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ABSTRACT

Motivation: Transcription factors (TFs) can bind DNA in a cooperative manner, enabling a mutual
increase in occupancy. Through this type of interaction, alternative binding sites can be preferentially
bound in different tissues to regulate tissue-specific expression programmes. Recently, deep learning
models have become state-of-the-art in various pattern analysis tasks, including applications in the
field of genomics. We therefore investigate the application of convolutional neural network (CNN)
models to the discovery of sequence features determining cooperative and differential TF binding
across tissues.

Results: We analyse ChIP-seq data from MEIS, TFs which are broadly expressed across mouse
branchial arches, and HOXA2, which is expressed in the second and more posterior branchial arches.
By developing models predictive of MEIS differential binding in all three tissues we are able to
accurately predict HOXA2 co-binding sites. We evaluate transfer-like and multitask approaches
to regularising the high-dimensional classification task with a larger regression dataset, allowing
for creation of deeper and more accurate models. We test the performance of perturbation and
gradient-based attribution methods in identifying the HOXA2 sites from differential MEIS data. Our
results show that deep regularised models significantly outperform shallow CNNs as well as k-mer
methods in the discovery of tissue-specific sites bound in vivo.

Availability: For implementation and models please visit https://doi.org/10.5281/zenodo.2635463.

1 Introduction

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) can reveal the genomic regions bound by tran-
scription factor (TF) proteins in different tissues or developmental stages. To infer binding locations, short DNA reads
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are aligned to a reference genome assembly and peak calling techniques (such as MACS [1]) are used to localise the
regions enriched in the IP experiment compared to a control. Inferred TF peak locations are typically hundreds to
thousands of base-pairs in length and contain functional sequence motifs identifiable as highly over-represented short
k-mers or position-specific score matrices (sequence motifs, usually 6-10nt), corresponding to the binding locations of
regulatory TFs. Widely used motif discovery tools include MEME [2]], Homer [3], GEM [4] and KSM [5]. These tools
can be used to annotate and visualise over-represented motifs using databases of known TF binding sites.
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Figure 1: A) Location of BA tissues marked on a cartoon
of mouse during embryonic development. B) Amount of
RNA measured by RNA-seq in BA tissues. For ChIP-seq
experiments a pan-MEIS antibody was used to immuno-
precipitate MEIS 1-3. CPM - counts per million sequenced
reads.

Figure 2: A) MEIS RPKM (reads per kilobase of tran-
script per million mapped reads) regression features at-
tributed by a deep model using mutagenesis. Each line
indicates features of a single replicate output for a tissue.
Colours match cartoon labelling in Fig.[TA. MEIS bind-
ing site (CTGTCAG) is a feature in all tissues. B) BA1-

downbinding features from a differential model. A dimeric
site containing HOXA2 and MEIS binding motifs is iden-
tified as a differential feature enhancing MEIS binding in
BA2 and PBA, but not BA1.

TFs frequently cooperate to achieve their cell-type binding specificity. Binding in different tissues may be enhanced by
the presence of specific co-factors [6]]. Several modes of cooperation are possible, including heterodimer formation
(direct) or changes in the affinity of neighbouring sites as a result of increasing chromatin accessibility (indirect).
Therefore, differential binding of a major regulator in different cells can be highly informative about the cell-type
specific TF interactions. For example, the MEIS homeodomain TFs are major developmental regulators and can bind
with a large set of factors [7,|8]. MEIS TFs bind to a large proportion of accessible chromatin in all branchial arch
tissues and are essential for development of this embryonic region [8]. HOXA?2 is expressed concurrently with MEIS
in the second branchial arch (BA2) and posterior branchial arches (PBA), but not the first branchial arch (BA1) (see
Fig.[T), and was shown to cooperatively bind with MEIS in BA2, resulting in a mutual increase of occupancy [8]. Based
on these observations, we reasoned that differential analysis of MEIS binding could reflect co-binding with specific
partners in the BAs, including developmentally important HOX TFs. Our approach is illustrated in Fig. [2] which shows
an example where learned features predictive of differential MEIS binding are consistent with co-binding of HOXA2
and MEIS.

