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Abstract

Adults with childhood-onset attention-deficit hyperactivity disorder (ADHD) show altered
whole-brain connectivity. However, the relationship between structural and functional brain
abnormalities, the implications for the development of life-long debilitating symptoms, and
the underlying mechanisms remain uncharted. We recruited a unique sample of 80
medication-naive adults with a clinical diagnosis of childhood-onset ADHD without
psychiatric comorbidities, and 123 age-, sex-, and intelligence-matched healthy controls.
Structural and functional connectivity matrices were derived from diffusion spectrum
imaging and multi-echo resting-state functional MRI data. Hub, feeder, and local connections
were defined using diffusion data. Individual-level measures of structural connectivity and
structure-function coupling were used to contrast groups and link behavior to brain
abnormalities. Computational modeling was used to test possible neural mechanisms
underpinning observed group differences in the structure-function coupling. Structural
connectivity did not significantly differ between groups but, relative to controls, ADHD
showed a reduction in structure-function coupling in feeder connections linking hubs with
peripheral regions. This abnormality involved connections linking fronto-parietal control
systems with sensory networks. Crucialy, lower structure-function coupling was associated
with higher ADHD symptoms. Results from our computational model further suggest that the
observed structure-function decoupling in ADHD is driven by heterogeneity in neural noise
variability across brain regions. By highlighting a neural cause of a clinically meaningful
breakdown in the structure-function relationship, our work provides novel information on the
nature of chronic ADHD. The current results encourage future work assessing the genetic and
neurobiological underpinnings of neural noise in ADHD, particularly in brain regions
encompassed by fronto-parietal systems.
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I ntroduction

Adult attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental
disorder characterized by inattentive and hyperactive-impulsive symptoms beginning in early
childhood [1]. Identifying the neural underpinnings of adult ADHD is an ongoing research
endeavor, critical to the definition of neural mechanisms supporting clinical outcomes of
childhood-onset ADHD and the development of novel targeted interventions [2].

Neuroimaging work has provided important insights into altered structural [3-5] and
functional [6,7] brain connectivity underpinning ADHD pathophysiology, and suggest that
network interactions, rather than regional abnormalities, contribute to phenotypic expression
of the disorder [8]. Anatomically, results have been mixed. Recent studies have shown no
changes in the ADHD connectome [9], whereas others have pointed to various abnormalities
in white matter tracts including the corpus callosum and posterior circuits related to the
limbic and occipital systems, the fronto-striato-cerebellar connections, and pathways linking
default-mode and fronto-parietal hub regions [4,5,10].

Complementing findings from diffusion MRI, resting-state functional magnetic resonance
image (rs-fMRI) studies have highlighted that both diagnosis and symptoms of ADHD are
linked to reduced segregation between the activity of control networks supporting external
task engagement and the default-mode network [6,7,11]. Reduced functional connectivity
within, and between, the default-mode, sensory, and control networks has also been reported
both in children and adults with ADHD [6,7,10,11].

Emerging evidence suggests that patterns of functional connectivity are constrained by their
anatomical underpinning: The connectome [12,13]. Structural and functional brain network
aterations in adult ADHD partially overlap [10], but the direct link between these structure-
function aberrations has not been formally explored. A candidate mechanism for altered
structure-function associations is excessive neura noise: The increased random variability in
neura activity [14-16]. Evidence for this idea comes from several related lines of research at
different levels of description. Variable and inconsistent behavior, like those observed in
ADHD [17,18] and other contexts [e.g., learning, aging, developmental dyslexia 19-21], has
been suggested to correlate with increased neural noise. A number of neuroimaging studies
have also highlighted increased brain signal variability in ADHD [22-25]. At the neuronal
and molecular levels, drug treatments that are effective in ADHD by targeting
catecholaminergic pathways are thought to modulate neural signal-to-noise ratios [26—-30].

Here, we used multi-echo rs-fMRI and diffusion spectrum imaging (DSl) to investigate
possible changes in whole-brain structure-function coupling in a large sample of well-
characterized, medication-naive adults with childhood-onset ADHD and matched healthy
controls [11]. Based on previous findings [11] and the hypothesis that psychiatric conditions
are primarily pathologies of brain hubs [31], we expected significant departures from the
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typical structure-function coupling in ADHD. Specificaly, a breakdown in the structure-
function association is likely to occur in connections involving brain hubs that belong to the
control and default-mode brain networks [31,32]. To investigate neural noise as a possible
mechanism of this structure-function decoupling [33], we adopted whole-brain computational
modeling. Our model explicitly tested the hypothesis that increased heteroscedasticity in the
levels of intrinsic neural noise drives the expected breakdown in the structure-function
coupling. Heteroscedasticity occurs when the variance of explanatory variables — neural noise
level —is not identical across brain regions.

M ethods

Sample

We recruited 80 psychotropic-nail lve adults with childhood-onset ADHD aged 18-39 years
(mean 26.7 years), who fulfilled DSM-IV-TR criteria for the current diagnosis of ADHD.
While this cohort may be narrow in terms of typical clinical ADHD phenotypes, our carefully
selected sample alowed the unequivocal assessment of ADHD-specific structural and
functional brain networks in the absence of common confounds including other
neurodevelopmental disabilities, psychotropic exposure and major psychiatric comorbidities
[10]. Results from the clinical sample were benchmarked against the findings of 123 age-
(mean 25.7 years), sex-, and 1Q-matched healthy controls. Participants were assessed at the
Department of Psychiatry, National Taiwan University Hospital (NTUH), Taipei, Taiwan.
Details regarding the recruitment procedure are described elsewhere [11] (Supplementary
Methods).

MRI acquisition and preprocessing

Brain imaging data were acquired with a Siemens 3T Tim Trio scanner equipped with a 32-
channel head coil. Details regarding the preprocessing and quality control of the multi-echo
resting-state and diffusion data are described in the Supplementary Methods
(Supplementary Figure 1). The final sample included 78 ADHD adults and 118 healthy
controls (Table 1).
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Table 1. Demographic and clinical features of the participants.

Mean (SD) Control (N=118) ADHD (N=78) Statistics

Age (18-39 years) 25.8 (5.0) 26.6 (5.5) p=0.287

Sex (M/F) 76142 54/24 p=0.484
109.8 (9.3 107.5 (104

FIQ (rangef 89?138) (rangef 80-]).37) p=0101

VIQ 108.2 (9.0) 105.7 (11.2) p=0.088

PIQ 110.4 (11.4) 1083 (16.3) p=0.289

ADHD symptoms
SNAP-1V (Parent-report)®

I nattention (0-27) 6.6 (4.9) 19.6 (5.0) p <0.001
Hyperactivity/Impulsivity (0-27) 3.2(4.4) 13.4 (6.4) p < 0.001
ASRS (Sdlf-report)
I nattention (0-36) 13.3(5.2) 27.0(4.8 p <0.001
Hyperactivity/Impulsivity (0-36) 9.1(5.2) 19.9 (6.3) p <0.001
M ean frame-wise displacement® (mm) 0.045(0.021) ?rg::e(%(())idf?) p=0.354
(range: 0.014-0.123)
0.108)
Signal dropout counts® 30.8 (22.4) 28.8 (21.4) p=0.536

#Measured by the parent-rated Swanson, Nolan, and Pelham, version IV (SNAP-1V) scale.

® A summary estimate of in-scanner motion levels of resting-state fMRI, as estimated by the Euclidian norm
(enorm: sguare root of the sum of sguares of the differences in motion derivatives), computed with AFNI's
1d_tool.py.

