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Abstract

Population viscosity, i.e., low emigration out of the natal deme, leads to high within-
deme relatedness, which is beneficial to the evolution of altruistic behavior when social
interactions take place among deme-mates. However, a detrimental side-effect of low
emigration is the increase in competition among related individuals. The evolution of
altruism depends on the balance between these opposite effects. This balance is already
known to be affected by details of the life cycle; we show here that it further depends on
the fidelity of strategy transmission from parents to their offspring. We consider different
life cycles and identify thresholds of parent-offspring strategy transmission inaccuracy,
above which higher emigration can increase the frequency of altruists maintained in the
population. Predictions were first obtained analytically assuming weak selection and
equal deme sizes, then confirmed with stochastic simulations relaxing these assump-
tions. Contrary to what happens with perfect strategy transmission from parent to off-
spring, our results show that higher emigration can be favorable to the evolution of al-
truism.

Keywords Altruism, Subdivided population, Mutation, Migration, Cooperation, Island
model, Wright-Fisher, Moran.
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Introduction1

In his pioneering work on the evolution of social behavior, Hamilton suggested that al-2

truistic behavior would be associated to limited dispersal (Hamilton, 1964, p. 10). This3

notion, that tighter links between individuals are beneficial to the evolution of altruism,4

has been shown to hold in a number of population structures (see e.g. Ohtsuki et al.,5

2006; Taylor et al., 2007a; Lehmann et al., 2007; Allen et al., 2017). The rationale is that al-6

truism is favored when altruists interact more with altruists than defectors do (Hamilton,7

1975, p. 141; Fletcher & Doebeli, 2009), a condition that is met in viscous populations,8

i.e., populations with limited dispersal.9

Yet, living next to your kin also implies competing against them (West et al., 2002;10

Platt & Bever, 2009), which is detrimental to the evolution of altruism. The evolution of11

social traits hence depends on the balance between the positive effects of interactions12

with related individuals and the detrimental consequences of kin competition. Under13

specific conditions, the two effects can even compensate each other, thereby annihi-14

lating the impact of population viscosity on the evolution of altruism. First identified15

with computer simulations (Wilson et al., 1992), this cancellation result was analyzed16

by Taylor (1992a) in a model with synchronous generations (i.e., Wright-Fisher model)17

and a subdivided population of constant, infinite size. The cancellation result was later18

extended to heterogeneous populations (Rodrigues & Gardner, 2012, with synchronous19

generations and infinite population size), and other life cycles, with generic regular pop-20

ulation structures (Taylor et al., 2011, with synchronous generations but also with con-21

tinuous generations and Birth-Death updating). However, small changes in the model’s22

assumptions, such as overlapping generations (Taylor & Irwin, 2000) or the presence of23

empty sites (Alizon & Taylor, 2008) can tip the balance in the favor of altruism. This high24

dependence on life cycle specificities highlights the difficulty of making general state-25

ments about the role of spatial structure on the evolution of altruism.26

Three different life cycles are classically used in studies on altruism in structured27

populations: Wright-Fisher, where the whole population is renewed at each time step,28

and two Moran life cycles (Birth-Death and Death-Birth), where a single individual dies29

and is replaced at each time step. We will consider the three of them in this study, be-30

cause even though they differ by seemingly minor details, they are known to have very31

different outcomes in models with perfect parent-offspring transmission (e.g., Taylor,32

1992a; Rousset, 2004; Ohtsuki et al., 2006; Lehmann et al., 2007; Taylor, 2010).33

A large number of studies on the evolution of social behavior consider simple pop-34

ulation structures (typically, homogeneous populations sensu Taylor et al. (2007a)) and35

often also infinite population sizes (but see Allen et al., 2017, for results on any struc-36

ture). These studies also make use of weak selection approximations, and commonly37

assume rare (e.g., Leturque & Rousset, 2002; Taylor et al., 2007b; Tarnita & Taylor, 2014;38

Chen et al., 2019) or absent mutation (for models assuming infinite population sizes, or39

models concentrating on fixation probabilities; see Lehmann & Rousset, 2014; Van Cleve,40

2015, for recent reviews). These simplifying assumptions are often a necessary step to-41

wards obtaining explicit analytical results. Simple population structures (e.g., regular42

graphs, or subdivided populations with demes of equal sizes) help reduce the dimen-43

sionality of the system under study, in particular when the structure of the population44

displays symmetries such that all sites behave the same way in expectation. Weak se-45
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lection approximations are crucial for disentangling spatial moments (Lion, 2016), that46

is, changes in global vs. local frequencies (though they can in some cases be relaxed, as47

in Mullon & Lehmann, 2014). Mutation, however, is usually ignored by classical models48

of inclusive fitness because these models assume infinite population sizes, so that there49

is no need to add mechanisms that restore genetic diversity (Tarnita & Taylor, 2014). In50

populations of finite size, this diversifying effect can be obtained thanks to mutation.51

When strategy transmission is purely genetic, it makes sense to assume that muta-52

tion is relatively infrequent. Even in this case, though, mutations from “social” to “non-53

social” types cannot always be neglected. For instance, experiments with the bacteria54

Pseudomonas fluorescens have identified transitions between populations dominated by55

the ancestral “solitary” Smooth Morph type and mat-forming “social” Wrinkly Spread-56

ers, that can be re-invaded by Smooth Morphs not contributing to the formation of the57

mat (hence described as “cheaters”). The transitions between the different types are due58

to spontaneous mutations occurring over the timescale of the experiment (Hammer-59

schmidt et al., 2014). In addition to genetic transmission, a social strategy can also be60

culturally transmitted from parent to offspring. In this case, “rebellion” (as in Frank’s Re-61

bellious Child Model (Frank, 1997)), i.e., adopting a social strategy different from one’s62

parents, does not have to be infrequent. Since it is known that imperfect strategy trans-63

mission can alter the evolutionary dynamics of social traits, in particular in spatially64

structured populations (see e.g., Allen et al., 2012; Débarre, 2017, for graph-structured65

populations), it is therefore important to understand the impact of imperfect strategy66

transmission on the evolution of social behavior.67

Here, we want to explore the consequences of imperfect strategy transmission from68

parents to their offspring on the evolution of altruistic behavior in subdivided popula-69

tions1. The question was tackled by Frank (1997), but with a non “fully dynamic model”70

(Frank, 1997, legend of Fig.7). Relatedness was treated like a parameter, which precluded71

the exploration of the effects of population viscosity on the evolution altruism.72

For each of the three life cycles that we consider, we compute the expected (i.e., long-73

term) frequency of altruists maintained in a subdivided population, and investigate how74

this frequency is affected by mutation and emigration. We find that, contrary to what75

happens with perfect strategy transmission, higher emigration can increase the expected76

frequency of altruists in the population.77

Model and methods78

Assumptions79

We consider a population of total size N , subdivided into ND demes connected by dis-80

persal, each deme hosting exactly n individuals (i.e., each deme contains n sites, each81

of which is occupied by exactly one individual; nND = N ). Each site has a unique label82

i , 1 ≤ i ≤ N . There are two types of individuals in the population, altruists and defec-83

tors. The type of the individual living at site i (1 ≤ i ≤ N ) is given by an indicator variable84

Xi , equal to 1 if the individual is an altruist, and to 0 if it is a defector. The state of the85

1Note that for the sake of concision, we use the word “mutation” throughout the paper, keeping in mind
that strategy transmission does not have to be genetic.
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entire population is given by a vector X = {Xi }1≤i≤N . For a given population state X, the86

proportion of altruists is X =∑N
i=1 Xi /N . All symbols are summarized in table A1.87

Reproduction is asexual. The offspring of altruists are altruists themselves with prob-88

ability 1−µ1→0, and are defectors otherwise (0 < µ1→0 ≤ 1/2). Similarly, the offspring of89

defectors are defectors with probability 1−µ0→1, and are altruists otherwise (0 <µ0→1 ≤90

1/2). Our calculations will be simpler if we introduce the following change of parameters:91

92

ν= µ0→1

µ1→0 +µ0→1
(0 < ν< 1), and (1a)

µ=µ1→0 +µ0→1 (0 <µ≤ 1). (1b)

The composite parameter ν corresponds to the expected frequency of altruists in the93

population at the mutation-drift balance (i.e., in the absence of selection; see Appendix A94

for details). We call ν the “mutation bias” parameter. Parameter µ is the sum of the two95

mutation probabilities. In the absence of selection, at the mutation-drift equilibrium,96

the correlation between offspring type and their parent’s type is 1−µ (see Appendix A for97

details for the calculation). We call µ the mutation intensity.98

An individual of type Xk expresses a social phenotype φk = δXk , where δ is assumed99

to be small (δ¿ 1). This assumption of small phenotypic differences leads to weak selec-100

tion. This type of weak selection is called “δ-weak selection” in Wild & Traulsen (2007).101

Social interactions take place within each deme; a focal individual interacts with its n−1102

other deme-mates. We assume that social interactions affect individual fecundity; fk de-103

notes the fecundity of the individual at site k (1 ≤ k ≤ N ), which depends on deme com-104

position. We denote by b the sum of the marginal effects of deme-mates’ phenotypes on105

the fecundity of a focal individual, and by −c the marginal effect of a focal individual’s106

phenotype on its own fecundity (c≤ b; see system (A22) for formal definitions).107

Offspring remain in the parental deme with probability 1−m and land on any site108

of the parental deme with equal probability (including the very site of their parent).109

