

1 **TITLE: Targeted expansion of Protected Areas to maximise the persistence of terrestrial
2 mammals**

3 **Authors:** Sarah Mogg¹ (sarah.mogg@gmail.com), Constance Fastre^{1,2}
4 (constancefastre@gmail.com), Martin Jung³, Piero Visconti^{1,3,4} (pierovisconti@gmail.com)

5 ¹ Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY

6 ² University of Antwerp, Evolutionary Ecology Group, Universiteitsplein 1, 2610 Wilrijk,
7 Belgium

8 ³ International Institute for Applied System Analyses, Schlossplatz 1, A-2361 Laxenburg, Austria

9 ⁴ Centre for Biodiversity and Environment Research, University College London, Gower Street,
10 London, WC1E 6BT

11 **Running title:** Targeted PA expansion for mammal persistence

12 **Keywords:** area-based conservation targets; biodiversity scenarios; extinction risk; Marxan; Red
13 List Index

14 **Type of article:** Letter

15 **Number of words in the manuscript:** 3056 (excluding references, including abstract)

16 **Number of references:** 31

17 **Number of figures and tables:** 3 figures

18 **Corresponding authors:** Piero Visconti pierovisconti@gmail.com

19

20 **ABSTRACT**

21 Over a quarter of species assessed by the IUCN Red List are threatened with extinction. A global
22 commitment to protect 17% of land and 10% of the oceans by 2020 is close to being achieved,
23 but with limited ecological impacts due to its inadequacy and poor enforcement. Here, we
24 reverse-engineer IUCN Red List criteria to generate area-based conservation targets and spatial
25 conservation priorities to minimize the extinction risk of the world terrestrial mammals. We find
26 that approximately 60% of the Earth's non-Antarctic land surface would require some form of
27 protection. Our results suggest that global conservation priority schemes, among which the Aichi
28 targets, will be inadequate to secure the persistence of terrestrial mammals. To achieve this goal,
29 international cooperation is required to implement a connected and comprehensive conservation
30 area network, guided by high priority regions outlined in this study.

31
32

33 INTRODUCTION

34 In recent decades global biodiversity has undergone increasing threat from anthropogenic
35 activities (Tittensor et al. 2014; Joppa et al. 2016; Maxwell et al. 2016). Today, approximately
36 27% of assessed species are at risk of extinction (IUCN 2018) and this figure is predicted to
37 increase (Newbold et al. 2015; Visconti et al. 2016). Recognizing the urgency for rapid action,
38 the parties of the Convention on Biological Diversity (CBD) committed to the Strategic Plan for
39 Biodiversity 2011-2020 and its 20 Aichi Biodiversity Targets (ABT). Rooted on the potential of
40 effectively managed protected areas (PAs) as critical conservation tool (Geldmann et al. 2013;
41 Watson et al. 2014), Aichi Target 11 advocates for the conservation of 17% of terrestrial and
42 10% of marine environments worldwide, particularly areas of global significance to biodiversity,
43 into a connected network of such PAs or other area-based conservation measures (CBD 2010).
44 This target should contribute to achieve Aichi target 12 which aims to prevent the extinction and
45 improve the conservation status of known threatened species (CBD 2010).
46 Recent studies have criticized Aichi Target 11 for its ecological inadequacy and lack of ambition
47 (Venter et al. 2014), for its ambiguity (Butchart et al. 2016) and its vulnerability to the “gamed”
48 thereby producing perverse outcome (Barnes et al. 2018). In particular, promoting the
49 conservation of large protected areas of little conservation value to achieve the coverage
50 percentage element of the target, comes at the expense of producing biodiversity impacts
51 (Pressey et al. 2015). As a result, the more ambitious proposal of setting aside Half-Earth for
52 biodiversity has gathered support among conservationists (Noss et al. 2012; Wilson 2016;
53 Watson & Venter 2017) but its potential to deliver positive biodiversity outcomes remains
54 untested. Therefore, the question remains as to how much land is required, and where these
55 should be placed, to achieve species conservation.

56 So far, the proportion of a species' range to be targeted for protection has been set arbitrarily
57 (Rodrigues et al. 2004; Ceballos et al. 2005; Carwardine et al. 2008). Even though the method
58 introduced by Rodrigues et al. (2004) for mammals has been adopted in other studies (Venter et
59 al. 2014; Butchart et al. 2015; Visconti et al. 2016), it may be inadequate to reduce the extinction
60 risk of the species. We therefore propose a conservation target setting approach based on the
61 thresholds used in the IUCN Red List criteria (Box S1, IUCN 2012). We use these targets to
62 identify global area-based conservation targets required to maximize species persistence (Aichi
63 Target 12). By deriving area-based conservation targets based on population ecology and
64 extinction risk analyses, this study aims to address the following questions: (1) For terrestrial
65 mammal species, determine the geographic extent requiring protection to maximize their long-
66 term persistence, as informed by the IUCN Red List criteria; (2) On a global scale, identify
67 critical regions in which area-based conservation strategies could be expanded to encompass the
68 above targets.

69

70 METHODS

71 1. Study species

72 This study focused on global terrestrial mammals assessed and classified under the IUCN Red
73 List with ranges downloadable from www.iucnredlist.org. We focus on mammals to keep the
74 analysis computationally tractable and their distribution is generally well described and diversity
75 patterns in mammals are overall representative of other major taxonomic groups (Qian and
76 Ricklefs 2008). After excluding terrestrial water-dependent species and those with no range data
77 or information on habitat preferences, a remaining 4325 terrestrial mammal species were
78 considered.