Deep learning approaches such as convolutional neural networks (CNNs) became state-of-the-art in visual and speech
applications, followed by their application in genomics. DeepBind [9] was the first model to use CNNs to identify DNA
and RNA binding sites by training a network to classify between binding regions and a randomly shuffled negative set.
DeepSEA [10] included epigenetic and accessibility data to jointly learn and predict the effects of sequence mutation,
while FactorNET [11] extended the convolutional architecture with a bi-directional recurrent network to predict the
ChIP-seq profile along the sequence. Recent works also include a GAN-based generative model for sequence [12],
the Basenji network for prediction of RNA expression [13]], modelling binding from reporter assays [[14]], predicting
differential expression from histone marks [[15]], and ensemble bootstrap models for handling imbalanced data [16].
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Table 1: Differential labelling of MEIS-bound regions.

Type Count  Avg. length (nt)

Increased binding

BA1 3416 778.9

BA2 3850 790.2

PBA 18088 770.1
Decreased binding

BA1 2345 860.7

BA2 3070 867.2

PBA 17923 857.7

Non-differential 127185 633.6

All MEIS 215830 679.3

In this contribution we extend the use of deep learning models to the identification of sequence features predicting
differential TF binding. We use CNN models to identify DNA sequence features predictive of changes in ChIP-seq
data across conditions. To illustrate the problem of differential binding, we use MEIS ChIP-seq data from BA1, BA2
and PBA in mouse embryos. It was previously shown that HOXA?2 is the primary co-factor of MEIS in BA2 [§]],
which makes its experimental binding profile useful for validating attribution. For validation we train models to predict
differential binding (relative increase or decrease in occupancy) from input sequence, and attribute the prediction to
nucleotides in each region. HOXA?2 binding sites positively contribute to MEIS occupancy in BA2 and PBA, and
therefore appear as features of the BA1-downbinding class. We then compare the locations of these features to the
in vivo ChIP-seq profile of HOXA2 in BA2, in two experimental replicates. The HOXA?2 data is not used in training the
networks and therefore provides independent validation of the learned features.

Differential feature identification in genomic sequences can be accomplished in several ways. In k-mer approaches
all possible combinations of nucleotides (up to a certain length) are counted in the differentially-bound regions and
their frequencies compared with a background set. After enriched k-mers are identified (and possibly combined to
a position-weight matrix, PWM), the sequences are scanned for alignment with the motif. Counting is increasingly
time-consuming for longer k-mers, and annotation of the genome with a PWM is insensitive to the sequence features
surrounding it. Deep learning models do not allow easy visualisation of features in general due to high non-linearity,
but can attribute them in an input-dependent manner. This means that compared to a k-mer approach the same motif
can be identified as a feature with different importance, depending on the context in which it appears in the region. The
simplest 1-layer CNN is similar to a k-mer method in that it learns to identify regions based on the statistical occurrence
of a number of PWMs, represented as convolutional filters. In a deep learning model these are optimised simultaneously
with classification or regression parameters that follow. Deeper convolutional networks are able to learn spatial patterns
with a wider receptive field, but require more training data in order to fit more parameters.

