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Abstract 

Nasopharyngeal carcinoma (NPC) is the most prevalent head and neck malignancy in 

South China and Southeast Asia. The main NPC treatment strategy is radiotherapy. 

However, recurrence resulting from radioresistance is a leading clinical bottleneck. 

Revealing the mechanism of NPC radioresistance would help improve the therapeutic 

effect. Here, our work reveals that TRIM21 (tripartite motif–containing 21) functions 

as an oncogene in NPC progression, and its ablation increases NPC cell 

radiosensitivity. Further analysis indicated that TRIM21 represses TP53 expression by 

mediating GMPS (guanine monophosphate synthase) ubiquitination and degradation 

after ionizing radiation. Mass spectrometry and co-immunoprecipitation showed that 

SERPINB5 (serpin family B member 5) interacts with both TRIM21 and GMPS. 

Epistatic analysis showed that SERPINB5 acts as an adaptor to recruit GMPS and 

introduce TRIM21 for ubiquitination. The in vitro and in vivo results validated the 

finding that SERPINB5 promotes NPC cell radioresistance. Furthermore, 

immunohistochemistry indicated that radioresistant patients have higher SERPINB5 

expression. Overall, our data show that TRIM21–SERPINB5-mediated GMPS 

degradation facilitates TP53 repression, which promotes the radioresistance of NPC 

cells. 
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Introduction 

Nasopharyngeal carcinoma (NPC) is a malignant head and neck cancer with apparent 

regional aggregation (Jemal, Bray et al., 2011, McDermott, Dutt et al., 2001, Wei & 

Sham, 2005). Radiotherapy is the most effective treatment strategy against NPC. With 

modern intensity-modulated radiation therapy, the 5-year overall survival rate of 

patients with NPC is increased to nearly 80% (Wu, Liu et al., 2017). However, about 

20% of patients with locoregionally advanced disease will have local or regional 

recurrence, and 90% of the recurrence is in the radiation field (Yi, Gao et al., 2006), 

owing to radioresistance of the tumor cells. Therefore, revealing the underlying 

mechanism governing NPC radioresistance would shed light on new clinical therapy 

and help improve the curative effect. 

Upon DNA damage resulting from ionizing radiation or cytotoxic drugs, TP53 

will activate the DNA repair system to maintain the integrity of the whole genome, 

while the apoptotic process will be started if the DNA damage proves irreparable. 

TP53-governed apoptosis is considered the main cause of ionizing radiation–induced 

cell death, despite the fact that some cancer cells undergo TP53-independent 

apoptosis (Afshar, Jelluma et al., 2006, Strasberg Rieber, Zangemeister-Wittke et al., 

2001). Therefore, the radioresistant tumor cells are often accompanied by TP53 

mutation or repression, high levels of BCL2, or inhibition of the other 

apoptosis-related genes (Brown & Wouters, 1999, Leone, Humar et al., 1997, McGill 

& Fisher, 1997, Reed, Miyashita et al., 1996, Yaes, 1989). In NPC, it has been 

suggested that latent membrane protein 1 (LMP1), encoded by Epstein–Barr virus, 

blocks apoptosis and thereby facilitates radioresistance of the tumor cells (Lu, Ma et 

al., 2008). Moreover, microRNA-205 inhibits apoptosis by repressing phosphatase 

and tensin homolog (PTEN) expression in NPC (Qu, Liang et al., 2012). However, the 

mechanism of NPC radioresistance remains largely unknown. 

TP53 is not frequently mutated in NPC (Lo, Mok et al., 1992, Sun, Hegamyer et 

al., 1992). Consequently, it appears that TP53 expression and its related signaling 

might be suppressed in radioresistant NPC cells. The protein stability of TP53 is 

mainly modulated by the interplay between the ubiquitination ligase MDM2 (MDM2 
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proto-oncogene) and the deubiquitylating enzymes (Brooks & Gu, 2011, Frappier & 

Verrijzer, 2011). In normal conditions, TP53 ubiquitination and degradation sustains 

its low levels in the nucleus. Upon radiation or other genotoxic triggers, TP53 

deubiquitylation is accelerated and the TP53 expression level increases 

correspondingly. Several ubiquitin-specific protease (USP) family members, 

including USP7 (Li, Chen et al., 2002), USP10 (Yuan, Luo et al., 2010), and USP42 

(Hock, Vigneron et al., 2011), are involved in maintaining TP53 protein stability. 

However, how TP53 is manipulated in radioresistant NPC cells remains obscure. 