79

80 **2. Conservation objectives**

81 **2.1 Targets informed by extinction risk criteria**

82 We aimed to set IUCN-informed target areas that would ensure that each species has an Area Of
83 Occupancy (AOO, the area which is occupied by a taxon, excluding cases of vagrancy, IUCN
84 2012), sufficiently large to qualify for IUCN Red List category “Least Concern”. To achieve
85 that, based on the RL criteria, two main thresholds were considered for target-setting: (1) Based
86 on criterion A, a species’ population must not decline more than 30% within 10 years or three
87 generations (whichever the longer), to avoid being classified as “Vulnerable”. Allowing for a
88 10% buffer (generally applied to separate the Least Concern from the Near Threatened category),
89 and assuming a linear relationship between changes in population and changes in species’ range,
90 the species’ target area must therefore not be below 80% of a species’ range. (2) Based on
91 criterion B2, a species’ AOO must not fall below 2,000 km². With a 10% buffer, a species’ target
92 area must therefore not fall below 2,200 km². Following Butchart, et al. (2015) we applied an
93 upper limit of 1,000,000 km² for all species with ranges greater than 1,250,000 km², due to the
94 logistic difficulties in creating extremely large PAs. Target areas were therefore determined as
95 80% of a species’ range, with 2,200km² and 1,000,000 km² as the lower and upper limits,
96 respectively.

97 We calculated two variants of these IUCN-informed targets: one variant based on the species
98 range size (RSI targets) and a variant based on the suitable habitat available within the species
99 range (HSI targets). RSI targets were produced by applying the criteria above to the native and
100 extant portion of terrestrial mammal range maps available from the IUCN Red List database,
101 accessed in June 2018 (IUCN 2018) for comparison with previous targets that were designed to
102 work with and were applied to this data (e.g. Rodrigues et al. 2004; Venter et al. 2014; Butchart

103 et al. 2015). However, species generally do not occupy the full extent of their range and
104 applying persistence targets based on AOO to range maps may falsely assume that conserving
105 any part of a species range would contribute to its persistence. The Extent of Suitable Habitat
106 (ESH), which results from subtracting all habitat types considered unsuitable (according to the
107 IUCN Red List species accounts) from the species' range may thus constitute a better proxy for
108 the AOO of each species as it reduces the commission error relative to using range maps
109 (Rondinini et al. 2011). We calculated the HSI targets using the ESHs produced for each species
110 using IUCN ranges as a base map and land-cover and land-use data reconstructed for the year
111 2015 from the IMAGE modelling platform (Stehfest et al. 2014), details of the data and methods
112 are described in Visconti et al. (2016).

113 **2.2 Targets informed by range size.**

114 To compare our IUCN-based range-size targets (RSI targets) with the targets applied in several
115 global conservation planning studies, we reproduced the range-size targets initially proposed by
116 Rodrigues et al., 2004 (RS targets), using the expert-based geographic ranges from the IUCN
117 Red List database mentioned above. We assigned targets equating 10% and 100% of their range
118 to widespread (range $> 250,000 \text{ km}^2$) and small-ranging (range $< 1,000 \text{ km}^2$) species,
119 respectively. For other species, we applied log-linear interpolation between these percentages.

120 **3. Gap in species coverage by current protected areas**

121 We assessed the extent to which species' ranges were sufficiently covered by protected areas
122 based on each of the 3 targets, their range and the current protected area estate (WDPA updated
123 to April 2019). We did this for the world terrestrial mammals, birds and amphibians.

124 **4. Determining potential conservation area networks**

125 We refer to conservation area networks as any area that could be targeted for habitat retention
126 and biodiversity conservation, and therefore contribute to the goals of Aichi Targets 11 and 12.
127 These areas could be protected areas (PA) or Other Effective Area-Based Conservation Measures
128 (OECMs), including indigenous reserves, private reserves, and any areas where extractive or
129 productive activities are prohibited or regulated by voluntary schemes, certifications or law, in
130 the interest of biodiversity conservation.

131 To identify potential regions in which to expand conservation areas to meet conservation
132 objectives, we used the Marxan conservation planning software (Watts et al. 2009a). Marxan
133 operates to design a near-optimal protected network of conservation areas which meets
134 biodiversity targets while minimizing costs, *e.g.* opportunity costs, or management costs (Watts
135 et al. 2009b). Our study region consisted of the global terrestrial extent, excluding Antarctica,
136 divided into 2,063,413 grid cells each with a resolution of 5 arcmin (~100 km² at the Equator).
137 Data on the current PA network (as of April 2019) was obtained from the World Database on
138 Protected Areas (WDPA) downloadable from www.protectedplanet.net. Following Butchart et
139 al. (2015), we excluded proposed protected areas, those with an unknown designation status,
140 UNESCO biosphere reserves, and those lacking both reported extent and spatial boundaries.
141 Cells with more than 50% of their area within the current PA network (281,701 cells, 13.7% of
142 the study region) were considered as protected and locked into the planning solution. We
143 adopted as a cost value, incurred when a cell is to be conserved in the solution generated by
144 Marxan, the projected suitability values of each cell to agriculture in 2030, modelled by the
145 Integrated Model to Assess the Global Environment (IMAGE) version 3.0 (Stehfest et al. 2014).
146 IMAGE determines suitability following an empirical allocation algorithm with three drivers
147 (Doelman et al. 2018): potential crop yield as modelled by LPJmL, accessibility, population

148 density from the HYDE database (Goldewijk et al. 2010), and terrain slope index from the
149 Harmonized World Soil Database (Nachtergael et al. 2010).