Prediction attribution refers to identifying the elements of the input which caused the neural network to predict a given
output. In silico mutagenesis is a perturbation-based approach introduced with DeepBind, which uses the model to
predict effects of all possible single-nucleotide substitutions in a region, creating a mutation map. This approach can
be computationally expensive when predicting saturated mutation in larger regions or for more than one nucleotide
at a time. Alternative approaches seek to approximate the Shapley value and satisfy the axiom of completeness [17],
also known as summation-to-delta. This requires distributing the difference in model prediction between a reference
and the input on the elements of the input. Integrated gradients and DeepLift 18] are two approaches that allow this.
Because DeepLift distributes the activations in a model-specific manner we chose to evaluate integrated gradients,
which are implementation independent. In this approach, gradients are calculated over a number of steps, while
linearly interpolating between the example and a reference, finally multiplying by their difference. This captures the
non-linearity of a deep model in the attribution. A reference is a background example, which ideally contains no
features. All zeros can be used (in the case of one-hot encoded sequence data) which is conceptually similar to using a
black image in a vision application. Multiplying gradient times input is a fast method of obtaining attribution, and a
special case of integrated gradients with a reference of zeros and a single integration step. Specifying reference for a
genomic sequence is problematic due to categorical encoding, as linear interpolation between two one-hot samples
does not result in another one-hot sample. Similarly, prediction for an all-zero input is not well defined for a network
trained using one-hot examples. We validate performance with a zero background, as well as averaging 10 real genomic
background regions. For this we use enhancer regions from H3K27ac ChIP-seq peaks with no detected MEIS binding.

In a high-dimensional problem model identifiability (or the curse of dimensionality) becomes an issue. Deep models
with millions of parameters can be particularly difficult to train on smaller datasets because the loss landscape contains
many local minima. As a result the attribution becomes unstable and initialisation-dependent. Typical methods of
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Figure 3: A) Schematic of a deep architecture. Pooling and dilation blocks are repeated for desired number of times,
dilation blocks having their outputs concatenated. Number of blocks and other hyper-parameters are automatically
optimised in the process of model selection. Input is a one-hot encoded nucleotide sequence. One or more outputs can
be specified for classification and/or regression with task-dependent activations and loss functions. B-D) Modes of
regularisation where latent variables of a larger dataset (regression, N targets) are used to regularise the training with a
smaller dataset (classification, C classes). B) Typical use of transfer learning in 1-layer CNN. A convolutional layer is
copied and frozen for training of the second model, allowing for inference in terms of previously learned intermediate
latent variables. C) Serial architecture uses the output of the trained model as its input, performing non-linear weighting
of regression targets for classification. D) Parallel architecture alternates between training model outputs in each
batch. In this architecture latent variables are shared throughout model depth. Non-differential target is shared between
up-binding and down-binding task outputs if both are used.

regularising the model include transfer learning [[19], where at least a portion of neuron weights is transferred from a
model trained on data from a related domain, and semi-supervised learning, where a large unlabelled dataset is used in
a parallel training task. In our case, a large dataset with RPKM (reads per kilobase of transcript per million mapped
reads) regression targets is available in several replicates, from which we obtain a much smaller subset of confidently
labelled differential examples. In this work we create deep learning models using all available replicate data in order to
regularise the classification task, increase predictive performance, as well as accuracy and stability of feature attribution.

2 Methods

2.1 Data accession and processing

To identify co-binding features of MEIS in the BA tissues of interest we obtained genome-wide binding profiles from
MEIS ChIP-seq experiments. ChIP-seq results vary in quality, which motivates the use of several biological replicates.
We used previously published data from ChIP-seq for MEIS, HOXA2 and H3K27ac [20 |8, [21] which we re-analysed
for the mouse mm10 build. The ArrayExpress accession numbers for the data sets are: E-MTAB-7766, E-MTAB-7767,
E-MTAB-5394, E-MTAB-5407, E-MTAB-5536. Pre-processing of the ChIP-seq data was identical to the original
papers (Trimmomatic for trimming [22], Bowtie2 for aligning to the mouse genome [23[], samtools [24]] to remove
the aligned reads with a mapping quality Q30 and MACS?2 for peak calling [1]]), followed by Diffbind recentering to
the position common across replicates. RPKM values are calculated for peaks, measuring the amount of binding. To
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identify differential occupancy, we use edgeR [25] with TMM normalisation. Labels are assigned to regions which
show either increased or decreased level of binding in one tissue compared to the other two, and a non-differential label
is given to regions without significant difference in RPKM across tissues. Label counts obtained this way are shown
in table 2. For input to neural networks the sequences are one-hot encoded, and in order to constrain computational
cost the length is bound to between 200 and 2000 nucleotides. RNA-seq gene expression values used in this paper are
identical to originally published [8, [21].