Previously, our work indicated that tripartite motif–containing 21 (TRIM21) 

functions as an oncogene during NPC progression (Zhang, Li et al., 2018). Moreover, 

TRIM21 can repress TP53 expression by promoting guanine monophosphate synthase 

(GMPS) ubiquitination and degradation in genotoxic stress conditions (Reddy, van 

der Knaap et al., 2014). GMPS also interacts with USP7 to mediate gene transcription 

or H2B deubiquitylation in human cells (Frappier & Verrijzer, 2011, van der Knaap, 

Kozhevnikova et al., 2010, van der Knaap, Kumar et al., 2005). Whether the 

TRIM21–GMPS cascade is conserved in NPC and how this cascade regulates TP53 

are all unclear. 

Serpin family B member 5 (SERPINB5), also known as MASPIN, was first 

reported to function as a tumor repressor gene in breast cancer (Zou, Anisowicz et al., 

1994). However, immunohistochemistry staining in a subsequent study revealed 

higher SERPINB5 expression levels in patients with breast cancer who had worse 

prognosis (Umekita, Ohi et al., 2002), complicating matters. A recent finding 

suggested that SERPINB5 function is determined by its cellular localization and that 

SERPINB5 plays a tumor suppressor role only when localized in the nucleus (Goulet, 

Kennette et al., 2011). In NPC, the functional mechanism of SERPINB5 is unknown. 

Here, we show that TRIM21 prevented apoptosis in NPC cells after ionizing 

radiation by mediating GMPS ubiquitination and degradation. Mass spectrometry 

(MS) and co-immunoprecipitation revealed that SERPINB5 interacts with TRIM21 to 

facilitate GMPS repression. Moreover, SERPINB5 acts as an adaptor to recruit GMPS 

protein independent of TRIM21 expression, which was strengthened after radiation. 
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NPC specimens from radioresistant patients had higher SERPINB5 expression levels 

than radiosensitive patients, suggesting the potential application of SERPINB5 in 

distinguishing radioresistant patients clinically. 

 

Results 

First, we examined the function of TRIM21 in NPC. TRIM21 mRNA expression 

levels in NPC cell lines were significantly upregulated (Fig 1A), as was that in NPC 

biopsy samples (Gene Series Expression [GSE]81672252, Fig 1B). Moreover, higher 

TRIM21 expression levels predicted poorer overall survival in head and neck 

squamous cell carcinoma (HNSC) (Fig 1C). To explore the function of TRIM21 in 

NPC, we generated a stable TRIM21 gain-of-function (GOF) NPC cell line, and 

TRIM21 CRISPR (clustered regularly interspaced short palindromic repeats) knockout 

mutant (loss of function, LOF) NPC cells (Supplementary Fig 1A). TRIM21 

promoted NPC cell proliferation, which was demonstrated by Cell Counting Kit-8 

(CCK-8) and the colony formation assay (Fig 1D, 1E). However, there was no sign of 

TRIM21 involvement in NPC cell invasion (Fig 1F). Therefore, the data indicate that 

TRIM21 functions as an oncogene in NPC. 

As TRIM21 protects breast cancer cells from chemotherapy-mediated apoptosis 

by repressing the GMPS–TP53 cascade, we wondered whether NPC cells share the 

same mechanism scenario after radiation. X-ray irradiation was followed by an 

obvious increase in TP53 expression (Fig 2A). However, this increase was reversed in 

NPC cells with TRIM21 ectopic expression, and vice versa (Supplementary Fig 1B). 

Then, we expressed FLAG-tagged GMPS in HONE1 cells, followed by anti-FLAG 

antibody–mediated immunoprecipitation. In the context of X-ray radiation, GMPS 

bound both USP7 and TP53 (Fig 2B), and TP53 protein levels were elevated upon 

GMPS overexpression (Supplementary Fig 1C), suggesting that GMPS promotes 

TP53 protein stability. In addition, TRIM21 downregulated GMPS, especially under 

the condition of radiation (Fig 2C).  

MS and immunoprecipitation were performed using TRIM21–MYC purified cell 

lysate. GMPS was included in the MS analysis (Supplementary Table 1). 
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Ubiquitinated GMPS was identified in the immunoprecipitated cell lysate with 

TRIM21–MYC overexpression (Fig 2D), indicating that radiation facilitated 

TRIM21-mediated GMPS protein ubiquitination and degradation. 

Based on the above findings, we deduced that altered TRIM21 expression 

disrupted NPC cell apoptosis. Therefore, HONE1 and 5-8F NPC cells with TRIM21 

GOF or LOF underwent annexin V staining and flow cytometry analysis. As expected, 

X-ray–irradiated TRIM21 GOF cells had significantly attenuated early apoptosis, and 

vice versa (Fig 2E–G). The clonogenic survival assay showed that TRIM21 elevated 

the survival rate of NPC cells, while TRIM21 blockage attenuated it (Fig 2H, 2I). 

Moreover, TRIM21 overexpression attenuated active caspase-3 expression 

(Supplementary Fig 1D).  

