bioRxiv preprint doi: https://doi.org/10.1101/608794; this version posted December 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Quantification of translation uncovers the functions of the alternative transcriptome

1,2,4,* 1,2,3,*

Lorenzo Calviello , Antje Hirsekorn!, Uwe Ohler

1Berlin Institute for Medical Systems Biology, Max-Delbriick-Center for Molecular Medicine, Hannoversche Strasse 28, Berlin 10115, Germany
2Department of Biology, Humboldt-Universitat zu Berlin, Unter den Linden 6, Berlin 10117, Germany
3Department of Computer Science, Humboldt-Universitat zu Berlin, Unter den Linden 6, Berlin 10117, Germany
4Present address: University of California San Francisco, Department of Cell & Tissue Biology, 513 Parnassus Avenue, 94143, San Francisco, California, United States

*Corresponding authors: calviello.l.bio@gmail.com, Uwe.Ohler@mdc-berlin.de

Abstract

At the center of the gene expression cascade, translation is fundamental in defining the fate of much of
the transcribed genome. RNA sequencing enables the quantification of complex transcript mixtures, often
detecting several splice isoforms of unknown functions for one gene. We have developed ORFquant, a
new approach to annotate and quantify translation at the single open reading frame (ORF) level, using
information from Ribo-seq data. Relying on a novel approach for transcript filtering, we quantify
translation on thousands of ORFs, showing the power of Ribo-seq in revealing alternative ORFs on multiple
isoforms per gene. While we find that one ORF represents the dominant translation product for most
genes, we also detect genes with translated ORFs on multiple transcript isoforms, including targets of RNA
surveillance mechanisms. Assessing the translation output across human cell lines reveals the extent of
gene-specific differences in protein production, which are supported by steady-state protein abundance
estimates. Computational analysis of Ribo-seq data with ORFquant (available at

https://github.com/Icalviell/ORFquant) provides a window into the heterogeneous functions of complex

transcriptomes.
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Introduction

Studying gene expression allows us to understand the functions of different molecules and regulatory
sequence elements, whether they act at the level of transcription, the transcribed RNA, or the encoded
protein. To ensure correct protein synthesis, transcriptional and post-transcriptional regulatory programs
determine the identity and amount of mature RNA templates. The translation process ensures the correct
identity and amount of synthesized proteins.

The ribosome is the main actor of the translation process, a complex ribonucleoparticle that is not only
able to synthesize proteins, but also acts as quality control platform for both the nascent peptide! and the
translated mRNAZ. Several RNA surveillance mechanisms are known to occur co-translationally, and their
importance for different processes such as differentiation or disease has been investigated®.

Ribosome profiling (Ribo-seq) has made it possible to pinpoint the positions of actively translating
ribosomes transcriptome-wide, using ribosome footprinting coupled to RNA sequencing®. In the last
decade, Ribo-seq has been extensively used to investigate the molecular mechanisms acting on the
ribosome, and to identify the entire ensemble of translated regions (the translatome) in multiple
organisms and conditions. The resulting rich datasets have triggered a plethora of dedicated analysis
methods, which exploit distinct features of Ribo-seq profiles to confidently identify translated ORFs>®. In
this context, many reports have focused on whether small translated regions are hidden in long non-
coding RNAs”™, with less attention given so far to account for the presence of multiple transcript isoforms
per gene.

Transcript diversity can result from either alternative splicing (AS) or from alternative transcription start
or poly-adenylation site usage, and it is now commonly profiled by RNA-seq experiments, which measure
steady-state abundance of (m)RNAs. Large-scale efforts have uncovered the wide spectrum of alternative
transcript isoforms, with many being lowly expressed and/or presenting incomplete ORFs°. The
contribution of this transcript heterogeneity to an expanded translatome is therefore an intensely

112 " with much of transcript and protein abundance apparently explained by a single

debated topic
dominant transcript per gene?®.

The mere presence of multiple transcripts does not imply the presence of a distinct, functional protein
translated from each transcript isoform: transcripts might be retained in the nucleus, selectively

degraded, or undergo translational repression. From a technical point of view, RNA-seq experiments
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guantify a complex scenario in which, depending on the protocol used, alternative transcripts may also
reflect different steps of RNA processing and not the stable, steady-state cytoplasmic pool of mRNAs
available to the ribosome. From a different direction, shotgun proteomics approaches are only recently
providing the sensitivity to detect tens of thousands of proteins from a single sample* and rarely reach
the depth to investigate alternative protein isoforms.

To close this gap, we developed a strategy to identify and quantify translation on the subset of transcripts
that are expressed in the cell. A recent study presented a proof-of-principle for validating the presence of
multiple transcript isoforms in Ribo-seq data®®, underlining the potential of isoform-aware analysis
approaches to fully define the translatome. Following up on this premise, we here describe ORFquant, a
Ribo-seq analysis approach that detects and quantifies ORF translation across multiple transcript isoforms

and zooms in on the potential roles of alternative transcripts.

Results

The ORFquant approach to annotate and quantify translation

Our approach is based on the premise that, despite their short length, Ribo-Seq reads are sufficient to
support a given set of alternative transcripts (Figure 1a, b). Single-nucleotide positions corresponding to
the peptidyl-site for each ribosome (P-sites positions) and junction reads are first extracted from the Ribo-
seq alighment (Methods) and then mapped to flattened gene models from a given annotation (Figure 1b).
In this way, transcript features (e.g. exonic bins or splice junctions) are designated as unique or shared
across multiple annotated transcript isoforms.

We first retain a subset of annotated transcripts, which is sufficient to explain all the observed P-sites or
junction reads and reduce the occurrence of exons and junctions with no signal, using an Occam’s razor
strategy (Methods). In brief, a transcript is filtered out if its features supported Ribo-seq signal can be
explained by another transcript with better support (i.e. containing more features with Ribo-seq support
or fewer unsupported features). As Ribo-seq reads are largely found in 5’UTRs and coding regions only,
this approach might not distinguish between transcripts differing in their 3’UTR.

