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Abstract

Population viscosity, i.e.,, low emigration out of the natal deme, leads to high within-
deme relatedness, which is beneficial to the evolution of altruistic behavior when social
interactions take place among deme-mates. However, a detrimental side-effect of low
emigration is the increase in competition among related individuals. The evolution of
altruism depends on the balance between these opposite effects. This balance is already
known to be affected by details of the life cycle; we show here that it further depends on
the fidelity of strategy transmission from parents to their offspring. We consider different
life cycles and identify thresholds of parent-offspring strategy transmission inaccuracy,
above which higher emigration can increase the frequency of altruists maintained in the
population. Predictions were first obtained analytically assuming weak selection and
equal deme sizes, then confirmed with stochastic simulations relaxing these assump-
tions. Contrary to what happens with perfect strategy transmission from parent to off-
spring, our results show that higher emigration can be favorable to the evolution of al-
truism.
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1 Introduction

2 In his pioneering work on the evolution of social behavior, Hamilton suggested that al-
3 truistic behavior would be associated to limited dispersal (Hamilton, 1964, p. 10). This
4 notion, that tighter links between individuals are beneficial to the evolution of altruism,
5 has been shown to hold in a number of population structures (see e.g. Ohtsuki et al.,
6 2006; Taylor et al., 2007a; Lehmann et al., 2007; Allen et al., 2017). The rationale is that al-
7 truism is favored when altruists interact more with altruists than defectors do (Hamilton,
s 1975, p. 141; Fletcher & Doebeli, 2009), a condition that is met in viscous populations,
9 i.e., populations with limited dispersal.
10 Yet, living next to your kin also implies competing against them (West et al., 2002;
11 Platt & Bever, 2009), which is detrimental to the evolution of altruism. The evolution of
12 social traits hence depends on the balance between the positive effects of interactions
13 with related individuals and the detrimental consequences of kin competition. Under
14 specific conditions, the two effects can even compensate each other, thereby annihi-
15 lating the impact of population viscosity on the evolution of altruism. First identified
16 with computer simulations (Wilson et al., 1992), this cancellation result was analyzed
17 by Taylor (1992a) in a model with synchronous generations (i.e., Wright-Fisher model)
18 and a subdivided population of constant, infinite size. The cancellation result was later
19 extended to heterogeneous populations (Rodrigues & Gardner, 2012, with synchronous
20 generations and infinite population size), and other life cycles, with generic regular pop-
21 ulation structures (Taylor et al., 2011, with synchronous generations but also with con-
22 tinuous generations and Birth-Death updating). However, small changes in the model’s
23 assumptions, such as overlapping generations (Taylor & Irwin, 2000) or the presence of
24 empty sites (Alizon & Taylor, 2008) can tip the balance in the favor of altruism. This high
25 dependence on life cycle specificities highlights the difficulty of making general state-
26 ments about the role of spatial structure on the evolution of altruism.
27 Three different life cycles are classically used in studies on altruism in structured
28 populations: Wright-Fisher, where the whole population is renewed at each time step,
29 and two Moran life cycles (Birth-Death and Death-Birth), where a single individual dies
s0 and is replaced at each time step. We will consider the three of them in this study, be-
31 cause even though they differ by seemingly minor details, they are known to have very
s2 different outcomes in models with perfect parent-offspring transmission (e.g., Taylor,
33 1992a; Rousset, 2004; Ohtsuki et al., 2006; Lehmann et al., 2007; Taylor, 2010).
34 A large number of studies on the evolution of social behavior consider simple pop-
35 ulation structures (typically, homogeneous populations sensu Taylor et al. (2007a)) and
ss often also infinite population sizes (but see Allen et al., 2017, for results on any struc-
sz ture). These studies also make use of weak selection approximations, and commonly
s assume rare (e.g., Leturque & Rousset, 2002; Taylor et al., 2007b; Tarnita & Taylor, 2014;
ss Chen et al., 2019) or absent mutation (for models assuming infinite population sizes, or
40 models concentrating on fixation probabilities; see Lehmann & Rousset, 2014; Van Cleve,
41 2015, for recent reviews). These simplifying assumptions are often a necessary step to-
42 wards obtaining explicit analytical results. Simple population structures (e.g., regular
43 graphs, or subdivided populations with demes of equal sizes) help reduce the dimen-
44 sionality of the system under study, in particular when the structure of the population
4 displays symmetries such that all sites behave the same way in expectation. Weak se-
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4 lection approximations are crucial for disentangling spatial moments (Lion, 2016), that
47 is, changes in global vs. local frequencies (though they can in some cases be relaxed, as
4¢ in Mullon & Lehmann, 2014). Mutation, however, is usually ignored by classical models
49 of inclusive fitness because these models assume infinite population sizes, so that there
50 is no need to add mechanisms that restore genetic diversity (Tarnita & Taylor, 2014). In
st populations of finite size, this diversifying effect can be obtained thanks to mutation.

52 When strategy transmission is purely genetic, it makes sense to assume that muta-
53 tion is relatively infrequent. Even in this case, though, mutations from “social” to “non-
54 social” types cannot always be neglected. For instance, experiments with the bacteria
55 Pseudomonas fluorescens have identified transitions between populations dominated by
s6 the ancestral “solitary” Smooth Morph type and mat-forming “social” Wrinkly Spread-
57 ers, that can be re-invaded by Smooth Morphs not contributing to the formation of the
ss  mat (hence described as “cheaters”). The transitions between the different types are due
se to spontaneous mutations occurring over the timescale of the experiment (Hammer-
eo schmidt et al., 2014). In addition to genetic transmission, a social strategy can also be
st culturally transmitted from parent to offspring. In this case, “rebellion” (as in Frank’s Re-
62 bellious Child Model (Frank, 1997)), i.e., adopting a social strategy different from one’s
63 parents, does not have to be infrequent. Since it is known that imperfect strategy trans-
e« mission can alter the evolutionary dynamics of social traits, in particular in spatially
es structured populations (see e.g., Allen et al., 2012; Débarre, 2017, for graph-structured
66 populations), it is therefore important to understand the impact of imperfect strategy
67 transmission on the evolution of social behavior.

68 Here, we want to explore the consequences of imperfect strategy transmission from
s parents to their offspring on the evolution of altruistic behavior in subdivided popula-
70 tions!. The question was tackled by Frank (1997), but with a non “fully dynamic model”
7 (Frank, 1997, legend of Fig.7). Relatedness was treated like a parameter, which precluded
72 the exploration of the effects of population viscosity on the evolution altruism.

73 For each of the three life cycles that we consider, we compute the expected (i.e., long-
74 term) frequency of altruists maintained in a subdivided population, and investigate how
75 this frequency is affected by mutation and emigration. We find that, contrary to what
76 happens with perfect strategy transmission, higher emigration can increase the expected
77 frequency of altruists in the population.

;s Model and methods

79 Assumptions

so  We consider a population of total size N, subdivided into Np demes connected by dis-
81 persal, each deme hosting exactly n individuals (i.e., each deme contains 7 sites, each
s2 of which is occupied by exactly one individual; nNp = N). Each site has a unique label
83 1,1 <i< N. There are two types of individuals in the population, altruists and defec-
84 tors. The type of the individual living at site i (1 < i < N) is given by an indicator variable
85 X;, equal to 1 if the individual is an altruist, and to 0 if it is a defector. The state of the

INote that for the sake of concision, we use the word “mutation” throughout the paper, keeping in mind
that strategy transmission does not have to be genetic.
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ss entire population is given by a vector X = {X;},<;<n. For a given population state X, the
&7 proportion of altruists is X = Zﬁ\i , Xi/ N. All symbols are summarized in table Al.

88 Reproduction is asexual. The offspring of altruists are altruists themselves with prob-
ss ability 1 — 1o, and are defectors otherwise (0 < p1—.o < 1/2). Similarly, the offspring of
90 defectors are defectors with probability 1 — y—1, and are altruists otherwise (0 < po—1 <
ot 1/2). Our calculations will be simpler if we introduce the following change of parameters:

92

v=—™H=l  9g<v<1) and (1a)
Hi—0t Ho—1
H=p1—o+Ho—1 O<p=l). (1b)

9a The composite parameter v corresponds to the expected frequency of altruists in the

94+ population at the mutation-drift balance (i.e., in the absence of selection; see Appendix A

o5 for details). We call v the “mutation bias” parameter. Parameter p is the sum of the two

96 mutation probabilities. In the absence of selection, at the mutation-drift equilibrium,

o7 the correlation between offspring type and their parent’s type is 1 — i (see Appendix A for

98 details for the calculation). We call u the mutation intensity.