With probability m, offspring emigrate to a different deme, chosen uniformly at random110

among the ND −1 other demes. Denoting by di j the probability of moving from site i to111

site j , we have112

di j =
{

din = 1−m
n if sites i and j are in the same deme;

dout = m
(ND−1)n if they are in different demes,

(2)

with 0 < m < 1− 1
ND

. This upper bound is here to ensure that within-deme relatedness R,113

which will be defined later in the article, remains positive. When the emigration prob-114

ability m is equal to the upper bound 1− 1
ND

, the population is effectively well-mixed115

(din = dout).116

We denote by Bi = Bi (X,δ) the expected number of successful offspring of the indi-117

vidual living at site i (“successful” means alive at the next time step), and by Di = Di (X,δ)118

the probability that the individual living at site i dies. Both depend on the state of the119

population X, but also on the way the population is updated from one time step to the120

next, i.e., on the chosen life cycle (also called updating rule). Because this term appears121

in our calculations, we also define122

Wi := (1−µ)Bi +1−Di . (3)
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This is a particular definition of fitness, where the number of offspring produced (Bi ) is123

scaled by the parent-offspring type correlation (1−µ).124

We will specifically explore three different life cycles. At the beginning of each step of125

each life cycle, all individuals produce a large (effectively infinite) number of offspring,126

in proportion to their fecundity; some of these offspring can be mutated. Then these127

juveniles move, within the parental deme or outside of it, and land on a site. The next128

events occurring during the time step depend on the life cycle:129

Moran Birth-Death: One of the newly created juveniles is chosen at random; it kills the130

adult who was living at the site, and replaces it; all other juveniles die.131

Moran Death-Birth: One of the adults is chosen to die (uniformly at random among all132

adults). It is replaced by one of the juveniles who had landed in its site. All other133

juveniles die.134

Wright-Fisher: All the adults die. At each site of the entire population, one of the juve-135

niles that landed there is chosen and establishes at the site.136

Previous studies have shown that, when social interactions affect fecundity, altruism is137

disfavored under the Moran Birth-Death and Wright-Fisher life cycles, because the ex-138

pected frequency of altruists under these life cycles is lower than what it would be in the139

absence of selection (e.g., Taylor, 1992a, 2010; Taylor et al., 2011; Débarre, 2017). How-140

ever, we are interested in the actual value of the expected proportion of altruists in the141

population, not just whether it is higher or lower than the neutral expectation. This is142

why we are still considering the Moran Birth-Death and Wright-Fisher life cycles in this143

study.144

Methods145

Analytical part146

The calculation steps to obtain the expected (i.e., long-term) proportion of altruists are147

given in Appendix B. They go as follows: first, we write an equation for the expected148

frequency of altruists in the population at time t +1, conditional on the composition of149

the population at time t ; we then take the expectation of this quantity and consider large150

times t . After this, we write a first-order expansion for phenotypic differences δ close to151

0 (this corresponds to a weak selection approximation).152

The formula involves quantities that can be identified as neutral probabilities of153

identity by descent Qi j . These quantities correspond to the probability that individu-154

als living at site i and j share a common ancestor and that no mutation occurred on155

either lineage since that ancestor, in a model with no selection (δ= 0) and with mutation156

intensity µ; this is the “mutation definition” of identity by descent (Rousset & Billiard,157

2000). In a subdivided population like the one we consider, there are only three possible158

values of Qi j :159

Qi j =


1 when i = j ,

Qin when i 6= j and both sites are in the same deme,

Qout when both sites are in different demes.

(4)
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These neutral probabilities of identity by descent depend on the chosen life cycle, and160

are also computed by taking the long-term expectation of conditional expectations after161

one time step (see Appendix C.1 and C.2 and supplementary Mathematica file (Wolfram162

Research, Inc., 2017).)163

Stochastic simulations164

To check our results and also relax some key assumptions, we ran stochastic simula-165

tions. The simulations were run for 108 generations (one generation is one time step for166

the Wright-Fisher life cycle, and N time steps for the Moran life cycles). For each set of167

parameters and life cycle, we estimated the long-term frequency of altruists by sampling168

the population every 103 generations and computing the average frequency of altruists.169

All scripts are available at170

https://flodebarre.github.io/SocEvolSubdivPop/171

Results172

Expected frequencies of altruists for each life cycle173

For each of the life cycles that we consider, the expected frequency of altruists in the174

population, E
[

X
]
, can be approximated as175

E
[

X
]≈ ν+ δ

µB∗ν(1−ν)(1−Qout)×[
∂W

∂ f•
(−c)+ ∂W

∂ fin
b︸ ︷︷ ︸

−C

+
(
∂W

∂ f•
b+ (n −1)

∂W

∂ fin
(−c)+ (n −2)

∂W

∂ fin
b

)
︸ ︷︷ ︸

B

Qin −Qout

1−Qout︸ ︷︷ ︸
R

]
,

(5)

with W as defined in eq. (3). Calculations leading to eq. (5) are presented in Appendix B;176

notations are recapitulated in table A1. In particular, B∗ is the expected number of off-177

spring produced by an adult, in the absence of selection (when δ = 0; B∗ = 1 for the178

Wright-Fisher life cycle and B∗ = 1/N for the Moran life cycles). Subscript “•” denotes a179

focal individual itself, and “in” a deme-mate. Partial derivatives are evaluated for δ= 0.180

The expected frequency of altruists in the population is approximated, under weak181

selection (δ¿ 1), by the sum of what it would be in the absence of selection (E0
[

X
]= ν,182

first term in eq. (5)), plus a deviation from this value, scaled by δ. The −C term cor-183

responds to the effects of a change of a focal individual’s phenotype on its own fitness184

(with the fitness definition given in eq. (3)). The B term corresponds to the sum of the ef-185

fects of the change of deme-mates’ phenotypes on an individual’s fitness. It is multiplied186

by R, which is relatedness.187

The parametrization proposed in eq. (1) allows us to decouple the effects of the two188

new mutation parameters, ν and µ. The mutation bias ν, which was defined in eq. (1a),189

does not affect the sign of the second (“deviation”) term in eq. (5); it only appears in the190

ν(1−ν) product. The mutation intensity µ, however, affects the values of W , Qin and191

Qout. The presence of µ at the denominator in eq. (5) may look ominous; however, both192

R and (1−Qout)/µ have a finite limit when µ→ 0.193

The different terms depend on the chosen life cycle. We first focus on relatedness R.194
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Relatedness R195

Within-deme relatedness R depends on the number of individuals that are born at each196

time step, and hence on the chosen life cycle. In a Moran life cycle (denoted by M), one197

individual is updated at each time step, while under a Wright-Fisher life cycle (denoted198

by WF), N individuals – the whole population – are updated at each time step. The for-199

mulas for relatedness, RM and RWF, calculated for any number of demes ND and muta-200

tion intensity µ, are presented in Appendix C.2 (eq. (A44) and eq. (A50)). When we let the201

number of demes go to infinity (ND →∞) and the intensity of mutation be vanishingly202

small (µ→ 0), we recover the classical formulas for relatedness as limit cases (eq. (A45)203

and eq. (A51)).204

The effects of emigration m and mutation intensity µ on relatedness are represented205

in figure 1. For 0 < m < 1−1/ND , within-deme relatedness is positive, and it decreases206

with m and with µ (the mutation bias ν has no effect). The effect of the mutation inten-207

sity µ on relatedness is strongest at low emigration probabilities m. As m increases, the208

relatedness values for different mutation intensities get closer, until they all hit zero for209

m = 1− 1/ND (which is the upper bound for the emigration values that we consider, a210

value such that there is no proper population subdivision anymore).211

(a) Moran
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(b) Wight-Fisher

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

Emigration probability m

R
el

at
ed

ne
ss

 R

0
0.001
0.01
0.1
0.25

µ =

Figure 1: Within-deme relatedness of pairs of individuals R, as a function of the emigra-
tion probability m, for different values of the mutation probability µ (from 0 [blue] to 0.25
[orange]), and for the two types of life-cycles ((a): Moran, (b): Wright-Fisher). Other pa-
rameters: n = 4 individuals per deme, ND = 15 demes.

Primary and secondary effects212

We now turn to the B and −C terms of eq. (5), which also depend on the chosen life cycle.213

We further decompose these terms into primary (subscript P) and secondary (subscript214

S) effects (West & Gardner, 2010):215

B = BP + BS,
−C = −CP︸︷︷︸

Primary effect

+ −CS.︸︷︷︸
Secondary effect

(6)

Primary effects correspond to unmediated consequences of interactions (they are in-216

cluded in ∂W
∂ f•

). Secondary effects correspond to consequences of interactions mediated217
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by other individuals, including competition.218

Primary effects219

Primary effects are the same for all the life cycles that we consider:220

BBD
P =BDB

P =BWF
P = (1−µ)b, (7a)

−CBD
P =−CDB

P =−CWF
P = (1−µ)(−c), (7b)

and they do not depend on the emigration probability m (see Appendix B.2 for details of221

the calculations).222

As we have seen above, the relatedness terms RM and RWF decrease with m (keeping223

m < 1− 1/ND ; see figure 1). Consequently, if we ignored secondary effects, we would224

conclude that the expected frequency of altruists in the population E
[

X
]

decreases as225

the emigration probability m increases. However, secondary effects play a role as well.226

Secondary effects227

Secondary effects take competition into account, that is, how the change in the fecun-228

dity of an individual affects the fitness of another one. As shown already in models with229

nearly perfect strategy transmission (Grafen & Archetti, 2008), competition terms de-230

pend on the chosen life cycle, because life cycle details affect the distance at which com-231

petitive effects are felt. Given the way the model is formulated, −CS = BS/(n −1) holds232

for all the life cycles that we consider (see Appendix B.2 for details of the calculations).233