This simple yet effective selection strategy leads to a significantly reduced number of transcripts: the
observed Ribo-seq signal can be explained by 1 to 3 transcript structures for most genes, without showing

a strong bias for expression level (Figure 1c, Supplementary Figure 1). This selection dramatically improves
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the assignments of both exons and junctions to transcripts (Figure 1d): when considering covered exons
or junctions (defined as having at least one Ribo-seq read mapped to them), ~64% of exons mapped to 1
or 2 transcripts, compared to ~29% when no selection is performed. Considering only annotated protein-
coding transcripts does not substantially improve the mapping of covered features, while it ignores the
presence of covered exons and junctions unique to non-coding transcripts. Next, we detect translated
ORFs de novo in each of the selected transcripts, using frame preference and the multitaper'®8 test to
select in-frame signal displaying 3nt periodicity (Methods), a hallmark of active translation elongation.
Detected ORFs are filtered using the same strategy used for transcript filtering.

After calculating coverage on unique and shared ORF features (exonic bins and splice junctions within ORF
boundaries), a scaling factor between 0 and 1 is determined using the coverage on unique ORF features,
or the amount of overlap between ORFs when no unique feature can be detected (Methods). This scaling
factor represents the fraction of Ribo-seq signal which can be assigned to that ORF. The scaled number of
P-sites is then normalized by the ORF length to arrive at transcripts per million (TPM)**-like values, named
ORFs per Million (“ORFs_pM?”). Moreover, we calculate the relative contribution of each ORF to the overall
translation output of each gene (“ORF_pct P_sites”, or percentage of gene translation). An additional
filtering step discards poorly translated ORFs. ORFs are then annotated according to their position relative
to their host transcript, to other detected ORFs in the same gene, and to annotated CDS regions.
Applying ORFquant, we quantified translation for ~20,800 ORFs in ~12,300 genes profiled in a Ribo-Seq
data set from the human HEK293 cell line®. Most genes (7,732 Figure 1e) displayed only one translated
ORF, with another >5,000 genes showing translation of multiple ORFs. Upon closer inspection (Figure 1f),
we observed that for the majority of genes (~¥80%), the most translated (i.e., major) ORF could explain
>80% of the total gene translation, with only 444 genes for which the major ORF explained <50% of the
translational output. We did not observe a clear dependency between number of detected ORFs (or % of
translation of major ORF) and overall Ribo-seq coverage, with the exception of the few dozen genes for
which the major ORF accounted for little of the total gene output (Supplementary Figure 1).

In principle, the final set of ORFs can be provided to any algorithm for transcript quantification. To
demonstrate the effectiveness of our simple approach, we compared our estimates with the ones
calculated by RSEM?'®, a well-known statistical approach devoted to transcript quantification. We observed
good correlation between the two method in their estimates of the relative contribution of each ORF to
the total output (Supplementary Figure 2, left). In addition, we observed how RSEM quantification
estimates showed high uncertainty (Methods) for ORFs where few unique features are present, which are

cases where ORFquant assigns low translation estimates to the major ORF (Supplementary Figure 2, right).
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Despite major differences in their quantification strategy (Discussion), both ORFquant and RSEM showed
similar performances in determining the contribution of each ORFs to the total gene translation output.

To illustrate the consistency of our translation estimates, we annotated the ORF structures with respect
to the major (most translated) ORFs in each gene: this allowed us to detect genomic regions (e.g. different
alternative splice sites) where the Ribo-seq signal should reflect different quantitative estimates of
translation coming from different ORF(s). Aggregate profiles of Ribo-seq coverage closely reflected the
expected pattern calculated by ORFquant (Figure 1g). Additional profiles over different genomic locations
are shown in Supplementary Figure 3. Taken together, the translation of a major ORF accounts for >80%
of total gene translation for most of the genes, but distinct translated ORFs are detected from multiple

translated transcripts for hundreds of genes.

Quantification of translation as a window into the functional relevance of alternative open

reading frames

As translation is a cytoplasmic process, we expected the ensemble of transcript structures selected by
ORFquant to represent bona fide cytoplasmic transcripts. To test this hypothesis, we performed a
differential exon usage analysis?, using RNA-seq data from nuclear and cytoplasmic extracts in HEK293
cells??. Most exons unique to discarded structures showed marked nuclear localization (log2FC>0), while
exons of selected transcripts showed a prominent cytoplasmic enrichment (Figure 2a). Translated
transcripts displayed a more marked cytoplasmic localization. An example of the selection strategy
discarding pre-mRNA structures in favor of cytoplasmic transcripts is shown in Figure 2b.

When examining the GENCODE annotation? of the transcripts hosting de novo identified ORFs, we noticed
~2,000 ORFs in non-coding transcript isoforms of protein-coding genes, most of which lacked annotated
OREFs (Figure 2c). Compared to ORFs in annotated protein-coding transcript isoforms, these ORFs exhibited
much lower translation, accounting for a median of 6.8 % of gene translation, compared to 87% for ORFs
that fully matched annotated CDSs. More than 3,500 N-terminal truncation events were also detected,
showing high levels of translation. Upstream ORFs (UORFs) and other small ORFs exhibited low signal,
albeit high when normalized by their length. In annotated non-coding genes, we detected 181 ORFs from
annotated pseudogenes and 620 ORFs from other non-coding RNA genes, with overall lower translation
levels than protein-coding RNAs (Figure 2c).