2.2 K-mer counting methods

For k-mer attribution we used Homer [3]] to identify enriched PWMs de novo by contrasting the regions in a differential
class with the non-differential background. We then annotated the differential regions with most confident PWM, sorting
locations from strongest to weakest match. While PWM is convenient for visualisation, the identified representation
assumes independence between nucleotides. KSM (k-mer set memory, [3]]) is an alternative method, which does not
combine the individual k-mers into a single frequency matrix, but lists and ranks all identified instances independently.
Likewise, we annotated the regions with the k-mers identified by KSM in order of confidence. Details of both approaches
are given in supplementary section 5.5.

2.3 Deep learning models

2.3.1 1-layer CNN

For our baseline model with one convolutional layer we use an extended version of DeepBind [26], in which the
convolution is followed by global max-pooling and parallel average-pooling, outputs of which are concatenated before
being passed to fully-interconnected layers performing classification or regression. This CNN is capable of recognising
spatial dependencies between nucleotides up to the length of its convolutional filters. Combinations of motifs in a
region can still be recognised beyond that length through the pooling statistics, but their mutual distance is invariant
to the network. Using max as the only pooling operation works well for classification, but manifests an issue in
perturbation-based attribution (see section if more than one motif of the same kind is present in the region. A
concatenation of two types of pooling seems to alleviate this problem, and works well for classification as well as
regression.

2.3.2 Deep CNN

Our deeper models are based on the architecture of Basenji [[13]], additionally expanded with bottleneck layers (see
Fig.[3A). In the initial layers of the network we instantiate repeating blocks of convolution, batch normalisation, 1x
convolution (bottleneck), dropout and max-pooling. These pooling blocks reduce the spatial dimensionality of the
input. The bottleneck layer was shown to improve performance of the DeepSEA network with linear projection [27]]. In
computer vision applications this kind of layer (a 1x1 convolution for 2D images) often uses a non-linear activation
function. We validated the performance of models with and without the bottleneck, and with linear or ReLU activation.
The second type of block uses dilated convolution instead of pooling to further expand the receptive field, while
maintaining a constant output width. The dilation blocks are concatenated to form a hyper-residual network ([28], [29]).
The output is obtained from a linear 1x convolution and global average pooling. Unlike Basenji which used a Poisson
loss, we perform our regression with a mean squared-error (MSE) loss on log of RPKM values.

2.4 Model selection and training

For model selection we used the Adam optimisation method [30] and random search (supplementary 5.1). Hyper-
parameter ranges and model-specific settings are detailed in supplementary table S1. In each case a fifth of the data
is held out for test and 3-fold cross-validation with early stopping is performed on the remaining part. The mean of
training losses is calculated at the stoppage points and subsequently used as a stopping criterion when the final model
is trained on the entire cross-validation data. For all models the input length is a hyper-parameter between 200 and
2000 nucleotides, which for a 1-layer CNN it is sampled at random. For the deeper models the receptive field (the
maximum span in the input which affects activation prior to the global pooling layer) is calculated (supplementary 5.3),
and randomly expanded up to twice to obtain the input length. In the training and validation sets we augment the least
frequent down-binding classes with reverse complement sequences. Augmentation is performed on all BA1-down
examples, and on the remaining classes only if their label count is below the augmented BA1-down (supplementary 5.4).
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2.5 Input-level attribution with neural networks

In-silico mutagenesis is performed using methods defined in DeepBind [26]], which we adapted for variable-sized regions
and model inputs (see supplementary 5.6 for details). For each region of interest a mutation map of all single-base
substitutions is created. From this map, individual importance of each nucleotide is calculated by summing change
in model prediction caused by mutation to the alternative bases. For integrated gradients we evaluate using a zeros
reference, as well as averaging the attribution with 10 enhancer regions as references, obtained from non-differentially
classified H3K27ac peaks without detected MEIS binding. We determine the number of integration steps by calculating
summation-to-delta over a number of regions (supplementary Fig. S4). After obtaining attribution, a sliding window
approach is used to identify the locations of strongest features in the dataset, and rank them from strongest to weakest
(supplementary 5.8). In this application the attribution is performed on the same dataset used for training. Although
generalisation and overfitting are usually considered in terms of predictive loss, not feature attribution, to ensure
generalised features we additionally train models holding out every fold of the data, and use them to attribute over the
held-out folds. We validate attribution using each fold model individually, an ensemble of models, and a single model
trained on all the data.