99 An individual of type X} expresses a social phenotype ¢ = § Xy, where 6 is assumed

100 tobesmall (§ « 1). This assumption of small phenotypic differences leads to weak selec-
101 tion. This type of weak selection is called “0-weak selection” in Wild & Traulsen (2007).
102 Social interactions take place within each deme; a focal individual interacts with its n—1
103 other deme-mates. We assume that social interactions affect individual fecundity; fj de-
104 notes the fecundity of the individual at site k (1 < k = N), which depends on deme com-
105 position. We denote by b the sum of the marginal effects of deme-mates’ phenotypes on
106 the fecundity of a focal individual, and by —c the marginal effect of a focal individual’s
107 phenotype on its own fecundity (c < b; see system (A22) for formal definitions).
108 Offspring remain in the parental deme with probability 1 — m and land on any site
109 of the parental deme with equal probability (including the very site of their parent).
110 With probability m, offspring emigrate to a different deme, chosen uniformly at random
111 among the Np — 1 other demes. Denoting by d; ; the probability of moving from site i to
12 site j, we have

2)
dout = = if they are in different demes,

J {din = 1_7'” if sites i and j are in the same deme;
ij=
(ND—I)H

13 withO<m<1- NLD This upper bound is here to ensure that within-deme relatedness R,
114 which will be defined later in the article, remains positive. When the emigration prob-
115 ability m is equal to the upper bound 1 — NLD, the population is effectively well-mixed
116 (din = dout)-

117 We denote by B; = B;(X,0) the expected number of successful offspring of the indi-
118 vidual living at site i (“successful” means alive at the next time step), and by D; = D; (X, §)
119 the probability that the individual living at site i dies. Both depend on the state of the
120 population X, but also on the way the population is updated from one time step to the
121 next, i.e.,, on the chosen life cycle (also called updating rule). Because this term appears
122 in our calculations, we also define

Wii=Q-wB;+1-D;. (3)
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123 This is a particular definition of fitness, where the number of offspring produced (B;) is
124 scaled by the parent-offspring type correlation (1 — ).

125 We will specifically explore three different life cycles. At the beginning of each step of
126 each life cycle, all individuals produce a large (effectively infinite) number of offspring,
127 in proportion to their fecundity; some of these offspring can be mutated. Then these
128 juveniles move, within the parental deme or outside of it, and land on a site. The next
129 events occurring during the time step depend on the life cycle:

130  Moran Birth-Death: One of the newly created juveniles is chosen at random; it kills the
131 adult who was living at the site, and replaces it; all other juveniles die.

132 Moran Death-Birth: One of the adults is chosen to die (uniformly at random among all
133 adults). It is replaced by one of the juveniles who had landed in its site. All other
134 juveniles die.

135 Wright-Fisher: All the adults die. At each site of the entire population, one of the juve-
136 niles that landed there is chosen and establishes at the site.

137 Previous studies have shown that, when social interactions affect fecundity, altruism is
138 disfavored under the Moran Birth-Death and Wright-Fisher life cycles, because the ex-
139 pected frequency of altruists under these life cycles is lower than what it would be in the
140 absence of selection (e.g., Taylor, 1992a, 2010; Taylor et al., 2011; Débarre, 2017). How-
141 ever, we are interested in the actual value of the expected proportion of altruists in the
142 population, not just whether it is higher or lower than the neutral expectation. This is
123 why we are still considering the Moran Birth-Death and Wright-Fisher life cycles in this
144 study.

145 Methods
126 Analytical part

147 The calculation steps to obtain the expected (i.e., long-term) proportion of altruists are
14s  given in Appendix B. They go as follows: first, we write an equation for the expected
149 frequency of altruists in the population at time ¢ + 1, conditional on the composition of
150 the population at time ¢; we then take the expectation of this quantity and consider large
151 times t. After this, we write a first-order expansion for phenotypic differences ¢ close to
152 0 (this corresponds to a weak selection approximation).

153 The formula involves quantities that can be identified as neutral probabilities of
154 identity by descent Q;;. These quantities correspond to the probability that individu-
155 als living at site i and j share a common ancestor and that no mutation occurred on
156 either lineage since that ancestor, in a model with no selection (6 = 0) and with mutation
157 intensity y; this is the “mutation definition” of identity by descent (Rousset & Billiard,
158 2000). In a subdivided population like the one we consider, there are only three possible
150 values of Q;;:

1 wheni=j,
Qij =4 Qin wheni# jand both sites are in the same deme, 4)

Qout when both sites are in different demes.
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160 These neutral probabilities of identity by descent depend on the chosen life cycle, and
161 are also computed by taking the long-term expectation of conditional expectations after
162 one time step (see Appendix C.1 and C.2 and supplementary Mathematica file (Wolfram
163 Research, Inc., 2017).)

164 Stochastic simulations

165 To check our results and also relax some key assumptions, we ran stochastic simula-
166 tions. The simulations were run for 10® generations (one generation is one time step for
167 the Wright-Fisher life cycle, and N time steps for the Moran life cycles). For each set of
168 parameters and life cycle, we estimated the long-term frequency of altruists by sampling
169 the population every 10® generations and computing the average frequency of altruists.
170 All scripts are available at

171 https://flodebarre.github.io/SocEvolSubdivPop/

72 Results

173 Expected frequencies of altruists for each life cycle

174 For each of the life cycles that we consider, the expected frequency of altruists in the
175 population, E[ X |, can be approximated as

— 0
[E[X] =vV+ ﬁ‘/(l = V)(1 = Qout) %

ow ow ow ow OW .\ Qin — Qout (5)
(o) + b+ b+n-1)—1(-c)+n-2) b) ]
af. Ofin  \0f. 0 fin 0fin ) 1= Qou
- B R

176 with W as defined in eq. (3). Calculations leading to eq. (5) are presented in Appendix B;
177 notations are recapitulated in table Al. In particular, B* is the expected number of off-
178 spring produced by an adult, in the absence of selection (when § = 0; B* =1 for the
179 Wright-Fisher life cycle and B* = 1/ N for the Moran life cycles). Subscript “e” denotes a
180 focal individual itself, and “in” a deme-mate. Partial derivatives are evaluated for 6 = 0.
181 The expected frequency of altruists in the population is approximated, under weak
182 selection (§ « 1), by the sum of what it would be in the absence of selection (Eg [Y] =,
183 first term in eq. (5)), plus a deviation from this value, scaled by §. The —C term cor-
184 responds to the effects of a change of a focal individual’s phenotype on its own fitness
185 (with the fitness definition given in eq. (3)). The 5 term corresponds to the sum of the ef-
186 fects of the change of deme-mates’ phenotypes on an individual’s fitness. It is multiplied
187 by R, which is relatedness.

188 The parametrization proposed in eq. (1) allows us to decouple the effects of the two
189 new mutation parameters, v and . The mutation bias v, which was defined in eq. (1a),
190 does not affect the sign of the second (“deviation”) term in eq. (5); it only appears in the
191 v(1 —v) product. The mutation intensity y, however, affects the values of W, Qj, and
192 Qout- The presence of u at the denominator in eq. (5) may look ominous; however, both
193 Rand (1 — Qoyg)/ i have a finite limit when p — 0.

194 The different terms depend on the chosen life cycle. We first focus on relatedness R.
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155 Relatedness R

196 Within-deme relatedness R depends on the number of individuals that are born at each
197 time step, and hence on the chosen life cycle. In a Moran life cycle (denoted by M), one
198 individual is updated at each time step, while under a Wright-Fisher life cycle (denoted
199 by WF), N individuals — the whole population — are updated at each time step. The for-
200 mulas for relatedness, RM and RWF, calculated for any number of demes Np and muta-
201 tion intensity , are presented in Appendix C.2 (eq. (A44) and eq. (A50)). When we let the
202 number of demes go to infinity (Np — oo) and the intensity of mutation be vanishingly
20 small (u — 0), we recover the classical formulas for relatedness as limit cases (eq. (A45)
204 and eq. (A51)).

205 The effects of emigration m and mutation intensity y on relatedness are represented
206 in figure 1. For 0 < m < 1-1/Np, within-deme relatedness is positive, and it decreases
207 with m and with p (the mutation bias v has no effect). The effect of the mutation inten-
208 sity p on relatedness is strongest at low emigration probabilities m. As m increases, the
200 relatedness values for different mutation intensities get closer, until they all hit zero for
210 m =1-1/Np (which is the upper bound for the emigration values that we consider, a
211 value such that there is no proper population subdivision anymore).

(a) Moran (b) Wight-Fisher
1.0 1.0
“ =
0.8 0.8 -=-0
e« o — 0,001
Dos6 os 0.01
c c — 0.1
© ©
0.25
(3] [J)
r_?' 0.4 E 0.4
(O] [0]
12 (04

o
N
o
N

0.0+ \ \ \ \ 0-‘1 \ \ \ T
00 02 04 06 08 00 02 04 06 08

Emigration probability m Emigration probability m

Figure 1: Within-deme relatedness of pairs of individuals R, as a function of the emigra-
tion probability m, for different values of the mutation probability ¢ (from 0 [blue] to 0.25
[orange]), and for the two types of life-cycles ((a): Moran, (b): Wright-Fisher). Other pa-
rameters: n =4 individuals per deme, Np = 15 demes.

212 Primary and secondary effects

213 We now turn to the B and —C terms of eq. (5), which also depend on the chosen life cycle.
212 We further decompose these terms into primary (subscript P) and secondary (subscript
215 S) effects (West & Gardner, 2010):

B= Bp + Bs,
-C= —Cp + —Cs. (6)
~—~ ——
Primary effect Secondary effect

216 Primary effects correspond to unmediated consequences of interactions (they are in-
217 cluded in %—‘}V). Secondary effects correspond to consequences of interactions mediated
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218 by other individuals, including competition.

