

1 **Aging induces Nlrp3 inflammasome dependent adipose B cell expansion to**
2 **impair metabolic homeostasis**

3 **Christina D. Camell^{1,2}, Aileen Lee^{1,2}, Patrick Günther^{3,4}, Emily L. Goldberg^{1,2}, Olga Spadaro^{1,2},**
4 **Yun-Hee Youm^{1,2}, Andrzej Bartke⁵, Gene B. Hubbard⁶, Yuji Ikeno^{6,7} Nancy H. Ruddle⁸, Joachim**
5 **Schultze^{3,4} and Vishwa Deep Dixit^{1,2,9,10}**

6

7 *¹Department of Comparative Medicine, ²Department of Immunobiology, Yale School of Medicine, New*
8 *Haven, CT 06520, USA, ³Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115,*
9 *Bonn, Germany, ⁴PRECISE Platform for Single Cell Genomics and Epigenomics at the University of*
10 *Bonn and the German Center for Neurodegenerative Diseases, Bonn, Germany, ⁵Internal Medicine,*
11 *Southern Illinois University, School of Medicine, Springfield, IL 62702 USA, ⁶Department of Pathology,*
12 *Barshop Institute, UT Health San Antonio, TX 78229, ⁷Geriatric Research Education and Clinical*
13 *Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX*
14 *78229, ⁸Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven,*
15 *CT 06520, USA, ⁹Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT*
16 *06520, USA*

17

18 ¹⁰Address and Correspondence to:
19 Vishwa Deep Dixit, Ph.D.
20 Section of Comparative Medicine and Department of Immunobiology
21 Yale School of Medicine
22 310 Cedar St, New Haven CT 06520
23 Email: Vishwa.Dixit@yale.edu
24 Phone: 203-785-2525
25 Fax: 203-785-7499

26

27

28

29

30

31 **Highlights**

32

33 - Adipose-resident aged B cells are increased in fat-associated lymphoid clusters (FALC)

34 - FALC formation and adipose-resident B cell expansion during aging are regulated by the Nlrp3

35 inflammasome

36 - Nlrp3 and B cell depletion in aging restores lipolysis and improves cold tolerance

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 **Summary**

58 Visceral adiposity in elderly is associated with alterations in adipose tissue immune cells leading
59 to inflammation and metabolic dysfunction. The Nlrp3 inflammasome is a critical regulator of
60 macrophage activation, inflammation, and immunometabolism in visceral adipose tissue during aging;
61 however, the potential contribution of adipose tissue B cells is unexplored. Here, we show that aging
62 expands adipose-resident B cells and fat-associated lymphoid clusters (FALCs) in visceral white adipose
63 tissue. Adipose tissue B cells exhibit a memory-like B cell profile similar to the phenotype of aged B cells
64 that are increased in spleen of old mice. Mechanistically, the age-induced FALC formation and adipose B
65 cell expansion, but not B cell transcriptional program, is dependent on the Nlrp3 inflammasome.
66 Furthermore, B cell depletion in aged mice restores lipolysis and defense against loss of core body
67 temperature during cold stress. These data reveal that inhibiting Nlrp3-dependent B cell accumulation can
68 be targeted to reverse metabolic impairment in aging adipose tissue.

69

70 **Introduction**

71 Increased visceral adiposity that is seen in aged individuals is accompanied by a decreased ability
72 of adipose tissue to maintain homeostatic functions (Kennedy et al., 2014; Stenholm et al., 2008). These
73 core functions of white adipose tissue include lipid storage and endocrine capability, both of which
74 require intricate coordination between adipocytes and resident hematopoietic cells (Hotamisligil, 2006;
75 Kanneganti and Dixit, 2012). White adipose tissue is highly heterogeneous containing defined
76 microenvironment niches in which tissue resident macrophages have distinct roles that facilitate tissue
77 maintenance. Niches such as crown-like-structures (CLS), in which dying adipocytes are cleared by
78 macrophages (Cinti et al., 2005; Martinez-Santibanez and Lumeng, 2014), and sympathetic nerve fibers,
79 in which nerve-associated macrophages regulate local access to catecholamines that stimulate lipolysis
80 (Bartness et al., 2014; Camell et al., 2017; Pirzgalska et al., 2017), have been implicated in metabolic
81 pathogenesis during aging and obesity. Fat-associated lymphoid clusters (FALCs), predominantly

82 composed of B1-innate B cells, serve as unique immunological sites that are acutely responsive to
83 pathogens and increase with chronic inflammation (Benezech et al., 2015; Jackson-Jones et al., 2016;
84 Lumeng et al., 2011; Morris et al., 2013). The contribution of FALCs and FALC-resident cells to age-
85 related metabolic dysregulation remains unknown.

86 Adipose B cells have many functionally distinct roles, including antibody production, pro- and
87 anti-inflammatory cytokine production and antigen presentation (Benezech et al., 2015; Frasca and
88 Blomberg, 2017; Nishimura et al., 2013; Winer et al., 2011). In diet-induced-obesity, B cells produce IgG
89 antibody and drive Th1 polarization contributing to insulin resistance and clearance of adipocytes in CLS
90 (McDonnell et al., 2012; Winer et al., 2011). However, B1 and B regulatory subtypes favor insulin
91 sensitization via IgM antibodies and anti-inflammatory cytokine production (Nishimura et al., 2013; Shen
92 et al., 2015). Recent work suggests that B2 lymphocytes increase with age in epididymal adipose of mice
93 and ablation of the B cell-specific nuclear cofactor, Oct coactivator from B cells (OcaB), which controls
94 B cell development, improves insulin-sensitivity in middle-aged mice (Carter et al., 2018) and aged B cell
95 (ABC)-like B cells produce TNF α and IgG2c (Frasca and Blomberg, 2017); however, mechanisms that
96 link impaired adipose tissue function to B cell homeostasis in aging are not well understood.

97 Recent studies demonstrate that the Nlrp3 inflammasome is among the major regulators of age-
98 related inflammation and metabolic disturbance (Bauernfeind et al., 2016; Camell et al., 2017; Spadaro et
99 al., 2016; Youm et al., 2013; Youm et al., 2012). The Nlrp3 inflammasome is an intracellular pattern
100 recognition receptor in innate immune cells that is activated by a wide range of damage associated
101 molecular patterns (DAMPs) (Kanneganti et al., 2007; Schroder and Tschoopp, 2010). The identification
102 of the Nlrp3 inflammasome in driving a number of age-related pathologies underscores the importance of
103 innate immune cell-specific inflammation in aging (Bauernfeind et al., 2016; Goldberg and Dixit, 2015;
104 Latz and Duewell, 2018; Youm et al., 2013; Youm et al., 2012).

105 We have previously shown that aging is associated with reduction in visceral adipose tissue
106 macrophage subsets which lack M1 or M2 polarization, but display senescent-like gene expression
107 signatures that is in part dependent on the Nlrp3 inflammasome (Camell et al., 2017). Here we report that

108 aging is associated with an expansion of adipose-resident B cells in FALCs of white visceral adipose
109 tissue. To determine the nature and function of adipose B cells, we performed flow cytometry
110 phenotyping, whole mount confocal imaging and whole transcriptome expression analysis, which
111 revealed the memory B cell profile. We found that ablation of the Nlrp3 inflammasome in aging protects
112 against adipose tissue-resident B cell expansion and FALC development, without altering the
113 inflammatory transcriptional profile of resident adipose B cells. Thus, we uncovered that age-related
114 expansion of adipose-resident B cells and FALC development requires the Nlrp3 inflammasome-
115 dependent chronic inflammation. B cell depletion in aged mice restored the aberrant adipose immune cell
116 composition and improved metabolic capacity in adipose tissue of aged mice.

117

118 **Results**

119 **Aged white visceral adipose shows a unique increase in memory B lymphocytes in FALCs**

120 Since there is an age-related decrease in visceral adipose tissue macrophages (Camell et al., 2017)
121 along with an expansion of visceral adipose tissue CD3⁺ lymphocytes and Tregs (Cipolletta et al., 2015;
122 Lumeng et al., 2011), we sought to investigate the impact of aging on adipose B lymphocytes. To
123 discriminate tissue resident cells from leukocytes in adipose tissue vasculature, circulating cells were
124 labelled with intravenous injection of a CD45.2 antibody (Figure S1A). Mice were sacrificed at 3min post
125 injection, which permitted labeling of all circulating cells, without CD45.2 antibody leaking into tissues
126 or labelling cells extravasating into tissue (Anderson et al., 2014). Adipose tissue digestion was followed
127 by staining with CD45 clone 30-F11, which allows clear separation of tissue resident cells (CD45 clone
128 30-F11⁺ CD45.2⁻) from circulating cells (CD45 clone 30-F11⁺ CD45.2⁺) (Figure S1A).

129 Quantification of tissue resident CD3⁺ and B220⁺ cells in mice revealed an increase in CD3⁺
130 lymphocytes and a 10-fold increase in the percentage of B220⁺ lymphocytes in the visceral adipose from
131 24 month old wild-type mice (Figure 1A & B). Strikingly, while only 20% of B220⁺ cells adipose tissue
132 from 3 month old mice were tissue resident, nearly 100% of B220⁺ cells from 24 month old adipose tissue
133 were tissue resident (Figure 1C). Furthermore, age-related expansion in adipose tissue resident B cells

134 was observed by 15 months of age and was pronounced in female mice and was less profound, and not
135 statistically significant, in male animals (Figure 1D). Moreover, analysis of tissues from 2 or 24 month
136 old wild-type female mice housed at separate animal facility (Pennington Biomedical, Baton Rouge) also
137 showed a similar increase in visceral adipose B cells (Figure S1B). These results demonstrate that the
138 expansion of resident adipose B cells initiates by 15 months of age and is housing facility-independent,
139 but sex-dependent.

140 Excess white visceral adipose tissue is associated with increased risk for metabolic impairments,
141 whereas adipose tissue depots such as subcutaneous white or brown adipose have been linked to insulin
142 sensitivity and thermogenic capacity (Despres and Lemieux, 2006; Zamboni et al., 1997). To determine
143 whether the age-related expansion in resident B cells occurs in the differing adipose depots, we quantified
144 the resident (i.v. CD45.2-FITC negative) B cells from white visceral, white subcutaneous inguinal and
145 brown intrascapular adipose of 7 month or 24 month old mice (Figure S1C). The results show the age-
146 related expansion in resident B cells was specific to white visceral adipose tissue (Figure 1E). In line with
147 quantification using flow cytometry, histopathological scoring analysis revealed significant increases in
148 the lymphocyte infiltration in the visceral, but not subcutaneous adipose tissue of 20 month old mice
149 (Figure 1F). These results suggest an association of adipose B cell expansion with visceral adiposity and
150 the accompanying metabolic risk seen in aging.

151 Previous reports describe immune cells within white visceral adipose niches influence lipolysis,
152 energy metabolism and tissue functionality (Camell et al., 2017; Xu et al., 2013). To better understand the
153 distribution of lymphocytes throughout two visceral adipose depots, we performed whole mount imaging
154 on an inverted microscope in fixed, but not clarified, mesenteric and gonadal visceral adipose tissues from
155 7 or 24 month old wild type mice. In 7 month old mice, CD3⁺ and B220⁺ staining was focused in
156 mesenteric lymph nodes of mesenteric visceral adipose and labeling was not seen throughout mesenteric
157 nor gonadal visceral adipose (Figure S1D). Both mesenteric and gonadal adipose tissues from 24 month
158 old mice showed CD3⁺ and B220⁺ staining in clusters, called fat-associated lymphoid clusters (FALCs),
159 which are known to increase with age (Benezech et al., 2015; Lumeng et al., 2011; Moro et al., 2010).

160 Consistently, histological analysis showed accumulation of lymphocytes within FALCs (Figure 1G&H)
161 that were distinct from lymphocytes seen in a capsule-lined lymph node in subcutaneous inguinal adipose
162 tissue (Figure 1I). Whole mount confocal imaging revealed B220⁺ B and CD3⁺ CD4⁺ T cells in the FALCs
163 from adipose of the 22 month old wild-type mice (Figure S1E). These data demonstrate that aging
164 induces striking increases in resident adipose B cells that are localized in FALCs in mesenteric and
165 gonadal visceral adipose tissues of female mice.

166 During acute infection B1 cells, an innate-like B cell expressing CD11b and secreting natural
167 IgM antibodies, in FALCs are activated and contribute to pathogen clearance (Jackson-Jones et al., 2016;
168 Moro et al., 2010). To address whether the chronic inflammation seen in aging expands specific
169 populations of B cells, we evaluated the mean fluorescence intensity (MFI) of CD11b and the proportions
170 of CD11b-positive and negative B cell populations within visceral adipose of 3 and 24 month old wild-
171 type male and female mice. CD11b MFI was comparable in the resident visceral adipose B cells from 3 or
172 24 month old female mice and was not significantly different in males (Figure S1F). Furthermore, there
173 were no differences in the proportions of CD11b⁺ (B1) or CD11b⁻ (B2) resident B220⁺ cells (Figure S1G),
174 suggesting that B cell subsets are equally expanded with age in female mice. To better understand the
175 phenotype of age-expanded visceral adipose B cells, we sorted B220⁺ cells from adipose tissue of 3 or 24
176 month old wild-type mice for whole transcriptome analysis. Linear support vector regression analysis of
177 sorted B220⁺ cells from visceral adipose tissue revealed that B cells from 24 month old wild-type mice
178 express a predominantly memory-like B cell transcriptional profile (Figure 1J) (Newman et al., 2015).
179 These data demonstrate that the age-related expansion in visceral adipose B cells is primarily an increase
180 in memory-like B cells.