150 We tested 3 Marxan prioritization scenarios using the three different targets: the RS, RSI and
151 HSI scenarios. We considered targets as met when the conservation areas accounted for 99% of
152 the target area for each species. For each scenario, Marxan was parameterized to perform 100
153 runs with 200,000,000 iterations in each. We used the best solution (the solution that meets most
154 targets with minimal costs) of each scenario to (1) calculate the percentage of land to be
155 conserved for the world and per continent, (2) calculate the contribution of the current PA
156 network towards the RS, RSI and HSI targets (3) compare the IUCN-informed target setting
157 method with that previously set by Rodrigues et al. (2004). For the latter, we calculated how
158 much RSI and HSI targets were represented under the RS scenario conserved area network.
159 Finally, we used cell selection frequency to (4) identify regions of highest conservation priority
160 among the different scenarios. Therefore, we mapped all cells selected to be conserved in more
161 than 90% of the runs, crucial towards fulfilling conservation objectives (Levin & Mazor 2015).
162 We compared these regions among scenarios by overlaying high priority areas for range-based
163 scenarios (RS and RSI) and for RL-informed targets (RSI and HSI). Finally, as areas with a
164 higher agricultural potential are likely to be converted faster than unsuitable land, we overlaid
165 the agricultural suitability values used as a cost layer in high priority areas for the RSI and HSI
166 scenarios.

167

168 **RESULTS**

169 **1. Conservation targets**

170 IUCN-informed area targets (RSI and HSI targets) are larger than RS targets for most species
171 (93% of RSI targets > RS targets and 70% of HSI targets > RS targets). Targets based on
172 suitable habitat (HSI targets) are either smaller than (80% of the targets) or equal to (20% of the
173 targets, most of them amounting 2,200 km² or 1,000,000 km²) RSI targets. We find 3% and 12%
174 of species require the minimum protection of 2,200 km² for the RSI and HSI targets respectively.

175 **2. Conservation area networks**

176 We find that 47% (2054 species), 9% (971 species), and 6% (248 species) of the species have
177 their RS, RSI and HSI targets met within the current PA network, respectively. If we were only
178 to consider threatened species (n=1197), these figures would be respectively 14.8% (178
179 species), 1.2% (15 species) and 0.7% (9 species). If we were to consider all threatened terrestrial
180 vertebrates for which distributional ranges and habitat preferences were available (n=4720
181 among amphibians, birds and mammals), 9% (426 species) would be adequately protected when
182 using RS targets, 1.06% (50 species) when using RSI targets and 0.5% (22 species) when
183 considering HIS targets. An additional 4% of land suffices to meet all RS species targets for
184 mammals (18% of the world's terrestrial land, Fig. 1a) but would only allow to meet
185 representation for 15% (670 species, RSI targets) and 8% (360 species, HSI targets) of the
186 species' IUCN informed targets. To meet most of these targets, 60% (RSI targets) to 62% (HSI
187 targets) of the world's terrestrial extent must be protected (Fig.1b and 1c). Substantial increase in
188 conservation area coverage occur in Asia (almost 6 times the current coverage required),
189 followed by Africa and North America (5 and 4 times the current coverage required). Despite
190 having the highest current PA coverage, Oceania and South America require the highest
191 proportion (>70%) of their land to be conserved to meet targets. RSI targets cannot be met for 66

192 species, for which known ranges fall short of the minimum target of 2,200 km², and 435 species
193 cannot meet their HSI targets due to the lack of available suitable land.

194 High conservation priority areas cover 0.06% (RS), 11% (RSI) and 14% (HSI scenario) of the
195 non-protected Earth's surface, many of which are highly suitable for agriculture (Fig. S1a and
196 S1b). Five percent of high priority areas overlap between RSI and HSI scenarios (Fig. 3). These
197 areas are mainly located in North America (Appalachian range, mainland Nunavut, Dakota), in
198 Asia (Middle East, Central Asia, Eastern Russian peninsulas, and Japan's Ryukyu Islands), in
199 Europe (Ukraine, around the Alps, Northern Spain and Southern Norway), in Africa (around the
200 Tropics, in the Saharan Atlas and South Africa) and in Oceania (9% of Australia).

201 **DISCUSSION**

202 Arbitrary range-based targets used in previous studies require 18% of the planet to achieve
203 targets for all terrestrial mammal species considered here. However, implementing this network
204 would leave more than 80% of terrestrial mammals at high risk of extinction. To ensure their
205 persistence, at least 60% of the Earth's surface (excluding Antarctica) must be managed to
206 conserve biodiversity. Our results suggest that scientifically-based, bolder conservation targets
207 will be needed to protect biodiversity in the future.

208 Despite an increase in coverage of the PA network to over 14% of the Earth's land surface in
209 2018 (UNEP-WCMC & IUCN 2018), less than half of the range-based targets (RS targets) of
210 mammal species are currently met. This confirms earlier findings that the rate of progress
211 towards the protection of terrestrial mammal species has been disproportionately slower than the
212 rate of increase in protected areas (Rodrigues et al. 2004; Butchart et al. 2015; Venter et al.
213 2018). Indeed the recent expansion of the PA network has privileged areas with low opportunity

214 cost for agriculture and relatively low biodiversity value (Venter et al. 2018), thereby reducing
215 the potential for protected areas to safeguard imperiled biodiversity.

