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Abstract  
 
Adults with childhood-onset attention-deficit hyperactivity disorder (ADHD) show altered 
whole-brain connectivity. However, the relationship between structural and functional brain 
abnormalities, the implications for the development of life-long debilitating symptoms, and 
the underlying mechanisms remain uncharted. We recruited a unique sample of 80 
medication-naive adults with a clinical diagnosis of childhood-onset ADHD without 
psychiatric comorbidities, and 123 age-, sex-, and intelligence-matched healthy controls. 
Structural and functional connectivity matrices were derived from diffusion spectrum 
imaging and multi-echo resting-state functional MRI data. Hub, feeder, and local connections 
were defined using diffusion data. Individual-level measures of structural connectivity and 
structure-function coupling were used to contrast groups and link behavior to brain 
abnormalities. Computational modeling was used to test possible neural mechanisms 
underpinning observed group differences in the structure-function coupling. Structural 
connectivity did not significantly differ between groups but, relative to controls, ADHD 
showed a reduction in structure-function coupling in feeder connections linking hubs with 
peripheral regions. This abnormality involved connections linking fronto-parietal control 
systems with sensory networks. Crucially, lower structure-function coupling was associated 
with higher ADHD symptoms. Results from our computational model further suggest that the 
observed structure-function decoupling in ADHD is driven by heterogeneity in neural noise 
variability across brain regions. By highlighting a neural cause of a clinically meaningful 
breakdown in the structure-function relationship, our work provides novel information on the 
nature of chronic ADHD. The current results encourage future work assessing the genetic and 
neurobiological underpinnings of neural noise in ADHD, particularly in brain regions 
encompassed by fronto-parietal systems. 
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Introduction 
 
Adult attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental 
disorder characterized by inattentive and hyperactive-impulsive symptoms beginning in early 
childhood [1]. Identifying the neural underpinnings of adult ADHD is an ongoing research 
endeavor, critical to the definition of neural mechanisms supporting clinical outcomes of 
childhood-onset ADHD and the development of novel targeted interventions [2]. 
 
Neuroimaging work has provided important insights into altered structural [3–5] and 
functional [6,7] brain connectivity underpinning ADHD pathophysiology, and suggest that 
network interactions, rather than regional abnormalities, contribute to phenotypic expression 
of the disorder [8]. Anatomically, results have been mixed. Recent studies have shown no 
changes in the ADHD connectome [9], whereas others have pointed to various abnormalities 
in white matter tracts including the corpus callosum and posterior circuits related to the 
limbic and occipital systems, the fronto-striato-cerebellar connections, and pathways linking 
default-mode and fronto-parietal hub regions [4,5,10]. 
 
Complementing findings from diffusion MRI, resting-state functional magnetic resonance 
image (rs-fMRI) studies have highlighted that both diagnosis and symptoms of ADHD are 
linked to reduced segregation between the activity of control networks supporting external 
task engagement and the default-mode network [6,7,11]. Reduced functional connectivity 
within, and between, the default-mode, sensory, and control networks has also been reported 
both in children and adults with ADHD [6,7,10,11].  
 
Emerging evidence suggests that patterns of functional connectivity are constrained by their 
anatomical underpinning: The connectome [12,13]. Structural and functional brain network 
alterations in adult ADHD partially overlap [10], but the direct link between these structure-
function aberrations has not been formally explored. A candidate mechanism for altered 
structure-function associations is excessive neural noise: The increased random variability in 
neural activity [14–16]. Evidence for this idea comes from several related lines of research at 
different levels of description. Variable and inconsistent behavior, like those observed in 
ADHD [17,18] and other contexts [e.g., learning, aging, developmental dyslexia 19–21], has 
been suggested to correlate with increased neural noise. A number of neuroimaging studies 
have also highlighted increased brain signal variability in ADHD [22–25]. At the neuronal 
and molecular levels, drug treatments that are effective in ADHD by targeting 
catecholaminergic pathways are thought to modulate neural signal-to-noise ratios [26–30]. 
 
Here, we used multi-echo rs-fMRI and diffusion spectrum imaging (DSI) to investigate 
possible changes in whole-brain structure-function coupling in a large sample of well-
characterized, medication-naïve adults with childhood-onset ADHD and matched healthy 
controls [11]. Based on previous findings [11] and the hypothesis that psychiatric conditions 
are primarily pathologies of brain hubs [31], we expected significant departures from the 
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typical structure-function coupling in ADHD. Specifically, a breakdown in the structure-
function association is likely to occur in connections involving brain hubs that belong to the 
control and default-mode brain networks [31,32]. To investigate neural noise as a possible 
mechanism of this structure-function decoupling [33], we adopted whole-brain computational 
modeling. Our model explicitly tested the hypothesis that increased heteroscedasticity in the 
levels of intrinsic neural noise drives the expected breakdown in the structure-function 
coupling. Heteroscedasticity occurs when the variance of explanatory variables – neural noise 
level – is not identical across brain regions. 
 
Methods 
 
Sample 
We recruited 80 psychotropic-nai�ve adults with childhood-onset ADHD aged 18–39 years 
(mean 26.7 years), who fulfilled DSM-IV-TR criteria for the current diagnosis of ADHD. 
While this cohort may be narrow in terms of typical clinical ADHD phenotypes, our carefully 
selected sample allowed the unequivocal assessment of ADHD-specific structural and 
functional brain networks in the absence of common confounds including other 
neurodevelopmental disabilities, psychotropic exposure and major psychiatric comorbidities 
[10]. Results from the clinical sample were benchmarked against the findings of 123 age- 
(mean 25.7 years), sex-, and IQ-matched healthy controls. Participants were assessed at the 
Department of Psychiatry, National Taiwan University Hospital (NTUH), Taipei, Taiwan. 
Details regarding the recruitment procedure are described elsewhere [11] (Supplementary 
Methods).  
 
MRI acquisition and preprocessing 
Brain imaging data were acquired with a Siemens 3T Tim Trio scanner equipped with a 32-
channel head coil. Details regarding the preprocessing and quality control of the multi-echo 
resting-state and diffusion data are described in the Supplementary Methods 
(Supplementary Figure 1). The final sample included 78 ADHD adults and 118 healthy 
controls (Table 1). 
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Table 1. Demographic and clinical features of the participants. 
Mean (SD) Control (N=118) ADHD (N=78) Statistics 
Age (18-39 years) 25.8 (5.0) 26.6 (5.5) p = 0.287 

Sex (M/F) 76/42 54/24 p = 0.484 

FIQ 
109.8 (9.3)  
(range: 89-138) 

107.5 (10.4) 
(range: 80-137) 

p = 0.101 

VIQ 108.2 (9.0) 105.7 (11.2) p = 0.088 

PIQ 110.4 (11.4) 108.3 (16.3) p = 0.289 

ADHD symptoms    

SNAP-IV (Parent-report)a    

 Inattention (0-27) 6.6 (4.9) 19.6 (5.0) p < 0.001 

 Hyperactivity/Impulsivity (0-27) 3.2 (4.4) 13.4 (6.4) p < 0.001 

ASRS (Self-report)     

 Inattention (0-36) 13.3 (5.2) 27.0 (4.8) p < 0.001 

 Hyperactivity/Impulsivity (0-36) 9.1 (5.2) 19.9 (6.3) p < 0.001 

Mean frame-wise displacementb (mm) 
0.045 (0.021) 
(range: 0.014-0.123) 

0.048 (0.024) 
(range: 0.017-
0.108) 

p = 0.354 

Signal dropout countsc 30.8 (22.4) 28.8 (21.4) p = 0.536 
 

a Measured by the parent-rated Swanson, Nolan, and Pelham, version IV (SNAP-IV) scale. 
b A summary estimate of in-scanner motion levels of resting-state fMRI, as estimated by the Euclidian norm 
(enorm: square root of the sum of squares of the differences in motion derivatives), computed with AFNI's 
1d_tool.py. 
c A summary estimate of in-scanner motion levels of diffusion spectrum imaging (see the Methods). 
Abbreviation: ADHD=attention-deficit hyperactivity disorder; FIQ=full intelligence quotient; PIQ=performance 
intelligence quotient; VIQ=verbal intelligence quotient; ASRS=Adult ADHD Self-Report Scale; M=male; 
F=female; R=right; L=left; SD=standard deviation. 
 