Under the Moran Birth-Death life cycle, both the probability of reproducing and the234

probability of dying depend on the composition of the population. We obtain the fol-235

lowing secondary effects:236

−CBD
S = BBD

S

n −1
=−(b−c)

(
− µ

N
+ 1−m

n

)
. (8a)

The competitive effects are the same for the Moran Death-Birth and Wright-Fisher237

life cycles. In both cases, the probabilities of dying are constant, so we can factor (1−µ)238

in the equations:239

−CDB
S = BDB

S

n −1
=−CWF

S = BWF
S

n −1
=−(b−c)(1−µ)

(
(1−m)2

n
+ m2

N −n

)
. (8b)

These secondary effects (eq. (8a) and eq. (8b)) remain negative for the range of emi-240

gration values that we consider (0 < m < 1−1/ND ), and increase with m. In other words,241

the intensity of competition decreases as emigration m increases.242

While the value of these secondary effects increases with emigration m, relatedness243

R, by which they are eventually multiplied in eq. (5), decreases with m. We therefore can-244

not determine the overall effect of emigration m on the expected frequency of altruists245

in the population by inspecting the different terms of eq. (5) in isolation. For each life246

cycle, we need to consider the entire equations to know the overall effect of the emigra-247

tion probability m on the expected frequency of altruists E
[

X
]

and on how it is affected248

by the (in)fideliy of parent-offspring transmission µ.249
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Changes of the expected frequency of altruists with the emigration probability250

m251

The rather lengthy formulas that we obtain are relegated to the Appendix and supple-252

mentary Mathematica file, and we concentrate here on the results.253

Moran Birth-Death254

For the Moran Birth-Death life cycle, we find that the expected frequency of altruists255

E
[

X
]

is a monotonic function of the emigration probability m. The direction of the256

change depends on the value of the mutation probability µ compared to a threshold257

value µBD
c . When µ < µBD

c , E
[

X
]

decreases with m, while when µ > µBD
c , E

[
X

]
increases258

with m. The critical value µBD
c is given by259

µBD
c = 1−

b−c+
√

(b−c)
(
4bN 2 +b−c

)
2bN

(9)

(recall that N is the total size of the population, N = nND .) This result is illustrated in260

figure 2(b); with the parameters of the figure, µBD
c ≈ 0.026. The threshold value increases261

with both deme size n and number of demes ND , up to a maximum value 1−p
1−c/b262

(equal to 0.034 with the parameters of figure 2(b).)263

With this life cycle however, the expected frequency of altruists E
[

X
]

remains lower264

than ν, its value in the absence of selection (i.e., when δ= 0).265

Moran Death-Birth266

The relationship between E
[

X
]

and m is a bit more complicated for the Moran Death-267

Birth life cycle. For simplicity, we concentrate on what happens starting from low emi-268

gration probabilities (i.e., on the sign of the slope of E
[

X
]

as a function of m when m → 0).269

If the benefits b provided by altruists are relatively low (b < c(n + 1)), E
[

X
]

initially in-270

creases with m provided the mutation probability µ is greater than a threshold value µDB
c271

given in eq. (10) below; otherwise, when the benefits are high enough, E
[

X
]

initially in-272

creases with m for any value of µ. Combining these results, we write273

µDB
c =


(n +1)c−b

(2n −1)b− (n −1)c
if b< c(n +1),

0 otherwise.
(10)

When b< c(n+1), the mutation threshold does not depend on the number of demes ND ,274

but increases with deme size n. In figure 2(a), the parameters are such that µDB
c = 0.275

When µ > µDB
c , the expected frequency of altruists E

[
X

]
reaches a maximum at an276

emigration probability mDB
c (whose complicated equation is given in the supplementary277

Mathematica file), as can be seen in figure 2(a). When the mutation probability gets close278

to 0 (µ→ 0), mDB
c also gets close to 0.279

With the Death-Birth life cycle, the expected frequency of altruists is higher than its280

neutral value ν for intermediate values of the emigration probability m (unless µ→ 0, in281

which case the lower bound tends to 0).282
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Figure 2: Expected proportion of altruists under weak selection, as a function of the em-
igration probability m, for different mutation values (µ = 0.001 (blue, dots), 0.01 (purple,
squares), 0.1 (brown, diamonds), 0.25 (orange, triangles); the dashed blue lines corre-
spond to µ= 0) and different life-cycles ((a) Moran Death-Birth, (b) Moran Birth Death, (c)
Wright-Fisher). The curves are the analytical results, the points are the output of numer-
ical simulations. Parameters: δ = 0.005, ν = 0.45, b = 15, c = 1, n = 4 individuals per deme,
ND = 15 demes.

Wright-Fisher283

Under a Wright-Fisher updating, the expected frequency of altruists in the population284

reaches an extremum at the highest admissible emigration value m = 1− 1
ND

. This ex-285

tremum is a maximum when the mutation probability is higher than a threshold value286

µWF
c given by287

µWF
c = 1−

√
1− c

b
, (11)

and it is a minimum otherwise. With the parameters of figure 2(c), µWF
c = 0.034.288

With the Wright-Fisher life cycle however, the expected frequency of altruists re-289

mains below its value in the absence of selection, ν.290

Relaxing key assumptions291

To derive our analytical results, we had to make a number of simplifying assumptions,292

such as the fact that selection is weak (δ¿ 1), and the fact that the structure of the pop-293

ulation is regular (all demes have the same size n). We checked with numerical simula-294

tions the robustness of our results when these key assumptions are relaxed.295

Strong selection When selection is strong, the patterns that we identified not only still296

hold but are even more marked, as shown on figure A1.297

Heterogeneity in deme sizes To relax the assumption of equal deme sizes, we ran-298

domly drew deme sizes at the beginning of simulations, with sizes ranging from 2 to 6299
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individuals and on average n = 4 individuals per deme as previously. As shown in fig-300

ure A2, the patterns initially obtained with a homogeneous population structure are ro-301

bust when the structure is heterogeneous.302

No self-replacement For the Moran model, it may seem odd that an offspring can re-303

place its own parent (which can occur since di i 6= 0). Figure A3, plotted with disper-304

sal probabilities preventing immediate replacement of one’s own parent (for all sites i ,305

di i = dself = 0; din = (1−m)/(n−1) for two different sites in the same deme, dout remain-306

ing unchanged), confirms that this does affect our conclusions.307

Infinite number of demes Our results are obtained in a population of finite size (the308

figures are drawn with ND = 15 demes), but still hold when the size of the population is309

larger. Figure 3(b) shows the range of emigration and mutation values such that altruism310

is favored, plotted also for ND →∞.311

Same graphs for dispersal and social interactions Compared to graphs classically used312

in evolutionary graph theory (e.g., regular random graphs, grids), the island model is par-313

ticular because the interaction graph and the dispersal graph are different: interactions314

take place only within demes (eout = 0), while offspring can disperse out of their natal315

deme (dout > 0). One may wonder whether our result depends on this difference be-316

tween the two graphs. Figure A4 shows that the result still holds when the dispersal and317

interaction graphs are the same. In this figure indeed, we let a proportion m (equal to318

the dispersal probability) of interactions occur outside of the deme where the individu-319

als live, and set dself, the probability of self replacement, equal to 0, so that the dispersal320

and interactions graphs are the same. Our conclusions remain unchanged.321

Discussion322

The expected frequency of altruists in a subdivided population can increase323

with the probability of emigration324

Assuming that the transmission of a social strategy (being an altruist or a defector) from a325

parent to its offspring could be imperfect, we found that the expected frequency of altru-326

ists maintained in a population could increase with the probability m of emigration out327

of the parental deme, a parameter tuning population viscosity. This result can seem sur-328

prising, because it contradicts the conclusions obtained under the assumption of nearly329

perfect strategy transmission (i.e., in the case of genetic transmission, when mutation is330

very weak or absent). Under nearly perfect strategy transmission indeed, increased pop-331

ulation viscosity (i.e., decreased emigration probability) is either neutral (Taylor, 1992a,332

and dashed lines in figures 2(b)–(c)) or favorable (Taylor et al., 2007a, and dashed lines333

in figure 2(a)) to the evolution of altruistic behavior.334

Quantitative vs. qualitative measures335

Often, evolutionary success is measured qualitatively, by comparing a quantity (an ex-336

pected frequency, or, in models with no mutation, a probability of fixation) to the value337
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it would have in the absence of selection. In our model, this amounts to saying that338

altruism is favored whenever E
[

X
] > ν (ν is plotted as a horizontal dashed line in fig-339

ure 2). Some of our conclusions change if we use this qualitative measure of evolution-340

ary success: Under the Moran Birth-Death and Wright-Fisher life cycles, population vis-341

cosity does not promote the evolution of altruism – actually, these two life cycles can-342

not ever promote altruistic behavior for any regular population structure (Taylor et al.,343

2011), whichever the probability of mutation (Débarre, 2017). However, under a Moran344

Death-Birth life cycle (figure 2(a)), altruism can be favored only at intermediate emi-345

gration probabilities. Starting for initially low values of m, increasing the emigration346

probability can still favor the evolution of altruism under this qualitative criterion (see347

figure 3(b).)348

Interpreting the effect of m on E
[

X
]

349

To better understand the role played by the mutation intensity µ, we focus on the qual-350

itative condition for the evolution of altruism (E
[

X
] > ν); and on the Death-Birth life351

cycle, since this qualitative condition is not satisfied in the two other life cycles. Having352

made sure that BDB > 0 (as shown in the supplementary Mathematical file), the qualita-353

tive condition for altruism to be favored is given by354

E
[

X
]> ν⇔ RM > CDB

BDB
. (12)