219 Primary effects

220 Primary effects are the same for all the life cycles that we consider:

BEP =BPE =By = (1 - wb, (7a)
—CpP =—CpP=-Cp" =(1-p(-0), (7b)

221 and they do not depend on the emigration probability m (see Appendix B.2 for details of
222 the calculations).

223 As we have seen above, the relatedness terms R™ and R"! decrease with m (keeping
224 m < 1-1/Np; see figure 1). Consequently, if we ignored secondary effects, we would
225 conclude that the expected frequency of altruists in the population [E[Y] decreases as
226 the emigration probability m increases. However, secondary effects play a role as well.

227 Secondary effects

228 Secondary effects take competition into account, that is, how the change in the fecun-
229 dity of an individual affects the fitness of another one. As shown already in models with
230 nearly perfect strategy transmission (Grafen & Archetti, 2008), competition terms de-
231 pend on the chosen life cycle, because life cycle details affect the distance at which com-
232 petitive effects are felt. Given the way the model is formulated, —Cs = Bg/(n — 1) holds
233 for all the life cycles that we consider (see Appendix B.2 for details of the calculations).
234 Under the Moran Birth-Death life cycle, both the probability of reproducing and the
235 probability of dying depend on the composition of the population. We obtain the fol-
236 lowing secondary effects:

e 57, c)( “+1_m) (8a)
S Tn-1 N n )
237 The competitive effects are the same for the Moran Death-Birth and Wright-Fisher

238 life cycles. In both cases, the probabilities of dying are constant, so we can factor (1 — y)
239 in the equations:

BDB BWF (1- m)g mg
DB S WE S
— = = — = = — — 1- .
Cg — Cg =1 (b—¢)( ,u)( +N—n) (8b)
240 These secondary effects (eq. (8a) and eq. (8b)) remain negative for the range of emi-

241 gration values that we consider (0 < m < 1—1/Np), and increase with m. In other words,
242 the intensity of competition decreases as emigration m increases.

243 While the value of these secondary effects increases with emigration m, relatedness
244 R, by which they are eventually multiplied in eq. (5), decreases with m. We therefore can-
245 not determine the overall effect of emigration m on the expected frequency of altruists
246 in the population by inspecting the different terms of eq. (5) in isolation. For each life
247 cycle, we need to consider the entire equations to know the overall effect of the emigra-
248 tion probability m on the expected frequency of altruists [E[Y] and on how it is affected
249 by the (in)fideliy of parent-offspring transmission p.
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250 Changes of the expected frequency of altruists with the emigration probability
251 M

252 The rather lengthy formulas that we obtain are relegated to the Appendix and supple-
253 mentary Mathematica file, and we concentrate here on the results.

252 Moran Birth-Death

255 For the Moran Birth-Death life cycle, we find that the expected frequency of altruists
256 [E[Y] is a monotonic function of the emigration probability m. The direction of the
257 change depends on the value of the mutation probability ¢ compared to a threshold
253 value uBP. When p < uBP, E[X] decreases with m, while when p > 8P, E[X] increases
259 with m. The critical value 2P is given by

— — 2 —
HBD=1—b c+1/(b—c) (4bN? +b—c) o
¢ 2bN

260 (recall that N is the total size of the population, N = nNp.) This result is illustrated in
261 figure 2(b); with the parameters of the figure, u2P ~ 0.026. The threshold value increases
262 with both deme size n and number of demes Np, up to a maximum value 1 —v'1—-c/b
263 (equal to 0.034 with the parameters of figure 2(b).)

264 With this life cycle however, the expected frequency of altruists E[ X| remains lower
265 than v, its value in the absence of selection (i.e., when 6 = 0).

266 Moran Death-Birth

267 The relationship between [E[Y] and m is a bit more complicated for the Moran Death-
268 Birth life cycle. For simplicity, we concentrate on what happens starting from low emi-
269 gration probabilities (i.e., on the sign of the slope of [E[X] as afunction of m when m — 0).
270 If the benefits b provided by altruists are relatively low (b < c(n + 1)), E[X] initially in-
271 creases with m provided the mutation probability u is greater than a threshold value u2®
272 given in eq. (10) below; otherwise, when the benefits are high enough, [E[Y] initially in-
273 creases with m for any value of u. Combining these results, we write

(r+Dc—b ifb<c(n+1)
pe® =4 @2n—1b—(n-1)c ’ (10)

0 otherwise.

2742 When b < c(n+1), the mutation threshold does not depend on the number of demes Np,
275 but increases with deme size n. In figure 2(a), the parameters are such that 28 = 0.

276 When u > uDB, the expected frequency of altruists E[X| reaches a maximum at an
277 emigration probability mPB (whose complicated equation is given in the supplementary
27s Mathematica file), as can be seen in figure 2(a). When the mutation probability gets close
279 100 (u—0), m?B also gets close to 0.

280 With the Death-Birth life cycle, the expected frequency of altruists is higher than its
281 neutral value v for intermediate values of the emigration probability m (unless y — 0, in
282 which case the lower bound tends to 0).
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Figure 2: Expected proportion of altruists under weak selection, as a function of the em-
igration probability m, for different mutation values (u = 0.001 (blue, dots), 0.01 (purple,
squares), 0.1 (brown, diamonds), 0.25 (orange, triangles); the dashed blue lines corre-
spond to u =0) and different life-cycles ((a) Moran Death-Birth, (b) Moran Birth Death, (c)
Wright-Fisher). The curves are the analytical results, the points are the output of numer-
ical simulations. Parameters: § = 0.005, v =0.45, b =15, ¢ =1, n =4 individuals per deme,
Np =15 demes.

283 Wright-Fisher

28« Under a Wright-Fisher updating, the expected frequency of altruists in the population
285 reaches an extremum at the highest admissible emigration value m =1 - NLD This ex-
286 tremum is a maximum when the mutation probability is higher than a threshold value
287 U given by

pVF=1-/1-2, 11)
b
288 and it is a minimum otherwise. With the parameters of figure 2(c), y‘CNF =0.034.
289 With the Wright-Fisher life cycle however, the expected frequency of altruists re-

290 mains below its value in the absence of selection, v.

201 Relaxing key assumptions

202 To derive our analytical results, we had to make a number of simplifying assumptions,
203 such as the fact that selection is weak (§ <« 1), and the fact that the structure of the pop-
294 ulation is regular (all demes have the same size n). We checked with numerical simula-
205 tions the robustness of our results when these key assumptions are relaxed.

206 Strong selection When selection is strong, the patterns that we identified not only still
297 hold but are even more marked, as shown on figure Al.

208 Heterogeneity in deme sizes To relax the assumption of equal deme sizes, we ran-
200 domly drew deme sizes at the beginning of simulations, with sizes ranging from 2 to 6
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s0 individuals and on average 7 = 4 individuals per deme as previously. As shown in fig-
so1 ure A2, the patterns initially obtained with a homogeneous population structure are ro-
sc2 bust when the structure is heterogeneous.

sz No self-replacement For the Moran model, it may seem odd that an offspring can re-
so4+ place its own parent (which can occur since d;; # 0). Figure A3, plotted with disper-
sos sal probabilities preventing immediate replacement of one’s own parent (for all sites i,
306 dj; = dself =0; din = (1— m)/(n—1) for two different sites in the same deme, d,; remain-
307 ing unchanged), confirms that this does affect our conclusions.

ss Infinite number of demes Our results are obtained in a population of finite size (the
s09 figures are drawn with Np = 15 demes), but still hold when the size of the population is
s10 larger. Figure 3(b) shows the range of emigration and mutation values such that altruism
s11  is favored, plotted also for Np — co.

312 Same graphs for dispersal and social interactions Compared to graphs classically used
313 in evolutionary graph theory (e.g., regular random graphs, grids), the island model is par-
s14 ticular because the interaction graph and the dispersal graph are different: interactions
315 take place only within demes (eq,¢ = 0), while offspring can disperse out of their natal
st deme (doy > 0). One may wonder whether our result depends on this difference be-
317 tween the two graphs. Figure A4 shows that the result still holds when the dispersal and
s1s interaction graphs are the same. In this figure indeed, we let a proportion m (equal to
s19 the dispersal probability) of interactions occur outside of the deme where the individu-
s20 als live, and set dggjs, the probability of self replacement, equal to 0, so that the dispersal
s21  and interactions graphs are the same. Our conclusions remain unchanged.

2 Discussion

223 The expected frequency of altruists in a subdivided population can increase
224 with the probability of emigration

s2s  Assuming that the transmission of a social strategy (being an altruist or a defector) from a
326 parent to its offspring could be imperfect, we found that the expected frequency of altru-
s27  ists maintained in a population could increase with the probability m of emigration out
s2s  of the parental deme, a parameter tuning population viscosity. This result can seem sur-
s29 prising, because it contradicts the conclusions obtained under the assumption of nearly
s30 perfect strategy transmission (i.e., in the case of genetic transmission, when mutation is
s31  very weak or absent). Under nearly perfect strategy transmission indeed, increased pop-
sz ulation viscosity (i.e., decreased emigration probability) is either neutral (Taylor, 1992a,
sss  and dashed lines in figures 2(b)-(c)) or favorable (Taylor et al., 2007a, and dashed lines
s+ in figure 2(a)) to the evolution of altruistic behavior.