 
Structural and functional brain network construction 
We generated whole-brain structural (SC) and functional (FC) connectivity matrices for each 
individual, based on a common and recently validated cortical parcellation [34] (Fig. 1A, see 
Supplementary Information for control analyses). Fourteen additional subcortical structures 
from the Harvard-Oxford atlas were added to the parcellation, resulting in 214 total regions 
(Schaefer-214 henceforth; Supplementary Table 1). Individual whole-brain tractography 
maps were combined with the pre-defined anatomical boundaries defined by this Schaefer-
214 parcellation to generate a weighted SC matrix (Fig. 1B). Each edge of the network 
corresponds to the total number of normalized streamlines that interconnect any two brain 
regions, adjusted for the interregional fiber length [35]. For resting-state data, regional time-
series were calculated as the mean across voxels within each region included in the brain 
parcellation. For each individual, Pearson’s correlations were calculated between the time-
series of all regions to calculate FC. Finally, a Fisher z-transformation was applied to the FC 
matrices.  
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Connection classes 
We identified hub regions according to an aggregate ranking across multiple metrics 
including degree, strength, subgraph centrality, and betweenness [36,37]. The top 15% 
composite scores (N = 32, Supplementary Table 1&2, Supplementary Figure 2) were used 
to identify hub regions within each individual; all other nodes were assigned as periphery 
nodes. Hub connections were defined as edges that connected any two hub nodes. Feeder 
connections linked hub nodes to periphery nodes, and local connections linked periphery 
nodes (Fig. 1C) [32,38]. 
 
Structure-function relationships 
Brain network structure-function relationships were conducted in line with previous research 
[32]. First, non-zero SC values within each individual connectome were isolated and 
normalized using a rank-based inverse Gaussian transformation [39]. The resulting SC values 
were correlated with corresponding FC values (i.e., the same edges). This analysis produced a 
single Pearson’s r value that summarized the global structure-function association for each 
individual [40]. These values were used to populate group distributions and were 
subsequently contrasted using between-group statistics. This entire procedure was completed 
at the level of the whole network and within each respective connection class: hubs, feeders, 
and local edges.  
 
Previous work investigating resting-state networks, including data from the current cohort 
[11], has highlighted the key role of control, default-mode, and sensory networks in adult 
ADHD [6,7]. Based on these results, we also tested for specific changes in SC-FC coupling 
within these networks. A minimum of 50 of edges was used to infer structure-function 
relationship, thus control networks were defined as the combination of fronto-parietal, 
alongside dorsal and ventral attention affiliations from the adopted parcellation, while 
sensory connections included both visual and somatomotor affiliations. Default-mode 
connections were as in the original parcellation. Once SC-FC coupling was estimated within 
each network, the mean r values (Control-ADHD) were presented within and between each 
network. 
 
Relationship between structure-function coupling and behavioral symptoms of ADHD 
Given the notion that measures of ADHD symptoms are continuously distributed in the 
general population [41,42], we investigated brain-behavior relationships across both ADHD 
and control groups (Fig. 1C). Inattention and hyperactivity-impulsivity symptoms based on 
the parent-rated Swanson, Nolan, and Pelham, IV (SNAP-IV) [43] and self-rated Adult 
ADHD Self-Report Scale (ASRS) [44] (Table 1) were used in the analysis. These four 
symptom items (two from each measure) were transformed using a rank-based inverse 
Gaussian, then entered into a principal component analysis to reduce the dimensionality of 
the data. The first component, accounting for 81% of the variance, was then correlated with 
the structure-function coupling of the whole sample (Supplementary Table 3).  
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Statistical comparisons between groups 
To ensure that the SC density did not explain between-group differences, summed binary and 
weighted degrees were compared between groups. Average connection weights within each 
connection class were compared between each group. In addition, the network based statistic 
(NBS) [45] was used to explore any possible differences in SC between controls and ADHD 
(5000 permutations, threshold t = 3). ADHD-associated alterations of FC using NBS have 
been reported in our initial study on this sample [11].  
 
Mann–Whitney U tests were used to identify possible differences in the structure-function 
association between control and ADHD groups. Bonferroni correction (family-wise error 
rate, FWE) for multiple comparisons was applied to follow-up statistics, with α��� < 0.05 
indicating statistical significance. Effect sizes (reff were reported for all tests using the 

formula ���� �
�

√�	�
� 

 (Rosenthal, 1994). For this metric, reff = 0.1 is considered a small 

effect, reff = 0.3 is considered medium, and reff = 0.5 is considered a large effect [46]. 
Statistical analyses were performed in MATLAB (Mathworks) with code available online 
(https://github.com/ljhearne/ADHDSCFC). 
 

 
Fig. 1 Conceptual overview of the analysis pipeline. A. Analyses were conducted using a whole-brain 
parcellation including 214 cortical and subcortical regions. Replication analyses were performed 
using two alternative brain parcellations (see text). B. Structural (SC) and functional connectivity 
(FC) matrices were derived from diffusion spectrum imaging (DSI) and multi-echo resting-state fMRI 
data, respectively. Darker colors indicate higher normalized streamline counts (SC) and higher Fisher-
z normalized Pearson’s correlation values between every possible pair of brain regions (FC). C. The 
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topological organization of the SC matrices was examined to derive measures of different connection 
types: hub connections, feeder connections, and local connections. Individual-level correlations 
between SC and FC were used to estimate structure-function coupling, which was then analyzed with 
between-group statistics. D. A computational model was used to assess the potential neural 
mechanisms that lead to decreased structure-function coupling. Empirical SC was used as input in the 
model and model parameters were estimated by fitting to empirical FC. We systematically assessed if 
an increase in the noise heterogeneity in hub or peripheral nodes could result in a marked dissociation 
between functional and structural connectivity. 

 
 

Computational modeling: Assessing the neural factors driving structure-function breakdown 
We adopted whole brain computational modeling to simulate SC-FC coupling. We tested the 
hypothesis that increased heteroscedasticity in the levels of intrinsic neural noise was 
associated with differences in SC-FC coupling between groups. Specifically, we manipulated 
the levels of heteroscedasticity, which occurs when the variance of explanatory variables (i.e., 
neural noise level) is not identical across brain regions. The model incorporates SC to 
represent the strength of connections between brain regions. In addition to the weights 
specified in the empirical SC matrix, structural connections are scaled by a global coupling 
parameter. This parameter can then be varied systematically to simulate and compare the 
global dynamics emerging from the model with the empirical FC derived from the rs-fMRI 
data. 
 
We chose a simple stochastic linear model of the Ornstein-Uhlenbeck type [47–49]. The main 
motivations behind this choice were that the model: (i) allows us to simulate whole-brain 
patterns of FC from SC matrices; (ii) enables tests of the hypothesis that increased 
heteroscedasticity of neural noise levels results in a breakdown in structure-function 
coupling; (iii) can be considered a generic linearization of more complex models with a stable 
fixed point (a mathematical approach at the core of e.g. dynamic causal modeling for fMRI 
[50]); and (iv) permits a direct analytical derivation of FC from empirical SC without the 
need of computationally demanding numerical simulations (Supplementary Figure 3&4). 
The model equation is: 
 
 
 
 

��� � ���� � � � 	�����

���

 �  �� � 
��	�  

 

 
where ��  is the activity of the �-th region; � is the global coupling strength which rescales the 
strength of structural connections of the system; 	��  is the connectivity weight to region � 

from region �  (as specified by the empirical SC matrix); 
�  is the intrinsic noise 
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amplitude/level of the �-th region, and defines the size of random increments 
��	�  in the 
dynamics of the region, and N is the total number of regions in the connectome. Previous 
modeling studies [48,49] have considered the noise levels to be constant across the whole 
network (i.e., all 
�  are identical). In light of previous suggestions [14,51–53], we 
hypothesized that heteroscedasticity across a specific subset of brain regions (hubs or 
periphery) would have a detrimental impact on SC-FC decoupling. To test our hypothesis, we 
systematically analyzed varying degrees of heteroscedasticity in the noise levels in distinct 
subsets of regions independently (hub and periphery regions). A comprehensive description 
of the modeling can be found in the Supplementary Methods (Supplementary Figure 5).   
 