To identify whether manipulating TRIM21 expression would modify NPC cell 

radiosensitivity in vivo, TRIM21 GOF or LOF HONE1 cells with luciferase activity 

were injected subcutaneously into immunodeficient mice. Following X-ray radiation, 

tumor formation was observed and evaluated. Consistent with the above results, high 

TRIM21 expression levels protected the tumor cells from radiation-mediated cell 

death, whereas TRIM21 knockout rendered NPC cells radiosensitive (Fig 2J–L). 

Therefore, our data demonstrate that TRIM21 plays an essential role in regulating 

NPC cell radiosensitivity. 

As X-ray radiation accelerated TRIM21-mediated GMPS ubiquitination, we 

proposed that there are radiation-activated factors that facilitate GMPS degradation. 

The MS data showed that SERPINB5 was highly enriched (Supplementary Table 1). 

The co-immunoprecipitation showed that TRIM21 interacted with SERPINB5 in NPC 

cells and that radiation strengthened this interaction (Fig 3A). Moreover, 

immunofluorescence staining revealed that SERPINB5 mainly localized in the 

cytoplasm, along with the colocalized TRIM21 protein (Supplementary Fig 2A, Fig 

3B).  

To determine the role of SERPINB5 in NPC, we detected its mRNA level in NPC 

cell lines first. Surprisingly, SERPINB5 expression was not consistent in the NPC cell 

lines (Fig 3C). Moreover, SERPINB5 was not significantly different between normal 
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and NPC biopsy samples, as well as that in HNSC (Fig 3D, Supplementary Fig 2B). 

To explore the function of SERPINB5 in NPC, HONE1 and 5-8F cells, which have 

higher and lower SERPINB5 mRNA levels, respectively, were employed. We 

generated stable SERPINB5 overexpression cells and CRISPR knockout cells (the 

transcription start site was mutated [Mu]) (Supplementary Fig 2C, 2D). CCK-8 and 

the colony formation assay revealed that SERPINB5 did not function during NPC cell 

proliferation (Fig 3E–G). In addition, the Transwell assay showed that SERPINB5 

was not related to the cell invasive process (Fig 3H). 

Then, we asked whether SERPINB5 is involved in TRIM21-mediated 

GMPS–TP53 repression. Western blotting indicated that TRIM21-mediated TP53 

attenuation was dependent on SERPINB5 expression, even in the context of X-ray 

radiation (Fig 4A). Next, we examined the counteraction between SERPINB5 and 

GMPS. GMPS was precipitated by anti-HA (hemagglutinin) antibody, and X-ray 

radiation promoted the interaction (Fig 4B). Immunofluorescence indicated that 

ionizing radiation strengthened the GMPS and SERPINB5 colocalization (Fig 4C).  

Then, we wondered whether the interaction between SERPINB5 and GMPS was 

dependent on TRIM21. Endogenous GMPS expression was evaluated in cell lysates 

with SERPINB5 ectopic expression or TRIM21 mutation. Our data suggested that 

SERPINB5 binding of GMPS was dependent on X-ray stimulation, regardless of 

TRIM21 expression (Fig 4D). Correspondingly, the interaction between TRIM21 and 

GMPS was dependent on SERPINB5 expression, even in the condition of irradiation 

(Fig 4E). In addition, GMPS protein was subjected to proteasome-dependent 

degradation in NPC cells after the radiation, which the concomitant TRIM21 and 

SERPINB5 overexpression accelerated (Fig 4F). 

According to previous findings, GMPS stabilizes TP53 after entering the 

nucleus(Reddy et al., 2014). Therefore, we examined the localization of GMPS in 

cells with or without ionizing radiation. GMPS localized in both the cytoplasm and 

the nucleus, while ionizing radiation facilitated GMPS ubiquitination in the cytoplasm, 

which was not observed in the TRIM21 mutant cells (Fig 4G). Moreover, GMPS 

mainly localized in the nucleus in SERPINB5 mutant cells after radiation (Fig 4G). 
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Then, we detected GMPS expression in the cytoplasm and the nucleus. 

TRIM21-mediated GMPS downregulation in the cytoplasm was dependent on 

SERPINB5, and GMPS protein tended to localize in the nucleus without SERPINB5 

(Supplementary Fig 2E). These data suggest that SERPINB5 is irreplaceable in 

mediating GMPS ubiquitination by TRIM21. 

Next, we speculated that SERPINB5 might also play roles in governing NPC cell 

radiosensitivity. Annexin V staining followed by flow cytometry analysis revealed 

that ectopic expression of SERPINB5 protected the tumor cells from 

radiation-induced apoptosis, and vice versa (Fig 5A–C). The clonogenic survival 

assay showed that tumor cells lacking SERPINB5 became sensitive and vulnerable to 

radiation (Supplementary Fig 3A, 3B). In addition, SERPINB5 mutation completely 

blocked the radioresistant effect of TRIM21 (Supplementary Fig 3C, 3D), suggesting 

that TRIM21 acts through SERPINB5 to manipulate tumor cell radiosensitivity. 