181 During aging, the accumulation of a unique subset of B cells, termed aged B cells (ABCs), in the
182 spleen, bone marrow and blood has been well described (Hao et al., 2011). ABCs are CD93⁻ CD21⁻
183 CD23⁻ and evidence suggests that they are antigen-experienced, arising from their encounter with nucleic
184 acid-containing antigens in the context of promoting cytokine production (Naradikian et al., 2016).
185 Consistent with these reports, in 24 month old wild-type mice 20-40% of splenic B cells were CD93⁻

186 CD21⁺CD23⁻, but nearly 100% of adipose B cells lacked CD93, CD21 or CD23 suggesting that the
187 resident adipose B cells are similar to ABCs found in spleen (Figure S1H). Notably, aged adipose-
188 conditioned media was able to drive the phenotype of CD21⁺ CD23⁻ B cells from 3 month old splenic B
189 cells (Figure S1I). Taken together these results suggest that FALCs act as unique adipose niches during
190 aging with an expansion of resident memory B cells with phenotype specific to white visceral adipose
191 tissue.

192

193 **Adipose B cell express Ki67 and have access to lymphatic vessels**

194 Resident adipose tissue immune cells, such as macrophages in response to high-fat diet, (Amano
195 et al., 2014; Zamarron et al., 2017) and CD4⁺ Foxp3⁺ T regulatory cells during aging (Kolodin et al.,
196 2015), are self-maintained through proliferation. To evaluate whether adipose B cells in aged mice are
197 actively dividing, we assessed Ki67 expression, a nuclear antigen expressed in proliferating cells, in B
198 cells and in FoxP3⁺ and FoxP3⁻ CD4⁺ T cells from visceral and mesenteric adipose tissue and spleen of 24
199 month old wild-type mice. Approximately 10% of B cells from spleen and adipose tissue are positive for
200 Ki67 (Figure 1K). These data indicate that a portion of age-expanded adipose B cells are actively
201 proliferating.

202 Lymphoid clusters in omentum contain high endothelial venules (HEVs), specialized post-
203 capillary venules essential for naïve lymphocyte trafficking (Buscher et al., 2016; Rangel-Moreno et al.,
204 2009). Whether HEVs and lymphatic vessels are present in the FALCs of aged visceral adipose tissue is
205 unclear. To address whether HEVs and lymphatic vessels are found in FALCs, we imaged FALCs from
206 aged reporter mice specific for HEV or lymphatic vessel markers (Ruddle, 2014; Truman et al., 2012).
207 The 22 month old Hec6ST reporter mice, which express GFP in Hec6ST⁺ cells, showed HEVs within
208 FALCs and in close proximity to B220⁺ clusters (Figure 1L). Likewise, 22 month old ProxTom mice,
209 which express intracellular tomato in the Prox1⁺ lymphatic endothelial cells, showed lymphatic vessels
210 within FALCs (Figure 1M). Interestingly, we also found lymphatic vessels in adipose tissue that were not
211 within FALCs, but that still contained B cells (Figure S1J). To confirm the presence of Prox1⁺ lymphatic

212 vessels in wild-type aged mice, we optimized the nuclear antibody staining protocol for Prox1 on whole
213 mount mesenteric lymph nodes as a positive control (Figure S1K). Fluorescence analysis of whole mount
214 adipose tissue revealed Prox1 staining surrounding FALCs even at low magnification (Figure S1L).
215 Furthermore, confocal microscopy revealed clear Prox1+ nuclear staining in vessels near and surrounding
216 FALCs (Figure S1M). These data demonstrate that HEVs and lymphatic vessels are found in FALCs in
217 aged mice suggesting that FALCs support lymphocyte trafficking.

218 Taken together these experiments identified a dramatic increase in the resident population of B
219 lymphocytes in FALCs of white visceral adipose tissue from female mice. Adipose B cells display
220 transcriptional signatures akin to memory B cells and exhibit the characteristics of ABCs. Our data also
221 suggest that in aged mice adipose-resident B cell expansion may be supported by both active proliferation
222 and local trafficking via lymphatic vessels and HEVs.

223

224 **Age-induced Adipose B cell expansion and FALC formation in adipose is regulated by the Nlrp3
225 inflammasome**

226 In the context of acute inflammation, macrophage-derived TNF α promotes stromal cell activation
227 and the accumulation of cells in FALCs (Benezech et al., 2015). Given the association of adiposity with
228 chronic inflammation during aging, we wished to explore the spatial association of macrophages with
229 FALC B cells. To track myeloid cells in FALCs, we aged and imaged mT/mG;LysM-cre reporter mice,
230 which allowed for simultaneous visualization of myeloid cells (GFP $^+$) and all cells (tomato $^+$). These
231 analyses showed dense capillary networks within FALCs indicative of the vascular network as previously
232 reported (Benezech et al., 2015). Antibody staining showed FALCs contained numerous B220 $^+$ cells,
233 some of which could be found in close contact with macrophages (Figure 2A; S2A). Given this close
234 association of macrophages to B cells within FALCs and our previous findings showing macrophage and
235 Nlrp3 inflammasome regulation of adipose tissue homeostasis (Camell et al., 2017; Vandamagsar et al.,
236 2011), we asked whether the age-related expansion in adipose B cells requires the Nlrp3 inflammasome.
237 Compared to 24 month old wild-type female mice, Nlrp3-deficient mice showed a significant reduction in

238 the percentage and the total numbers of B cells in visceral adipose (Figure 2B). Interestingly, although
239 CD4⁺ and CD8⁺ T cells are increased with age, there were no statistically significant differences when
240 comparing the 24 month old wild-type and Nlrp3-deficient mice (Figure S2B), indicating that the Nlrp3
241 inflammasome specifically promotes the age-related B cell expansion in visceral adipose tissue at 24
242 months of age, without affecting age-related T cell expansion.

243 To determine whether the Nlrp3 inflammasome is required for visceral adipose T cell expansion
244 at an earlier age, we performed flow cytometric quantification in young wild-type mice (4 month old) and
245 middle-aged (10 months old) wild-type or Nlrp3-deficient mice, a time at which B cell expansion has not
246 yet occurred. Consistent with our previous findings in 24 month old mice (Camell et al., 2017), the 10
247 month old wild-type mice showed reduced CD11b⁺ myeloid cells, which was prevented by Nlrp3-
248 deficiency (Figure S2C). Furthermore, adipose tissue CD4⁺ T cells were significantly elevated in the 10
249 month old wild-type mice, and prevented by Nlrp3-deficiency (Figure S2D). As expected, there was no
250 age-related expansion in visceral adipose B cells in the wild-type mice at 10 months of age (Figure S2E).
251 These data support a model in which the Nlrp3 inflammasome initially controls age-related increases in
252 total CD4⁺ T cells, and by 24 months of age, the Nlrp3 inflammasome is specifically required for resident
253 adipose B cell expansion.

254 We next asked whether the Nlrp3 inflammasome is also required for FALC development.
255 Compared to 24 month old wild-type mice, there was a significant reduction in the number of FALCs per
256 adipose tissue in the aged Nlrp3-deficient mice (Figure 2C). To determine whether the reduced FALC
257 formation is due to a reduction in lymphatic vessels found in FALCs, we performed whole mount
258 confocal imaging for Prox1⁺ lymphatic endothelial cells in the adipose tissue of the 24 month old wild-
259 type and Nlrp3-deficient mice. All FALCs in adipose tissue contained Prox1⁺ lymphatic vessels (Figure
260 2D). These data suggested that although the Nlrp3 inflammasome is required for age-related B cell
261 expansion, lymphatic vessel formation is Nlrp3 inflammasome-independent.

262 Given that Nlrp3-deficiency in aging protects against adipose B cell expansion, we next
263 investigated the inflammatory potential of these age-expanded FALC B cells using unbiased RNA

264 sequencing analyses. Surprisingly, this analysis revealed that compared to 24 month old wild-type mice,
265 the adipose B cells from age-matched Nlrp3-deficient mice displayed almost no differentially expressed
266 genes. Only a single gene, Pros1, was identified to be significantly regulated in the adipose tissue B cells
267 from Nlrp3-deficient animals. Pros1, which encodes Protein S, is significantly elevated in the adipose B
268 cells from Nlrp3-deficient mice (Figure 2E), and interacts with Tyro3, Axl and Mer (TAM) receptors
269 (Rothlin et al., 2015). Pros1-TAM receptor interaction has potential to drive anti-inflammatory signaling
270 in macrophages (Figure 2F). There were no other alterations in pro- or anti-inflammatory genes that were
271 differentially regulated by Nlrp3-deficiency. Taken together with our previous findings (Camell et al.,
272 2017), these data describe an Nlrp3 inflammasome-dependent role for age-related changes in adipose
273 tissue resident macrophages and B cells. In contrast to the Nlrp3-dependent transcriptional regulation
274 identified in macrophages (Camell et al., 2017), the transcriptional profile in B cells is primarily regulated
275 in an Nlrp3-independent manner. These data indicate that Nlrp3 inflammasome-derived inflammation
276 from macrophages acts upstream of visceral adipose B cell expansion and controls resident B cell
277 accumulation without altering their transcriptional phenotype. Thus, the Nlrp3 inflammasome-mediated
278 reduction in adipose tissue inflammation during aging may result in part from numerical reduction in B
279 cells.

280

281 **Nlrp3-driven macrophage interactions do not drive FALC development**

282 Macrophage-mediated inflammation is required for FALC development by directing stromal cell
283 activation to initiate lymphocyte recruitment (Benezech et al., 2015). Given the role of the Nlrp3
284 inflammasome in resident B cell and FALC accumulation in aged adipose tissue, we next explored the
285 possibility that aged adipose tissue macrophages directly control B cell recruitment. Using our previous
286 adipose macrophage whole genome sequencing analysis, (GSE93202) (Camell et al., 2017), we examined
287 the mean chemokine gene expression in wild-type or Nlrp3-deficient adipose macrophages from 3 or 24
288 month old mice. Surprisingly, hierarchical clustering analysis of chemokine expression did not reveal the
289 group structure within the dataset suggesting that the Nlrp3 inflammasome is not a predominant regulator

290 of B cell trafficking in aging adipose tissue (Figure S2F). To address the possibility that macrophage-B
291 cell interaction contributes to the Nlrp3 inflammasome-regulated resident B cell expansion, we generated
292 a macrophage-B cell interaction model by first curating a list of all possible receptors and ligands using
293 the Fantom5 interaction database. To focus on the Nlrp3-dependent contribution, we identified
294 macrophage ligands and receptors which are regulated in an Nlrp3 inflammasome-dependent manner and
295 which have corresponding receptors expressed in the adipose tissue B cells (Figure S2G). All macrophage
296 ligands and receptors identified showed potential to interact with B cells in one or more ways. Some
297 interactions implied inflammatory signaling regulation (eg. Tlr4-S100a8/9 and Tnfrsf18-Tnfsf18
298 interaction) between macrophages and B cells, but no single interaction appears sufficient to explain the
299 development of FALCs, suggesting that in context of low-grade chronic age-induced inflammation
300 multiple interactions contribute to adipose-resident B cell expansion during aging.

301

302 **Reduced Nlrp3 driven inflammation and longevity is linked to lower ABC accumulation**

303 The increase in an antigen-experienced subset of B cells, called aged B cells (ABCs) in the spleen
304 of aged mice has been attributed to chronic levels of toll-like receptor and B cell receptor signaling (Hao
305 et al., 2011; Rubtsova et al., 2015; Russell Knodel et al., 2017). Given the similarity of adipose B cells to
306 ABCs (Figure S1H), the ability of adipose to drive ABC formation (Figure S1I) and the dependency on
307 the Nlrp3 inflammasome for adipose B cell expansion (Figure 2B), we wondered whether the age-related
308 increase in splenic ABCs requires Nlrp3 inflammasome. Quantification of CD21⁺CD23⁺ B cells in the
309 spleen of 3 month or 24 month old wild-type and Nlrp3-deficient mice revealed significant elevation in
310 the frequency of ABCs in the 24 month old wild-type mice that was less pronounced in the 24 month old
311 Nlrp3-deficient mice (Figure 3A). We identified a corresponding age-regulated decrease in marginal zone
312 and follicular B cells that was not restored with Nlrp3-deficiency (Figure 3B), suggesting that the Nlrp3
313 inflammasome is required for age-related ABC expansion, but not marginal or follicular B cell alterations.

314

315 **Long lived-GHRKO mice have reduced adipose cellularity and adipose B cells**

316 Long-lived mice with reduced growth hormone (GH) signaling have improved insulin sensitivity
317 and reduced Nlrp3 inflammasome activation (Spadaro et al., 2016). To address whether longevity is
318 associated with ABCs and visceral adipose B cell expansion in aging, we aged growth hormone receptor
319 (GHR)-sufficient and GHR-knockout (GHRKO) mice to 20 months of age. Along with their extended
320 lifespan and increased insulin sensitivity (Coschigano et al., 2003; Masternak and Bartke, 2012), GHRKO
321 mice have lower body weight, reduced visceral adipose tissue weight and decreased adipose cellularity
322 (Figure S3A). Quantification of ABCs in wild-type or GHRKO spleens revealed significant decreases in
323 the percentage and total number of ABCs (Figure 3C). Furthermore, the visceral adipose tissue of
324 GHRKO mice had significantly reduced percentage of B220⁺ cells, but not CD4⁺ T cells (Figure 3D).
325 These data highlight that reduction of ABCs is associated with extended lifespan and may be related to
326 improved metabolic outcomes associated with longevity.

