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Abstract 

 

At the center of the gene expression cascade, translation is fundamental in defining the fate of much of 

the transcribed genome. RNA sequencing enables the quantification of complex transcript mixtures, often 

detecting several splice isoforms of unknown functions for one gene. We have developed ORFquant, a 

new approach to annotate and quantify translation at the single open reading frame (ORF) level, using 

information from Ribo-seq data. Relying on a novel approach for transcript filtering, we quantify 

translation on thousands of ORFs, showing the power of Ribo-seq in revealing alternative ORFs on multiple 

isoforms per gene. While we find that one ORF represents the dominant translation product for most 

genes, we also detect genes with translated ORFs on multiple transcript isoforms, including targets of RNA 

surveillance mechanisms. Assessing the translation output across human cell lines reveals the extent of 

gene-specific differences in protein production, which are supported by steady-state protein abundance 

estimates. Computational analysis of Ribo-seq data with ORFquant (available at 

https://github.com/lcalviell/ORFquant) provides a window into the heterogeneous functions of complex 

transcriptomes. 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/608794doi: bioRxiv preprint 

https://doi.org/10.1101/608794
http://creativecommons.org/licenses/by-nc/4.0/


 2 

 

Introduction 

 

Studying gene expression allows us to understand the functions of different molecules and regulatory 

sequence elements, whether they act at the level of transcription, the transcribed RNA, or the encoded 

protein. To ensure correct protein synthesis, transcriptional and post-transcriptional regulatory programs 

determine the identity and amount of mature RNA templates. The translation process ensures the correct 

identity and amount of synthesized proteins. 

The ribosome is the main actor of the translation process, a complex ribonucleoparticle that is not only 

able to synthesize proteins, but also acts as quality control platform for both the nascent peptide1 and the 

translated mRNA2. Several RNA surveillance mechanisms are known to occur co-translationally, and their 

importance for different processes such as differentiation or disease has been investigated3. 

Ribosome profiling (Ribo-seq) has made it possible to pinpoint the positions of actively translating 

ribosomes transcriptome-wide, using ribosome footprinting coupled to RNA sequencing4. In the last 

decade, Ribo-seq has been extensively used to investigate the molecular mechanisms acting on the 

ribosome, and to identify the entire ensemble of translated regions (the translatome) in multiple 

organisms and conditions. The resulting rich datasets have triggered a plethora of dedicated analysis 

methods, which exploit distinct features of Ribo-seq profiles to confidently identify translated ORFs5,6. In 

this context, many reports have focused on whether small translated regions are hidden in long non-

coding RNAs7–9, with less attention given so far to account for the presence of multiple transcript isoforms 

per gene. 

Transcript diversity can result from either alternative splicing (AS) or from alternative transcription start 

or poly-adenylation site usage, and it is now commonly profiled by RNA-seq experiments, which measure 

steady-state abundance of (m)RNAs. Large-scale efforts have uncovered the wide spectrum of alternative 

transcript isoforms, with many being lowly expressed and/or presenting incomplete ORFs10. The 

contribution of this transcript heterogeneity to an expanded translatome is therefore an intensely 

debated topic11,12, with much of transcript and protein abundance apparently explained by a single 

dominant transcript per gene13. 

The mere presence of multiple transcripts does not imply the presence of a distinct, functional protein 

translated from each transcript isoform: transcripts might be retained in the nucleus, selectively 

degraded, or undergo translational repression. From a technical point of view, RNA-seq experiments 
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quantify a complex scenario in which, depending on the protocol used, alternative transcripts may also 

reflect different steps of RNA processing and not the stable, steady-state cytoplasmic pool of mRNAs 

available to the ribosome. From a different direction, shotgun proteomics approaches are only recently 

providing the sensitivity to detect tens of thousands of proteins from a single sample14 and rarely reach 

the depth to investigate alternative protein isoforms. 

To close this gap, we developed a strategy to identify and quantify translation on the subset of transcripts 

that are expressed in the cell. A recent study presented a proof-of-principle for validating the presence of 

multiple transcript isoforms in Ribo-seq data15, underlining the potential of isoform-aware analysis 

approaches to fully define the translatome. Following up on this premise, we here describe ORFquant, a 

Ribo-seq analysis approach that detects and quantifies ORF translation across multiple transcript isoforms 

and zooms in on the potential roles of alternative transcripts. 

 

Results 

 

The ORFquant approach to annotate and quantify translation 

 

Our approach is based on the premise that, despite their short length, Ribo-Seq reads are sufficient to 

support a given set of alternative transcripts (Figure 1a, b). Single-nucleotide positions corresponding to 

the peptidyl-site for each ribosome (P-sites positions) and junction reads are first extracted from the Ribo-

seq alignment (Methods) and then mapped to flattened gene models from a given annotation (Figure 1b). 

In this way, transcript features (e.g. exonic bins or splice junctions) are designated as unique or shared 

across multiple annotated transcript isoforms. 

We first retain a subset of annotated transcripts, which is sufficient to explain all the observed P-sites or 

junction reads and reduce the occurrence of exons and junctions with no signal, using an Occam’s razor 

strategy (Methods). In brief, a transcript is filtered out if its features supported Ribo-seq signal can be 

explained by another transcript with better support (i.e. containing more features with Ribo-seq support 

or fewer unsupported features). As Ribo-seq reads are largely found in 5’UTRs and coding regions only, 

this approach might not distinguish between transcripts differing in their 3’UTR. 

This simple yet effective selection strategy leads to a significantly reduced number of transcripts: the 

observed Ribo-seq signal can be explained by 1 to 3 transcript structures for most genes, without showing 

a strong bias for expression level (Figure 1c, Supplementary Figure 1). This selection dramatically improves 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/608794doi: bioRxiv preprint 

https://doi.org/10.1101/608794
http://creativecommons.org/licenses/by-nc/4.0/


 4 

the assignments of both exons and junctions to transcripts (Figure 1d): when considering covered exons 

or junctions (defined as having at least one Ribo-seq read mapped to them), ~64% of exons mapped to 1 

or 2 transcripts, compared to ~29% when no selection is performed. Considering only annotated protein-

coding transcripts does not substantially improve the mapping of covered features, while it ignores the 

presence of covered exons and junctions unique to non-coding transcripts. Next, we detect translated 

ORFs de novo in each of the selected transcripts, using frame preference and the multitaper16–18 test to 

select in-frame signal displaying 3nt periodicity (Methods), a hallmark of active translation elongation. 