To demonstrate the effect of SERPINB5 in vivo, HONE1 cells with SERPINB5 

GOF or LOF were injected subcutaneously into immunodeficient mice, followed by 

regular X-ray radiation and observation. SERPINB5 rendered the tumor cells resistant 

and refractory to radiotherapy (Fig 5D–F). To confirm the radioresistant role of 

SERPINB5 in NPC, we constructed a V2A vector system with simultaneous 

SERPINB5 and GFP (green fluorescent protein) co-expression. The dynamic 

expression of GFP was evaluated after X-ray radiation in SERPINB5-V2A-GFP 

expression cells that had been mixed with their control cell counterparts. The 

percentage of GFP-positive cells increased significantly after radiation, while this 

increase was abrogated in the cells without TRIM21 (Fig 5G, 5H), indicating that 

SERPINB5-mediated tumor cell radioresistance is dependent on TRIM21. These data 

demonstrate that SERPINB5 and TRIM21 function together as pivotal regulators 

during NPC radiotherapy. 

As shown above, patients with NPC had upregulated TRIM21 expression, while 

SERPINB5 expression varied between patients. As the patients had varied outcomes 

after radiotherapy, we hypothesized that the SERPINB5 expression level determines 

the radiosensitivity of patients with NPC. To prove this, we used specimens from four 
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radiosensitive patients and eight patients refractory to radiotherapy. 

Immunohistochemistry staining revealed that all radioresistant NPC samples had 

higher SERPINB5 expression levels (Fig 6A, 6B). Moreover, GMPS expression 

correlated negatively with SERPINB5 somewhat, illustrating the validity of the 

TRIM21–SERPINB5–GMPS signaling axis in NPC. 

In general, our work reveals the regulatory mechanism of TRIM21-mediated 

GMPS–TP53 repression in NPC, emphasizing the critical role of SERPINB5 during 

this process. SERPINB5 could recruit free GMPS protein in the cytoplasm, presenting 

it to TRIM21 for ubiquitination and protein degradation, and X-ray radiation 

accelerated this process. The decreased expression of GMPS subsequently promoted 

TP53 degradation, which prevented radiotherapy-induced apoptosis (Supplementary 

Fig 4). 

 

Discussion 

Radioresistance is one of the main obstacles in NPC clinical therapies. However, the 

mechanism of NPC radioresistance has remained obscure to date. In modern 

therapeutic strategies against NPC, all patients receive definitive radiotherapy of 

similar intensity (Li, Sun et al., 2012, Luo, Deng et al., 2004, Ma, Liu et al., 2007, 

Zhao, Han et al., 2004) despite their tumor heterogeneity. Therefore, some patients 

with high radiosensitivity experience adverse effects from the radiation, while some 

patients with low radiosensitivity face the risk of recurrence after radiation. 

Distinguishing the radioresistant patients is one of the main difficulties restricting 

improvement of the cure rate. Our findings provide a molecular marker for predicting 

the radiosensitivity of patients with NPC before treatment. 

Our data suggest that SERPINB5 does not influence NPC progression in normal 

conditions, while serving as an oncogene after radiation. We demonstrate for the first 

time that SERPINB5, which mainly localizes in the cytoplasm, functions as an 

adaptor to bind and prevent GMPS protein from entering the nucleus, and prompts 

GMPS ubiquitination by interacting with TRIM21. The stimulation by X-ray radiation 

strengthened this process in NPC. These findings stress the pivotal role of SERPINB5 
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in mediating GMPS–TP53 cascade repression in radioresistant NPC cells. However, 

how SERPINB5 detects the radiation signal remains unclear. 

Our data reveal that TRIM21 promotes NPC progression in normal conditions, 

suggesting that it is also involved in other signaling axes in NPC. GMPS was 

originally found to fuel cancer progression by mediating guanine nucleotide synthesis 

(Su, Wiltshire et al., 2004, Weber, 1983). The Cancer Genome Atlas (TCGA) dataset 

showed upregulated GMPS expression in various cancers, including NPC. 

Considering GMPS expression was not decreased or even elevated in some of the 

radioresistant patients in the present study, we believe that GMPS plays multiple roles 

in NPC. Therefore, unlike SERPINB5, GMPS is not a suitable marker for identifying 

radioresistant patients with NPC. 

In summary, our work establishes a novel working model related to TP53 

suppression in radioresistant NPC cells, and highlights the important potential 

application of SERPINB5 in predicting the radiosensitivity of patients with NPC. 

 

Materials and Methods 

Ethical approval 

This study was performed in accordance with ethical standards, according to the 

Declaration of Helsinki, and according to national and international guidelines. The 

Sun Yat-sen University Cancer Center ethics committee approved the study. 