Results 
 
Similar structural connectivity between groups 
Results showed no difference in weighted (p = 0.89, z = 0.13, reff = 0.01), or unweighted (p = 
0.24, z = -1.19, reff = -0.08) summed degree across groups. Likewise, the whole-brain 
network-based statistics comparing ADHD and healthy control groups revealed no significant 
differences in structural connectivity between the groups (ADHD > controls, p = 0.63; 
controls > ADHD, p = 0.78). Next, we sought to investigate potential differences in classes of 
structural connections, namely hubs, feeders, and local connections. No significant group 
differences were observed when comparing mean connection strength within hub (p = 0.86, z 
= -0.17, reff = -0.01), feeder (p = 0.77, z = -0.29, reff = 0.04), or local connections (p = 0.23, z = 
1.21, reff = 0.09).  
 
Structure and function coupling in ADHD is reduced in feeder connections 
When considering all edges within the network, results indicated a significant difference in 
SC-FC coupling (p = 0.01, z = 2.51, reff = 0.18, Fig. 2A). We then assessed the contribution 
to this effect of each connection class (hub, feeder or local). Results showed that compared to 
controls, ADHD had a significantly lower SC-FC association in feeder connections of a non-
trivial effect size (pFWE = 0.005, z = 3.10, reff = 0.22). No between group differences were 
found in hub (pFWE = 1, z = 0.55, reff = 0.04) or local (pFWE = 0.33, z = 1.60, reff = 0.11) 
connections (Fig. 2A).   
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Fig. 2 Structure-function relationships in drug-naïve adults with ADHD and healthy matched 
controls. A. Distributions of r values across the whole connectome and the three connection 
classes[73]. Significant differences between ADHD and Control groups were observed in the whole 
connectome but were driven by a large group difference in feeder connections. B. Mean differences in 
SC-FC coupling (Controls minus ADHD) when constrained to feeder connections within and between 
control, default-mode, and sensory functional networks. The largest deficit in SC-FC coupling in 
ADHD compared to controls were found between control and sensory network connections (r = 
0.026). C. Correlation between symptoms and SC-FC coupling in feeder connections. SC-FC 
coupling strength was negatively correlated with the ADHD symptom factor scores derived from 
principal components analysis. * < 0.05, ** < 0.01 corrected for multiple comparisons. 
 
 

Feeder structure-function decoupling in control, default-mode, and sensory brain networks 
To further explore the anatomical specificity of the observed deficits in structure-function 
coupling, we isolated feeder connections that belonged to control, default-mode, or sensory 
(merging somatomotor and visual) networks. As per the previous analysis, we correlated SC 
and FC values for connections within and between the selected brain networks. This resulted 
in a three-by-three matrix for both ADHD and healthy control groups that represented the 
degree of SC-FC coupling within and between control, default mode, and sensory networks. 
The largest reduction in SC-FC associations in ADHD compared to healthy controls were 
located in connections between control and sensory networks (Fig. 2B). 
 
The magnitude of structure-function decoupling correlates with the severity of ADHD 
symptoms 
Individual symptom scores captured by PCA linearly correlated with indices of structure-
function coupling in feeder connections, such that lower structure-function coupling was 
associated with more severe ADHD symptoms (p = 0.0004, r = -0.25, Fig. 2C).  
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Noise in hubs and periphery as a neural mechanism for structure-function breakdown 

Finally, we sought a neural mechanism for how altered structure-function relationships could 
emerge in the absence of significant differences in the connectome. In particular, we aimed to 
use computational modeling to explain our finding of selective deficits in feeder connection 
SC-FC coupling. We systematically explored two scenarios with noise heteroscedasticity – 
i.e., increased heterogeneity in the intrinsic neural noise levels 
� across brain regions.  
 
In the first scenario, we analyzed the case of heterogeneity between hubs and periphery 
(�� � �� ) for hub nodes (H) and peripheral regions (P), maintaining ��  and ��  constant 
within each class of regions. Exploring ranges of ��  and ��  (Fig. 3A-C) we analyzed the 
changes in SC-FC coupling for the three classes of connections (hub, feeder, and local). We 
found that feeder connections were the most susceptible to subtle imbalances between 
intrinsic noise levels in hub and periphery regions, reflected in the quick decrease in SC-FC 
coupling (Fig. 3B). On the contrary, hub and local connections exhibited only small changes 
(Fig. 3A&C). Specifically, a small imbalance such that �� 	 �� , with ��  10% larger than 
�� , produced a slight (< 2%) reduction in SC-FC coupling in hubs compared to the 
homogenous �� � ��  case, similar to the empirically observed slight decrease for hub 
connections in Fig. 2A (< 2%). Conversely, a 10% imbalance in the opposite direction 
(�� 
 �� ) yielded a negligible (~0.3%) increase in hub SC-FC coupling. The increased 
sensitivity of feeder connections was demonstrated by the same 10% imbalance (�� 	 ��) 
resulting in a 4% decrease in SC-FC coupling for feeder connections compared to the 
homogenous case. Importantly, an imbalance of approximately 50% (�� 	 ��) was required 
to obtain the 10% decrease in SC-FC coupling empirically observed in ADHD feeder 
connections (Fig. 2A). This larger imbalance also resulted in a < 2% reduced SC-FC 
coupling in hub connections, again in accordance with empirical results. Thus, larger 
differences between mean noise amplitude levels in hubs and periphery led to greater SC-FC 
decoupling specific to feeder connections, mirroring the selective deficits observed in 
ADHD. 
 
In the second scenario, we modeled the case where the noise levels (��) within hubs and 
periphery also varied from region to region. This allowed us to examine whether 
heteroscedasticity within hubs and/or periphery regions could contribute to the observed 
disruption of SC-FC coupling in ADHD. We systematically explored ranges of variance 
(Var�
�� and Var�
��) for noise levels normally distributed around  means (E�
�� and E�
��), 
set here such that E�
��  is 10% larger than ��
��  in line with the above results for hub 
connections (comparing Fig. 3A to Fig. 2A). We found that connections within a region class 
(i.e., hub-hub or periphery-periphery) are resilient to increased variability of intrinsic noise 
levels in the opposite type. Indeed, the SC-FC coupling in hub connections (Fig. 3D) and 
local connections (Fig. 3F) remained almost constant for increased noise variability in 
peripheral and hub regions, respectively. However, feeder connections (Fig. 3E) are clearly 
susceptible to changes in noise level heterogeneity within either hub or periphery regions, 
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which implies an increased sensitivity to heteroscedasticity could also contribute to the 
disruption of SC-FC coupling in ADHD. 
 

 
Fig. 3 Modeling the effect of noise heteroscedasticity on structure-function coupling. Effects of noise 
heteroscedasticity on SC-FC coupling. Top row: Scenario 1 - Noise heterogeneity between hubs and 
periphery (
�≠ 
� ) for hubs (H) and peripheral brain regions (P), 
�  and 
�  constant within each 
class of regions (hubs and periphery). Bottom row: Scenario 2 - noise levels (
�) within hubs and 
periphery varied from region to region. The colormaps quantify the SC-FC coupling (Pearson 
correlation between SC and FC matrix entries). A/D. Hub connections. B/E. Feeder connections. C/F. 
Local connections. E[�] = expected mean value; Var[�] = variance. The line in each panel corresponds 
to the case E�
�� = E�
�� (top row) or Var�
�� = Var�
�� (bottom row). 
 
 

Discussion 
 
The present study provides evidence of a clinically significant breakdown in brain structure-
function (SC-FC) coupling in medication-naive adults with childhood-onset ADHD. In line 
with the hypothesis that hub regions are critically vulnerable to brain pathology [31,32,54], 
ADHD was associated with a marked SC-FC decoupling in connections linking brain hubs to 
peripheral regions (feeders) within and between control and sensory networks. Modeling 
results further suggest that such decoupling is potentially linked to: (i) an imbalance in noise 
amplitudes in hubs and the periphery (e.g., increased 'unreliability' in signals originating from 
the periphery) and, (ii) higher peripheral heteroscedasticity (i.e., the peripheral noise is more 
diverse and more difficult for the hubs to filter out). Altogether, results from this work 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/606228doi: bioRxiv preprint 

https://doi.org/10.1101/606228
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

propose a novel neural mechanism explaining structure-function decoupling in brain 
connectivity underpinning the chronic manifestation of ADHD symptoms.  
 