Detected ORFs are filtered using the same strategy used for transcript filtering.  

After calculating coverage on unique and shared ORF features (exonic bins and splice junctions within ORF 

boundaries), a scaling factor between 0 and 1 is determined using the coverage on unique ORF features, 

or the amount of overlap between ORFs when no unique feature can be detected (Methods).  This scaling 

factor represents the fraction of Ribo-seq signal which can be assigned to that ORF. The scaled number of 

P-sites is then normalized by the ORF length to arrive at transcripts per million (TPM)19-like values, named 

ORFs per Million (“ORFs_pM”). Moreover, we calculate the relative contribution of each ORF to the overall 

translation output of each gene (“ORF_pct_P_sites”, or percentage of gene translation). An additional 

filtering step discards poorly translated ORFs. ORFs are then annotated according to their position relative 

to their host transcript, to other detected ORFs in the same gene, and to annotated CDS regions. 

Applying ORFquant, we quantified translation for ~20,800 ORFs in ~12,300 genes profiled in a Ribo-Seq 

data set from the human HEK293 cell line18. Most genes (7,732 Figure 1e) displayed only one translated 

ORF, with another >5,000 genes showing translation of multiple ORFs. Upon closer inspection (Figure 1f), 

we observed that for the majority of genes (~80%), the most translated (i.e., major) ORF could explain 

>80% of the total gene translation, with only 444 genes for which the major ORF explained <50% of the 

translational output. We did not observe a clear dependency between number of detected ORFs (or % of 

translation of major ORF) and overall Ribo-seq coverage, with the exception of the few dozen genes for 

which the major ORF accounted for little of the total gene output (Supplementary Figure 1). 

In principle, the final set of ORFs can be provided to any algorithm for transcript quantification. To 

demonstrate the effectiveness of our simple approach, we compared our estimates with the ones 

calculated by RSEM19, a well-known statistical approach devoted to transcript quantification. We observed 

good correlation between the two method in their estimates of the relative contribution of each ORF to 

the total output (Supplementary Figure 2, left). In addition, we observed how RSEM quantification 

estimates showed high uncertainty (Methods) for ORFs where few unique features are present, which are 

cases where ORFquant assigns low translation estimates to the major ORF (Supplementary Figure 2, right). 
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Despite major differences in their quantification strategy (Discussion), both ORFquant and RSEM showed 

similar performances in determining the contribution of each ORFs to the total gene translation output. 

To illustrate the consistency of our translation estimates, we annotated the ORF structures with respect 

to the major (most translated) ORFs in each gene: this allowed us to detect genomic regions (e.g. different 

alternative splice sites) where the Ribo-seq signal should reflect different quantitative estimates of 

translation coming from different ORF(s). Aggregate profiles of Ribo-seq coverage closely reflected the 

expected pattern calculated by ORFquant (Figure 1g). Additional profiles over different genomic locations 

are shown in Supplementary Figure 3. Taken together, the translation of a major ORF accounts for >80% 

of total gene translation for most of the genes, but distinct translated ORFs are detected from multiple 

translated transcripts for hundreds of genes.  

 

Quantification of translation as a window into the functional relevance of alternative open 

reading frames 

 

As translation is a cytoplasmic process, we expected the ensemble of transcript structures selected by 

ORFquant to represent bona fide cytoplasmic transcripts. To test this hypothesis, we performed a 

differential exon usage analysis20, using RNA-seq data from nuclear and cytoplasmic extracts in HEK293 

cells21. Most exons unique to discarded structures showed marked nuclear localization (log2FC>0), while 

exons of selected transcripts showed a prominent cytoplasmic enrichment (Figure 2a). Translated 

transcripts displayed a more marked cytoplasmic localization. An example of the selection strategy 

discarding pre-mRNA structures in favor of cytoplasmic transcripts is shown in Figure 2b. 

When examining the GENCODE annotation22 of the transcripts hosting de novo identified ORFs, we noticed 

~2,000 ORFs in non-coding transcript isoforms of protein-coding genes, most of which lacked annotated 

ORFs (Figure 2c). Compared to ORFs in annotated protein-coding transcript isoforms, these ORFs exhibited 

much lower translation, accounting for a median of 6.8 % of gene translation, compared to 87% for ORFs 

that fully matched annotated CDSs. More than 3,500 N-terminal truncation events were also detected, 

showing high levels of translation. Upstream ORFs (uORFs) and other small ORFs exhibited low signal, 

albeit high when normalized by their length. In annotated non-coding genes, we detected 181 ORFs from 

annotated pseudogenes and 620 ORFs from other non-coding RNA genes, with overall lower translation 

levels than protein-coding RNAs (Figure 2c). 

Analysis of a deep polysome profiling dataset (Trip-Seq23) from the same cell line showed that the 

quantitative estimates of translation agreed with distinct polysome profiles (Figure 2d,e; Supplementary 
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Figure 4): Exons uniquely mapping to transcripts harboring lowly translated ORFs accumulated in low 

polysomes and were depleted in heavier polysomal fractions. Conversely, highly translated transcripts 

exhibited sustained levels also in heavy polysomes. Despite the fundamental differences between 

polysome profiling and Ribo-seq in representing the translated transcriptome, the two techniques 

therefore agreed in detecting quantitative differences in the translation of multiple transcripts per gene. 