¢ A summary estimate of in-scanner motion levels of diffusion spectrum imaging (see the Methods).
Abbreviation: ADHD=attention-deficit hyperactivity disorder; FIQ=full intelligence quotient; PIQ=performance
intelligence quotient; VIQ=verbal intelligence quotient; ASRS=Adult ADHD Self-Report Scale; M=male;
F=female; R=right; L=left; SD=standard deviation.

Structural and functional brain network construction
We generated whole-brain structural (SC) and functional (FC) connectivity matrices for each

individual, based on a common and recently validated cortical parcellation [34] (Fig. 1A, see
Supplementary I nfor mation for control analyses). Fourteen additional subcortical structures
from the Harvard-Oxford atlas were added to the parcellation, resulting in 214 total regions
(Schaefer-214 henceforth; Supplementary Table 1). Individua whole-brain tractography
maps were combined with the pre-defined anatomical boundaries defined by this Schaefer-
214 parcellation to generate a weighted SC matrix (Fig. 1B). Each edge of the network
corresponds to the total number of normalized streamlines that interconnect any two brain
regions, adjusted for the interregional fiber length [35]. For resting-state data, regional time-
series were calculated as the mean across voxels within each region included in the brain
parcellation. For each individual, Pearson’s correlations were calculated between the time-
series of all regions to calculate FC. Finally, a Fisher z-transformation was applied to the FC
matrices.
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Connection classes

We identified hub regions according to an aggregate ranking across multiple metrics
including degree, strength, subgraph centrality, and betweenness [36,37]. The top 15%
compoasite scores (N = 32, Supplementary Table 1& 2, Supplementary Figure 2) were used
to identify hub regions within each individual; al other nodes were assigned as periphery
nodes. Hub connections were defined as edges that connected any two hub nodes. Feeder
connections linked hub nodes to periphery nodes, and local connections linked periphery
nodes (Fig. 1C) [32,38].

Structure-function relationships

Brain network structure-function relationships were conducted in line with previous research
[32]. First, non-zero SC values within each individual connectome were isolated and
normalized using a rank-based inverse Gaussian transformation [39]. The resulting SC values
were correlated with corresponding FC values (i.e., the same edges). This analysis produced a
single Pearson’s r value that summarized the global structure-function association for each
individual [40]. These values were used to populate group distributions and were
subsequently contrasted using between-group statistics. This entire procedure was completed
at the level of the whole network and within each respective connection class: hubs, feeders,
and local edges.

Previous work investigating resting-state networks, including data from the current cohort
[11], has highlighted the key role of control, default-mode, and sensory networks in adult
ADHD [6,7]. Based on these results, we also tested for specific changes in SC-FC coupling
within these networks. A minimum of 50 of edges was used to infer structure-function
relationship, thus control networks were defined as the combination of fronto-parietal,
alongside dorsal and ventral attention affiliations from the adopted parcellation, while
sensory connections included both visual and somatomotor affiliations. Default-mode
connections were as in the original parcellation. Once SC-FC coupling was estimated within
each network, the mean r values (Control-ADHD) were presented within and between each
network.

Relationship between structure-function coupling and behavioral symptoms of ADHD

Given the notion that measures of ADHD symptoms are continuously distributed in the
general population [41,42], we investigated brain-behavior relationships across both ADHD
and control groups (Fig. 1C). Inattention and hyperactivity-impulsivity symptoms based on
the parent-rated Swanson, Nolan, and Pelham, IV (SNAP-1V) [43] and self-rated Adult
ADHD Self-Report Scale (ASRS) [44] (Table 1) were used in the analysis. These four
symptom items (two from each measure) were transformed using a rank-based inverse
Gaussian, then entered into a principal component analysis to reduce the dimensionality of
the data. The first component, accounting for 81% of the variance, was then correlated with
the structure-function coupling of the whole sample (Supplementary Table 3).
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Statistical comparisons between groups

To ensure that the SC density did not explain between-group differences, summed binary and
weighted degrees were compared between groups. Average connection weights within each
connection class were compared between each group. In addition, the network based statistic
(NBS) [45] was used to explore any possible differences in SC between controls and ADHD
(5000 permutations, threshold t = 3). ADHD-associated aterations of FC using NBS have
been reported in our initia study on this sample [11].

Mann-Whitney U tests were used to identify possible differences in the structure-function
association between control and ADHD groups. Bonferroni correction (family-wise error
rate, FWE) for multiple comparisons was applied to follow-up statistics, with agyg < 0.05
indicating statistical significance. Effect sizes (r« were reported for al tests using the

formular, s = \/ﬁ (Rosenthal, 1994). For this metric, re = 0.1 is considered a small
effect, r¢r = 0.3 is considered medium, and rg = 0.5 is considered a large effect [46].

Statistical analyses were performed in MATLAB (Mathworks) with code available online
(https://github.com/ljhearne/ ADHDSCFC).

Empirical analysis
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Fig. 1 Conceptual overview of the analysis pipeline. A. Analyses were conducted using a whole-brain
parcellation including 214 cortical and subcortical regions. Replication analyses were performed
using two alternative brain parcellations (see text). B. Structural (SC) and functional connectivity
(FC) matrices were derived from diffusion spectrum imaging (DSI) and multi-echo resting-state fMRI
data, respectively. Darker colorsindicate higher normalized streamline counts (SC) and higher Fisher-
z normalized Pearson’s correlation values between every possible pair of brain regions (FC). C. The
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topological organization of the SC matrices was examined to derive measures of different connection
types:. hub connections, feeder connections, and local connections. Individual-level correlations
between SC and FC were used to estimate structure-function coupling, which was then analyzed with
between-group datigtics. D. A computational model was used to assess the potential neural
mechanisms that lead to decreased structure-function coupling. Empirical SC was used as input in the
model and model parameters were estimated by fitting to empirical FC. We systematically assessed if
an increase in the noise heterogeneity in hub or peripheral nodes could result in a marked dissociation
between functional and structural connectivity.

Computational modeling: Assessing the neural factors driving structur e-function breakdown
We adopted whole brain computational modeling to ssimulate SC-FC coupling. We tested the
hypothesis that increased heteroscedasticity in the levels of intrinsic neural noise was
associated with differences in SC-FC coupling between groups. Specifically, we manipulated
the levels of heteroscedasticity, which occurs when the variance of explanatory variables (i.e.,
neural noise level) is not identical across brain regions. The model incorporates SC to
represent the strength of connections between brain regions. In addition to the weights
specified in the empirical SC matrix, structural connections are scaled by a global coupling
parameter. This parameter can then be varied systematically to simulate and compare the
global dynamics emerging from the model with the empirical FC derived from the rs-fMRI
data.

We chose asimple stochastic linear model of the Ornstein-Uhlenbeck type [47-49]. The main
motivations behind this choice were that the model: (i) allows us to simulate whole-brain
patterns of FC from SC matrices; (ii) enables tests of the hypothesis that increased
heteroscedasticity of neural noise levels results in a breakdown in structure-function
coupling; (iii) can be considered a generic linearization of more complex models with a stable
fixed point (a mathematical approach at the core of e.g. dynamic causal modeling for fMRI
[50]); and (iv) permits a direct analytical derivation of FC from empirical SC without the
need of computationally demanding numerical simulations (Supplementary Figure 3& 4).
The model equation is:

N
de- = <—xi + CZ WL]x] > dt + O',:dWi
j=1

where x; is the activity of the i-th region; c is the global coupling strength which rescales the
strength of structural connections of the system; W;; is the connectivity weight to region i
from region j (as specified by the empirical SC matrix); o; is the intrinsic noise
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amplitude/level of thei-th region, and defines the size of random increments o;dW; in the
dynamics of the region, and N is the total number of regions in the connectome. Previous
modeling studies [48,49] have considered the noise levels to be constant across the whole
network (i.e, al o; are identical). In light of previous suggestions [14,51-53], we
hypothesized that heteroscedasticity across a specific subset of brain regions (hubs or
periphery) would have a detrimental impact on SC-FC decoupling. To test our hypothesis, we
systematically analyzed varying degrees of heteroscedasticity in the noise levels in distinct
subsets of regions independently (hub and periphery regions). A comprehensive description
of the modeling can be found in the Supplementary Methods (Supplementary Figure5).