335 Quantitative vs. qualitative measures

sss  Often, evolutionary success is measured qualitatively, by comparing a quantity (an ex-
s7  pected frequency, or, in models with no mutation, a probability of fixation) to the value
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sss it would have in the absence of selection. In our model, this amounts to saying that
339  altruism is favored whenever E[X| > v (v is plotted as a horizontal dashed line in fig-
s40 ure 2). Some of our conclusions change if we use this qualitative measure of evolution-
s41  ary success: Under the Moran Birth-Death and Wright-Fisher life cycles, population vis-
s42 cosity does not promote the evolution of altruism - actually, these two life cycles can-
s43 not ever promote altruistic behavior for any regular population structure (Taylor et al.,
a4+ 2011), whichever the probability of mutation (Débarre, 2017). However, under a Moran
a5 Death-Birth life cycle (figure 2(a)), altruism can be favored only at intermediate emi-
s4s gration probabilities. Starting for initially low values of m, increasing the emigration
a7 probability can still favor the evolution of altruism under this qualitative criterion (see
s4s figure 3(b).)

s Interpreting the effect of m on E[X|

ss0 To better understand the role played by the mutation intensity i, we focus on the qual-
s itative condition for the evolution of altruism (E[X] > v); and on the Death-Birth life
32 cycle, since this qualitative condition is not satisfied in the two other life cycles. Having
53 made sure that BPB > 0 (as shown in the supplementary Mathematical file), the qualita-
ss4 tive condition for altruism to be favored is given by

DB

= C
[E[X]>V<:>RM>W.

(12)
5 With the Death-Birth life cycle, the CP8/BPB ratio does not change with the mutation
36 probability p (the (1 — p) factors simplified out), but the ratio decreases with the emi-
357 gration probability m (with 0 < m < 1 —1/Np; see the thick black curve in figure 3(a)).
sss  This decrease of the CPB/BPB ratio is due to secondary effects (competition) diminish-
359 ing as emigration increases. Relatedness, on the other hand, decreases with both y and
se0 m (see figure 3(a)). We need to explain the effect of the emigration probability m on
sst condition (12) for different values of mutation intensity p.

362 When the emigration probability m is high, relatedness gets closer to zero for all val-
s ues of mutation intensity y, while the CP8/BPB remains positive; condition (12) is not
se4 satisfied. On the other hand, when the emigration probability m is vanishingly small,
365 lim,,_g RM < lim,;, ¢ %, the two only being equal when p = 0. Hence, condition (12)
se6 is satisfied for vanishingly low m only when strategy transmission is perfect. Finally, as
s7 m increases to intermediate values, the g—iz ratio decreases with a steeper slope than
ses relatedness R, so that the curves can cross provided the mutation probability p is not
39 too high, i.e, that R was not initially too low already. Hence, for no too high mutation
s70  intensity, there is a range of emigration values m such that condition (12) is satisfied.

srn The result is due to secondary effects

a2 The result, that frequency of altruists can increase with the emigration probability m,
s7s  may seem counterintuitive. It is the case because verbal explanations for the evolution
s74 of altruism often rely on primary effects only. Relatedness R decreases with m, so it may
a5 be tempting to conclude that increases in the emigration probability m are necessarily
s7e  detrimental to the evolution of altruism. However, secondary effects play an opposite
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Figure 3: Understanding the effect of emigration m on whether altruism is favored in the
Death-Birth life-cycle. (a) Comparison of the C/B ratio (thick black curve) and relatedness
R (thin curves) for different values of the mutation probability u (same color code as previ-
ously). (b) (m, u) combinations for which E[X] >v. The dotted horizontal lines correspond
to the mutation values used in panel (a). Unless specified, all other parameters are the
same as in figure 2.

s77  role, as competition decreases with m, and the effect is strongest at low values of m (see
s7ze  the black curve on figure 3(a); in the absence of secondary effects, it would just be a
379 horizontal line).

380 Secondary effects are less straightforward to understand than primary effects, and
ss1 yet they play a crucial role for social evolution in spatially structured populations. Com-
ss2 petition among relatives is for instance the reason for Taylor (1992b)’s cancellation result.
sss  Similarly, the qualitative differences between the Moran Birth-Death and Moran Death-
ss+ Birth life cycles is explained by the different scales of competition that the two life cycle
sss  produce (Grafen & Archetti, 2008; Débarre et al., 2014). Secondary effects are also behind
sss the evolution of social behaviors such as spite (West & Gardner, 2010).

ss7  How small is small and how large is large?

sss  Ourresults were derived under the assumption of weak selection, assuming that the phe-
sse notypic difference between altruists and defectors is small (6 < 1). We considered any
se0 fidelity of transmission (any p between 0 and 1) and population size. However, most
se1  models considering subdivided populations assume nearly perfect strategy transmis-
se2 sion (u — 0) and infinite population sizes (number of demes Np — oo). The point is
ses  technical, but it is important to know that the order in which these limits are taken mat-
se4 ters, i.e., one needs to specify how small g and  are compared to the inverse size of
se5s the population 1/N. This is in particular the case for the probability of identity by de-
ses scent of two individuals in different demes, Qqy¢: if we first take the small mutation limit,
a7 limy—.0 Qout = 0, while if we first take the large population limit, limy_—c, Qout = 1 (see
ses  Appendix C.2 for details). This remark complements findings by Sample & Allen (2017),
se9  who highlighted the quantitative differences between different orders of weak selection
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a0 and large population limits.

st Imperfect transmission and Rebellious Children

a2 Our model bears resemblance to the Rebellious Child Model by Frank (1997), who stud-
a3 ied the evolution of a vertically transmitted cultural trait in an asexually reproducing
a0+ population. In Frank’s model, however, relatedness r is treated as a fixed parameter
a5 (Frank, 1997, legend of Figure 7). Our model is mechanistic; relatedness r necessarily
a6 depends on the mutation probability i, because probabilities of identity by descent do.

407 Mutation was also previously included in models investigating the maintenance of
a8 cooperative microorganisms in the presence of cheaters (Brockhurst et al., 2007; Frank,
s09  2010). In both of these models however, only loss-of-function mutation was considered,
410 which corresponds to setting the mutation bias at v = 0 in our model. This means that
411 the all-cheaters state is absorbing; no matter how favored cooperators may otherwise be,
412 in the long run, a finite population will only consist of cheaters.

413 Cultural transmission

#14  Strategy transmission does not have to be genetic: it can be cultural. In our model, strat-
415 egy transmission occurs upon reproduction, so this is a case of vertical cultural trans-
416 Mmission.

417 The model could nevertheless be interpreted as a representation of horizontal trans-
s1s  mission, if we described reproduction as an instance of an individual convincing another
#19 one to update its strategy. The Moran Death-Birth model can be interpreted as a modi-
s20 fied imitation scheme (Boyd & Richerson, 2002; Ohtsuki et al., 2006; Traulsen et al., 2009)
a1 — with a specific function specifying who is imitated —, with mutation (Kandori et al.,
422 1993), or as a voter model (Schneider et al., 2016). First, we choose uniformly at random
s2s an individual who may change its strategy; with probability u the individual chooses a
422 random strategy (altruistic with probability v), and with probability 1 — u it imitates an-
425 other individual. Who is imitated depends on the distance to the focal individual (with
426 probability m it is a random individual in another deme) and on the “fecundities” of
427 those individuals (as shown in table A2). With this interpretation of the updating rule
a8 however, there is not reproduction nor death anymore.

429 It remains to be investigated how imperfect strategy transmission would affect the
a0 effect of population viscosity on the evolution of altruism in a model implementing both
a3t reproduction and horizontal cultural transmission (as in Lehmann et al., 2008). Such a
a2 model could then contrast the effects of impecfect genetic transmission and imperfect
a33  horizontal cultural transmission.

s34 Coevolution of dispersal and social behavior

a5 This work also raises the question of what would happen if dispersal (e.g., the emigra-
a36 tion probability m) could evolve as well. Recent work on the topic has shown that un-
s37 der some conditions disruptive selection could take place, leading to a polymorphism
438 between sessile altruists and mobile defectors (Parvinen, 2013; Mullon et al., 2017)—
s3e  though more complex coevolutionary patterns can be obtained when considering the
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a0 coevolution of altruism and mobility instead of natal dispersal, and unsaturated popu-
441 lations (Le Galliard et al., 2005). The assumptions of these studies however differ from
a2 ours in important ways, in that they consider continuous traits and use an adaptive dy-
43 namics framework, where, notably, mutations are assumed to be very rare. It remains to
a4 be investigated how non-rare and potentially large mutations would affect their result.
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Figure 1: Within-deme relatedness of pairs of individuals R, as a function of the emigra-
tion probability m, for different values of the mutation probability u (from 0 [blue] to 0.25
[orange]), and for the two types of life-cycles ((a): Moran, (b): Wright-Fisher). Other pa-
rameters: n =4 individuals per deme, Np = 15 demes.
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Figure 2: Expected proportion of altruists under weak selection, as a function of the em-
igration probability m, for different mutation values (u = 0.001 (blue, dots), 0.01 (purple,
squares), 0.1 (brown, diamonds), 0.25 (orange, triangles); the dashed blue lines corre-
spond to u =0) and different life-cycles ((a) Moran Death-Birth, (b) Moran Birth Death, (c)
Wright-Fisher). The curves are the analytical results, the points are the output of numer-
ical simulations. Parameters: § = 0.005, v =0.45, b =15, ¢ =1, n =4 individuals per deme,