Structural networks are thought to place significant constraints on FC and local brain activity 
[12,33,40]. The decoupling between FC and its structural basis is therefore thought to 
represent a key index of brain network pathology in psychiatric illnesses including 
schizophrenia [32,55,56]. Our results are in line with the general notion that a structure-
function breakdown in psychiatric illnesses involves anatomically defined hub brain regions 
[31]. The observed association with behavior, indicating that reduced structure-function 
coupling in feeder connections is related to higher severity of ADHD symptomology, 
provides support for the clinical relevance of this deficit in ADHD. By using a parsimonious 
model explaining the emergence of functional connectivity from underlying anatomical 
connectivity, we found that increased heteroscedasticity in intrinsic noise levels, either in 
hubs or periphery, has a strong detrimental effect in feeder connections, and to a lesser extent 
in hub-hub connections. 
 
Physiologically, reduced SC-FC coupling due to increased noise heteroscedasticity in 
peripheral regions can be understood as brain hubs being unable to average out incoming 
peripheral functional disruptions. This adds weight to the notion that ADHD symptoms may 
arise from increased neural noise in the activity of frontal hub regions composing fronto-
parietal and default-mode networks [23]. These brain networks have been tied to 
psychological functions critically impacted by ADHD, including cognitive control, sustained 
attention, and behavioral variability [57–60]; with activity being shown to be more variable in 
ADHD compared to controls [22–24]. This abnormal brain network activity can be, at least in 
part, restored by methylphenidate treatment [61–63]. In line with the above, a proposed 
mechanism for this therapeutic effect is the modulation of neural noise’s characteristic 1/fα 

spectrum [15]. Because our model dynamics have a 1/fα noise spectrum (Supplementary 
Figure 4), current results provide support for this hypothesis. 
     
Our empirical findings showed that feeder connections are the most affected by the 
decoupling between function and anatomy. Feeder connections comprise long-range 
anatomical routes allowing efficient communication between remote brain regions belonging 
to different brain networks [38]. We here found that connections within control networks, as 
well as between regions comprising control and sensory networks, contributed to the overall 
reduction in structure-function association in ADHD. These findings are in agreement with 
previous neuroimaging studies in ADHD [6,7,64,65] and healthy controls [58,66], 
highlighting the key role of these connectivity patterns to support normal and pathological 
attention and inhibitory processes. We also note that altered patterns of FC, and SC-FC 
decoupling, can occur in the absence of deficits in SC [55]. In fact, whereas white matter 
connections are predictors of FC [40], the opposite is not always true [67]. 
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The absence of significant group differences in the structural connectome is at odds with 
some previous reports [3,4]. Due to the sample size and the quality of the data, it is unlikely 
that the negative finding reported here is due to a lack of statistical power in detecting 
meaningful differences in the ADHD connectome. Moreover, our result is consistent with 
recent work showing the existence of FC abnormalities with preserved white matter 
properties in ADHD [68]. The discrepancy between our findings and earlier literature [3] may 
be explained by non-neural factors. For example, the absence of significant differences 
between the ADHD and control connectomes reported here may reflect our emphasis on 
comparable levels of head motion between the two groups; a critical factor that produce 
spurious group differences in ADHD [3,69]. Our cohort of psychotropic-naive adults with 
established childhood-onset ADHD in the absence of co-occurring psychiatric conditions 
may also contribute to this negative finding, as psychostimulant exposure [70] and 
comorbidity [71] have been reported to affect SC in ADHD. Whereas our results cannot 
completely exclude the presence of altered white matter integrity in ADHD, they suggest that 
any such differences are small overall, and the manifestation of core ADHD symptoms is 
underpinned by functional deregulations and related decoupling in SC-FC. Further work in 
broader clinically-representative samples will be necessary to parse the contributions of 
factors including comorbidities and medication to the integrity of the connectome [10,72]. 
 
By combining functional and diffusion-weighted imaging with computational modeling, our 
study has advanced the understanding of neural mechanisms that underpin chronic ADHD 
symptoms. More specifically, our work showed that a clinically meaningful function-
structure decoupling in ADHD is likely related to increased neural noise heterogeneity 
between hubs and periphery regions. This knowledge is consistent with the positive effect of 
current pharmacological interventions for ADHD and provides neurobiological support for 
future clinical research focusing on reducing periphery-to-hub noise amplitude ratio and 
peripheral noise heteroscedasticity using targeted interventions including brain stimulation. 
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Supplementary Methods 

Participants and recruitment procedure 

Recruitment occurred via advertisements at hospitals, colleges, and online. Potential adult 

participants were screened using the Taiwanese version of the Adult ADHD Self-Report 

Scale (ASRS) v1.1 [1]. Individuals deemed eligible to enter the study (i.e., they exhibited 

clinically relevant ADHD symptoms based on ASRS) were invited to the special clinic for 

adult ADHD at the Department of Psychiatry, National Taiwan University Hospital, Taipei, 

Taiwan for a clinical interview conducted by a board-certified child psychiatrist with 

extensive experience in ADHD diagnosis, intervention, and research across lifespan (author 

S.S.G.). Participants in the adult ADHD group were required to fulfil two criteria: i) they 

needed to currently demonstrate more than 6 items of ADHD symptoms as defined in the 

DSM-IV-TR in either inattentive, hyperactive-impulsive, or both domains; ii) ADHD 

symptoms must have occurred, or be noted before twelve years of age. This diagnosis of 

childhood-onset adult ADHD was based on both the clinical interview with the participants, 

and the Chinese version of the Kiddie-Schedule for Affective Disorders and Schizophrenia-

Epidemiological version (K-SADS-E) interview with the parents. The ADHD diagnosis was 

further confirmed by the Conners’ Adult ADHD Diagnostic Interview (CAADI) [2] and the 

modified adult version of the ADHD supplement of the Chinese version of the K-SADS-E for 

childhood and current ADHD [3]. Besides ecologically-valid unstructured clinical interviews, 

DSM-IV psychiatric diagnoses were also confirmed by the semi-structured Chinese version 

of the Schedule of Affective Disorders and Schizophrenia-Lifetime (SADS-L) [3,4]. Matched 

healthy controls were recruited using the same procedure adopted for the ADHD group; 

Control participants received the same clinical evaluation and standard psychiatric interviews 

by S.S.G (i.e., the Chinese version of the K-SADS-E for childhood diagnoses, the CAADI, 

and the adult ADHD supplement plus SADS-L for ADHD and other psychiatric diagnoses at 

adulthood [5]). For both ADHD and controls, the following exclusion criteria were adopted: 

medical and mental illness other than ADHD, substance abuse, past or current use of 

psychotropic medication, and cognitive deficits (< 80 full-scale IQ measured by the Wechsler 

Adult Intellectual Scale-Third Edition [6]). Our sample selection strategy allowed the 

unequivocal assessment of brain mechanisms underpinning core symptoms of chronic ADHD 
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[7]. However, the interpretation of current results must acknowledge that the specificity of 

our clinical group is biased and reduces generalizability (see main text).  

 

Measures for the validity of clinical diagnosis 

The Chinese version of the K-SADS-E based on the DSM-IV-TR was developed by Gau et al. 

[5]. Rigorous methodological processes for the development of this instrument were 

implemented, including translation, back-translation, cultural adaptation, and assessment of 

psychometric properties.[5] To obtain information on ADHD symptoms and diagnoses in 

both childhood and adulthood, S. S. Gau further established a modified adult version of the 

ADHD supplement, which includes ADHD, oppositional defiant disorder, and conduct 

disorder derived from the Chinese K-SADS-E [8]. This adult version of the ADHD 

supplement and the Chinese SADSL have been widely used in our previous studies [3,4,9–

13]. 

 

The study was approved by the Research Ethics Committee of the NTUH (201401024RINC) 

and registered as a clinical trial (NCT02642068). Written informed consent was obtained 

from all participants. Participants were recruited from March 2014 to December 2016. 