With the Death-Birth life cycle, the CDB/BDB ratio does not change with the mutation355

probability µ (the (1−µ) factors simplified out), but the ratio decreases with the emi-356

gration probability m (with 0 < m < 1− 1/ND ; see the thick black curve in figure 3(a)).357

This decrease of the CDB/BDB ratio is due to secondary effects (competition) diminish-358

ing as emigration increases. Relatedness, on the other hand, decreases with both µ and359

m (see figure 3(a)). We need to explain the effect of the emigration probability m on360

condition (12) for different values of mutation intensity µ.361

When the emigration probability m is high, relatedness gets closer to zero for all val-362

ues of mutation intensity µ, while the CDB/BDB remains positive; condition (12) is not363

satisfied. On the other hand, when the emigration probability m is vanishingly small,364

limm→0 RM ≤ limm→0
CDB

BDB , the two only being equal when µ = 0. Hence, condition (12)365

is satisfied for vanishingly low m only when strategy transmission is perfect. Finally, as366

m increases to intermediate values, the CDB

BDB ratio decreases with a steeper slope than367

relatedness R, so that the curves can cross provided the mutation probability µ is not368

too high, i.e., that R was not initially too low already. Hence, for no too high mutation369

intensity, there is a range of emigration values m such that condition (12) is satisfied.370

The result is due to secondary effects371

The result, that frequency of altruists can increase with the emigration probability m,372

may seem counterintuitive. It is the case because verbal explanations for the evolution373

of altruism often rely on primary effects only. Relatedness R decreases with m, so it may374

be tempting to conclude that increases in the emigration probability m are necessarily375

detrimental to the evolution of altruism. However, secondary effects play an opposite376
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Figure 3: Understanding the effect of emigration m on whether altruism is favored in the
Death-Birth life-cycle. (a) Comparison of the C/B ratio (thick black curve) and relatedness
R (thin curves) for different values of the mutation probability µ (same color code as previ-
ously). (b) (m, µ) combinations for which E

[
X

]> ν. The dotted horizontal lines correspond
to the mutation values used in panel (a). Unless specified, all other parameters are the
same as in figure 2.

role, as competition decreases with m, and the effect is strongest at low values of m (see377

the black curve on figure 3(a); in the absence of secondary effects, it would just be a378

horizontal line).379

Secondary effects are less straightforward to understand than primary effects, and380

yet they play a crucial role for social evolution in spatially structured populations. Com-381

petition among relatives is for instance the reason for Taylor (1992b)’s cancellation result.382

Similarly, the qualitative differences between the Moran Birth-Death and Moran Death-383

Birth life cycles is explained by the different scales of competition that the two life cycle384

produce (Grafen & Archetti, 2008; Débarre et al., 2014). Secondary effects are also behind385

the evolution of social behaviors such as spite (West & Gardner, 2010).386

How small is small and how large is large?387

Our results were derived under the assumption of weak selection, assuming that the phe-388

notypic difference between altruists and defectors is small (δ¿ 1). We considered any389

fidelity of transmission (any µ between 0 and 1) and population size. However, most390

models considering subdivided populations assume nearly perfect strategy transmis-391

sion (µ → 0) and infinite population sizes (number of demes ND → ∞). The point is392

technical, but it is important to know that the order in which these limits are taken mat-393

ters, i.e., one needs to specify how small µ and δ are compared to the inverse size of394

the population 1/N . This is in particular the case for the probability of identity by de-395

scent of two individuals in different demes, Qout: if we first take the small mutation limit,396

limµ→0 Qout = 0, while if we first take the large population limit, limN→∞Qout = 1 (see397

Appendix C.2 for details). This remark complements findings by Sample & Allen (2017),398

who highlighted the quantitative differences between different orders of weak selection399
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and large population limits.400

Imperfect transmission and Rebellious Children401

Our model bears resemblance to the Rebellious Child Model by Frank (1997), who stud-402

ied the evolution of a vertically transmitted cultural trait in an asexually reproducing403

population. In Frank’s model, however, relatedness r is treated as a fixed parameter404

(Frank, 1997, legend of Figure 7). Our model is mechanistic; relatedness r necessarily405

depends on the mutation probability µ, because probabilities of identity by descent do.406

Mutation was also previously included in models investigating the maintenance of407

cooperative microorganisms in the presence of cheaters (Brockhurst et al., 2007; Frank,408

2010). In both of these models however, only loss-of-function mutation was considered,409

which corresponds to setting the mutation bias at ν = 0 in our model. This means that410

the all-cheaters state is absorbing; no matter how favored cooperators may otherwise be,411

in the long run, a finite population will only consist of cheaters.412

Cultural transmission413

Strategy transmission does not have to be genetic: it can be cultural. In our model, strat-414

egy transmission occurs upon reproduction, so this is a case of vertical cultural trans-415

mission.416

The model could nevertheless be interpreted as a representation of horizontal trans-417

mission, if we described reproduction as an instance of an individual convincing another418

one to update its strategy. The Moran Death-Birth model can be interpreted as a modi-419

fied imitation scheme (Boyd & Richerson, 2002; Ohtsuki et al., 2006; Traulsen et al., 2009)420

– with a specific function specifying who is imitated –, with mutation (Kandori et al.,421

1993), or as a voter model (Schneider et al., 2016). First, we choose uniformly at random422

an individual who may change its strategy; with probability µ the individual chooses a423

random strategy (altruistic with probability ν), and with probability 1−µ it imitates an-424

other individual. Who is imitated depends on the distance to the focal individual (with425

probability m it is a random individual in another deme) and on the “fecundities” of426

those individuals (as shown in table A2). With this interpretation of the updating rule427

however, there is not reproduction nor death anymore.428

It remains to be investigated how imperfect strategy transmission would affect the429

effect of population viscosity on the evolution of altruism in a model implementing both430

reproduction and horizontal cultural transmission (as in Lehmann et al., 2008). Such a431

model could then contrast the effects of impecfect genetic transmission and imperfect432

horizontal cultural transmission.433

Coevolution of dispersal and social behavior434

This work also raises the question of what would happen if dispersal (e.g., the emigra-435

tion probability m) could evolve as well. Recent work on the topic has shown that un-436

der some conditions disruptive selection could take place, leading to a polymorphism437

between sessile altruists and mobile defectors (Parvinen, 2013; Mullon et al., 2017)—438

though more complex coevolutionary patterns can be obtained when considering the439
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coevolution of altruism and mobility instead of natal dispersal, and unsaturated popu-440

lations (Le Galliard et al., 2005). The assumptions of these studies however differ from441

ours in important ways, in that they consider continuous traits and use an adaptive dy-442

namics framework, where, notably, mutations are assumed to be very rare. It remains to443

be investigated how non-rare and potentially large mutations would affect their result.444
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Figures554
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Figure 1: Within-deme relatedness of pairs of individuals R, as a function of the emigra-
tion probability m, for different values of the mutation probability µ (from 0 [blue] to 0.25
[orange]), and for the two types of life-cycles ((a): Moran, (b): Wright-Fisher). Other pa-
rameters: n = 4 individuals per deme, ND = 15 demes.
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Figure 2: Expected proportion of altruists under weak selection, as a function of the em-
igration probability m, for different mutation values (µ = 0.001 (blue, dots), 0.01 (purple,
squares), 0.1 (brown, diamonds), 0.25 (orange, triangles); the dashed blue lines corre-
spond to µ= 0) and different life-cycles ((a) Moran Death-Birth, (b) Moran Birth Death, (c)
Wright-Fisher). The curves are the analytical results, the points are the output of numer-
ical simulations. Parameters: δ = 0.005, ν = 0.45, b = 15, c = 1, n = 4 individuals per deme,
ND = 15 demes.
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Figure 3: Understanding the effect of emigration m on whether altruism is favored in the
Death-Birth life-cycle. (a) Comparison of the C/B ratio (thick black curve) and relatedness
R (thin curves) for different values of the mutation probability µ (same color code as previ-
ously). (b) (m, µ) combinations for which E

[
X

]> ν. The dotted horizontal lines correspond
to the mutation values used in panel (a). Unless specified, all other parameters are the
same as in figure 2.
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Supplementary figures555
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Figure A1: Equivalent of figure 2 (simulations only) but with strong selection (δ = 0.1);
please note the change of scale on the vertical axis. All other parameters and legends
are identical to those of figure 2 (increasing mutation probabilities from blue dots to orange
triangles).
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(c) Wright-Fisher
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Figure A2: Equivalent of figure 2 (simulations only) but with a heterogeneous population
structure: deme sizes range from 1 to 5 individuals per deme, the average deme size is 4
as in figure 2; all other parameters and legend are identical to those of figure 2.
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Figure A3: Equivalent of figure 2 (analysis only), with no self-replacement (di i = dself = 0
for all sites).
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Figure A4: Equivalent of figure 2 (analysis only), with equal dispersal and interaction
graphs (i.e., no self-replacement [di i = dself = 0 for all sites], and a proportion m of the
interactions occurring outside of the home deme).
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Supplementary Table556

b Sum of the marginal effects of deme-mates’ phenotypes on focal individual’s fecundity (benefit)
B Sum of the marginal effects of deme-mates’ phenotypes on the fitness W of a focal individual
Bi Expected number of successful offspring of the individual living at site i (r.v.)
B∗ Value of Bi for all sites, in the absence of selection (δ= 0)
c Marginal effect of a focal individual’s phenotype on its own fecundity (cost)
C Marginal effect of an individual’s phenotype on its own fitness W

di j Dispersal probability from site i to site j
Di Probability that the individual currently living at site i is dead at the end of the time step (r.v.)
ei j Interaction probability from site i to site j
fi Fecundity of the individual currently living at site i (r.v.)
n Deme size