 

The presence of numerous lowly translated ORFs detected in non-coding transcript isoforms (Figure 2c) 

suggested inefficient translation and/or low steady-state abundance of the translated transcript. We 

wondered whether transcripts subject to RNA surveillance mechanisms (such as nonsense-mediated 

decay, NMD) might cause such a low but detectable Ribo-seq signal. The presence of a premature 

termination codon (PTC) is an important feature of many NMD targets24, which is assumed to be 

recognized as such when the stop codon is located sufficiently upstream of the last splice junction, i.e. 

when a downstream Exon Junction Complex (EJC) is not displaced during translation elongation (Figure 

3a). To investigate the putative action of NMD on PTC-containing transcripts, we divided transcripts based 

on the presence of a splice site downstream of a detected ORF. A recent study mapped NMD-mediated 

cleavage events on the transcriptome in HEK293 cells25, by knocking down XRN1, the exonuclease in 

charge of degrading the cleaved transcripts. When aligning the cleavage sites at the stop codons of 

(putative) PTC- and non-PTC-containing transcripts (from the same genes), we observed a clear difference 

(Figure 3b): transcripts without PTC, i.e. where all EJCs are presumably displaced, showed background-

like signal, while transcripts harboring a putative PTC showed a marked degradation profile around their 

stop codon24. The degradation signal was less pronounced when SMG6 or UPF1 were also knocked-down, 

underlining the effect of known key factors of the NMD pathway on our candidate NMD targets. A clear 

example of such pattern is visible on a translated ORF in the SNHG17 gene (Figure 3c). 

To further explore the dependency of NMD with regards to the location of PTCs as well as the transcript 

type, we determined the number of endonucleolytic cuts at the stop codon as a function of PTC distance 

to the last exon-exon junction. We observed an increase in degradation for NMD candidate ORFs for all 

the surveyed ORFs (including uORFs; Figure 3d). As previously reported25, ORFs in snoRNA host genes 

(such as SNHG17, Figure 3c) showed the highest degradation profile, while other categories exhibited a 

lower amount of degradation. In summary, ORFquant is an efficient method to identify mature mRNAs, 

quantify the translation output of different transcript isoforms from the same gene, and to infer 

transcript-specific cytoplasmic fates. 
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A subset of genes translates different major ORFs in different cell lines 

 

To investigate the patterns of alternative ORF usage across different conditions, we ran ORFquant on Ribo-

seq datasets from 6 different human cell lines (Supplementary Table 1, Supplementary Data 1, Figure 4a), 

with newly generated data for K562 and HepG2 cell lines complementing previously published libraries 

from HEK293, HeLa, U2OS and Jurkat cells18,26–28.  For each dataset we observed the same trend described 

in Figure 1d, with most genes showing translation of one major ORF, and hundreds of genes showing 

sustained translation of multiple ORFs, with a weak dependency on the overall Ribo-seq signal 

(Supplementary Figures 5, 6). Across all cell lines, we detected ORF translation for ~17,000 genes 

(excluding pseudogenes), with ~89% of them annotated as protein-coding genes. 

For each gene and cell line, we defined the major ORF as the most translated ORF from a gene, regardless 

of its positional features and existing ORF annotation. For ~77% of the quantified genes, the same ORF 

was consistently identified as the major translated ORF in all the assayed cell lines (Figure 4b). For ORFs 

in non-coding RNAs, we detect a more cell-specific pattern of major ORF usage. However, a few dozen 

non-coding genes displayed translation of the same major ORF: one such example is again SNHG17, where 

the translation of an ORF terminating at a PTC (Figure 3c) is consistently detected across the assayed cell 

lines (Figure 4c). 

As expected, genes translated in all cell lines showed overall higher Ribo-seq signal. However, we did not 

observe a clear dependence between number of distinct major ORFs across cell lines and overall gene 

translation (Supplementary Figure 7). Two or more distinct major ORFs were identified in 18% and 5% of 

genes, representing candidate major ORF switching events across cell lines (Figure 4b). At a closer look, 

we observed that genes translating multiple major ORFs also displayed a more complex mixture of 

translated ORFs. Consequently, translation of the major ORF for those genes accounted for a lower 

percentage of total gene translation (Figure 4b, lower panel).  

ORF diversity is created by different mechanisms: differences in alternative splicing of internal coding 

exons (Supplementary Figure 8), alternative transcriptional start sites (Supplementary Figure 9), or 

alternative usage of last exons (Figure 4d). Genes exhibiting translation of multiple major ORFs showed 

an enrichment for GO categories like GTPase regulator (Supplementary Figure 10), a category also 

enriched in genes expressing multiple major transcript isoforms across human tissues29. However, in ~40% 

of the cases, distinct major ORFs translated across cell lines showed a low degree of overlap (Figure 4e) 

despite coming from the same genes, i.e., largely unrelated to differences in local alternative splicing 

events. This low overlap reflected the presence of alternative usage of uORFs or other small ORFs (Figure 
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4f,g), which can represent the major translation product of a gene in specific cell lines (Supplementary 

Figure 11). 

Taken together, these translation estimates indicate that the presence of one dominant ORF agrees across 

multiple cell lines for the majority of genes. For ~20% of the translated genes, however, highly translated 

small ORFs and/or several transcripts expressed at sustained levels create a substantial level of complexity 

in protein synthesis, with distinct ORFs accounting for the majority of the gene translational output in 

different cell lines. 

 

 

Agreement between protein abundance and synthesis estimates depends on proteome coverage 

and transcriptome complexity 

 

Ribo-seq reflects the density of elongation-competent 80S ribosome, and thus active protein synthesis, 

but an increased signal at a specific location may also represent stalled, inactive ribosomes. We therefore 

examined whether our translation quantification reflects the abundance of the synthesized protein 

product. Using a comprehensive custom protein database derived from the set of identified ORFs 

(Supplementary Figure 12, Supplementary Data 2), we estimated proteome-wide steady-state protein 

abundance using published deep mass spectrometry data30,31 for the same cell lines outlined above (Figure 

4a). We detected between 7,000 and 8,000 proteins per cell line (Supplementary Figure 13, 

Supplementary Data 2), and performed label-free quantification using signal from unique peptides only 