 

Measures of ADHD symptoms 

The participants’ ADHD symptoms were dimensionally estimated by parent reports on the 

Chinese version of the Swanson, Nolan, and Pelham, version IV (SNAP-IV-C) scale [14] and 

self-reports on the Chinese version of the Adult ADHD Self-Report Scale (ASRS-C) [1]. The 

SNAP-IV-C, a 26-item scale, consists of Inattention (Item 1-9) and Hyperactivity/Impulsivity 

(Item 10-18), and Oppositionality (Item 19-26), corresponding to the core symptoms of 

ADHD and ODD on DSM-IV-TR, respectively. The 26 items of the SNAP-IV are rated on a 

4-point Likert scale, with scores of 0-4 representing: “not at all,” “just a little,” “quite a bit,” 

and “very much.” The norms and psychometric properties of the Chinese version of the 

SNAP-IV (SNAP-IV-C) for parent reports have been established [14] and widely used in 

clinical and epidemiological studies in Taiwan. The raw scores of items 1-18 were used to 

measure the inattention and hyperactivity-impulsivity symptoms based on parents’ rating in 

the study.  
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The ASRS is a validated 18-question scale that was developed in conjunction with the 

revision of the World Health Organization Composite International Diagnostic Interview. 

The ASRS includes questions about the 9 inattention and 9 hyperactivity-impulsivity 

Criterion A symptoms of ADHD in the DSM-IV-TR, each question asking respondents how 

often a given symptom occurs over the past six months on a 0-4 scale (“never”, “rarely”, 

“sometimes”, “often”, “very often”). The psychometric properties of the Chinese version of 

the ASRS (ASRS-C) had been established in a sample of 4,329 Taiwanese young adults [1]. 

The ASRS-C has been widely used in adult ADHD studies in Taiwan.  

 

Imaging acquisition  

The imaging protocol included: localizer, resting-state fMRI (7 min and 39 seconds), T1-

weighted, and DSI. Functional images were acquired using a multi-echo EPI sequence: TR = 

2.55 s; flip angle = 90°; matrix size = 64 × 64; in-plane resolution = 3.75 mm; FOV = 240 

mm; 31 oblique slices, alternating slice acquisition slice thickness 3.75 mm with 10% gap; 

iPAT factor = 3; band- width = 1698 Hz/pixel; echo time, TE = 12, 28, 44 and 60 msec). T1 

images were acquired using an MPRAGE sequence with a TR = 2 s; TE = 2.98 msec; flip 

angle = 9°; matrix size = 256 × 256; inversion time = 900 msec; voxel size = 1 mm3. DSI 

acquisitions used a pulsed-gradient spin-echo diffusion EPI sequence with a twice-refocused 

balanced echo repetition time/echo time = 9600/130 msec, slice thickness = 2.5 mm, 

acquisition matrix = 80 × 80, field of view = 200 × 200 mm, in-plane spatial resolution = 2.5 

mm × 2.5 mm, 101 diffusion-encoding directions covering a half q-space 3D grid with radial 

grid size of 3, bmax= 4000 s/mm2 [15]. 

 
MRI preprocessing 

In short, the resting-state fMRI preprocessing pipeline included: quality control, 

comprehensive data denoising using multi-echo independent components analysis (ME-ICA 

v3.0)[34], coregistration to individual anatomical images, non-linear normalization to MNI 

space, and filtering (0.01∼0.1 Hz). The full preprocessing pipeline is reported elsewhere [9].  

 

The DSI data underwent an initial quality assurance procedure: Individual DSI images [54 

slices × (101 directions DW images + 1 null image) = 5,508 images] were scrutinized by 
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calculating signals in the central square (20 × 20 pixels) of each image. Signal loss was 

defined as the average signal intensity of an image lower than two standard deviations from 

the mean of all images (after correcting for its b value) [16]. As jerky head motion induces a 

signal loss in DSI images, these signal dropout counts were considered a proxy estimate for 

overall levels of in-scanner head motions. Individuals' DSI data with more than 90 images of 

signal loss, at either baseline or follow-up, were excluded from further analyses [16]. 

 

DSI data were reconstructed using the q-space diffeomorphic reconstruction (QSDR) 

approach implemented in DSI Studio (www.dsi-studio.labsolver.org) [17]. QSDR first 

computed the quantitative anisotropy in each voxel in native space. Then the reconstructed 

images were warped to a template in Montreal Neurological Institute (MNI) space using 

constrained diffeomorphic mapping. In MNI space, a diffusion sampling length ratio of 

1.25 mm with five fiber orientations per voxel and 8-fold orientation distribution function 

tessellation (642 sampling directions) was used to obtain the spin distribution function, and 

the output resolution was 2 mm. A deterministic fiber tracking algorithm [18] was performed 

with extreme turning angle threshold of 60°, step size of 1.0�mm, minimum and maximum 

lengths of 10� and 400 mm, respectively. 10,000,000 streamlines were seeded throughout 

the whole brain and terminated when the local quantitative anisotropy fell below values 

estimated using Otsu's threshold [18], which gives the optimal separation between 

background and foreground. Other tracking parameters as specified in DSI Studio were: 

smoothing: 0; seed orientation: all; seed position: subvoxel; randomize seeding: off; direction 

interpolation: trilinear. 

 

Head motion 

Micro-head movements (mean framewise displacement, FD) [19] for rs-fMRI and signal 

dropout counts [16] for DSI, were not significantly different between ADHD and controls (p 

= 0.35 and 0.54, respectively). Individual differences in subject head motion during structural 

and functional data acquisition did not correlate with ADHD symptoms (first principal 

component, Supplementary Table 3); DSI motion-related signal loss: r = -0.02, p = 0.84 in 

ADHD, r = -0.16, p = 0.16 in controls; resting state FD: r = 0.14, p = 0.13 in ADHD, r = 0.08, 

p = 0.50 in controls (see Figure S1). 
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Figure S1. Correlation between functional (framewise displacement, left) and structural (DSI motion, 

right) head motion and ADHD symptoms. Neither ADHD (teal colors) or control (grey colors) 

demonstrated significant associations between head motion and symptoms. 

 

Varying definitions of brain network hubs exist [20]. Here, we identified hub-regions 

according to aggregate ranking across multiple metrics [21,22]. First, for each participant, 

each node's “hubness” was calculated from its composite average ranking across degree, 

strength, betweenness and subgraph centrality scores using the brain connectivity toolbox 

[23]. The top 15% composite scores (N = 32, Figure S2, Supplementary Table 1&2) were 

used to identify hub-regions within each participant; all other nodes were assigned as 

periphery nodes. 
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Figure S2. Structural hub topology in adult ADHD and healthy matched controls. A. Brain rendering 
of group average hub (red) and periphery (black) nodes. B. Individual-level representation of hub 
regions in canonical resting-state brain networks. Darker lines indicate more consistency within each 
group (i.e., dark red represents every individual had a hub node within the ADHD or Control group). 
Overall, this plot highlights the consistency in detecting hub regions at the level of single subjects 
between groups. 
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Statistical comparisons between groups 

Across all statistical tests within-group data distributions were not normal (Kolmogorov-

Smirnov test, p < 0.05), thus non parametric statistics were used (the  Mann–Whitney U test). 

A significant Mann-Whitney U test can be interpreted as either a difference in distribution, or 

a difference in the medians between two groups. Thus for significant findings we evaluated 

whether the variances between groups were similar. Levene's test (p > 0.05) confirmed that 

the variance between the groups was similar, which suggests a difference in medians across 

groups. 

 

Empirical results control analyses 

A number of tests were conducted to establish the reliability of our empirical findings. To 

ensure that our chosen brain parcellation had little bearing on the results [24], we repeated the 

analyses in two other, independent brain parcellations: Shen-213 [25] and Brainnetome-244 

[26]. The reported effects were all successfully replicated (Supplementary Table 2). Using 

these alternative brain parcellations, we also found that adults with ADHD exhibited weaker 

structure-function coupling in hub connections. However, the effect size of these between-

group differences was consistently smaller than the effect in feeder connections. 

