

𝑠𝑖𝑗̂ = 𝑧𝑖𝑗∙̅̅ ̅̅ −  𝑔𝑖̂ − 𝑔𝑗̂ − 𝜇 

 

The error term associated with 𝑠𝑖𝑗̂ is: 

 

𝑒𝑠𝑖𝑗
= √

(𝑁 − 3) × 𝜎2𝑧𝑖𝑗∙

𝑛 × (𝑁 − 1)
 

Using combining ability estimates, broad- and narrow-sense heritabilities can be calculated. Narrow 

sense heritability (h2) accounts for the part of phenotypic variance explained only by additive variance, 

expressed as the additive variance (𝜎𝐴
2) over the total phenotypic variance observed (𝜎𝑃

2): 

 

ℎ2 =
𝜎𝐴

2

𝜎𝑃
2 =

𝜎(𝑔𝑖+𝑔𝑗)
2

𝜎(𝑔𝑖+𝑔𝑗)
2 + 𝜎𝑠𝑖𝑗

2 + 𝜎𝑒
2 

Where 𝜎(𝑔𝑖+𝑔𝑗)
2  is the sum of GCA variances, 𝜎𝑠𝑖𝑗

2  is the SCA variance and 𝜎𝑒
2 is the variance due to 

measurement error, which is expressed as:  

𝜎𝑒
2 = (𝑁 − 2) (𝑒𝑔𝑖

̅̅ ̅̅ + 𝑒𝑔𝑗
̅̅ ̅̅ )

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2

+
(

(𝑁2 − 𝑁)
2 − 1)

(
(𝑁2 − 𝑁)

2 + 𝑁 − 3)
× 𝑒𝑠𝑖𝑗

̅̅ ̅̅ 2 

On the other hand, broad-sense heritability (H2) depicts the part of the phenotypic variance explained 

by the total genetic variance 𝜎𝐺
2: 
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𝐻2 =
𝜎𝐺

2

𝜎𝑃
2 =

𝜎(𝑔𝑖+𝑔𝑗)
2 + 𝜎𝑠𝑖𝑗

2

𝜎(𝑔𝑖+𝑔𝑗)
2 + 𝜎𝑠𝑖𝑗

2 + 𝜎𝑒
2 

Phenotypic variance explained by non-additive variance is therefore equal to the difference between H2 

and h2. All calculations were performed in R using custom scripts.  

 

Calculation of mid-parent values and classification of mode of inheritance 

 

Mid-Parent Value (MPV) is expressed as the mean fitness value of both diploid homozygous parental 

phenotypes:  

𝑀𝑃𝑉 =
𝑃1 + 𝑃2

2
 

 

Comparing the hybrid phenotypic value (Hyb) to its respective parents’ allows us to infer the mode of 

inheritance for each hybrid/trait combination (Supplementary Fig. 4). To have a robust classification, 

confidence intervals for each class are based on standard deviation of hybrid (6 replicates) and parents 

(54 replicates). P2 is the phenotypic value of the fittest parent while P1 is the phenotypic value of the 

least fit parent. 

 

Inheritance mode Formula 

Underdominance 𝐻𝑦𝑏 < 𝑃1 − (𝜎𝑃1 + 𝜎𝐻𝑦𝑏) 

Dominance P1 𝑃1 − (𝜎𝑃1 + 𝜎𝐻𝑦𝑏) < 𝐻𝑦𝑏 < 𝑃1 + (𝜎𝑃1 + 𝜎𝐻𝑦𝑏) 

Partial dominance P1 𝑃1 + (𝜎𝑃1 + 𝜎𝐻𝑦𝑏) < 𝐻𝑦𝑏 < 𝑀𝑃𝑉 − (
𝜎𝑃1 + 𝜎𝑃2

2
+ 𝜎𝐻𝑦𝑏) 

Additivity 𝑀𝑃𝑉 − (
𝜎𝑃1 + 𝜎𝑃2

2
+ 𝜎𝐻𝑦𝑏) < 𝐻𝑦𝑏 < 𝑀𝑃𝑉 + (

𝜎𝑃1 + 𝜎𝑃2

2
+ 𝜎𝐻𝑦𝑏) 

Partial dominance P2 𝑀𝑃𝑉 + (
𝜎𝑃1 + 𝜎𝑃2

2
+ 𝜎𝐻𝑦𝑏) < 𝐻𝑦𝑏 < 𝑃2 − (𝜎𝑃2 + 𝜎𝐻𝑦𝑏) 

Dominance P2 𝑃2 − (𝜎𝑃2 + 𝜎𝐻𝑦𝑏) < 𝐻𝑦𝑏 < 𝑃2 + (𝜎𝑃2 + 𝜎𝐻𝑦𝑏) 

Overdominance 𝑃2 + (𝜎𝑃2 + 𝜎𝐻𝑦𝑏) < 𝐻𝑦𝑏 

 

When a clear separation is possible between the two parental phenotypic values 𝑃1 + 𝜎𝑃1 < 𝑃2 − 𝜎𝑃2 
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The full decomposition in the 7 above mentioned categories is possible (Supplementary Fig. 4a). 

However, in most of the cases, the two parental phenotypic values are not separated enough to achieve 

this but it is still possible to distinguish between overdominance and underdominance (Supplementary 

Fig. 4b, Fig 2a). All calculations were performed in R using custom scripts. 

 

Genome-wide association studies on the diallel panel 

 

Whole genome sequences for the parental strains were obtained from the 1002 yeast genome project10. 