 

Patients and tumor tissue samples 

Tumor samples were obtained from patients with pathologically confirmed NPC (n = 

12) at Sun Yat-sen University Cancer Center. Radioresistant patients were defined as 

those with local recurrent disease at the nasopharynx and/or neck lymph nodes at ≤12 

months after completion of radiotherapy. Radiosensitive patients were defined as those 

without local residual lesions at >3 months and without local recurrent disease >12 

months after completion of radiotherapy. All patients provided written informed 

consent. 
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Cell lines 

NP69, a human immortalized nasopharyngeal epithelial (NPEC) cell line, was cultured 

in keratinocyte serum-free medium (Invitrogen, Life Technologies, Grand Island, NY, 

USA) with bovine pituitary extract (BD Biosciences, San Jose, CA, USA). The NPC 

cell lines 5-8F, 6-10B, C666-1, CNE1, CNE2, HNE1, HONE1, S18, S26, and SUNE1 

were cultured in RPMI 1640 medium (Invitrogen) supplemented with 5% fetal bovine 

serum (FBS, Gibco, Carlsbad, CA, USA). The cells were seeded in 6-well plates the 

day before transfection, which was performed using Lipofectamine 3000 (Invitrogen), 

and the cells were harvested 2 days later. For X-ray irradiation, the adhered cells 

received a 6-Gy dose by an X-ray irradiation apparatus (RS2000, Rad Source, Buford, 

GA, USA), and were harvested 24 hours later. 

 

RNA extraction and reverse transcription–PCR (RT-PCR) 

Total RNA was extracted from the cell lines using TRIzol (Invitrogen). 

Complementary DNA (cDNA) was synthesized using M-MLV (Moloney murine 

leukemia virus) reverse transcriptase (Promega, Madison, WI, USA), and amplified 

using SYBR Green qRT-PCR SuperMix-UDG reagents (Invitrogen) and a CFX96 

instrument (Bio-Rad, Hercules, CA, USA). The genes were amplified using the 

following forward and reverse primers: GAPDH (glyceraldehyde-3-phosphate 

dehydrogenase), 5′-GAAGGTGAAGGTCGGAGT-3′ and 

5′-GAAGATGGTGATGGGATTTC-3′; TRIM21, 5′-CCCCTCTAACCCTCTGTC-3′ 

and 5′-GCTAAAGCTCGCTTGCTG-3′; SERPINB5, 

5′-CATAGAGGTGCCAGGAGC-3′ and 5′-GAACAGAATTTGCCAAAGAA-3′. 

 

Western blot, co-immunoprecipitation, and immunofluorescence 

Total protein was extracted using radioimmunoprecipitation assay lysis buffer 

(Beyotime, Shanghai, China). Proteins were separated by sodium dodecyl 

sulfate–polyacrylamide gel electrophoresis and transferred onto polyvinylidene 

difluoride membranes (Millipore, Billerica, MA, USA). The membranes were then 

incubated with primary antibodies at 4°C overnight. After incubation with 
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species-matched secondary antibodies, immunoreactive proteins were detected using 

chemiluminescence in a gel imaging system (ChemiDoc MP Imaging System, 

Bio-Rad). The antibodies used were against the following: HA (1:2000, H6908, 

Sigma-Aldrich, Munich, Germany), FLAG (1:2000, F2555, Sigma-Aldrich), MYC 

(1:2000, 60003-2-Ig, Proteintech, Chicago, IL, USA), TRIM21 (1:1000, 12108-1-AP, 

Proteintech), SERPINB5 (1:1000, ab182785, Abcam, Cambridge, MA, USA), GMPS 

(1:1000, 16376-1-AP, Proteintech), GAPDH (1:2000, ab8245, Abcam), TP53 (1:1000, 

ab26, Abcam), caspase-3 (1:2000, ab32351, Abcam), lamin B1 (1:1000, ab16048, 

Abcam), and USP7 (1:5000, 66514-1-Ig, Proteintech). 

For co-immunoprecipitation, cells with ectopic expression of SERPINB5, TRIM21, 

or GMPS were cultured with MG132 (10 μM, S2619, Selleck Chemicals, Houston, TX, 

USA) to inhibit proteasome-mediated protein degradation. After 24 hours, the cells 

were harvested for protein purification. The protein was incubated with the 

corresponding tag antibodies at 4°C overnight, followed by 3–4-hour incubation at 4°C 

with protein A/G agarose (20421, Invitrogen). The beads were then collected for 

western blot detection. The antibodies used in the co-immunoprecipitation were 

against the following: HA (1:100, H6908, Sigma-Aldrich), MYC (1:100, 60003-2-Ig, 

Proteintech), FLAG (1:100, F2555, Sigma-Aldrich), and immunoglobin G (IgG, 1:100, 

sc-398703, Santa Cruz, Dallas, TX, USA). 