2.6 Regularising high-dimensional problems with multitask learning

For a baseline we train a DeepBind-like 1-layer CNN (section [2.3.T), directly on the classification dataset. To regularise
this architecture, we adopt a transfer-like methodology, in which a regression model is trained to predict RPKM values
for all tissues and replicates, and the convolutional layer is copied to a new model and frozen (disabling gradient descent
updates during training, see Fig.[3B). Model selection is subsequently performed for the classifier parameters that
follow the convolution. Similarly, we perform model selection for a reference deep CNN (section [2.3.2) using only
the classification dataset. We expect this model to overfit and be unstable due to being heavily over-parameterised,
and therefore adopt two regularisation approaches. In the serial approach (Fig.[3C) a deep RPKM regression model
is trained first and frozen, mimicking the re-use of a convolutional layer in a shallow CNN. The output log-RPKM
values are used as the input to a shallow classification network. This allows for data-driven learning of the appropriate
replicate weighting based on labelling of classification regions. Importantly, this approach exploits the sequential nature
of the classification labels originating from the regression values. Secondly, we create parallel models (Fig. 3D) which
contain task-specific training paths jointly spanning most of network depth, finally diverging to separate regression
and classification outputs. Two classification tasks (up-binding and down-binding) can be specified with a shared
non-differential class. In this case all of the shared parameters are updated when the paths are alternatively trained in
batches, with the auxiliary regression loss not being part of the early stopping criterion (see supplementary 5.1 for
details).

2.7 Evaluation

2.7.1 Model performance and attribution stability

The performance of regression models is evaluated by Pearson (R) and Spearman (Rho) correlation coefficient between
each replicate target prediction and ground truth on the held-out test set. Between-replicate correlation within the
same tissue is reported as an expected upper bound of model performance (see table[2). Classification performance
is evaluated by precision-recall curves for each class and area under the curve (PR-AUC). Additionally, confusion
matrices, per-class recall, and average class F1 score is calculated for each model. For feature identification we prioritise
recall over precision, due to conservative labelling of differential regions which increases the chance of real weakly
differential examples to be assigned non-differential ground-truth labels. This is expected to lower precision, despite
the models identifying correct features. To measure stability of attribution to model initialisation we train 10 models
(using the same data and hyper-parameters), and use them to attribute over randomly selected 1000 BA1-down regions.
For each region a single feature is selected as described in supplementary section 5.8, and 25nt binary mask is created
over this feature. The binarised attribution is compared between model instances by feature stability estimator [31]]
resulting in a score between 0 (random features) and 1 (identical features), which is averaged for all tested regions.

2.7.2 Motif-centre Poisson test with ChIP-seq

Feature attributions are obtained from the BA1-down class model outputs, or k-mer counting annotations, and compared
to two HOXA2 ChIP-seq replicates in BA2. HOXA?2 is the dominant co-factor of MEIS in this tissue [8], which allows
for direct validation of this class feature. To evaluate the identified locations, we select the strongest feature in each
region (supplementary 5.8) and test against a background assuming Poisson distribution of reads, similarly to MACS2
[L]], using a 500nt window around the feature, as in GEM [4] (see supplementary 5.9 for details). In order for a feature
to pass the test a p value < 0.05 is required for peak alignment with both of the reference replicates. For each method
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Table 2: MEIS cross-replicate and regression test correlation.