216 To ensure the persistence of mammals, efforts to expand the PA network must be considerably
217 more ambitious than the 17% prescribed by the Aichi Target 11 (CBD 2010). Our finding that
218 60% of the Earth's surface must be managed to sustain biodiversity supports the idea that bold
219 conservation targets and actions, such as those prescribed by the Half-Earth proposal, are
220 urgently needed to guarantee a future for the planet's biodiversity. The areas of high
221 conservation priority identified in our scenarios provide specific guidance for future expansion of
222 area-based conservation measures. Their protection, crucial to meet our conservation objectives,
223 would require the expansion of the current PA network to twice its current size into areas that are
224 sometimes highly suitable for agriculture and therefore likely to be rapidly converted in the
225 future.

226 The use of habitat-based targets, compared to range-based targets, results in larger networks
227 needed to protect fewer species. The use of ranges to evaluate species' needs for conservation
228 may thus result in optimistic estimates and may include areas where species are absent, and
229 habitat is unsuitable for their reintroduction. Using suitable habitat to generate conservation
230 targets constitutes a more ecologically meaningful representation of the actual distribution of the
231 species and is more effective to design efficient protected area networks. However, using
232 suitable habitat to set targets and inform conservation planning has its own limitation. Assuming
233 ESH = AOO may be often invalid. Nonetheless, all priority areas where ESH \neq AOO could be
234 considered as candidate sites for reintroductions if after on-the-ground surveys, alternative sites
235 where the species is still extant were not found and the conditions for reintroductions were

236 favorable. In alternative, the value of these sites for the conservation of the species absent from
237 the site, should be discounted and priorities reassessed.

238 To provide a more comprehensive account of the status of biodiversity and the progress achieved
239 towards conservation objectives, more analyses of this type are needed. The first obvious step
240 would be the inclusion of other taxa, especially those whose centers of endemism and high
241 richness least overlap with mammals, e.g. plants or amphibians (Kier et al. 2009) to provide
242 greater insight into the extent and spatial distribution of areas needing conservation efforts to
243 minimize species extinction risk. Secondly, as prioritization is scale dependent, more localized
244 analyses will be necessary, wherein connectivity between protected lands could be explicitly
245 considered while new protected areas and OECMs could be included as they are created.

246 The urgent need to rapidly expand the current network of conserved areas to avoid extinctions
247 and reduce the overall biodiversity decline, requires a collaborative, multidisciplinary
248 international approach to avoid creation of “paper parks” without effective funding and
249 management (Watson et al. 2014). This requires the strong involvement of stakeholders and
250 empowerment of indigenous and local communities. Recognizing and integrating OECMs
251 managed by these stakeholders may provide vital connective corridors between PAs, crucial to
252 achieving adequate global biodiversity representation (CBD 2010; Locke 2013). Efforts should
253 also be placed on protecting disconnected populations and favoring recolonization of lost habitat
254 to reconnect them. Many of the species for which our analyses failed to meet the targets are
255 island species, mainly located around South-East Asia, or the Japanese Ryukyu archipelago.
256 Habitat restoration or species re-introduction may be viable conservation options if a species has
257 recently become locally extinct from islands once within its historical range.

258 While necessary to achieve the protection of terrestrial mammal species, conserving over 60% of
259 the terrestrial surface is a highly ambitious target, requiring an extensive multidisciplinary,
260 internationally coordinated approach, which may take years to fully implement. In the short-
261 term, initial conservation efforts should be focused on protecting high priority areas, such as
262 those highlighted in the HSI scenario, and that are facing the most imminent threat of conversion
263 or degradation. A carefully curated and coordinated expansion of the current PA network to 17%
264 coverage could potentially triple the average species and ecoregion coverage (Pouzols et al.
265 2014). Going forwards, cooperation across international scales, as well as involving key local
266 stakeholders such as indigenous peoples will be vital to effectively implement a global and
267 comprehensive network of interconnected PAs and OECMs.

268

269

270

271 **LITERATURE**

272 Barnes, M. D., L. Glew, C. Wyborn, and I. D. Craigie. 2018. Prevent perverse outcomes from
273 global protected area policy. *Nature Ecology & Evolution* 2018:1. Springer US.

274 Butchart, S. H. M. et al. 2015. Shortfalls and Solutions for Meeting National and Global
275 Conservation Area Targets. *Conservation Letters* 8:329–337.

276 Butchart, S. H. M., M. Di Marco, and J. E. M. Watson. 2016. Formulating Smart Commitments
277 on Biodiversity: Lessons from the Aichi Targets. *Conservation Letters* 9:457–468.

278 Carwardine, J., K. a Wilson, G. Ceballos, P. R. Ehrlich, R. Naidoo, T. Iwamura, S. a Hajkowicz,
279 and H. P. Possingham. 2008. Cost-effective priorities for global mammal conservation.
280 Proceedings of the National Academy of Sciences of the United States of America 105:11446–
281 50.

282 CBD (Convention on Biological Diversity). 2010. Strategic plan for biodiversity 2011–2020 and
283 the Aichi targets. Montreal, Canada.

284 Ceballos, G., P. R. Ehrlich, J. Soberón, I. Salazar, and J. P. Fay. 2005. Ecology: Global mammal
285 conservation: What must we manage? *Science* 309:603–607.

286 Doelman, J. C. et al. 2018. Exploring SSP land-use dynamics using the IMAGE model□:
287 Regional and gridded scenarios of land-use change and land-based climate change mitigation.
288 *Global Environmental Change* 48:119–135. Elsevier Ltd.

289 Geldmann, J., M. Barnes, L. Coad, I. D. Craigie, M. Hockings, and N. D. Burgess. 2013.
290 Effectiveness of terrestrial protected areas in reducing habitat loss and population declines.
291 *Biological Conservation* 161:230–238. Elsevier Ltd.