ND Number of demes
N Total population size (N = ND n)
m Emigration probability

Pi j (Long-term) Expected state of the pair of sites (i , j )
Qi j (Long-term) Probability of identity by descent of individuals at sites i and j

R Pairwise within-deme relatedness (see eq. (5))
Wi Measure of fitness, counting offspring only when unmutated (see eq. (3))
Xi Indicator variable, equal to 1 if site i is occupied by an altruist, to 0 otherwise (r.v.)
X Frequency of altruists in the population (r.v.)
δ Phenotypic distance between altruists and defectors; strength of selection
φi Phenotype of the individual living at site i ; φi = δXi (r.v.)
µ Mutation probability
ν Mutation bias: probability that mutant is altruist
P Subscript corresponding to primary effects
S Subscript corresponding to secondary effects
• Subscript used to denote a focal individual
in Subscript used when i 6= j and the two sites are in the same deme

out Subscript used when the two sites i and j are in different demes
self Subscript used when i = j
0 Sub- or superscript meaning that a quantity is evaluated at δ= 0

BD Superscript corresponding to the Moran Birth-Death model
DB Superscript corresponding to the Moran Death-Birth model
M Superscript corresponding to a Moran model

WF Superscript corresponding to the Wright-Fisher model

Table A1: List of symbols. “r.v.” means random variable.
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Appendix557

A Mutation parameters558

In the main text, we first introduce effective mutation parameters: µ1→0, the probabil-559

ity that an altruist has defector offspring, and µ0→1, the probability that a defector has560

altruist offspring.561

A.1 Expected frequency of altruists at the mutation-drift balance562

We assume that there is no selection acting (δ = 0), but that there still are two types of563

individuals in the population.564

Let Y be the type of a randomly chosen individual (Y = 1 if the individual is an altruist565

and Y = 0 if it is a defector) in the population, given a proportion y of altruists in the566

population. In expectation, we have567

E
[
Y

]= y. (A1a)

Let Y ′ be the type of a randomly chosen individual at the next time step, given the fre-568

quency y at the previous time step. This randomly chosen individual is altruist if its par-569

ent was (which happens with probability y) and it did not mutate (probability 1−µ1→0),570

or if its parent was not altruist (probability 1− y), but the offspring mutated into one571

(probability µ0→1). We obtain572

E
[
Y ′]= y(1−µ1→0)+ (1− y)µ0→1. (A1b)

The expected frequency of altruists at the mutation-drift balance, denoted by ν, is found573

by solving E
[
Y

]= E
[
Y ′]. We obtain574

ν= µ0→1

µ1→0 +µ0→1
. (A2)

A.2 Parent-offspring correlation at the mutation drift balance575

We can then compute the parent-offspring type correlation at the mutation-drift bal-576

ance. First, let us compute the parent-offspring covariance:577

Cov
[
Y Y ′]= E

[
Y Y ′]−E

[
Y ′]E[Y

]
= ν(1−µ1→0)− (

ν(1−µ1→0)+ (1−ν)µ0→1
)
ν

= ν(1−ν)(1−µ1→0 −µ0→1).

(A3)

Remember that Y and Y ′ are indicator variables and therefore take value in {0,1}, so578

that Y 2 = Y (likewise for Y ′). Then, the standard deviations are given by579

σY =
√
E
[
Y 2

]−E
[
Y

]2 =
√
E
[
Y

]−E
[
Y

]2

=
√
ν(1−ν),

(A4)
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and580

σY ′ =
√
E
[
Y ′2]−E

[
Y ′]2 =

√
E
[
Y ′]−E

[
Y ′]2

=
√
ν(1−ν)(1−µ1→0 −µ0→1)− (ν(1−ν)(1−µ1→0 −µ0→1))2.

(A5)

Finally, the parent-offspring correlation is given by581

Corr
[
Y Y ′]= Cov

[
Y Y ′]

σY σY ′
;

using the formulas eq. (A3)–(A5), and replacing ν by its value (mutation-drift equilib-582

rium, eq. (A2)), we obtain583

Corr
[
Y Y ′]= 1− (µ1→0 +µ0→1) = 1−µ. (A6)

A.3 Redefining the mutation scheme584

With the new mutation parameters µ and ν, we can describe the mutation scheme dif-585

ferently.586

If we denote by Xi the type of a given parent, then the expected type of one of its587

offspring is588

E
[

X ′
i |Xi

]= Xi (1−µ1→0)+ (1−Xi )µ0→1 (A7a)

= Xi (1− (µ1→0 +µ0→1))+µ0→1.

Replacing µ1→0 and µ0→1 by equivalent combinations of µ and ν as defined in eq. (A6)589

and eq. (A2), i.e.,590

µ1→0 =µ(1−ν) and µ0→1 =µν, (A7b)

then eq. (A7a) becomes591

E
[

X ′
i |Xi

]= Xi (1−µ)+µν. (A7c)

We can redefine the mutation scheme and interpret eq. (A7c) as follows. Parents transmit592

their strategy to their offspring with probability 1−µ; with probability µ, offspring do not593

inherit their strategy from their parent but instead get one randomly: with probability ν,594

they become altruists, with probability 1−ν they become defectors. With this alternative595

description, we can call “mutants” individuals who have the same type as their parent.596
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B Expected frequency of altruists597

B.1 For a generic life cycle598

We want to compute the expected proportion of altruists in the population. We represent599

the state of the population at a given time t using indicator variables Xi (t ), 1 ≤ i ≤ N ,600

equal to 1 if the individual living at site i at time t is an altruist, and equal to 0 if it is601

a defector; these indicator variables are gathered in a N -long vector X(t ). The set of all602

possible population states isΩ= {0,1}N . The proportion of altruists in the population is603

written X (t ) = 1/N
∑N

i=1 Xi (t ). We denote by B j i (X(t ),δ), written B j i for simplicity, the604

probability that the individual at site j at time t + 1 is the newly established offspring605

of the individual living at site i at time t . The expected number of successful offspring606

produced by the individual living at site i at time t is given by Bi =∑N
j=1 B j i . We denote607

by Di (X(t ),δ) (Di for simplicity) the probability that the individual living at site i at time608

t has been replaced (i.e., died) at time t +1. These quantities depend on the chosen life609

cycle and on the state of the population; they are given in table A2 for each of the life610

cycles that we consider.611

life cycle B j i Di

Moran Birth-Death di j
fi∑N

k=1 fk

∑N
j=1 d j i f j∑N

k=1 fk

Moran Death-Birth
1

N

di j fi∑N
k=1 dk j fk

1

N

Wright-Fisher
di j fi∑N

k=1 dk j fk
1

Table A2: Formulas of B j i and Di for each of the life cycles that we consider; fi (shorthand
notation for fi (X ,δ)) is the fecundity of the individual living at site i , and d j i is a dispersal
probability, given in eq. (2) in the main text.

Since a dead individual is immediately replaced by one new individual (i.e., popula-612

tion size remains constant and equal to N ),613

Di =
N∑

j=1
Bi j (A8a)

holds for all sites i and all life cycles.614

The structure of the population is also such that in the absence of selection (δ= 0, so615

that fi = 1 for all sites 1 ≤ i ≤ N ), all individuals have the same probability of dying and616

the same probability of having successful offspring (i.e., of having offspring that become617

adults at the next time step), so that618

D0
i =

N∑
j=1

B 0
j i = B 0

i =: B∗, (A8b)
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where the 0 subscript means that the quantities are evaluated for δ= 0. This also implies619

that B 0
i j and D0

i do not depend on the state X of the population. For the Moran life cy-620

cles, B∗ = 1/N , while for the Wright-Fisher life cycle, B∗ = 1. (The difference between621

eq. (A8b) and eq. (A8a) is that we are now considering offspring produced by i landing622

on j ).623

Given that the population is in state X(t ) at time t , the expected frequency of altruists624

at time t +1 is given by625

E
[

X (t +1)|X(t )
]= 1

N

N∑
i=1

[
Bi (1−µ)Xi + (1−Di )Xi +Biµν

]
. (A9a)

The first term within the brackets corresponds to births of unmutated offspring from626

parents who are altruists (Xi ). The second term corresponds to the survival of altruists.627

The third term corresponds to the births of mutants who became altruists (which occurs628

with probability ν), whichever the type of the parent.629

A lost strategy can always be created again by mutation, so there is no absorbing630

population state. There exists a stationary distribution of population states (Theorem 1631

in Allen & Tarnita (2014)). In other words, for large times t , the expected frequency of632

altruists does not change anymore (of course, realized frequencies keep changing over633

time). We denote by ξ(X,δ,µ) the probability that the population is in state X, given634

the strength of selection δ and the mutation probability µ. Taking the expectation of635

eq. (A9a) (E
[

X
]=∑

X∈Ω X ξ(X,δ,µ)), we obtain, after reorganizing:636

0 = 1

N

∑
X∈Ω

[
N∑

i=1

(
Bi (1−µ)Xi −Di Xi

)+ N∑
i=1

Biµν

]
ξ(X,δ,µ). (A10)

Now, we use the assumption of weak selection (δ¿ 1) and consider the first-order637

expansion of eq. (A10) for δ close to 0.638

0 = 1

N

∑
X∈Ω

[
N∑

i=1

(
B 0

i (1−µ)Xi −D0
i Xi

)+ N∑
i=1

B 0
i µν

]
ξ(X,0,µ)

+ δ

N

∑
X∈Ω

[
N∑

i=1

(
∂Bi (1−µ)−Di

∂δ
Xi

)
+

N∑
i=1

∂Bi

∂δ
µν

]
ξ(X,0,µ)