Np =15 demes.
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Figure 3: Understanding the effect of emigration m on whether altruism is favored in the
Death-Birth life-cycle. (a) Comparison of the C/B ratio (thick black curve) and relatedness
R (thin curves) for different values of the mutation probability u (same color code as previ-
ously). (b) (m, u) combinations for which E[X] > v. The dotted horizontal lines correspond

to the mutation values used in panel (a).

same as in figure 2.
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Figure A1: Equivalent of figure 2 (simulations only) but with strong selection (6§ = 0.1);
please note the change of scale on the vertical axis. All other parameters and legends
are identical to those of figure 2 (increasing mutation probabilities from blue dots to orange
triangles).
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Figure A2: Equivalent of figure 2 (simulations only) but with a heterogeneous population
structure: deme sizes range from 1 to 5 individuals per deme, the average deme size is 4
as in figure 2; all other parameters and legend are identical to those of figure 2.
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Figure A3: Equivalent of figure 2 (analysis only), with no self-replacement (d;; = dgeif = 0
for all sites).
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Figure A4: Equivalent of figure 2 (analysis only), with equal dispersal and interaction
graphs (i.e., no self-replacement [d;; = dsir = 0 for all sites], and a proportion m of the
interactions occurring outside of the home deme).
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s Supplementary Table

b Sum of the marginal effects of deme-mates’ phenotypes on focal individual’s fecundity (benefit)
B Sum of the marginal effects of deme-mates’ phenotypes on the fitness W of a focal individual
B;  Expected number of successful offspring of the individual living at site i (1.v.)
B*  Value of B; for all sites, in the absence of selection (6 = 0)

¢ Marginal effect of a focal individual’s phenotype on its own fecundity (cost)

C  Marginal effect of an individual’s phenotype on its own fitness W
dij  Dispersal probability from site i to site j

D; Probability that the individual currently living at site i is dead at the end of the time step (r.v.)
e;j Interaction probability from site i to site j

fi  Fecundity of the individual currently living at site i (r.v.)

n  Deme size
Np Number of demes

N  Total population size (N = Npn)

m  Emigration probability
P;; (Long-term) Expected state of the pair of sites (i, j)
Q;; (Long-term) Probability of identity by descent of individuals at sites i and j

R  Pairwise within-deme relatedness (see eq. (5))

W;  Measure of fitness, counting offspring only when unmutated (see eq. (3))

X; Indicator variable, equal to 1 if site i is occupied by an altruist, to 0 otherwise (r.v.)
Frequency of altruists in the population (r.v.)
Phenotypic distance between altruists and defectors; strength of selection
Phenotype of the individual living at site i; ¢p; = 6 X; (1.v.)
Mutation probability
Mutation bias: probability that mutant is altruist

> |

&

Subscript corresponding to primary effects
Subscript corresponding to secondary effects

e  Subscript used to denote a focal individual

in  Subscript used when i # j and the two sites are in the same deme
out Subscript used when the two sites i and j are in different demes
self Subscript used when i = j

0  Sub- or superscript meaning that a quantity is evaluated at § = 0

» YT

BD Superscript corresponding to the Moran Birth-Death model
DB  Superscript corresponding to the Moran Death-Birth model
M  Superscript corresponding to a Moran model

WF  Superscript corresponding to the Wright-Fisher model

Table A1: List of symbols. “r.v.” means random variable.
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g7 Appendix

sss. A Mutation parameters

559 In the main text, we first introduce effective mutation parameters: y;_q, the probabil-
se0 ity that an altruist has defector offspring, and po—.1, the probability that a defector has
se1  altruist offspring.

s2 A.1 Expected frequency of altruists at the mutation-drift balance

ses  We assume that there is no selection acting (6 = 0), but that there still are two types of
se4 individuals in the population.

ses Let Y be the type of a randomly chosen individual (Y =1 if the individual is an altruist
ses and Y = 0 if it is a defector) in the population, given a proportion y of altruists in the
se7  population. In expectation, we have

E[Y]=y. (Ala)

ses Let Y’/ be the type of a randomly chosen individual at the next time step, given the fre-
se9 quency y at the previous time step. This randomly chosen individual is altruist if its par-
570 ent was (which happens with probability y) and it did not mutate (probability 1 — p;_.¢),
s71  or if its parent was not altruist (probability 1 — y), but the offspring mutated into one
572 (probability po—1). We obtain

E[Y'] =y - pi—0) + (1 — y)plo—1. (Alb)

573 The expected frequency of altruists at the mutation-drift balance, denoted by v, is found
s74 by solving E[ Y] = E[Y']. We obtain

Ho—1

= (A2)
Hi1—0t Ho—1

s A.2 Parent-offspring correlation at the mutation drift balance

576 We can then compute the parent-offspring type correlation at the mutation-drift bal-
577 ance. First, let us compute the parent-offspring covariance:

Cov[YY'| =E[YY'| —-E[Y']E[Y]
=v(1 - p1-0) = (V(L = p1—0) + (L =V)pho—1) v (A3)
=v(1-v)(1 - pg1—0— Ho—1)-

578 Remember that Y and Y’ are indicator variables and therefore take value in {0, 1}, so
s79  that Y2 =Y (likewise for Y’). Then, the standard deviations are given by
2 2
oy = \E[v2] -E[Y]? = \JE[Y] ~E[Y] "

=vv(l-v),
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ss0  and

oy = \JE[Y2] —E[Y']? = \[E[Y'] ~E[Y"]?

(A5)
= VA=)~ 110 — o) — V(L = V) (1~ 11—~ Ho-1)?.
581 Finally, the parent-offspring correlation is given by
Cov|YY’
Corr[YY'] = L;
OyOy/

sz using the formulas eq. (A3)-(A5), and replacing v by its value (mutation-drift equilib-
583 rium, eq. (A2)), we obtain

Corr[YY']| =1— (1—o+ fo—1) =1 — . (A6)

s« A.3 Redefining the mutation scheme

sss With the new mutation parameters ¢ and v, we can describe the mutation scheme dif-
ses  ferently.

587 If we denote by X; the type of a given parent, then the expected type of one of its
sse  offspring is

E[XI1X:] = X; (1~ p1—0) + (1= Xj) pro—1 (A7a)
=X;(1— (U1—0 + Ho—1)) + Ho—1-

sss  Replacing p;_.¢ and po—1 by equivalent combinations of p and v as defined in eq. (A6)
se0 and eq. (A2), i.e.,
Ui—o=p(—v)and po_1 = pv, (A7b)

so1  then eq. (A7a) becomes
E[X]I1Xi] = X;(1— w) + pv. (A7¢)

se2  We can redefine the mutation scheme and interpret eq. (A7c) as follows. Parents transmit
se3  their strategy to their offspring with probability 1 — y; with probability u, offspring do not
se« inherit their strategy from their parent but instead get one randomly: with probability v,
se5 they become altruists, with probability 1 —v they become defectors. With this alternative
se6 description, we can call “mutants” individuals who have the same type as their parent.
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v B Expected frequency of altruists

ss B.1 For a generic life cycle

se9 We want to compute the expected proportion of altruists in the population. We represent
soo the state of the population at a given time ¢ using indicator variables X;(f), 1 <i < N,
sot equal to 1 if the individual living at site i at time ¢ is an altruist, and equal to 0 if it is
sz a defector; these indicator variables are gathered in a N-long vector X(#). The set of all
s0s possible population states is Q = {0,1}V. The proportion of altruists in the population is
s0+ written X(¢) = 1/NY Y, X;(¢). We denote by B;;(X(1),8), written Bj; for simplicity, the
eos probability that the individual at site j at time ¢+ 1 is the newly established offspring
sos of the individual living at site i at time ¢. The expected number of successful offspring
eo7 produced by the individual living at site i at time ¢ is given by B; = Zﬁ.\’: 1 Bji. We denote
sos by D;(X(?),6) (D; for simplicity) the probability that the individual living at site i at time
sos ¢ has been replaced (i.e., died) at time ¢ + 1. These quantities depend on the chosen life
s10 cycle and on the state of the population; they are given in table A2 for each of the life
611 cycles that we consider.

life cycle Bj; D;
Moran Birth-Death  d;; Nfl ! 1\} I
ZkZl fk Zk:l fk
Moran Death-Birth —Nl+fl —
Ny dijfe N
Wright-Fisher -~ i1/ 1
L= dkj i

Table A2: Formulas of B;; and D; for each of the life cycles that we consider; f; (shorthand
notation for f;(X,0)) is the fecundity of the individual living at site i, and dj; is a dispersal
probability, given in eq. (2) in the main text.