Analysis of a deep polysome profiling dataset (Trip-Seq?)) from the same cell line showed that the

guantitative estimates of translation agreed with distinct polysome profiles (Figure 2d,e; Supplementary
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Figure 4): Exons uniquely mapping to transcripts harboring lowly translated ORFs accumulated in low
polysomes and were depleted in heavier polysomal fractions. Conversely, highly translated transcripts
exhibited sustained levels also in heavy polysomes. Despite the fundamental differences between
polysome profiling and Ribo-seq in representing the translated transcriptome, the two techniques

therefore agreed in detecting quantitative differences in the translation of multiple transcripts per gene.

The presence of numerous lowly translated ORFs detected in non-coding transcript isoforms (Figure 2c)
suggested inefficient translation and/or low steady-state abundance of the translated transcript. We
wondered whether transcripts subject to RNA surveillance mechanisms (such as nonsense-mediated
decay, NMD) might cause such a low but detectable Ribo-seq signal. The presence of a premature
termination codon (PTC) is an important feature of many NMD targets®, which is assumed to be
recognized as such when the stop codon is located sufficiently upstream of the last splice junction, i.e.
when a downstream Exon Junction Complex (EJC) is not displaced during translation elongation (Figure
3a). To investigate the putative action of NMD on PTC-containing transcripts, we divided transcripts based
on the presence of a splice site downstream of a detected ORF. A recent study mapped NMD-mediated
cleavage events on the transcriptome in HEK293 cells®, by knocking down XRN1, the exonuclease in
charge of degrading the cleaved transcripts. When aligning the cleavage sites at the stop codons of
(putative) PTC- and non-PTC-containing transcripts (from the same genes), we observed a clear difference
(Figure 3b): transcripts without PTC, i.e. where all EJCs are presumably displaced, showed background-
like signal, while transcripts harboring a putative PTC showed a marked degradation profile around their
stop codon?®. The degradation signal was less pronounced when SMG6 or UPF1 were also knocked-down,
underlining the effect of known key factors of the NMD pathway on our candidate NMD targets. A clear
example of such pattern is visible on a translated ORF in the SNHG17 gene (Figure 3c).

To further explore the dependency of NMD with regards to the location of PTCs as well as the transcript
type, we determined the number of endonucleolytic cuts at the stop codon as a function of PTC distance
to the last exon-exon junction. We observed an increase in degradation for NMD candidate ORFs for all
the surveyed ORFs (including uORFs; Figure 3d). As previously reported®, ORFs in snoRNA host genes
(such as SNHG17, Figure 3c) showed the highest degradation profile, while other categories exhibited a
lower amount of degradation. In summary, ORFquant is an efficient method to identify mature mRNAs,
qguantify the translation output of different transcript isoforms from the same gene, and to infer

transcript-specific cytoplasmic fates.
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A subset of genes translates different major ORFs in different cell lines

To investigate the patterns of alternative ORF usage across different conditions, we ran ORFquant on Ribo-
seq datasets from 6 different human cell lines (Supplementary Table 1, Supplementary Data 1, Figure 4a),
with newly generated data for K562 and HepG2 cell lines complementing previously published libraries
from HEK293, Hela, U20S and Jurkat cells'®?%2%, For each dataset we observed the same trend described
in Figure 1d, with most genes showing translation of one major ORF, and hundreds of genes showing
sustained translation of multiple ORFs, with a weak dependency on the overall Ribo-seq signal
(Supplementary Figures 5, 6). Across all cell lines, we detected ORF translation for ~17,000 genes
(excluding pseudogenes), with ~89% of them annotated as protein-coding genes.

For each gene and cell line, we defined the major ORF as the most translated ORF from a gene, regardless
of its positional features and existing ORF annotation. For ~77% of the quantified genes, the same ORF
was consistently identified as the major translated ORF in all the assayed cell lines (Figure 4b). For ORFs
in non-coding RNAs, we detect a more cell-specific pattern of major ORF usage. However, a few dozen
non-coding genes displayed translation of the same major ORF: one such example is again SNHG17, where
the translation of an ORF terminating at a PTC (Figure 3c) is consistently detected across the assayed cell
lines (Figure 4c).

As expected, genes translated in all cell lines showed overall higher Ribo-seq signal. However, we did not
observe a clear dependence between number of distinct major ORFs across cell lines and overall gene
translation (Supplementary Figure 7). Two or more distinct major ORFs were identified in 18% and 5% of
genes, representing candidate major ORF switching events across cell lines (Figure 4b). At a closer look,
we observed that genes translating multiple major ORFs also displayed a more complex mixture of
translated ORFs. Consequently, translation of the major ORF for those genes accounted for a lower
percentage of total gene translation (Figure 4b, lower panel).

ORF diversity is created by different mechanisms: differences in alternative splicing of internal coding
exons (Supplementary Figure 8), alternative transcriptional start sites (Supplementary Figure 9), or
alternative usage of last exons (Figure 4d). Genes exhibiting translation of multiple major ORFs showed
an enrichment for GO categories like GTPase regulator (Supplementary Figure 10), a category also
enriched in genes expressing multiple major transcript isoforms across human tissues?. However, in ~40%
of the cases, distinct major ORFs translated across cell lines showed a low degree of overlap (Figure 4e)
despite coming from the same genes, i.e., largely unrelated to differences in local alternative splicing

events. This low overlap reflected the presence of alternative usage of uORFs or other small ORFs (Figure
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4f,g), which can represent the major translation product of a gene in specific cell lines (Supplementary
Figure 11).

Taken together, these translation estimates indicate that the presence of one dominant ORF agrees across
multiple cell lines for the majority of genes. For ~20% of the translated genes, however, highly translated
small ORFs and/or several transcripts expressed at sustained levels create a substantial level of complexity
in protein synthesis, with distinct ORFs accounting for the majority of the gene translational output in

different cell lines.