327

328 **Depletion of adipose B cells restores insulin sensitivity of aged mice**

329 As the age-related expansion in adipose B cells is localized to visceral adipose and not to other
330 adipose tissues depots (Figure 1D), we first wanted to determine whether a reduction in visceral adipose
331 tissue B cell numbers would restore age-related insulin resistance. We devised an intra-adipose injection
332 protocol allowing for adipose tissue-specific depletion of adipose B cells (Figure S4A) to avoid systemic
333 depletion of B cells. Body-weight and visceral adipose tissue weight in ISO-treated and mCD20 mAb-
334 treated mice were comparable (figure S4B&C). At 30 days after intra-adipose injection with CD20 mAb,
335 B cells were specifically reduced in visceral, but not in subcutaneous adipose tissue, spleen, bone marrow
336 or peritoneal cavity (Figure 4A & 4C, S4D). When challenged with insulin, 20 month old wild-type mice
337 given the intra-adipose injection with CD20 mAb showed improved insulin tolerance as compared to the
338 20 month old wild-type mice given an ISO control injection (Figure 4C). As improvements in insulin
339 sensitivity suggested that lipolytic capacity of aged-adipose may also be improved, we fasted the intra-
340 adipose injected mice to induce lipolysis, a process that can be measured by release of glycerol from
341 adipose tissue (Schweiger et al., 2014). However, there were no differences in glycerol release from the

342 fed (Figure 4D) or fasted (Figure 4E) visceral adipose tissue in ISO-treated or CD20 mAb-treated mice.
343 Collectively, these data indicate that specific depletion of the visceral adipose tissue B cells was capable
344 of improving age-related impaired insulin sensitivity, but not lipolysis resistance.

345

346 **Inhibition of systemic B cell expansion restores metabolic homeostasis and thermogenesis in the**
347 **aged**

348 To further examine the contribution of both age-expanded ABCs in lymphoid tissues and adipose
349 B cells in metabolic dysregulation, we performed intraperitoneal (i.p.) injection of the ISO or CD20 mAb
350 into 21month old mice to systemically deplete all B cells (Figure S4E). As expected, ip injection of CD20
351 mAb reduced the percentage of B cells in the spleen and visceral adipose tissue in the 21month old mice
352 (Figure 4F). FALCs tended to appear smaller and show reduced staining for B220 (Figure 4G) and
353 percentages of ABCs in the spleen were significantly reduced with CD20 mAb treatment (Figure 4H).

354 To address whether B cell depletion could restore age-related alterations in immune cell
355 composition, we quantified the percentage of total CD4⁺ T cells, as well as, the PD1⁺ effector population
356 and Treg cells. There was an increase in the frequency of total CD4⁺ cells (Figure 4I) in the B cell
357 depleted mice, but there was a statistically significant visceral adipose-specific reduction in the Treg and
358 CD4⁺PD1⁺ sub-populations (Figure 4I, S4H and S4I). These data indicate that although a single CD20
359 mAb injection to deplete B cells does not reduce CD4⁺ T cell frequency, the CD4⁺ T cell subsets are more
360 similar to subsets of CD4⁺ T cells from young adipose.

361 Consistent with previous findings showing restored insulin tolerance in obese mice depleted of B
362 cells and in aged mice depleted of Tregs (Bapat et al., 2015; Winer et al., 2011), 20 month old B cell-
363 depleted mice had improved insulin sensitivity (Figure S4J and S4K). To address whether systemic
364 depletion of B cells could restore lipolytic signaling and metabolic substrate availability in aged mice, 22
365 month old mice given an intraperitoneal injection of ISO antibody or CD20 mAb were fasted for 24hours.
366 The adipocyte lipases, adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) are
367 required for triglyceride hydrolysis during fasting and are reduced in fasted aged visceral adipose tissue

368 (Camell et al., 2017). As compared to the ISO treated aged wild-type mice, CD20mAB treatment resulted
369 in increased levels of phosphorylated HSL and total ATGL during fasting, indicating that the age-related
370 reduction in lipolytic signaling was restored with B cell depletion (Figure 4J). Consistent with improved
371 lipolytic capability, the visceral adipose tissue from mice given CD20mAB also had increased
372 isoproterenol-stimulated lipolysis (Figure S4L). Given that white adipose lipolysis is required for the
373 generation of metabolic substrates to induce thermogenesis and protect against cold stress (Schreiber et
374 al., 2017; Shin et al., 2017) and aged mice have impaired maintenance of core body temperature during
375 cold stress (Figure S4M) (Berry et al., 2017), we wanted to test whether B cell depletion would improve
376 age-induced defense against cold stress. Consistent with the restored lipolysis providing additional
377 metabolic substrates, 20 month old B cell-depleted mice were able to maintain core body temperature
378 when placed at four degrees C (Figure 4K). Taken together these data implicate the Nlrp3 inflammasome-
379 induced inflammation and B cell expansion in as mechanisms that contribute towards impaired lipolytic
380 capacity of visceral adipose tissue and inability to defend against cold stress in aging.

381

382 **Discussion**

383 In this study we address the mechanism of age-related inflammation and adipose dysfunction by
384 investigating the resident adipose tissue B cell phenotype and function in visceral adipose tissue, an organ
385 implicated in the regulation of lifespan and healthspan. Aging leads to expansion of resident adipose B
386 cells localized to FALCs in white visceral, but not subcutaneous or brown adipose. Reminiscent of the
387 ABC expansion, adipose B cell expansion is primarily evident in female mice. B cells exhibit a memory
388 phenotype and their expansion may require both proliferation and local trafficking. The Nlrp3
389 inflammasome is required for adipose B cell and FALC expansion in aging, but surprisingly is not
390 required for the inflammatory transcriptional phenotype of resident adipose B cells. Functionally,
391 treatment of aged mice with CD20 mAb caused a reduction in FALC-resident B cells and aged B cells,
392 along with a restoration of CD4⁺ T cell subsets, restoration of lipolysis and improved capability to

393 maintain cold-defense. Our data provide new conclusive information that the Nlrp3 inflammasome drives
394 resident adipose B cell expansion and impaired adipose metabolic capacity during aging.

395 That inflammation and metabolism are intimately linked, particularly in obesity, is well accepted
396 (Ferrante, 2013; Hotamisligil, 2006). However, how aging disturbs immunometabolic inputs that impact
397 maintenance of adipose tissue and metabolic homeostasis is less clear. Although we have uncovered that
398 the Nlrp3 inflammasome-expansion of resident adipose B cells contributes to lipolysis resistance and
399 CD4⁺ T cell subpopulation expansion, how and why B cells localize to FALCs are likely regulated by
400 additional mechanisms apart from the inflammasome. Additionally, the mechanisms responsible for B
401 cell recruitment to FALCs are particularly intriguing given that B cells do not express the Nlrp3
402 inflammasome and this process warrants further study.

403 In the young, the adipose tertiary lymphoid structures are local sites of immune surveillance,
404 contributing to the clearance of TLR agonists and pathogens (Benezech et al., 2015; Jackson-Jones et al.,
405 2016; Moro et al., 2010); however, our data suggest that FALCs also control metabolic capacity of
406 adipose tissue. Lipolysis is critical in infections and specific metabolic substrates help drive an efficient
407 and effective immune response (Gazos-Lopes et al., 2017; Wang et al., 2018). Whether B cells regulate
408 host energy homeostasis during various pathophysiological situations requiring metabolic substrates
409 remains to be determined. Moreover, additional studies are needed to identify whether B cells express
410 circulating factors or act directly to impair lipolytic capacity of adipocytes.

411 Our data offers novel insight into time-dependent and sex-dependent effects on adipose
412 hematopoietic cells. Female aging is accompanied by loss of hormone production, systemic alterations in
413 immune cell responses, and increased risk for autoimmunity (Ghosh et al., 2014). Given that visceral
414 adipose B cell expansion occurs between 10 and 15 months, which is prior to splenic ABC expansion, but
415 follows decreases in adipose tissue macrophages, CD4⁺ T cell expansion and ovarian failure in female
416 mice (Diaz Brinton, 2012; Gosden et al., 1983; Hao et al., 2011), it is interesting to speculate on potential
417 multiple causal factors of these associated events. Our B cell depletion experiments suggest a direct link
418 between B cell expansion and T cell subset accumulation (Figure 4I). Endogenous sex hormones

419 influence both adaptive and innate immunity and a direct link with the Nlrp3 inflammasome has not been
420 reported.

421 Lymphatic vessels maintain fluid balance and regulate transport of antigen and immune cells
422 (Ruddle, 2016); however they have also been implicated in driving adipogenesis, adiposity and insulin
423 resistance (Harvey et al., 2005). Ours study identified HEVs and lymphatic vessels within FALCs,
424 suggesting regulated trafficking of lymphocytes. However, given previous findings describing the loss of
425 functionality in lymphatic vessels and increased permeability in aging (Zolla et al., 2015), lymphatic
426 vessels may also feed-forward into chronic age-related inflammation. FALC numbers are reduced in the
427 aged Nlrp3-deficient mice, yet still contain lymphatic vessels; whether improved functionality of
428 lymphatic vessels contributes to improved metabolic capacity remains to be tested.

429 Together, these data show a role for B cell depletion in restoring adipose tissue immune cell
430 compartments, as well as metabolic and immunologic capacity. Importantly, our data reveal previously
431 unrecognized role of the Nlrp3 inflammasome in control of B cell expansion in aging and raise the
432 possibility that FDA approved monoclonal antibodies to deplete B cells may be repurposed for reducing
433 inflammation and reversing metabolic impairment in the elderly.

434

435 **Limitations of the study**

436 This study provides evidence that macrophage expressed Nlrp3 inflammasome regulates B cell
437 homeostasis in aging adipose. B cells do not express Nlrp3 inflammasome and are likely impacted by the
438 inflammasome dependent cytokines IL-1 β and IL-18 which increase with age. Since the next steps to test
439 the causal role of one of these cytokines would necessitate aging of cell type-specific IL-1 and IL-18
440 deficient mice our study could not test the contribution of macrophage derived secreted factors to B cell
441 and FALC formation in aging adipose. The RNA sequencing of B cells from aged control and Nlrp3
442 deficient mice revealed only upregulation of Pros1, which is known to exert anti-inflammatory signaling
443 via TAM receptors. However, whether induction of Pros1 in aged adipose B cells is sufficient for
444 conferring a protective immunometabolic response is not addressed in this study and requires creation of

445 aging cohorts of cell specific Pros1 deficient mice. The reversal of lipolysis resistance in aged mice post
446 B cell depletion suggest that secreted factors from B cells either impact the catecholamine signaling in
447 adipocytes or the sympathetic nervous system innervation itself. Nonetheless, this study provides new
448 evidence that Nlrp3 inflammasome is a surprising new regulator of adipose B cell expansion in aging and
449 opens new avenues for future investigation of immunometabolic checkpoints of aging.

450 **Author contributions:** C.D.C. carried out most experiments. A.L., E.L.G, O.S., and Y.H. assisted with
451 experiments. Y.I. and G.B.H. performed pathological analysis. A.B. generated the GHRKO mouse model.
452 P.G. and J.S. performed the bioinformatics analysis and interpretation. C.D.C and V.D.D. conceived the
453 project, analyzed the data and wrote the manuscript with input from all co-authors.

454

455 **Acknowledgements:** We thank Genentech Inc for providing the *Nlrp3*-deficient mice and the CD20mAb.
456 We also thank The Yale Center on Genomic Analysis (YCGA) for RNAseq studies and the P. Cresswell
457 laboratory for confocal microscopy support. J.L.S. was funded by the German Research Foundation
458 (SFB704, SFB645) and by the ImmunoSensation Cluster of Excellence Bonn. C.D.C. was supported by
459 AFAR (American Federation of Aging Research Postdoctoral transition fellowship) and NIA
460 (K99AG058800). E.L.G was supported by AFAR (Postdoctoral fellowship) and NIA (K99AG058800).
461 The Dixit laboratory is supported in part by NIH grants P01AG051459, AI105097, AG051459,
462 AR070811, the Glenn Foundation on Aging Research and Cure Alzheimer's Fund. A.B. was supported
463 by R01AG019899. AB thanks J.J. Kopchick for providing GHRKO breeders.

464

465 **Declaration of Interests**

466 The authors declare no conflict of financial interest.

467

468

469

470

471 **References**

472 Amano, S.U., Cohen, J.L., Vangala, P., Tencerova, M., Nicoloro, S.M., Yawe, J.C., Shen, Y., Czech,
473 M.P., and Aouadi, M. (2014). Local proliferation of macrophages contributes to obesity-associated
474 adipose tissue inflammation. *Cell metabolism* 19, 162-171.

475 Anderson, K.G., Mayer-Barber, K., Sung, H., Beura, L., James, B.R., Taylor, J.J., Qunaj, L., Griffith,
476 T.S., Vezys, V., Barber, D.L., *et al.* (2014). Intravascular staining for discrimination of vascular and
477 tissue leukocytes. *Nature protocols* 9, 209-222.

478 Bapat, S.P., Myoung Suh, J., Fang, S., Liu, S., Zhang, Y., Cheng, A., Zhou, C., Liang, Y., LeBlanc, M.,
479 Liddle, C., *et al.* (2015). Depletion of fat-resident Treg cells prevents age-associated insulin resistance.
480 *Nature* 528, 137-141.

481 Bartness, T.J., Liu, Y., Shrestha, Y.B., and Ryu, V. (2014). Neural innervation of white adipose tissue and
482 the control of lipolysis. *Front Neuroendocrinol* 35, 473-493.

483 Bauernfeind, F., Niepmann, S., Knolle, P.A., and Hornung, V. (2016). Aging-Associated TNF Production
484 Primes Inflammasome Activation and NLRP3-Related Metabolic Disturbances. *Journal of immunology*
485 197, 2900-2908.

