

1 **Structure and autoregulation of a P4-ATPase lipid flippase**

2  
3 Milena Timcenko<sup>1\*</sup>, Joseph A. Lyons<sup>1\*</sup>, Dovile Januliene<sup>2\*</sup>, Jakob Ulstrup<sup>1</sup>, Thibaud  
4 Dieudonne<sup>3</sup>, Cedric Montigny<sup>3</sup>, Miriam Rose Ash<sup>1</sup>, Jesper Lykkegaard Karlsen<sup>1</sup>, Thomas  
5 Boesen<sup>1,4</sup>, Werner Kühlbrandt<sup>2</sup>, Guillaume Lenoir<sup>3\*\*\*</sup>, Arne Möller<sup>2\*\*\*</sup>, Poul Nissen<sup>1\*\*\*</sup>

6  
7 <sup>1</sup>DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept.  
8 Molecular Biology and Genetics, Denmark

9 <sup>2</sup>Max Planck Institute for Biophysics, Frankfurt

10 <sup>3</sup>Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud,  
11 Université Paris-Saclay, F-91198, Gif-sur-Yvette, France

12 <sup>4</sup>Interdisciplinary Nanoscience Center - iNANO, Aarhus University

13 \* These authors contributed equally

14 \*\* for correspondence contact G.L. [guillaume.lenoir@i2bc.paris-saclay.fr](mailto:guillaume.lenoir@i2bc.paris-saclay.fr), A.M.  
15 [arne.moeller@biophys.mpg.de](mailto:arne.moeller@biophys.mpg.de), or P.N. [pn@mbg.au.dk](mailto:pn@mbg.au.dk)

16  
17 **Summary**

18 P4-ATPases are lipid flippases that drive active transport of phospholipids from the exoplasmic  
19 or luminal to the cytosolic leaflets of eukaryotic membranes to maintain their asymmetric lipid  
20 composition. The molecular architecture of P4-ATPases and how they work in lipid  
21 recognition and transport has remained elusive. Using cryo-electron microscopy we have  
22 determined the structures of a P4-ATPase, specifically of the *Saccharomyces cerevisiae* Drs2p-  
23 Cdc50p, which is a phosphatidylserine and phosphatidylethanolamine specific lipid flippase.  
24 Drs2p-Cdc50p is autoinhibited by the Drs2p C-terminal tail and activated by  
25 phosphatidylinositol-4 phosphate (PI4P). We present three structures representing an  
26 autoinhibited, an intermediate, and a fully activated state. The analysis highlights specific  
27 features of P4-ATPases and reveals sites of auto-inhibition and PI4P-dependent activation. We  
28 observe the opening of a putative flippase pathway engaging conserved residues Ile508 of  
29 transmembrane segment 4 and Lys1018 and polar residues of transmembrane segment 5 in the  
30 centre of the lipid bilayer.  
31

32 **Introduction**

33 Cells and organelles are defined by lipid bilayer membranes and membrane proteins.  
34 Eukaryotic membranes of the secretory/endocytic pathways are typically asymmetric with  
35 respect to lipid distribution in the inner and outer bilayer leaflets. The resulting gradients in  
36 lipid concentration potentiate important biological processes such as membrane dynamics in  
37 morphological changes and motility of the cell, endo- and exocytosis, and signalling<sup>1-4</sup>. Due to  
38 membrane-fusion events and the activity of lipid scramblases, which move lipids between the  
39 inner and outer leaflet in both directions, lipid asymmetry must constantly be regulated and  
40 maintained. Members of two distinct membrane protein superfamilies drive the ATP-  
41 dependent unidirectional translocation of lipids against concentration gradients in the  
42 membrane; namely ATP-binding cassette (ABC) transporters and P-type ATPases of P4  
43 subtype that generally drive an inward-to-outward (flop) and outward-to-inward (flip)  
44 translocation of lipids between bilayer leaflets, respectively<sup>1-4</sup>. P-type ATPases couple  
45 transport to ATP hydrolysis via formation and breakdown of a phosphoenzyme in a functional  
46 cycle with so-called E1, E1P, E2P and E2 intermediate states. The P4-ATPases specifically  
47 couple their lipid flippase activity to dephosphorylation of the E2P state<sup>5,6</sup>, i.e. similar to the  
48 inward K<sup>+</sup> transport of Na,K-ATPase, whereas E1P phosphoenzyme formation seems  
49 independent of substrate binding<sup>6,7</sup>. While recent studies have shed light on the structure and  
50 function of lipid floppases<sup>8,9</sup> and scramblases<sup>10,11</sup>, P4-ATPases have so far been studied only  
51 by bioinformatics and functional assays. To date, the transport mechanism remains enigmatic  
52 and is much debated, with models implicating either peripheral or centrally located lipid  
53 recognition sites and pathways<sup>12-14</sup>.

54

55 Most P4-ATPases are binary complexes, where a Cdc50-protein subunit is necessary for proper  
56 localization of the complex and probably also for function<sup>15,16</sup>. Mutant forms of mammalian  
57 lipid flippases have been implicated in disease, e.g. ATP8A1 and ATP8A2 in neurological  
58 disorders, ATP8B1 in progressive familial intrahepatic cholestasis type 1 (PFIC1), ATP10A in  
59 type 2 diabetes and insulin resistance, and ATP11A in cancer<sup>17</sup>. One of the best-characterized  
60 P4-ATPases is the trans-Golgi localized Drs2p-Cdc50p complex from the yeast  
61 *Saccharomyces cerevisiae*. *In vivo*<sup>18,19</sup> and *in vitro*<sup>20,21</sup> studies show that Drs2p-Cdc50p  
62 primarily flips phosphatidylserine (PS) and to a lesser extent phosphatidylethanolamine (PE)  
63 from the luminal to the cytosolic leaflet, and indicate a role of this function in vesicle  
64 biogenesis at late secretory membranes.

65

66 The C-terminus of Drs2p contains an auto-inhibitory domain<sup>22,23</sup>. Relief of auto-inhibition  
67 requires the regulatory, but non-substrate lipid phosphatidylinositol 4-phosphate (PI4P)<sup>5,22</sup>.  
68 Binding of Gea2p (a guanine nucleotide exchange factor for the small GTPase Arf) to a basic  
69 segment of the C-terminus has been reported to be necessary for activation *in vivo*<sup>22</sup>, although  
70 this is not supported by studies *in vitro*<sup>23</sup>. Furthermore, interaction of Arl1p (another GTPase  
71 of the Arf family) with the extended N-terminus of Drs2p has been implicated in flippase  
72 activity *in vivo*<sup>24</sup>. Whereas the first 104 amino acids of the N-terminus have little effect on *in*  
73 *vitro* activity, truncation of the C-terminus has a strong activating effect, but the protein  
74 remains under regulation by PI4P<sup>25</sup>. While these studies highlight the components involved,  
75 the detailed molecular mechanism of autoregulation for Drs2p-Cdc50p and for P-type  
76 ATPases, in general, remains unknown.

77

78 To determine the structure of a P4-ATPase lipid flippase and investigate the molecular  
79 mechanism of transport and autoregulation, we embarked on cryo-EM studies of the beryllium  
80 fluoride (BeF<sub>3</sub><sup>-</sup>) stabilized Drs2p-Cdc50p complex. Drs2p-Cdc50p was over-expressed in *S.*  
81 *cerevisiae* and purified in the detergent LMNG by affinity chromatography and gel filtration,  
82 resulting in a monodisperse sample containing both subunits (Supplementary Data Figure 1).  
83 Samples represent E2P phosphoenzyme-like states in the progressive steps from a fully  
84 autoinhibited P4-ATPase (E2P<sup>inhib</sup>), to an intermediate activated state in the presence of PI4P  
85 (E2P<sup>inter</sup>), and an outward-open and activated conformation captured using a C-terminally  
86 truncated enzyme also in the presence of PI4P (E2P<sup>active</sup>). The structures reveal the molecular  
87 architecture, pinpoint functional sites, and elucidate the PI4P-dependent regulation of Drs2p-  
88 Cdc50p.

89

## 90 Overall structure and conformation

91 The structures of Drs2p-Cdc50p in the E2P<sup>inhib</sup>, E2P<sup>inter</sup>, and E2P<sup>active</sup> conformations were  
92 determined at 2.8, 3.7 and 2.9 Å resolution, respectively (Supplementary Data Table 1). The  
93 density maps allowed complete modelling of the complexes with only some minor disordered  
94 regions at the termini missing.

95 The structure of the Drs2p subunit is typical of P-type ATPases with a transmembrane domain  
96 consisting of 10 helices, and three cytosolic domains: the actuator (A) domain, the nucleotide-  
97 binding (N) domain and the phosphorylation (P) domain (Figure 1A and B, Supplementary  
98 Figure 2A). The Cdc50p subunit has an ectodomain that folds into two asymmetric lobes,

99 where the first is dominated by an antiparallel  $\beta$ -sandwich and the other contains little  
100 secondary structure apart from short helical segments (Supplementary Data Figure 3A). Four  
101 glycosylation sites are apparent in the maps, with at least one *N*-acetylglucosamine unit  
102 resolved for each site in the final model. Two di-sulfide bonds identified earlier<sup>26</sup> are evident  
103 (Supplementary Data Figure 3B). The fold of the ecto-domain is similar to the lipid binding  
104 protein seipin, although loops of Cdc50p are considerably longer (Supplementary Data Figure  
105 3C). The two TM-helices of Cdc50p extend from the N- and C-terminus of the first lobe  
106 (Supplementary Data Figure 3A), interacting closely with each other and with TM10 of Drs2p  
107 (Supplementary Data Figure 3D).

108

#### 109 *Interactions between Drs2p and Cdc50p*

110 The three structures show an invariant, tight complex between Drs2p and Cdc50p with  
111 interactions on the cytosolic and luminal side and in the membrane. The most extensive  
112 interactions appear on the luminal face of Drs2p, where the ecto-domain of Cdc50p interacts  
113 with all luminal loops apart from the TM1-2 loop (Figure 1B). The TM3-4 loop in particular  
114 stretches into an intimate interaction site at the ectodomain of Cdc50p (Figure 1C). Chimeras  
115 between Drs2p and Dnf1p of this loop result in an intact but non-functional flippase<sup>27</sup>. Contacts  
116 in the transmembrane regions of the two proteins appear to be fewer, as only TM10 of Drs2p  
117 interacts with the helices of Cdc50p (Supplementary Data Figure 3D). On the cytosolic side,  
118 the N-terminus of Cdc50p wraps around the TM-domain of Drs2p and makes contacts with the  
119 segment (residues 529-538) that connects TM4 and the phosphorylation site of the P-domain  
120 (Figure 1D). This segment is 10 residues longer in P4-ATPases than in the P2-ATPase ion  
121 pumps, where TM4 couples the chemistry at the phosphorylation site with conformational  
122 changes of the TM-domain<sup>28</sup>. Interestingly, the TM4 segment as well as the TM3-4 loop are  
123 distinctly shorter in Neo1p and homologous lipid flippases that do not bind Cdc50p-subunits  
124 (Supplementary Data Figure 4). These interactions suggest that Cdc50p is sensitive to the  
125 phosphorylation state of the P-domain on the cytosolic side, while on the luminal side it will  
126 sense the conformation of the transmembrane domain through the contact with the TM3-4 loop  
127 and other luminal loops.

128

129 Mutations disrupting the interaction between Drs2p and Cdc50p have been identified in both  
130 the N-terminus of Cdc50p and in the interface with the TM3-4 loop of Drs2p (Figure 1E-F). In  
131 the *S. cerevisiae* phosphatidylcholine (PC) transporting Dnf1p-Lem3p, a Ser237Leu mutation

132 in Lem3p (Ser196 in Cdc50p, located at the interface with the TM3-4 loop of Drs2p) disrupted  
133 the interaction between the two subunits, and Ala65Val (corresponding to Ala35 in Cdc50p  
134 near the TM8-9 loop of Drs2p), resulted in a mild reduction of interaction between the two  
135 subunits<sup>26</sup>. Furthermore, combining Pro23His and Thr320Ala mutations in Cdc50p resulted  
136 rendered growth in a *Δcdc50Δlem3Δcrf1* background temperature-sensitive<sup>29</sup>. These mutations  
137 are located at the Cdc50p N-terminus approaching the cytoplasmic end of Drs2p-TM4 and  
138 within the ecto-domain of Cdc50p (Figure 1E).

139

#### 140 *Comparison to other P-type ATPases*

141 Drs2p-Cdc50p can be compared to Na,K-ATPase, which is also a P-type ATPase forming an  
142 αβ binary complex. However, the fold of Cdc50p and its discrete interactions in the membrane  
143 and with the luminal face of Drs2p are fundamentally different from the β-subunit and  
144 regulatory FXYD subunit of Na,K-ATPase. The overall conformation of Drs2p is close to the  
145 ouabain-inhibited E2P-form of Na,K-ATPase (PDB 4HYT<sup>30</sup>) and the outward-open E2-BeF<sub>3</sub><sup>-</sup>  
146 form of SERCA (PDB 3B9B<sup>31</sup>). E2P<sup>active</sup> resembles 3B9B most closely, with an overall root  
147 mean square deviation (rmsd) of 4.4 Å (superposition of C<sub>α</sub>-atoms, excluding the N-domain,  
148 which is flexible) compared to the E2P<sup>inter</sup> and E2P<sup>inhib</sup> conformations with a rmsd of 4.8 Å and  
149 5.2 Å, respectively (Figure 2A). Other P-type ATPase conformations differ by a further margin  
150 of at least 0.8 Å in rmsd. The bulk of the A-domain is shifted by about 7 Å, but the  
151 (T/D)GE(S/T) loops of SERCA and Drs2p overlap, and density for the phosphate analogue  
152 BeF<sub>3</sub><sup>-</sup> and bound Mg<sup>2+</sup> is readily observable (Figure 2B). The conformation of the  
153 dephosphorylation loops are similar (Figure 2C). Compared to the ion-transporting P-type  
154 ATPases, TM1 and 2 appear to be one turn shorter at the luminal side, suggesting they sit  
155 deeper in the membrane.

156

#### 157 **Autoinhibition and PI4P binding**

158 We were able to map three distinct intermediate states leading from autoinhibition to activation  
159 by variations of sample lipids and inhibitors and using constructs containing intact and  
160 truncated C-terminal tails. In E2P<sup>inhib</sup>, the autoinhibitory C-terminus forms an extensive  
161 interface that spans 56 residues (residues 1252-1307) along the P- and N-domains, reaching  
162 the A-domain (Figure 3A). A short helical segment of the C-terminal tail (H1<sup>C-tail</sup>, residues  
163 1252-1263) interacts with a unique helical insertion on the P-domain, while the rest of the tail  
164 extends to interact with the N- and A-domains overlapping with the nucleotide binding site

165 (Figure 3B). Here a conserved GFAFS motif (residues 1274-1278) is positioned at the vertex  
166 between the P, N and A domains before extending into the interface of the N- and A-domains  
167 (Figure 3A). The autoinhibited state is further stabilised by the clamping of a short loop region  
168 in the N-domain (698-704) over the GFAFS motif. Proteolysis of the C-terminus at residue  
169 1290 results in 10-20 fold activation compared to wild-type Drs2p-Cdc50p<sup>25</sup> and it removes  
170 the bulk of the C-terminal residues that interact with the A-domain as well as the 46 unmodeled  
171 terminal residues. However, truncation at residue 1302 maintains autoinhibition<sup>25</sup> and  
172 preserves the interactions with the A-domain. This suggests an allosteric mechanism of auto-  
173 inhibition, where the cytosolic domains are locked and prevented from undergoing  
174 conformational changes. The 16-residue linker between TM10 and the autoregulatory domain  
175 is not resolved sufficiently for modelling, but appears at a low density threshold and in 2D  
176 class averages (Figure 3C).

177  
178 Density is observed for PI4P bound between TM7, 8, and 10 of E2P<sup>inter</sup> and E2P<sup>active</sup>.  
179 Importantly, binding of PI4P is concurrent with formation of an amphipathic helix just after  
180 TM10. The amphipathic helix propagates in a direction counter to the remaining part of the  
181 auto-inhibitory domain and exerts a mechanical pulling force that dissipates the autoinhibitory  
182 interactions of the H1<sup>C-tail</sup> helical segment with the P-domain. As a result, only downstream  
183 interactions of the C-terminus with the N- and A-domain remain intact (Figure 3D).  
184 Interestingly, H1<sup>C-tail</sup> coincides with the previously reported Gea2p binding site, and its release  
185 thus mediated by PI4P exposes it for interaction.

186  
187 The position of the PI4P glycerol backbone is stabilized by interactions with several positively  
188 charged residues located in the TM region of Drs2p, but our structures suggest that selectivity  
189 for PI4P is driven by the interaction of Tyr1235 and His1236, displayed by the amphipathic  
190 helix, to the 4-phosphate of PI4P (Figure 4A and B). This PI4P binding site is notably distinct  
191 from a previously proposed patch of basic residues (1268-1273), but it explains why C-terminal  
192 truncation at residue 1247 preserves PI4P dependence, cf. E2P<sup>active</sup> (Supplementary Data  
193 Figure 2B), while truncation after residue 1232 leads to an PI4P-independent enzyme<sup>23</sup>.

194  
195 We further investigated the ability of Tyr1235Ala, Tyr1235Phe, and His1236Ala mutants to  
196 hydrolyse ATP. All three mutants were purified with a yield similar to that of the wild-type  
197 complex, and Cdc50p interaction remained intact (Supplementary Data Figure 5). The PI4P  
198 induced ATPase activity of the Tyr1235Ala, Tyr1235Phe, and His1236Ala mutants however

199 was strongly reduced, less than 10% of wild-type, i.e. consistent with a role in binding PI4P  
200 (Figure 5C and Supplementary Data Figure 5B). Owing to the requirement of both PI4P and  
201 PS (in addition to the removal of the C-terminal extension of Drs2p by limited proteolysis) for  
202 full activation of ATP hydrolysis by Drs2p-Cdc50p, we cannot exclude an effect on PS  
203 substrate lipid binding and/or transport. Strikingly, the PI4P binding site of Drs2p is located in  
204 the same position as the C-terminal YY motif of the Na,K-ATPase  $\alpha$ -subunit<sup>32</sup>, which affects  
205 transport function profoundly<sup>33</sup> (Figure 4D).