+ δ

N

∑
X∈Ω

[
N∑

i=1

(
B 0

i (1−µ)Xi −D0
i Xi

)+ N∑
i=1

B 0
i µν

]
∂ξ(X,δ,µ)

∂δ
+O(δ2),

(A11)

where all the derivatives are evaluated for δ = 0. The first line of eq. (A11) is equal to639

zero, because B 0
i −D0

i = 0 (eq. (A8b)), and because in the absence of selection (δ = 0),640

the expected state of every site i is E0
[

Xi
] = ∑

X∈Ω Xiξ(X ,0,µ) = ν (by definition of ν,641

see Appendix A.1). The second term of the second line is zero, because for all the life642

cycles that we consider, the total number of births in the population during one time643

step (
∑N

i=1 Bi ) does not depend on population phenotypic composition (it is exactly 1644

death for the Moran life cycles, and exactly N for the Wright-Fisher life cycle); since it is645

a constant, its derivative is 0. The third line simplifies by noting again that B 0
i = D0

i (first646
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term), and that
∑

X∈Ω
∂ξ(X,δ,µ)

∂δ = 0 since ξ is a probability distribution (so the second term647

is zero). Eq. (A11) then becomes648

0 = δ

N

N∑
i=1

[ ∑
X∈Ω

(
∂Bi

∂δ
(1−µ)− ∂Di

∂δ

)
Xiξ(X,0,µ)− ∑

X∈Ω
µB∗Xi

∂ξ

∂δ

]
+O

(
δ2) , (A12)

where the derivatives are evaluated at δ= 0. For conciseness, we define649

Wi = (1−µ)Bi + (1−Di ), (A13)

a measure of fitness counting offspring only when they are unmutated (in the sense of650

the alternate mutation scheme described in Appendix A.3). With this, using the expec-651

tation notation, and denoting by E0
[]

expectations under δ= 0, we can rewrite and reor-652

ganize eq. (A12) as653

δµB∗ ∂E
[

X
]

∂δ
= δ

N

N∑
i=1

E0
[∂Wi

∂δ
Xi

]+O
(
δ2) . (A14)

Now, we use a first time the law of total probabilities, taking individual phenotypes φk654

are intermediate variables:655

∂Wi

∂δ
=

N∑
k=1

∂Wi

∂φk

∂φk

∂δ

=
N∑

k=1

∂Wi

∂φk
Xk , (A15)

by definition of φk (φk = δXk ), and where the derivatives are evaluated for all φi = 0,656

1 ≤ i ≤ N . Introducing the notation Pi j = E0
[

Xi X j
]

(expected state of a pair of sites),657

eq. (A14) becomes658

δµB∗ ∂E
[

X
]

∂δ
= δ

N

N∑
i=1

N∑
k=1

∂Wi

∂φk
Pi k +O

(
δ2) . (A16)

We note that Pi i = E0
[

Xi Xi
]= E0

[
Xi

]= ν (Xi being an indicator variable, it is either equal659

to 0 or 1, so X 2
i = Xi ). Given that the size of the population is fixed (

∑N
i=1(Bi −Di ) = 0),660

and given that the total number of births does not depend on population composition661

in the life cycles that we consider, we have662

N∑
i=1

∂Wi

∂δ

∣∣∣∣
δ=0

= 0. (A17a)

Using the decomposition in eq. (A15), which is valid for any population composition,663

and so in particular for X = 1, eq. (A17a) becomes664

N∑
i=1

N∑
k=1

∂Wi

∂φk

∣∣∣∣
φ=0

= 0. (A17b)

So far, we have not used the specificities of the population structure that we consider.665

First, the population is homogeneous (sensu Taylor et al., 2007a). Because this popula-666

tion homogeneity, eq. (A17b) is valid for all i (not just their sum). Secondly, we are con-667
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sidering an island model. Once we have fixed a focal individual i , in expectation there668

are only three types of individuals: the focal itself (denoted by “•”), n −1 other individu-669

als in the focal’s deme (denoted by “in”), and N −n individuals in other demes (denoted670

by “out”). With these considerations, eq. (A17b) becomes671

∂Wi

∂φi
+ (n −1)

∂Wi

∂φin
+ (N −n)

∂Wi

∂φout
= 0. (A17c)

(as previously shown by (Rousset & Billiard, 2000, p.817–818)). Using this island model-672

specific notation, eq. (A16) becomes673

δµB∗ ∂E
[

X
]

∂δ
= δ

N

N∑
i=1

(
∂Wi

∂φi
Pi i + (n −1)

∂Wi

∂φin
Pin + (N −n)

∂Wi

∂φout
Pout

)
+O

(
δ2) ;

Injecting eq. (A17c) into eq. (A16), we obtain674

δµB∗ ∂E
[

X
]

∂δ
= δ

N

N∑
i=1

(
∂Wi

∂φi
+ (n −1)

∂Wi

∂φin

Pin −Pout

Pi i −Pout

)
(Pi i −Pout)+O

(
δ2) . (A18)

We can also replace the P terms as follows:675

Pi j =Qi jν+ (1−Qi j )ν2

= ν2 +ν(1−ν)Qi j .
(A19)

In Appendix C.1, using recursions on Pi j , we will see that Qi j can be interpreted as a676

probability of identity by descent, i.e., the probability that the individuals at sites i and j677

have a common ancestor and that no mutation (using the alternative mutation scheme678

described in Appendix A.3) has occurred on either lineage since the ancestor. Replacing679

the P terms with eq. (A19), and noting that Qi i = 1, eq. (A18) becomes680

δµB∗ ∂E
[

X
]

∂δ
= δ

N

N∑
i=1

(
∂Wi

∂φi︸ ︷︷ ︸
−C

+ (n −1)
∂Wi

∂φin︸ ︷︷ ︸
B

Qin −Qout

1−Qout︸ ︷︷ ︸
R

)
(1−Qout)ν(1−ν)+O

(
δ2) . (A20)

We can further decompose the derivatives, now using the fecundities f` as interme-681

diate variables, i.e.,682

∂Wi

∂φk
=

N∑
`=1

∂Wi

∂ f`

∂ f`
∂φk

. (A21)

The term ∂ f`
∂φk

is the marginal effect of a change in the phenotype of the individual683

living at site k on the fecundity of the individual living at site `. By assumption, social684

interactions take place within demes only, so whenever sites ` and k are in different685

demes, we have ∂ f`
∂φk

= ∂ f`
∂φout

= 0. We then need to characterize the effect of one’s own686

phenotype (i.e., k = `) and of another deme-mate’s phenotype (k and ` being different687
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sites in the same deme) on fecundity. For this, we define b and c so that:688

∂ f`
∂φ`

∣∣∣∣
δ=0

=−c, (A22a)

∂ f`
∂φin

∣∣∣∣
δ=0

= b

n −1
. (A22b)

Eq. (A20) then becomes (using notation • to refer to the focal individual itself, and where689

W =Wi , since the derivatives are the same for all i ):690

δµB∗ ∂E
[

X
]

∂δ
= δν(1−ν)(1−Qout)×(

∂W

∂ f•
(−c)+ ∂W

∂ fin
b︸ ︷︷ ︸

−C

+
(
∂W

∂ f•
b+ (n −1)

∂W

∂ fin
(−c)+ (n −2)

∂W

∂ fin
b

)
︸ ︷︷ ︸

B

Qin −Qout

1−Qout︸ ︷︷ ︸
R

)
+O

(
δ2) .

(A23)

(As previously, all derivatives are evaluated at δ= 0.)691

Finally, we write a first-order approximation of the expected frequency of altruists in692

the population:693

E
[

X
]= E0

[
X

]+δ ∂E
[

X
]

∂δ

∣∣∣∣∣
δ=0

+O
(
δ2) . (A24)

The first term, E0
[

X
]
, is the expected frequency in the absence of selection; it is equal694

to ν (as introduced in eq. (A2)). The derivative
∂E

[
X
]

∂δ

∣∣∣∣
δ=0

is obtained from eq. (A23). We695

then need to replace the Bi and Di terms by their formulas for each life cycle; they are696

given in table A2. This is how the expected frequency of altruists in the population is697

approximated.698

B.2 Derivatives for the specific life cycles699

We use the formulas presented in table A2 and the definition of W =Wi given in eq. (A13)700

for each life cycle. In eq. (A26), eq. (A28) and eq. (A30), the first lines within parentheses701

correspond to primary effects, and the second line to secondary effects.702

Moran Birth-Death Under this life cycle, we obtain703

∂W BD

∂ f•

∣∣∣∣
δ=0

= (1−µ)

(
1

N
− 1

N 2

)
−

(
1−m

nN
− 1

N 2

)
= 1−µ

N
+ µ

N 2 − 1−m

nN
, (A25a)

∂W BD

∂ fin

∣∣∣∣
δ=0

= (1−µ)

(
− 1

N 2

)
−

(
1−m

nN
− 1

N 2

)
= µ

N 2 − 1−m

nN
. (A25b)

Appendix B 31 2019-08-14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/609818doi: bioRxiv preprint 

https://doi.org/10.1101/609818
http://creativecommons.org/licenses/by/4.0/


With these derivatives, eq. (5) becomes704

E
[

X
]≈ ν+ δ

µ
ν(1−ν)(1−QM

out)×[ (1−µ)(−c)

+(b−c)

(
µ

N
− 1−m

n

)
︸ ︷︷ ︸

−CBD

+
 (1−µ)b

+(b−c)(n −1)