486 Benezech, C., Luu, N.T., Walker, J.A., Kruglov, A.A., Loo, Y., Nakamura, K., Zhang, Y., Nayar, S.,
487 Jones, L.H., Flores-Langarica, A., *et al.* (2015). Inflammation-induced formation of fat-associated
488 lymphoid clusters. *Nature immunology* 16, 819-828.

489 Bentley, K.L., Stranford, S., Liao, S., Mounzer, R.M., Ruddle, F.H., and Ruddle, N.H. (2011). High
490 endothelial venule reporter mice to probe regulation of lymph node vasculature. *Advances in
491 experimental medicine and biology* 691, 35-44.

492 Berry, D.C., Jiang, Y., Arpke, R.W., Close, E.L., Uchida, A., Reading, D., Berglund, E.D., Kyba, M., and
493 Graff, J.M. (2017). Cellular Aging Contributes to Failure of Cold-Induced Beige Adipocyte Formation in
494 Old Mice and Humans. *Cell metabolism* 25, 166-181.

495 Buscher, K., Wang, H., Zhang, X., Striewski, P., Wirth, B., Saggi, G., Lutke-Enking, S., Mayadas, T.N.,

496 Ley, K., Sorokin, L., *et al.* (2016). Protection from septic peritonitis by rapid neutrophil recruitment

497 through omental high endothelial venules. *Nature communications* 7, 10828.

498 Camell, C.D., Sander, J., Spadaro, O., Lee, A., Nguyen, K.Y., Wing, A., Goldberg, E.L., Youm, Y.H.,

499 Brown, C.W., Elsworth, J., *et al.* (2017). Inflammasome-driven catecholamine catabolism in macrophages

500 blunts lipolysis during ageing. *Nature* 550, 119-123.

501 Carter, S., Miard, S., Caron, A., Salle-Lefort, S., St-Pierre, P., Anhe, F.F., Lavoie-Charland, E., Blais-

502 Lecours, P., Drolet, M.C., Lefebvre, J.S., *et al.* (2018). Loss of OcaB Prevents Age-Induced Fat Accretion

503 and Insulin Resistance by Altering B-Lymphocyte Transition and Promoting Energy Expenditure.

504 *Diabetes* 67, 1285-1296.

505 Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, M., Greenberg,

506 A.S., and Obin, M.S. (2005). Adipocyte death defines macrophage localization and function in adipose

507 tissue of obese mice and humans. *Journal of lipid research* 46, 2347-2355.

508 Cipolletta, D., Cohen, P., Spiegelman, B.M., Benoist, C., and Mathis, D. (2015). Appearance and

509 disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and

510 PPARgamma effects. *Proceedings of the National Academy of Sciences of the United States of America*

511 112, 482-487.

512 Coschigano, K.T., Holland, A.N., Riders, M.E., List, E.O., Flyvbjerg, A., and Kopchick, J.J. (2003).

513 Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body

514 weights, insulin, and insulin-like growth factor I levels and increased life span. *Endocrinology* 144, 3799-

515 3810.

516 Despres, J.P., and Lemieux, I. (2006). Abdominal obesity and metabolic syndrome. *Nature* 444, 881-887.

517 Diaz Brinton, R. (2012). Minireview: translational animal models of human menopause: challenges and

518 emerging opportunities. *Endocrinology* 153, 3571-3578.

519 Ferrante, A.W., Jr. (2013). Macrophages, fat, and the emergence of immunometabolism. *The Journal of*

520 *clinical investigation* 123, 4992-4993.

521 Frasca, D., and Blomberg, B.B. (2017). Adipose Tissue Inflammation Induces B Cell Inflammation and
522 Decreases B Cell Function in Aging. *Frontiers in immunology* *8*, 1003.

523 Gazos-Lopes, F., Martin, J.L., Dumoulin, P.C., and Burleigh, B.A. (2017). Host triacylglycerols shape the
524 lipidome of intracellular trypanosomes and modulate their growth. *PLoS pathogens* *13*, e1006800.

525 Ghosh, M., Rodriguez-Garcia, M., and Wira, C.R. (2014). The immune system in menopause: pros and
526 cons of hormone therapy. *The Journal of steroid biochemistry and molecular biology* *142*, 171-175.

527 Goldberg, E.L., and Dixit, V.D. (2015). Drivers of age-related inflammation and strategies for healthspan
528 extension. *Immunological reviews* *265*, 63-74.

529 Gosden, R.G., Laing, S.C., Felicio, L.S., Nelson, J.F., and Finch, C.E. (1983). Imminent oocyte
530 exhaustion and reduced follicular recruitment mark the transition to acyclicity in aging C57BL/6J mice.
531 *Biology of reproduction* *28*, 255-260.

532 Hao, Y., O'Neill, P., Naradikian, M.S., Scholz, J.L., and Cancro, M.P. (2011). A B-cell subset uniquely
533 responsive to innate stimuli accumulates in aged mice. *Blood* *118*, 1294-1304.

534 Harvey, N.L., Srinivasan, R.S., Dillard, M.E., Johnson, N.C., Witte, M.H., Boyd, K., Sleeman, M.W., and
535 Oliver, G. (2005). Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset
536 obesity. *Nature genetics* *37*, 1072-1081.

537 Hotamisligil, G.S. (2006). Inflammation and metabolic disorders. *Nature* *444*, 860-867.

538 Ignatiadis, N., Klaus, B., Zaugg, J.B., and Huber, W. (2016). Data-driven hypothesis weighting increases
539 detection power in genome-scale multiple testing. *Nat Methods* *13*, 577-580.

540 Jackson-Jones, L.H., Duncan, S.M., Magalhaes, M.S., Campbell, S.M., Maizels, R.M., McSorley, H.J.,
541 Allen, J.E., and Benezech, C. (2016). Fat-associated lymphoid clusters control local IgM secretion during
542 pleural infection and lung inflammation. *Nature communications* *7*, 12651.

543 Kanneganti, T.D., and Dixit, V.D. (2012). Immunological complications of obesity. *Nature immunology*
544 *13*, 707-712.

545 Kanneganti, T.D., Lamkanfi, M., and Nunez, G. (2007). Intracellular NOD-like receptors in host defense
546 and disease. *Immunity* *27*, 549-559.

547 Kennedy, B.K., Berger, S.L., Brunet, A., Campisi, J., Cuervo, A.M., Epel, E.S., Franceschi, C., Lithgow,
548 G.J., Morimoto, R.I., Pessin, J.E., *et al.* (2014). Geroscience: linking aging to chronic disease. *Cell* 159,
549 709-713.

550 Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory
551 requirements. *Nat Methods* 12, 357-360.

552 Kolodin, D., van Panhuys, N., Li, C., Magnuson, A.M., Cipolletta, D., Miller, C.M., Wagers, A.,
553 Germain, R.N., Benoist, C., and Mathis, D. (2015). Antigen- and cytokine-driven accumulation of
554 regulatory T cells in visceral adipose tissue of lean mice. *Cell metabolism* 21, 543-557.

555 Latz, E., and Duewell, P. (2018). NLRP3 inflammasome activation in inflammasome. *Seminars in*
556 *immunology*.

557 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for
558 RNA-seq data with DESeq2. *Genome biology* 15, 550.

559 Lumeng, C.N., Liu, J., Geletka, L., Delaney, C., Delproposto, J., Desai, A., Oatmen, K., Martinez-
560 Santibanez, G., Julius, A., Garg, S., *et al.* (2011). Aging is associated with an increase in T cells and
561 inflammatory macrophages in visceral adipose tissue. *Journal of immunology* 187, 6208-6216.

562 Mariathasan, S., Weiss, D.S., Newton, K., McBride, J., O'Rourke, K., Roose-Girma, M., Lee, W.P.,
563 Weinrauch, Y., Monack, D.M., and Dixit, V.M. (2006). Cryopyrin activates the inflammasome in
564 response to toxins and ATP. *Nature* 440, 228-232.

565 Martinez-Santibanez, G., and Lumeng, C.N. (2014). Macrophages and the regulation of adipose tissue
566 remodeling. *Annual review of nutrition* 34, 57-76.

567 Masternak, M.M., and Bartke, A. (2012). Growth hormone, inflammation and aging. *Pathobiol Aging*
568 *Age Relat Dis* 2.

569 McDonnell, M.E., Ganley-Leal, L.M., Mehta, A., Bigornia, S.J., Mott, M., Rehman, Q., Farb, M.G.,
570 Hess, D.T., Joseph, L., Gokce, N., *et al.* (2012). B lymphocytes in human subcutaneous adipose crown-
571 like structures. *Obesity* 20, 1372-1378.

572 Moro, K., Yamada, T., Tanabe, M., Takeuchi, T., Ikawa, T., Kawamoto, H., Furusawa, J., Ohtani, M.,

573 Fujii, H., and Koyasu, S. (2010). Innate production of T(H)2 cytokines by adipose tissue-associated c-

574 Kit(+)Sca-1(+) lymphoid cells. *Nature* 463, 540-544.

575 Morris, D.L., Cho, K.W., Delproposto, J.L., Oatmen, K.E., Geletka, L.M., Martinez-Santibanez, G.,

576 Singer, K., and Lumeng, C.N. (2013). Adipose tissue macrophages function as antigen-presenting cells

577 and regulate adipose tissue CD4+ T cells in mice. *Diabetes* 62, 2762-2772.

578 Naradikian, M.S., Hao, Y., and Cancro, M.P. (2016). Age-associated B cells: key mediators of both

579 protective and autoreactive humoral responses. *Immunological reviews* 269, 118-129.

580 Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D., Diehn, M., and

581 Alizadeh, A.A. (2015). Robust enumeration of cell subsets from tissue expression profiles. *Nat Methods*

582 12, 453-457.

583 Nishimura, S., Manabe, I., Takaki, S., Nagasaki, M., Otsu, M., Yamashita, H., Sugita, J., Yoshimura, K.,

584 Eto, K., Komuro, I., *et al.* (2013). Adipose Natural Regulatory B Cells Negatively Control Adipose

585 Tissue Inflammation. *Cell metabolism*.

586 Pirzgalska, R.M., Seixas, E., Seidman, J.S., Link, V.M., Sanchez, N.M., Mahu, I., Mendes, R., Gres, V.,

587 Kubasova, N., Morris, I., *et al.* (2017). Sympathetic neuron-associated macrophages contribute to obesity

588 by importing and metabolizing norepinephrine. *Nature medicine* 23, 1309-1318.

589 Ramilowski, J.A., Goldberg, T., Harshbarger, J., Kloppmann, E., Lizio, M., Satagopam, V.P., Itoh, M.,

590 Kawaji, H., Carninci, P., Rost, B., *et al.* (2015). A draft network of ligand-receptor-mediated multicellular

591 signalling in human. *Nature communications* 6, 7866.

592 Rangel-Moreno, J., Moyron-Quiroz, J.E., Carragher, D.M., Kusser, K., Hartson, L., Moquin, A., and

593 Randall, T.D. (2009). Omental milky spots develop in the absence of lymphoid tissue-inducer cells and

594 support B and T cell responses to peritoneal antigens. *Immunity* 30, 731-743.

595 Rothlin, C.V., Carrera-Silva, E.A., Bosurgi, L., and Ghosh, S. (2015). TAM receptor signaling in immune

596 homeostasis. *Annual review of immunology* 33, 355-391.

597 Rubtsova, K., Rubtsov, A.V., Cancro, M.P., and Marrack, P. (2015). Age-Associated B Cells: A T-bet-
598 Dependent Effector with Roles in Protective and Pathogenic Immunity. *Journal of immunology* **195**,
599 1933-1937.

600 Ruddle, N.H. (2014). Lymphatic vessels and tertiary lymphoid organs. *The Journal of clinical*
601 *investigation* **124**, 953-959.

602 Ruddle, N.H. (2016). High Endothelial Venules and Lymphatic Vessels in Tertiary Lymphoid Organs:
603 Characteristics, Functions, and Regulation. *Frontiers in immunology* **7**, 491.

604 Russell Knodel, L.M., Naradikian, M.S., Myles, A., Scholz, J.L., Hao, Y., Liu, D., Ford, M.L., Tobias,
605 J.W., Cancro, M.P., and Gearhart, P.J. (2017). Age-Associated B Cells Express a Diverse Repertoire of
606 VH and Vkappa Genes with Somatic Hypermutation. *Journal of immunology* **198**, 1921-1927.

607 Schreiber, R., Diwoky, C., Schoiswohl, G., Feiler, U., Wongsiriroj, N., Abdellatif, M., Kolb, D., Hoeks,
608 J., Kershaw, E.E., Sedej, S., *et al.* (2017). Cold-Induced Thermogenesis Depends on ATGL-Mediated
609 Lipolysis in Cardiac Muscle, but Not Brown Adipose Tissue. *Cell metabolism* **26**, 753-763 e757.

610 Schroder, K., and Tschopp, J. (2010). The inflammasomes. *Cell* **140**, 821-832.

611 Schweiger, M., Eichmann, T.O., Taschler, U., Zimmermann, R., Zechner, R., and Lass, A. (2014).
612 Measurement of lipolysis. *Methods in enzymology* **538**, 171-193.

613 Shen, L., Chng, M.H., Alonso, M.N., Yuan, R., Winer, D.A., and Engleman, E.G. (2015). B-1a
614 lymphocytes attenuate insulin resistance. *Diabetes* **64**, 593-603.

615 Shin, H., Ma, Y., Chanturiya, T., Cao, Q., Wang, Y., Kadegowda, A.K.G., Jackson, R., Rumore, D., Xue,
616 B., Shi, H., *et al.* (2017). Lipolysis in Brown Adipocytes Is Not Essential for Cold-Induced
617 Thermogenesis in Mice. *Cell metabolism* **26**, 764-777 e765.