206

207 In E2P<sup>inhib</sup>, the amphipathic helix is not present, but the vacant PI4P site contains a lipid with  
208 a significantly smaller head group density with no specific, supporting interactions (Figure 4E).  
209 We modelled it as phosphatidylserine, which is the sole lipid added to the sample after  
210 extraction from the membrane, but we presume the site accepts regular phospholipids in a  
211 nonselective manner in this autoinhibited state.

212

### 213 **A putative substrate entry site**

214 The structures of E2P<sup>active</sup> and E2P<sup>inter</sup> are largely similar. However, the lack of an  
215 autoinhibitory domain in E2P<sup>active</sup> allows for slight rearrangements of the N- and A-domains.  
216 The movement of the A-domain results in a more open conformation of the TM domain, where  
217 TM1 and in particular TM2, extending directly into the A-domain, moves away from the bulk  
218 of the TM domain and exposes TM4 to the luminal leaflet of the membrane. Consistently, the  
219 conserved, unwound segment of TM4 (PISL), which is exposed by this movement, has been  
220 implicated in lipid transport<sup>14</sup> (Figure 5A-B). The luminal opening towards TM4 is lined by  
221 TM1, 2, and 6, and we propose that the cleft marks the entry of a substrate lipid transport  
222 pathway. The cleft partially overlaps with a previously proposed entry gate and residues  
223 important for lipid specificity<sup>12</sup>. In particular Gln237, part of a conserved QQ-motif at the end  
224 of TM1, points into the open cleft, supporting its role in substrate specificity (Figure 5C). The  
225 cleft is also consistent with the proposed hydrophobic gate model<sup>7</sup> with a central role for the  
226 conserved isoleucine of the PISL motif<sup>14</sup>, although the conformation of TM1-2 in E2P<sup>active</sup> (and  
227 the other E2P sub-states reported here) and earlier homology models are different.  
228 Interestingly, while the putative lipid entry pathway is reminiscent of that described for  
229 scramblases<sup>10,34</sup>, it does not extend to span both leaflets of the membrane, thus highlighting a  
230 fundamental requirement for an alternating access mechanism of lipid movement against its  
231 gradient.

232

233 Chimera constructs and mutants of the TM1-2 loop in Dnf1p and Drs2p have indicated its role  
234 in lipid binding and specificity<sup>12</sup>. A conserved arginine in the ecto-domain of Cdc50p (Arg151)  
235 reaches towards the proposed entry site where it could help orient the luminal loop between  
236 TM1 and 2 and guide lipid binding (Figure 5C). Mutations in the TM1-2 loop of Na,K-ATPase  
237 confer ouabain resistance<sup>35</sup> and the cleft coincides with the ouabain binding site in the Na,K-  
238 ATPase (Supplementary Data Figure 6B and D). Extension of this cleft towards the cytosolic  
239 side overlaps with a lipid binding site and cyclopiazonic acid inhibitory site in SERCA  
240 (Supplementary Data Figure 6C and D). Such a proposed exit site to the cytoplasmic leaflet  
241 would be expected to emerge only in a subsequent E2-E1 transition of the functional cycle, but  
242 the presence of binding pockets and lipid-like ligands in ion pumping P-type ATPase  
243 nevertheless hints at possible evolutionary links to the lipid flippases.

244

245 Unlike for the ion transporting P2-ATPases (Supplementary Data Figure 6E and F), negative  
246 charges are absent in the core TM structure of Drs2p, but the potentially positively charged  
247 Lys1018 of TM5 interacts with Asn1050 at a bulge of TM6. Lys1018 could play a stabilizing,  
248 yet dynamic role in the core of the transmembrane domain (Figure 5D). This residue has  
249 previously been implicated in transport in bovine ATP8a2<sup>ref 7</sup>, and it projects a potentially  
250 positive charge at the middle of the transmembrane pathway (Figure 5A-B,D). The estimated  
251 pK<sub>a</sub> of Lys1018 is around 6.8 for E2P<sup>inhib</sup> and 7.4 for E2P<sup>active</sup>, ref. 35,36 indicating that it may  
252 switch between a neutral and a positively charged state as part of dynamic interactions with a  
253 negatively charged lipid head group.

254

## 255 **Transport mechanism**

256 The respective orientation and positions for the P and N domains of Drs2p are largely invariable  
257 in transition from a constrained E2P<sup>inhib</sup> to the E2P<sup>inter</sup> and E2P<sup>active</sup> states. A rigid body  
258 movement of those domains relative to the membrane together with a progressive rotation of  
259 the A-domain is apparent from an alignment on TM7-10 (Figure 5E). This rigid body  
260 movement is also echoed in a concomitant movement of the adjacent TM6-7 loop towards the  
261 amphipathic helix formed upon PI4P binding (Figure 5F). Interestingly, the position of the  
262 dephosphorylation loop remains constant with respect to the P-domain (Figure 2C). This  
263 suggests that binding of PI4P leads to the movement of the P-domain. The subsequent removal  
264 of the C-terminus would allow for increased mobility of the A-domain, which would explain  
265 why PI4P alone is not sufficient for full activation of the intact enzyme.

266

267 Taken together, we propose the following model for auto-regulation and exposure of the lipid  
268 entry site. E2P<sup>inhib</sup> has a closed TM domain with the cytosolic domains locked by the  
269 autoinhibitory C-terminus (Figure 6). PI4P binding to the TM domain promotes the folding of  
270 an amphipathic helix right on the C-terminal side of TM10. Formation of this helix has two  
271 effects: 1) it causes the remainder of the C-terminus to partially unfold, thus destabilizing its  
272 interaction with the P-domain through the displacement of H1<sup>C-tail</sup> with the putative Gea2p  
273 binding site; and 2) it forms an interaction site for the TM6-7 loop to form, which then moves  
274 with the P-domain. Together these two movements shift the P and N domains towards the  
275 amphipathic helix largely as a rigid body. A progressive rotation of the A domain leads to a  
276 subtle movement of TM2 and to a lesser extent TM1 giving the E2P<sup>inter</sup> state. Full displacement  
277 of the C-terminus leads to the E2P<sup>active</sup> state where a further rotation of the N- and A-domains  
278 drives the opening of a putative substrate binding site through the movement of TM2 away  
279 from TM6. We anticipate that subsequent PS (or PE) substrate lipid binding will be associated  
280 with further conformational changes of the TM domain, as the enzyme dephosphorylates.

281

## 282 **Conclusion**

283 The structures of Drs2p-Cdc50p presented here provide the first insights into the architecture  
284 of the P4-ATPase lipid flippases and the location of determinants of lipid and Cdc50p  
285 specificity. The structure of the autoinhibitory domain and the mechanism for relief of  
286 autoinhibition through a regulatory PI4P site explain details of regulation of P4-ATPases that  
287 may also be targeted for specific modulation of lipid flippase activity. Further structures  
288 capturing progressive states of substrate lipid binding, dephosphorylation, lipid translocation  
289 and cytoplasmic release will be required to further elucidate the lipid flippase mechanism.

290

## References

- 291 1 Hankins, H. M., Baldridge, R. D., Xu, P. & Graham, T. R. Role of flippases,  
292 scramblases and transfer proteins in phosphatidylserine subcellular distribution. *Traffic*  
293 **16**, 35-47 (2015).
- 294 2 Montigny, C., Lyons, J., Champeil, P., Nissen, P. & Lenoir, G. On the molecular  
295 mechanism of flippase- and scramblase-mediated phospholipid transport. *Biochim.  
296 Biophys. Acta* **1861**, 767-783 (2016).
- 297 3 Pomorski, T. G. & Menon, A. K. Lipid somersaults: Uncovering the mechanisms of  
298 protein-mediated lipid flipping. *Prog. Lipid Res.* **64**, 69-84 (2016).
- 299 4 Yang, Y., Lee, M. & Fairn, G. D. Phospholipid subcellular localization and dynamics.  
300 *J. Biol. Chem.* **293**, 6230-6240 (2018).
- 301 5 Jacquot, A. *et al.* Phosphatidylserine stimulation of Drs2p.Cdc50p lipid translocase  
302 dephosphorylation is controlled by phosphatidylinositol-4-phosphate. *J. Biol. Chem.*  
303 **287**, 13249-13261 (2012).
- 304 6 Ding, J. *et al.* Identification and functional expression of four isoforms of ATPase II,  
305 the putative aminophospholipid translocase. Effect of isoform variation on the ATPase  
306 activity and phospholipid specificity. *J. Biol. Chem.* **275**, 23378-23386 (2000).
- 307 7 Coleman, J. A., Vestergaard, A. L., Molday, R. S., Vilse, B. & Andersen, J. P. Critical  
308 role of a transmembrane lysine in aminophospholipid transport by mammalian  
309 photoreceptor P4-ATPase ATP8A2. *Proc, Natl. Acad. Sci. U.S.A.* **109**, 1449-1454  
310 (2012).
- 311 8 Perez, C. *et al.* Structure and mechanism of an active lipid-linked oligosaccharide  
312 flippase. *Nature* **524**, 433-438 (2015).
- 313 9 Lee, J. Y. *et al.* Crystal structure of the human sterol transporter ABCG5/ABCG8.  
314 *Nature* **533**, 561-564 (2016).
- 315 10 Brunner, J. D., Lim, N. K., Schenck, S., Duerst, A. & Dutzler, R. X-ray structure of a  
316 calcium-activated TMEM16 lipid scramblase. *Nature* **516**, 207-212 (2014).
- 317 11 Morra, G. *et al.* Mechanisms of Lipid Scrambling by the G Protein-Coupled Receptor  
318 Opsin. *Structure* **26**, 356-367.e353 (2018).
- 319 12 Baldridge, R. D. & Graham, T. R. Two-gate mechanism for phospholipid selection and  
320 transport by type IV P-type ATPases. *Proc, Natl. Acad. Sci. U.S.A.* **110**, E358-367  
321 (2013).
- 322 13 Jensen, M. S. *et al.* Phospholipid flipping involves a central cavity in P4 ATPases. *Sci.  
323 Rep.* **7**, 17621 (2017).
- 324 14 Vestergaard, A. L. *et al.* Critical roles of isoleucine-364 and adjacent residues in a  
325 hydrophobic gate control of phospholipid transport by the mammalian P4-ATPase  
326 ATP8A2. *Proc, Natl. Acad. Sci. U.S.A.* **111**, E1334-1343 (2014).
- 327 15 Bryde, S. *et al.* CDC50 proteins are critical components of the human class-1 P4-  
328 ATPase transport machinery. *J. Biol. Chem.* **285**, 40562-40572 (2010).
- 329 16 Coleman, J. A. & Molday, R. S. Critical role of the beta-subunit CDC50A in the stable  
330 expression, assembly, subcellular localization, and lipid transport activity of the P4-  
331 ATPase ATP8A2. *J. Biol. Chem.* **286**, 17205-17216 (2011).
- 332 17 van der Mark, V. A., Elferink, R. P. & Paulusma, C. C. P4 ATPases: flippases in health  
333 and disease. *Int. J. Mol. Sci.* **14**, 7897-7922 (2013).
- 334 18 Alder-Baerens, N., Lisman, Q., Luong, L., Pomorski, T. & Holthuis, J. C. Loss of P4  
335 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in  
336 yeast post-Golgi secretory vesicles. *Mol. Biol. Cell* **17**, 1632-1642 (2006).
- 337 19 Natarajan, P., Wang, J., Hua, Z. & Graham, T. R. Drs2p-coupled aminophospholipid  
338 translocase activity in yeast Golgi membranes and relationship to in vivo function.  
339 *Proc, Natl. Acad. Sci. U.S.A.* **101**, 10614-10619 (2004).

340 20 Azouaoui, H. *et al.* A high-yield co-expression system for the purification of an intact  
341 Drs2p-Cdc50p lipid flippase complex, critically dependent on and stabilized by  
342 phosphatidylinositol-4-phosphate. *Plos ONE* **9**, e112176 (2014).

343 21 Zhou, X. & Graham, T. R. Reconstitution of phospholipid translocase activity with  
344 purified Drs2p, a type-IV P-type ATPase from budding yeast. *Proc, Natl. Acad. Sci.  
345 U.S.A.* **106**, 16586-16591 (2009).

346 22 Natarajan, P. *et al.* Regulation of a Golgi flippase by phosphoinositides and an ArfGEF.  
347 *Nat. Cell Biol.* **11**, 1421-1426 (2009).

348 23 Zhou, X., Sebastian, T. T. & Graham, T. R. Auto-inhibition of Drs2p, a yeast  
349 phospholipid flippase, by its carboxyl-terminal tail. *J. Biol. Chem.* **288**, 31807-31815  
350 (2013).

351 24 Tsai, P. C., Hsu, J. W., Liu, Y. W., Chen, K. Y. & Lee, F. J. Arl1p regulates spatial  
352 membrane organization at the trans-Golgi network through interaction with Arf-GEF  
353 Gea2p and flippase Drs2p. *Proc, Natl. Acad. Sci. U.S.A.* **110**, E668-677 (2013).

354 25 Azouaoui, H. *et al.* High phosphatidylinositol 4-phosphate (PI4P)-dependent ATPase  
355 activity for the Drs2p-Cdc50p flippase after removal of its N- and C-terminal  
356 extensions. *J. Biol. Chem.* **292**, 7954-7970 (2017).

357 26 Puts, C. F. *et al.* Mapping functional interactions in a heterodimeric phospholipid pump.  
358 *J. Biol. Chem.* **287**, 30529-30540 (2012).

359 27 Baldridge, R. D. & Graham, T. R. Identification of residues defining phospholipid  
360 flippase substrate specificity of type IV P-type ATPases. *Proc, Natl. Acad. Sci. U.S.A.*  
361 **109**, E290-298 (2012).

362 28 Moller, J. V., Olesen, C., Winther, A. M. & Nissen, P. The sarcoplasmic  $Ca^{2+}$ -ATPase:  
363 design of a perfect chemi-osmotic pump. *Q. Rev. Biophys.* **43**, 501-566 (2010).

364 29 Takahashi, Y., Fujimura-Kamada, K., Kondo, S. & Tanaka, K. Isolation and  
365 characterization of novel mutations in CDC50, the non-catalytic subunit of the Drs2p  
366 phospholipid flippase. *J. Biochem.* **149**, 423-432 (2011).

367 30 Laursen, M., Yatime, L., Nissen, P. & Fedosova, N. U. Crystal structure of the high-  
368 affinity  $Na^+K^+$ -ATPase-ouabain complex with  $Mg^{2+}$  bound in the cation binding site.  
369 *Proc, Natl. Acad. Sci. U.S.A.* **110**, 10958-10963 (2013).

370 31 Olesen, C. *et al.* The structural basis of calcium transport by the calcium pump. *Nature*  
371 **450**, 1036-1042 (2007).

372 32 Morth, J. P. *et al.* Crystal structure of the sodium-potassium pump. *Nature* **450**, 1043-  
373 1049 (2007).

374 33 Poulsen, H. *et al.* Neurological disease mutations compromise a C-terminal ion  
375 pathway in the  $Na^+K^+$ -ATPase. *Nature* **467**, 99-102 (2010).

376 34 Lee, B. C. *et al.* Gating mechanism of the extracellular entry to the lipid pathway in a  
377 TMEM16 scramblase. *Nat. Commun.* **9**, 3251 (2018).

378 35 Price, E. M. & Lingrel, J. B. Structure-function relationships in the  $Na,K$ -ATPase  
379 alpha subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-  
380 122 to aspartic acid generates a ouabain-resistant enzyme. *Biochemistry* **27**, 8400-  
381 8408 (1988).

382 36 Olsson, M. H., Sondergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3:  
383 Consistent Treatment of Internal and Surface Residues in Empirical  $pK_a$  Predictions.  
384 *J. Chem. Theory Comput.* **7**, 525-537 (2011).

385 37 Jakobi, A. J., Wilmanns, M. & Sachse, C. Model-based local density sharpening of  
386 cryo-EM maps. *eLife* **6**, e27131 (2017).

387 38 Ashkenazy, H. *et al.* ConSurf 2016: an improved methodology to estimate and visualize  
388 evolutionary conservation in macromolecules. *Nucleic Acids Res.* **44**, W344-350  
389 (2016).

390 39 Apweiler, R. *et al.* UniProt: the Universal Protein knowledgebase. *Nucleic Acids Res.* 32, D115-119 (2004).

391 40 Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.* 7, 539 (2011).

392 41 Sorensen, T. L., Moller, J. V. & Nissen, P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. *Science* 304, 1672-1675 (2004).

393 42 Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. *Nucleic Acids Res.* 32, W665-667 (2004).

394 43 Jurrus, E. *et al.* Improvements to the APBS biomolecular solvation software suite. *Protein Sci.* 27, 112-128 (2018).