(
µ

N
− 1−m

n

)
︸ ︷︷ ︸

BBD

QM
in −QM

out

1−QM
out︸ ︷︷ ︸

RM

]
,

(A26)

In addition, for both Moran life cycles, we have B∗
M = 1/N . The secondary effects (sec-705

ond line in the parentheses in eq. (A26)) include competitive effects on the probability706

of reproducing, and consequences of social interactions on the probability that a given707

individual dies. Note that the secondary effects remain negative for the realistic range of708

emigration values that we consider (i.e., m < 1−1/ND ).709

Moran Death-Birth Under this life cycle, we obtain710

∂W DB

∂ f•

∣∣∣∣
δ=0

= 1−µ
N

[
1−

(
(1−m)2

n
+ m2

N −n

)]
, (A27a)

∂W DB

∂ fin

∣∣∣∣
δ=0

=−1−µ
N

(
(1−m)2

n
+ m2

N −n

)
. (A27b)

With the Death-Birth life cycle, eq. (5) becomes711

E
[

X
]≈ ν+ δ

µ
ν(1−ν)(1−QM

out)×[(
(1−µ)(−c)

−(b−c)(1−µ)
(

(1−m)2

n + m2

N−n

))
︸ ︷︷ ︸

−CDB

+
(

(1−µ)b

−(b−c)(n −1)(1−µ)
(

(1−m)2

n + m2

N−n

))
︸ ︷︷ ︸

BDB

QM
in −QM

out

1−QM
out︸ ︷︷ ︸

RM

]
,

(A28)

With this life cycle, Death occurs first, and the probability of dying is independent from712

the state of the population (since we assume that social interactions affect fecundity. We713

can therefore factor (1−µ) in all terms. The primary effects (first lines in the parentheses)714

remain the same as with the Birth-Death life cycle. However, the Death-Birth life cycle715

leads to different secondary effects compared to the Birth-Death life cycle: competition716

occurs at a different scale (Grafen & Archetti, 2008). Finally, with this life cycle as we717

defined it, the probabilities of identity by descent Q are the same as with the Birth-Death718

model.719

Wright-Fisher Under this life cycle, we obtain720

∂W WF

∂ f•

∣∣∣∣
δ=0

= (1−µ)

[
1−

(
(1−m)2

n
+ m2

N −n

)]
, (A29a)

∂W WF

∂ fin

∣∣∣∣
δ=0

=−(1−µ)

(
(1−m)2

n
+ m2

N −n

)
. (A29b)
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For the Wright-Fisher life cycle, we have B∗
WF = 1. Replacing the derivatives presented in721

eq. (A29) into eq. (5), we obtain722

E
[

X
]≈ ν+ δ

µ
ν(1−ν)(1−QWF

out)×[(
(1−µ)(−c)

−(b−c)(1−µ)
(

(1−m)2

n + m2

N−n

))
︸ ︷︷ ︸

−CWF

+
(

(1−µ)b

−(b−c)(n −1)(1−µ)
(

(1−m)2

n + m2

N−n

))
︸ ︷︷ ︸

BWF

QWF
in −QWF

out

1−QWF
out︸ ︷︷ ︸

RWF

]
,

(A30)

The only – but important – difference between eq. (A30) and eq. (A28) is the value of723

the probabilities of identity by descent Q, because the number of individuals that are724

updated at each time step differs.725
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C Probabilities of identity by descent726

C.1 Expected state of pairs of sites and probabilities of identity by descent727

Here we show the link between the expected state of a pair of sites Pi j and probabilities728

of identity by descent Qi j . In our derivation of E
[

X
]
, Pi j is the quantity that appears, but729

most studies use Qi j . Both are evaluated in the absence of selection (δ= 0).730

C.1.1 Moran model731

These calculations apply to both the Death-Birth and Birth-Death updating rules.732

In a Moran model, exactly one individual dies and one individual reproduces during one733

time step. Given a state X at time t , at time t +1 both sites i and j 6= i are occupied by734

altruists, if i) it was the case at time t and neither site was replaced by a non-altruist (first735

term in eq. (A31)), or ii) if exactly one of the two sites was occupied by a non-altruist at736

time t , but the site was replaced by an altruist (second and third terms of eq. (A31)):737

E
[

Xi X j (t +1)|X (t ) = X
]=Xi X j

(
1−

N∑
k=1

1

N

(
dki +dk j

)(
(1−Xk )(1−µ)+µ(1−ν)

))

+Xi (1−X j )
N∑

k=1

1

N
dk j

(
Xk (1−µ)+µν)

(A31)

+X j (1−Xi )
N∑

k=1

1

N
dki

(
Xk (1−µ)+µν)

.

We take the expectation of this quantity, and consider that the stationary distribution738

is reached (t →∞); then E
[

Xi X j (t +1)
] = E

[
Xi X j (t )

]
, and we obtain after a few lines of739

algebra:740

Pi j = 1

2

(
N∑

k=1
(1−µ)

(
dk j Pki +dki Pk j

))+µν2 (i 6= j ), (A32)

while Pi i = ν.741

Now we substitute Pi j = ν2 +ν(1−ν)Qi j in eq. (A32), we obtain742

Qi j = 1

2

N∑
k=1

(1−µ)
(
dki Qk j +dk j Qki

)
, (A33)

and we realize that Qi j is the probability that the individuals at sites i and j 6= i are iden-743

tical by descent (e.g., Taylor et al. (2011), equation above (S1.11); Allen & Nowak (2014)744

eq. (4)). To compute it indeed, we need to pick which site was last updated (i or j with745

equal probabilities: 1/2), then sum over the possible parent (k); the other individual746

needs to be identical by descent to the parent (Qk j , Qki ), disperse to the considered site747

(dki , dk j ), and no mutation should have occurred (1−µ).748
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C.1.2 Wright-Fisher model749

In a Wright-Fisher model, all individuals are replaced at each time step, so we directly750

consider the state of the parents:751

E
[

Xi X j (t +1)|X (t ) = X
]= N∑

k,`=1
dki d` j

(
Xk X`(1−µ+µν)2

+ (Xk (1−X`)+ (1−Xk )X`) (1−µ+µν)(µν)

+ (1−Xk )(1−X`)(µν)2
)

(A34)

The first term of eq. (A34) corresponds to both parents being altruists, and having altruist752

offspring; the second line corresponds to exactly one parent being altruist, and the third753

line to both parents being non-altruists (in this latter case, the two offspring have to be754

both mutants to be altruists).755

Taking the expectation and simplifying, we obtain756

Pi j =
N∑

k,`=1

(
Pkl (1−µ)2)+ (2−µ)µν2. (A35)

Replacing Pi j by ν2 +ν(1−ν)Qi j , eq. (A35) becomes757

Qi j =
N∑

k,`=1
dki d` j Qk`(1−µ)2. (A36)

Again, Qi j corresponds to a probability of identity by descent: the individuals at sites i758

and j are identical by descent if their parents were and if neither mutated ((1−µ)2).759

Appendix C 35 2019-08-14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/609818doi: bioRxiv preprint 

https://doi.org/10.1101/609818
http://creativecommons.org/licenses/by/4.0/


C.2 Probabilities of identity by descent in a subdivided population760

Two individuals are said to be identical by descent if there has not been any mutation on761

either lineage since their common ancestor. Because of the structure of the population,762

there are only three types of pairs of individuals, and hence three different values of the763

probabilities of identity by descent of pairs of sites Qi j :764

Qi j =


1 when i = j ;

Qin when i 6= j and both sites are in the same deme;

Qout when sites i and j are in different demes.

(A37)

The values of Qin and Qout depend on the type of life cycle that we consider.765

When the number of demes is infinite, Qin is relatively easily obtained using recur-766

rence equations and noting that Qout = 0. However, writing the recurrence equations for767

Qin and Qout is much more tedious for finite populations. Hence, for finite populations,768

we will use formulas already derived in Débarre (2017) for “two-dimensional population769

structures”. The name comes from the fact that we only need two types of transforma-770

tions to go from any site to any other site in the population: permutations on the deme771

index, and permutations on the within-deme index.772

We rewrite site labels (1 ≤ i ≤ N ) as (`1,`2), where `1 is the index of the deme (1 ≤ `1 ≤773

ND ) and `2 the position of the site within the deme (1 ≤ `2 ≤ n). Then, we introduce774

notations d̃i1
i2

and Q̃i1
i2

, that correspond to the dispersal probability and probability of775

identity by descent to a site at distances i1 and i2 in the among-demes and within-deme776

dimensions (e.g., d̃i1
i2

= d j1
j2

,
j1+i1
j2+i2

.)777

Also, in this section, we distinguish between dself = di i and din (in the main text,778

dself = din).779

C.2.1 Moran model780

In Débarre (2017), it was shown that781

Q̃r1
r2
= 1

N

N1−1∑
q1=0

N2−1∑
q2=0

µλ′
M

1− (1−µ)D̃q1
q2

exp

(
ı

2πq1r1

N1

)
exp

(
ı

2πq2r2

N2

)
(A38a)

with782

D̃q1
q2

=
N1−1∑
`1=0

N2−1∑
`2=0

d̃`1
`2

exp

(
−ı

2πq1`1

N1

)
exp

(
−ı

2πq2`2

N2

)
, (A38b)
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andλ′
M such that Q̃0

0
= 1. Let us first compute D̃q1

q2

in the case of a subdivided population,783

with N1 = ND and N2 = n:784

D̃q1
q2

= dself +
N2−1∑
`2=1

din exp

(
−ı

2πq2`2

N2

)
+

N1−1∑
`1=1

N2−1∑
`2=0

dout exp

(
−ı

2πq1`1

N1

)
exp

(
−ı

2πq2`2

N2

)
= dself +

(
δq2 (N2 −1)+ (1−δq2 )(−1)