Results

Smilar structural connectivity between groups

Results showed no difference in weighted (p = 0.89, z = 0.13, r& = 0.01), or unweighted (p =
0.24, z= -1.19, rg = -0.08) summed degree across groups. Likewise, the whole-brain
network-based statistics comparing ADHD and healthy control groups revealed no significant
differences in structural connectivity between the groups (ADHD > controls, p = 0.63;
controls > ADHD, p = 0.78). Next, we sought to investigate potential differencesin classes of
structural connections, namely hubs, feeders, and local connections. No significant group
differences were observed when comparing mean connection strength within hub (p = 0.86, z
=-0.17, r¢t = -0.01), feeder (p = 0.77, z=-0.29, r« = 0.04), or local connections (p =0.23, z=
1.21, reg = 0.09).

Structure and function coupling in ADHD isreduced in feeder connections

When considering all edges within the network, results indicated a significant difference in
SC-FC coupling (p = 0.01, z = 2.51, rg = 0.18, Fig. 2A). We then assessed the contribution
to this effect of each connection class (hub, feeder or local). Results showed that compared to
controls, ADHD had a significantly lower SC-FC association in feeder connections of a non-
trivial effect size (pewe = 0.005, z = 3.10, rg = 0.22). No between group differences were
found in hub (ppwve = 1, z = 0.55, rg = 0.04) or local (prwve = 0.33, z = 1.60, rg = 0.11)
connections (Fig. 2A).
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Fig. 2 Sructure-function relationships in drug-naive adults with ADHD and healthy matched
controls. A. Didributions of r values across the whole connectome and the three connection
classeq[ 73]. Significant differences between ADHD and Control groups were observed in the whole
connectome but were driven by a large group difference in feeder connections. B. Mean differencesin
SC-FC coupling (Controls minus ADHD) when constrained to feeder connections within and between
control, default-mode, and sensory functional networks. The largest deficit in SC-FC coupling in
ADHD compared to controls were found between control and sensory network connections (r =
0.026). C. Correlation between symptoms and SC-FC coupling in feeder connections. SC-FC
coupling strength was negatively correlated with the ADHD symptom factor scores derived from
principal components analysis. * < 0.05, ** < 0.01 corrected for multiple comparisons.

Feeder structure-function decoupling in control, default-mode, and sensory brain networks
To further explore the anatomical specificity of the observed deficits in structure-function
coupling, we isolated feeder connections that belonged to control, default-mode, or sensory
(merging somatomotor and visual) networks. As per the previous analysis, we correlated SC
and FC values for connections within and between the selected brain networks. This resulted
in a three-by-three matrix for both ADHD and healthy control groups that represented the
degree of SC-FC coupling within and between control, default mode, and sensory networks.
The largest reduction in SC-FC associations in ADHD compared to healthy controls were
located in connections between control and sensory networks (Fig. 2B).

The magnitude of structure-function decoupling correlates with the severity of ADHD

symptoms
Individual symptom scores captured by PCA linearly correlated with indices of structure-
function coupling in feeder connections, such that lower structure-function coupling was

associated with more severe ADHD symptoms (p = 0.0004, r = -0.25, Fig. 2C).
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Noisein hubs and periphery as a neural mechanism for structure-function breakdown
Finally, we sought a neural mechanism for how altered structure-function relationships could
emerge in the absence of significant differencesin the connectome. In particular, we aimed to
use computational modeling to explain our finding of selective deficits in feeder connection
SC-FC coupling. We systematically explored two scenarios with noise heteroscedasticity —
i.e., increased heterogeneity in the intrinsic neural noise levels o; across brain regions.

In the first scenario, we analyzed the case of heterogeneity between hubs and periphery
(o4 # op) for hub nodes (H) and peripheral regions (P), maintaining o, and g, constant
within each class of regions. Exploring ranges of g;; and g, (Fig. 3A-C) we analyzed the
changes in SC-FC coupling for the three classes of connections (hub, feeder, and local). We
found that feeder connections were the most susceptible to subtle imbalances between
intrinsic noise levels in hub and periphery regions, reflected in the quick decrease in SC-FC
coupling (Fig. 3B). On the contrary, hub and local connections exhibited only small changes
(Fig. 3A&C). Specificaly, a small imbalance such that oy < gp, with o, 10% larger than
oy, produced a slight (< 2%) reduction in SC-FC coupling in hubs compared to the
homogenous g, = op case, similar to the empirically observed slight decrease for hub
connections in Fig. 2A (< 2%). Conversely, a 10% imbalance in the opposite direction
(oyg > op) yielded a negligible (~0.3%) increase in hub SC-FC coupling. The increased
sensitivity of feeder connections was demonstrated by the same 10% imbalance (oy < gp)
resulting in a 4% decrease in SC-FC coupling for feeder connections compared to the
homogenous case. Importantly, an imbalance of approximately 50% (o4 < op) Was required
to obtain the 10% decrease in SC-FC coupling empirically observed in ADHD feeder
connections (Fig. 2A). This larger imbalance also resulted in a < 2% reduced SC-FC
coupling in hub connections, again in accordance with empirical results. Thus, larger
differences between mean noise amplitude levels in hubs and periphery led to greater SC-FC
decoupling specific to feeder connections, mirroring the selective deficits observed in
ADHD.

In the second scenario, we modeled the case where the noise levels (g;) within hubs and
periphery also varied from region to region. This allowed us to examine whether
heteroscedasticity within hubs and/or periphery regions could contribute to the observed
disruption of SC-FC coupling in ADHD. We systematically explored ranges of variance
(Var[oy] and Var[op]) for noise levels normally distributed around means (E[o,] and E[op]),
set here such that E[op] is 10% larger than E[o] in line with the above results for hub
connections (comparing Fig. 3A to Fig. 2A). We found that connections within aregion class
(i.e., hub-hub or periphery-periphery) are resilient to increased variability of intrinsic noise
levels in the opposite type. Indeed, the SC-FC coupling in hub connections (Fig. 3D) and
local connections (Fig. 3F) remained almost constant for increased noise variability in
peripheral and hub regions, respectively. However, feeder connections (Fig. 3E) are clearly
susceptible to changes in noise level heterogeneity within either hub or periphery regions,
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which implies an increased sensitivity to heteroscedasticity could also contribute to the
disruption of SC-FC coupling in ADHD.

1: Heterogenous noise across region classes, constant within class
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Fig. 3 Modeling the effect of noise heteroscedasticity on structure-function coupling. Effects of noise
heteroscedagticity on SC-FC coupling. Top row: Scenario 1 - Noise heterogeneity between hubs and
periphery (o,# gp) for hubs (H) and peripheral brain regions (P), 6, and o, constant within each
class of regions (hubs and periphery). Bottom row: Scenario 2 - noise levels (g;) within hubs and
periphery varied from region to region. The colormaps quantify the SC-FC coupling (Pearson
correlation between SC and FC matrix entries). A/D. Hub connections. B/E. Feeder connections. C/F.
Local connections. E[+] = expected mean value; Var[:] = variance. The line in each panel corresponds

tothe case E[oy] = E[ap] (top row) or Var[oy, ]| = Var[op] (bottom row).