(Methods). To estimate the ability of both techniques in quantifying protein synthesis/abundance, we 

divided proteins based on the number of exon or junction features covered by Ribo-seq (with >=1 read 

mapping, i.e. independent of the exact number of mapping reads), and by the number of detected unique 

peptides (irrespective of their intensity). In cases where 0 - 3 unique peptides were detected, the 

correlation (in log space) between HEK293 ORFquant-derived estimates of translation (ORFs_pM) and 

steady-state protein abundance (iBAQ) measured ~0.52 (Figure 5a). However, for proteins having >9 

uniquely mapping peptides and >8 covered features (n >1900), the correlation between ORFquant 

estimates of translation and protein abundance reached the value of ~0.84. The same phenomenon was 

observed for all the assayed cell lines (Figure 5b). A clear dependency on the number of unique peptides 

was also observed when correlating iBAQ values with transcript abundance estimates from RNA-seq, 

albeit with lower correlations (Supplementary Figure 14).  
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When comparing the fraction of total gene translation to the fraction of total gene protein abundance for 

the few dozen genes with mass spectrometry matches to multiple detected protein isoforms, we observed 

a correlation of 0.58 (Figure 5c). Here, only few proteins harbored >9 uniquely mapping peptides, thus 

limiting our ability in reliably estimating their abundance (Figure 5a). We observed lower correlations 

when skipping the ORF-specific scaling step during translation quantification, highlighting the importance 

of accounting for the presence of multiple translated ORFs per gene (Figure 5c). The same pattern was 

observed for the other cell lines analyzed (Figure 5d, Supplementary Figure 15). A slight increase in 

correlations was detected when using all Ribo-seq reads (instead of uniquely mapping reads only) to 

derive translation estimates (Supplementary Figure 16), likely resulting from a better quantification in 

repetitive regions. 

Taken together, these results show excellent correlations between ORFquant quantification and steady-

state protein abundance, subject to the limitations in coverage that leads to lower agreement between 

Ribo-seq and shotgun proteomics. 

 

Discussion 

 

Only a fraction of known, annotated transcript structures are expressed in a specific context, and only a 

fraction of those structures are exported to the cytoplasm and eventually translated into functional 

proteins. This observation inspired us to devise a simple strategy to identify the subset of translated ORFs 

across transcript isoforms from Ribo-seq data, by discarding a substantial fraction of transcript structures 

with no support. The marked nuclear localization of annotated but discarded RNAs (Figure 2a) indicates 

that these structures are not present at translating ribosomes, i.e. that they are not expressed in the 

assayed condition or that they represent pre-mRNA intermediates which are either rapidly degraded or 

retained in the nucleus. Our strategy therefore resulted in a markedly improved mapping of Ribo-seq 

exonic and junction reads to their possible transcripts of origin (Figure 1d), allowing for ORF-specific 

translation estimates.  

The quantification of transcript isoform expression is a well-studied problem in RNA-seq, with popular 

methods applying iterative methods (such as the expectation-maximization algorithm) to resolve the 

mixture resulting from multiple transcripts19,32,33. However, resolving the mixture of multiple transcript 

isoforms can be challenging for some genes, especially in the absence of coverage on unique transcript 

features. We could show how a top performing algorithm designed to solve this problem with high 

accuracy displays high variability in its estimates for such cases (Supplementary Figure 2), illustrating how 
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short-read sequencing data, such as resulting from Ribo-seq, does not provide sufficient information to 

impeccably quantify translation for each and every gene. The rapidly increasing availability of full-length 

transcript sequence data based on long-read sequencing34 holds great promise in solving these complex 

scenarios. 

While polysome profiling experiments (Figure 2d) and label-free quantification of the protein product 

(Figure 5b) support the Ribo-seq-based estimates of relative ORF translation levels, we believe that 

additional efforts can improve ORF-specific quantification of translation. A more accurate approach will 

have to address the issue of variable Ribo-seq coverage along the ORFs, which reflects the complex 

dynamics of translation. However, the impact of different features, such as experimental biases, codon 

composition or RNA structural features35, on Ribo-seq coverage remain to be understood. Our approach 

also uses a strict definition of ORFs that requires a canonical start codon and does not account for 

overlapping frames. It is still an open question how to correctly define the precise boundaries of translated 

elements that account for non-canonical start codons and signals from overlapping frames, such as from 

upstream ORFs36 or complex gene structures in compact genomes such as found in viruses and organelles. 

Our strategy enabled us to detect thousands of lowly translated ORFs in transcript isoforms of protein 

coding genes that are annotated as non-coding, consistent with current models for mRNA surveillance 

such as NMD (Figure 3). Similarly, we observed that many detected ORFs in non-coding RNAs show high 

degradation profiles at their stop codons, especially pronounced in snoRNA host genes (Figure 3d). This 

well-known phenomenon is therefore important to consider when addressing the protein-coding ability 

of transcripts based on ribosome occupancy. In turn, the ability to identify NMD target candidates can 

provide an advantageous starting point for further research into defining the features of co-translational 

mRNA surveillance and its links to protein quality control37.  

Expanding our analysis across multiple cell lines allowed us to assess the complexity of translation per 

gene for both coding and non-coding genes (Figure 4b). We found the majority of genes to be translating 

the same major ORF (including highly translated ORFs in non-coding RNAs, Figure 4c), but we also detected 

distinct ORFs used for the major translation product in different cell lines in thousands of genes. These 

genes showed an overall more complex pattern of transcript expression, with sustained translation of 

many transcripts, and thus posing a difficulty in defining clear isoform switching event. In this context, the 

presence of highly translated small ORFs in protein-coding genes (Supplementary Figure 11), which may 

play gene regulatory roles rather than expand the proteome, adds further complexity. Unfortunately, the 

limited amount of data at hand (often lacking replicate information) and the heterogeneity of protocols 
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adopted by different labs, pose challenges to precisely quantify the contribution of different mechanisms 

in promoting diversity (or lack thereof) in protein synthesis. 

Despite potential limitations, we observed a substantial agreement between our estimates of translation 

and steady-state protein abundance. The level of agreement between mRNAs and proteins has been 

subject to intense debate38; our results indicate that for thousands of genes, shotgun proteomics 

experiments and sequencing of ribosome-occupied RNA fragments do show excellent agreement, albeit 

with expected dependencies on the reliability with which we can quantify the levels of translation and 

protein abundance (Figure 5a). An increasing availability of Ribo-seq and proteomics data in a single 

controlled environment will improve our understanding of this relationship and help to pinpoint 

interesting cases in which this correlation deviates from expectation. While our analyses provide a 

promising starting point for the investigation of transcript-specific protein production, the current scarcity 

of matching data specifically limits our ability to validate the translation of alternative protein isoforms 

per gene. A recent study demonstrated how protein isoforms engage with distinct protein-protein 

interaction networks, with such interactions being as different as the ones involving proteins from distinct 

genes39. With both proteomics40,41 and transcriptomics42 techniques rapidly advancing at a fast pace, our 

study demonstrates the unique advantage of ribosome profiling  in characterizing and quantifying 

cytoplasmic gene expression programs, at the interface between RNA and protein. 
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Methods 

 

ORFquant - Transcript/ORF filtering 

 

Gene models from the GTF annotation are flattened to obtain coordinates about exonic bins or junctions, 

together with the set of transcripts they map to. Next, P-sites positions and junction reads (from all read 

lengths) are mapped to such features, to obtain positive (with at least one read count) or negative features 

(with no reads). Internal features are then defined as features contained between the coordinates of the 

first (most upstream) and last (most downstream) positive features.  