612 Since a dead individual is immediately replaced by one new individual (i.e., popula-
613 tion size remains constant and equal to N),

N
Di = Z Bl] (A8a)
j=1

s14 holds for all sites i and all life cycles.
615 The structure of the population is also such that in the absence of selection (6 = 0, so
s16 that f; = 1 for all sites 1 =i < N), all individuals have the same probability of dying and
617 the same probability of having successful offspring (i.e., of having offspring that become
e1s adults at the next time step), so that

N

0 _ 0 _ p0_. p*

Di_leﬁ_Bi =:B*, (A8b)
]:
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s1o  where the © subscript means that the quantities are evaluated for § = 0. This also implies
620 that B?. and D? do not depend on the state X of the population. For the Moran life cy-
621 cles, B* = 1/N, while for the Wright-Fisher life cycle, B* = 1. (The difference between
622 €. (A8b) and eq. (A8a) is that we are now considering offspring produced by i landing
623 ON j).

624 Given that the population is in state X(#) at time ¢, the expected frequency of altruists
625 attime ¢+ 1 is given by

— 1 X
E[X(r+DIX(0)] = N Y [Bil-wX;+(1-Dy)X; +B;iuv]. (A9a)
i=1

s26 The first term within the brackets corresponds to births of unmutated offspring from
627 parents who are altruists (X;). The second term corresponds to the survival of altruists.
s2s The third term corresponds to the births of mutants who became altruists (which occurs
629 with probability v), whichever the type of the parent.

630 A lost strategy can always be created again by mutation, so there is no absorbing
e3t population state. There exists a stationary distribution of population states (Theorem 1
es2 in Allen & Tarnita (2014)). In other words, for large times ¢, the expected frequency of
eas altruists does not change anymore (of course, realized frequencies keep changing over
e« time). We denote by ¢(X,6, ) the probability that the population is in state X, given
e35 the strength of selection 6 and the mutation probability u. Taking the expectation of
636 €eq. (A9a) (E [Y] =Y xeq XEX, 6, 1)), we obtain, after reorganizing:

N N
=y Z (Bi(l=mX; = DiX;)+ ) Bipv | §(X, 6, ). (A10)
XeQ |i= i=1
637 Now, we use the assumption of weak selection (§ < 1) and consider the first-order
sss expansion of eq. (A10) for & close to 0.
1 N N
0= — Y | Y (BYa-wX;-DVX;)+ Z Juv| EX,0, 1)
N XeQ |i=1 i=1
0 N (0B;(1-p) - N
+— _ X,0, All
N & ,:ZI( a6 ) §aa“V $X.0.0) (ALD)
0 N N 0¢(X, 0,
+— Y (B0 -wX; - DVX;)+ Z y| EEOH 0(6%),
N xzo |i=1 io1 00

s3o  where all the derivatives are evaluated for § = 0. The first line of eq. (A11) is equal to
e40 Zero, because B? — D(l.) =0 (eq. (A8b)), and because in the absence of selection (§ = 0),
e41 the expected state of every site i is [EO[Xi] =) xeq Xi¢(X,0,) = v (by definition of v,
ss2 see Appendix A.1). The second term of the second line is zero, because for all the life
e43 cycles that we consider, the total number of births in the population during one time
644 Step (Zf.\i , Bi) does not depend on population phenotypic composition (it is exactly 1
e45s death for the Moran life cycles, and exactly N for the Wright-Fisher life cycle); since it is
sss @ constant, its derivative is 0. The third line simplifies by noting again that B) = D? (first
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e47 term), and that ) xe¢q % =0 since ¢ is a probability distribution (so the second term

e4s is zero). Eq. (A11) then becomes

)3

XeQ

+0(6%), (A12)

%L

9B; 0¢
1- Xi¢(X,0, B*X;—

sa0 where the derivatives are evaluated at 6 = 0. For conciseness, we define
Wi=Q1Q-wB;+(1-D;), (Al13)

eso @ measure of fitness counting offspring only when they are unmutated (in the sense of
est the alternate mutation scheme described in Appendix A.3). With this, using the expec-
es2 tation notation, and denoting by Eo || expectations under § = 0, we can rewrite and reor-
653 ganize eq. (Al12) as

OE[X] o6 XN aw
SuB* [ =N Z —X;]+0(6%). (A14)
es+  Now, we use a first time the law of total probabilities, taking individual phenotypes ¢y
ess are intermediate variables:

ow; _ Z OW; 0
a6 “ Oy 06
_y Wi X, (A15)
=1 0Pk

ess by definition of ¢ (pr = dXy), and where the derivatives are evaluated for all ¢; = 0,
657 1 < i < N. Introducing the notation P;; = [Eg [XiX j] (expected state of a pair of sites),
68 €q. (Al4) becomes

OE[X] o6 X N ow; )
SuB* —— = — +0(6 (A16)
06 Ni;kzla(pk ik +0(07).

sss  We note that P;; = Eo[ X; X;| = Eo[X;] = v (X; being an indicator variable, it is either equal
0 toOorl, so Xl.2 = X;). Given that the size of the population is fixed (Zﬁ.\il(Bi —D;) =0),
es1 and given that the total number of births does not depend on population composition
es2 in the life cycles that we consider, we have

N oaw;
00

=0. (Al7a)

i=

ess Using the decomposition in eq. (A15), which is valid for any population composition,
ee+ and so in particular for X =1, eq. (A17a) becomes

OW,

=0. (A17b)
o

$=0

ee5s S0 far, we have not used the specificities of the population structure that we consider.
ees First, the population is homogeneous (sensu Taylor et al., 2007a). Because this popula-
e67 tion homogeneity, eq. (A17b) is valid for all i (not just their sum). Secondly, we are con-
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ees sidering an island model. Once we have fixed a focal individual i, in expectation there
ee9 are only three types of individuals: the focal itself (denoted by “¢”), n — 1 other individu-
670 als in the focal’s deme (denoted by “in”), and N — n individuals in other demes (denoted
671 by “out”). With these considerations, eq. (A17b) becomes
Wi -1y (v -y Wi
6¢i aQbin a(pout
672 (as previously shown by (Rousset & Billiard, 2000, p.817-818)). Using this island model-
673 specific notation, eq. (A16) becomes

=0. (Al7¢)

LOE[X] 6 X ow; ow;
5 5 ( -1)——Pin+(N-n)—-P, )+o 52
H Z a(,bl a(,bin a(pout out ( )
67+ Injecting eq. (A17c¢) into eq. (A16), we obtain
a[E[? am O0W; Pin— Pout
SuB* = ( n-1) —)(P-~—P )+ 0(6%). (A18)
K Z 0<Pz a(/)in Pii - Pout " out ( )

675 We can also replace the P terms as follows:

Pjj =Q2ijV+(1—Qij)V2 (A19)

=v +v(1-v)Q;j.
76 In Appendix C.1, using recursions on P;j, we will see that Q;; can be interpreted as a
677 probability of identity by descent, i.e., the probability that the individuals at sites i and j
678 have a common ancestor and that no mutation (using the alternative mutation scheme
e7o described in Appendix A.3) has occurred on either lineage since the ancestor. Replacing
eso the P terms with eq. (A19), and noting that Q;; = 1, eq. (A18) becomes

OE[X 0 VV; an Qout 2
SuB* = ) (1-Qou)v(1=v)+0(6°). (A20)
g Z " 3m 1 Qo )2 ")
—C B R
681 We can further decompose the derivatives, now using the fecundities f, as interme-

es2 diate variables, i.e.,
ow; X ow; af,

Opr /=4 0fe 0y’

(A21)

683 The term 3 I g the marginal effect of a change in the phenotype of the individual
es4 living at site k on the fecundity of the individual living at site ¢. By assumption, social
es5 interactions take place within demes only, so whenever sites ¢ and k are in different
ess demes, we have gf’ = aaf £ = 0. We then need to characterize the effect of one’s own

es7 phenotype (i.e., k =¥¢) and of another deme-mate’s phenotype (k and ¢ being different
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ess  sites in the same deme) on fecundity. For this, we define b and c so that:

0

i =-c, (A22a)
Ocpy =0

ofe | __ b (A22D)
0binls=o n-1

ess Eq. (A20) then becomes (using notation e to refer to the focal individual itself, and where
e90 W = W;, since the derivatives are the same for all 7):

< OF[X]
6uB T =6v(1=v)(1 = Qout) ¥
ow ow ow ow OW \ Qin — Qout 2
(o) + b+ b+((n-1) (—a)+(n-2) b) )+O(5 .
‘6f. OfinJ k@f. 0fin 0 fin Al_QoutJ )
- B R
(A23)
eo1  (As previously, all derivatives are evaluated at 6 =0.)
692 Finally, we write a first-order approximation of the expected frequency of altruists in
se3 the population:
— —. . OE[X
[E[X]:[Eo[X]+5a[—5] +0(6%). (A24)
5=0

e« The first term, Eq [Y], is the expected frequency in the absence of selection; it is equal

OE| X
ee5s to v (as introduced in eq. (A2)). The derivative a[a ] ‘ is obtained from eq. (A23). We

6=0
sss then need to replace the B; and D; terms by their formulas for each life cycle; they are
se7 given in table A2. This is how the expected frequency of altruists in the population is
ses approximated.

s9 B.2 Derivatives for the specific life cycles

700 We use the formulas presented in table A2 and the definition of W = W; given in eq. (A13)
1 for each life cycle. In eq. (A26), eq. (A28) and eq. (A30), the first lines within parentheses
702 correspond to primary effects, and the second line to secondary effects.