618 Spadaro, O., Goldberg, E.L., Camell, C.D., Youm, Y.H., Kopchick, J.J., Nguyen, K.Y., Bartke, A., Sun,
619 L.Y., and Dixit, V.D. (2016). Growth Hormone Receptor Deficiency Protects against Age-Related
620 NLRP3 Inflammasome Activation and Immune Senescence. *Cell reports* **14**, 1571-1580.

621 Stenholm, S., Harris, T.B., Rantanen, T., Visser, M., Kritchevsky, S.B., and Ferrucci, L. (2008).

622 Sarcopenic obesity: definition, cause and consequences. Current opinion in clinical nutrition and
623 metabolic care *11*, 693-700.

624 Truman, L.A., Bentley, K.L., Smith, E.C., Massaro, S.A., Gonzalez, D.G., Haberman, A.M., Hill, M.,
625 Jones, D., Min, W., Krause, D.S., *et al.* (2012). ProxTom lymphatic vessel reporter mice reveal Prox1
626 expression in the adrenal medulla, megakaryocytes, and platelets. The American journal of pathology
627 *180*, 1715-1725.

628 Vandamagsar, B., Youm, Y.H., Ravussin, A., Galgani, J.E., Stadler, K., Mynatt, R.L., Ravussin, E.,
629 Stephens, J.M., and Dixit, V.D. (2011). The NLRP3 inflammasome instigates obesity-induced
630 inflammation and insulin resistance. Nature medicine *17*, 179-188.

631 Wang, A., Huen, S.C., Luan, H.H., Baker, K., Rinder, H., Booth, C.J., and Medzhitov, R. (2018). Glucose
632 metabolism mediates disease tolerance in cerebral malaria. Proceedings of the National Academy of
633 Sciences of the United States of America *115*, 11042-11047.

634 Winer, D.A., Winer, S., Shen, L., Wadia, P.P., Yantha, J., Paltser, G., Tsui, H., Wu, P., Davidson, M.G.,
635 Alonso, M.N., *et al.* (2011). B cells promote insulin resistance through modulation of T cells and
636 production of pathogenic IgG antibodies. Nature medicine *17*, 610-617.

637 Xu, X., Grijalva, A., Skowronski, A., van Eijk, M., Serlie, M.J., and Ferrante, A.W., Jr. (2013). Obesity
638 activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages
639 independently of classic activation. Cell metabolism *18*, 816-830.

640 Youm, Y.H., Grant, R.W., McCabe, L.R., Albarado, D.C., Nguyen, K.Y., Ravussin, A., Pistell, P.,
641 Newman, S., Carter, R., Laque, A., *et al.* (2013). Canonical Nlrp3 inflammasome links systemic low-
642 grade inflammation to functional decline in aging. Cell metabolism *18*, 519-532.

643 Youm, Y.H., Kanneganti, T.D., Vandamagsar, B., Zhu, X., Ravussin, A., Adijiang, A., Owen, J.S.,
644 Thomas, M.J., Francis, J., Parks, J.S., *et al.* (2012). The Nlrp3 inflammasome promotes age-related
645 thymic demise and immunosenescence. Cell reports *1*, 56-68.

646 Zamarron, B.F., Mergian, T.A., Cho, K.W., Martinez-Santibanez, G., Luan, D., Singer, K., DelProposto,
647 J.L., Geletka, L.M., Muir, L.A., and Lumeng, C.N. (2017). Macrophage Proliferation Sustains Adipose
648 Tissue Inflammation in Formerly Obese Mice. *Diabetes* *66*, 392-406.
649 Zamboni, M., Armellini, F., Harris, T., Turcato, E., Micciolo, R., Bergamo-Andreis, I.A., and Bosello, O.
650 (1997). Effects of age on body fat distribution and cardiovascular risk factors in women. *The American
651 journal of clinical nutrition* *66*, 111-115.
652 Zolla, V., Nizamutdinova, I.T., Scharf, B., Clement, C.C., Maejima, D., Akl, T., Nagai, T., Luciani, P.,
653 Leroux, J.C., Halin, C., *et al.* (2015). Aging-related anatomical and biochemical changes in lymphatic
654 collectors impair lymph transport, fluid homeostasis, and pathogen clearance. *Aging cell* *14*, 582-594.

655

656

657 Figure Legends:

658 **1. Aging increases FALCs and B cell accumulation in visceral adipose tissue**

659 a. Contour plots gated through CD45⁺ iv antibody⁻ live cells in stroma vascular fraction (SVF) of 3 and
660 24 month VAT. Values represent the mean percentage of B220⁺ cells.

661 b. Quantification of CD3⁺ and B220⁺ lymphocytes as a percentage of live CD45⁺ residents. Each symbol
662 represents one mouse.

663 c. Quantification of resident and circulating cells as a percentage of total B220⁺ cells from 3 or 24
664 month old mice.

665 d. Quantification of B220⁺ lymphocytes as a percentage of live CD45⁺ iv⁻ cells, in male or female mice
666 at 5, 10, 15 or 20 months of age.

667 e. Quantification of resident (iv antibody⁻) B220⁺ cells in brown (BAT), subcutaneous (SAT) and
668 visceral adipose tissue (VAT). Each symbol represents one mouse.

669 f. Quantification of lymphocyte infiltration based on hematoxylin and eosin (H&E) staining in the VAT
670 and SAT of 3 or 20 month old mice. Each symbol represents one mouse.

671 g. Masson's trichrome staining showing a FALC in 22 month old VAT.

672 h. H&E staining showing a FALC in 22 month old VAT.

673 i. H&E staining showing inguinal lymph node in SAT of 22 month old mouse.

674 j. Linear support vector analysis showing gene signature enrichment of VAT B cells that overlap with

675 plasma (light blue), memory (dark blue) or naïve (green) B cells (Newman et al., 2015).

676 k. Quantification of percentage of Ki67⁺ cells, as a proportion of cell subsets, in spleen, VAT or

677 mesenteric adipose tissue (MAT) cells of 24 month old mice.

678 l. Whole mount confocal imaging in 22 month old visceral adipose of Hec6ST mice to visualize HEVs

679 (green) in B220⁺ FALCs (red).

680 m. Whole mount confocal imaging in 22 month old visceral adipose of ProxTom mice to visualize

681 lymphatic vessels (tomato) in B220⁺ FALCs (green).

682

683 All error bars represent mean±SEM. * <0.05 , ** <0.01 , *** <0.005 . Statistical significance was

684 determined by an ANOVA with posthoc test to adjust for multiple corrections.

685

686

687 **2. Nlrp3 inflammasomes controls B cell expansion and FALC development**

688 a. Whole mount confocal imaging of FALC in VAT of 22 month old mT/mG;LysMcre with B220

689 (yellow) and DAPI (blue) antibody staining. mTomato expressed on all cells and mGFP on myeloid

690 cells.

691 b. Flow cytometry plots showing B220⁺ MHCII⁺ cells from the visceral adipose tissue of 3 or 24 month

692 wild-type and Nlrp3^{-/-} mice. Quantification of the percentage and cells ($\times 10^6$)/g tissue of B220⁺

693 MHCII⁺ cells.

694 c. Quantification of the numbers of FALCs per adipose tissue in 24 month old wild-type or Nlrp3^{-/-}

695 deficient adipose tissue.

696 d. Whole mount confocal imaging to visualize Prox1⁺ (green) lymphatic endothelial cells in FALCs

697 (B220⁺; red)

698 e. Differentially expressed genes in visceral adipose B cells from 24 month old wild-type and Nlrp3-/-
699 mice. Grey dots represent no significant change in gene expression, red dots represent significant
700 changes in gene expression (FDR<0.1).
701 f. Schematic visualizing Pros1 change in WT and Nlrp3-/- visceral adipose B cells and potential
702 interactions with TAM receptors on macrophages

703

704 All error bars represent mean \pm SEM. * <0.05 , ** <0.01 , *** <0.005 . Statistical significance was
705 determined by an ANOVA with posthoc test to adjust for multiple corrections.

706

707 **3. B cell expansion is associated with reduced healthspan and lifespan**

708 a. Pseudocolor density plot gated through CD45⁺ B220⁺ MHCII⁺ splenocytes to show B cell subsets in 3
709 or 24 month old WT and Nlrp3-deficient mice.
710 b. Quantification of splenic B cell subset frequency. MZ: marginal zone B cells; FO: follicular B cells.
711 c. Representative density plots and quantification and of B cell subsets in B220⁺MHCII⁺ splenocytes
712 from WT or GHRKO mice at 20 months of age.
713 d. Quantification of B220⁺ and CD4⁺ cells from the visceral adipose tissue of WT or GHRKO mice at
714 20 months of age.

715

716 All error bars represent mean \pm SEM. * <0.05 , ** <0.01 , *** <0.005 . Statistical significance was
717 determine by an ANOVA with posthoc test to adjust for multiple corrections.

718

719 **4. Depletion of B cells restores adipose metabolic capacity**

720 a. Quantification of the fold change (% of B cell from CD20 mAb tissue/ average % of B cell from ISO
721 tissue). Each symbol represents an individual mouse.

722 b. Quantification of the frequency of B220⁺ cells gated through live CD45⁺ cells in visceral adipose of
723 20 month old wild-type mice given a single intra-adipose injection of ISO or CD20 mAb. Each
724 symbol represents an individual mouse.

725 c. Insulin tolerance test (ITT) in 21 month old wild-type mice treated as indicated.

726 d. Glycerol per gram of tissue in visceral adipose tissue from fed mice given visceral adipose treatment
727 as described. Each symbol represents an individual mouse.

728 e. Glycerol per gram of tissue in visceral adipose tissue from mice that were fasted for 24 hours. Each
729 symbol represents an individual mouse.

730 f. Histogram plots showing B220⁺ cells in tissues from 4 or 21 month old mice given intraperitoneal
731 injection of ISO or CD20 mAb. Values represent the mean percentage for that condition.

732 g. Whole mount imaging showing representative FALCs in mesenteric adipose from 22 month old mice.
733 (Top) FALCs from adipose of mice treated with ISO control, (bottom) FALCs from mice treated with
734 CD20 mAb.

735 h. Quantification of ABCs, FO B cells and MZ B cells in spleen of 5 or 21 month old mice given ISO
736 control or 21 month mice treated with CD20 mAb.

737 i. Quantification of the percentage of CD4⁺ T cells out of the total CD45⁺ live cells in spleen or visceral
738 adipose. (right top) Quantification of CD4⁺ Foxp3⁺ Cd25⁺ cells out of the total CD4⁺ T cells. (right
739 bottom) Quantification PD1⁺ cells out of total CD4+ cells in the spleen and visceral adipose tissue of
740 conditions described. Each symbol represents one mouse.

741 j. Western blot showing phosphorylated HSL, ATGL, total HSL and ACTIN levels in VAT of 3 month,
742 22 month give isotype control or CD20 mAb as described. Each lane represents one mouse.
743 Representative of two individual experiments.

744 k. Rectal temperature at day 0 and day 3 in wild-type mice treated as described and exposed to four
745 degrees. Each symbol represents one sample.

746

747 All error bars represent mean \pm SEM. * <0.05 , ** <0.01 , *** <0.005 . Statistical significance was
748 determined by an ANOVA with posthoc test to adjust for multiple corrections.

749

750 **STAR METHODS**

751 **CONTACT FOR REAGENT AND RESOURCE SHARING**

752 Further information and requests for resources and reagents should be directed to and will be fulfilled by
753 the Lead Contact, Dr. Vishwa Deep Dixit (Vishwa.dixit@yale.edu).

754

755 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

756 *Animal care*

757 All mice were housed in specific pathogen-free facilities in ventilated cage racks that deliver HEPA-
758 filtered air to each cage with free access to sterile water through a Hydropac system at Yale School of
759 Medicine. Sentinel mice in our animal rooms were negative for currently tested standard mouse
760 pathogens (Ectromelia, EDIM, LCMV, *Mycoplasma pulmonis*, MHV, MNV, MPV, MVM, PVM, REO3,
761 TMEV and Sendai virus) at various times while the studies were performed (Research Animal Diagnostic
762 Laboratory). C57BL6/J (wild-type) mice were bred from our colony, purchased from Jackson
763 Laboratories or received from the National Institute of Aging Rodent colony. *Nlrp3*^{-/-} have been
764 previously described and were bred in our facility, along with their wild-type controls (Mariathasan et al.,
765 2006). *LysM-cre mT/mG* mice were bred in our facility. *ProxTom* and *HEC6ST-GFP* reporter mice were
766 generated and bred by Nancy Ruddle (Bentley et al., 2011; Truman et al., 2012). GHRKO mice and their
767 controls were generated and bred by Andrzej Bartke (Coschigano et al., 2003). All knockout mice were
768 compared to wild-type controls raised in the same facility. Mice were fed a standard vivarium chow
769 (Harlan 2018S) and housed under 12hr light/dark cycles. Mice were examined and only the mice that did
770 not have lymphoma were used for experiments. All experiments and animal use were conducted in
771 compliance with the National Institute of Health Guide for the Care and Use of Laboratory Animals and

772 were approved by the Institutional Animal Care and Use Committee at Yale University. All mouse
773 models used and the sex and number of animals are listed in the below sections.

774

775 **Mouse models**

776 For insulin tolerance test: Mice were fasted for 4 hours prior to ITT. Insulin was given by i.p. injection
777 (0.8U/kg) and blood glucose levels were measured by glucometer.

778 For fasting: At 8am, mice were placed into a clean cage without food, but with water ad lib. Fast was
779 complete after 24 hours when mice were euthanized for tissue harvest.