Agreement between protein abundance and synthesis estimates depends on proteome coverage

and transcriptome complexity

Ribo-seq reflects the density of elongation-competent 80S ribosome, and thus active protein synthesis,
but an increased signal at a specific location may also represent stalled, inactive ribosomes. We therefore
examined whether our translation quantification reflects the abundance of the synthesized protein
product. Using a comprehensive custom protein database derived from the set of identified ORFs
(Supplementary Figure 12, Supplementary Data 2), we estimated proteome-wide steady-state protein
abundance using published deep mass spectrometry data3®3! for the same cell lines outlined above (Figure
4a). We detected between 7,000 and 8,000 proteins per cell line (Supplementary Figure 13,
Supplementary Data 2), and performed label-free quantification using signal from unique peptides only
(Methods). To estimate the ability of both techniques in quantifying protein synthesis/abundance, we
divided proteins based on the number of exon or junction features covered by Ribo-seq (with >=1 read
mapping, i.e. independent of the exact number of mapping reads), and by the number of detected unique
peptides (irrespective of their intensity). In cases where 0 - 3 unique peptides were detected, the
correlation (in log space) between HEK293 ORFquant-derived estimates of translation (ORFs_pM) and
steady-state protein abundance (iBAQ) measured ~0.52 (Figure 5a). However, for proteins having >9
uniquely mapping peptides and >8 covered features (n >1900), the correlation between ORFquant
estimates of translation and protein abundance reached the value of ~0.84. The same phenomenon was
observed for all the assayed cell lines (Figure 5b). A clear dependency on the number of unique peptides
was also observed when correlating iBAQ values with transcript abundance estimates from RNA-seq,

albeit with lower correlations (Supplementary Figure 14).
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When comparing the fraction of total gene translation to the fraction of total gene protein abundance for
the few dozen genes with mass spectrometry matches to multiple detected protein isoforms, we observed
a correlation of 0.58 (Figure 5c). Here, only few proteins harbored >9 uniquely mapping peptides, thus
limiting our ability in reliably estimating their abundance (Figure 5a). We observed lower correlations
when skipping the ORF-specific scaling step during translation quantification, highlighting the importance
of accounting for the presence of multiple translated ORFs per gene (Figure 5c). The same pattern was
observed for the other cell lines analyzed (Figure 5d, Supplementary Figure 15). A slight increase in
correlations was detected when using all Ribo-seq reads (instead of uniquely mapping reads only) to
derive translation estimates (Supplementary Figure 16), likely resulting from a better quantification in
repetitive regions.

Taken together, these results show excellent correlations between ORFquant quantification and steady-
state protein abundance, subject to the limitations in coverage that leads to lower agreement between

Ribo-seq and shotgun proteomics.

Discussion

Only a fraction of known, annotated transcript structures are expressed in a specific context, and only a
fraction of those structures are exported to the cytoplasm and eventually translated into functional
proteins. This observation inspired us to devise a simple strategy to identify the subset of translated ORFs
across transcript isoforms from Ribo-seq data, by discarding a substantial fraction of transcript structures
with no support. The marked nuclear localization of annotated but discarded RNAs (Figure 2a) indicates
that these structures are not present at translating ribosomes, i.e. that they are not expressed in the
assayed condition or that they represent pre-mRNA intermediates which are either rapidly degraded or
retained in the nucleus. Our strategy therefore resulted in a markedly improved mapping of Ribo-seq
exonic and junction reads to their possible transcripts of origin (Figure 1d), allowing for ORF-specific
translation estimates.

The quantification of transcript isoform expression is a well-studied problem in RNA-seq, with popular
methods applying iterative methods (such as the expectation-maximization algorithm) to resolve the
mixture resulting from multiple transcripts!®3#33, However, resolving the mixture of multiple transcript
isoforms can be challenging for some genes, especially in the absence of coverage on unique transcript
features. We could show how a top performing algorithm designed to solve this problem with high

accuracy displays high variability in its estimates for such cases (Supplementary Figure 2), illustrating how
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short-read sequencing data, such as resulting from Ribo-seq, does not provide sufficient information to
impeccably quantify translation for each and every gene. The rapidly increasing availability of full-length
transcript sequence data based on long-read sequencing®® holds great promise in solving these complex
scenarios.

While polysome profiling experiments (Figure 2d) and label-free quantification of the protein product
(Figure 5b) support the Ribo-seg-based estimates of relative ORF translation levels, we believe that
additional efforts can improve ORF-specific quantification of translation. A more accurate approach will
have to address the issue of variable Ribo-seq coverage along the ORFs, which reflects the complex
dynamics of translation. However, the impact of different features, such as experimental biases, codon
composition or RNA structural features®, on Ribo-seq coverage remain to be understood. Our approach
also uses a strict definition of ORFs that requires a canonical start codon and does not account for
overlapping frames. It is still an open question how to correctly define the precise boundaries of translated
elements that account for non-canonical start codons and signals from overlapping frames, such as from
upstream ORFs*® or complex gene structures in compact genomes such as found in viruses and organelles.
Our strategy enabled us to detect thousands of lowly translated ORFs in transcript isoforms of protein
coding genes that are annotated as non-coding, consistent with current models for mRNA surveillance
such as NMD (Figure 3). Similarly, we observed that many detected ORFs in non-coding RNAs show high
degradation profiles at their stop codons, especially pronounced in snoRNA host genes (Figure 3d). This
well-known phenomenon is therefore important to consider when addressing the protein-coding ability
of transcripts based on ribosome occupancy. In turn, the ability to identify NMD target candidates can
provide an advantageous starting point for further research into defining the features of co-translational
mRNA surveillance and its links to protein quality control®’.