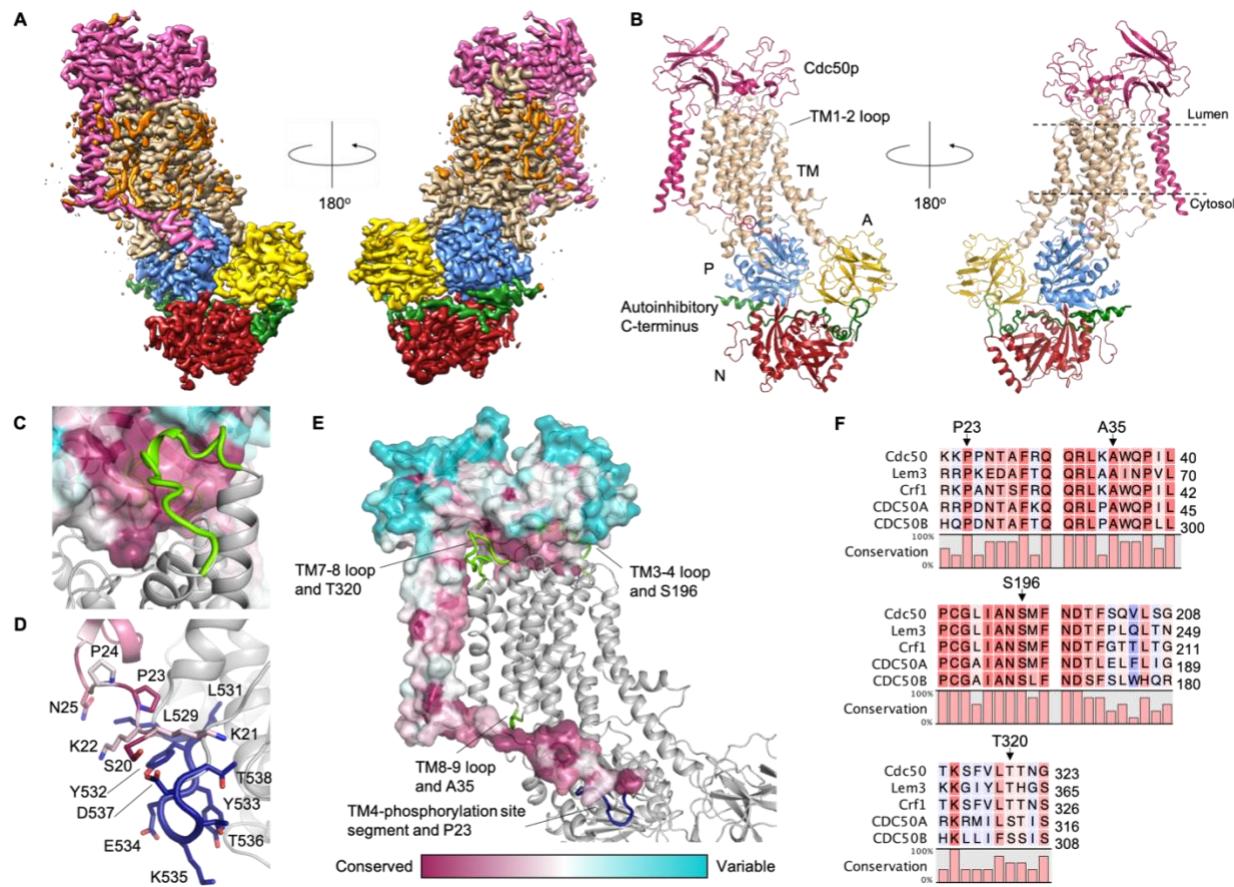
395 401

396 402

403 **Acknowledgements:** The authors wish to thank J. Karlsen for scientific computing and  
404 molecular graphics facilities and assistance to their use, A. M. Nielsen and T. Klymchuk for  
405 technical assistance, and C. Grønberg for early contributions on sample preparation. We thank  
406 D. Mills and the staff at the Department of Structural Biology (MPI of Biophysics,  
407 Frankfurt/Main) for support on data collection, discussions and support. Support for this work  
408 was provided by grants from the Danish National Research Foundation for the PUMPkin center  
409 of excellence, and from the Lundbeck Foundation for the Brainstruc center of excellence  
410 (2015-2666) to P.N., by an EMBO Long-Term Fellowship to M.R.A., by postdoctoral grants  
411 from the Danish Research Council and the Lundbeck Foundation to J.A.L., by a PhD  
412 fellowship from the Boehringer-Ingelheim Fonds to M.T. (more....)

413

414 **Author Contributions:** P.N. and G.L. conceived the project, and J.A.L., T.H.B. and P.N.  
415 defined the cryo-EM study with A.M. and W.K. The samples were characterized and developed  
416 by M.T., J.J.U., J.A.L., and M.R.A., and exploratory electron microscopy studies were  
417 performed by J.A.L., M.T., J.J.U. and T.H.B. Cryo-EM analysis was performed by M.T., D.J.,  
418 J.A.L., T.H.B., and A.M. Data processing and 3D reconstruction was performed by M.T. with  
419 support and advice from D.J., J.A.L., and A.M. Model building and refinement was performed  
420 by M.T. and J.A.L, with assistance from J.J.U. Mutant forms were prepared and functionally


421 characterized by T.D., C.M. and G.L. P.N. and J.A.L. supervised the project together with A.M.  
422 The manuscript was drafted by M.T., J.A.L. and P.N. All authors commented on the  
423 manuscript.

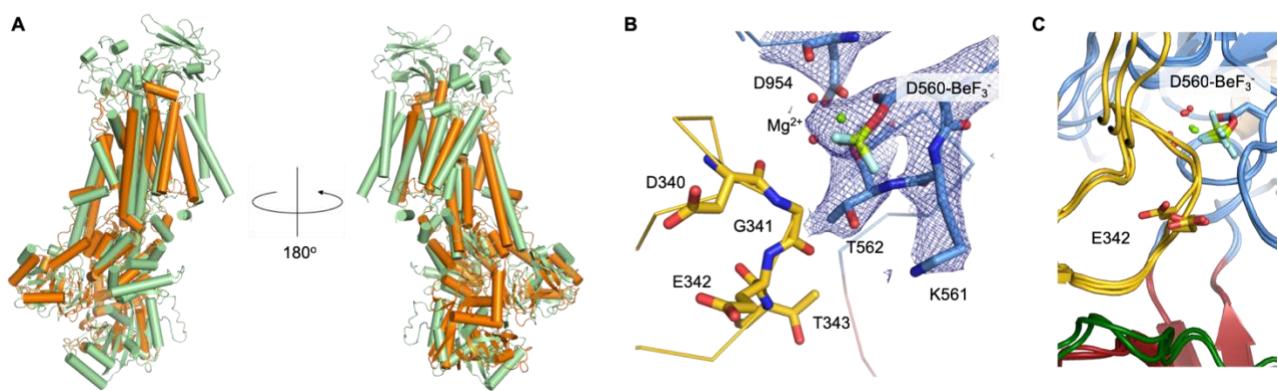
424

425 **Author Information** Cryo-EM maps for the *S. cerevisiae* Drs2p-Cdc50p (UniProt ID  
426 XXXXX) in the E2–BeF3 (E2inhib), E2-BeF3-PI4P (E2Pinter), and C-terminally truncated  
427 E2-BeF3-PI4P (E2Pactive) forms are available on the xxxx server, and coordinates of the  
428 atomic structures have been deposited in the Protein Data Bank (PDB) under accession  
429 numbers XXXX, YYYY, and ZZZZ. Reprints and permissions information is available at  
430 [www.nature.com/reprints](http://www.nature.com/reprints). The authors declare no competing financial interests. Readers are  
431 welcome to comment on the online version of the paper. Correspondence and requests for  
432 materials should be addressed to P.N [pn@mbg.au.dk](mailto:pn@mbg.au.dk), A.M. [arne.moeller@biophys.mpg.de](mailto:arne.moeller@biophys.mpg.de),  
433 or G.L. [guillaume.lenoir@i2bc.paris-saclay.fr](mailto:guillaume.lenoir@i2bc.paris-saclay.fr)

434

## Figures and Supplementary Data Figures and Tables

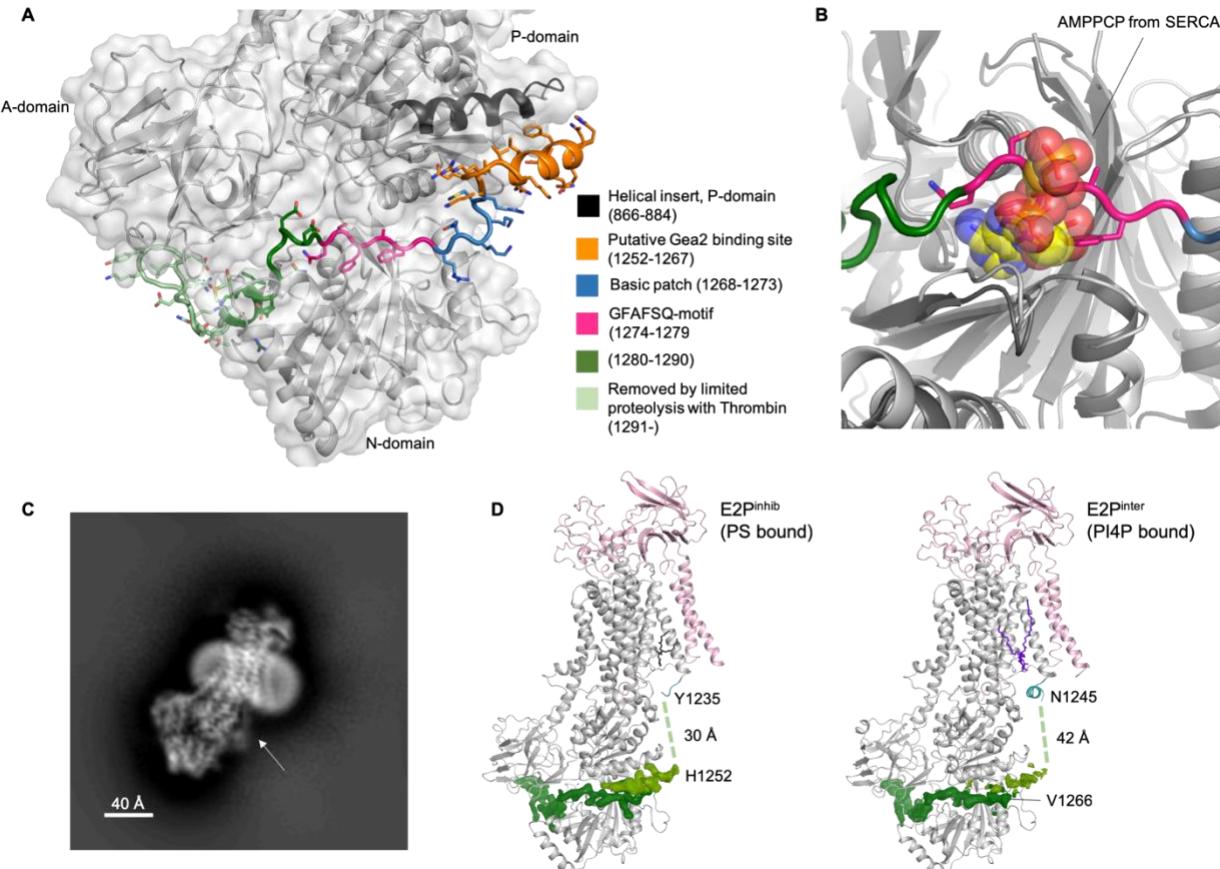



435

### Figure 1: The structure of the Drs2p-Cdc50p complex

436 A) LocScale map<sup>37</sup> of E2P<sup>inhib</sup> colored by domain. For Drs2p the transmembrane (TM)  
437 domain is tan, the actuator (A) domain is yellow, the phosphorylation (P) domain is blue, the  
438 nucleotide binding (N) domain is red, and the autoinhibitory C-terminus is green. Cdc50p is  
439 pink. Unmodeled map features corresponding to ordered detergent molecules or from the  
440 detergent micelle are orange.  
441  
442 B) Structural cartoon of the refined E2P<sup>inhib</sup> model, c.f. A).  
443  
444 C) Interaction between the Cdc50p ecto-domain (shown as surface) and the luminal TM3-4  
445 loop of Drs2p (light green).  
446  
447 D) Interaction between the N-terminus of Cdc50p and the segment of Drs2p leading from  
448 TM4 to the phosphorylation site. Residues 529-538 are not present in P2 ATPases and are  
449 shown in dark blue.  
450  
451 E) Segments of Drs2p found to interact with Cdc50p mutants that disrupt complex formation  
452 are highlighted in green and the insert in Drs2p between TM4 and the phosphorylation site is  
453 blue. The structure shown in C-E is E2P<sup>inhib</sup>, and Cdc50p is colored by conservation using  
454 ConSurf<sup>38</sup>.

452 F) Part of a sequence alignment of Cdc50-proteins from *S. cerevisiae* and human CDC50A  
453 and CDC50B with residues important for complex-formation identified. Uniprot identifiers:  
454 Cdc50 – P25656, Lem3 – P42838, Crf1 – P53740, CDC50A – Q9NV96, CDC50B –  
455 Q3MIR4. The alignment was performed using Clustal Omega<sup>39,40</sup>.


456  
457  
458  
459



460

461 **Figure 2: Overall conformation**

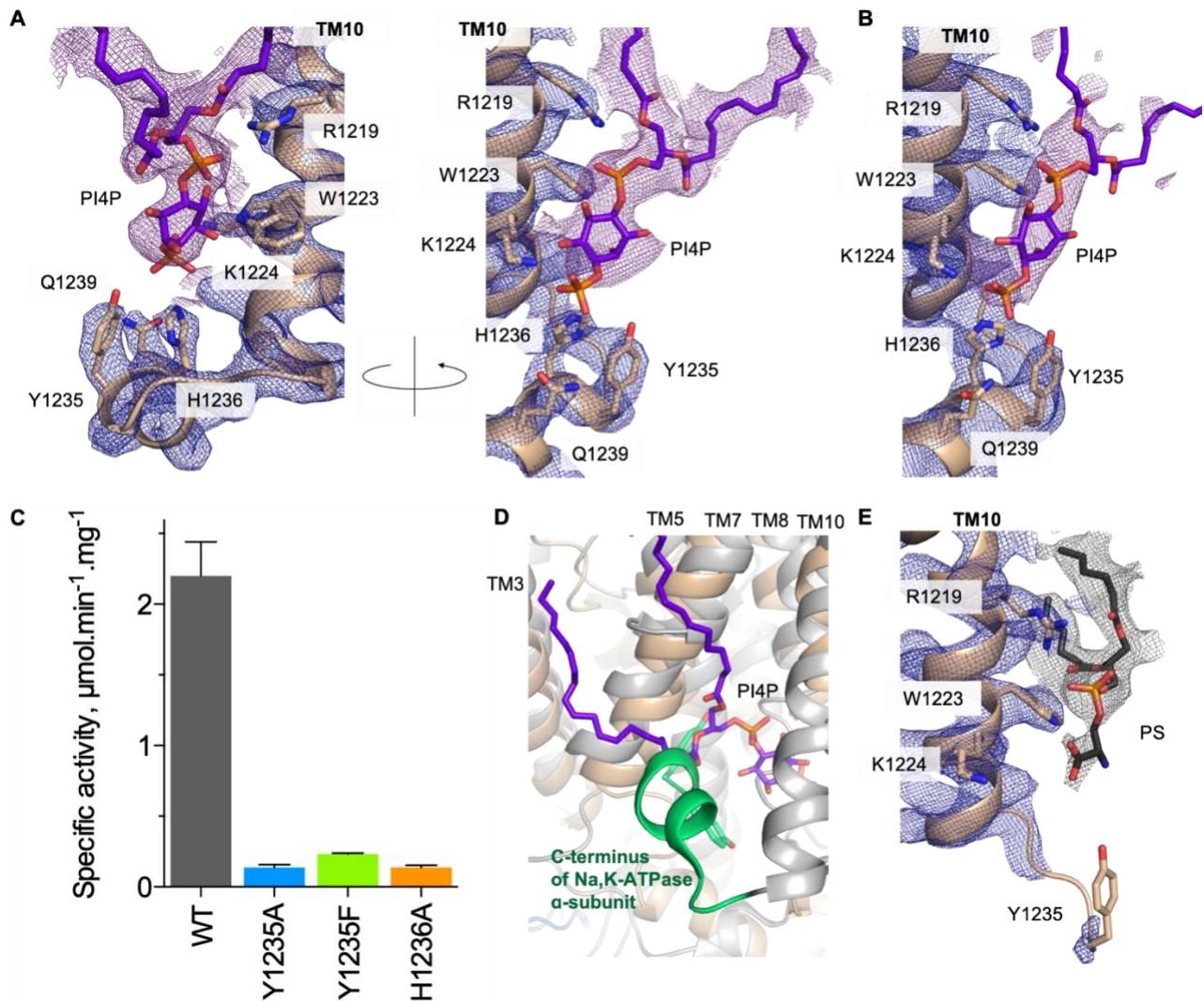
462 A) Alignment of Drs2p-Cdc50p E2P<sup>active</sup> and SERCA (PDB 3B9B<sup>31</sup>). Drs2p-Cdc50p is  
463 green, SERCA is orange. (Superposition of C-alpha carbons excluding the N-domain)  
464 B) The phosphorylation site of E2P<sup>active</sup> with density for the BeF<sub>3</sub><sup>-</sup> and Mg<sup>2+</sup> ion and  
465 coordinating residues. A characteristic E2P conformation of the dephosphorylation loop with  
466 the glutamate pointing away from the phosphorylation site is shown in stick representation.  
467 C) The three Drs2p-Cdc50p structures aligned based on the P-domain, with Asp560-BeF<sub>3</sub><sup>-</sup>  
468 and E342 shown to illustrate the similar conformations. Colors as in Figure 1A.  
469



470

471 **Figure 3: Autoinhibition of Drs2p by its C-terminus**

472 A) The autoinhibitory domain with color-coding of different identified motifs.


473 B) Alignment of N-domains from E2P<sup>inhib</sup> and AMPPCP-bound SERCA (PDB 1T5S<sup>41</sup>).

474 Drs2p is colored as in A. SERCA is dark grey and AMPPCP is yellow.

475 C) 2D class average from the autoinhibited structure, with an arrow indicating the fuzzy  
476 linker between TM10 and the regulatory domain.

477 D) Partial release of autoinhibition upon PI4P binding. The part of the density of the  
478 autoinhibitory domain that interacts with the P-domain is shown in lighter green to emphasize  
479 its disassociation upon binding of PI4P. The first and last residues modelled around the  
480 disordered linker are listed.