The filtering procedure is then applied: initially, an empty vector of positive features is created, and such 

a vector is updated at each step, adding (when present) new positive features contained by the analyzed 

transcript. After creating the empty vector, the set of annotated transcripts is analyzed, applying the 

following rules for each transcript 𝑇𝑥#: 

1) 𝑇𝑥#  contains a novel positive feature: 

𝑇𝑥#	is selected and each previously selected 𝑇𝑥%	is re-analyzed:  

If all the positive features of 𝑇𝑥%	are also contained in 𝑇𝑥#, 𝑇𝑥%  is discarded. 

2) 𝑇𝑥#  does not contain a novel positive feature: 

𝑇𝑥#  is initially selected, but it is compared with each previously selected structure 𝑇𝑥%. Two 

possible scenarios are evaluated: 

i) All the positive features of 𝑇𝑥#	are also contained in 𝑇𝑥%: 

if 𝑇𝑥%  has more positive features than 𝑇𝑥#, or fewer negative internal features than 𝑇𝑥#, 

𝑇𝑥#  is discarded 

ii) All the positive features of 𝑇𝑥%	are also contained in 𝑇𝑥#: 

if 𝑇𝑥#	has fewer negative internal features than 𝑇𝑥%, 𝑇𝑥%	is discarded. 

 

This greedy strategy reduces the number of transcripts that is necessary to cover all the positive features 

(features with reads), trying to minimize the presence of negative features (features with no reads). We 

select ORFs following the same rules, this time using exonic bins and splice junctions derived from the 

ORF structures. 
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ORFquant - ORF finding 

As in the RiboTaper18 method, only ATG is considered as potential start codon, and the p-value for the 

multitaper method applied to the candidate ORF P-sites track must be below 0.05. To select ORFs with 

in-frame P-sites and account for local off-frame effects, we require the average signal on each covered 

codon to be >50% in frame. The same strategy is used to select the start codon for each ORF, requiring 

>50% average in-frame codon signal between each candidate ATG and the next. 

 

ORFquant - ORF quantification 

After the ORF finding step, ORF filtering and quantification is subsequently performed, using the length-

normalized Ribo-seq coverage 𝐶𝑜𝑣 on each ORF feature. 

𝐶𝑜𝑣 =
#𝑟𝑒𝑎𝑑𝑠
𝑙𝑒𝑛𝑔𝑡ℎ  

 

P-sites positions are used to calculate coverage on exonic regions, while spliced reads for junctions. Length 

is set to 60nt for junctions, according to the possible nucleotide space covered by a spliced read of ~30nt.  

A feature 𝐹 can be unique to one ORF or shared between multiple ORFs. For each ORF, we calculate the 

average coverage on unique features 𝐴𝑣𝐶𝑜𝑣𝑈𝑛, using the coverage 𝐶𝑜𝑣89 on each of the unique features 

𝐹9. 

	

𝐴𝑣𝐶𝑜𝑣𝑈𝑛 =
∑ 𝐶𝑜𝑣89#89
;

#𝐹9
 

 

The same calculation is performed for all features 𝐹𝑎𝑙𝑙 mapping to the ORF. 

𝐴𝑣𝐶𝑜𝑣𝐴𝑙𝑙 =
∑ <=>?@AA
#?@AA
B

#8@AA
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A scaling factor 𝐶CD8	(with a minimum value of 0 and a maximum of 1) is calculated, for each ORF, using 

the ratio between 𝐴𝑣𝐶𝑜𝑣𝑈𝑛 and 𝐴𝑣𝐶𝑜𝑣𝐴𝑙𝑙. Such scaling factor represents the fraction of Ribo-seq signal 

that can be attributed to the ORF. 

𝐶CD8 = 	
𝐴𝑣𝐶𝑜𝑣𝑈𝑛
𝐴𝑣𝐶𝑜𝑣𝐴𝑙𝑙 

 

When no unique feature is present in one ORF (all regions are shared with other ORFs), the signal at each 

feature is adjusted using the quantification performed on other ORFs, as follows: the coverage  𝐴𝑑𝑗𝐶𝑜𝑣8  

on each feature	𝐹 attributed to that ORF is calculated subtracting the expected signal coming from other 

ORFs (𝑂𝑅𝐹C>IJ8) overlapping that feature, using their scaling factors. In such cases, the calculation of the 

adjusted coverage for each feature 𝐹𝑎𝑑𝑗 is as follows: 

𝐴𝑑𝑗𝐶𝑜𝑣8 = 𝐶𝑜𝑣8 − (𝐶𝑜𝑣8 ∗ 	∑ 𝐶CD8MNOP?
#CD8=>IJ8
CD8?MNOP? )  

 

After calculating the adjusted coverage for each feature, the average of such coverage values is calculated. 

𝐴𝑣𝐴𝑑𝑗𝐶𝑜𝑣 = ∑ RS%<=>?#?
B

#8
  

 

The final scaling factor is here defined by the ratio of the adjusted coverage (coverage belonging to the 

ORF) to the total coverage (coverage coming from all ORFs). 

𝐶CD8 = 	
R>RS%<=>
R><=>RTT

  

 

If no unique region is present in any detected ORF in the gene (all regions are shared among ORFs and no 

𝐶CD8  value can be initially calculated), the scaling factor is derived assuming uniform Ribo-seq coverage 

on each ORF. The shared coverage 𝑆ℎ𝐶𝑜𝑣8  is now simply calculated dividing it by the number of 𝑂𝑅𝐹=>IJ8  

mapping to the feature 𝐹. 