Expanding our analysis across multiple cell lines allowed us to assess the complexity of translation per
gene for both coding and non-coding genes (Figure 4b). We found the majority of genes to be translating
the same major ORF (including highly translated ORFs in non-coding RNAs, Figure 4c), but we also detected
distinct ORFs used for the major translation product in different cell lines in thousands of genes. These
genes showed an overall more complex pattern of transcript expression, with sustained translation of
many transcripts, and thus posing a difficulty in defining clear isoform switching event. In this context, the
presence of highly translated small ORFs in protein-coding genes (Supplementary Figure 11), which may
play gene regulatory roles rather than expand the proteome, adds further complexity. Unfortunately, the

limited amount of data at hand (often lacking replicate information) and the heterogeneity of protocols
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adopted by different labs, pose challenges to precisely quantify the contribution of different mechanisms
in promoting diversity (or lack thereof) in protein synthesis.

Despite potential limitations, we observed a substantial agreement between our estimates of translation
and steady-state protein abundance. The level of agreement between mRNAs and proteins has been
subject to intense debate®; our results indicate that for thousands of genes, shotgun proteomics
experiments and sequencing of ribosome-occupied RNA fragments do show excellent agreement, albeit
with expected dependencies on the reliability with which we can quantify the levels of translation and
protein abundance (Figure 5a). An increasing availability of Ribo-seq and proteomics data in a single
controlled environment will improve our understanding of this relationship and help to pinpoint
interesting cases in which this correlation deviates from expectation. While our analyses provide a
promising starting point for the investigation of transcript-specific protein production, the current scarcity
of matching data specifically limits our ability to validate the translation of alternative protein isoforms
per gene. A recent study demonstrated how protein isoforms engage with distinct protein-protein
interaction networks, with such interactions being as different as the ones involving proteins from distinct

4041 and transcriptomics*? techniques rapidly advancing at a fast pace, our

genes®. With both proteomics
study demonstrates the unique advantage of ribosome profiling in characterizing and quantifying

cytoplasmic gene expression programs, at the interface between RNA and protein.
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Methods

ORFquant - Transcript/ORF filtering

Gene models from the GTF annotation are flattened to obtain coordinates about exonic bins or junctions,
together with the set of transcripts they map to. Next, P-sites positions and junction reads (from all read
lengths) are mapped to such features, to obtain positive (with at least one read count) or negative features
(with no reads). Internal features are then defined as features contained between the coordinates of the

first (most upstream) and last (most downstream) positive features.

The filtering procedure is then applied: initially, an empty vector of positive features is created, and such
a vector is updated at each step, adding (when present) new positive features contained by the analyzed
transcript. After creating the empty vector, the set of annotated transcripts is analyzed, applying the

following rules for each transcript Tx;:

1) Tx; contains a novel positive feature:
Tx; is selected and each previously selected Tx; is re-analyzed:
If all the positive features of Tx; are also contained in Tx;, Tx; is discarded.
2) Tx; does not contain a novel positive feature:
Tx; is initially selected, but it is compared with each previously selected structure Tx;. Two

possible scenarios are evaluated:

i) All the positive features of Tx; are also contained in Tx;:
if Tx; has more positive features than Tx;, or fewer negative internal features than Tx;,
Tx; is discarded

ii) All the positive features of T'x; are also contained in Tx;:

if Tx; has fewer negative internal features than Tx;, Tx; is discarded.

This greedy strategy reduces the number of transcripts that is necessary to cover all the positive features
(features with reads), trying to minimize the presence of negative features (features with no reads). We
select ORFs following the same rules, this time using exonic bins and splice junctions derived from the

ORF structures.
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ORFquant - ORF finding

As in the RiboTaper®® method, only ATG is considered as potential start codon, and the p-value for the
multitaper method applied to the candidate ORF P-sites track must be below 0.05. To select ORFs with
in-frame P-sites and account for local off-frame effects, we require the average signal on each covered
codon to be >50% in frame. The same strategy is used to select the start codon for each ORF, requiring

>50% average in-frame codon signal between each candidate ATG and the next.

ORFquant - ORF quantification

After the ORF finding step, ORF filtering and quantification is subsequently performed, using the length-

normalized Ribo-seq coverage Cov on each ORF feature.

Cov — #reads
ov= length

P-sites positions are used to calculate coverage on exonic regions, while spliced reads for junctions. Length

is set to 60nt for junctions, according to the possible nucleotide space covered by a spliced read of ~30nt.

A feature F can be unique to one ORF or shared between multiple ORFs. For each ORF, we calculate the
average coverage on unique features AvCovUn, using the coverage Covg, on each of the unique features

F,.

#Fu
Zl CovFu

#F,

AvCovUn =

The same calculation is performed for all features Fall mapping to the ORF.

4F
¥, “covpan

AvCovAll ==
#Fqu
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A scaling factor Cogrp (with @ minimum value of 0 and a maximum of 1) is calculated, for each ORF, using
the ratio between AvCovUn and AvCovAll. Such scaling factor represents the fraction of Ribo-seq signal

that can be attributed to the ORF.

c _ AvCovUn
ORF ™ ApCovAll

When no unique feature is present in one ORF (all regions are shared with other ORFs), the signal at each
feature is adjusted using the quantification performed on other ORFs, as follows: the coverage AdjCovg
on each feature F attributed to that ORF is calculated subtracting the expected signal coming from other
ORFs (ORF,err) overlapping that feature, using their scaling factors. In such cases, the calculation of the

adjusted coverage for each feature Fadj is as follows:

: — #ORFoverF
AdjCovp = Covp — (Covg * ZORFFOVQTF CoRFoperr)

After calculating the adjusted coverage for each feature, the average of such coverage values is calculated.

SHF pgdjcovp

AvAdjCov =
HF

The final scaling factor is here defined by the ratio of the adjusted coverage (coverage belonging to the

ORF) to the total coverage (coverage coming from all ORFs).

AvAdjCov

C =
ORF AvCovAll

If no unique region is present in any detected ORF in the gene (all regions are shared among ORFs and no
Cogrr value can be initially calculated), the scaling factor is derived assuming uniform Ribo-seq coverage
on each ORF. The shared coverage ShCovy is now simply calculated dividing it by the number of ORF, o

mapping to the feature F.