)
din +

(
δq1 (N1 −1)+ (1−δq1 )(−1)

)(
δq2 N2

)
dout

= dself +
(
δq2 N2 −1

)
din +

(
δq1 N1 −1

)
δq2 N2dout. (A39a)

(δq is equal to 1 when q is equal to 0 modulo the relevant dimension, and to 0 other-785

wise). So for the three types of distances that we need to consider (distance 0, distance786

to another deme-mate, distance to individual in another deme), and with N1 = ND and787

N2 = n, we obtain788

D̃0
0
= 1, (A40a)

D̃q1
0
= 1−m − m

ND −1
(q1 6≡ 0 (mod N1)), (A40b)

D̃q1
q2

= dself −din (q2 6≡ 0 (mod N2)). (A40c)

So for Q̃, using system (A40) in eq. (A38a),789

Q̃r1
r2
= µλ′

M

N

[
1

1− (1−µ)D̃0
0

+
N2−1∑
q2=1

1

1− (1−µ)D̃ 0
q2

exp

(
−ı

2πq2r2

N2

)

+
N1−1∑
q1=1

1

1− (1−µ)D̃q1
0

exp

(
−ı

2πq1r1

N1

)

+
N1−1∑
q1=1

N2−1∑
q2=1

1

1− (1−µ)D̃q1
q2

exp

(
−ı

2πq1r1

N1

)
exp

(
−ı

2πq2r2

N2

)]

= µλ′
M

N

[
1

1− (1−µ)
+ 1

1− (1−µ)(dself −din)
(δr2 N2 −1)

+ 1

1− (1−µ)(1−m − m
ND−1 )

(δr1 N1 −1)

+ 1

1− (1−µ)(dself −din)
(δr1 N1 −1)(δr2 N2 −1)

]
. (A41)

In particular,790

Q̃0
0
= µλ′

M

N

[
1

µ
+ 1

1− (1−µ)(dself −din)
(n −1)+ 1

1− (1−µ)(1−m − m
ND−1 )

(ND −1)

+ 1

1− (1−µ)(dself −din)
(ND −1)(n −1)

]
= 1. (A42a)
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We find λ′
M using eq. (A42a). Let’s now go back to eq. (A41): when r1 = 0, the two indi-791

viduals are in the same deme. The two individuals are different when r2 6≡ 0, and so:792

Qin = µλ′
M

N

[
1

µ
+ 1

1− (1−µ)(dself −din)
(−1)+ 1

1− (1−µ)(1−m − m
ND−1 )

(D −1)

+ 1

1− (1−µ)(dself −din)
(D −1)(−1)

]
. (A42b)

And when r1 6≡ 0, the two individuals are in different demes:793

Qout =
µλ′

M

N

[
1

µ
+ 1

1− (1−µ)(dself −din)
(−1)+ 1

1− (1−µ)(1−m − m
ND−1 )

(−1)

+ 1

1− (1−µ)(dself −din)

]
. (A42c)

With dself = din = (1−m)/n, we eventually obtain:794

QM
in = (1−µ)

(
m +µ(ND (1−m)−1)

)
(1−µ)m(NDµ(n −1)+1)+ (ND −1)µ(µ(n −1)+1)

, (A43a)

QM
out =

(1−µ)m

(1−µ)m(NDµ(n −1)+1)+ (ND −1)µ(µ(n −1)+1)
. (A43b)

The probability that two different deme-mates are identical by descent, QM
in , decreases795

monotonically with the emigration probability m, while QM
out monotonically increases796

with m (see figure A5(a)).797

When the mutation probability µ is vanishingly small (µ→ 0), both QM
in and QM

out are798

equal to 1: in the absence of mutation indeed, the population ends up fixed for one of799

the two types, and all individuals are identical by descent. Note that we obtain a different800

result if we first assumed that the size of the population is infinite (ND →∞), because the801

order of limits matters; for instance, limND→∞QM
out = 0.802

Relatedness R was defined in eq. (A20) as803

R = Qin −Qout

1−Qout
.

Using eq. (A43), relatedness under the Moran model is given by804

RM = (1−µ)(ND (1−m)−1)

ND (1−µ)m(n −1)+ (ND −1)(1+µ(n −1))
. (A44)

When there is an infinite number of demes (ND →∞) and mutation is vanishingly small805

(µ→ 0), we recover806

lim
µ→0

lim
ND→∞

RM = lim
ND→∞

lim
µ→0

RM = 1−m

1+m(n −1)
. (A45)
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C.2.2 Wright-Fisher807

For the Wright-Fisher updating, the equation for Q̃ is different:808

Q̃r1
r2
= 1

N

N1−1∑
q1=0

N2−1∑
q2=0

µλ′
W F

1− (1−µ)2(D̃q1
q2

)2
exp

(
−ı

2πq1r1

N1

)
exp

(
−ı

2πq2r2

N2

)
, (A46)

with D̃ given in eq. (A38b). In a subdivided population, with N1 = ND and N2 = n, this809

becomes810

Q̃r1
r2
= 1

N

[
µλ′

W F

1− (1−µ)2(D̃0
0

)2
+

N2−1∑
q2=1

µλ′
W F

1− (1−µ)2(D̃ 0
q2

)2
exp

(
−ı

2πq2r2

N2

)

+
N1−1∑
q1=1

µλ′
W F

1− (1−µ)2(D̃q1
0

)2
exp

(
−ı

2πq1r1

N1

)

+
N1−1∑
q1=1

N2−1∑
q2=1

µλ′
W F

1− (1−µ)2(D̃q1
q2

)2
exp

(
−ı

2πq1r1

N1

)
exp

(
−ı

2πq2r2

N2

)]

= µλ′
W F

N

[
1

1− (1−µ)2 + 1

1− (1−µ)2(dself −din)2 (δq2 N2 −1)

+ 1

1− (1−µ)2(1−m − m
ND−1 )2 (δq1 N1 −1)

+ 1

1− (1−µ)2(dself −din)2 (δq1 N1 −1)(δq2 N2 −1)

]
= µλ′

W F

N

[
1

1− (1−µ)2 + 1

1− (1−µ)2(dself −din)2 (δq2 N2 −1)δq1 N1

+ 1

1− (1−µ)2(1−m − m
ND−1 )2 (δq1 N1 −1)

]
. (A47)

To find λ′
W F , we solve Q̃0

0
= 1, i.e.,811

1 = µλ′
W F

N

[
1

1− (1−µ)2 +
1

1− (1−µ)2(dself −din)2 (N2−1)N1+ 1

1− (1−µ)2(1−m − m
ND−1 )2 (N1−1)

]
.

(A48a)
Then from eq. (A47) we deduce812

Qin = µλ′
W F

N

[
1

1− (1−µ)2 −
1

1− (1−µ)2(dself −din)2 N1+ 1

1− (1−µ)2(1−m − m
ND−1 )2 (N1−1)

]
.

(A48b)
and813

Qout =
µλ′

W F

N

[
1

1− (1−µ)2 − 1

1− (1−µ)2(1−m − m
d−1 )2

]
. (A48c)
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With dself = din = (1−m)/n, we obtain:814

QWF
in = −ND +M1 +M2

(n −1)ND +M1 +M2
, (A49a)

QWF
out =

− 1
ND−1 M1 +M2

(n −1)ND +M1 +M2
, (A49b)

with815

M1 = ND −1

1− (1−µ)2(ND (1−m)−1)2

(ND−1)2

and M2 = 1

1− (1−µ)2 .

(These formulas are compatible with, e.g., results presented by Cockerham & Weir (1987),816

adapted for haploid individuals).817

In the Wright-Fisher life cycle, QWF
in decreases until m = mWF

c = ND−1
ND

, while QW F
out follows818

the opposite pattern. The threshold value mWF
c corresponds to an emigration probability819

so high that din = dout.820

The two probabilities of identity by descent go to 1 when the mutation probability821

µ is very small (µ→ 0), except if we first assume that the number of demes is very large822

(ND →∞); for instance, with this life cycle as well, limND→∞QWF
out = 0.823

Also, because more sites (all of them, actually) are updated at each time step, Qin is824

lower for the Wright-Fisher updating than for a Moran updating, under which only one825

site is updated at each time step (compare figure A5(a) and A5(b)).826

(a) Moran
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(b) Wight-Fisher
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Figure A5: Probabilities of identity by descent, for two different individuals within the same
deme (Qin, full curves) and two individuals in different demes (Qout, dashed curves), as a
function of the emigration probability m, for different values of the mutation probability µ

(0.001, 0.01, 0.1), and for the two types of life cycles ((a): Moran, (b): Wright-Fisher). Other
parameters: n = 4 individuals per deme, ND = 15 demes.

Combining the formulas presented in eq. (A49), we obtain827

RWF = (1−ND (1−m))2(1−µ)2

DWF
, (A50)

with828

DWF =1−ND (2(1+m(n −1))−ND (1+ (2−m)m(n −1)))−2µ

+2(ND (ND (1−m)−2)(1−m)(n −1)+n)µ− (1−ND (1−m))2(n −1)µ2.

Appendix C 40 2019-08-14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/609818doi: bioRxiv preprint 

https://doi.org/10.1101/609818
http://creativecommons.org/licenses/by/4.0/


When the number of demes is very large and mutation is vanishingly small, eq. (A50)829

reduces to830

lim
µ→0

lim
ND→∞

RWF = lim
ND→∞

lim
µ→0

RWF = (1−m)2

1+ (2−m)m(n −1)
. (A51)
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