 

Computational modeling 

The dynamics of each region in the connectome are modeled as a multivariate Ornstein-

Uhlenbeck process with independent white Gaussian noise drive, and obey the following 

stochastic differential equation:  

 ��� � ���� � � � 	�����

���

 �  �� � 
��	�  
 

(S1) 

 
where �� is the activity of the �-th region; � is the global coupling strength which rescales the 

strength of structural connections of the system; 	�� is the connectivity weight to region � 
from region �  (as specified by the empirical SC matrix); 
�  is the intrinsic noise 

amplitude/level of the � -th region, and defines the size of zero-mean Gaussian random 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/606228doi: bioRxiv preprint 

https://doi.org/10.1101/606228
http://creativecommons.org/licenses/by-nc-nd/4.0/


S8 
 
 
 
 

increments/steps  in the dynamics of the region, and N is the total number of regions in 

the connectome. 

 

In this work, we hypothesized that each region has a different value of . Figure S3 shows 

schematics of how the heterogeneous intrinsic noise levels, in combination with the 

interactions defined by the SC matrix, affect the functional timeseries of a subject. Figure 

S3A illustrates probability density functions (pdfs) of the random increments in Gaussian 

noise ( ) scaled by in Eq. (S1), for three different regions colored in red, blue and 

yellow. The mean of each pdf is assumed to be zero, while the standard deviation of each pdf 

is , i.e., the intrinsic noise amplitude of the region. Figure S3B shows the expected 

functional timeseries of the same regions illustrated in Figure S3A. The second-order 

fluctuations (i.e., variance) of these timeseries are related to the intrinsic noise amplitude ( ). 

While estimating  empirically is possible [27], longer recording sessions would be needed 

to derive these values accurately for each individual [28]. Thus, we tested a relatively broad 

range and distributions for  that preserved the validity of the model. It is also important to 

note that the current model produces a 1/fα noise spectrum as detected in emprirical EEG data 

(Figure S4). 
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Figure S3. Schematic of functional time series with different intrinsic noise amplitudes (σi). A. The 
probability density distribution �������� of the random increments in Gaussian noise �����   for 
three regions A (red), B (blue) and C (yellow). The values of σi increase in the following order σA < σB 
< σC. That is, region A has the smallest noise amplitude whereas region A has the largest. B. Exemplar 
modeled functional timeseries for regions A (red), B (blue) and C (yellow), showing the effect of 
increasing σi.   

 

 
Figure S4. Power spectra of neural noise produced by our model. The spectra follow the 

characteristic 1/fα law as detected in empirical EEG data. The power spectral density (PSD) is 

expressed in arbitrary units (a.u 2/Hz). Gray line: Homoscedastic case E[σP]=E[σH]=1, and 

Var[σP]=Var[σH]=0. Green line: Heteroscedastic case with E[σP]>E[σH] (1.5 and 1.2, respectively), 

and Var[σP]>Var[σH] (0.2 and 0.02, respectively). Compared to the homoscedastic case, the 

heteroscedastic case is characterized by increases in neural noise. This is reflected by the curve 

shifting upwards toward higher power.   

 

Effects of heteroscedasticity on the structure-function coupling 

We hypothesize that increased heteroscedasticity, that is, increased heterogeneity in the 

intrinsic noise levels across brain regions is a driving factor for the observed breakdown 

between structure and function in ADHD. Thus, to systematically study the effects of 

heteroscedasticity we use the model described in the previous subsection. To select the values 

of ��, we first consider the fact that there are two main groups of regions: hub regions (H) and 

peripheral regions (P). The individual intrinsic noise amplitudes (�� ) are assumed to be 

samples of either ��  or �� , which are random variables with distinct expected (mean) values 

(E[�]) and variances (Var[�]): (E����, Var����) and (E����, Var����).   
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The first scenario analyzes the effect of distinct expected values in hubs and periphery 

regions (E���� vs. E����), while assuming Var���� = Var���� = 0. This study produced the 

2D maps presented in Figure 3A-C in the main text. These maps were calculated as the 

average of 118 individual maps using the SC matrices of control subjects. On the other hand, 

the 2D maps of the second study presented in Figure 3D-F (main text), calculated as the 

average of 1888 individual maps, one per SC matrix of the control group (118 subjects); and, 

16 different seeds of the pseudorandom number generator used to draw the values of 

individual σi for each combination of (Var����, Var����).  

 

The second scenario analyzes the effects of varying the noise levels between the groups and 

also from region to region (E����  ≠ E����  and Var����  ≠ Var���� )). Specifically, we 

calculated 2D maps of SC-FC coupling for hub, feeder, and local connections for varying 

degrees of intra-hub and intra-periphery heteroscedasticity, for different values of asymmetry 

between E���� and E����: 0%, 10%, 20% and 50%, always for �� < �� . The 2D maps of SC-

FC coupling for feeder connections are shown in Figure S5 A-D. The bottom panels (E-G) 

are the ‘percentage difference maps’ between the 2D map in Figure S5 A with �����=�����, 

and the maps with an asymmetry between mean noise levels in hub and periphery regions 

(Figure S5 B-D). Decreases in SC-FC coupling with respect to the map shown in Figure S5 

A are shown in blue, while increases are shown in red. These results show that: (i) the 

presence of an asymmetry in the noise level between groups is the primary driving factor of 

SC-FC decoupling, illustrated by the shrinking area of high SC-FC coupling in Figure S5 A-

D; and, (ii) increased heteroscedasticity within the peripheral regions is the second factor that 

further breaks down the SC-FC coupling, illustrated by the blue areas along the direction of 

increasing Var����.  
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Figure S5. Maps of structural-functional connectivity coupling using different levels of within- and 
between-group noise heteroscedasticity (top row). The bottom row shows maps of the percentage 
difference between the corresponding panels above and the null between-group heteroscedasticity in 
panel A. A. Between-group noise heteroscedasticity is 0 ( = ). B.  is 10% larger than 

. C.  is 20% larger than . D.  is 50% larger than . E. Percentage 
difference map between map in panel A and B. F. Percentage difference map between map in panel A 
and C. G. Percentage difference map between map in panel A and D. The colors represent absolute 
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SC-FC coupling (top row), and positive (red) and negative (blue) percentage difference with respect 
to the SC-FC couplings in panel A (bottom row). 
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Supplementary Tables  

 
Supplementary Table 1. Table of Schaefer 214 coordinates, network assignments, hub 
status for CTRL and ADHD 
 
 MNI  Control hubs ADHD hubs 

Node X Y Z Network Group 
Individual 

(%) Group 
Individual 

(%) 
1 -25.4 -76.7 -13.5 1 1 34.7 1 25.6 
2 -26.3 -95 -12.3 1 0 3.4 0 6.4 
3 -5.5 -92.7 -4.1 1 1 55.1 1 56.4 
4 -22.6 -96.8 5.9 1 0 14.4 0 19.2 
5 -39.9 -84.5 10.2 1 0 0.8 0 2.6 
6 -23.1 -87.1 24 1 1 22.9 1 30.8 
7 -23.8 -53 -9.1 1 0 17.8 1 15.4 
8 -9.6 -67 -4.6 1 1 31.4 1 42.3 
9 -14.1 -44.7 -2.9 1 0 10.2 0 6.4 