7!

o

703 Moran Birth-Death Under this life cycle, we obtain

owBD 1 1 1-m 1 -4 u 1-m

Y "”(ﬁ‘ﬁ)‘( N ‘ﬁ)‘T*ﬁ‘—N' (hz5a)
dWBD - )(_i)_(l—m_ 1 )_ u l1-m (A25b)
ofim loeo — FUNZ) T\ TN TNZ) TN TN
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704 With these derivatives, eq. (5) becomes

E[X]=v+ %V(l —v)(1- QM) x

1-w(=c) A-mwb QM- N, (A26)
+(b_c)(ﬂ_1‘_’”) * +(b—c)(n—1)(ﬂ—1_—m) 1- QM ]
A Jy n /| . N n N——

_cBD BBD R

705 In addition, for both Moran life cycles, we have B;/I = 1/N. The secondary effects (sec-
706 ond line in the parentheses in eq. (A26)) include competitive effects on the probability
707 of reproducing, and consequences of social interactions on the probability that a given
70s individual dies. Note that the secondary effects remain negative for the realistic range of
709 emigration values that we consider (i.e., m <1—1/Np).

710 Moran Death-Birth Under this life cycle, we obtain

owPbB 1-pu ((1—m)2 m? )
=—|1- + , (A27a)
0fe ls=g N n N-n
DB _ _ 2 2
oW __1 “((1 my . _m ) (A27b)
O0fin ls=o N n N-n
711 With the Death-Birth life cycle, eq. (5) becomes
_ 5 M
E[X]~v+ ﬁv(l =) (1 — Qgup) X
1-w(=9) (1-wb QM- M,
[ a-m? , m* )|t (1-m? | m? m—],
~b-a - (2 4 ) T b -0 -1 -y (S ) 1-0Y,
,[;'DB B;B };g/[
(A28)

712 With this life cycle, Death occurs first, and the probability of dying is independent from
713 the state of the population (since we assume that social interactions affect fecundity. We
714 can therefore factor (1—p) in all terms. The primary effects (first lines in the parentheses)
715 remain the same as with the Birth-Death life cycle. However, the Death-Birth life cycle
716 leads to different secondary effects compared to the Birth-Death life cycle: competition
717 occurs at a different scale (Grafen & Archetti, 2008). Finally, with this life cycle as we
71s  defined it, the probabilities of identity by descent Q are the same as with the Birth-Death
719 model.

720 Wright-Fisher Under this life cycle, we obtain

LA 1—((1_m)2+ m ) (A292)
6f. 5:0_ ¢ N-n ’

oW —_a- )((l_m)2+ m’ ) (A29b)
Ofin lpeo 1 N-n)
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721 For the Wright-Fisher life cycle, we have By, = 1. Replacing the derivatives presented in
722 eq. (A29) into eq. (5), we obtain

E[X] zv+%vu—v)(1—03‘(£>x

[ 1 -p(=c) . 1-wb QYF — Uit ]
—b-a - (S 4 )T b- - D - (S22 ) T QuE [
—cw B RWF
(A30)

72z The only — but important - difference between eq. (A30) and eq. (A28) is the value of
72« the probabilities of identity by descent Q, because the number of individuals that are
725 updated at each time step differs.
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2zs C Probabilities of identity by descent

727 C.1 Expected state of pairs of sites and probabilities of identity by descent

728 Here we show the link between the expected state of a pair of sites P;; and probabilities
720 of identity by descent Q; ;. In our derivation of E[ X ], P;; is the quantity that appears, but
730 most studies use Q; ;. Both are evaluated in the absence of selection (6 = 0).

731 C.1.1 Moran model

72 These calculations apply to both the Death-Birth and Birth-Death updating rules.

733 In a Moran model, exactly one individual dies and one individual reproduces during one
734 time step. Given a state X at time ¢, at time ¢+ 1 both sites i and j # i are occupied by
735 altruists, if i) it was the case at time ¢ and neither site was replaced by a non-altruist (first
736 term in eq. (A31)), or ii) if exactly one of the two sites was occupied by a non-altruist at
737 time ¢, but the site was replaced by an altruist (second and third terms of eq. (A31)):

N

1
E[X: X;(t+DIX(0)=X] =X; X;|1- ) ~ (dii +dij) (A= X (1 = ) +p(1 - )
k=1
N1
+Xi(1-X)) ) Ndkj (Xe(1— )+ pv) (A31)
k=1

N
1
XG0 =X ) i (Xe(l =)+ pv).
k=1

738 We take the expectation of this quantity, and consider that the stationary distribution
739 is reached (¢ — co); then E[X; X;(t+1)] = E[X; X;(?)], and we obtain after a few lines of
740 algebra:

Pijz

DN | =

N
> () (dijPri + diiPej) |+ v G # ), (A32)
k=1

741 while P;; = v.
742 Now we substitute P;; = v*+v(1 —v)Q;; in eq. (A32), we obtain

1 N
Qij= 5};1(1—#) (dkiQxj + dijQxi), (A33)

743 and we realize that Q;; is the probability that the individuals at sites i and j # i are iden-
744 tical by descent (e.g., Taylor et al. (2011), equation above (S1.11); Allen & Nowak (2014)
75 eq. (4)). To compute it indeed, we need to pick which site was last updated (i or j with
746 equal probabilities: 1/2), then sum over the possible parent (k); the other individual
747 needs to be identical by descent to the parent (Q;, Qk;), disperse to the considered site
728 (dy;, di i) and no mutation should have occurred (1 — y).
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C.1.2 Wright-Fisher model

In a Wright-Fisher model, all individuals are replaced at each time step, so we directly
consider the state of the parents:

N
[E[Xin(t+ 1| X(2) ZX] = Z dkidgj(Xng(l—[,l+[,tV)2
U=

k,¢=1

+ (Xpe(1 = Xp) + (1 - X)) Xp) (1 — pp+ pv)(uv)

+ (l—Xk)(l—X[)(uv)z) (A34)

The first term of eq. (A34) corresponds to both parents being altruists, and having altruist
offspring; the second line corresponds to exactly one parent being altruist, and the third
line to both parents being non-altruists (in this latter case, the two offspring have to be
both mutants to be altruists).

Taking the expectation and simplifying, we obtain

N
Pij= ) (Pull- u)z) +Q2-wuvA, (A35)
k,(=1
Replacing P;; by vZrv( - v)Q;ij, €q. (A35) becomes
3 2
Qij= Y dridejQre(1—p?. (A36)

k,¢=1

Again, Q;; corresponds to a probability of identity by descent: the individuals at sites i
and j are identical by descent if their parents were and if neither mutated ((1 — u)?).
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70 C.2 Probabilities of identity by descent in a subdivided population

761 Two individuals are said to be identical by descent if there has not been any mutation on
762 either lineage since their common ancestor. Because of the structure of the population,
763 there are only three types of pairs of individuals, and hence three different values of the
76« probabilities of identity by descent of pairs of sites Q;:

1 when i = j;
Qij =4 Qin wheni # jand both sites are in the same deme; (A37)

Qout Wwhens sites i and j are in different demes.

765 The values of Qj, and Q. depend on the type of life cycle that we consider.

766 When the number of demes is infinite, Qj, is relatively easily obtained using recur-
767 rence equations and noting that Q¢ = 0. However, writing the recurrence equations for
768 Qi and Qqy¢ is much more tedious for finite populations. Hence, for finite populations,
769 we will use formulas already derived in Débarre (2017) for “two-dimensional population
770 structures”. The name comes from the fact that we only need two types of transforma-
771 tions to go from any site to any other site in the population: permutations on the deme
772 index, and permutations on the within-deme index.

773 We rewrite site labels (1 < i < N) as (¢4, ¢»), where ¢; is the index of the deme (1< ¢; <
772 Np) and ¢, the position of the site within the deme (1 < ¢, < n). Then, we introduce
775 notations cfh and Q;,, that correspond to the dispersal probability and probability of

17 12
776 identity by descent to a site at distances i; and i, in the among-demes and within-deme
777 dimensions (e.g, di, = dj, j,+i,-)
. . iz . jzy]2+12 . . . . .
778 Also, in this section, we distinguish between dser = d;; and dj, (in the main text,

779 dself = din).