Discussion

The present study provides evidence of a clinically significant breakdown in brain structure-
function (SC-FC) coupling in medication-naive adults with childhood-onset ADHD. In line
with the hypothesis that hub regions are critically vulnerable to brain pathology [31,32,54],
ADHD was associated with a marked SC-FC decoupling in connections linking brain hubs to
periphera regions (feeders) within and between control and sensory networks. Modeling
results further suggest that such decoupling is potentially linked to: (i) an imbalance in noise
amplitudes in hubs and the periphery (e.g., increased 'unreliability’ in signals originating from
the periphery) and, (ii) higher peripheral heteroscedasticity (i.e., the peripheral noise is more
diverse and more difficult for the hubs to filter out). Altogether, results from this work
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propose a novel neural mechanism explaining structure-function decoupling in brain
connectivity underpinning the chronic manifestation of ADHD symptoms.

Structural networks are thought to place significant constraints on FC and local brain activity
[12,33,40]. The decoupling between FC and its structural basis is therefore thought to
represent a key index of brain network pathology in psychiatric illnesses including
schizophrenia [32,55,56]. Our results are in line with the general notion that a structure-
function breakdown in psychiatric illnesses involves anatomically defined hub brain regions
[31]. The observed association with behavior, indicating that reduced structure-function
coupling in feeder connections is related to higher severity of ADHD symptomology,
provides support for the clinical relevance of this deficit in ADHD. By using a parsimonious
model explaining the emergence of functional connectivity from underlying anatomical
connectivity, we found that increased heteroscedasticity in intrinsic noise levels, either in
hubs or periphery, has a strong detrimental effect in feeder connections, and to a lesser extent
in hub-hub connections.

Physiologically, reduced SC-FC coupling due to increased noise heteroscedasticity in
periphera regions can be understood as brain hubs being unable to average out incoming
periphera functional disruptions. This adds weight to the notion that ADHD symptoms may
arise from increased neural noise in the activity of frontal hub regions composing fronto-
parieta and default-mode networks [23]. These brain networks have been tied to
psychological functions critically impacted by ADHD, including cognitive control, sustained
attention, and behavioral variability [57-60]; with activity being shown to be more variable in
ADHD compared to controls [22—24]. This abnormal brain network activity can be, at least in
part, restored by methylphenidate treatment [61-63]. In line with the above, a proposed
mechanism for this therapeutic effect is the modulation of neural noise’'s characteristic 1/f*
spectrum [15]. Because our model dynamics have a 1/f* noise spectrum (Supplementary
Figure 4), current results provide support for this hypothesis.

Our empirical findings showed that feeder connections are the most affected by the
decoupling between function and anatomy. Feeder connections comprise long-range
anatomical routes allowing efficient communication between remote brain regions belonging
to different brain networks [38]. We here found that connections within control networks, as
well as between regions comprising control and sensory networks, contributed to the overall
reduction in structure-function association in ADHD. These findings are in agreement with
previous neuroimaging studies in ADHD [6,7,64,65] and healthy controls [58,66],
highlighting the key role of these connectivity patterns to support normal and pathological
attention and inhibitory processes. We also note that altered patterns of FC, and SC-FC
decoupling, can occur in the absence of deficits in SC [55]. In fact, whereas white matter
connections are predictors of FC [40], the opposite is not always true [67].
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The absence of significant group differences in the structural connectome is at odds with
some previous reports [3,4]. Due to the sample size and the quality of the data, it is unlikely
that the negative finding reported here is due to a lack of statistical power in detecting
meaningful differences in the ADHD connectome. Moreover, our result is consistent with
recent work showing the existence of FC abnormalities with preserved white matter
propertiesin ADHD [68]. The discrepancy between our findings and earlier literature [3] may
be explained by non-neural factors. For example, the absence of significant differences
between the ADHD and control connectomes reported here may reflect our emphasis on
comparable levels of head motion between the two groups; a critical factor that produce
spurious group differences in ADHD [3,69]. Our cohort of psychotropic-naive adults with
established childhood-onset ADHD in the absence of co-occurring psychiatric conditions
may also contribute to this negative finding, as psychostimulant exposure [70] and
comorbidity [71] have been reported to affect SC in ADHD. Whereas our results cannot
completely exclude the presence of altered white matter integrity in ADHD, they suggest that
any such differences are small overal, and the manifestation of core ADHD symptoms is
underpinned by functional deregulations and related decoupling in SC-FC. Further work in
broader clinically-representative samples will be necessary to parse the contributions of
factors including comorbidities and medication to the integrity of the connectome [10,72].

By combining functional and diffusion-weighted imaging with computational modeling, our
study has advanced the understanding of neural mechanisms that underpin chronic ADHD
symptoms. More specificaly, our work showed that a clinicaly meaningful function-
structure decoupling in ADHD is likely related to increased neural noise heterogeneity
between hubs and periphery regions. This knowledge is consistent with the positive effect of
current pharmacological interventions for ADHD and provides neurobiological support for
future clinical research focusing on reducing periphery-to-hub noise amplitude ratio and
peripheral noise heteroscedasticity using targeted interventions including brain stimulation.
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Supplementary Methods

Participants and recruitment procedure

Recruitment occurred via advertisements at hospitals, colleges, and online. Potential adult
participants were screened using the Taiwanese version of the Adult ADHD Self-Report
Scale (ASRS) v1.1 [1]. Individuals deemed €ligible to enter the study (i.e., they exhibited
clinically relevant ADHD symptoms based on ASRS) were invited to the special clinic for
adult ADHD at the Department of Psychiatry, National Taiwan University Hospital, Taipel,
Taiwan for a clinical interview conducted by a board-certified child psychiatrist with
extensive experience in ADHD diagnosis, intervention, and research across lifespan (author
S.S.G.). Participants in the adult ADHD group were required to fulfil two criteria: i) they
needed to currently demonstrate more than 6 items of ADHD symptoms as defined in the
DSM-IV-TR in either inattentive, hyperactive-impulsive, or both domains; ii) ADHD
symptoms must have occurred, or be noted before twelve years of age. This diagnosis of
childhood-onset adult ADHD was based on both the clinical interview with the participants,
and the Chinese version of the Kiddie-Schedule for Affective Disorders and Schizophrenia-
Epidemiological version (K-SADS-E) interview with the parents. The ADHD diagnosis was
further confirmed by the Conners' Adult ADHD Diagnostic Interview (CAADI) [2] and the
modified adult version of the ADHD supplement of the Chinese version of the K-SADS-E for
childhood and current ADHD [3]. Besides ecologically-valid unstructured clinical interviews,
DSM-IV psychiatric diagnoses were also confirmed by the semi-structured Chinese version
of the Schedule of Affective Disorders and Schizophrenia-Lifetime (SADS-L) [3,4]. Matched
healthy controls were recruited using the same procedure adopted for the ADHD group;
Control participants received the same clinical evaluation and standard psychiatric interviews
by S.S.G (i.e.,, the Chinese version of the K-SADS-E for childhood diagnoses, the CAADI,
and the adult ADHD supplement plus SADS-L for ADHD and other psychiatric diagnoses at
adulthood [5]). For both ADHD and controls, the following exclusion criteria were adopted:
medical and mental illness other than ADHD, substance abuse, past or current use of
psychotropic medication, and cognitive deficits (< 80 full-scale |Q measured by the Wechsler
Adult Intellectual Scale-Third Edition [6]). Our sample selection strategy allowed the

unequivocal assessment of brain mechanisms underpinning core symptoms of chronic ADHD
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[7]. However, the interpretation of current results must acknowledge that the specificity of

our clinical group is biased and reduces generalizability (see main text).