For immunofluorescence, 1×105 cells overexpressing SERPINB5, GMPS, or 

TRIM21 were seeded and cultured on cover glass, and fixed with methanol after 24 

hours. The cells were then incubated with tag antibodies at 4°C overnight, followed by 

reaction with the corresponding secondary fluorescent antibody (1:500, A-21206, 

A-21203, Invitrogen) and Hoechst staining (1:5000, H3570, Invitrogen). Images were 

captured using confocal microscopy (Olympus, Tokyo, Japan). 

 

Mass spectrometry 

HONE1 cells with TRIM21 ectopic expression were harvested for 

immunoprecipitation. Then, the purified protein underwent MS analysis by Huijun 
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Biotechnology (Guangzhou, China). The enriched protein was obtained by comparing 

with the IgG group. 

 

Flow cytometry 

For apoptosis analysis, 1 × 105 cells were seeded in 6-well plates. Before the cell 

density reached about 90%, the cells were collected and stained with annexin V and 

propidium iodide (PI, C1062, Beyotime), and analyzed by flow cytometry (CytoFLEX 

1, Beckman Coulter, Brea, CA, USA). For GFP percentage analysis, 5 × 104 cells with 

SERPINB5-V2A-GFP overexpression were mixed with 5 × 104 vector control cells 

and seeded in 6-well plates. Before the cell density reached about 70%, the cells were 

treated with or without X-ray irradiation, and were harvested 48 hours later for GFP 

analysis. 

 

Stable cell line establishment and CRISPR gene knockout 

The TRIM21, SERPINB5, and GMPS coding sequences were cloned separately into 

pSin-EF2-puro vector. Stable overexpression cell lines were obtained by puromycin 

screening and confirmed by western blotting. For CRISPR-mediated gene knockout, 

the genomic RNAs (gRNAs) were searched (https://zlab.bio/guide-design-resources) 

and cloned into lentiCRISPRv2 vector. The constructs were transfected into NPC cells, 

followed by puromycin screening. The surviving cells were confirmed by western 

blotting. For the single-clone surviving cells, the gDNA was extracted for mutation site 

identification. The gRNA sequences are as follows. TRIM21, 

5′-AGCACGCTTGACAATGATGT-3′, SERPINB5, 

5′-AGCCGAATTTGCTAGTTGCA-3′, and the SERPINB5 forward and reverse 

verification primer sequences were 5′-ACTGGGCTCCCGACAATG-3′ and 

5′-GCAGGCTGAGGCACAACA-3′, respectively. 

 

Cell proliferation, colony formation, and cell invasion assays 

CCK-8 was used to detect cell proliferative ability. Cells (1 × 103) were seeded in 

96-well plates, incubated for 0–4 days, and stained using CCK-8 (Dojindo, Tokyo, 
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Japan). The absorbance was determined at 450 nm using a spectrophotometer. 

For the colony formation assay, about 300 cells were seeded in 6-well plates. After 

7–10-day culture, the cells were fixed in methanol and stained with crystal violet. 

For the cell invasion assay, 3 × 103 cells were seeded in 24-well Transwell 

chambers (Corning, NY, USA). The medium was supplemented with 10% FBS and 

placed in the bottom chambers. After 14–18-hour culture, the chambers were collected 

and the cells on lower surface of the chambers were fixed in methanol and stained with 

crystal violet for observation. 

 

Clonogenic survival assay 

The clonogenic survival assay was performed as previously reported (Munshi, Hobbs 

et al., 2005). HONE1 or 5-8F cells were harvested after receiving X-ray radiation, and 

were re-seeded in 6-well plates and incubated for 12–14 days. Then, the cell colonies 

were stained with crystal violet and counted. The survival rate of each group was 

calculated according to the corresponding plating efficiency. 

 

Animal experiments 

B-NDG mice (non-obese diabetes, severe combined immunodeficiency with double 

knockout of the interleukin-2 receptor gamma chain and protein kinase DNA-activated 

catalytic genes: NOD-Prkdcscid IL2rgtm1/Bcgen) were purchased from Biocytogen 

Jiangsu Co., Ltd. (Jiangsu, China). The cell groups were all transfected with 

CMV-luciferase plasmid, and about 1 × 106 cells were injected subcutaneously into the 

dorsal or ventral flank. The mice were monitored after 7–10 days. Luciferin was 

diluted to 15 mg/ml using phosphate-buffered saline, and 100 μl of the solution was 

injected intraperitoneally into each mouse. After 5 minutes, the mice were anesthetized 

and observed using an animal imaging system (IVIS Lumina LT, PerkinElmer, 

Waltham, MA, USA). All animal research was performed in accordance with the 

detailed rules approved by the Sun Yat-sen University Cancer Center Animal Care and 

Use Ethics Committee; all efforts were made to minimize animal suffering. 
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Immunohistochemistry 

Paraffin-embedded patient samples were sectioned and mounted on slides. The slides 

were incubated at 4°C overnight with antibody against SERPINB5 (1:200, ab182785, 

Abcam) or GMPS (1:100, 16376-1-AP, Proteintech). Then, the sections were 

incubated with biotinylated secondary antibody bound to a horseradish peroxidase 

complex. The antibody was visualized by adding 3,3-diaminobenzidine, and the 

sections were counterstained with hematoxylin. 