#reads
ShCOUF = m/#ORFoverF
#F
AvShCov = 21 ShCovg
#F
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The scaling factor is again derived dividing the average shared coverage (attributed to the ORF) to total

average coverage.

AvCovSh

C = —
ORF ™ Aycovall

After the calculation of Cygp, the adjusted number of P-sites for each ORF (Pygp) is calculated using the
raw number of P-sites mapping to the ORF multiplied by the scaling factor, to obtain ORF-specific

guantification estimates.

PORF = PSiteS * CORF

For each ORF of length Lygr, the scaled numbers of P-sites Pogpr is normalized over the entire set of
detected ORFs to obtain TPM-like values, named ORFs per Million (ORFs_pM), using this formula:

6
ORFs_pMygp = “2FE  —2

P
Lorr  Y#ORFLORF
ORF LORF

Moreover, we calculated the contribution of each ORF to the overall translation output of a single gene.
Such metric, named ORF_pct_P_sites (or percentage of gene translation), is calculated dividing Pyrr by
the sum of Py of all ORFs (#ORF g) detected in a gene.

PORF

#ORFg

ORF _pct_P_sitesorr =
ORF PORF

Normalization by length is here not applied, as this metric wants to quantify the amount of translation
per gene coming from each ORF. The ORF pct P_sites pN metric indicates length-normalized

ORF_pct_P_sites values (e.g. they can be high for a short highly translated ORF).

After quantification, ORFs are subjected to a filtering step and quantification is performed again, until all

ORFs are being retained.
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ORFquant parameters

For all cell lines, ORFquant was run using a cutoff of 2% of total gene translation and using only uniquely

mapping reads.

RSEM quantification:

RSEM 1.3.1 was run in strand-specific mode on Ribo-seq data using a seed length of 20, using Bowtie2 as
aligner, and enabling the calculation of confidence intervals together with posterior mean estimates.
ORFquant-derived ORF positions were used to specify the transcript sequences to use as reference.
When possible, additional 15 nucleotides were added to start and end coordinates to allow for the
mapping of Ribo-seq reads. The “TPM_coefficient_of quartile_variation” column of the RSEM output

was used as a proxy to monitor the variability in RSEM quantification estimates.

Ribosome profiling:

Ribo-seq was performed as described previously!® and adapted for HepG2 and K562 cell lines. 5x1076
K562 suspension cells and two 80% confluent 10 cm TC dishes of adherent HepG2 cells (DSMZ #ACC-10

and #ACC-180, respectively) were used.

Adherent cells were washed with ice-cold PBS supplemented with 100 ug/ml cycloheximide (Sigma Aldrich
#C4859) and immediately snap-frozen by immersing the dishes in liquid nitrogen. The dishes were then
transferred to wet ice and 400 ul of lysis buffer (1X polysome buffer (20 mM Tris-Cl pH 7.4, 150 mM Nacl,
5 mM MgCl2, with 1 mM DTT (Sigma Aldrich #43816) and 100 ug/ml cycloheximide added freshly; keep
on ice), 1% (v/v) Triton X-100 (Calbiochem #648466), 25 U/ml TURBO DNase (Life Tech. #AM2238)) was
immediately dripped onto the frozen cells. The cells and buffer were then scraped off and left to thaw on

one side of the dish, mixing them using a pipet tip.

Suspension cells were supplemented with 100 ug/ml cycloheximide, pelleted for 5 min at 300 g and
washed with ice-cold PBS + 100 ug/ml cycloheximide. The washed cell pellet was immediately snap-frozen
in liquid nitrogen. 400 ul of ice-cold lysis buffer was added, and the cells were put on wet ice to thaw,

mixing them using a pipet tip.
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The cells were left to lyse for 10 min on ice, followed by 10x trituration through a 26-G needle. After
centrifugation for 10 min at 20°000g at 4°C the clarified supernatant was transferred to a pre-cooled tube
on ice. For nuclease footprinting, 400 ul of lysate were supplemented with 1000 U of RNase | (Life Tech.
#AM2295) and incubated in a thermomixer set to 23°C, shaking at 500 rpm for 45 min. Footprinting was
stopped by adding 260 U of SUPERASE-In (Life Tech. #2696).

To recover ribosomes two MicroSpin S-400 HR columns (GE Healthcare #27-5140-01) per 400 ul of sample
were equilibrated with a total of 3 ml of polysome buffer. The columns were drained by spinning for 4
min at 600 g, then the sample was applied and spun for 2 min at 600g. Three volumes of Trizol LS (Life
Tech. #10296010) were added to the flow-through and RNA was extracted using the Direct-zol RNA Mini-
Prep kit (Zymo Research #R2052) as per the manufacturer’s instructions. RNA was quantified using the

Qubit RNA Broad Range Assay (Life Tech. #Q10211).

Ribosomal RNA was removed from 10 ug of footprinted RNA using the RiboZero Magnetic Gold kit
(Nlumina #MRZG12324) as per the manufacturer’s instructions. Footprinted RNA was precipitated from
the supernatant (90 ul) using 1.5 ul of glycoblue (Life Tech. #9515), 9 ul of 3 M sodium acetate and 300 ul
of ethanol by incubation for 1h at -80°C and pelleted for 30 min at max. speed at 4°C. The RNA pellet was

dissolved in 10 ul of RNase-free water.