𝑆ℎ𝐶𝑜𝑣8 =
#JIVSW?
TIXYZ[?

#𝑂𝑅𝐹=>IJ8\   

 

𝐴𝑣𝑆ℎ𝐶𝑜𝑣 = ∑ ][<=>?#?
B

#8
  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/608794doi: bioRxiv preprint 

https://doi.org/10.1101/608794
http://creativecommons.org/licenses/by-nc/4.0/


 19 

The scaling factor is again derived dividing the average shared coverage (attributed to the ORF) to total 

average coverage. 

𝐶CD8 = 	
R><=>][
R><=>RTT

  

 

After the calculation of 𝐶CD8, the adjusted number of P-sites for each ORF (𝑃CD8) is calculated using the 

raw number of P-sites mapping to the ORF multiplied by the scaling factor, to obtain ORF-specific 

quantification estimates. 

𝑃CD8 = 𝑃𝑠𝑖𝑡𝑒𝑠 ∗ 𝐶CD8   

 

For each ORF of length 𝐿CD8, the scaled numbers of P-sites 𝑃CD8  is normalized over the entire set of 

detected ORFs to obtain TPM-like values, named ORFs per Million (ORFs_pM), using this formula:  

𝑂𝑅𝐹𝑠_𝑝𝑀CD8 =
def?
gef?

∗ ;hi

∑ jef?
kef?

#ef?
ef?

	  

 

Moreover, we calculated the contribution of each ORF to the overall translation output of a single gene. 

Such metric, named ORF_pct_P_sites (or percentage of gene translation), is calculated dividing 𝑃CD8  by 

the sum of 𝑃CD8  of all ORFs (#𝑂𝑅𝐹𝑔) detected in a gene. 

𝑂𝑅𝐹_𝑝𝑐𝑡_𝑃_𝑠𝑖𝑡𝑒𝑠CD8 =
𝑃CD8

∑ 𝑃CD8
#CD8Y
CD8

 

 

Normalization by length is here not applied, as this metric wants to quantify the amount of translation 

per gene coming from each ORF. The ORF_pct_P_sites_pN metric indicates length-normalized 

ORF_pct_P_sites values (e.g. they can be high for a short highly translated ORF). 

After quantification, ORFs are subjected to a filtering step and quantification is performed again, until all 

ORFs are being retained. 
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ORFquant parameters  

For all cell lines, ORFquant was run using a cutoff of 2% of total gene translation and using only uniquely 

mapping reads. 

 

RSEM quantification: 

RSEM 1.3.1 was run in strand-specific mode on Ribo-seq data using a seed length of 20, using Bowtie2 as 

aligner, and enabling the calculation of confidence intervals together with posterior mean estimates. 

ORFquant-derived ORF positions were used to specify the transcript sequences to use as reference. 

When possible, additional 15 nucleotides were added to start and end coordinates to allow for the 

mapping of Ribo-seq reads. The “TPM_coefficient_of_quartile_variation” column of the RSEM output 

was used as a proxy to monitor the variability in RSEM quantification estimates. 

 

Ribosome profiling: 

Ribo-seq was performed as described previously18 and adapted for HepG2 and K562 cell lines. 5x10^6 

K562 suspension cells and two 80% confluent 10 cm TC dishes of adherent HepG2 cells (DSMZ #ACC-10 

and #ACC-180, respectively) were used. 

Adherent cells were washed with ice-cold PBS supplemented with 100 ug/ml cycloheximide (Sigma Aldrich 

#C4859) and immediately snap-frozen by immersing the dishes in liquid nitrogen. The dishes were then 

transferred to wet ice and 400 ul of lysis buffer (1X polysome buffer (20 mM Tris-Cl pH 7.4, 150 mM NaCl, 

5 mM MgCl2, with 1 mM DTT (Sigma Aldrich #43816) and 100 ug/ml cycloheximide added freshly; keep 

on ice), 1% (v/v) Triton X-100 (Calbiochem #648466), 25 U/ml TURBO DNase (Life Tech. #AM2238)) was 

immediately dripped onto the frozen cells. The cells and buffer were then scraped off and left to thaw on 

one side of the dish, mixing them using a pipet tip.  

Suspension cells were supplemented with 100 ug/ml cycloheximide, pelleted for 5 min at 300 g and 

washed with ice-cold PBS + 100 ug/ml cycloheximide. The washed cell pellet was immediately snap-frozen 

in liquid nitrogen. 400 ul of ice-cold lysis buffer was added, and the cells were put on wet ice to thaw, 

mixing them using a pipet tip.  
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The cells were left to lyse for 10 min on ice, followed by 10x trituration through a 26-G needle. After 

centrifugation for 10 min at 20‘000g at 4°C the clarified supernatant was transferred to a pre-cooled tube 

on ice. For nuclease footprinting, 400 ul of lysate were supplemented with 1000 U of RNase I (Life Tech. 

#AM2295) and incubated in a thermomixer set to 23°C, shaking at 500 rpm for 45 min. Footprinting was 

stopped by adding 260 U of SUPERASE-In (Life Tech. #2696). 

To recover ribosomes two MicroSpin S-400 HR columns (GE Healthcare #27-5140-01) per 400 ul of sample 

were equilibrated with a total of 3 ml of polysome buffer. The columns were drained by spinning for 4 

min at 600 g, then the sample was applied and spun for 2 min at 600g. Three volumes of Trizol LS (Life 

Tech. #10296010) were added to the flow-through and RNA was extracted using the Direct-zol RNA Mini-

Prep kit (Zymo Research #R2052) as per the manufacturer’s instructions. RNA was quantified using the 

Qubit RNA Broad Range Assay (Life Tech. #Q10211). 

Ribosomal RNA was removed from 10 ug of footprinted RNA using the RiboZero Magnetic Gold kit 

(Illumina #MRZG12324) as per the manufacturer’s instructions. Footprinted RNA was precipitated from 

the supernatant (90 ul) using 1.5 ul of glycoblue (Life Tech. #9515), 9 ul of 3 M sodium acetate and 300 ul 

of ethanol by incubation for 1h at -80°C and pelleted for 30 min at max. speed at 4°C. The RNA pellet was 

dissolved in 10 ul of RNase-free water. 