780 For cold challenge: Rectal temperature was taken using a rectal thermometer at 7am each day. Baseline
781 body-temperature was taken at 7am at room temperature housing. Mice were then transferred to a cold
782 room that is maintained at 4°C for three days. 12hour light/dark cycle and food and water were
783 maintained throughout the cold challenge.

784 For B cell depletion: intra-adipose depletion was performed during survival surgery under anesthesia. A
785 small ventral midline skin incision was made to access gonadal adipose tissue. 100ul of isotype control
786 antibody (clone C1.18.4; bio X cell in vivo; catalogue#: BP0085) or CD20 monoclonal antibody
787 (Genetech; clone 5D2) is injected into both left and right adipose tissue depots (50ug/depot). The tissue is
788 replaced into the abdomen and the abdominal muscle and skin will be sutured with 4-0 Vicryl. Mice are
789 monitored daily until incision heals. Systemic depletion was performed by i.p. injection of isotype control
790 or CD20 mAB (100ug).

791

792 Animal Experiments:

793 *Experiment 1:* Young vs old adipose tissue immune cell quantification (two individual cohorts compiled)
794 Wild-type; N=3 at 3m; N=3 at 24m in each individual cohort; Female mice

795 *Experiment 2:* Time-course and sex comparison to quantify resident adipose B cells
796 Wild-type; N= 5 at each time point for each sex.

797 *Experiment 3:* Aging of mice in separate animal facility (Pennington Biomedical research center)

798 Wild-type; N=3 at each age; female mice

799 *Experiment 4:* Adipose depot comparisons of resident adipose B cells in 7m and 24m old female mice

800 Wild-type; N= 8 at 7m; N=7 at 24m; each pooled from multiple litters that were bred and housed

801 at Yale University; Female mice

802 *Experiment 5:* Quantification of visceral and subcutaneous lymphocyte infiltration

803 Wild-type; N= 8 at 3m and N =8 at 20m; Female mice

804 *Experiment 6:* Sorting of adipose tissue B cells for RNA sequencing analysis

805 Wild-type; N= 3 at 3m and N =2 at 24m pooled from 2 mice each*

806 *Experiment 7:* Ki67 expression in immune cells from aged animals (two individual cohorts compiled)

807 Wild-type; N=3 and N=4 at 24m in two individual cohorts

808 *Experiment 8:* Aging of reporter mice and wild-type mice for confocal analysis

809 Hec6ST-GFP mice N=3; ProxTom mice N=3; wild-type N=3; all 20-22m; female mice

810 *Experiment 9:* Aging of WT and Nlrp3-/- mice for adipose B and T cell quantification at 3m or 24m of

811 age

812 N = 3 WT at 3m; N= 5 Nlrp3-/- at 3m; N=7 WT at 24m; N=5 Nlrp3-/- at 24m pooled from two

813 separate experiments

814 *Experiment 10:* Aging of WT and Nlrp3-/- mice for FALC quantification and Prox1+ staining

815 N= 5/5 WT/Nlrp3-/- at 24m for FALC quantification. N= 3/3 WT/Nlrp3-/- at 24m; female mice

816 *Experiment 11:* Aging of WT and Nlrp3-/- mice for adipose B cell sorting

817 N=2 WT at 24m of age and N=3 Nlrp3-/- at 24m of age pooled from 2 mice each*

818 *Experiment 12:* Aging of WT and Nlrp3-/- mice for quantification of adipose tissue B and T cells at 4m

819 and 10m of age.

820 N= 4; female mice at 4m WT, 10m WT and 10m Nlrp3-/-

821 *Experiment 13:* Aging of WT and GHRKO mice for immune cell quantification

822 N = 7 WT and N=9 GHRKO at 20m, pooled from two separate experiments

823 *Experiment 14:* Intra-adipose injection of CD20 mAB for visceral adipose-specific B cell depletion (two
824 individual cohorts)

825 N=7 ISO and N=7 CD20mAB; pooled from two separate experiments; female mice

826 *Experiment 15:* I.P. injection of CD20 mAB for systemic depletion of B cells for insulin tolerance test
827 N = 4 ISO and N= 5 CD20 mAB

828 *Experiment 16:* I.P. injection of CD20 mAB for systemic depletion of B cells with fasting challenge (two
829 individual cohorts)

830 N= 3 3m ISO; N= 3 22m ISO; N= 4 22m CD20 mAB; repeated twice; representative data shwon

831 *Experiment 17:* I.P injection of CD20 mAB for systemic depletion of B cells with cold challenge (three
832 individual cohorts compiled)

833 N= 6 3-8m ISO; N= 7 23m ISO; N=9 23m CD20m AB pooled together for rectal temperature

834

835 All N's represent a single animal (biological replicate), except for RNA sequencing experiments which
836 required pooling of adipose tissue from mice to collect the N's indicated.

837

838 **METHOD DETAILS**

839 **Adipose digestion and stromavascular staining**

840 Visceral adipose was collected after euthanization and weighed. Tissue was enzymatically digested in
841 0.1% collagenase I (Worthington Biochemicals) in HBSS (Life Technologies) for 45 min at 37 °C. Tissue
842 from control and experimental groups was digested and stained on the same day to eliminate minor
843 procedure differences. The stromavascular fraction was pelleted by centrifugation at 500g for 10 min,
844 then washed and filtered. Red blood cells are lysed using ACK lysis buffer. Cells were resuspended in
845 1 ml for counting before staining. For staining, the stromavascular fraction was incubated with FcBlock,
846 surface antibodies for 30 min on ice, in the dark, then washed and stained with Fixable Viability Dye
847 (eBioscience) and intracellular antibodies using cytofix (eBioscience/ThermoFisher). Analysis was
848 performed on a BD LSRII and using FlowJo vX. For sorting B220+; CD3- B220+F4/80- CD11b- cells

849 were sorted on a BD FACS Aria into RPMI with antibiotics/antimycotics (ThermoFisher) plus 20% FBS.

850 Cells were pelleted and resuspended in trizol for RNA isolation.

851

852 **Lipolysis assay**

853 For *ex vivo* lipolysis assay, adipose tissue was collected and 15 mg was cultured in 100 μ l lipolysis buffer

854 (Krebs buffer plus 0.1% glucose and 3.5% fatty acid free BSA; Sigma) in a 96-well plate for 2 h at 37 °C

855 at 450 r.p.m. The glycerol assay (Sigma) was used as per manufacturer's instructions.

856

857 **Western blot**

858 Visceral adipose was snap frozen in liquid nitrogen immediately after harvest. Tissue was homogenized

859 in RIPA buffer containing protease inhibitors. Protein concentration was quantified using the DC protein

860 assay (Bio-Rad) and equal amounts of protein were run on an SDS-PAGE gel and transferred to

861 nitrocellulose membrane. Blots were probed with primary antibodies and then incubated in secondary

862 antibody of the appropriate species (ThermoFisher). Detection occurred using chemiluminescent

863 visualization (Fisher, Bio-rad).

864

865 **Whole-mount staining**

866 Staining was performed similar to those previously published. In brief, adipose tissue was collected, fixed

867 in 1% PFA and blocked with 5% BSA. Permeabilization was done using 0.1% Triton-X 100 in 5% BSA.

868 The adipose tissue was then stained in primary antibodies over 1–2 days and secondary antibody, if

869 needed, for 2.5 h in goat blocking serum. Confocal images were acquired using a laser scanning Leica

870 SP8 or Leica SP5 and analyzed using Leica Application Suite AF.

871 For FALC counting, Images were acquired on a Zeiss Inverted Microscope (Axio) or Keyence (BZ-

872 X710) using the stitching function within. FALCs from each tissue were counted using CD3⁺ staining.

873 Histology and pathological analysis: Visceral and subcutaneous adipose tissues were fixed in 10%

874 formalin. Tissues were embedded, sectioned and stained with hematoxylin and eosin or masson's

875 trichrome by Mouse Research Pathology within Comparative Medicine at Yale University. Pathological
876 analysis of lymphocyte infiltration was accomplished by a double blind procedure without knowledge of
877 the animal's identity. Two pathologists made independent scores.

878

879 **Antibodies**

880 For tissue resident labeling: Intravascular labeling was performed by i.v. injection of 2.5ug CD45.2
881 diluted in 100ul PBS. Mice were euthanized exactly 3 minutes after injection for tissue collection.
882 For flow cytometry analysis, the following antibodies were used: Fixable Viability Dye Aqua;
883 CD3-BV605, B220-PECy7, CD45.2-BV605, CD45.2-FITC, B220-APC, CD45-BV-711, CD4-BV605,
884 FoxP3-APC, Ki67-PECy7, CD19-FITC, B220-AF600, CD8-eF450, CD11b-FITC, MHCII-PECy7, B220-
885 AF700, B220-eF450, CD25-PE, PD1-APC-e780, CD21/35-FITC, CD23-PE, CD23-eF450, F4/80-PE,
886 CD11b-PerCP-Cy5.5, CD3-eF450, B220-FITC, B220-PerCP-Cy5.5.

887 Intracellular staining: Intracellular antigens were detected using the eBioscience Fix/Perm nuclear
888 staining kit as instructed by manufacture-supplied protocol.

889 For whole mount staining, the following antibodies were used: DAPI, B220-APC, B220-PE, CD3-FITC,
890 Prox1 (Abcam; ab101851), Chicken anti-Rabbit-AF488 (Life Tech; A21441)

891 For western blot analysis, the following antibodies were used: pHSL (Ser563; 4139), HSL (4107), ATGL
892 (2439), Beta-Actin (4967) (Cell signaling).

893

894 **RNA extraction and gene expression analysis**

895 RNA extraction and purification was performed using the trizol/chloroform method, followed by use of
896 the RNeasy kits (Qiagen) according to manufacturer's instructions.

897

898 **RNA-sequence quality control**

899 Total RNA quality is determined by estimating the 260 nm/A280 nm and A260 nm/A230 nm ratios by
900 nanodrop. RNA integrity is determined by running an Agilent Bioanalyzer gel, which measures the ratio
901 of the ribosomal peaks.

902

903 **Library prep**

904 mRNA is purified from approximately 500 ng of total RNA with oligo-dT beads and sheared by
905 incubation at 94 °C. Following first-strand synthesis with random primers, second-strand synthesis is
906 performed with dUTP for generating strand-specific sequencing libraries. The cDNA library is then end-
907 repaired, and A-tailed, adapters are ligated and second-strand digestion is performed by uracil-DNA-
908 glycosylase. Indexed libraries that meet appropriate cutoffs for both are quantified by qRT-PCR using a
909 commercially available kit (KAPA Biosystems). Insert size distribution was determined with the LabChip
910 GX or Agilent Bioanalyzer. Samples with a yield of ≥ 0.5 ng μ l⁻¹ are used for sequencing.

911

912 **Flow cell preparation and sequencing**

913 Sample concentrations are normalized to 10 nM and loaded onto Illumina High-output flow cells at a
914 concentration that yields 150–250 million passing filter clusters per lane. Samples are sequenced using 75
915 bp single-end sequencing on an Illumina HiSeq 2000 according to Illumina protocols. Each sample has a
916 6-bp index that is incorporated during the library prep. The index sequence is read using a different
917 sequencing primer than the 75-bp sequencing read. The index read happens immediately after the 75-bp
918 read. Data generated during sequencing runs are simultaneously transferred to the YCGA high-
919 performance computing cluster. A positive control (prepared bacteriophage Phi X library) provided by
920 Illumina is spiked into every lane at a concentration of 0.3% to monitor sequencing quality in real time.

921

922 **Data analysis and storage**

923 Signal intensities are converted to individual base calls during a run using the system's real time analysis
924 (RTA) software. Sample de-multiplexing was performed using Illumina's CASAVA 1.8.2 software suite.

925 The data are returned to the user if the sample error rate is less than 2% and the distribution of reads per
926 sample in a lane is within reasonable tolerance.

927

928 **Primary data analysis of RNA-Seq data.** Raw fastq-files were mapped to the murine genome version
929 mm10 using HISAT version 0.1.7-β (Kim et al., 2015) using the default options. The resulting BAM files
930 were imported into Partek® Genomics Suite® software, version 6.6 Copyright©; 2017 (PGS) and reads
931 were quantified using the mm10-RefSeq Transcripts database version 2016-02-02 to obtain read counts
932 for each individual RefSeq gene.

933 Next, the raw read counts were imported into R and further analysis have been carried out using the R
934 package DEseq2 (Love et al., 2014). Following, normalization we determined differentially expressed
935 genes using DESeq2 with standard settings and IHW (Ignatiadis et al., 2016) filtering. Genes were
936 considered as differentially expressed (DE) if the adjusted *p* value (IHW, weighted Benjamini and
937 Hochberg correction) was less than 0.1. The differences in gene expression were visualized as the
938 dependency between the negative decadic logarithm of the *p*-value and the difference in gene expression
939 as log2 fold change (volcano plot).

940

941 **B-Cell macrophage interaction model.** To create a transcriptome-informed model of possible cell-to-
942 cell ligand-receptor interactions we utilized the Fantom5 receptor-ligand database (Ramilowski et al.,
943 2015). First, we downloaded the receptor-ligand interactions [<http://fantom.gsc.riken.jp/data/>,
944 October/2016] and replaced the human receptor/ ligands with murine orthologs using ENSEMBL biomart
945 (Ensembl Genes 92, GRCh38.p12). Genes that lacked a murine ortholog in this database were manually
946 curated using the NCBI gene database. Interactions were filtered by DE genes of the respective
947 comparison and visualized using the R package igraph 1.2.1 [<https://cran.r-project.org/web/packages/igraph/index.html>].