Measures for the validity of clinical diagnosis

The Chinese version of the K-SADS-E based on the DSM-IV-TR was developed by Gau et al.
[5]. Rigorous methodological processes for the development of this instrument were
implemented, including translation, back-translation, cultural adaptation, and assessment of
psychometric properties.[5] To obtain information on ADHD symptoms and diagnoses in
both childhood and adulthood, S. S. Gau further established a modified adult version of the
ADHD supplement, which includes ADHD, oppositional defiant disorder, and conduct
disorder derived from the Chinese K-SADS-E [8]. This adult version of the ADHD
supplement and the Chinese SADSL have been widely used in our previous studies [3,4,9—
13].

The study was approved by the Research Ethics Committee of the NTUH (201401024RINC)
and registered as a clinical trial (NCT02642068). Written informed consent was obtained
from al participants. Participants were recruited from March 2014 to December 2016.

Measures of ADHD symptoms

The participants’ ADHD symptoms were dimensionally estimated by parent reports on the
Chinese version of the Swanson, Nolan, and Pelham, version IV (SNAP-1V-C) scale [14] and
self-reports on the Chinese version of the Adult ADHD Self-Report Scale (ASRS-C) [1]. The
SNAP-IV-C, a 26-item scale, consists of Inattention (Item 1-9) and Hyperactivity/Impulsivity
(Item 10-18), and Oppositionality (Item 19-26), corresponding to the core symptoms of
ADHD and ODD on DSM-IV-TR, respectively. The 26 items of the SNAP-1V are rated on a
4-point Likert scale, with scores of 0-4 representing: “not at all,” “just alittle,” “quite a bit,”
and “very much.” The norms and psychometric properties of the Chinese version of the
SNAP-IV (SNAP-1V-C) for parent reports have been established [14] and widely used in
clinical and epidemiologica studies in Taiwan. The raw scores of items 1-18 were used to
measure the inattention and hyperactivity-impulsivity symptoms based on parents' rating in
the study.
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The ASRS is a validated 18-question scale that was developed in conjunction with the
revision of the World Health Organization Composite International Diagnostic Interview.
The ASRS includes questions about the 9 inattention and 9 hyperactivity-impulsivity
Criterion A symptoms of ADHD in the DSM-IV-TR, each question asking respondents how

often a given symptom occurs over the past six months on a 0-4 scale (“never”, “rarely”,

“sometimes’, “often”, “very often”). The psychometric properties of the Chinese version of
the ASRS (ASRS-C) had been established in a sample of 4,329 Taiwanese young adults [1].

The ASRS-C has been widely used in adult ADHD studies in Taiwan.

Imaging acquisition

The imaging protocol included: localizer, resting-state fMRI (7 min and 39 seconds), T1-
weighted, and DSI. Functional images were acquired using a multi-echo EPI sequence: TR =
2.55 s; flip angle = 90°; matrix size = 64 x 64; in-plane resolution = 3.75 mm; FOV = 240
mm; 31 oblique slices, alternating slice acquisition slice thickness 3.75 mm with 10% gap;
iPAT factor = 3; band- width = 1698 Hz/pixel; echo time, TE = 12, 28, 44 and 60 msec). T1
images were acquired using an MPRAGE sequence with a TR = 2 s; TE = 2.98 msec; flip
angle = 9°; matrix size = 256 x 256; inversion time = 900 msec; voxel size = 1 mm®. DS
acquisitions used a pulsed-gradient spin-echo diffusion EPI sequence with a twice-refocused
balanced echo repetition time/echo time = 9600/130 msec, slice thickness = 2.5 mm,
acquisition matrix = 80 x 80, field of view =200 x 200 mm, in-plane spatial resolution = 2.5
mm x 2.5 mm, 101 diffusion-encoding directions covering a half g-space 3D grid with radial
grid size of 3, bex= 4000 S/mm? [15].

MRI preprocessing

In short, the resting-state fMRI preprocessing pipeline included: quality control,
comprehensive data denoising using multi-echo independent components analysis (ME-ICA
v3.0)[34], coregistration to individua anatomical images, non-linear normalization to MNI

space, and filtering (0.01~0.1 Hz). The full preprocessing pipelineis reported elsewhere [9].

The DSI data underwent an initial quality assurance procedure: Individual DSI images [54

slices x (101 directions DW images + 1 null image) = 5,508 images| were scrutinized by
S3
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calculating signals in the central square (20 x 20 pixels) of each image. Signal loss was
defined as the average signal intensity of an image lower than two standard deviations from
the mean of all images (after correcting for its b value) [16]. As jerky head motion induces a
signal loss in DS images, these signal dropout counts were considered a proxy estimate for
overall levels of in-scanner head motions. Individuals DSI data with more than 90 images of

signal loss, at either baseline or follow-up, were excluded from further analyses [16].

DSl data were reconstructed using the g-space diffeomorphic reconstruction (QSDR)
approach implemented in DSI Studio (www.dsi-studio.labsolver.org) [17]. QSDR first
computed the quantitative anisotropy in each voxel in native space. Then the reconstructed
images were warped to a template in Montreal Neurologica Institute (MNI) space using
constrained diffeomorphic mapping. In MNI space, a diffusion sampling length ratio of
1.25 mm with five fiber orientations per voxel and 8-fold orientation distribution function
tessellation (642 sampling directions) was used to obtain the spin distribution function, and
the output resolution was 2 mm. A deterministic fiber tracking algorithm [18] was performed
with extreme turning angle threshold of 60°, step size of 1.0L.mm, minimum and maximum
lengths of 100/ and 400 mm, respectively. 10,000,000 streamlines were seeded throughout
the whole brain and terminated when the local quantitative anisotropy fell below values
estimated using Otsu's threshold [18], which gives the optimal separation between
background and foreground. Other tracking parameters as specified in DSI Studio were:
smoothing: 0; seed orientation: al; seed position: subvoxel; randomize seeding: off; direction

interpolation: trilinear.

Head motion

Micro-head movements (mean framewise displacement, FD) [19] for rs-fMRI and signa
dropout counts [16] for DSI, were not significantly different between ADHD and controls (p
= 0.35 and 0.54, respectively). Individual differences in subject head motion during structural
and functional data acquisition did not correlate with ADHD symptoms (first principal
component, Supplementary Table 3); DSI motion-related signal loss: r =-0.02, p=0.84 in
ADHD, r =-0.16, p = 0.16 in controls; resting state FD: r = 0.14, p=0.13in ADHD, r = 0.08,
p = 0.50 in controls (see Figure S1).
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Figure S1. Correlation between functional (framewise displacement, left) and structural (DSI motion,
right) head motion and ADHD symptoms. Neither ADHD (teal colors) or control (grey colors)

demonstrated significant associations between head motion and symptoms.