To recover the ribosome protected RNA fragments the sample was loaded onto two lanes of a 1 mm 17.5% 

Urea-PAGE gel along with 27 nt and 30 nt RNA markers. The gel was run in 1X TBE at 250 V for 80 min and 

stained for 3 min in 1X SYBR gold (Life Tech. #S11494) in 1X TBE. Sample bands between 27 nt and 30 nt 

were excised and crushed by spinning through a punctured tube. RNA was extracted by soaking the gel 

pieces in 400 ul of RNA extraction buffer (400 mM NaCl, 1 mM EDTA, 0.25% (wt/v) SDS) for 2 h, rotating 

at room temperature. The supernatant was supplemented with 1.5 ul of glycoblue and 500 ul of 

isopropanol and incubated on dry ice for 30 min, followed by pelleting of the RNA for 30 min at 20‘000 g 

at 4°C. The pellet was dissolved in 40 ul of water. 

To prepare the RNA sample for use in a smallRNA library preparation kit the sample was phosphorylated 

using 5 ul of 10X T4 PNK buffer and 1 ul of T4 PNK (NEB #M0201), 1 ul of SUPERASE-In, 2.5 ul of 10 mM 

ATP and 0.5 ul of 1% Triton X-100. After incubation for 1 h at 37°C RNA was precipitated and pelleted by 

adding 41 ul of water, 1.5 ul of glycoblue, 8 ul of 5M NaCl and 150 ul of isopropanol as described before. 

Libraries were prepared using the NEXTflex Small RNA-Seq Kit v3 (BiooScientific #5132-06) as per the 
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manufacturer’s instructions and sequenced on an Illumina NextSeq500 machine with 13 libraries pooled 

at 1.8 pM using one High Output Kit v2 (Illumina #FC-404-2005) with 75 cycles single-end. 

 

Ribo-seq and RNA-seq data processing 

Ribo-seq reads were stripped of their adapters using cutadapt43. Randomized UMI sequences (where 

present) were removed, and reads were collapsed. Reads aligning to rRNA, snoRNAs and tRNA sequences 

were removed with Bowtie244. Unaligned reads were then mapped with STAR45 using the hg38 genome 

and the GENCODE 25 annotation in GTF format. For RNA-seq and Ribo-seq, a maximum of four and two 

mismatches was allowed, and multimapping of to up to 20 different positions was permitted. Alignments 

flagged as secondary alignments were filtered out, ensuring one mapping position per aligned read. P-

sites positions and junction reads were extracted using Ribo-seQC46 with default parameters. Statistics 

about the different Ribo-seq libraries are available as Supplementary Data 1. Gviz47 was used to visualize 

data tracks and transcript annotation. 

 

Polysome profiling: 

DEXSeq20 was run to detect differential exon usage between each of the polysome fraction and the 

cytoplasmic abundance. Transcripts were divided based on the translation levels of their translated ORF(s) 

and intersected with differential exons (FDR<0.01 in at least one polysome fraction). Only genes with 

multiple translated transcripts were used. 

 

Nuclear-cytoplasmic comparison: 

DEXSeq20 was run to detect differential exon usage between the nuclear and the cytoplasmic fraction. 

Differential exons (FDR<0.01) were intersected with transcript structures and only exons uniquely 

mapping to one transcript group (e.g. discarded transcripts, selected transcripts etc…) were selected. 
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5’end of endonucleolytic cuts: 

Bigwig files for the different libraries were normalized by library size. Coordinates were lifted to hg38 and 

overlapped with ORFquant-identified stop codon positions, for both NMD candidates and controls 

(“canonical” stop codons taken from the same genes). A window of 50 nucleotides was used to derive 

spatial profiles and count the number of reads mapping around stop codons in the different conditions. 

 

Merging ORFquant result across cell lines: 

ORFs were considered to be distinct if they ended at different stop codons or could not be mapped to the 

same transcript. Enrichments for ORF categories at different level of overlap were calculated using 

normalized residuals from a chi-squared test. GO enrichment was performed using the clusterProfiler48 

and topGO49 packages. 

 

Proteomics database search: 

Raw data was searched using MaxQuant31 version 1.6.0.13, using Carbamidomethyl as fixed modification, 

and oxidation of Methionine and acetylation at protein N-termini as variable modifications. Quantification 

was performed using only unique peptides. Matching between runs was enabled. We used a custom 

database to perform the peptide search: ORFquant-detected ORFs were merged in a unique database, 

choosing only ORFs explaining a minimum of 10% of gene translation in at least one cell line. 

 

Comparison between protein abundance and translation estimates: 

For each protein group, iBAQ values were summed up for each replicate. ORFs_pM values were summed 

for all ORFs mapping to each protein group. ORF_pct_iBAQ values were obtained by dividing each iBAQ 

value for the sum iBAQ values for that gene. Protein groups mapping to multiple genes were discarded. 

The same procedure was applied to ORFs_pM values, to compare protein and translation estimates for 

each protein isoform. Only proteins detected by Ribo-seq (or RNA-seq) and proteomics were used. Gene-

level TPM values in Supplementary Figure 14 were calculated using kallisto32 with default parameters. 
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Data availability 

Ribo-seq data for HepG2 and K562 is available at GEO under the accession X. Ribo-seq datasets for other 

cell lines were previously published, and accessed using the accessions GSE79664 (HeLa), GSE73136 

(HEK293), GSE74279 (Jurkat) and GSE56924 (U2OS); more details about the analyzed samples can be 

found in Supplementary Table 1. Nuclear and cytoplasmic RNA-seq was accessed at the European 

Nucleotide Archive using the accession PRJEB4197. TriP-seq data was downloaded from GEO using the 

accession GSE69352. Transcriptome-wide tracks of 5’ ends were accessed using the accession GSE57433. 

Proteomics data was downloaded from the PRIDE repository under accession PXD002395. The list of P-

sites positions and junction reads in the cell types analyzed is available in Supplementary Data 1. The list 

of quantified ORFs in the different cell lines is available in Supplementary Data 1. The final protein 

database is available in Supplementary Data 2, together with the parameters used to perform the 

MaxQuant search and the set of identified peptides and proteins. 