481



482

483 **Figure 4: PI4P recognition by Drs2p**

484 A) The PI4P binding site of E2P<sup>active</sup>. The purple density is at a lower threshold (0.75, PyMOL) than the protein (2.5, PyMOL).

485 B) The PI4P binding site of E2P<sup>inter</sup>. The ordered Lys1224 at 3.7 Å resolution indicates that it participates in direct contact. The purple and blue densities are at the same threshold (1.5, PyMOL).

486 C) ATPase activity of wild-type and mutants Drs2p-Cdc50p purified in DDM. ATPase activity was plotted as the difference between the rate of ATP hydrolysis observed upon limited proteolysis with trypsin, in the presence of both PI4P and PS, and the rate of ATP hydrolysis observed before adding the various purified protein complexes to the assay medium (in the presence of PS but in the absence of PI4P; see Supplementary Data Figure 5B). Error bars show standard deviation from three different experiments.

487 D) The C-terminus of the Na,K-ATPase (PDB 3KDP<sup>32</sup>), where the terminal 10 residues

488 occupies the same area as PI4P, is shown in green.

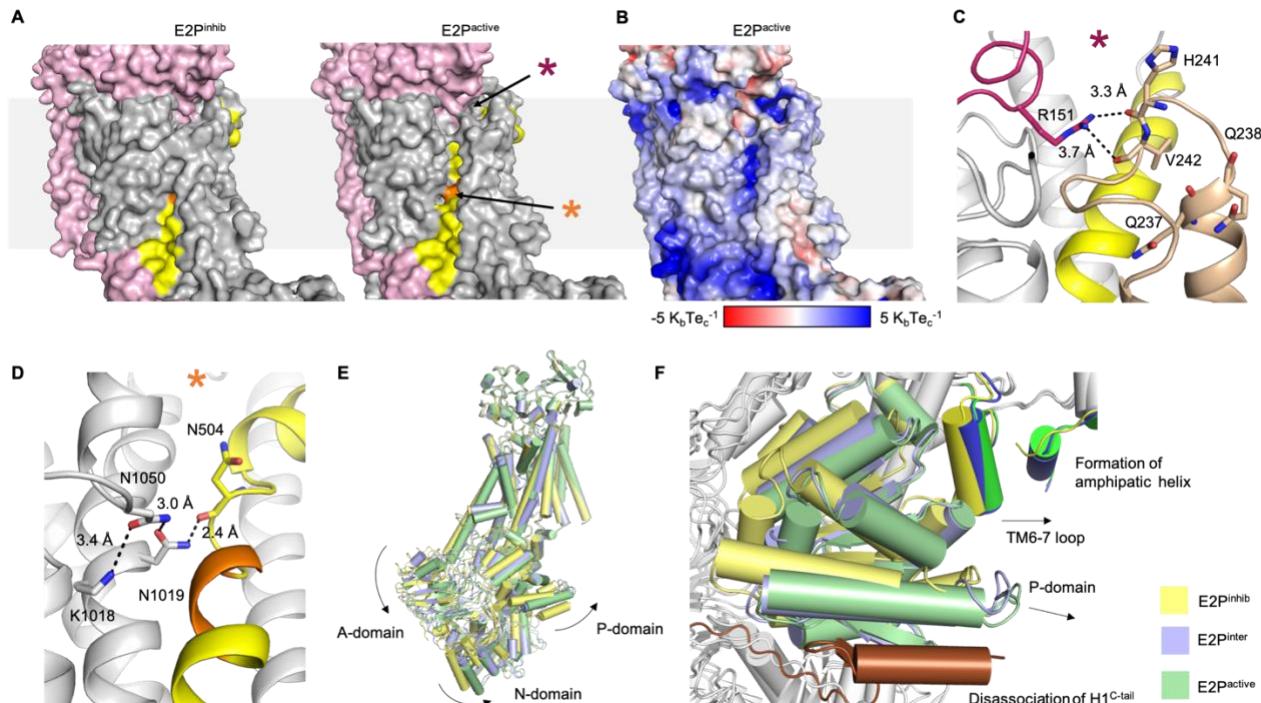
489

490

491

492

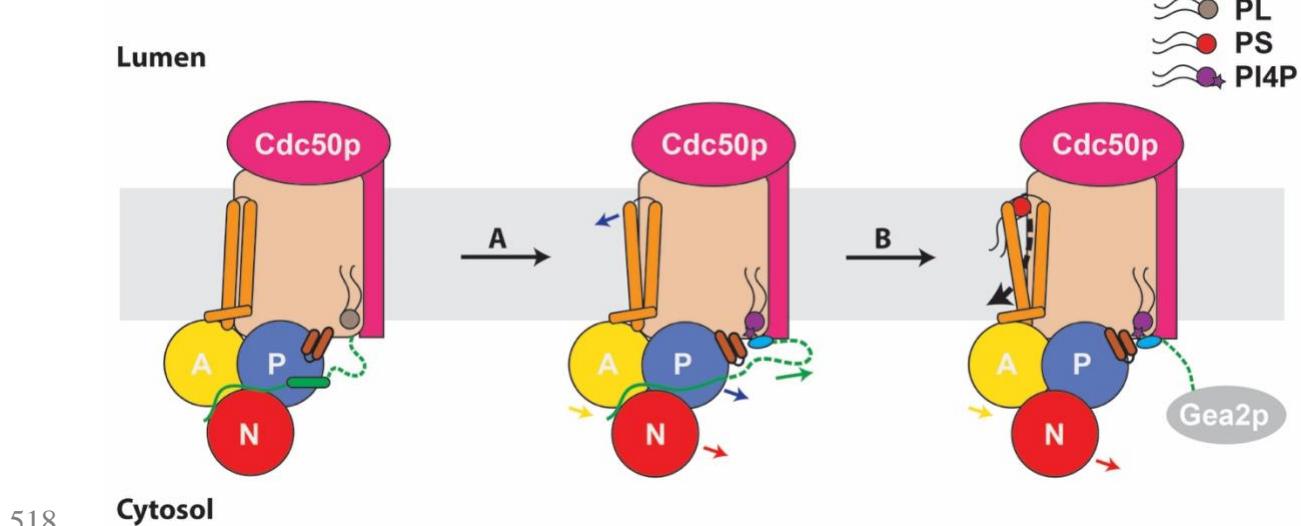
493

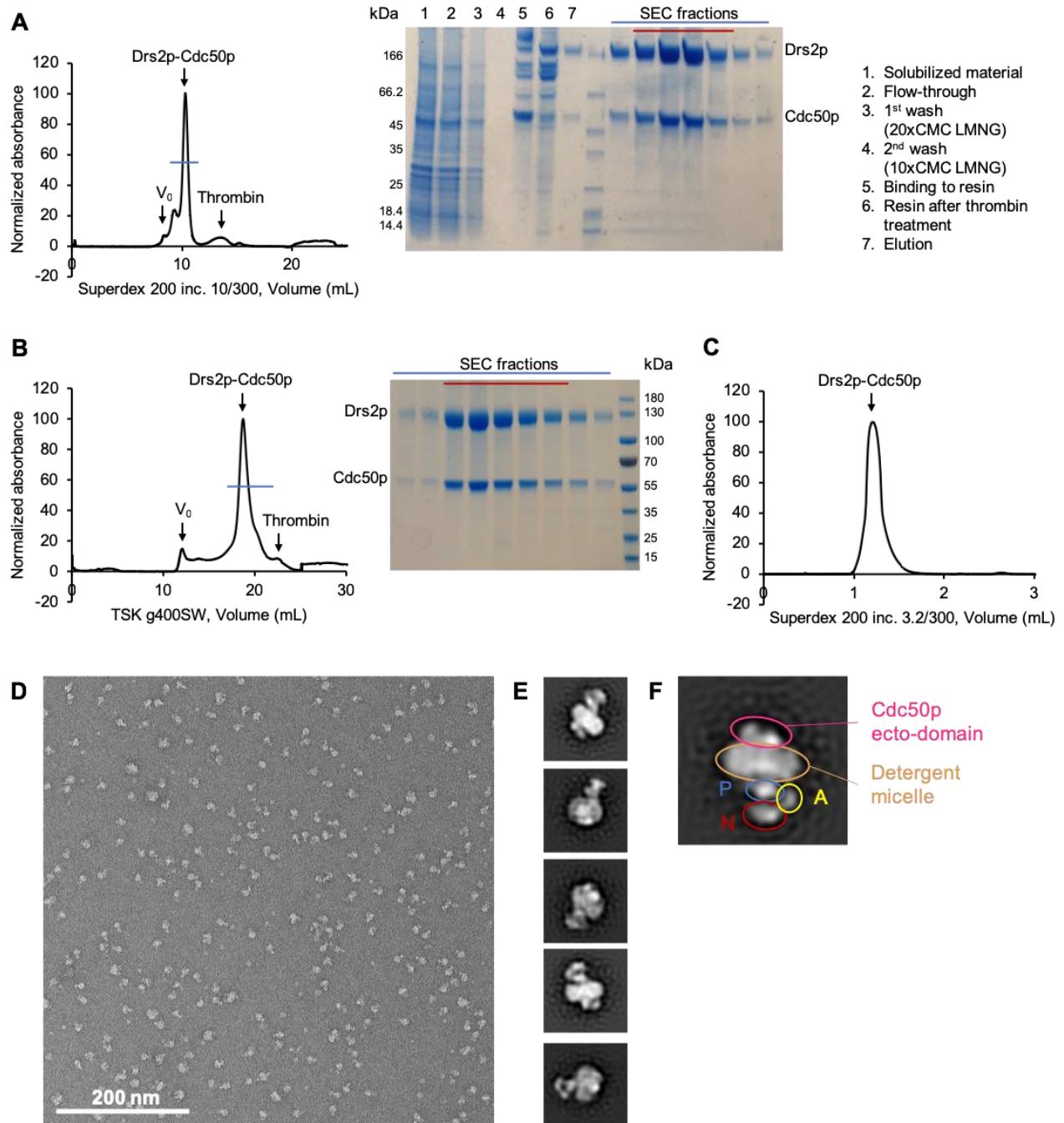

494

495

496

497 E) PS binding in E2P<sup>inhib</sup>. Lys1224 is moved away from the binding site, and is not close  
498 enough for direct contact. Arg1219 is the only residue still in contact with the  
499 glycerophosphate backbone. Grey density is at a lower threshold (1.0, PyMOL), than the blue  
500 (2.0, PyMOL).


501  
502




503

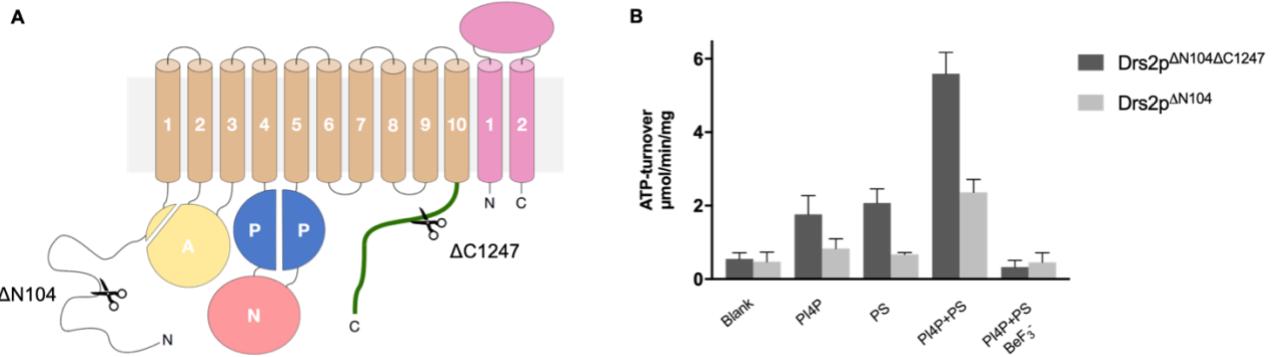
504 **Figure 5: Activation of Drs2p upon PI4P-binding and C-terminal truncation**

505 A) A proposed lipid translocation pathway is exposed upon activation by PI4P binding and  
506 C-terminal truncation. TM4 is shown in yellow and the PISL-motif is in orange. E2P<sup>inter</sup>  
507 closely resembles to E2P<sup>inhib</sup> (not shown). The asterisk marks the location of C) and D).  
508 B) Electrostatic surface of the open pathway. Electrostatic surfaces from APBS<sup>42,43</sup> of all  
509 structures are shown in Supplementary Data Figure 5A.  
510 C) Interaction between Cdc50p Arg151 and TM1-2 loop of Drs2p in E2P<sup>inhib</sup>. Colors as in A)  
511 with TM1-2 in tan. The location within the structure can be seen in A).  
512 D) The positive charge of Lys1018 near the PISL-motif of TM4. The location within the  
513 structure can be seen in A).  
514 E) Alignment of the three Drs2p-Cdc50p structures based on Cdc50p and TM7-10 of Drs2p.  
515 E2P<sup>inhib</sup> is yellow, E2P<sup>inter</sup> is blue, and E2P<sup>active</sup> is green.  
516 F) View of the P-domains from D with the TM6-7 loop and C-terminus in slightly darker  
517 colors and the autoinhibitory domain of E2P<sup>inhib</sup> in brown.





532 **Supplementary Data Figure 1: Purification and negative stain electron microscopy of**  
533 **samples for structural studies**


534 A) Chromatogram and gel of Drs2p  $\Delta$ N104/Cdc50p purification. Red line shows the pooled  
535 fractions.

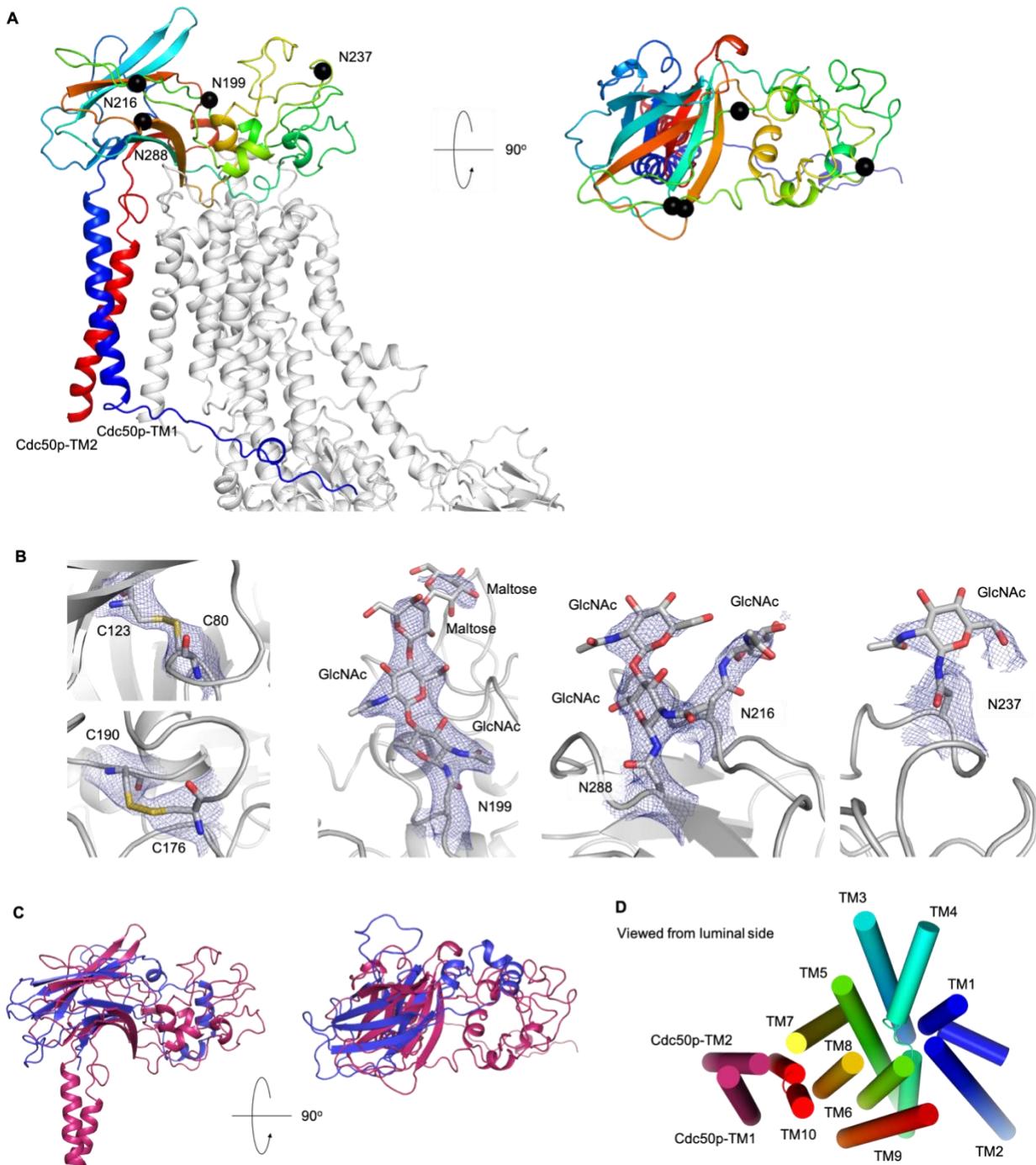
536 B) 1st SEC of Drs2p  $\Delta$ NC/Cdc50p with gels showing fractions. Red line shows the pooled  
537 fractions.