Sequencing was performed by Illumina Hiseq 2000 with 102 bases read length. Reads were then mapped 

to S288c reference genome using bwa (v0.7.4-r385)36. Local realignment around indels and variant 

calling has been performed with GATK (v3.3-0)37. The genotypes of the F1 hybrids were constructed 

in silico using 34 parental genome sequences. We retained only the biallelic polymorphic sites, resulting 

in a matrix containing 295,346 polymorphic sites encoded using the “recode12” function in PLINK38. 

Those genotypes correspond to a half-matrix of pairwise crosses with unique parental combinations, 

including the diagonal, i.e. the 34 homozygous parental genotypes. For each cross, we combined the 

genotypes of both parents to generate the hybrid diploid genome. As a result, heterozygous sites 

correspond to sites for which the two parents had different allelic versions. We removed long-range 

linkage disequilibrium sites in the diallel matrix due to the low number of founder parental genotypes 

by removing haplotype blocks that are shared more than twice across the population, resulting in a final 

dataset containing 31,632 polymorphic sites. 

We performed GWA analyses with different encodings28. In the additive model, the genotypes of the F1 

progeny were simply the concatenation of the genotypes from the parents. As homozygous parental 

alleles were encoded as 1 or 2, the possible alleles for each site in the F1 genotype were “11” and “22” 

for homozygous sites and “12” for heterozygous sites. We also used an overdominant genotype 

encoding, where both the homozygous minor and homozygous major alleles are encoded as “11” and 

the heterozygous genotype is encoded as “22”.  

Mixed-model association analysis was performed using the FaST-LMM python library version 0.2.32 

(https://github.com/MicrosoftGenomics/FaST-LMM)39. We used the normalized phenotypes by 

replacing the observed value by the corresponding quantile from a standard normal distribution, as 

FaST-LMM expects normally distributed phenotypes. The command used for association testing was 

the following: single_snp(bedFiles, pheno_fn, count_A1=True), where bedFiles is the path to the 

PLINK formatted SNP data and pheno_fn is the PLINK formatted phenotype file. By default, for each 

SNP tested, this method excludes the chromosome in which the SNP is found from the analysis in order 

to avoid proximal contamination. Fast-LMM also computes for each SNP the fraction of heritability 

explained. The mixed model adds a polygenic term to the standard linear regression designed to 

circumvent the effects of relatedness and population stratification. 
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We estimated a trait-specific p-value threshold for each condition by permuting phenotypic values 

between individuals 100 times. The significance threshold was the 5% quantile (the 5th lowest p-value 

from the permutations). With that method, variants passing this threshold will have a 5% family-wise 

error rate. Taken together, GWA revealed 1,723 significantly associated SNPs (Supplementary table 3), 

with 1,273 and 450 SNPs for overdominant and additive model, respectively. 

 

Gene ontology analysis 

 

GO term enrichment was performed using SGD GO Term Finder 

(https://www.yeastgenome.org/goTermFinder) with the 546 unique genes containing significantly 

associated SNPs. Significant enrichment is considered under “Process” ontology with a p-value cutoff 

of 0.05.  

 

CRISPR-Cas9 allele editing 

 

pAEF5 plasmid containing Cas9 endonuclease and the guide RNA targeting SGD1 was co-transformed 

with the repair fragment of 100 nucleotides containing the desired allele. Transformed cells were then 

plated on YPD supplemented with 200 µg.ml-1 hygromycin at 30°C to select for transformants. Colonies 

were then arrayed on a 96 well plate with 100 µl YPD and grown for 24 hours to induce plasmid loss. 

The plate is then pinned back onto solid YPD for 24h then replica plated to YPD supplemented with 

200 µg.ml-1 hygromycin to check for plasmid loss. Allele specific PCR was performed on colonies with 

loss of plasmid40 to distinguish correctly edited allele from wildtype allele. Strains who showed 

amplification for the edited allele and no amplification for the wildtype allele were phenotyped (4 

replicates) on the corresponding condition to measure differences with their wildtype counterparts. 
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Figure legends 

 

Figure 1  Heritability measurements 

a. Orange bars represent the narrow-sense heritability h2 for each condition while blue bars represent 

broad-sense heritability H2. The difference between H2 and h2 depicts the part of variance due to non-

additive effects. b. Overall mean additive and non-additive effects for every tested growth condition. c. 

Representation of H2 as a function of h2 showing the relative additive versus non-additive effects for 

each condition. Outlier conditions in terms of non-additive variance will lie further away from the linear 

regression line.  

 

Figure 2  Mode of inheritance 

a. Percentage of parental phenotypes separated from each other for which a complete partition of 

different inheritance modes can be achieved. b. Inheritance modes for every cross and condition where 

no separation can be achieved between the two homozygous parents. c. Inheritance modes for every 

cross and condition where a clear phenotypic separation can be achieved between the two homozygous 

parents. d. The number of conditions in each main inheritance mode. 

 

Figure 3  Rare and low-frequency variants detection 

a. Comparison of MAF for each SNP between the whole population (1,011 strains) and the hybrid diallel 

matrix used for GWAS. Hollow blue circles represent the MAF of all SNPs common to the initial 

population and the diallel hybrids (31,632). Full orange circles show the MAF of significantly associated 

SNPs. Vertical orange line shows the 5% MAF threshold. b. Proportion of SNPs with a MAF below 

0.05. c. Proportion of significantly associated SNPs with a MAF below 0.05. d. Fraction of heritability 

explained for common and low-frequency variants. P-value calculated using a two-sided Mann-

Whitney-Wilcoxon test. 
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