 

Statistical analysis 

Statistical analyses were performed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA). 

All in vitro data shown are representative of at least three independent experiments, 

and values are reported as the mean ± SD. Differences between two groups were 

analyzed using the two-tailed unpaired Student’s t-test; P < 0.05 was considered 

significant. 
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Figure legends 

Figure 1 - TRIM21 serves as an oncogene in NPC. 

A qRT-PCR detection and comparison of TRIM21 expression in normal NP69 

NPEC line and in NPC cell lines. 

B TRIM21 expression in healthy controls and patients with NPC in the Gene 

Expression Omnibus (GEO) dataset (GSE81672252).  

C Analysis of overall survival according to TRIM21 expression level in HNSC in 

TCGA dataset. 

D CCK-8 assay of HONE1 cells with TRIM21 GOF or LOF. 

E Colony formation assay of NPC cells with TRIM21 GOF or LOF. 

F Transwell assay of HONE1 cells with TRIM21 GOF or LOF. 

Data information: *P < 0.05, **P < 0.01, ***P < 0.001. Mu, mutant; ns, not 

significant. 

Figure 2 - TRIM21 protects NPC cells from radiation-induced apoptosis by 

manipulating the GMPS–TP53 cascade. 

A Western blot detection of TP53 expression in HONE1 cells after radiation. 

B Co-immunoprecipitation following western blot detection of USP7 and GMPS in 

GMPS–FLAG-overexpressing NPC cells with or without X-ray radiation. 

C GMPS expression in TRIM21-overexpressing NPC cells with or without X-ray 

radiation. 

D Co-immunoprecipitation following western blot detection of GMPS in 

TRIM21–MYC-overexpressing NPC cells with or without X-ray radiation. 

E Flow cytometry analysis of annexin V and PI staining in HONE1 cells with 

TRIM21 GOF or LOF after X-ray radiation. 

F, G  Quantification of the apoptotic HONE1 (F) and 5-8F (G) cells. 

H, I   Clonogenic survival assay of HONE1 cells with TRIM21 GOF (H) or LOF (I).  

J Absorbance intensity of TRIM21 GOF and LOF tumor cells and their counterpart 

controls in mice. The tumors were evaluated 2 and 3 weeks, respectively, after 
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implantation, and the mice received radiotherapy (2 Gy daily and a total of 12 Gy) 

after 2 weeks. 

K, L  The absorbance intensity analysis of tumors in mice. 

Data information: *P < 0.05, **P < 0.01, ***P < 0.001. Mu, mutant; ns, not 

significant; IP, immunoprecipitation. 

Figure 3 - SERPINB5 does not affect NPC progression in normal conditions. 

A Co-immunoprecipitation following western blotting in NPC cells with 

SERPINB5–HA and TRIM21–MYC overexpression. 

B Immunofluorescence staining analysis of SERPINB5–HA and TRIM21–MYC in 

NPC cells. 

C qRT-PCR detection and comparison of SERPINB5 expression in normal NP69 

NPEC line and in NPC cell lines. 

D SERPINB5 expression in healthy controls and patients with NPC in the GEO 

dataset (GSE81672303). 

E, F   CCK-8 assay of NPC cells with SERPINB5 GOF (E) or LOF (F). 

G Colony formation assay of NPC cells with SERPINB5 GOF (top) or LOF 

(bottom). 

H Transwell assay of NPC cells with SERPINB5 GOF (top) or LOF (bottom). 

Data information: *P < 0.05, **P < 0.01, ***P < 0.001. Mu, mutant; ns, not 

significant; IP, immunoprecipitation. 

Figure 4 - SERPINB5 is indispensable for TRIM21-mediated GMPS–TP53 

repression after radiation. 

A Western blot detection of GMPS and TP53 in NPC cells with TRIM21 GOF or 

SERPINB5 LOF. 

B Co-immunoprecipitation following western blot examination of NPC cells with 

SERPINB5–HA and GMPS–FLAG overexpression. 

C   Immunofluorescence staining of overexpressed GMPS and SERPINB5 in NPC 

cells with or without ionizing radiation. 

D GMPS expression in immune-purified protein from NPC cells with SERPINB5 

GOF or TRIM21 LOF. 
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E GMPS expression in immune-purified protein from NPC cells with TRIM21 GOF 

or SERPINB5 LOF. 