292 Goldewijk, K. K., A. Beusen, and P. Janssen. 2010. Long-term dynamic modeling of global
293 population and built-up area in a spatially explicit way□: HYDE 3 . 1. *The Holocene* 20:565–

294 573.

295 Qian, H, and Ricklefs R. R. "Global concordance in diversity patterns of vascular plants and
296 terrestrial vertebrates." *Ecology letters* 11.6 (2008): 547-553.

297 IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1 second edition. IUCN Species
298 Survival Commission, Gland, Switzerland and Cambridge,UK.

299 IUCN. 2018. The IUCN Red List of Threatened Species. Available from
300 <http://www.iucnredlist.org> (accessed October 25, 2018).

301 Joppa, L. N. et al. 2016. Filling in biodiversity threat gaps: Only 5% of global threat data sets
302 meet a "gold standard." *Science* **352**.

303 Levin, N., and T. Mazor. 2015. Sensitivity analysis of conservation targets in systematic
304 conservation planning in systematic conservation planning. *Ecological applications* **25**:1997–
305 2010.

306 Maxwell, S. L., R. A. Fuller, T. M. Brooks, and J. E. M. Watson. 2016. The ravages of guns, nets
307 and bulldozers. *Nature* **536**:146–145.

308 Nachtergael, F. et al. 2010. The harmonized world soil database. Pages 1–619th World
309 Congress of Soil Science, Soil Solutions for a Changing World.

310 Newbold, T. et al. 2015. Global effects of land use on local terrestrial biodiversity. *Nature*
311 **520**:45–50. Nature Publishing Group.

312 Noss, R. F. et al. 2012. Bolder thinking for conservation. *Protecting the Wild: Parks and
313 Wilderness* the Foundation for Conservation **26**:16–20.

314 Pressey, R. L., P. Visconti, and P. J. Ferraro. 2015. Making parks make a difference: Poor
315 alignment of policy, planning and management with protected-area impact, and ways forward.

316 *Philosophical Transactions of the Royal Society B: Biological Sciences* **370**:20140280.

317 Rodrigues, A. S. L. et al. 2004. Global Gap Analysis: Priority Regions for Expanding the Global
318 Protected-Area Network. *Bioscience* **54**:1092–1100.

319 Rondinini, C. et al. 2011. Global habitat suitability models of terrestrial mammals. *Philosophical
320 transactions of the Royal Society of London. Series B, Biological sciences* **366**:2633–41.

321 Rondinini, C., and F. Chiozza. 2010. Quantitative methods for defining percentage area targets
322 for habitat types in conservation planning. *Biological Conservation* **143**:1646–1653. Elsevier.

323 Stehfest, E. et al. 2014. Integrated Assessment of Global Environmental Change with IMAGE
324 3.0. Model description and policy applications. PBL Netherlands Environmental Assessment
325 Agency, The Hague, The Netherlands.

326 Tittensor, D. P. et al. 2014. A mid-term analysis of progress toward international biodiversity
327 targets. *Science* **346**:241–244.

328 Venter, O. et al. 2014. Targeting Global Protected Area Expansion for Imperiled Biodiversity.
329 *Plos Biology* **12**.

330 Visconti, P. et al. 2016. Projecting global biodiversity indicators under future development
331 scenarios. *Conservation Letters* **9**:5–13.

332 Visconti, P., M. Bakkenes, R. J. Smith, L. Joppa, and R. E. Sykes. 2015. Socio-economic and
333 ecological impacts of global protected area expansion plans. *Philosophical Transactions of the
334 Royal Society B: Biological Sciences* **370**.

335 Watson, J. E. M., N. Dudley, D. B. Segan, and M. Hockings. 2014. The performance and
336 potential of protected areas. *Nature* **515**:67–73.

337 Watson, J. E. M., and O. Venter. 2017. A global plan for nature conservation. *Nature* **550**:48–49.

338 Watts, M. E., I. R. Ball, R. S. Stewart, C. J. Klein, K. Wilson, C. Steinback, R. Lourival, L.
339 Kircher, and H. P. Possingham. 2009a. Marxan with Zones: software for optimal conservation

340 based land-and sea-use zoning. *Environmental Modelling & Software* **24**:1513–1521. Elsevier.

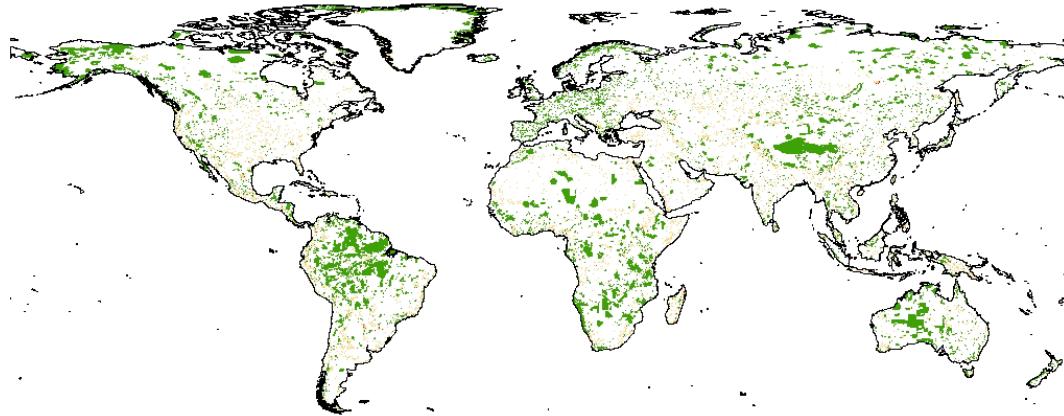
341 Watts, M. E., I. R. Ball, R. S. Stewart, C. J. Klein, K. Wilson, C. Steinback, R. Lourival, L.