780 C.2.1 Moran model

781 In Débarre (2017), it was shown that

_ 1 Ni—-1N>—-1 A/I 2 2

On== > N ) VR (z nqlrl)exp(z ﬂCIzrz) (A382)
) N ¢1=0 =0 1—(1—#)'D21 N; N>

2
782 with

_ Ny —1Np— ¢ S

Dgi= ). Z dy, exp( T 1) Xp(—lw), (A38b)
G2 =0 0,=0 ¢, N»
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783 and M\/[ such that Qg = 1. Let us first compute ﬁql in the case of a subdivided population,
0

q2
784  with N7 = Np and N> = n:

= Nt 2mqaly) NSNS 2nq1l ( 2ng20s
Da, = dgeis + dinexp|—1 + dout€Xp | —1 exp|—1
Z; self 522::1 in €XP N ) [12:‘,1 [22:‘,0 out p( Nl ) p Ng )
= dself+ (6012 (N-1)+(1 _6q2)(_1)) din + (6571 (M-D+Q10- 55/1)(_1)) (6q2N2) dout
= dseif + (64, No — 1) din + (6 g, N1 — 1) 8 g, Nodoou. (A39a)

785 (04 is equal to 1 when g is equal to 0 modulo the relevant dimension, and to 0 other-
76 wise). So for the three types of distances that we need to consider (distance 0, distance
787 to another deme-mate, distance to individual in another deme), and with N; = Np and
788 No = n, we obtain

Dy =1, (A40a)
0

Dy =1-m- (g1 20 (mod Ny)), (A40b)
0 Np-—-1

ﬁgl =dseit—din (@220 (mod Ny)). (A40c)

789 So for Q, using system (A40) in eq. (A38a),

- Al 1 Np—l 1 2
szﬂ M — + Z — ex (—l nqzrz)
n N li-a-pDy 4= 1-0-pDy N,
q>
N-1
+ ) ;exp(—lw)
M-1N;-1 1 ( anlrl) ( anzrz)]
+ — exp|-1——|exp|-1——=
pAl, 1 1
= + 6, No—1)
N [1-0-p 1-0-wdsa—din) > "
+ 1 b6, N1—-1)
I-(1-p-m-g2p "
1
+ (8, Ny —1)(5;, N: —1)]. (A41)
1- (1 ) (dsett— dhin) s
790 In particular,
~ pA, 1 1 1
Oy = —+ (n-1)+ (Np-1D
0" N i T (- @) (dectt - din) I-(-w-m-gZ "
1
+ (N, —1)(n—1)]
1_(1_H)(dself_din) b
=1. (A42a)
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791 We find /IGW using eq. (A42a). Let’'s now go back to eq. (A41): when r; = 0, the two indi-
792 viduals are in the same deme. The two individuals are different when r, # 0, and so:

Qi _#MV[ ! + ! =D+ ! (D-1)
TN g 1= - w(dselt— din) 1-A-wl-m-54)
1
+ (D-1D(-1)]. (A42b)
1— (1 - ) (dseif — din)
793 And when r; # 0, the two individuals are in different demes:
pAL, 11 1 1
=—|—+ =D+ (-1
Qoue == g 1= - p)(dseit — din) 1-A-wl-m-5"4)
1
+ . (A42c)
1-(1- H) (dself —din)
794 With dgepf = din = (1 — m)/ n, we eventually obtain:
1- +u(Np(1— -1
QM = (1 - (m+u(Np(1—m)-1)) , A3
1I-wm(Nppn-1)+1)+(Np-Dpupurn-1+1)
A-wm
Qout = a (A43b)

1-wmNppu(n-1)+1)+(Np-Dpupn-1)+1)

75 The probability that two different deme-mates are identical by descent, Qil\l/f, decreases
796 monotonically with the emigration probability m, while Qg/l[lt monotonically increases
797 with m (see figure A5(a)).

798 When the mutation probability y is vanishingly small (u — 0), both Qﬁ’f and QM are
799 equal to 1: in the absence of mutation indeed, the population ends up fixed for one of
soo the two types, and all individuals are identical by descent. Note that we obtain a different
sor result if we first assumed that the size of the population is infinite (Np — o), because the
so2 order of limits matters; for instance, limy, —.oo QM = 0.

803 Relatedness R was defined in eq. (A20) as
R= Qin - Qout )
1- Qout

s+ Using eq. (A43), relatedness under the Moran model is given by

M (1-wNp(1-m)—-1)

= . (A44)
Np(Q-pymn-1)+(Np-1)1+pu(n-1))

sos  When there is an infinite number of demes (Np — oo) and mutation is vanishingly small
sos (U — 0), we recover
1-m

lim lim RM= lim limRM =

=— (A45)
u—0 Np—oco Np—oou—0 1+m(n-1)
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so7 C.2.2 Wright-Fisher
sos For the Wright-Fisher updating, the equation for Q is different:
_ 1 Ni—-1N>—-1 /1,
Q"l = s WZF S 2
r2 N ¢1=0 =0 1—(1_H) (DZ])
2

(A46)

2 2
exp(—z nqlrl)exp(—z ﬂﬂzrz),
N
s0s  with D given in eq. (A38b). In a subdivided population, with N; = Np and N, = n, this
810 becomes

) A Np-1 A
Qn:l Flwe PIwe oy (_l_2nq2r2)
n N 1_(1—u)2(D8)2 ”’2:11_(1_“)2(7)3)2 N,
2
T S )
gz 1- (1—u)2(f>%1)2 Ny
Ni—1N,-1 /1’ 2 2
s FAlwr (—z ﬂt]lrl)exp(_l ﬂfizrz)]
G1=1 q2=1 1_(1_,11)2(2)?’1)2 1 N>
BAYy 5 1 1
= + G0Ny —1)
N [1-0-w?  1-(-w2(dserr—din)? = °
+ ! 64 N1 —1)
GVl —
1- (-2l —m— )2
1
+ 64, N1 —1)(6,N —1)]
1_(1_u)2(dself_din)2 7l 7172
By g 1 1
_ + 64,N2 —1)54, N
N [1-0-p?  1-0-w2dsr—din)? 22 700
1
+ (5q]N1—1)]. (A47)
1- (-2l —m— )2

s11 To find A}, ., we solve Qo =1, i.e,
0

1—”/1%“”” L + 1 (No—1) Ny + 1 (N 1)]
N |1-0-w? 1-0-w2(dseis— din)? ° ! 1-(1-w2(1-m- gy)? ! '
(A48a)
si2 Then from eq. (A47) we deduce
PAY g 1 1 1 ]
= - N+ (N1=1)|.
On =N 1m0 1= (-2 @a—dm? " To -2 —m = e E
(A48b)
g13 and Y
u 1 1
Qour = —2F (A48c)

N [1-(0-w? 1-0-w?*d-m-292|
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814 With dgef = din = (1 — m)/ n, we obtain:

—Np+M;+M
QWF = 177z (A49a)
(n—l)ND+M1+M2
1
LM+ M2
QWE - M-l , (A49b)
(n—l)ND+M1+M2
g15s  with N1 1
—_— D_ e ——
M= | P Mp(—m)-1? and M = 1-(1-w?
(Np-1)?

st6  (These formulas are compatible with, e.g., results presented by Cockerham & Weir (1987),
817 adapted for haploid individuals).

s1is In the Wright-Fisher life cycle, Q;’I‘l’F decreases until m = mp'¥ = Nf\’,;l , while QI follows
WE corresponds to an emigration probability

s19 the opposite pattern. The threshold value m
s20  so high that diy, = dgyt.

821 The two probabilities of identity by descent go to 1 when the mutation probability
g2 is very small (u — 0), except if we first assume that the number of demes is very large
g2 (Np — oo); for instance, with this life cycle as well, lim y, oo QIv: = 0.

824 Also, because more sites (all of them, actually) are updated at each time step, Qi is
s2s lower for the Wright-Fisher updating than for a Moran updating, under which only one
s26 site is updated at each time step (compare figure A5(a) and A5(b)).

(a) Moran (b) Wight-Fisher

1.0+
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Probabilities of identity by descent
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Figure A5: Probabilities of identity by descent, for two different individuals within the same
deme (Qi, full curves) and two individuals in different demes (Qoyt, dashed curves), as a
function of the emigration probability m, for different values of the mutation probability u
(0.001, 0.01, 0.1), and for the two types of life cycles ((a): Moran, (b): Wright-Fisher). Other
parameters: n =4 individuals per deme, Np =15 demes.

827 Combining the formulas presented in eq. (A49), we obtain

pwr_ A= Np(—-m)*(-w?

W : (A50)

g2s  with

DYF =1-NpRUI+m(n-1))-Np(1+@2-mm(n-1)))—2u
+2(Np(Np(1-m)-2)Q-m)(n—1) + m)u— (1 - Np(1 —m))*(n—1) .
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829 When the number of demes is very large and mutation is vanishingly small, eq. (A50)
s30 reduces to
. . WF . . WF (1- m)2
lim lim R™ = lim limR"™ = . (A51)
u—0Np—oo Np—o0 —0 1+2-mm(n—-1)

Appendix C 41 2019-08-14


https://doi.org/10.1101/609818
http://creativecommons.org/licenses/by/4.0/

	Mutation parameters
	Expected frequency of altruists at the mutation-drift balance 
	Parent-offspring correlation at the mutation drift balance
	Redefining the mutation scheme

	Expected frequency of altruists
	For a generic life cycle 
	Derivatives for the specific life cycles

	Probabilities of identity by descent
	Expected state of pairs of sites and probabilities of identity by descent
	Moran model
	Wright-Fisher model

	Probabilities of identity by descent in a subdivided population
	Moran model
	Wright-Fisher