F GMPS and TP53 expression in NPC cells with TRIM21 or SERPINB5 

overexpression. 

G Immunofluorescence staining of overexpressed GMPS and ubiquitin in HONE1 

cells with or without ionizing radiation. 

Data information: Mu, mutant; IP, immunoprecipitation. 

Figure 5 - SERPINB5 prevents X-ray radiation–induced NPC cell apoptosis. 

A Flow cytometry analysis of annexin V and PI staining in HONE1 cells with 

TRIM21 GOF or LOF after X-ray radiation. 

B, C Quantification of apoptotic HONE1 (B) and 5-8F (C) cells. 

D Absorbance intensity of SERPINB5 GOF (top) and LOF (bottom) tumor cells and 

their counterpart controls in mice. The tumors were evaluated 2 and 3 weeks, 

respectively, after implantation, and the mice received radiotherapy (2 Gy daily 

and a total of 12 Gy) after 2 weeks. 

E, F    Absorbance intensity analysis of the tumors in mice. 

G GFP expression of HONE1 cells with SERPINB5-V2A-GFP overexpression or 

TRIM21 knockout. 

H Flow cytometry analysis of GFP+ cell percentages in HONE1 and 5-8F cells. 

Data information: *P < 0.05, **P < 0.01, ***P < 0.001. Mu, mutant; ns, not 

significant. 

Figure 6 - SERPINB5 expression increases in radioresistant patients with NPC. 

A, B Immunohistochemistry staining of SERPINB5 and GMPS in radiosensitive (A) 

and radioresistant (B) patients. 

Data information: Based on the staining intensity, the images are divided into three 

grades from weakest to strongest (from 1 to 3, respectively). 

Supplementary Figure 1 - The TRIM21–GMPS signaling cascade regulated 

TP53. 

A Western blot detection of TRIM21 expression in TRIM21 knockout HONE1 cells. 

B TP53 expression in NPC cells with TRIM21 GOF or LOF after X-ray radiation. 
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C TP53 expression in NPC cells with GMPS GOF or TRIM21 LOF after X-ray 

radiation. 

D Cleaved caspase-3 expression in HONE1 cells with TRIM21 overexpression. 

Data information: Mu, mutant. 

Supplementary Figure 2 - SERPINB5 is essential for TRIM21-mediated GMPS 

repression. 

A Immunofluorescence staining of SERPINB5–HA in HONE1 cells. 

B SERPINB5 mRNA expression levels in HNSC in TCGA dataset. T: Tumor, N: 

normal. 

C CRISPR-mediated SERPINB5 knockout NPC cells. Bolded, larger typeface 

indicates the mutated sequences. 

D SERPINB5 expression in SERPINB5 knockout HONE1 cells. 

E GMPS expression in cytoplasm (left) or nucleus (right) of HONE1 cells with 

TRIM21 overexpression or SERPINB5 LOF. 

Data information: Wt, wild-type; Mu, mutant. 

Supplementary Figure 3 - SERPINB5 is essential for TRIM21-mediated NPC 

cell survival after radiation. 

A, B The survival rates of HONE1 cells with SERPINB5 GOF (A) or LOF (B) 

after radiation. 

C, D The survival rates of HONE1 (C) or 5-8F (D) cells with SERPINB5 knockout 

and TRIM21 GOF. 

Data information: Mu, mutant. 

Supplementary Figure 4 - The working model of TRIM21–SERPINB5-mediated 

GMPS–TP53 repression in NPC cells after X-ray radiation. 

Data information: UB, ubiquitin 
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Figure 1. TRIM21 serves as an oncogene in NPC. 
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Figure 2. TRIM21 protects NPC cells from radiation-induced apoptosis by 

manipulating the GMPS–TP53 cascade. 

 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2019. ; https://doi.org/10.1101/609743doi: bioRxiv preprint 

https://doi.org/10.1101/609743
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3. SERPINB5 does not affect NPC progression in normal conditions. 
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Figure 4. SERPINB5 is indispensable for TRIM21-mediated GMPS–TP53 repression 

after radiation. 
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Figure 5. SERPINB5 prevents X-ray radiation–induced NPC cell apoptosis. 
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Figure 6. SERPINB5 expression increases in radioresistant patients with NPC. 

 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2019. ; https://doi.org/10.1101/609743doi: bioRxiv preprint 

https://doi.org/10.1101/609743
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Figure 1. The TRIM21–GMPS signaling cascade regulated TP53. 
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Supplementary Figure 2. SERPINB5 is essential for TRIM21-mediated GMPS 

repression. 
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Supplementary Figure 3. SERPINB5 is essential for TRIM21-mediated NPC cell 

survival after radiation. 
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Supplementary Figure 4. The working model of TRIM21–SERPINB5-mediated 

GMPS–TP53 repression in NPC cells after X-ray radiation. 
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