342 Kircher, and H. P. Possingham. 2009b. Marxan with Zones: Software for optimal conservation

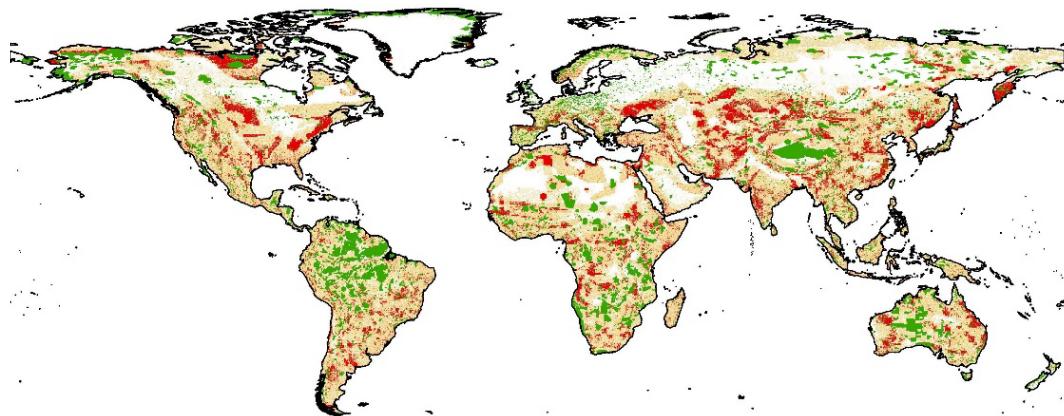
343 based land- and sea-use zoning. *Environmental Modelling & Software* **24**:1513–1521. Elsevier

344 Ltd.

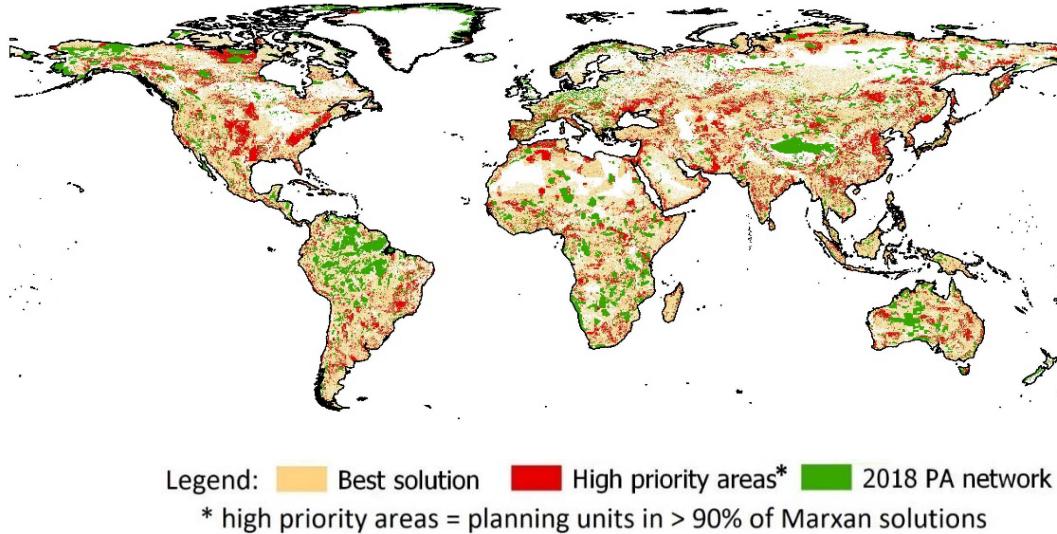
345 Wilson, E. O. 2016. *Half-Earth: Our Planet's Fight for Life*. W. W. Norton & Company, New