Varying definitions of brain network hubs exist [20]. Here, we identified hub-regions
according to aggregate ranking across multiple metrics [21,22]. First, for each participant,
each node's “hubness” was calculated from its composite average ranking across degree,
strength, betweenness and subgraph centrality scores using the brain connectivity toolbox
[23]. The top 15% composite scores (N = 32, Figure S2, Supplementary Table 1& 2) were
used to identify hub-regions within each participant; al other nodes were assigned as

periphery nodes.
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Figure S2. Structural hub topology in adult ADHD and healthy matched controls. A. Brain rendering
of group average hub (red) and periphery (black) nodes. B. Individual-level representation of hub
regions in canonical resting-state brain networks. Darker lines indicate more consistency within each
group (i.e., dark red represents every individual had a hub node within the ADHD or Control group).
Overall, this plot highlights the consistency in detecting hub regions at the level of single subjects
between groups.
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Statistical comparisons between groups

Across all statistical tests within-group data distributions were not normal (Kolmogorov-
Smirnov test, p < 0.05), thus non parametric statistics were used (the Mann-Whitney U test).
A significant Mann-Whitney U test can be interpreted as either a difference in distribution, or
a difference in the medians between two groups. Thus for significant findings we evaluated
whether the variances between groups were similar. Levene's test (p > 0.05) confirmed that
the variance between the groups was similar, which suggests a difference in medians across

groups.

Empirical results control analyses

A number of tests were conducted to establish the reliability of our empirical findings. To
ensure that our chosen brain parcellation had little bearing on the results [24], we repeated the
analyses in two other, independent brain parcellations: Shen-213 [25] and Brainnetome-244
[26]. The reported effects were all successfully replicated (Supplementary Table 2). Using
these alternative brain parcellations, we aso found that adults with ADHD exhibited weaker
structure-function coupling in hub connections. However, the effect size of these between-

group differences was consistently smaller than the effect in feeder connections.

Computational modeling
The dynamics of each region in the connectome are modeled as a multivariate Ornstein-
Uhlenbeck process with independent white Gaussian noise drive, and obey the following

stochastic differential equation:

N
d.Xi =|—x+c Z WUX} dt + O'idWi (Sl)
Jj=1

where x; is the activity of the i-th region; c is the global coupling strength which rescales the
strength of structural connections of the system; W; is the connectivity weight to region i
from region j (as specified by the empirical SC matrix); o; is the intrinsic noise

amplitude/level of the i-th region, and defines the size of zero-mean Gaussian random
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increments/steps in the dynamics of the region, and N is the total number of regionsin

the connectome.

In this work, we hypothesized that each region has a different value of . Figure S3 shows
schematics of how the heterogeneous intrinsic noise levels, in combination with the
interactions defined by the SC matrix, affect the functional timeseries of a subject. Figure
S3A illustrates probability density functions (pdfs) of the random increments in Gaussian
noise () scaled by in Eq. (S1), for three different regions colored in red, blue and
yellow. The mean of each pdf is assumed to be zero, while the standard deviation of each pdf
is , i.e, the intrinsic noise amplitude of the region. Figure S3B shows the expected
functional timeseries of the same regions illustrated in Figure S3A. The second-order
fluctuations (i.e., variance) of these timeseries are related to the intrinsic noise amplitude ( ).
While estimating  empirically is possible [27], longer recording sessions would be needed
to derive these values accurately for each individual [28]. Thus, we tested a relatively broad
range and distributions for  that preserved the validity of the model. It is aso important to
note that the current model produces a 1/f" noise spectrum as detected in emprirical EEG data
(Figure $4).
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Figure S3. Schematic of functional time series with different intrinsic noise amplitudes (s). A. The
probability density distribution p(o;dW;) of the random increments in Gaussian noise g;dW; for
three regions A (red), B (blue) and C (yellow). The values of ¢; increase in the following order oa < o3
<oc. That is, region A hasthe smallest noise amplitude whereas region A hasthe largest. B. Exemplar
modeled functional timeseries for regions A (red), B (blue) and C (yellow), showing the effect of
increasing o.

10° N\

heteroscedastic {Var[oP] > Var[arH])
——— homoscedastic

i el

2 10 50 200
Frequency [Hz]
Figure $4. Power spectra of neural noise produced by our model. The spectra follow the

characteristic 1/f* law as detected in empiricall EEG data. The power spectral density (PSD) is
expressed in arbitrary units (au %¥Hz). Gray line. Homoscedastic case E[op]=E[on]=1, and
Var[cp]=Var[on]=0. Green line: Heteroscedastic case with E[cp]>E[cn] (1.5 and 1.2, respectively),
and Varop>Var[oy] (0.2 and 0.02, respectively). Compared to the homoscedastic case, the
heteroscedastic case is characterized by increases in neural noise. This is reflected by the curve

shifting upwards toward higher power.

Effects of heter oscedagticity on the structure-function coupling

We hypothesize that increased heteroscedasticity, that is, increased heterogeneity in the
intrinsic noise levels across brain regions is a driving factor for the observed breakdown
between structure and function in ADHD. Thus, to systematically study the effects of
heter oscedasticity we use the model described in the previous subsection. To select the values
of a;, we first consider the fact that there are two main groups of regions: hub regions (H) and
peripheral regions (P). The individua intrinsic noise amplitudes (o;) are assumed to be
samples of either a;; or g, which are random variables with distinct expected (mean) values
(E[-]) and variances (Var[']): (E[oy], Var[oy]) and (E[op], Var[op]).
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The first scenario analyzes the effect of distinct expected values in hubs and periphery
regions (E[oy] vs. E[gp]), While assuming Var[oy | = Var[op] = 0. This study produced the
2D maps presented in Figure 3A-C in the main text. These maps were calculated as the
average of 118 individual maps using the SC matrices of control subjects. On the other hand,
the 2D maps of the second study presented in Figure 3D-F (main text), calculated as the
average of 1888 individual maps, one per SC matrix of the control group (118 subjects); and,
16 different seeds of the pseudorandom number generator used to draw the values of

individua o; for each combination of (Var[oy], Var[ap]).

The second scenario analyzes the effects of varying the noise levels between the groups and
aso from region to region (E[oy] # E[op] and Var[oy] # Var[op])). Specificaly, we
calculated 2D maps of SC-FC coupling for hub, feeder, and local connections for varying
degrees of intra-hub and intra-periphery heteroscedasticity, for different values of asymmetry
between E[oy; | and E[op|: 0%, 10%, 20% and 50%, always for oy < gp. The 2D maps of SC-
FC coupling for feeder connections are shown in Figure S5 A-D. The bottom panels (E-G)
are the ‘ percentage difference maps’ between the 2D map in Figure S5 A with E oy |=E[0p],
and the maps with an asymmetry between mean noise levels in hub and periphery regions
(Figure S5 B-D). Decreases in SC-FC coupling with respect to the map shown in Figure S5
A are shown in blue, while increases are shown in red. These results show that: (i) the
presence of an asymmetry in the noise level between groups is the primary driving factor of
SC-FC decoupling, illustrated by the shrinking area of high SC-FC coupling in Figure S5 A-
D; and, (ii) increased heteroscedasticity within the peripheral regions is the second factor that
further breaks down the SC-FC coupling, illustrated by the blue areas along the direction of

increasing Var[op].
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Figure S5. Maps of structural-functional connectivity coupling using different levels of within- and
between-group noise heteroscedagticity (top row). The bottom row shows maps of the percentage
difference between the corresponding panels above and the null between-group heteroscedasticity in
panel A. A. Between-group noise heteroscedasticity is O ( = ). B. is 10% larger than

. C. is 20% larger than . D. is 50% larger than . E. Percentage
dlfference map between map in panel A and B. F. Percentage difference map between map in panel A
and C. G. Percentage difference map between map in panel A and D. The colors represent absolute
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SC-FC coupling (top row), and positive (red) and negative (blue) percentage difference with respect
to the SC-FC couplings in panel A (bottom row).
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Supplementary Tables