538 C) 2nd SEC of  $\Delta$ NC, used for freezing grids.

539 D) A representative negative stained micrograph of autoinhibited Drs2p  $\Delta$ N104/Cdc50p in  
540 LMNG.

541 E) Representative 2D class averages of the sample in D) shows well defined and  
542 homogeneous particles with recognizable P-type ATPase features, showing that the sample is  
543 suitable for further study by cryo-EM.  
544 F) Enlarged 2D class average with highlight of the recognizable domains of Drs2p-Cdc50p.  
545




546

547 **Supplementary Data Figure 2: Activity of samples used for structural studies**

548 A) Topology of Drs2p-Cdc50p with indication of the cleavages at the termini of Drs2p of the  
549 constructs used for structural studies ( $\Delta$ N104: all constructs,  $\Delta$ C1247: E2P<sup>active</sup>). Cdc50p is  
550 pink, while for Drs2p the TM-domain is tan, the A-domain is yellow, the P-domain is blue, the  
551 N-domain is red and the autoinhibitory C-terminus is green.

552 B) Specific activity of Drs2p  $\Delta$ NC/Cdc50p and Drs2p  $\Delta$ N104/Cdc50p in LMNG measured  
553 by the Baginski Assay. Where present, PS C(8:0), Brain PI4P and BeF<sub>3</sub><sup>-</sup> were added to final  
554 concentrations of 78 $\mu$ g/mL, 20 $\mu$ g/mL and 5mM, respectively.

555

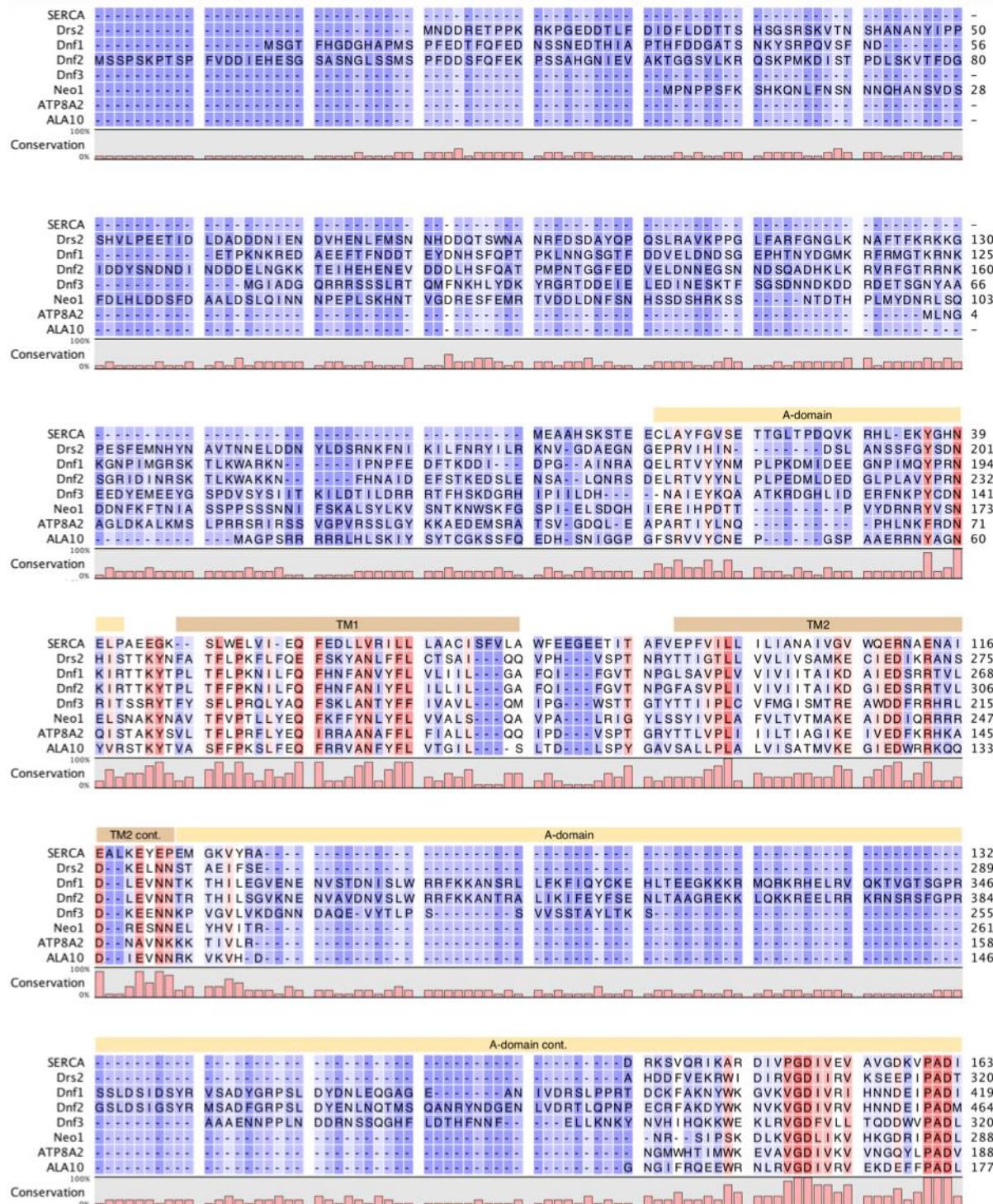


556

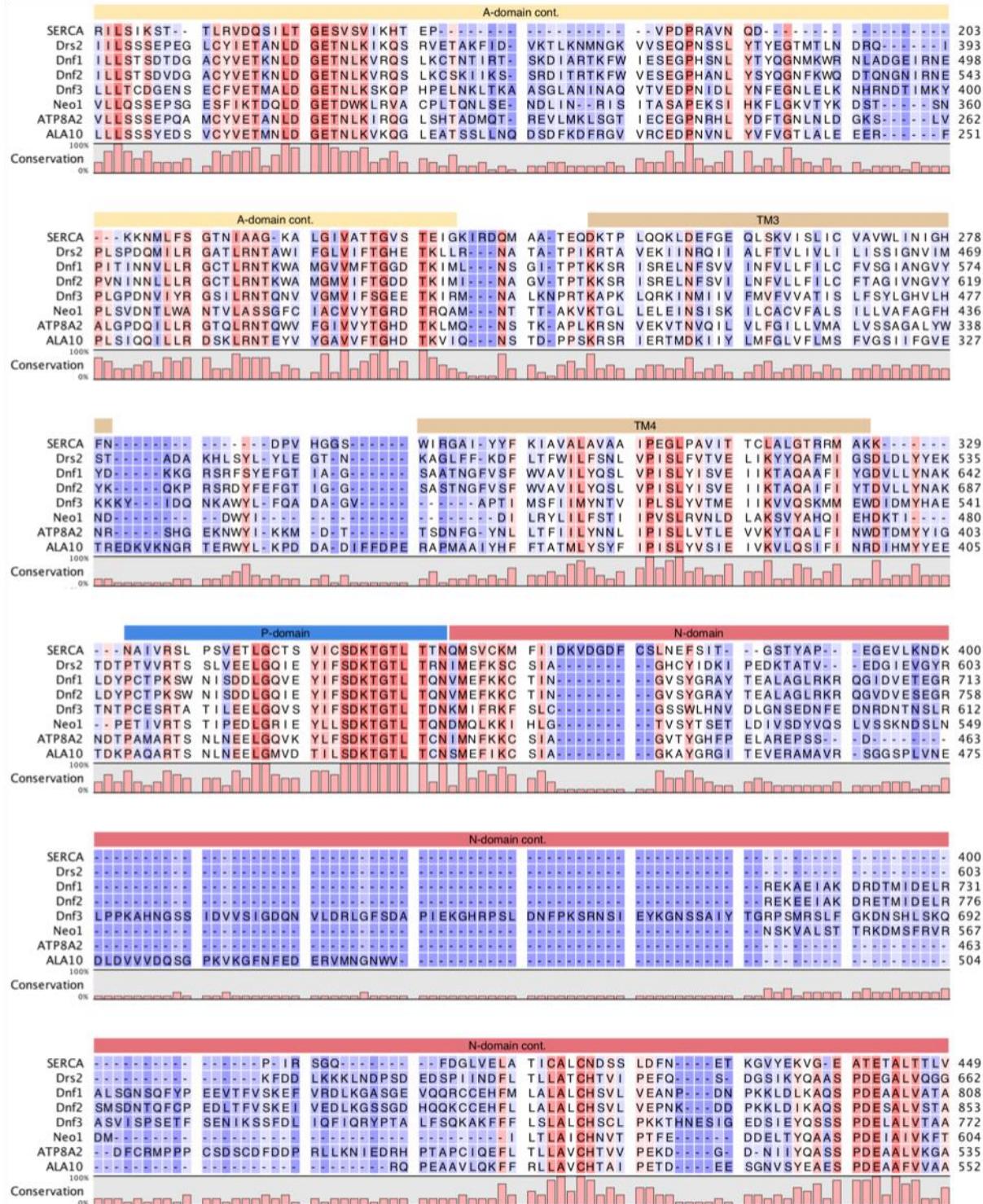
557 **Supplementary Data Figure 3: Fold of Cdc50p**

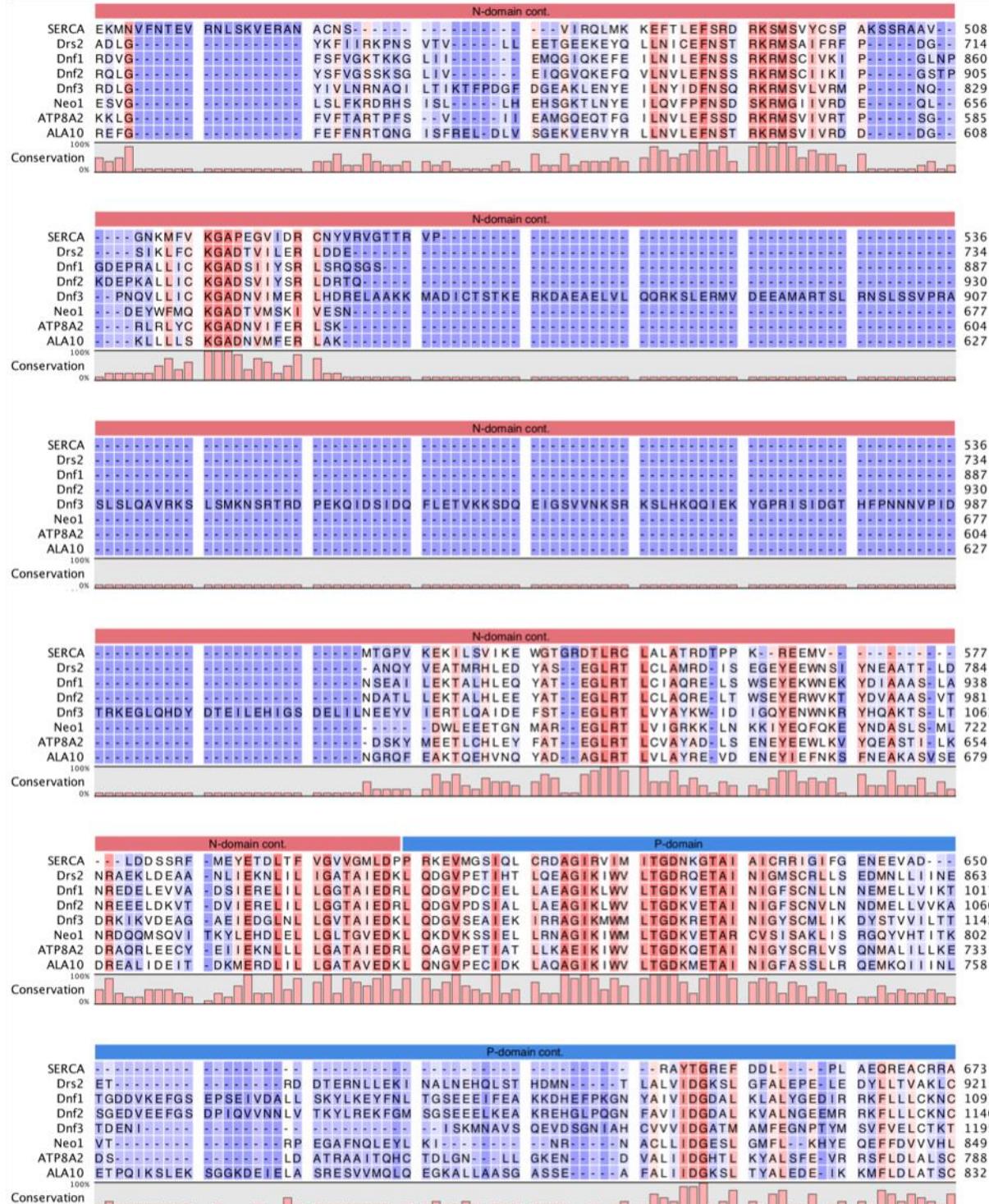
558 A) Cdc50p from E2P<sup>inhib</sup> colored by rainbow. C<sub>α</sub>-carbons of asparagines carrying  
559 glycosylations are shown as black spheres. Drs2p is shown in grey.

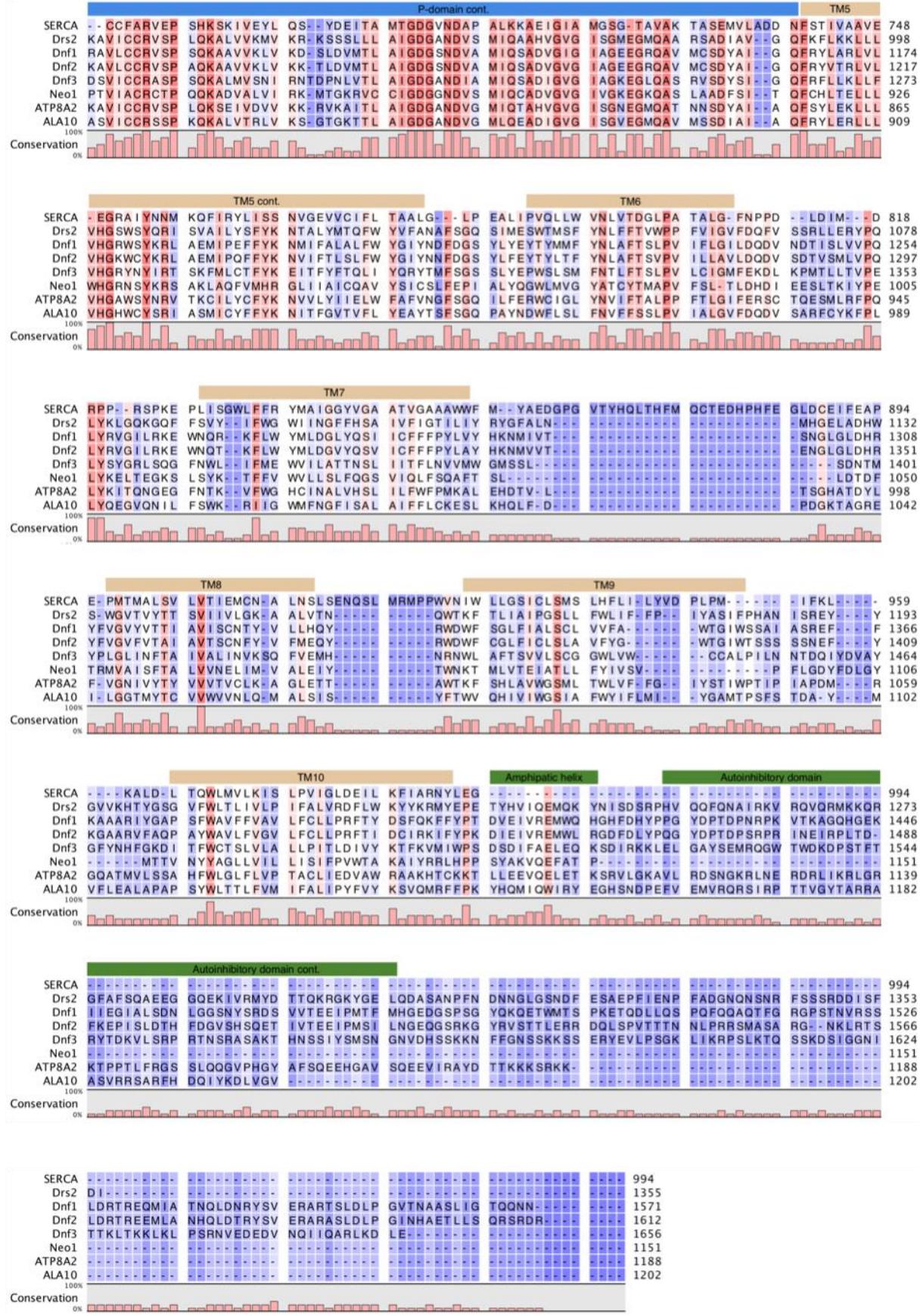
560 B) Disulfides and glycosylations of Cdc50p from E2P<sup>inhib</sup>. Cys176-Cys190 and Asn237-  
561 GlcNAc are shown at lower thresholds than the rest.


562 C) Alignment of Cdc50p and a monomer of human seipin (PDB 6DS5<sup>44</sup>), a lipid binding  
563 protein illustrates the similar folds, although loops of Cdc50p are more extensive. The  
564 sequence identity between the two proteins is only 4%. Transmembrane helices of seipin

565 extending from similar positions as the helices of Cdc50p are missing in the structure, but  
566 may extend into the membrane in a similar way as observed for Cdc50p.