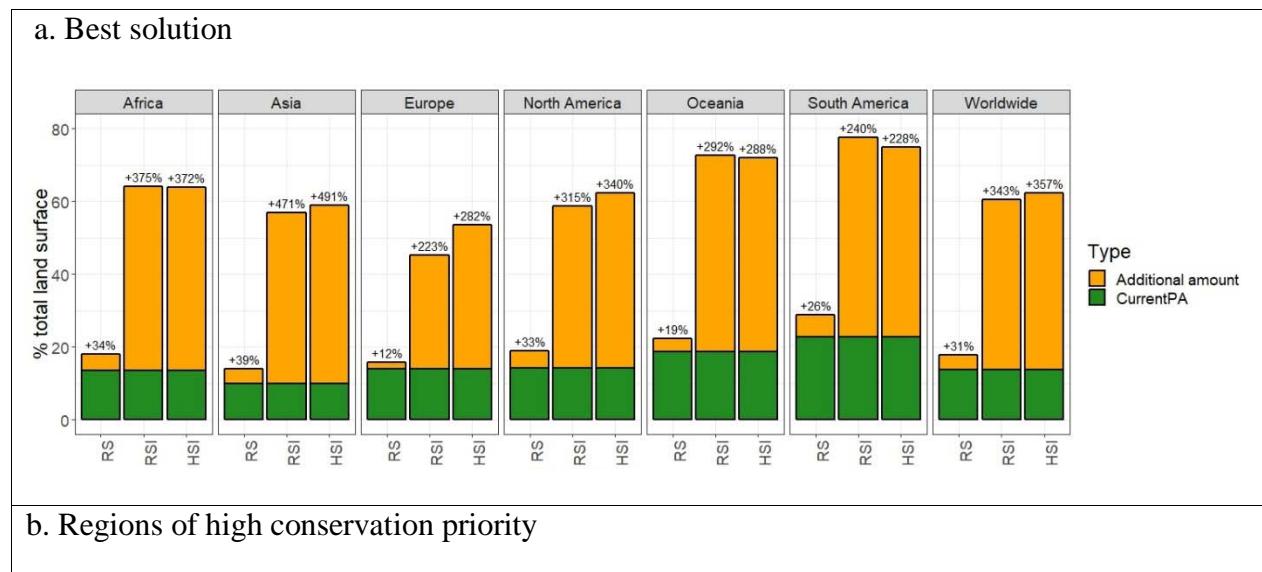

346 York.

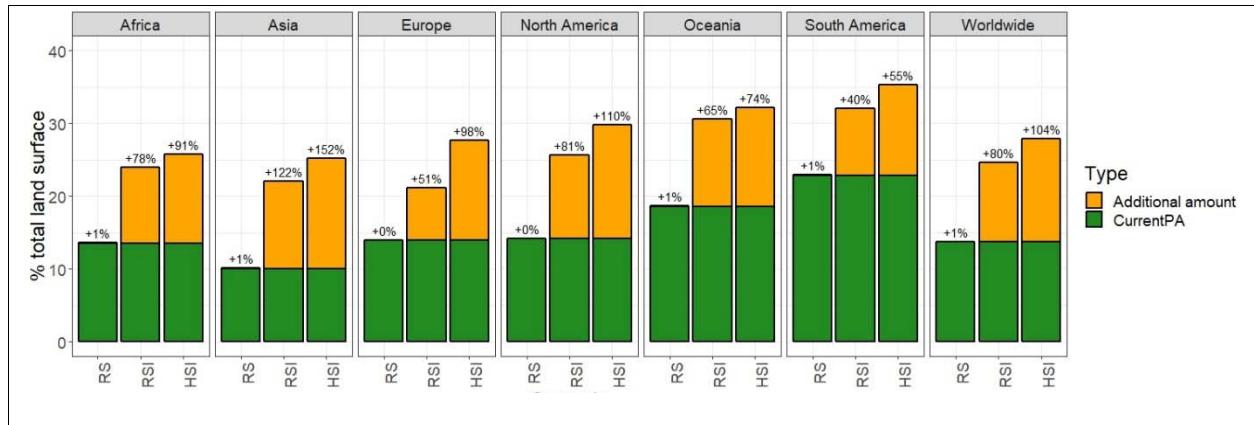
347


348 **TABLES AND FIGURES**

349 Figure 1: Conservation area networks generated as the best solution by Marxan with mammal
350 species targets calculated based on A. range-size only (RS targets), B. IUCN-informed range-
351 size only (RSI targets), and C. IUCN-informed habitat suitability only (HSI targets).

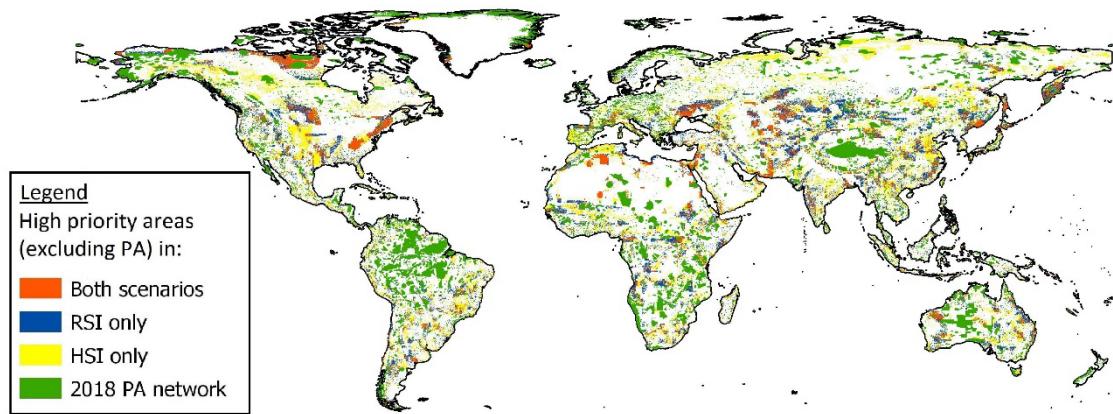

a. Range size (RS) scenario solution


b. IUCN-informed range size (RSI) scenario solution



c. IUCN-informed habitat suitability (HSI) scenario solution

352
353 Figure 2: The required percentage increase of protected areas (WDPA, 2018) in each continent to
354 meet: A. Marxan's best solution, and B. all areas with a selection frequency greater than 90%
355 across all Marxan runs for each scenario. Where Marxan scenarios are based on: RS, range-size
356 targets (RS) only; RSI, IUCN-informed range-size targets only; HSI, IUCN-informed habitat
357 suitability targets only.



358

359 Figure 3: Regions of high conservation priority across RSI target scenarios and IUCN-informed
360 habitat suitability only (HSI target) scenarios. Regions of high priority are those with a selection
361 frequency of 90% or more across all Marxan runs for a scenario.