949

950 **QUANTIFICATION AND STATISTICAL ANALYSIS**

951 **Experimental design**

952 Blinding of investigators was not possible during experiments. Control and experimental groups were
953 randomly assigned by cage. All experiments contained littermates and non-littermates, which were both
954 randomly assigned to control and experimental group. Young control mice were raised or obtained from
955 Jackson Laboratory (wild-type; C57BL6/J). Statistical significance was calculated by a two-tailed
956 Student's *t*-test or ANOVA using a post-hoc test to correct for multiple hypotheses. **P* < 0.05;
957 ***P* < 0.005; ****P* < 0.001; *****P* < 0.0001. GraphPad Prism was used to define statistical outliers,
958 which were then excluded from data analysis. A confidence interval of 95% was used for all statistical
959 tests. All data were assumed to be normally distributed, unless the standard deviation was identified as
960 significantly different between groups. All statistical tests were performed using GraphPad Prism v7 for
961 Windows (GraphPad Software). Data are expressed as mean \pm s.e.m. Biological replicates and the number
962 of independent experiment repetition are described in the figure legends.

963

964 **DATA AND SOFTWARE AVAILABILITY**

965 The RNA sequencing data will be uploaded to publically available database upon acceptance of this
966 manuscript. Previously published datasets that were used in the analysis are indicated by GEO number in
967 the text.

968

969 **Supplemental 1. Related to Figure 1.**

970 a. Gating strategy to identify tissue residents using flow cytometry
971 b. Quantification of CD19⁺ cells in the visceral adipose tissue of 2 and 24 month old male or female
972 mice that were bred and aged at Pennington Biomedical Research Center.
973 c. Contour plots (gated through CD45⁺ live cells) of B220⁺ resident cells in VAT, SAT and BAT.
974 d. Whole mount fluorescent imaging of mesenteric and gonadal visceral adipose depots from female
975 mice at 7 or 24 months of age. CD3 (red), B220 (blue)

976 e. Whole mount confocal imaging of FALCs in VAT of 22month old wild-type mouse. Top: CD3
977 (green) and B220 (red). Bottom: CD4 (red), B220 (white), and DAPI (blue).

978 f. CD11b MFI on B220⁺ cells from visceral adipose tissue of female or male mice at 3 or 24 months of
979 age. Each symbol represents one mouse

980 g. Quantification of the percentage of CD11b⁺ and CD11b⁻ out of the total B220⁺ residents in VAT from
981 3 or 24 month old male and female mice.

982 h. Quantification of B cell subsets in spleen, MAT and VAT from 24 month old female mice.

983 i. Contour plots (gated through CD45⁺ B220⁺ live cells) of CD21 and CD23 expression on B cells from
984 3 month old mice after no stimulation (UNTX) or stimulation with adipose media from 3 or 24 month
985 old mice.

986 j. Whole mount confocal imaging of B220⁺ cells (green) in lymphatic vessel of visceral adipose tissue
987 from 22 month old ProxTom mice.

988 k. Whole mount confocal imaging of B220+ mesenteric lymph nodes (red) in 22 month old wild-type
989 mice stained with Prox1 antibody (green).

990 l. Whole mount fluorescence imaging of B220⁺ FALCs (red) in 22 month old wild-type mice stained
991 with Prox1 antibody (green).

992 m. Whole mount confocal imaging of B220⁺ FALCs (red) in 22 month old wild-type mice stained with
993 Prox1 antibody (green). Two representative images are shown.

994

995 All error bars represent mean \pm SEM. * <0.05 , ** <0.01 , *** <0.005 . Statistical significance was
996 determined by an ANOVA with posthoc test to adjust for multiple corrections.

997

998 **Supplemental 2. Related to Figure 2.**

999 a. Single color images for the whole mount confocal imaging of FALC in VAT of 22month old
1000 mTmG;LysMcre with B220 (yellow) and DAPI (blue) antibody staining. mTomato expressed on all
1001 cells and mGFP on myeloid cells.

1002 b. Quantification of CD4⁺ and CD8⁺ T cells (as a percentage of total SVF) in VAT from 3 or 24 month
1003 old WT and Nlrp3^{-/-} mice
1004 c. Quantification of CD11b⁺ cells, as a percentage of CD45⁺ live cells, in WT and Nlrp3^{-/-} mice.
1005 d. Quantification of CD4⁺ T cells as a percentage of CD45⁺ live cells, in WT or Nlrp3^{-/-} mice
1006 e. Quantification of B220⁺ cells as a percentage of CD45⁺ live cells, in WT and Nlrp3^{-/-} mice.
1007 f. Mean gene expression of chemokines from 3 month old WT, 24 month WT and Nlrp3^{-/-} adipose
1008 macrophages. All chemokines containing ccl or cxcl within genes were selected from previously
1009 performed RNA sequencing analysis of adipose tissue macrophages. Genes were ordered from
1010 highest to lowest according to expression level in 24 month old WT macrophages and hierarchical
1011 clustering analysis was performed.
1012 g. Schematic showing the interaction model between macrophages and B-cells. Displayed macrophage
1013 interaction partners are filtered by their differential expression between wild-type and Nlrp3-deficient
1014 macrophages and visualized in a network with their corresponding interaction partners. An edge
1015 shows an interaction listed in the FANTOM5 interaction database. Interactors are color-coded by
1016 log2FC, if they are significantly regulated between wild-type and Nlrp3-deficient macrophages or B-
1017 cells, respectively.

1018
1019 All error bars represent mean \pm SEM. * <0.05 , ** <0.01 , *** <0.005 . Statistical significance was
1020 determined by an ANOVA with posthoc test to adjust for multiple corrections.

1021
1022 **Supplemental 3. Related to Figure 3.**
1023 a. Body-weight, visceral adipose tissue weight and visceral adipose tissue cellularity in WT or GHRKO
1024 mice at 20 months of age.

1025
1026 All error bars represent mean \pm SEM. * <0.05 , ** <0.01 , *** <0.005 . Statistical significance was
1027 determine by an ANOVA with posthoc test to adjust for multiple corrections.

1028

1029 **Supplemental 4. Related to Figure 4.**

1030 a. Schematic to describe intra-adipose depletion.

1031 b. Body-weight in mice at intra-adipose injection at time points indicated until euthanasia and tissue
1032 harvest. Right graph quantifies final body-weight of individual mice. Each symbol represents one
1033 animal.

1034 c. VAT weight of mice treated as described.

1035 d. Histogram plots showing B220⁺ cells in tissues from 20 month old mice given intra-adipose injection
1036 of ISO or CD20 mAb. Values represent the mean percentage of B220⁺ cells.

1037 e. Schematic to describe systemic depletion.

1038 f. Quantification of body-weight in mice treated as described. Each symbol represents an individual
1039 mouse.

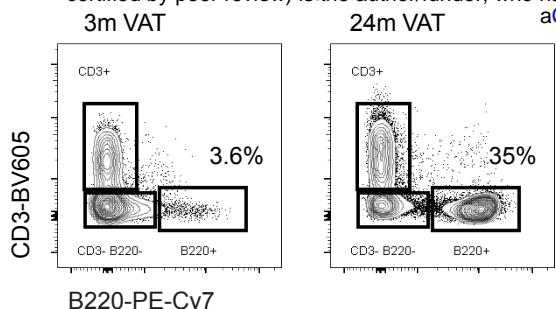
1040 g. Quantification of visceral adipose tissue weights in mice that were aged and treated as described.

1041 h. Representative contour plots gated through live CD45⁺ CD4⁺ cells, showing CD25 and FoxP3
1042 fluorescent expression in spleen or visceral adipose tissue of mice as described. Values represent
1043 mean for that condition.

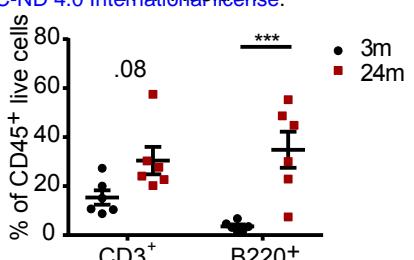
1044 i. Histogram plots showing PD1 expression on live CD45⁺ CD4⁺ T cells from spleen or visceral adipose
1045 tissue of mice as described. Values represent the mean percent for each condition.

1046 j. Insulin tolerance test in 21 month old mice that were treated as described.

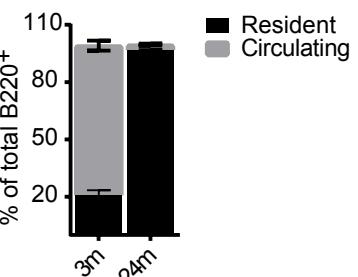
1047 k. Area under the curve (AUC) of mice challenge with insulin.

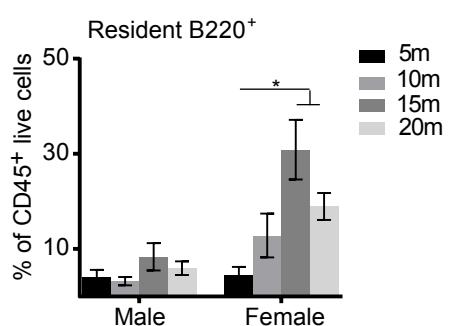

1048 l. Quantification of glycerol levels in the supernatant of visceral adipose tissue from mice that were
1049 aged and treated as labeled, prior to harvest and stimulated with 2uM isoproterenol to induced
1050 lipolysis.

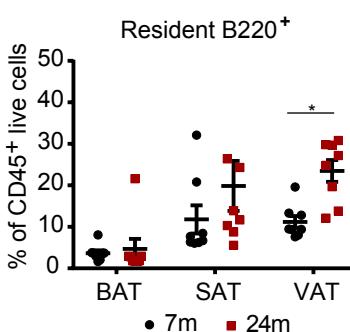
1051 m. Rectal temperature at day 0 and day 3 in 3-8 month old mice and 20-25 month wild-type mice
1052 exposed to four degrees.

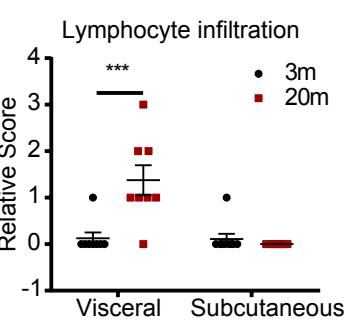

1053

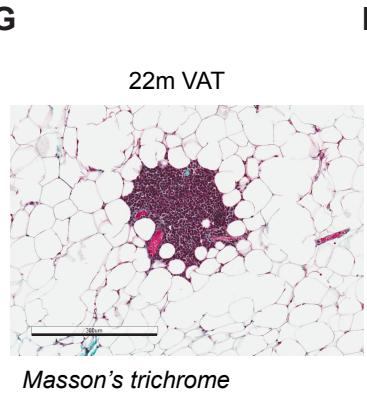
1054 All error bars represent mean \pm SEM. * <0.05 , ** <0.01 , *** <0.005 . Statistical significance was
1055 determined by an ANOVA with posthoc test to adjust for multiple corrections.
1056