10 -11.3 -69.8 7.5 1 1 51.7 1 52.6 
11 -12.1 -72.7 22.4 1 0 4.2 0 12.8 
12 -7.5 -87.5 27.3 1 1 88.1 1 97.4 
13 -6.9 -12.4 46.4 1 0 0.8 0 2.6 
14 -48.2 -28.4 57 1 0 0 0 2.6 
15 -39.4 -24 57.5 2 0 3.4 0 1.3 
16 -31.3 -19.8 63.8 2 0 7.6 0 7.7 
17 -26.1 -38.1 67.4 2 0 0 0 0 
18 -20.3 -10.6 68.1 2 0 2.5 0 1.3 
19 -6.6 -30.5 66.3 2 0 38.1 0 35.9 
20 -19.1 -30.8 67.7 2 0 0 0 0 
21 -50.5 -5.1 -2.1 2 1 44.1 0 34.6 
22 -52.6 -24.9 9.3 2 0 21.2 0 12.8 
23 -36.9 -21 15.3 2 0 0 0 0 
24 -54.9 -4.5 10.2 2 0 6.8 0 3.8 
25 -55.7 -40 20.5 2 0 3.4 0 2.6 
26 -52.9 -22.4 18.4 2 0 0 0 0 
27 -56.2 -8.2 30.4 2 0 1.7 0 0 
28 -47.3 -8.9 46.3 2 0 0.8 0 1.3 
29 -43.4 -48.2 -19.4 2 1 49.2 1 44.9 
30 -45.3 -69.4 -8.5 2 0 10.2 0 10.3 
31 -47.1 -69.7 9.7 3 0 2.5 0 1.3 
32 -25.8 -69.9 38.2 3 0 5.9 0 3.8 
33 -16.7 -73 54.1 3 0 44.1 0 19.2 
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34 -29.1 -59.8 59.4 3 0 6.8 0 6.4 
35 -54 -26.4 42 3 0 0 0 0 
36 -40.7 -35.1 47.8 3 0 0 0 0 
37 -30.7 -46.3 62.5 3 0 5.1 0 3.8 
38 -17.2 -52.7 68.4 3 0 10.2 0 14.1 
39 -31.6 -4.3 53.2 3 0 0.8 0 1.3 
40 -61 -25.4 28.6 3 0 2.5 0 2.6 
41 -39.2 -3.9 -3.6 3 1 66.1 1 60.3 
42 -38.9 0.9 11 3 0 0 0 0 
43 -51 8.7 10.5 3 0 0.8 0 1.3 
44 -10.7 -35.3 46.3 4 0 5.1 0 9 
45 -5.7 9.6 41.4 4 0 8.5 0 7.7 
46 -6.3 -3.1 65.1 4 0 3.4 0 10.3 
47 -59.7 -39.4 36.3 4 0 0 0 0 
48 -28.6 42.8 31.4 4 0 11 0 9 
49 -33.5 20.4 4.8 4 0 5.1 0 2.6 
50 -5.6 30 24.3 4 1 26.3 0 26.9 
51 -23.7 21.7 -19.9 4 0 5.9 0 7.7 
52 -9.4 35.5 -20.4 4 0 11 0 16.7 
53 -29.3 -5.8 -38.6 4 1 77.1 1 70.5 
54 -45.4 -20.7 -30.3 4 0 47.5 1 42.3 
55 -27.5 10 -34.2 5 0 35.6 1 41 
56 -42.4 7.7 -18.8 5 0 14.4 0 10.3 
57 -57 -60.2 -1.4 5 0 14.4 0 12.8 
58 -34.8 -62.3 48 5 0 4.2 0 1.3 
59 -45.3 -41.7 46.5 5 0 0 0 0 
60 -33.3 -48.9 47.2 5 0 4.2 0 0 
61 -22.5 5.6 61.4 6 0 2.5 0 6.4 
62 -41.8 40.2 16.5 6 0 16.1 0 23.1 
63 -44.3 20.1 27.3 6 0 5.9 0 2.6 
64 -47.7 5.6 28.9 6 0 3.4 0 1.3 
65 -42.6 6 43.5 6 0 0 0 0 
66 -3.1 5.3 29 6 0 2.5 0 1.3 
67 -60.9 -42.8 -13.3 6 0 6.8 0 6.4 
68 -52.9 -50.9 45.8 6 0 0 0 0 
69 -39.7 18.7 49.5 6 0 10.2 0 2.6 
70 -41.8 49.5 -5.8 6 0 8.5 0 11.5 
71 -27.5 58 8 6 0 16.9 0 11.5 
72 -9.5 -73.1 37.4 6 0 31.4 0 33.3 
73 -5.6 -59.3 57.1 6 0 29.7 0 28.2 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/606228doi: bioRxiv preprint 

https://doi.org/10.1101/606228
http://creativecommons.org/licenses/by-nc-nd/4.0/


S15 
 
 
 
 
 

74 -4.7 -28.9 26.9 7 0 14.4 0 20.5 
75 -45.9 -65.7 38.2 7 0 12.7 0 11.5 
76 -23.7 24.7 49 7 0 0.8 0 2.6 
77 -5.3 -55 27.1 7 1 38.1 0 32.1 
78 -3.8 -29.4 36.6 7 0 5.9 0 2.6 
79 -6.3 -54.5 41.9 7 0 9.3 0 6.4 
80 -5.8 35.8 -9.7 7 0 12.7 0 20.5 
81 -13.2 62.6 -5.7 7 1 89.8 1 83.3 
82 -6.3 44.5 7.3 7 0 16.9 0 14.1 
83 -46.6 8.2 -32.3 7 1 89 1 89.7 
84 -60.3 -18.8 -22.6 7 0 16.1 1 14.1 
85 -56.4 -5.8 -12.2 7 0 18.6 0 16.7 
86 -58 -30.4 -3.5 7 1 11.9 0 9 
87 -56.9 -53.8 28.2 7 0 0 0 0 
88 -8.4 58.5 19.7 7 1 57.6 0 51.3 
89 -11.1 46.4 45 7 0 22 0 25.6 
90 -3.5 33.3 43.2 7 0 16.9 0 11.5 
91 -9.3 17 63.2 7 0 16.9 0 7.7 
92 -34.9 20.8 -13 7 1 20.3 0 19.2 
93 -31.8 42.4 -13.4 7 0 0 0 0 
94 -45.9 31 -7.4 7 0 4.2 0 7.7 
95 -51.2 22.6 7.9 7 0 21.2 0 28.2 
96 -38.4 -79.4 31.6 7 0 12.7 0 17.9 
97 -11.1 -56 13.4 7 0 22 0 23.1 
98 -25.9 -31.5 -17.9 7 1 70.3 1 61.5 
99 -58.2 -41.9 7.4 7 0 5.9 0 6.4 