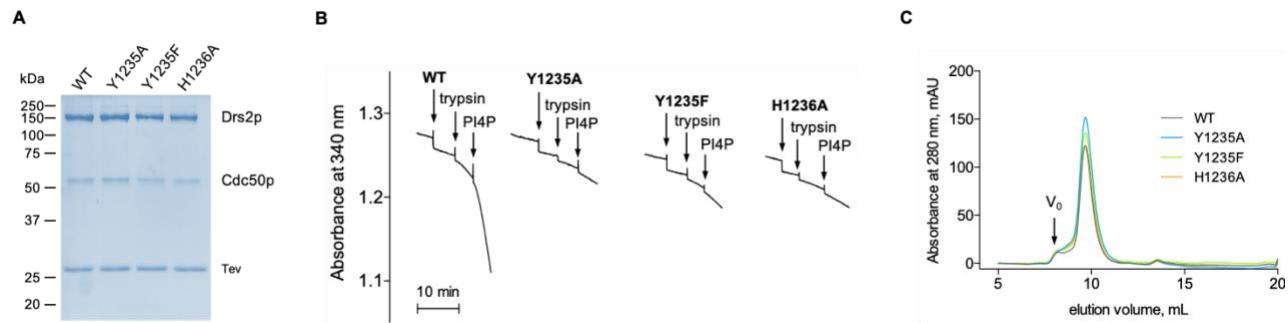

567 D) The TM-helices of the complex viewed from the luminal side. The helices of Drs2p are  
568 colored in rainbow.


569  
570


571



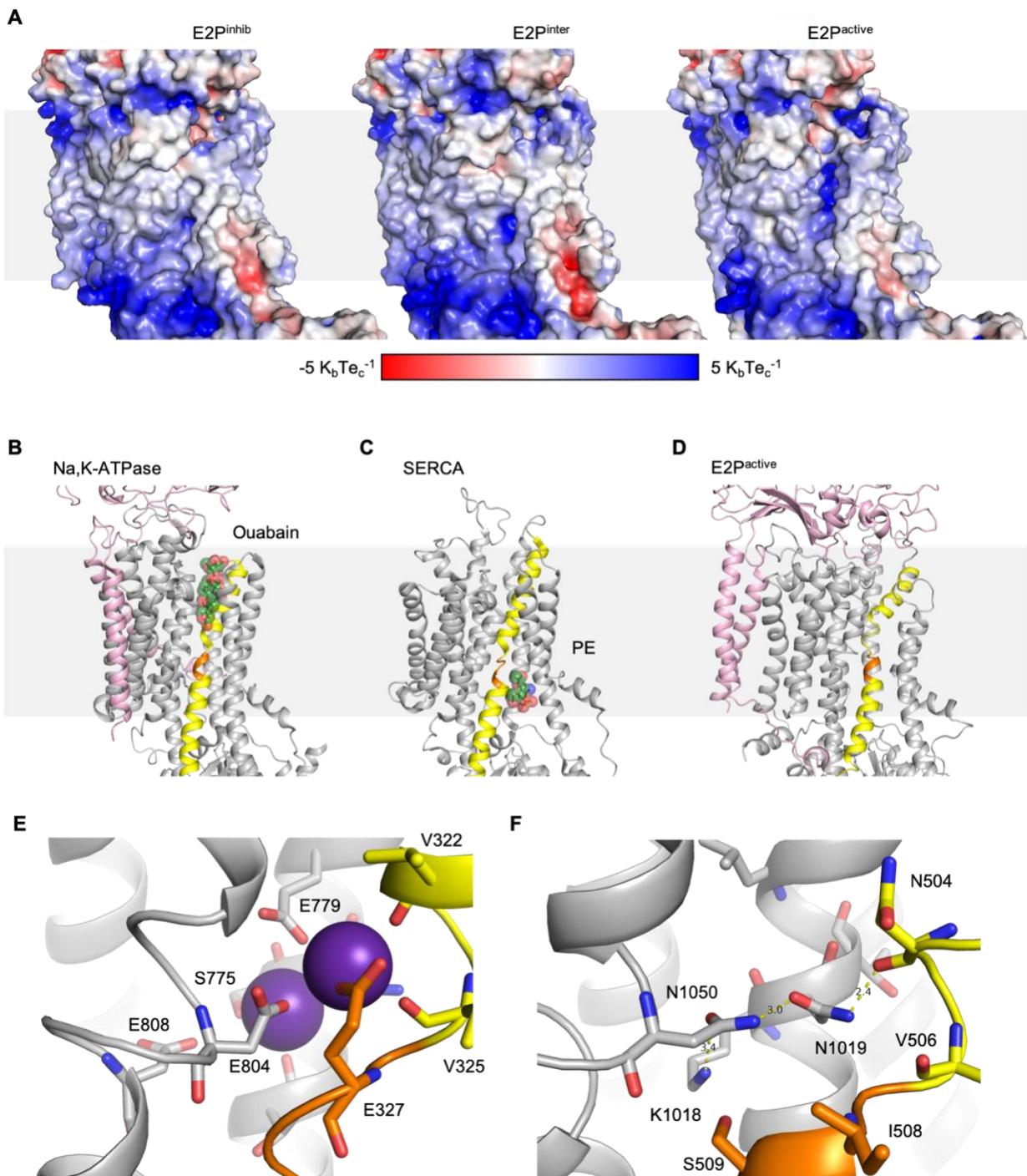
572








580 Sequence alignment of the five *S. cerevisiae* P4 ATPases, the human ATP8A2, and *A.*  
581 *thaliana* ALA10, aligned by Clustal Omega<sup>39,40</sup>, along with a structural alignment between  
582 Drs2p from E2P<sup>active</sup> and SERCA-BeF<sub>3</sub><sup>-</sup> (PDB 3B9B) performed by the Dali Server's  
583 pairwise alignment<sup>45</sup> separately for the N-domain of Drs2p and for the rest of the protein, as  
584 the N-domain is very flexible and can distort the alignment. The structural alignment was  
585 adjusted to the full-length Drs2p-sequence. For the rabbit SERCA it only includes the  
586 sequence of the structure that is shown, meaning that the C-terminal 7 residues are missing.  
587 The shading indicates conservation (blue 0% – red 100%). Above the sequences the domains  
588 and transmembrane helices of Drs2p are indicated in the same color scheme as Figure 1A.  
589 Uniprot identifiers: SERCA – P04191, Drs2p – P39524, Dnf1p – P32660, Dnf2p – Q12675,  
590 Dnf3p – Q12674, Neo1p – P40527, ATP8A2 – Q9NTI2, ALA10 – Q9LI83.


591



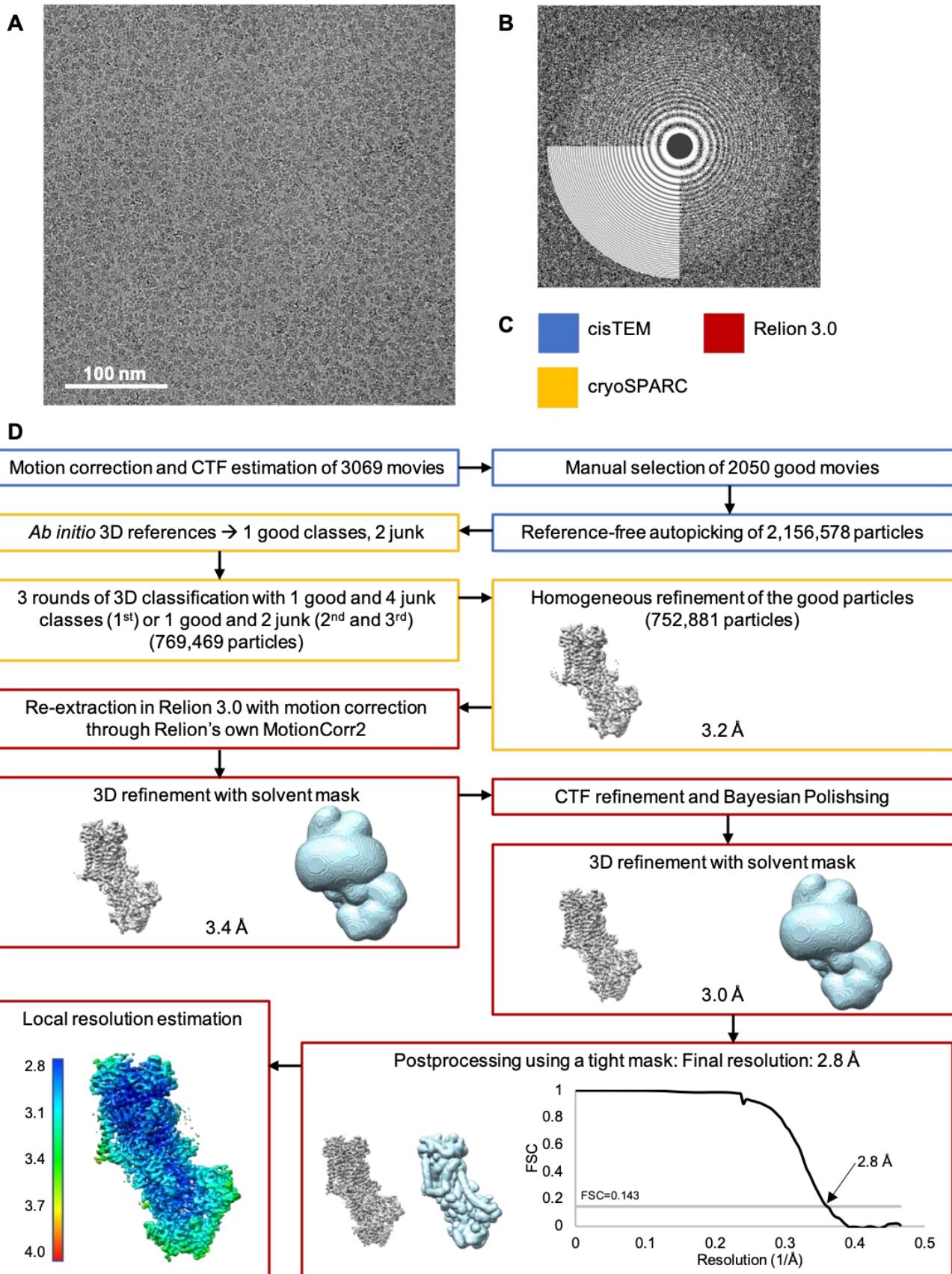
592

### Supplementary Data Figure 5: Characterization of PI4P-binding mutants

593 A) Coomassie-blue stained SDS-PAGE of streptavidin-purified wild-type and mutant Drs2p-  
594 Cdc50p. Tobacco Etch Virus (TEV) protease is used to release the complex from streptavidin  
595 beads. B) ATPase activity of PI4P-binding mutants, using an enzyme-coupled assay. The  
596 assay medium contained 1 mM ATP, 0.1 mg.mL<sup>-1</sup> POPS and 1 mg.mL<sup>-1</sup> DDM in SSR buffer.  
597 The rate of ATP hydrolysis was continuously recorded at 340 nm upon subsequent addition  
598 of 2  $\mu$ g.mL<sup>-1</sup> of the purified complex, 5  $\mu$ g.mL<sup>-1</sup> trypsin, and 0.025 mg.mL<sup>-1</sup> PI4P.  
599 C) Size-exclusion chromatography on a Superdex 200 10/300GL column. The arrow  
600 indicates the dead volume ( $V_0$ ).



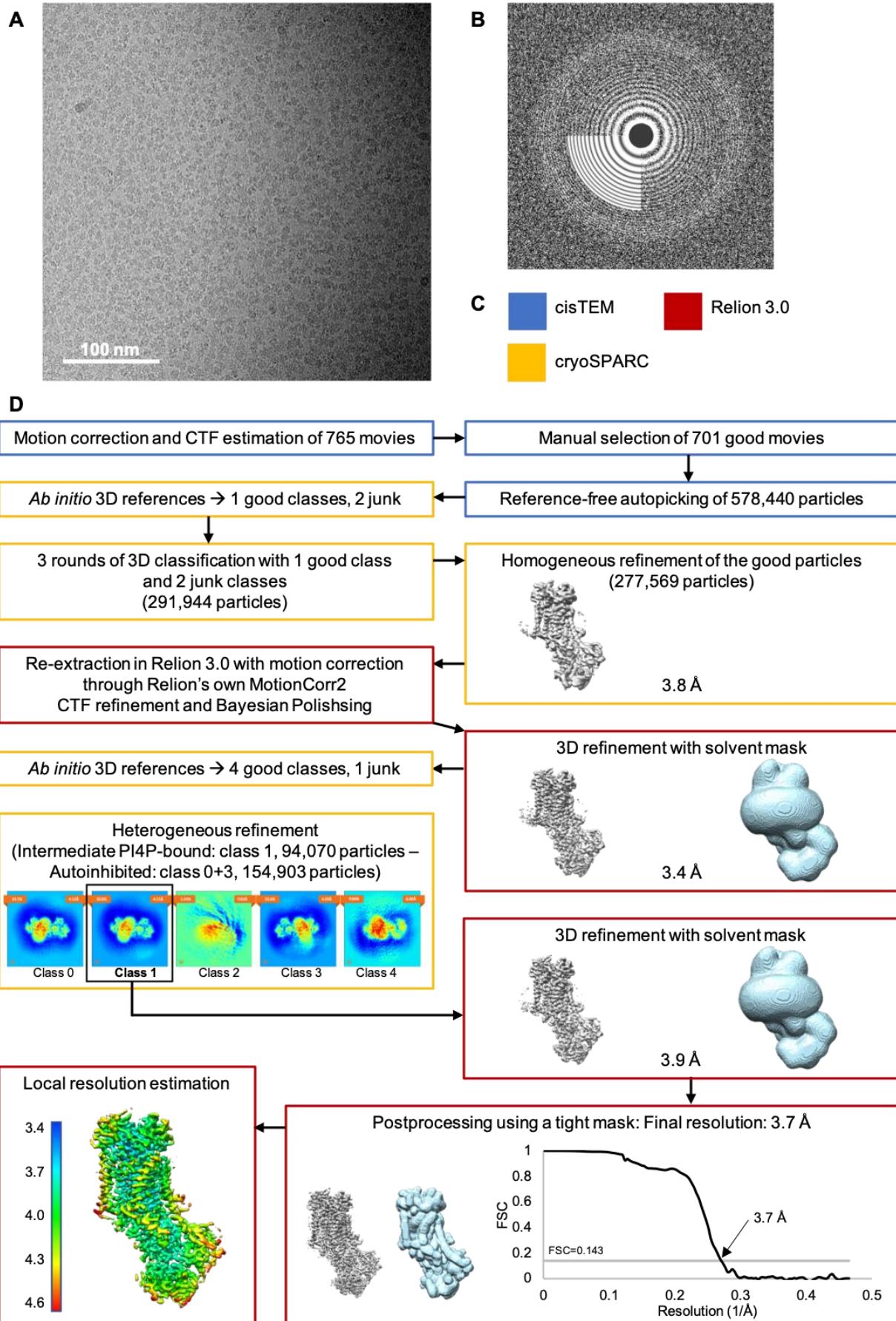
610 C) An E2 state of SERCA with a PE molecule bound between TM2 and 4 (PDB 2AGV<sup>46</sup>).


611 Colors as (B).

612 D) E2P<sup>active</sup> in the same orientation and with colors as B-C.

613 E) Potassium binding in Na,K-ATPase (PDB 3KDP<sup>32</sup>), showing the coordination of ions in  
614 site I and site II by negatively charged and polar residues. TM4 is colored yellow with the  
615 PEGL-motif in orange, and the bound potassium as purple spheres.

616 F) Sites and residues corresponding to the ion binding sites of Na,K-ATPase (PDB 3KDP)  
617 shown in (D) from E2P<sup>active</sup>. TM4 is yellow with the PISL-motif in orange, and stabilizing  
618 hydrogen bonds are shown.


619



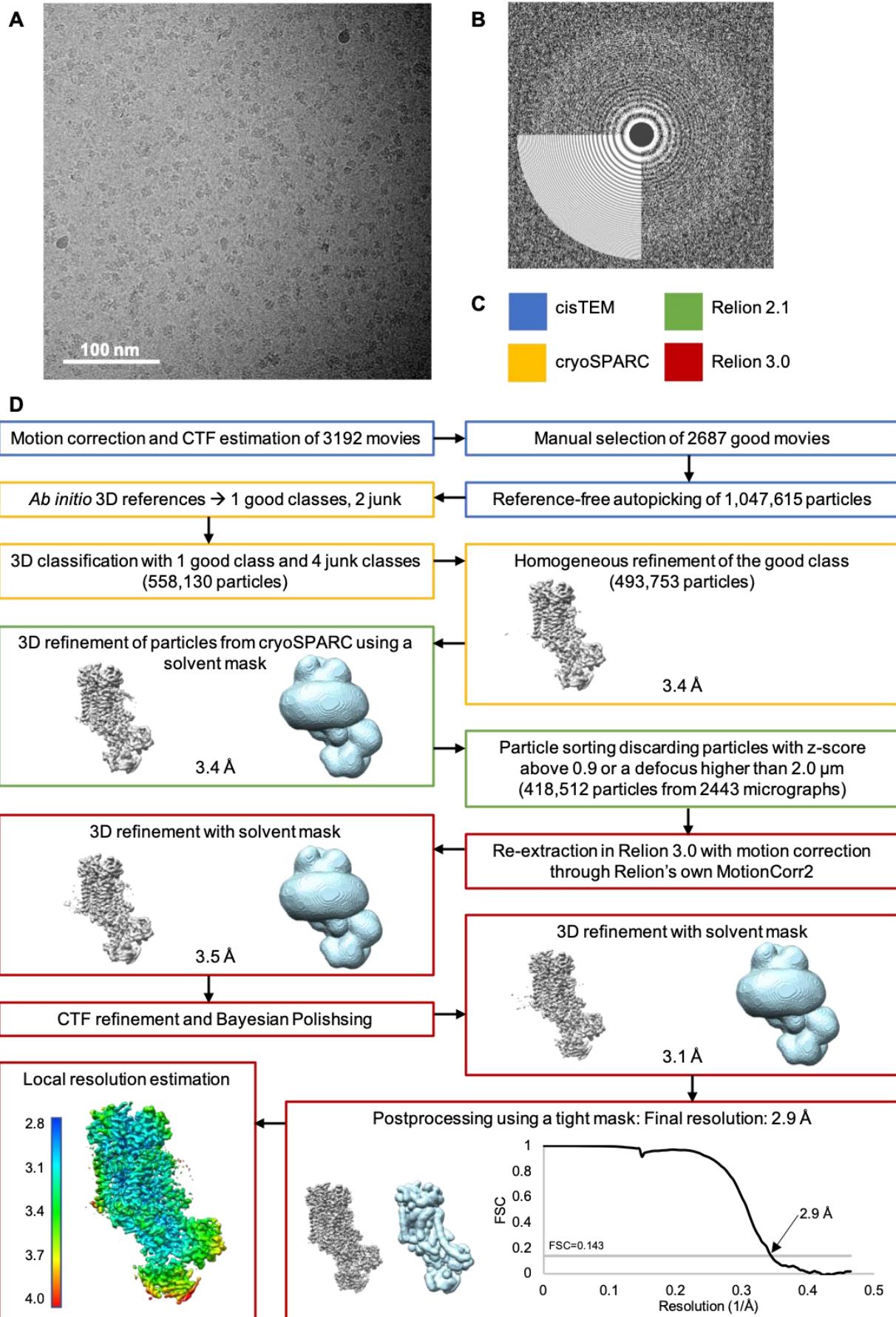
620

621 **Supplementary Data Figure 7: Processing pipeline for cryo-EM data of Drs2p-Cdc50p**  
622 **E2P<sup>inh</sup>**

623 A) Representative motion-corrected and dose-weighted micrograph (defocus 1.6  $\mu\text{m}$ ) of  
624 autoinhibited Drs2p  $\Delta\text{N104-Cdc50p}$  in LMNG, frozen at a concentration of 0.6 mg/ml.  
625 B) Fourier power spectrum of the micrograph shown in (A), with fit from CTFFIND 4.1  
626 through cisTEM, which extends to 3  $\text{\AA}$ .  
627 C) Color code of processing software.  
628 D) Data processing workflow with indication of the number of particles remaining after each  
629 step at which particles were discarded. The densities resulting from 3D refinement are shown  
630 in grey, while relevant masks are shown in light blue. The resolutions listed for 3D  
631 refinements are at FSC=0.143.