362

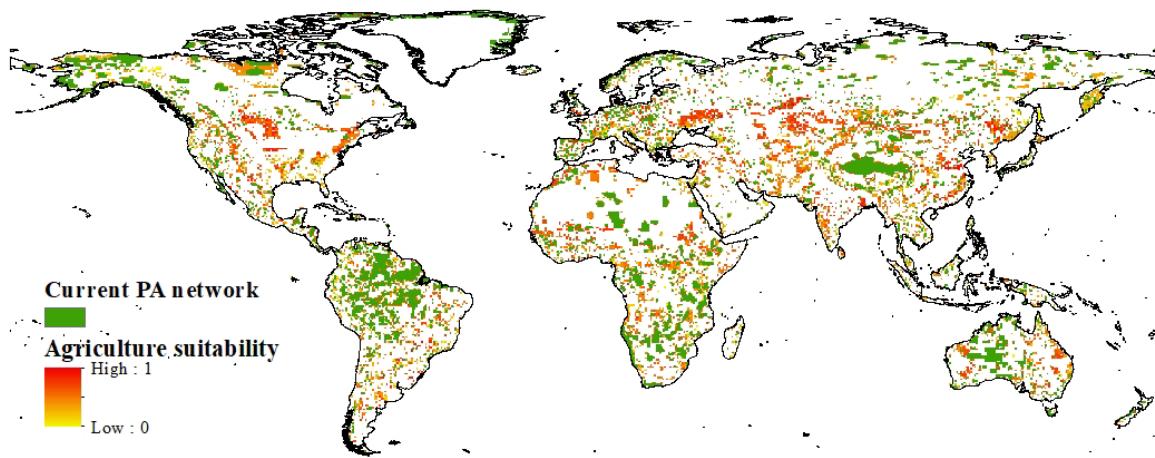
363

364

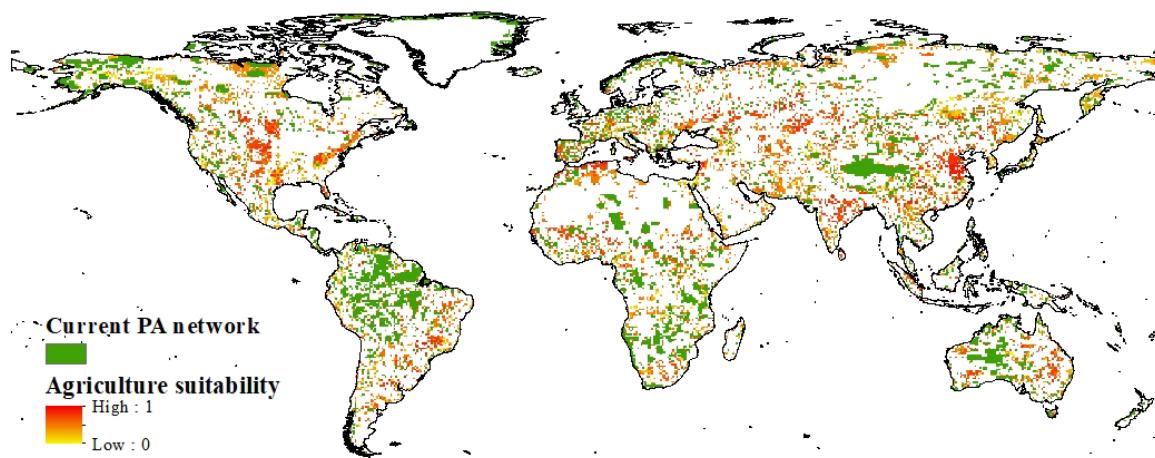
365 **SUPPORTING INFORMATION**

Box 1: IUCN Red List categories and criteria

Criterion A	Population size reduction		
	Vulnerable	Endangered	Critically Endangered
Reduction:	$\geq 30\%$	$\geq 50\%$	$\geq 80\%$
Notes:	Observed, estimated, inferred, projected, or suspected reduction must be measured over the longer period between 10 years and 3 generations, with a maximum time frame of 100 years		
Criterion B	Geographic range reduction		
	Vulnerable	Endangered	Critically Endangered
B1, extent of occurrence, EOO	$< 20,000 \text{ km}^2$	$< 5,000 \text{ km}^2$	$< 100 \text{ km}^2$
B2, area of occupancy, AOO	$< 2,000 \text{ km}^2$	$< 500 \text{ km}^2$	$< 10 \text{ km}^2$
Notes:	<p>Must fulfil one of the above, AND two of the following:</p> <ul style="list-style-type: none"> (a) severely fragmented range (b) continuing observed, estimated, inferred, or projected decline (c) extreme fluctuations <p>Where (b), and (c) may refer to AOO, EOO, number of subpopulations, number of mature individuals</p>		
Criterion C	Small and declining populations		
	Vulnerable	Endangered	Critically Endangered
Number of mature individuals:	$< 10,000$	$< 2,500$	< 250
C1, observed, estimated or projected continuing decline:	10% (in 10 years or 3 generations)	20% (in 5 years or 2 generations)	25% (in 3 years or 1 generation)
Criterion D	Very small and/or restricted populations		
	Vulnerable	Endangered	Critically Endangered
D1, number of mature individuals:	$< 1,000$	< 250	< 50
D2, applicable to Vulnerable category only:	AOO $< 20 \text{ km}^2$		
Criterion E	Quantitative analysis		
	Vulnerable	Endangered	Critically Endangered
Probability of extinction in the wild:	$\geq 10\%$ (over 100 years)	$\geq 20\%$ (over 20 years or 5 generations)	$\geq 50\%$ (over 10 years or 3 generations)


366

367


368

369 FIGURE S1

370 a. Agriculture suitability cost of high priority regions (selection frequency > 90%) identified
371 in the RSI scenario

372
373 b. Agriculture suitability cost of high priority regions (selection frequency > 90%) identified
374 in the HSI scenario

375