Supplementary Table 1. Table of Schaefer 214 coordinates, network assignments, hub
status for CTRL and ADHD

MNI Control hubs ADHD hubs
Individual Individual
Node X Y Z Network Group (%) Group (%)
1 -254 -76.7 -135 1 1 34.7 1 25.6
2 -263 95 -123 1 0 34 0 6.4
3 55 -927 -4.1 1 1 55.1 1 56.4
4 -226 -96.8 5.9 1 0 14.4 0 19.2
5 -399 -845 102 1 0 0.8 0 2.6
6 -231 -87.1 24 1 1 229 1 30.8
7 -238 -53 9.1 1 0 17.8 1 154
8 -96 -67 -4.6 1 1 314 1 42.3
9 -141 -44.7 -2.9 1 0 10.2 0 6.4
10 -11.3 -69.8 75 1 1 51.7 1 52.6
11 121 -727 224 1 0 4.2 0 12.8
12 -75 -875 273 1 1 88.1 1 97.4
13 -69 -124 464 1 0 0.8 0 2.6
14 -48.2 -28.4 57 1 0 0 0 2.6
15 -394 -24 575 2 0 34 0 13
16 -31.3 -198 638 2 0 7.6 0 7.7
17 -26.1 -381 674 2 0 0 0 0
18 -20.3 -106 681 2 0 25 0 13
19 -66 -305 66.3 2 0 38.1 0 35.9
20 -19.1 -30.8 67.7 2 0 0 0 0
21 -505 -51 2.1 2 1 4.1 0 34.6
22 -52.6 -24.9 9.3 2 0 21.2 0 12.8
23 -369 -21 153 2 0 0 0 0
24 -549 -45 102 2 0 6.8 0 38
25 -557 -40 205 2 0 34 0 2.6
26 -529 -224 184 2 0 0 0 0
27 -56.2 -82 304 2 0 1.7 0 0
28 -473 -89 463 2 0 0.8 0 1.3
29 -434 -482 -194 2 1 49.2 1 44.9
30 -453 -69.4 -8.5 2 0 10.2 0 10.3
31 -471 -69.7 9.7 3 0 25 0 13
32 -258 -69.9 382 3 0 5.9 0 3.8
33 -167 -73 541 3 0 44.1 0 19.2
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34 -291 -598 594 3 0 6.8 0 6.4
35 -54 -264 42 3 0 0 0 0
36 -40.7 -351 4738 3 0 0 0 0
37 -30.7 -463 625 3 0 5.1 0 3.8
38 -17.2 -52.7 684 3 0 10.2 0 141
39 -316 -43 532 3 0 0.8 0 13
40 61 -254 286 3 0 2.5 0 2.6
41 -39.2 -39 -3.6 3 1 66.1 1 60.3
42 -38.9 0.9 11 3 0 0 0 0
43 -51 87 105 3 0 0.8 0 13
44 -10.7 -353 463 4 0 5.1 0 9
45 5.7 96 414 4 0 8.5 0 1.7
46 -63 -31 651 4 0 3.4 0 10.3
47 -59.7 -394  36.3 4 0 0 0 0
48 -286 428 314 4 0 11 0 9
49 -335 204 4.8 4 0 5.1 0 2.6
50 -5.6 30 243 4 1 26.3 0 26.9
51 -237 217 -199 4 0 59 0 7.7
52 -94 355 -204 4 0 11 0 16.7
53 -203 -58 -386 4 1 771 1 70.5
54 -454 -20.7 -30.3 4 0 47.5 1 42.3
55 -275 10 -34.2 5 0 35.6 1 41
56 -42.4 7.7 -18.8 5 0 144 0 10.3
57 -57 -60.2 -1.4 5 0 144 0 12.8
58 -34.8 -62.3 48 5 0 4.2 0 13
59 -453 -41.7 465 5 0 0 0 0
60 -333 -489 472 5 0 4.2 0 0
61 -22.5 56 614 6 0 2.5 0 6.4
62 -41.8 402 165 6 0 16.1 0 231
63 -443 201 273 6 0 5.9 0 2.6
64 -47.7 56 289 6 0 3.4 0 13
65 -42.6 6 435 6 0 0 0 0
66 -3.1 5.3 29 6 0 2.5 0 13
67 -609 -428 -13.3 6 0 6.8 0 6.4
68 -529 -50.9 458 6 0 0 0 0
69 -39.7 187 495 6 0 10.2 0 2.6
70 -41.8 495 -5.8 6 0 8.5 0 115
71 -275 58 8 6 0 16.9 0 115
72 95 -731 374 6 0 314 0 333
73 -56 -593 571 6 0 29.7 0 28.2
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74 -47 -289 269 7 0 144 0 20.5
75 -459 -65.7 382 7 0 12.7 0 115
76 -23.7 247 49 7 0 0.8 0 2.6
77 53 55 271 7 1 38.1 0 321
78 -38 -294 36.6 7 0 5.9 0 2.6
79 -63 -545 419 7 0 9.3 0 6.4
80 -58 358 -9.7 7 0 127 0 20.5
81 -132 626 -5.7 7 1 89.8 1 83.3
82 -63 445 7.3 7 0 16.9 0 141
83 -46.6 82 -323 7 1 89 1 89.7
84 -60.3 -188 -22.6 7 0 16.1 1 141
85 -564 -58 -12.2 7 0 18.6 0 16.7
86 -58 -30.4 -3.5 7 1 11.9 0 9
87 -569 -53.8 282 7 0 0 0 0
88 -84 585 197 7 1 57.6 0 51.3
89 -111 464 45 7 0 22 0 25.6
90 -35 333 432 7 0 16.9 0 115
91 -93 17 632 7 0 16.9 0 7.7
92 -349 208 -13 7 1 20.3 0 19.2
93 -31.8 424 -134 7 0 0 0 0
94 -459 31 -1.4 7 0 4.2 0 1.7
95 -51.2 226 7.9 7 0 21.2 0 28.2
9% -384 -794 316 7 0 127 0 179
97 -111 -56 134 7 0 22 0 231
98 -259 -315 -179 7 1 70.3 1 61.5
99 -582 -41.9 74 7 0 5.9 0 6.4
100 -48.7 -574 179 7 0 0 0 0
101 287 -685 -125 1 1 37.3 1 35.9
102 486 -715 -6 1 0 3.4 0 2.6
103 113 -92.1 -5 1 0 57.6 0 66.7
104 303 -936 -3.8 1 0 136 0 16.7
105 423 -79.8 9.7 1 0 0 0 0
106 194 -90.2 214 1 1 59.3 1 65.4
107 124 -64.3 -4.6 1 0 254 1 37.2
108 163 -46.3 -1.3 1 0 195 0 154
109 85 -75 8.1 1 0 26.3 1 26.9
110 211 -59.9 7.5 1 0 144 0 179
111 113 -738 254 1 1 331 1 321
112 162 -846 394 1 1 62.7 1 62.8
113 509 -224 518 1 0 0.8 0 0
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114 467 -11 48 1 0 0 0 0
115 7 -109 516 1 0 0.8 0 0
116 392 -23.7 575 2 0 0 0 0
117 317 -406 634 2 0 0.8 0 0
118 32 -19.7 o644 2 0 17 0 13
119 29 -341 654 2 0 0 0 13
120 224 -88 67.2 2 0 6.8 0 38
121 102 -39.1 687 2 0 1.7 0 13
122 69 -233 673 2 0 5.9 0 7.7
123 20 -29.6 70 2 0 0 0 0
124 519 -144 5.3 2 0 4.2 0 9
125 63.7 -235 74 2 0 2.5 0 13
126 384 -133 146 2 0 0 0 0
127 44 -26.6 18 2 0 0 0 13
128 59 06 109 2 0 0 0 0
129 56.7 -115 144 2 0 0 0 0
130 575 -5 302 2 0 0.8 0 2.6
131 503 -532 -15.1 2 1 35.6 1 39.7
132 516 -59.6 9.6 2 1 5.1 0 2.6
133 324 -746 318 2 0 23.7 1 154
134 15 -731 529 2 0 17.8 0 17.9
135 347 -479 50.8 3 0 17 0 5.1
136 263 -61.3 58 3 0 44.1 0 29.5
137 59.7 -16.7 344 3 0 0 0 0
138 417 -31.4  46.3 3 0 0 0 0
139 85 -559 613 3 0 254 0 21.8
140 214 -481 703 3 0 9.3 0 10.3
141 343 -45 525 3 0 0 0 0
142 60 -26.2 278 3 0 17 0 5.1
143  50.8 36 405 3 0 0.8 0 0
144 412 59 -154 3 0 0.8 0 0
145 462 -34 -4.3 3 0 28 0 26.9
146 43.7 6.8 39 3 0 11 0 6.4
147 7.5 9 412 3 0 0.8 0 13
148 94 -15 412 4 0 0 0 0
149 106 -355 46.8 4 0 2.5 0 3.8
150 8.7 35 656 4 0 5.9 0 10.3
151 621 -37.5 372 4 0 0 0 0
152 433 449 105 4 0 6.8 0 141
153 297 481 271 4 0 9.3 0 5.1
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154 34 21 -8.4 4 0 0 0 13
155 362 238 4.8 4 0 0 0 0
156 72 304 279 4 1 12.7 0 141
157 12 386 -215 4 0 8.5 0 10.3
158 286 224 -189 4 0 144 0 179
159 49 364 -14 5 0 28.8 0 29.5
160 149 645 -7.6 5 1 83.9 1 78.2
161 29.9 82 -37.6 5 1 60.2 1 66.7
162 469 -128 -34.8 5 1 66.9 1 74.4
163 253 -11.4 -31.3 5 0 314 0 26.9
164 386 -34.7 -23 5 1 30.5 1 28.2
165 376 -629 473 6 0 8.5 0 115
166 462 -369 486 6 0 0 0 0
167 26 71 577 6 0 4.2 0 13
168 514 106 203 6 0 2.5 0 0
169 454 229 26 6 0 7.6 0 10.3
170 4.8 36 296 6 0 4.2 0 9
171 60.7 -13.1 -21 6 1 153 1 16.7
172 626 -419 -114 6 0 1.7 0 3.8
173 509 -58.7 443 6 0 17 0 2.6
174 528 -41.7 482 6 0 0 0 0
175 406 33 372 6 0 0 0 0
176 421 143 49 6 0 119 0 154
177 353 464 -125 6 0 8.5 0 19.2
178 296 58.2 4.9 6 0 5.9 0 6.4
179 79 256 547 6 0 4.2 0 10.3
180 235 243 527 6 0 0.8 0 0
181 144 -696 364 6 0 22 0 115
182 6.5 -582 443 7 0 5.1 0 5.1
183 52 -255 306 7 0 21.2 0 231
184 544 -50.1 283 7 0 0.8 0 0
185 283 299 429 7 0 0 0 0
186 6.6 -488 304 7 1 55.1 1 51.3
187 79 419 4 7 0 254 1 231
188 6 291 149 7 0 0 0 13
189 9 575 188 7 1 88.1 1 83.3
190 624 -26.6 5.4 7 0 0 0 13
191 471 127 -295 7 0 46.6 1 47.4
192 151 461 437 7 0 23.7 0 29.5
193 509 278 0 7 0 39.8 0 44.9
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194 471 -695 279 7 0 34 0 10.3
195 128 -545 15 7 0 10.2 0 154
196 274 -353 -14.7 7 0 34.7 0 47.4
197 548 -6.3 -9.9 7 0 11.9 0 10.3
198 522 -31.3 15 7 0 0 0 0
199 569 -45.3 94 7 0 0 0 0
200 60 -386 16.7 7 0 0 0 0
201 -101 -189 6.7 8 0 195 0 9
202 -12.7 10 9.6 8 0 0.8 0 13
203 -251 0.7 0.5 8 0 29.7 0 231
204 -193 -49 -1.1 8 0 34 0 0
205 -255 -216 ~-151 8 0 17.8 0 19.2
206 -231 -46 -182 8 0 0.8 0 0
207 95 116 -7.3 8 0 0 0 0
208 112 -181 7 8 0 11 0 179
209 133 11 103 8 0 0 0 0
210 25.6 2 04 8 0 144 0 179
211 20 -39 -1.1 8 0 0 0 2.6
212 271 -201 -152 8 0 12.7 0 10.3
213 234 -35 -183 8 0 0 0 0
214 95 123 -6.6 8 0 0 0 13