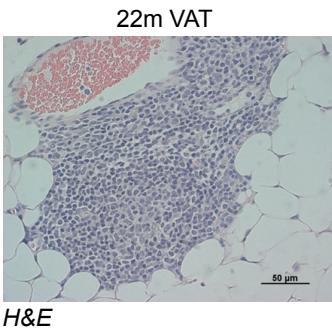

A

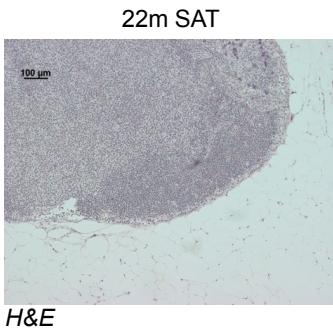

B VAT

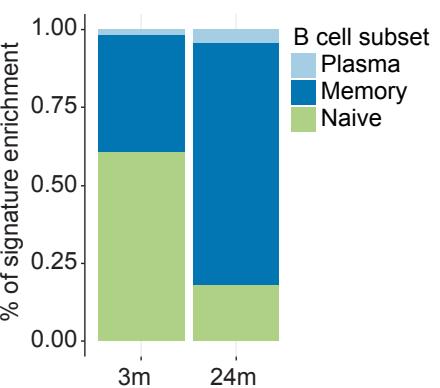

C VAT

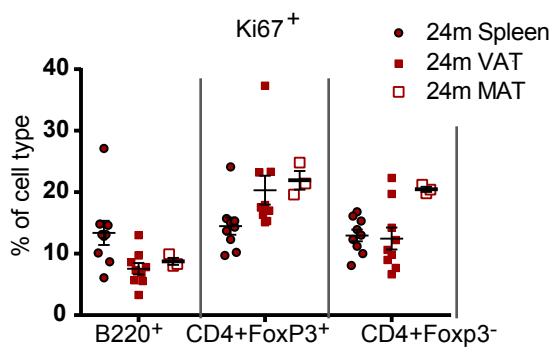

D

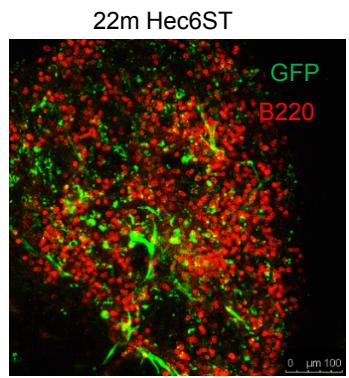

E

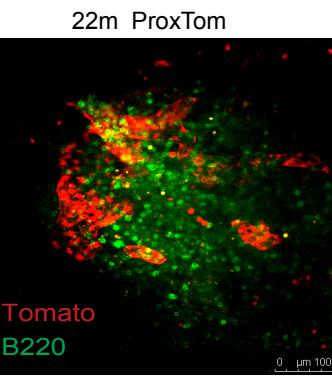

F

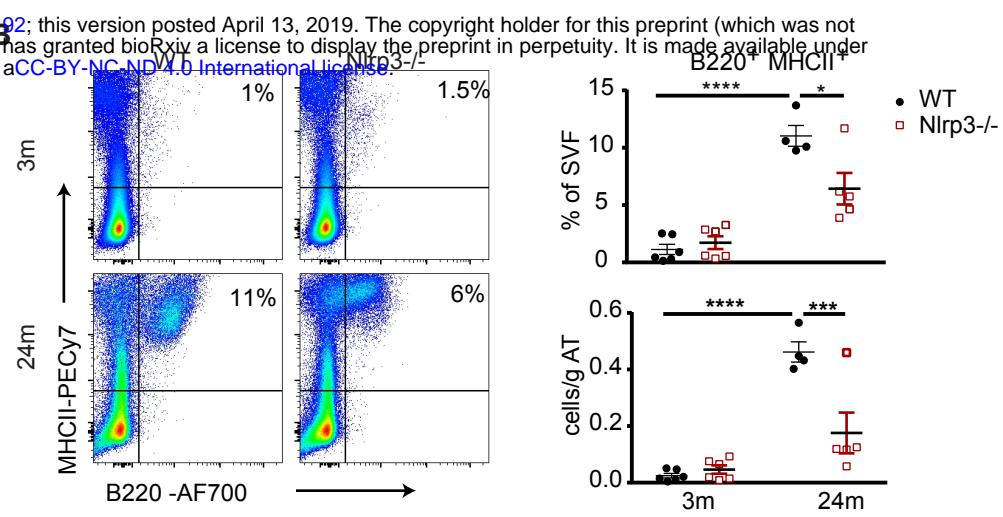
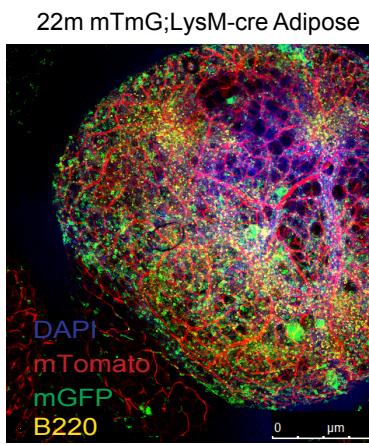

G

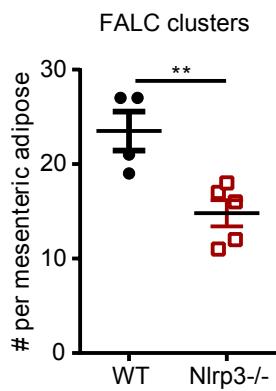

H

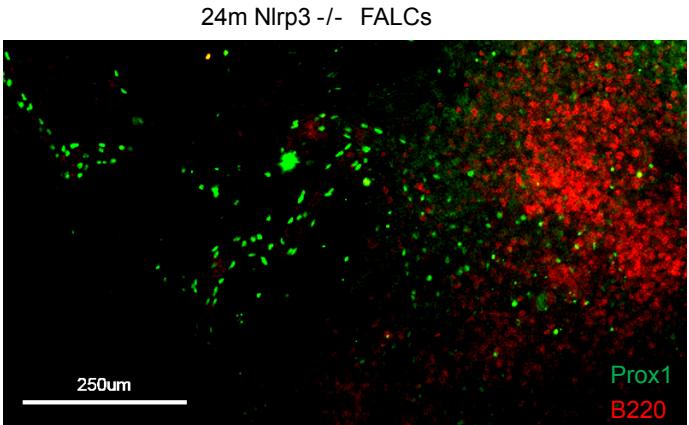

I

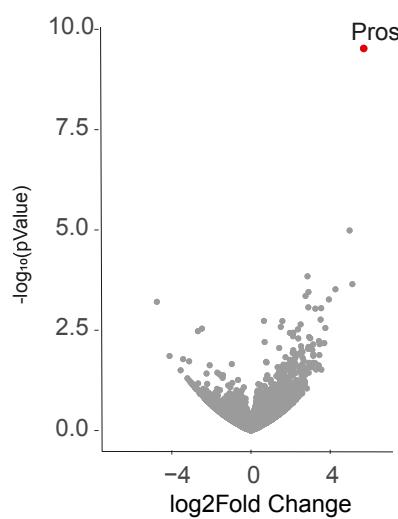

J

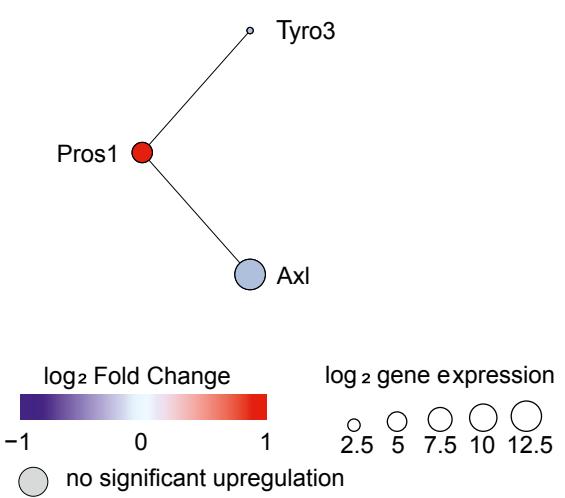

K

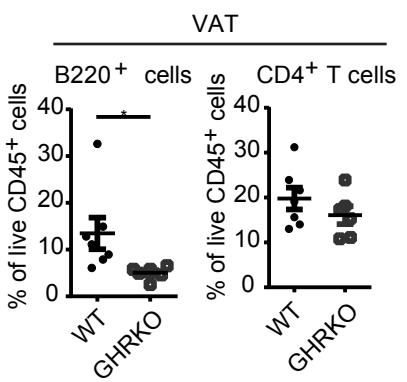
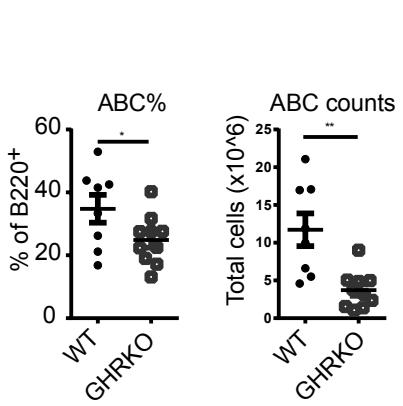
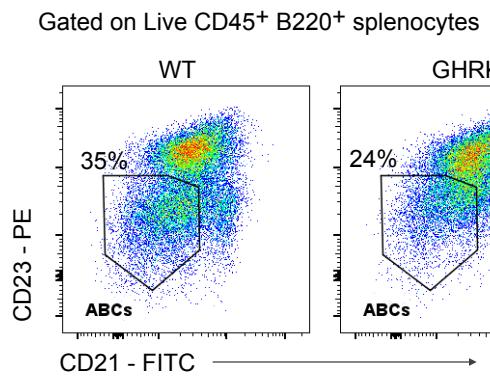
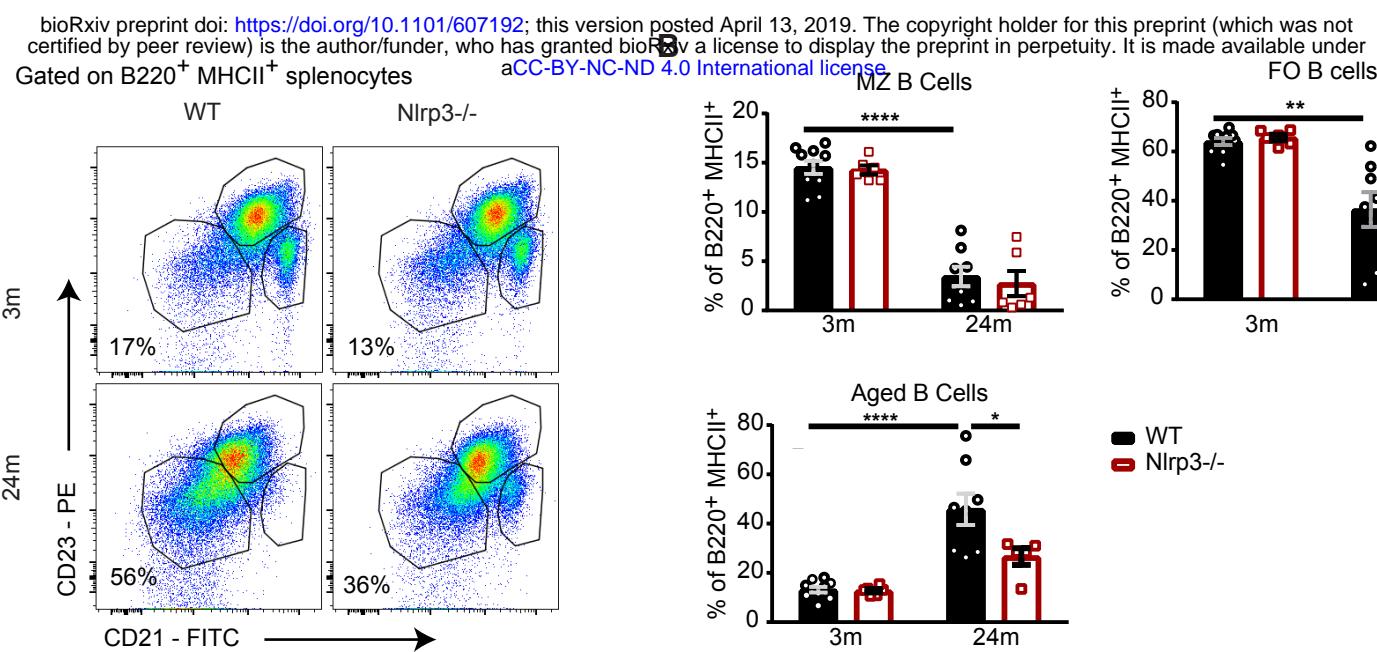


L


M


A


C


D

E

F

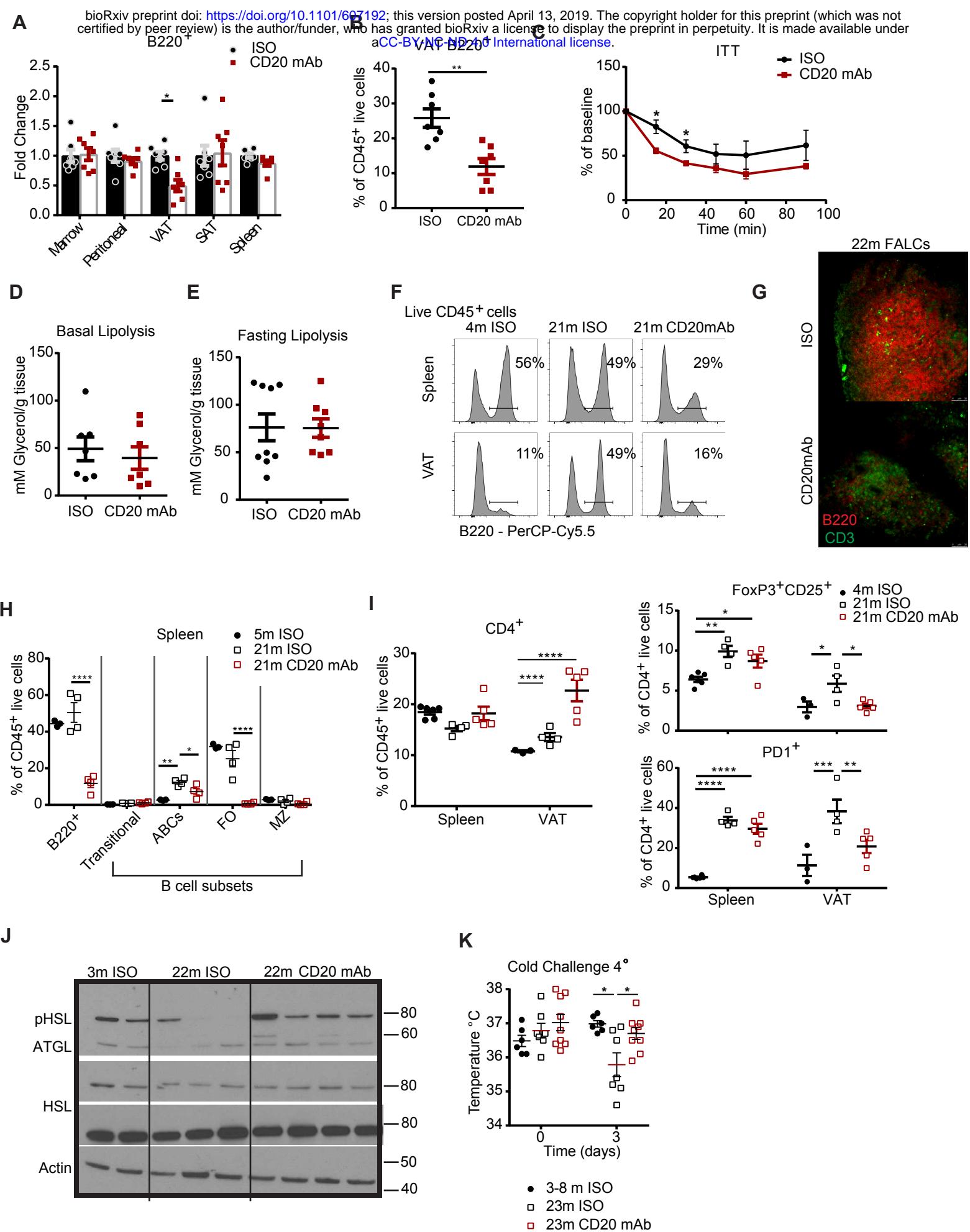


Figure 4, Camell et al