100 -48.7 -57.4 17.9 7 0 0 0 0 
101 28.7 -68.5 -12.5 1 1 37.3 1 35.9 
102 48.6 -71.5 -6 1 0 3.4 0 2.6 
103 11.3 -92.1 -5 1 0 57.6 0 66.7 
104 30.3 -93.6 -3.8 1 0 13.6 0 16.7 
105 42.3 -79.8 9.7 1 0 0 0 0 
106 19.4 -90.2 21.4 1 1 59.3 1 65.4 
107 12.4 -64.3 -4.6 1 0 25.4 1 37.2 
108 16.3 -46.3 -1.3 1 0 19.5 0 15.4 
109 8.5 -75 8.1 1 0 26.3 1 26.9 
110 21.1 -59.9 7.5 1 0 14.4 0 17.9 
111 11.3 -73.8 25.4 1 1 33.1 1 32.1 
112 16.2 -84.6 39.4 1 1 62.7 1 62.8 
113 50.9 -22.4 51.8 1 0 0.8 0 0 
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114 46.7 -11 48 1 0 0 0 0 
115 7 -10.9 51.6 1 0 0.8 0 0 
116 39.2 -23.7 57.5 2 0 0 0 0 
117 31.7 -40.6 63.4 2 0 0.8 0 0 
118 32 -19.7 64.4 2 0 1.7 0 1.3 
119 29 -34.1 65.4 2 0 0 0 1.3 
120 22.4 -8.8 67.2 2 0 6.8 0 3.8 
121 10.2 -39.1 68.7 2 0 1.7 0 1.3 
122 6.9 -23.3 67.3 2 0 5.9 0 7.7 
123 20 -29.6 70 2 0 0 0 0 
124 51.9 -14.4 5.3 2 0 4.2 0 9 
125 63.7 -23.5 7.4 2 0 2.5 0 1.3 
126 38.4 -13.3 14.6 2 0 0 0 0 
127 44 -26.6 18 2 0 0 0 1.3 
128 59 0.6 10.9 2 0 0 0 0 
129 56.7 -11.5 14.4 2 0 0 0 0 
130 57.5 -5 30.2 2 0 0.8 0 2.6 
131 50.3 -53.2 -15.1 2 1 35.6 1 39.7 
132 51.6 -59.6 9.6 2 1 5.1 0 2.6 
133 32.4 -74.6 31.8 2 0 23.7 1 15.4 
134 15 -73.1 52.9 2 0 17.8 0 17.9 
135 34.7 -47.9 50.8 3 0 1.7 0 5.1 
136 26.3 -61.3 58 3 0 44.1 0 29.5 
137 59.7 -16.7 34.4 3 0 0 0 0 
138 41.7 -31.4 46.3 3 0 0 0 0 
139 8.5 -55.9 61.3 3 0 25.4 0 21.8 
140 21.4 -48.1 70.3 3 0 9.3 0 10.3 
141 34.3 -4.5 52.5 3 0 0 0 0 
142 60 -26.2 27.8 3 0 1.7 0 5.1 
143 50.8 3.6 40.5 3 0 0.8 0 0 
144 41.2 5.9 -15.4 3 0 0.8 0 0 
145 46.2 -3.4 -4.3 3 0 28 0 26.9 
146 43.7 6.8 3.9 3 0 11 0 6.4 
147 7.5 9 41.2 3 0 0.8 0 1.3 
148 9.4 -15 41.2 4 0 0 0 0 
149 10.6 -35.5 46.8 4 0 2.5 0 3.8 
150 8.7 3.5 65.6 4 0 5.9 0 10.3 
151 62.1 -37.5 37.2 4 0 0 0 0 
152 43.3 44.9 10.5 4 0 6.8 0 14.1 
153 29.7 48.1 27.1 4 0 9.3 0 5.1 
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154 34 21 -8.4 4 0 0 0 1.3 
155 36.2 23.8 4.8 4 0 0 0 0 
156 7.2 30.4 27.9 4 1 12.7 0 14.1 
157 12 38.6 -21.5 4 0 8.5 0 10.3 
158 28.6 22.4 -18.9 4 0 14.4 0 17.9 
159 4.9 36.4 -14 5 0 28.8 0 29.5 
160 14.9 64.5 -7.6 5 1 83.9 1 78.2 
161 29.9 8.2 -37.6 5 1 60.2 1 66.7 
162 46.9 -12.8 -34.8 5 1 66.9 1 74.4 
163 25.3 -11.4 -31.3 5 0 31.4 0 26.9 
164 38.6 -34.7 -23 5 1 30.5 1 28.2 
165 37.6 -62.9 47.3 6 0 8.5 0 11.5 
166 46.2 -36.9 48.6 6 0 0 0 0 
167 26 7.1 57.7 6 0 4.2 0 1.3 
168 51.4 10.6 20.3 6 0 2.5 0 0 
169 45.4 22.9 26 6 0 7.6 0 10.3 
170 4.8 3.6 29.6 6 0 4.2 0 9 
171 60.7 -13.1 -21 6 1 15.3 1 16.7 
172 62.6 -41.9 -11.4 6 0 1.7 0 3.8 
173 50.9 -58.7 44.3 6 0 1.7 0 2.6 
174 52.8 -41.7 48.2 6 0 0 0 0 
175 40.6 33 37.2 6 0 0 0 0 
176 42.1 14.3 49 6 0 11.9 0 15.4 
177 35.3 46.4 -12.5 6 0 8.5 0 19.2 
178 29.6 58.2 4.9 6 0 5.9 0 6.4 
179 7.9 25.6 54.7 6 0 4.2 0 10.3 
180 23.5 24.3 52.7 6 0 0.8 0 0 
181 14.4 -69.6 36.4 6 0 22 0 11.5 
182 6.5 -58.2 44.3 7 0 5.1 0 5.1 
183 5.2 -25.5 30.6 7 0 21.2 0 23.1 
184 54.4 -50.1 28.3 7 0 0.8 0 0 
185 28.3 29.9 42.9 7 0 0 0 0 
186 6.6 -48.8 30.4 7 1 55.1 1 51.3 
187 7.9 41.9 4 7 0 25.4 1 23.1 
188 6 29.1 14.9 7 0 0 0 1.3 
189 9 57.5 18.8 7 1 88.1 1 83.3 
190 62.4 -26.6 -5.4 7 0 0 0 1.3 
191 47.1 12.7 -29.5 7 0 46.6 1 47.4 
192 15.1 46.1 43.7 7 0 23.7 0 29.5 
193 50.9 27.8 0 7 0 39.8 0 44.9 
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194 47.1 -69.5 27.9 7 0 3.4 0 10.3 
195 12.8 -54.5 15 7 0 10.2 0 15.4 
196 27.4 -35.3 -14.7 7 0 34.7 0 47.4 
197 54.8 -6.3 -9.9 7 0 11.9 0 10.3 
198 52.2 -31.3 1.5 7 0 0 0 0 
199 56.9 -45.3 9.4 7 0 0 0 0 
200 60 -38.6 16.7 7 0 0 0 0 
201 -10.1 -18.9 6.7 8 0 19.5 0 9 
202 -12.7 10 9.6 8 0 0.8 0 1.3 
203 -25.1 0.7 0.5 8 0 29.7 0 23.1 
204 -19.3 -4.9 -1.1 8 0 3.4 0 0 
205 -25.5 -21.6 -15.1 8 0 17.8 0 19.2 
206 -23.1 -4.6 -18.2 8 0 0.8 0 0 
207 -9.5 11.6 -7.3 8 0 0 0 0 
208 11.2 -18.1 7 8 0 11 0 17.9 
209 13.3 11 10.3 8 0 0 0 0 
210 25.6 2 0.4 8 0 14.4 0 17.9 
211 20 -3.9 -1.1 8 0 0 0 2.6 
212 27.1 -20.1 -15.2 8 0 12.7 0 10.3 
213 23.4 -3.5 -18.3 8 0 0 0 0 
214 9.5 12.3 -6.6 8 0 0 0 1.3 

 
Note: Coordinates and percentages are rounded to one decimal place. For a full description of 
the Schaefer parcellation, please see [29]. The hub-group and hub-individual columns 
represent the data presented in Figure S1A and Figure S1B respectively.
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Supplementary Table 2. Empirical comparison across brain parcellations 
 

 Schaefer214 Shen268 Brainnetome246 
Degree (p) .235 .225 .367 
Weighted degree (p) .895 .796 .889 
SC Hubs (p) .864 .999 .414 
SC Feeder (p) .619 .619 .77 
SC Local (p) .228 .254 .205 
SC-FC (p) .012 .011 .003 
SC-FC Hubs (p) .583 .021 .008 
SC-FC Feeders (p) .002 .021 .007 
SC-FC Local (p) .11 .173 .058 
Feeder-behavior correlation (r) -.25 -.21 -.23 

 
Note: p-values differ from the main text as they have not been corrected for multiple 
comparisons in the follow-up SC-FC contrasts. The main findings, whole brain SC-FC coupling 
differences, feeder SF-FC coupling differences, and brain-behavior correlations replicate across 
all three templates. In addition, in the replication templates (Shen and Brainnetome) differences 
were found in hub connections. Gray shading indicates p < 0.05 uncorrected.
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Supplementary Table 3. Effect of hub definition on results 
 
 12.5% 15% 17.5% 
Degree (p) .235 .24 .235 
Weighted degree (p) .895 .90 .895 
SC Hubs (p) .854 .86 .354 
SC Feeder (p) .88 .62 .304 
SC Local (p) .199 .23 .284 
SC-FC (p) .012 .012 .012 
SC-FC Hubs (p) .433 .58 .648 
SC-FC Feeders (p) .006 .002 .001 
SC-FC Local (p) .048 .11 .195 
Feeder-behavior correlation (r) -.23 -.25 -.29 
 
Note: p-values differ from the main text as they have not been corrected for multiple 
comparisons in the follow-up SC-FC contrasts. The main findings, whole brain SC-FC coupling 
differences, feeder SF-FC coupling differences, and brain-behavior correlations replicate across 
all three hub definitions. Gray shading indicates p < 0.05 uncorrected.
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Supplementary Table 4. Principal component analysis loadings 
 
 Component1 Component2 Component3 Component4 

Inattention SNAP-IV (parent-rated) .50 -.5 -.47 -.53 
Hyperactivity/Impulsivity SNAP-IV 
(parent-rated) .48 -.52 .56 .44 

Inattention ASRS (self-rated) .52 .41 -.5 .56 

Hyperactivity/Impulsivity ASRS (self-rated) .50 .56 .46 -.46 

Variance explained 80.72 9.49 6.68 3.11 
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