 

Code availability 

ORFquant is available at https://github.com/lcalviell/ORFquant. 
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Supplementary Table 1: Summary of Ribo-seq datasets analyzed in this study. 

 

Supplementary Data 1: Archive containing all P-sites positions and junction reads (using uniquely mapping 

reads), together with the set of ORFquant identified ORFs, for each cell line. 

 

Supplementary Data 2: Archive containing the set of identified peptides and proteins, including their Ribo-

seq statistics, the parameters used for the MaxQuant run and the custom protein database. 

 

Figure legends 

 

Figure 1: The ORFquant strategy to quantify translation on selected transcripts.  

a) The ORFquant workflow; b) the PHLEKM2 gene as an example: displayed tracks represent, from top to 

bottom: 1) complete annotation, 2) P-sites positions, 3) junction reads (from Ribo-seq), 4) discarded 

transcripts, 5) selected transcripts, 6) detected ORFs, 7) selected ORFs, 8) quantified ORFs and 9) ORF 

coverage (defined here using the percentage of gene translation). Colors for discarded and selected 

transcripts indicate unique features with no signal (black); shared features with no signal (grey); unique 

features with signal (red); and shared features with signal (pink). Colors for discarded and selected ORFs 

indicate signal in shared features (blue heatmap) and signal in unique features (red heatmap). For the 

quantified ORFs, the heatmap indicates ORF coverage values (0-100). Thick bars indicate CDS regions, as 

defined by the annotation or by ORFquant (de-novo). c) Number of selected transcripts per gene (x-axis) 

against number of genes (y-axis). d) Percentage of covered junctions (bottom), or covered exons (top) 

mapping to a different number of structures using all transcripts, protein-coding transcripts only or 

selected transcripts only. e) The number of quantified ORFs (x-axis) is shown against number of genes (y-

axis). f) The number of genes (y-axis) are plotted against the contribution (in percentages) of their major 

ORF. g) Aggregate plot of Ribo-seq coverage (normalized 0-1 per each region) and ORF coverage 

(ORF_pct_P_sites_pN, Methods) over candidate alternative splice sites regions as detected by ORFquant. 

No mixture indicates one ORF only, while other tracks indicate the presence of additional ORFs, divided 

by their summed translation values. Explanatory scheme at the bottom, with blue representing the major 

ORF and red the additional ORF(s). 
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Figure 2: Quantification of translation on cytoplasmic mRNAs. 

 a) Density of exonic fold changes for nuclear and cytoplasmic RNA-seq for different transcript classes. 

Negative values indicate more cytoplasmic abundance, while positive values indicate enrichment in the 

nucleus. b) The DGR2 locus as example: tracks represent, in descending order: 1) Nuclear RNA-seq 

coverage, 2) discarded transcripts, 3) cytoplasmic RNA-seq coverage, 4) selected transcripts, 5) P-sites 

positions, 6) junction reads, 7) discarded ORFs, 8) quantified ORFs. Color representation as in Figure 1b. 

c) Overview of the ORFquant-derived translatome. Number of ORFs, ORF length in nucleotides, length-

normalized quantification and % of gene translation are shown, stratified by ORF category and annotated 

biotype. ORF_annotated represents ORFs whose structure perfectly matches the annotated CDS; other 

represents additional ORFs, such as nested ORFs, overlapping ORFs, downstream ORFs in 3’UTRs (dORFs), 

while not_annotated represents ORFs in transcripts with no CDS annotation. The maximum width of each 

violin plot is the same for each panel, and the median value is shown as a black bar. d) Average exonic 

fold changes with respect to cytoplasmic abundance (y-axis) for different polysome fractions (x-axis) for 

ORFs exhibiting different levels of translation within the same genes. e) Density plot of aforementioned 

exonic fold changes for two polysome fractions and for different ORF classes. 

 

 

Figure 3: De-novo annotation of NMD candidates.  

a) Schematic annotation of NMD candidates; EJC = Exon Junction Complex. b) Aggregate profiles of 5’ 

fragments around stop codons of NMD candidates and control ORFs from the same genes. c) Example of 

a (not previously annotated) translated ORF in the SNHG17 gene. d) Number of 5’ fragments observed in 

an XRN1 knockdown experiment around stop codons (y-axis), versus the distance between stop codons 

and the last exon-exon junction (x-axis), for different transcripts/ORF classes. Smoothing was carried out 

by a generalized additive model (gam in R, with default parameters). The red vertical line indicates 50 

nucleotides upstream of the last exon-exon junction. 

 

 

Figure 4: Diversity in gene translation across cell lines. 

a) Workflow for the analysis of the different datasets.  b) Number of genes (top), average number of 

detected ORFs (middle) and average % of gene translation (bottom), for each number of cell lines where 

the gene harbored a detected ORF. Colors indicate the gene biotype. Genes translating one or more 
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distinct major ORFs across cell lines are shown in different panels. The maximum width of each violin plot 

is the same for each panel, and the median value is shown as a black bar. c) Detected ORFs and Ribo-seq 

signal in the SNHG17 gene in HeLa and K562 cells. d) Detected ORFs and Ribo-seq signal in the C5orf63 

gene in HepG2 and U2OS cells. e) Distribution of overlap between multiple major ORFs from the same 

gene. f) Length (in nucleotides) of major ORFs with low and high overlap. g) Enrichment of different 

categories for major ORFs with high and low degree of overlap. 

 

 

Figure 5: Agreement of protein synthesis with steady-state protein abundance estimates. 

a) Workflow of the proteomics analysis (left). On the right, iBAQ values (y-axis) versus length-normalized 

translation quantification estimates (ORFs_pM); proteins are split in multiple groups based on the number 

of detected unique peptides (from proteomics) or unique covered features (from Ribo-seq). b) Correlation 

values (as in a) shown for all the assayed cell lines. c) % of protein abundance per gene (y-axis) plotted 

against % of gene translation (x-axis), with translation quantification performed with (right) and without 

(left) adjusting for the presence of multiple ORFs per gene. Size and color of each data point indicate the 

number of unique peptides detected. d) Correlations from c) shown for the 6 cell lines. P-values derived 

from paired Wilcoxon rank-sum test (one-sided). 
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