To recover the ribosome protected RNA fragments the sample was loaded onto two lanesof a 1 mm 17.5%
Urea-PAGE gel along with 27 nt and 30 nt RNA markers. The gel was run in 1X TBE at 250 V for 80 min and
stained for 3 min in 1X SYBR gold (Life Tech. #511494) in 1X TBE. Sample bands between 27 nt and 30 nt
were excised and crushed by spinning through a punctured tube. RNA was extracted by soaking the gel
pieces in 400 ul of RNA extraction buffer (400 mM NaCl, 1 mM EDTA, 0.25% (wt/v) SDS) for 2 h, rotating
at room temperature. The supernatant was supplemented with 1.5 ul of glycoblue and 500 ul of
isopropanol and incubated on dry ice for 30 min, followed by pelleting of the RNA for 30 min at 20000 g

at 4°C. The pellet was dissolved in 40 ul of water.

To prepare the RNA sample for use in a smallRNA library preparation kit the sample was phosphorylated
using 5 ul of 10X T4 PNK buffer and 1 ul of T4 PNK (NEB #M0201), 1 ul of SUPERASE-In, 2.5 ul of 10 mM
ATP and 0.5 ul of 1% Triton X-100. After incubation for 1 h at 37°C RNA was precipitated and pelleted by
adding 41 ul of water, 1.5 ul of glycoblue, 8 ul of 5M NaCl and 150 ul of isopropanol as described before.
Libraries were prepared using the NEXTflex Small RNA-Seq Kit v3 (BiooScientific #5132-06) as per the
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manufacturer’s instructions and sequenced on an Illumina NextSeq500 machine with 13 libraries pooled

at 1.8 pM using one High Output Kit v2 (Illumina #FC-404-2005) with 75 cycles single-end.

Ribo-seq and RNA-seq data processing

Ribo-seq reads were stripped of their adapters using cutadapt*’. Randomized UMI sequences (where
present) were removed, and reads were collapsed. Reads aligning to rRNA, snoRNAs and tRNA sequences
were removed with Bowtie2**. Unalighed reads were then mapped with STAR* using the hg38 genome
and the GENCODE 25 annotation in GTF format. For RNA-seq and Ribo-seq, a maximum of four and two
mismatches was allowed, and multimapping of to up to 20 different positions was permitted. Alignments
flagged as secondary alignments were filtered out, ensuring one mapping position per aligned read. P-
sites positions and junction reads were extracted using Ribo-seQC* with default parameters. Statistics
about the different Ribo-seq libraries are available as Supplementary Data 1. Gviz*’ was used to visualize

data tracks and transcript annotation.

Polysome profiling:

DEXSeq?® was run to detect differential exon usage between each of the polysome fraction and the
cytoplasmic abundance. Transcripts were divided based on the translation levels of their translated ORF(s)
and intersected with differential exons (FDR<0.01 in at least one polysome fraction). Only genes with

multiple translated transcripts were used.

Nuclear-cytoplasmic comparison:

DEXSeq?® was run to detect differential exon usage between the nuclear and the cytoplasmic fraction.
Differential exons (FDR<0.01) were intersected with transcript structures and only exons uniquely

mapping to one transcript group (e.g. discarded transcripts, selected transcripts etc...) were selected.
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5’end of endonucleolytic cuts:

Bigwig files for the different libraries were normalized by library size. Coordinates were lifted to hg38 and
overlapped with ORFquant-identified stop codon positions, for both NMD candidates and controls
(“canonical” stop codons taken from the same genes). A window of 50 nucleotides was used to derive

spatial profiles and count the number of reads mapping around stop codons in the different conditions.

Merging ORFquant result across cell lines:

ORFs were considered to be distinct if they ended at different stop codons or could not be mapped to the
same transcript. Enrichments for ORF categories at different level of overlap were calculated using
normalized residuals from a chi-squared test. GO enrichment was performed using the clusterProfiler®®

and topGO*® packages.

Proteomics database search:

Raw data was searched using MaxQuant3! version 1.6.0.13, using Carbamidomethyl as fixed modification,
and oxidation of Methionine and acetylation at protein N-termini as variable modifications. Quantification
was performed using only unique peptides. Matching between runs was enabled. We used a custom
database to perform the peptide search: ORFquant-detected ORFs were merged in a unique database,

choosing only ORFs explaining a minimum of 10% of gene translation in at least one cell line.

Comparison between protein abundance and translation estimates:

For each protein group, iBAQ values were summed up for each replicate. ORFs_pM values were summed
for all ORFs mapping to each protein group. ORF_pct iBAQ values were obtained by dividing each iBAQ
value for the sum iBAQ values for that gene. Protein groups mapping to multiple genes were discarded.
The same procedure was applied to ORFs_pM values, to compare protein and translation estimates for
each protein isoform. Only proteins detected by Ribo-seq (or RNA-seq) and proteomics were used. Gene-

level TPM values in Supplementary Figure 14 were calculated using kallisto®? with default parameters.
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Data availability

Ribo-seq data for HepG2 and K562 is available at GEO under the accession X. Ribo-seq datasets for other
cell lines were previously published, and accessed using the accessions GSE79664 (Hela), GSE73136
(HEK293), GSE74279 (Jurkat) and GSE56924 (U20S); more details about the analyzed samples can be
found in Supplementary Table 1. Nuclear and cytoplasmic RNA-seq was accessed at the European
Nucleotide Archive using the accession PRIEB4197. TriP-seq data was downloaded from GEO using the
accession GSE69352. Transcriptome-wide tracks of 5’ ends were accessed using the accession GSE57433.
Proteomics data was downloaded from the PRIDE repository under accession PXD002395. The list of P-
sites positions and junction reads in the cell types analyzed is available in Supplementary Data 1. The list
of quantified ORFs in the different cell lines is available in Supplementary Data 1. The final protein
database is available in Supplementary Data 2, together with the parameters used to perform the

MaxQuant search and the set of identified peptides and proteins.

Code availability

ORFquant is available at https://github.com/Icalviell/ORFquant.
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Supplementary Table 1: Summary of Ribo-seq datasets analyzed in this study.