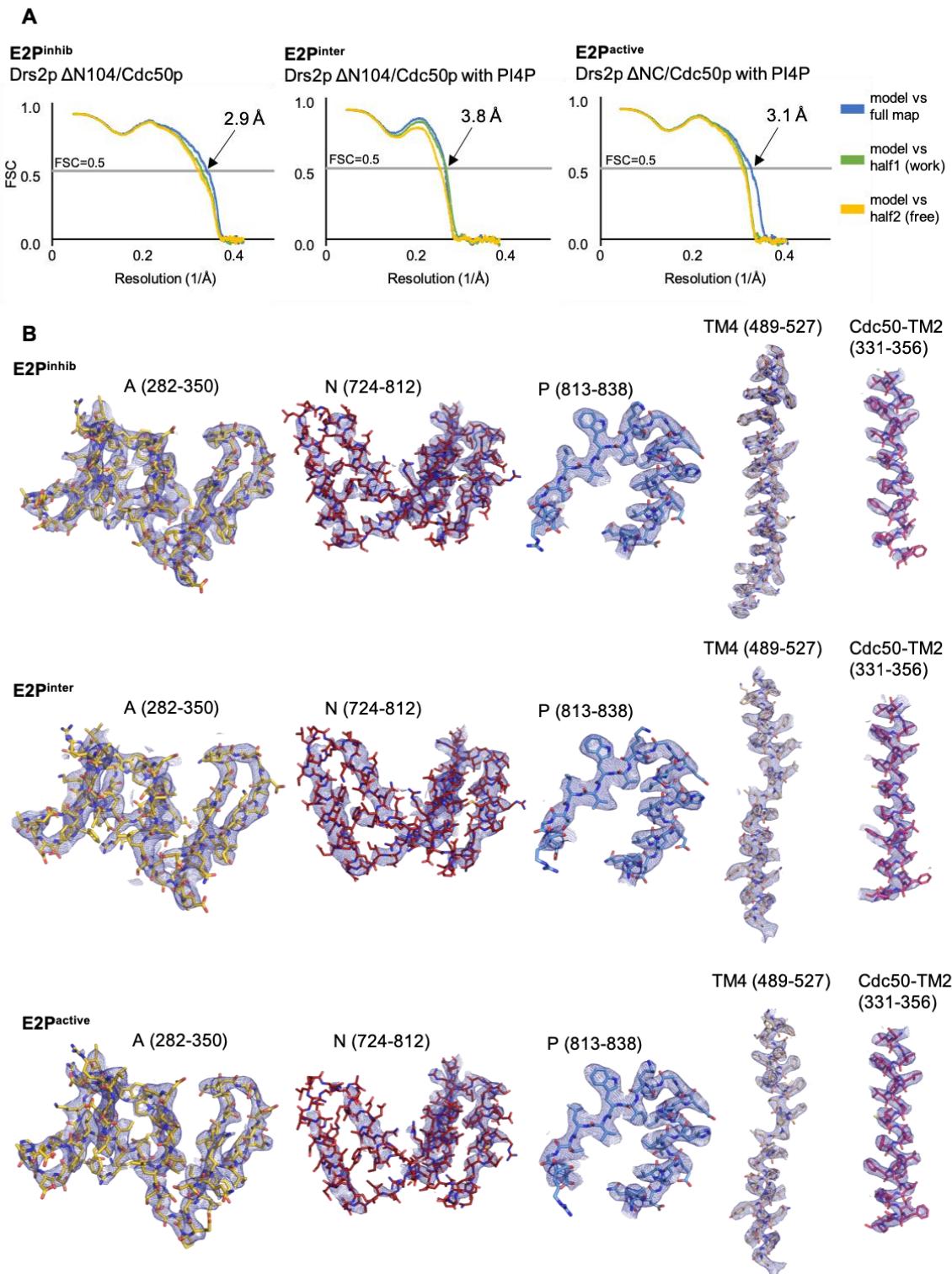


633 **Supplementary Data Figure 8: Processing pipeline for cryo-EM data of Drs2p-Cdc50p**  
634 **E2P<sup>inter</sup>**


635 A) Representative motion-corrected and dose-weighted micrograph (defocus 1.5  $\mu$ m) of  
636 Drs2p  $\Delta$ N104-Cdc50p with an intact C-terminus in LMNG, frozen at a concentration of 0.6  
637 mg/ml in the presence of 75  $\mu$ g/ml Brain PI4P.

638 B) Fourier power spectrum of micrograph in (A), with fit from CTFFIND 4.1 through  
639 cisTEM, which extends to 5  $\text{\AA}$ .

640 C) Color code of processing software.


641 D) Data processing workflow with indication of the number of particles remaining after each  
642 step at which particles were discarded. Densities resulting from 3D refinement are shown in  
643 grey, while relevant masks are shown in light blue. The resolutions listed for 3D refinements  
644 are at FSC=0.143. The 3.4  $\text{\AA}$ -refinement indicated a mixed state around TM10. To classify  
645 structural heterogeneity due to incomplete binding of PI4P, new ab initio references were  
646 generated in cryoSPARC allowing for high similarity, as the conformations were expected to  
647 be similar. Two different conformations resulted: the autoinhibited one and a PI4P-bound.  
648 The autoinhibited was identical to E2P<sup>inhib</sup> and adding these particles to that dataset did not  
649 improve the reconstruction. The PI4P-bound conformation was further refined in Relion.

650



652 **Supplementary Data Figure 9: Processing pipeline for cryo-EM data of Drs2p-Cdc50p**  
653 **E2P<sup>active</sup>**

654 A) Representative motion corrected and dose weighted micrograph (defocus of 1.7  $\mu\text{m}$ ) of C-  
655 terminally truncated Drs2p  $\Delta\text{NC-Cdc50p}$  in LMNG, frozen at a concentration of 0.6 mg/mL  
656 in the presence of 75  $\mu\text{g/mL}$  Brain PI4P.  
657 B) Fourier power spectrum of the micrograph shown in (A), as well as the fit from CTFFIND  
658 4.1 through cisTEM, which extends to 3  $\text{\AA}$ .  
659 C) Color code of processing software.  
660 D) Data processing workflow with indication of the number of particles remaining after each  
661 step at which particles were discarded. Densities resulting from 3D refinement are shown in  
662 grey, while relevant masks are shown in light blue. The resolutions listed for 3D refinements  
663 are at FSC=0.143.



664

665 **Supplementary Data Figure 10: Model validation and representative densities**

666 A) Cross-validation FSC curves for map-to-model fit produced by Mtriage<sup>47</sup>.

667 Curves representing model vs. full map are calculated based on the final model and the full,  
668 filtered and sharpened map that it was refined against.

669 For the model vs. half-maps, the model (before the final refinement against) was refined  
670 against half-map 1 filtered and sharpened as the full map, and FSC-curves were calculated  
671 using this refined model against each half-map.  
672 B) Representative densities from different areas of the three LocScale-maps. Each segment is  
673 labelled with which residues are shown, and demonstrates the quality of the map in specific  
674 areas. All are shown at a 1.5 threshold (PyMOL).

675

**Supplementary Data Table 1:** Cryo-EM data collection, refinement and validation statistics

|                                                        | Drs2p $\Delta$ N104/Cdc50p<br>(autoinhibited)<br>(EMDB-xxxx)<br>(PDB xxxx) | Drs2p $\Delta$ N104/Cdc50p<br>with PI4P<br>(intermediate)<br>(EMDB-xxxx)<br>(PDB xxxx) | Drs2p $\Delta$ NC/Cdc50p<br>with PI4P<br>(activated)<br>(EMDB-xxxx)<br>(PDB xxxx) |
|--------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| <b>Data collection and processing</b>                  |                                                                            |                                                                                        |                                                                                   |
| Magnification                                          | 130,000                                                                    | 130,000                                                                                | 130,000                                                                           |
| Voltage (kV)                                           | 300                                                                        | 300                                                                                    | 300                                                                               |
| Microscope                                             | Titan Krios                                                                | Titan Krios                                                                            | Titan Krios                                                                       |
| Electron exposure (e <sup>-</sup> /Å <sup>2</sup> )    | 60                                                                         | 60                                                                                     | 56                                                                                |
| Defocus range (μm)                                     | 0.3-3.0 (0.4-2.5)*                                                         | 0.4-2.4 (0.5-2.4)*                                                                     | 0.3-3.0 (0.4-2.0)*                                                                |
| Pixel size (Å)                                         | 1.077                                                                      | 1.077                                                                                  | 1.077                                                                             |
| Camera                                                 | Gatan K2                                                                   | Gatan K2                                                                               | Gatan K2                                                                          |
| Number of movies                                       | 3069 (2050)*                                                               | 765 (701)*                                                                             | 3192 (2443)*                                                                      |
| Symmetry imposed                                       | C1                                                                         | C1                                                                                     | C1                                                                                |
| Initial particle images (no.)                          | 2,157,578                                                                  | 578,440                                                                                | 1,047,615                                                                         |
| Final particle images (no.)                            | 752,881                                                                    | 78,981                                                                                 | 418,512                                                                           |
| Map resolution (Å)                                     | 2.8                                                                        | 3.7                                                                                    | 2.9                                                                               |
| FSC threshold                                          | 0.143                                                                      | 0.143                                                                                  | 0.143                                                                             |
| Map resolution range (Å)                               | 2.7-3.4                                                                    | 3.6-4.4                                                                                | 2.9-4.1                                                                           |
| <b>Refinement</b>                                      |                                                                            |                                                                                        |                                                                                   |
| <u>Initial model used (PDB code)</u>                   | N/A                                                                        | N/A                                                                                    | N/A                                                                               |
| Model resolution (Å)                                   | 2.9                                                                        | 3.8                                                                                    | 3.1                                                                               |
| FSC threshold                                          | 0.5                                                                        | 0.5                                                                                    | 0.5                                                                               |
| Model resolution range (Å)                             |                                                                            |                                                                                        |                                                                                   |
| Map sharpening B factor (Å <sup>2</sup> ) <sup>#</sup> | -40 (-76)                                                                  | -60 (-115)                                                                             | -35 (-69)                                                                         |
| Model composition                                      |                                                                            |                                                                                        |                                                                                   |
| Non-hydrogen atoms                                     | 11772                                                                      | 11791                                                                                  | 11479                                                                             |
| Protein residues                                       | 1449                                                                       | 1447                                                                                   | 1404                                                                              |
| Ligands                                                | 2 H <sub>2</sub> O, 1 Mg <sup>2+</sup> , 1 PS,<br>6 NAG, 2 BMA             | 2 H <sub>2</sub> O, 1 Mg <sup>2+</sup> , 1 PI4P,<br>6 NAG, 2 BMA                       | 2 H <sub>2</sub> O, 1 Mg <sup>2+</sup> , 1 PI4P,<br>7 NAG, 4 BMA                  |
| B factors (Å <sup>2</sup> )                            |                                                                            |                                                                                        |                                                                                   |
| Protein                                                | 33.75/150.55/73.76                                                         | 35.45/170.28/89.45                                                                     | 34.18/187.73/77.30                                                                |
| Ligand                                                 | 55.17/99.22/78.05                                                          | 68.87/120.20/92.11                                                                     | 51.25/111.21/78.04                                                                |
| Water                                                  | 55.49/55.73/55.61                                                          | 77.61/80.06/78.84                                                                      | 60.71/61.39/61.05                                                                 |
| R.m.s. deviations                                      |                                                                            |                                                                                        |                                                                                   |
| Bond lengths (Å)                                       | 0.006                                                                      | 0.008                                                                                  | 0.006                                                                             |
| Bond angles (°)                                        | 0.868                                                                      | 0.995                                                                                  | 0.932                                                                             |
| Validation                                             |                                                                            |                                                                                        |                                                                                   |
| MolProbity score                                       | 1.40                                                                       | 1.61                                                                                   | 1.36                                                                              |
| Clashscore                                             | 3.99                                                                       | 5.05                                                                                   | 3.57                                                                              |
| Poor rotamers (%)                                      | 0.23                                                                       | 0.23                                                                                   | 0.16                                                                              |
| EMRinger                                               | 3.80                                                                       | 2.13                                                                                   | 3.50                                                                              |
| Ramachandran plot                                      |                                                                            |                                                                                        |                                                                                   |
| Favored (%)                                            | 96.60                                                                      | 94.99                                                                                  | 96.64                                                                             |
| Allowed (%)                                            | 3.40                                                                       | 5.01                                                                                   | 3.36                                                                              |
| Disallowed (%)                                         | 0.0                                                                        | 0.0                                                                                    | 0.0                                                                               |

676 \* number in parenthesis corresponds to the final range/number.

677 # The B-factor listed is the one used for refinement, while the one in the parentheses is the B-  
678 factor estimated by Relion PostProcessing.

679

680 **Supplementary Information**

681 **Methods**

682 **Enzyme-coupled assay**

683 Expression and streptavidin purification of wild-type Drs2p-Cdc50p and mutants for functional  
684 studies were carried out as described previously<sup>20,48</sup>. Specifically, we used for this purpose a  
685 C-terminal Tobacco Etch Virus (TEV)-cleavable BAD tag and DDM was used throughout the  
686 purification procedure. Size-exclusion chromatography was performed on a Superdex 200  
687 Increase 10/300GL column, with a mobile phase containing 0.5 mg.mL<sup>-1</sup> DDM and 0.025  
688 mg.mL<sup>-1</sup> POPS. The rate of ATP hydrolysis by PI4P-binding mutants was measured at 30 °C  
689 using an enzyme-coupled assay, by continuously monitoring the rate of NADH oxidation at  
690 340 nm<sup>49</sup>. The purified Drs2p-Cdc50p complexes were added at about 2 µg.mL<sup>-1</sup>, in a cuvette  
691 containing SSR buffer supplemented with 1 mM ATP, 1 mM phosphoenolpyruvate, 0.4  
692 mg.mL<sup>-1</sup> pyruvate kinase, 0.1 mg.mL<sup>-1</sup> lactate dehydrogenase, 0.25 mM NADH, 1 mM NaN<sub>3</sub>,  
693 1 mg.mL<sup>-1</sup> DDM, and 0.1 mg.mL<sup>-1</sup> POPS. Trypsin and PI4P were subsequently added to  
694 concentrations of 0.05 mg.mL<sup>-1</sup> and 0.025 mg.mL<sup>-1</sup>, respectively. Conversion of NADH  
695 oxidation rates expressed in AU/s to ATPase activities in µmol.min<sup>-1</sup>.mg<sup>-1</sup> was based on the  
696 extinction coefficient of NADH (~6200 M<sup>-1</sup>.cm<sup>-1</sup>) and on Coomassie-Blue stained SDS-PAGE-  
697 based quantification of Drs2p using known amounts of SEC-purified Drs2p as standards.  
698

699 **Expression and purification of Drs2p-Cdc50p for structural studies**

700 Protein expression in *S. cerevisiae*, membrane harvesting and solubilization were performed as  
701 previously described<sup>20,25,48</sup>. Two different preparations were used Drs2p ΔN104/Cdc50p,  
702 where Drs2p is missing the first 104 residues, and Drs2p ΔNC/Cdc50p, where residues 105-  
703 1247 of Drs2p are present.  
704

705 **Affinity chromatography on streptavidin resin and detergent exchange:** The BAD-tagged  
706 protein was batch bound to free streptavidin sepharose resin (typically 1mL resin per 60mL of  
707 solubilized material) for 1 hour at 4 °C. Detergent exchange into lauryl maltose neopentyl  
708 glycol (LMNG) was performed, by washing with 2 column volumes (CV) SSR with 1mM DTT  
709 and 0.2 mg/mL LMNG, followed by washing with 10 CV SSR with 1 mM DTT and 0.1 mg/mL  
710 LMNG. The resin was resuspended in 1 CV SSR with 1mM DTT, 0.1 mg/mL LMNG and 50  
711 µg/mL Brain PS (Avanti Polar Lipids). 4 units/mL resin of bovine Thrombin (Calbiochem)  
712 was added to cleave the protein off the resin during an overnight incubation at 4 °C. The protein

713 was eluted from the resin in 10-20 CV of SSR with 1mM DTT and 0.1mg/mL LMNG, and  
714 concentrated to 0.5-1mL in a 100 kDa centrifugal concentrator (Vivaspin) with the sample  
715 typically reaching concentrations of 5-10 mg/mL.