Cross-replicate 1-1 CNN Deep CNN

Tissue Replicate R Rho R  Rho R  Rho
BA1 1 0.605 0.634 | 043 039 | 0.51 0.46
BA1 2 0.605 0.634 | 034 032 | 04 0.38
BA2 1 0.685 0.690 | 042 042 | 047 047
BA2 2 0.685 0.690 | 044 042 ] 052 05
PBA 1 0.644 0.652 | 044 042 | 0.52 0.51
PBA 2 0.710 0.728 | 0.53 0.52 | 0.59 0.59
PBA 3 0.683 0.704 | 0.52 0.51 | 0.57 0.58
PBA 4 0.708 0.725 | 0.54 054 | 0.6 0.61

BA1-down

BA2-down

PBA-down Non-diff

Parallel 3-task
—— Serial

11CNN

11 Transfer
02 Deep, direct
—— Parallel 2-task

Parallel 3-task
—— Serial

Figure 4: Test set precision-recall curves for the down-binding task. 1-layer CNN and deep, direct models were trained
with classification dataset only. Transfer, parallel and serial models used MEIS regression data for regularisation.

we sort the features by method-specific score from strongest to weakest and report the proportion of features passing
the test as the number of included locations is increased.

3 Results

3.1 Regularisation with a large dataset allows training of deeper and more stable models

By using regression data for model regularisation, we were able to train deeper, highly-parameterised models with a
wider receptive field, and obtain higher regression (table[2) and classification performance (Fig. [} and supplementary
table S2) compared to shallow CNNs. Deep models also show increased attribution stability despite larger model size
(table3)). Training a deep model without this regularisation results in poor predictive test performance and less stable
attribution. The addition of the up-binding task in the 3-task parallel model increased overall predictive performance and
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Figure 5: A) Validation loss of MEIS RPKM model selection when the 1x bottleneck layer is omitted, or used with
linear or ReLU activation. B) Validation loss for varying amount of dimensionality reduction (proportion of channels of
preceding layer) caused by the bottleneck using ReL.U activation. C) Validation loss as a function of total number of
convolutional layers (including 1x) for MEIS RPKM regression model.
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Figure 6: Proportion of most confident features identified by differential analysis passing a Poisson test for alignment
with both HOXA2 ChIP-seq replicates. Regions labelled as BA1-down are tested. One strongest feature in each
region is selected. Random indicates chance of randomly selected location in the regions passing the Poisson test.
A) Comparison of CNNs with k-mer counting. Mutagenesis is used with CNN models. Homer known indicates using
Homer with published HOXA?2 ChIP-seq data (shown for reference) B) Attribution method comparison using 1-layer
CNN. C) Attribution method comparison using deep parallel 2-task model.

Table 3: Attribution stability (BA1-down, 1000 regions, 10 models).

Type Input nt N. params | Grad.*Input Integ. (16, z.) Mutagenesis
I-1CNN 200 335,652 0.29 0.17 0.29
1-1CNN 600 34,916 0.6 0.63 0.56
1-1CNN 2000 283,716 0.5 0.24 0.47

1-1 Transfer 600 106,564 0.59 0.50 0.54
Deep, direct 1100 9,374,980 0.63 0.61 0.58
Deep, par., 2-t 2000 8,128,996 0.65 0.72 0.69
Deep, par., 3-t 800 2,119,180 0.5 0.72 0.68
Deep, serial 1000 4,346,908 0.72 0.8 0.74

reduced the number of parameters compared to the 2-task, but decreased the accuracy of BA1-down attribution. During
model selection we varied the number of dilation blocks and input size for each type of model. We observed peak
performance in predicting MEIS RPKM using 3 pooling blocks and 7 dilation blocks, totalling 21 convolutional layers
and over 4 million parameters. Our best models include bottleneck layers with a strong (x0.25-x0.5) dimensionality
reduction and ReLU activation (Fig. [5).