Supplementary Data 1: Archive containing all P-sites positions and junction reads (using uniquely mapping

reads), together with the set of ORFquant identified ORFs, for each cell line.

Supplementary Data 2: Archive containing the set of identified peptides and proteins, including their Ribo-

seq statistics, the parameters used for the MaxQuant run and the custom protein database.

Figure legends

Figure 1: The ORFquant strategy to quantify translation on selected transcripts.

a) The ORFquant workflow; b) the PHLEKM?2 gene as an example: displayed tracks represent, from top to
bottom: 1) complete annotation, 2) P-sites positions, 3) junction reads (from Ribo-seq), 4) discarded
transcripts, 5) selected transcripts, 6) detected ORFs, 7) selected ORFs, 8) quantified ORFs and 9) ORF
coverage (defined here using the percentage of gene translation). Colors for discarded and selected
transcripts indicate unique features with no signal (black); shared features with no signal (grey); unique
features with signal (red); and shared features with signal (pink). Colors for discarded and selected ORFs
indicate signal in shared features (blue heatmap) and signal in unique features (red heatmap). For the
qguantified ORFs, the heatmap indicates ORF coverage values (0-100). Thick bars indicate CDS regions, as
defined by the annotation or by ORFquant (de-novo). c) Number of selected transcripts per gene (x-axis)
against number of genes (y-axis). d) Percentage of covered junctions (bottom), or covered exons (top)
mapping to a different number of structures using all transcripts, protein-coding transcripts only or
selected transcripts only. e) The number of quantified ORFs (x-axis) is shown against number of genes (y-
axis). f) The number of genes (y-axis) are plotted against the contribution (in percentages) of their major
ORF. g) Aggregate plot of Ribo-seq coverage (normalized 0-1 per each region) and ORF coverage
(ORF_pct_P_sites_pN, Methods) over candidate alternative splice sites regions as detected by ORFquant.
No mixture indicates one ORF only, while other tracks indicate the presence of additional ORFs, divided
by their summed translation values. Explanatory scheme at the bottom, with blue representing the major

ORF and red the additional ORF(s).
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Figure 2: Quantification of translation on cytoplasmic mRNAs.

a) Density of exonic fold changes for nuclear and cytoplasmic RNA-seq for different transcript classes.
Negative values indicate more cytoplasmic abundance, while positive values indicate enrichment in the
nucleus. b) The DGR2 locus as example: tracks represent, in descending order: 1) Nuclear RNA-seq
coverage, 2) discarded transcripts, 3) cytoplasmic RNA-seq coverage, 4) selected transcripts, 5) P-sites
positions, 6) junction reads, 7) discarded ORFs, 8) quantified ORFs. Color representation as in Figure 1b.
c) Overview of the ORFquant-derived translatome. Number of ORFs, ORF length in nucleotides, length-
normalized quantification and % of gene translation are shown, stratified by ORF category and annotated
biotype. ORF_annotated represents ORFs whose structure perfectly matches the annotated CDS; other
represents additional ORFs, such as nested ORFs, overlapping ORFs, downstream ORFs in 3’UTRs (dORFs),
while not_annotated represents ORFs in transcripts with no CDS annotation. The maximum width of each
violin plot is the same for each panel, and the median value is shown as a black bar. d) Average exonic
fold changes with respect to cytoplasmic abundance (y-axis) for different polysome fractions (x-axis) for
ORFs exhibiting different levels of translation within the same genes. e) Density plot of aforementioned

exonic fold changes for two polysome fractions and for different ORF classes.

Figure 3: De-novo annotation of NMD candidates.

a) Schematic annotation of NMD candidates; EJC = Exon Junction Complex. b) Aggregate profiles of 5’
fragments around stop codons of NMD candidates and control ORFs from the same genes. ¢) Example of
a (not previously annotated) translated ORF in the SNHG17 gene. d) Number of 5’ fragments observed in
an XRN1 knockdown experiment around stop codons (y-axis), versus the distance between stop codons
and the last exon-exon junction (x-axis), for different transcripts/ORF classes. Smoothing was carried out
by a generalized additive model (gam in R, with default parameters). The red vertical line indicates 50

nucleotides upstream of the last exon-exon junction.

Figure 4: Diversity in gene translation across cell lines.
a) Workflow for the analysis of the different datasets. b) Number of genes (top), average number of
detected ORFs (middle) and average % of gene translation (bottom), for each number of cell lines where

the gene harbored a detected ORF. Colors indicate the gene biotype. Genes translating one or more
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distinct major ORFs across cell lines are shown in different panels. The maximum width of each violin plot
is the same for each panel, and the median value is shown as a black bar. c) Detected ORFs and Ribo-seq
signal in the SNHG17 gene in Hela and K562 cells. d) Detected ORFs and Ribo-seq signal in the C50rf63
gene in HepG2 and U20S cells. e) Distribution of overlap between multiple major ORFs from the same
gene. f) Length (in nucleotides) of major ORFs with low and high overlap. g) Enrichment of different

categories for major ORFs with high and low degree of overlap.

Figure 5: Agreement of protein synthesis with steady-state protein abundance estimates.

a) Workflow of the proteomics analysis (left). On the right, iBAQ values (y-axis) versus length-normalized
translation quantification estimates (ORFs_pM); proteins are split in multiple groups based on the number
of detected unique peptides (from proteomics) or unique covered features (from Ribo-seq). b) Correlation
values (as in a) shown for all the assayed cell lines. c) % of protein abundance per gene (y-axis) plotted
against % of gene translation (x-axis), with translation quantification performed with (right) and without
(left) adjusting for the presence of multiple ORFs per gene. Size and color of each data point indicate the
number of unique peptides detected. d) Correlations from c) shown for the 6 cell lines. P-values derived

from paired Wilcoxon rank-sum test (one-sided).
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