716

717 **Cleavage of double truncated construct:** To produce the double-truncated Drs2p  
718  $\Delta$ NC/Cdc50p protein, after elution from the resin and concentration, 4U bovine thrombin per  
719 mL of resin used for the purification was added along with 0.025 mg/mL Brain PI4P (Avanti  
720 Polar Lipids), followed by incubation at room temperature for 1 hour, before quenching of the  
721 protease activity with 1mM PMSF.

722

723 **Size exclusion chromatography:** For Drs2p  $\Delta$ N104/Cdc50p, size exclusion chromatography  
724 (SEC) was run on a Superdex 200 Increase 10/300 column on an ÄKTA purifier system at 4°C  
725 in SSR with 0% glycerol, 1 mM DTT and 0.03 mg/mL LMNG. The peak fractions typically  
726 resulted in a Drs2p/Cdc50p concentration of 0.6 mg/mL, which was used directly for  
727 preparation of cryo-EM grids, or stored at -80°C for later use. For Drs2p  $\Delta$ NC/Cdc50p, a first  
728 round of SEC had been run on a TSKg4000SW silica column on an ÄKTA purifier system at  
729 4°C in SSR with 0% glycerol, 1 mM DTT and 0.03 mg/mL LMNG. The peak fractions were  
730 pooled and concentrated using a 50kDa cut-off centrifugal concentrator to 8 mg/mL, and was  
731 stored at -80°C for later use. A second round of SEC was run on an analytical Superdex 200  
732 Increase 3.2/300 column on an ÄKTA purifier system at 4°C in SSR with 0% glycerol, 1 mM  
733 DTT and 0.03 mg/mL LMNG, where 50  $\mu$ L sample was injected, to remove the background  
734 detergent produced by concentrating the sample. Pooling of the peak fractions resulted in a  
735 protein concentration of 0.6 mg/mL, which was used directly for preparation of cryo-EM grids.  
736 Representative chromatograms and gels are shown in Supplementary Data Figure 1A-C.

737

### 738 **Activity measurement on purified protein for structural studies**

739 The activity of the purified Drs2p-Cdc50p used for structural studies was assayed using an  
740 arsenic-based Baginski Assay<sup>50</sup>, a colorimetric assay for free inorganic phosphate. Drs2p-  
741 Cdc50p in LMNG to a final concentration of 10  $\mu$ g/mL was added to a reaction buffer of SSR  
742 with 0% glycerol, 1mM DTT, 0.02 mg/mL LMNG and 5 mM NaN<sub>3</sub> (final concentrations) as  
743 well as PS C(8:0), Brain PI4P and BeF<sub>3</sub><sup>-</sup> (BeSO<sub>4</sub> and KF in a 1:20 molar ratio) were added,  
744 when present, to final concentrations of 78  $\mu$ g/mL, 20  $\mu$ g/mL and 1 mM, respectively. After  
745 addition of protein to the reaction buffers, the samples were incubated on ice for 1 hour, before

746 transfer to 30°C, and upon reaching this temperature, the reactions were initiated by addition  
747 of ATP to a concentration of 4 mM. At specific time points, 50µL sample was transferred to a  
748 96-well microplate, and mixed with 50 µL 1:5 solution of 30mM ammonium heptamolybdate  
749 in H<sub>2</sub>O, and 0.17M ascorbic acid and 0.1% SDS in 0.5 M HCl. After 10 minutes at room  
750 temperature, 75 µL of arsenic solution (2% (w/v) anhydrous sodium metaarsenic, 2% (w/v)  
751 trisodium citrate dihydrate, 2% (v/v) glacial acid) was added to prevent further complexing of  
752 molybdate by phosphate. The plate was left at room temperature for 30 minutes, before  
753 measurement of the absorbance at 860 nm on a Wallac Victor 3 Multilabel plate reader (Perkin  
754 Elmer).

755

### 756 **Negative Stain Electron microscopy**

757 Copper G400-C3 grids were coated with 2% celluidine, followed by evaporation of amorphous  
758 carbon using a Leica EM SCD500 high vacuum sputter coater. Before use, the grids were glow-  
759 discharged on a PELCO easiGlow Glow Discharge Cleaning System at 25 mA for 45 seconds.  
760 3 µL of protein sample diluted to 20 µg/mL in detergent-free buffer was applied, followed by  
761 staining three times with 3 µL 2% uranyl formate solution, which had been stored at -80°C.  
762 Micrographs were collected on a Tecnai G2 Spirit (120kV) with a Tietz F416 CCD camera  
763 using Leginon<sup>51</sup>. Imaging was performed at 67,000×magnification with a binned camera (pixel  
764 size 3.15 Å). Data processing including CTF-estimation, particle picking, extraction using a of  
765 84-pixel box-size, and 2D classification was performed in cisTEM<sup>52</sup> (Supplementary Data  
766 Figure 1D-F).

767

### 768 **Cryo-electron microscopy**

769 **Sample freezing:** C-flat Holey Carbon grids, CF-1.2/1.3-4C (Protochips), were glow  
770 discharged on a PELCO easiGlow Glow Discharge Cleaning System at 15 mA for 45 seconds  
771 before addition of 3µL of 0.6 mg/mL Drs2p/Cdc50p in LMNG, which had been incubated on  
772 ice for at least 1 hour with 1 mM beryllium fluoride (BeF<sub>3</sub><sup>-</sup>), and 0.1 mg/mL Brain PI4P when  
773 indicated. The samples were vitrified on a Vitrobot IV (ThermoFisher) at 4°C and 100%  
774 humidity.

775

776 **Data collection:** The data was acquired on a Titan Krios with an X-FEG through an energy-  
777 filtered Gatan K2 camera with a calibrated pixel size of 1.077 Å/pixel at a magnification of  
778 46,425x (MPI for Biophysics, Frankfurt). 8 second exposures fractionated into 40 frames were

779 collected through EPU at a dose rate of 1.4 or 1.5 e<sup>-</sup>/Å<sup>2</sup>/frame, corresponding to a total dose of  
780 56 or 60 e<sup>-</sup>/Å<sup>2</sup>.

781 For Drs2p ΔN104/Cdc50p 765 movies were collected on samples with 0.1 mg/mL PI4P and  
782 3069 movies were collected without PI4P. For Drs2p ΔNC/Cdc50p 2391 movies were  
783 collected on a grid with 0.1 mg/mL PI4P and 801 movies were on a grid without additional  
784 PI4P. However, upon initial processing the datasets resulted in identical reconstructions with  
785 the same density in the PI4P-binding site (likely because of the PI4P added during the  
786 purification of this sample), and they were treated as one dataset going forward.

787

788 **Processing:** For all three datasets, movie alignment with dose weighting using all frames and  
789 contrast transfer function (CTF) determination was performed in cisTEM through Unblur<sup>53</sup> and  
790 CTFFind4<sup>54</sup>, respectively. After manual inspection of the micrographs 2050 were selected for  
791 Drs2p ΔNC/Cdc50p, 2687 for Drs2p ΔN104/Cdc50p and 701 for Drs2p ΔN104/Cdc50p with  
792 PI4P. Using the cisTEM reference-free particle picker, a total of 1,047,615 particles were  
793 picked for Drs2p ΔNC/Cdc50p with PI4P and 2,156,578 for Drs2p ΔN104/Cdc50p and  
794 578,440 for Drs2p ΔN104/Cdc50p with PI4P. The particles were extracted in cisTEM using a  
795 box-size of 256 pixels, and cisTEM was used for 2D classification although this was not used  
796 for selecting good particles.

797

798 *Drs2p ΔN104/Cdc50p (E2<sup>inhib</sup>):* Three *ab initio* 3D references were generated in cryoSPARC<sup>55</sup>  
799 from all particles, resulting in one class corresponding to the protein particle, and two  
800 corresponding to junk. Three rounds of heterogeneous 3D classification in cryoSPARC were  
801 performed, where the first round had one protein class and four junk classes, while the next  
802 rounds only used two junk classes apart from one protein class. This resulted in 769,469  
803 particles which were subjected to heterogeneous 3D refinement, resulting in an initial  
804 reconstruction at 3.2Å from 752,881 particles.

805 These particles were re-extracted in Relion 3<sup>56</sup> from movies aligned through the Relion  
806 implementation of MotionCor2<sup>57</sup> for per-particle CTF refinement with estimation of the beam  
807 tilt and Bayesian Polishing<sup>58</sup> performed in Relion 3, before the final 3D refinement resulting  
808 in an unmasked resolution of 3.0Å and a masked resolution of 2.8Å after postprocessing.  
809 Relion 3 was used for estimation of the local resolution. The processing strategy is summarized  
810 in Supplementary Data Figure 7.

811

812 *Drs2p ΔN104/Cdc50p with PI4P (E2P<sup>inter</sup>)*: Three *ab initio* 3D references were generated in  
813 cryoSPARC resulting in two junk and one protein-like class. These were used as reference in  
814 three rounds of heterogeneous 3D classification that resulted in 291,944 protein particles. An  
815 initial homogeneous 3D refinement of these, resulted in a reconstruction at 3.8Å of 277,569  
816 particles. These particles were re-extracted in Relion 3 from movies aligned through  
817 MotionCor2 implemented in Relion for per-particle CTF refinement with estimation of the  
818 beam tilt and Bayesian Polishing performed in Relion 3, before the final 3D refinement  
819 resulting in an unmasked resolution of 3.4Å. However, this appeared to be a mixed state near  
820 TM10 of Drs2p, the PI4P-binding site and in parts of the autoinhibitory domain. As simple 3D  
821 classification using the refined map as reference failed to separate this heterogeneity, five new  
822 *ab initio* references were generated in cryoSPARC with similarity 1.0, to allow for very similar  
823 classes. These were then all used as references for heterogeneous 3D refinement, resulting in  
824 one class corresponding to a PI4P-bound structure, two classes identical to the determined  
825 autoinhibited structure in the absence of PI4P, and two minor junk-classes. The PI4P-bound  
826 resulted in a 3.7Å reconstruction from 78,981 particles from cryoSPARC, which was also  
827 refined in Relion 3 to an unmasked resolution of 3.9Å and a masked resolution of 3.7Å after  
828 postprocessing. Relion 3 was used for estimation of the local resolution. The processing  
829 strategy is summarized in Supplementary Data Figure 8.

830

831 *Drs2p ΔNC/Cdc50p with PI4P (E2<sup>active</sup>)*: Three *ab initio* 3D references were generated in  
832 cryoSPARC from all particles resulting in one class corresponding to the protein particle, and  
833 two corresponding to junk. All particles were then subjected to heterogeneous 3D classification  
834 in cryoSPARC, using each junk reference twice and the good class once, resulting in four junk  
835 classes and one with particles corresponding to the protein. This class was then subjected to  
836 heterogeneous 3D refinement in cryoSPARC resulting in an initial reconstruction at 3.4Å from  
837 493,753 particles. The 3D refinement was repeated in Relion 2.1<sup>59</sup> using a soft solvent mask,  
838 resulting in a reconstruction of similar quality. To improve the map, particle sorting was  
839 performed in Relion 2.1 and particles with a z-score above 0.9 or a defocus higher than 2.0 μm  
840 were rejected, and the remaining 418,512 were re-extracted in Relion 3 from movies aligned  
841 through Relion's own implementation of MotionCor2. Per-particle CTF refinement with  
842 estimation of the beam tilt and Bayesian Polishing performed in Relion 3, before the final 3D  
843 refinement resulting in an unmasked resolution of 3.1Å and a masked resolution of 2.9Å after

844 postprocessing. Relion 3 was used for estimation of the local resolution. The processing  
845 strategy is summarized in Supplementary Data Figure 9.

846

847 Data collection and processing statistics are summarized in Supplementary Data Table 1.

848

849 **Model building and refinement:** The Drs2p  $\Delta$ NC/Cdc50p with PI4P was built manually in  
850 COOT<sup>60</sup> guided by secondary structure predictions from RaptorX<sup>61</sup>, and the structures of the  
851 Na<sup>+</sup>/K<sup>+</sup> ATPase and SERCA in the E2P state (PDB 4HYT and 3B9B) for Drs2p, which was  
852 permitted by the shared topology, and similarity of the E2P-conformations. For Cdc50p, the  
853 positions of all glycosylations were visible as at least one sugar moiety, and were used in  
854 validation of the *de novo* traced structure along with the presence of the two di-sulfide bonds.  
855 The model was refined using Namdinaor<sup>62</sup> and *phenix.real\_space\_refine*<sup>63</sup>.

856 Drs2p  $\Delta$ N104/Cdc50p was built by fitting the Drs2p  $\Delta$ NC/Cdc50p model using Namdinator  
857 followed by manual editing in COOT and manual tracing of the autoregulatory C-terminus.  
858 Refinement was done using *phenix.real\_space\_refine*. The Drs2p  $\Delta$ N104/Cdc50p with PI4P  
859 model was built based on the other two structures with manual editing in COOT followed by  
860 *phenix.real\_space\_refine*.

861 For Drs2p the 78 N-terminal residues of the construct, as well as the 46 C-terminal residues  
862 and 16 residue linker (20 in the structure of E2P<sup>inter</sup>) between TM10 and the autoregulatory  
863 domain in Drs2p  $\Delta$ N104 were too disordered for modeling or entirely missing from the density.  
864 For Cdc50p the 19 N-terminal (18 in the structure of E2<sup>active</sup>) and the entire C-terminal tail of  
865 33 residues (35 in the structure of E2<sup>inhib</sup>) could not be modelled.

866 Model validation was done through MolProbity<sup>64</sup> in Phenix<sup>65</sup>.

867

868 Modelling and refinement statistics are summarized in Supplementary Data Table 1. Model-  
869 to-map FSC curves and representative densities from different areas of the maps are shown in  
870 Supplementary Data Figure 10.

871

872 **Supplementary References**

873 44 Yan, R. *et al.* Human SEIPIN Binds Anionic Phospholipids. *Dev. l Cell* **47**, 248-256  
874 (2018).

875 45 Holm, L. & Laakso, L. M. Dali server update. *Nucleic Acids Res.* **44**, W351-355 (2016).

876 46 Obara, K. *et al.* Structural role of countertransport revealed in  $\text{Ca}^{2+}$  pump crystal  
877 structure in the absence of  $\text{Ca}^{2+}$ . *Proc. Natl. Acad. Sci. USA* **102**, 14489-14496 (2005).

878 47 Afonine, P. V. *et al.* New tools for the analysis and validation of cryo-EM maps and  
879 atomic models. *Acta Crystallogr. D* **74**, 814-840 (2018).

880 48 Azouaoui, H. *et al.* Coordinated Overexpression in Yeast of a P4-ATPase and Its  
881 Associated Cdc50 Subunit: The Case of the Drs2p/Cdc50p Lipid Flippase Complex.  
882 *Methods Mol. Biol.* **1377**, 37-55 (2016).

883 49 Moller, J. V., Lind, K. E. & Andersen, J. P. Enzyme kinetics and substrate stabilization  
884 of detergent-solubilized and membranous ( $\text{Ca}^{2+} + \text{Mg}^{2+}$ )-activated ATPase from  
885 sarcoplasmic reticulum. Effect of protein-protein interactions. *J. Biol. Chem.* **255**,  
886 1912-1920 (1980).

887 50 Baginski, E. S., Foa, P. P. & Zak, B. Determination of phosphate: Study of labile  
888 organic phosphate interference. *Clin. Chim. Acta* **15**, 155-158 (1967).

889 51 Suloway, C. *et al.* Automated molecular microscopy: the new Leginon system. *J.  
890 Struct. Biol.* **151**, 41-60 (2005).

891 52 Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-  
892 particle image processing. *eLife* **7**, e35383 (2018).

893 53 Grant, T. & Grigorieff, N. Automatic estimation and correction of anisotropic  
894 magnification distortion in electron microscopes. *J. Struct. Biol.* **192**, 204-208 (2015).

895 54 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from  
896 electron micrographs. *J. Struc. Biol.* **192**, 216-221 (2015).

897 55 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms  
898 for rapid unsupervised cryo-EM structure determination. *Nat. Methods* **14**, 290-296  
899 (2017).

900 56 Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure  
901 determination in RELION-3. *eLife* **7**, e42166 (2018).

902 57 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for  
903 improved cryo-electron microscopy. *Nat. Methods* **14**, 331-332 (2017).

904 58 Zivanov, J., Nakane, T. & Scheres, S. A Bayesian approach to beam-induced motion  
905 correction in cryo-EM single-particle analysis. *IUCrJ* **6** (2019).

906 59 Fernandez-Leiro, R. & Scheres, S. H. W. A pipeline approach to single-particle  
907 processing in RELION. *Acta Crystallogr. D* **73**, 496-502 (2017).

908 60 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of  
909 Coot. *Acta Crystallogr. D* **66**, 486-501 (2010).

910 61 Wang, S., Li, W., Liu, S. & Xu, J. RaptorX-Property: a web server for protein structure  
911 property prediction. *Nucleic Acids Res.* **44**, W430-435 (2016).

912 62 Kidmose, R. T. *et al.* Namdinator - Automatic Molecular Dynamics flexible fitting of  
913 structural models into cryo-EM and crystallography experimental maps. Preprint at  
914 <https://www.biorxiv.org/content/early/2018/12/23/501197> (2018).

915 63 Afonine, P. V. *et al.* Real-space refinement in PHENIX for cryo-EM and  
916 crystallography. *Acta Crystallogr. D* **74**, 531-544 (2018).

917 64 Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular  
918 crystallography. *Acta Crystallogr. D* **66**, 12-21 (2010).

919 65 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for  
920 macromolecular structure solution. *Acta Crystallogr. D* **66**, 213-221 (2010).