Note: Coordinates and percentages are rounded to one decimal place. For afull description of
the Schaefer parcellation, please see [29]. The hub-group and hub-individual columns
represent the data presented in Figure S1A and Figure SI1B respectively.
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Supplementary Table 2. Empirical comparison across brain parcellations

Schaefer214 Shen268 Brainnetome246

Degree (p) 235 .225 367
Weighted degree (p) .895 .796 .889
SC Hubs (p) .864 .999 414
SC Feeder (p) .619 .619 77
SC Local (p) 228 254 .205
SC-FC (p) 012 011 .003
SC-FC Hubs (p) 583 021 .008
SC-FC Feeders (p) .002 021 .007
SC-FC Loca (p) A1 173 .058
Feeder-behavior correlation (r) -25 -21 -.23

Note: p-values differ from the man text as they have not been corrected for multiple
comparisons in the follow-up SC-FC contrasts. The main findings, whole brain SC-FC coupling
differences, feeder SF-FC coupling differences, and brain-behavior correlations replicate across
all three templates. In addition, in the replication templates (Shen and Brainnetome) differences
were found in hub connections. Gray shading indicates p < 0.05 uncorrected.
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Supplementary Table 3. Effect of hub definition on results

12.5% 15% 17.5%

Degree (p) .235 24 235
Weighted degree (p) .895 90 .895
SC Hubs (p) .854 86 .354
SC Feeder (p) .88 62 .304
SC Local (p) 199 23 284
SC-FC (p) 012 012 .012
SC-FC Hubs (p) 433 58  .648
SC-FC Feeders (p) .006 .002 .001
SC-FC Local (p) .048 A1 195
Feeder-behavior correlation (r) -.23 -.25 -.29

Note: p-values differ from the main text as they have not been corrected for multiple
comparisons in the follow-up SC-FC contrasts. The main findings, whole brain SC-FC coupling
differences, feeder SF-FC coupling differences, and brain-behavior correlations replicate across
all three hub definitions. Gray shading indicates p < 0.05 uncorrected.
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Supplementary Table 4. Principal component analysis loadings

Componentl Component2 Component3 Component4

Inattention SNAP-1V (parent-rated) .50 -5 - A7 -.53
Hyperactivity/Impulsivity SNAP-1V

(parent-rated) 48 -.52 .56 44
Inattention ASRS (self-rated) 52 41 -5 .56
Hyperactivity/Impulsivity ASRS (self-rated) .50 .56 46 -.46
Variance explained 80.72 9.49 6.68 311
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