During model selection input length was automatically optimised, and the resulting models differ markedly in the
number of parameters. In particular, we observe that a 1-layer CNN becomes significantly over-parameterised when
trained on a sub-optimal input length. The optimal 1-layer model with 600nt input has 9.6 times fewer parameters
to best performing model for a smaller 200nt input, and 8.1 times fewer than model with 2000nt input, resulting in
more stable attribution (see table[3). The likely reason for this behaviour is the 200nt regions containing fewer real
features, and model overfitting to noise as a result. We also tested performance of models with and without the reverse
complement (RC) augmentation of the least frequent BA1-down class, observing significant increase in performance of
the 1-layer CNN (see supplementary Fig. S3 and table S4). The increase in predictive accuracy does not necessarily
appear in the augmented class, but rather in averaged F1 performance for all classes. The benefit of RC augmentation is
smaller for deeper models, which due to increased non-linearity appear to generalise well to RC sequences.

3.2 Deep models significantly outperform shallow CNNs and k-mer counting in identifying HOXA2 bound
sites

Our architectures allow for identification of HOXA?2 sites bound in vivo with significantly higher precision than
previously possible with k-mer methods, as shown in Fig. [6A and [6B. True HOXA? sites are identified with higher
accuracy than Homer, even if the latter is allowed to see the ground-truth data for counting (Homer known). Visualisation
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Figure 7: A) MEIS ChIP-seq profiles in a region differ-
entially down-bound in BA1 compared to BA2 and PBA.
B) Nucleotide-level mutation map (and its 1-dimensional
channel sum), shown in the central region marked with
black rectangles. Attribution of MEIS BA1-down differ-
ential class using 2-task parallel model identifies HOXA?2
binding site (ATCAATC). C) Reference HOXA?2 ChIP-seq
profile (not used for model training).

Figure 8: A) MEIS ChIP-seq profiles in a region differ-
entially up-bound in PBA compared to BA1 and BA2.
B) GATA binding site (AGATAAG) is identified as a
feature of differential MEIS up-binding in PBA. Attribu-
tion was performed using mutagenesis and 3-task parallel
model, and shown in the central region marked with black
rectangles. C) Reference GATA ChIP-seq profile in PBA
(not used for model training).

in Fig. [7]reveals example HOXA2 co-binding features discovered by differential region classification based solely on
the MEIS ChIP-seq data. The models allow to identify sequence features of any of the included classes, therefore a
3-task model can be used to identify binding features of relative increased or decreased MEIS binding. Up-binding
attribution of MEIS in PBA can uncover several types of features, as many TFs cooperate in this region. Among those,
GATA is a known differential co-factor of MEIS in PBA, and can be discovered as feature of PBA-upbinding, as shown
in Fig. 8] The 2-task parallel model (trained only for the down-binding and regularised with regression) performs best in
attribution of the confidently labelled BA1-down regions. Transfer of regression parameters in 1-layer CNN improves
attribution performance compared to training using only classification labels, but does not match the performance of
deeper models. Feature accuracy of KSM and Homer used de novo is comparable to 1-layer CNN in BA1-down regions.
KSM outperforms Homer for the most confident features, but shows lower accuracy in a broader set of regions. Weaker
performance of KSM in our application is likely due to our method of input annotation using ranked k-mer matches
(see supplementary section 5.5 for details). The results suggest that in this case a PWM can capture more context useful
for ranking than an ordered list of discrete k-mers.

3.3 Mutagenesis performs similarly to integrated gradients in nucleotide-level attribution

We observe on our dataset that mutagenesis (using a scoring function from DeepBind, [26]) performs better or similarly
well to integrated gradients in attribution accuracy (see Fig.[6 and supplementary Fig. S5), particularly with deeper
models. Integrated gradients result in marginally higher attribution stability (excluding sub-optimal 200nt and 2000nt
1-layer models, see table [3). When specifying a background reference, 10 real regions consistently outperform a single
all-zero reference. While our tests indicate that for the sum of attribution to reliably equal the difference in prediction
(to within 5%) requires using as many as 512 integration steps (see supplementary Fig. S4), we observe that 16 steps
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Figure 9: Overfitting effects in BA1-down mutagenesis attribution validated with HOXA?2 ChIP-seq (Poisson test,
p < 0.05 in two ChIP replicates). 5 models were trained holding out different folds of randomly shuffled data. Held out
indicates each peak was attributed with model which held out the region during training. Ensemble indicates using
mean attribution from all models. All data indicates using a single model, trained on all the data.

perform nearly equally well for predicting HOXA?2 binding, despite providing over-complete attribution. In this case
exact completeness does not seem to be necessary for prioritisation of features. Gradient times input is generally
outperformed by more computationally intensive methods, except for the 1-layer transfer-like CNN. We infer that as the
depth and non-linearity of models increases, the gradient obtained at a single step is a poor predictor of model response
to input perturbation.

Performance of attribution can be increased by training several models on different folds of the data, and averaging
their attribution, as shown in Fig.[0l The benefit is evident in case of 1-layer CNN trained without regression data,
and becomes smaller for transfer-like 1-layer CNN and deeper models, which are more stable across folds (see
supplementary Fig. S8) . Attribution with models which held-out the regions during training enforces generalised
features, which appears to lower performance. The results suggest that holding out data may be detrimental to full
attribution, especially for shallower models which are less able to generalise.

4 Discussion

In this work we introduced CNN methods for identification of DNA sequence features predicting differential and
cooperative TF binding. Using MEIS ChIP-seq data in mouse BA tissues we identified the binding locations of
tissue-specific co-binding partners through differential classification of MEIS-bound regions. Validation with HOXA?2
ChIP-seq showed that CNN models trained on MEIS data could reliably identify HOXA?2 features in BA2, consistent
with a synergistic effect of HOXA?2 and MEIS binding [8]]. Our results indicate that deep learning offers significant
advantages over k-mer methods in identifying functional features in vivo, due to improved recognition of the context in
which the motif appears in the region. This manifests particularly when attributing a wider set of regions, less confident
a priori (see supplementary Fig. S6), where deep models lower the chances of false-positive attribution, and outperform
Homer even if the latter is allowed to see the HOXA?2 ChIP-seq used as the ground-truth. While our neural networks are
able to recognise true binding sites with higher accuracy, k-mer methods remain useful in our workflow for clustering
and annotating the resulting short features with known TF families.

Training deep models on a relatively small and imbalanced classification dataset required using a larger set of regions
for regularisation. While training parallel models for a specific task provides accuracy benefit, it is also time consuming
(see supplementary Fig. S2). The addition of the up-binding task to the parallel model lowered the accuracy of the
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validated BA1-down attribution, despite increasing overall predictive performance. This is likely due to a decreased
contribution of BA1-down class to the optimised loss. We observe that the serial model provides good attribution
accuracy and stability, with the additional advantage of low training cost for new classes, as long as they can be predicted
from regression targets. Inclusion of bottleneck layers with ReLU activation works well in our application. Since
the hyper-parameter ranges used in model selection constrain the receptive field below the maximum allowed input
size (2000nt), ReLU appears to provide a benefit in increasing the non-linearity of the model without increasing the
receptive field. We achieve the best results with the highest tested dilation rate (4), suggesting a further increase of this
parameter may be beneficial, especially for wider inputs.

Through evaluation of neural network attribution methods, we observe that a single-nucleotide saturated mutagenesis
performs well, and similarly to integrated gradients on our dataset. This appears consistent with good performance of
mono-nucleotide models (such as [32]]) indicating that single-nucleotide perturbations have a strong effect on binding.
In our opinion, approaches satisfying completeness, including integrated gradients and DeepLift, are particularly
promising in domains where perturbation is less feasible (when operating on real-valued input), and where background
samples can be easily specified. While higher-order saturated mutagenesis becomes computationally infeasible, not all
combinations of substitutions are likely to be important in a given region. We note, however, that perturbation-based
attribution is prone to adversarial effects and requires models trained on a large enough datasets in order to generalise
well to unseen mutation. Our work shows that using deep learning, which increases non-linearity and provides a wider
input context to a model, is beneficial in uncovering sequence features contributing to tissue-specific transcriptional
regulation.
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