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Abstract

Global insights into cellular organization and function require comprehensive
understanding of interactome networks. Similar to how a reference genome sequence
revolutionized human genetics, a reference map of the human interactome network is
critical to fully understand genotype-phenotype relationships. Here we present the first
human “all-by-all” binary reference interactome map, or “HuRI”. With ~53,000 high-
quality protein-protein interactions (PPls), HuRI is approximately four times larger than
the information curated from small-scale studies available in the literature. Integrating
HuRIl with genome, transcriptome and proteome data enables the study of cellular
function within essentially any physiological or pathological cellular context. We
demonstrate the use of HuRl in identifying specific subcellular roles of PPIs and protein
function modulation via splicing during brain development. Inferred tissue-specific
networks reveal general principles for the formation of cellular context-specific functions
and elucidate potential molecular mechanisms underlying tissue-specific phenotypes of
Mendelian diseases. HuRI thus represents an unprecedented, systematic reference

linking genomic variation to phenotypic outcomes.


https://doi.org/10.1101/605451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/605451; this version posted April 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

The reference human genome sequence has enabled systematic study of genetic' and
expression® variability at the organism’, tissue? cell type® and single cell level®. Despite
advances in sequencing genomes, transcriptomes and proteomes, we still understand little of
the cellular mechanisms that mediate phenotypic and tissue or cell type variability. A
mechanistic understanding of cellular function and organization emerges from studying how
genes and their products, primarily proteins, interact with each other, forming a dynamic
interactome that drives biological function. Analogous to the reference human genome
sequence®®, a reference map of the human protein interactome, generated systematically and
comprehensively, would provide an unprecedented scaffold for the unbiased proteome-wide
study of biological mechanisms, generally and within specific cellular contexts. Almost 20 years
after the publication of a first draft of the reference human genome sequence®®, a reference
protein interactome map is yet to be reported.

Proteins are biochemically more complex than DNA, the interactome is much more dynamic
than the genome, and the search space for interactions requires testing all-by-all pairwise
combinations, making interactome mapping extremely challenging. Approaches to human
proteome-wide protein-protein interaction (PPI) mapping either aim to identify protein complex
assemblies using mass spectrometry’™® or direct PPIs using binary screening methods such as

112 |n contrast

yeast two-hybrid (Y2H) followed by empirical validation using orthogonal assays
to protein complex mapping, binary interactome mapping is based on interrogating pairs of
proteins for interaction independently from any particular endogenous cellular context, thereby
generating relatively unbiased systematic PPI datasets. For example, our most recent human
protein interactome map (HI-lI-14) described ~14,000 PPIls involving 4,000 proteins from
screening ~40% of the genome-by-genome search space’® and in striking contrast to literature-
curated and protein complex interactome maps, HI-1I-14 uniformly covered the proteome, free of
study and expression bias.

To increase interactome coverage and generate a first human reference interactome map,
we have expanded the ORFeome collection to encompass ~90% of the protein-coding genome
and screened this search space a total of nine times with a panel of assays using an enhanced
screening platform. The resulting human binary PPl map doubles HI-lI-14's coverage of the
proteome and quadruples its interactome coverage. Integrating this PPl network with genome,
transcriptome and proteome resources, we infer cellular context-specific views of the protein
interactome, which are predictive of cellular context-specific gene function, at the level of
individual subcellular compartments, cell types and tissues, across developmental stages and in

disease (Fig. 1a). With its comprehensive view of the protein interactome, the resulting network
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enables biological discovery across any cellular context, thus representing the first reference

map of the human protein interactome.

Generation and biophysical characterization of HI-lll-19

Our previously published human protein interactome map, HI-1-14'°, covered less than half of
the possible search space. To generate a more complete map, we established human
ORFeome v9.1. This expanded ORFeome covers 17,408 protein-coding genes, on par with the
number of genes found to be expressed in three comprehensive individual transcriptome

sequencing studies®>"

(Fig. 1b) and includes 94% of the genes with robust evidence of
expression in all three (Fig. 1c, Supplementary Table 1). The search space formed by
hORFeome v9.1 (Space lll), encompassing over 150 million binary combinations, more than
doubles the space screened to generate HI-1I-14 and represents the most comprehensive
search space to be systematically screened for human PPls.

Limitations in PPI assay sensitivity can be overcome by employing different PPI assays™ or
different versions of the same PPl assay'®'®. To maximize sensitivity while maintaining high-
throughput screening capabilities, we employed three Y2H assay versions (Fig. 1d), which,
when benchmarked against a gold standard positive and random reference set (PRSv1 and
RRSv1)", showed good sensitivity and low false positive rates while detecting complementary
sets of PPIs (Extended Data Fig. 1a, b, Supplementary Table 2). We further assessed Y2H
assay version quality, complementarity and screening behavior on a test space of ~2,000 by
~2,000 human genes'. After verification by pairwise Y2H retesting and sequence confirmation,
PPIs from each version were evaluated using MAPPIT'®, an orthogonal assay. For each Y2H
assay version, the recovery rate of PPls was comparable or exceeded that of a set of PPIs from
the literature with = 2 pieces of experimental evidence, of which at least one comes from a
binary assay type (Lit-BM)'® (Extended Data Fig. 1c, Supplementary Table 3). The Y2H assay
versions were complementary, in that performing three screens with each version doubled the
number of PPIs and proteins detected relative to performing the equivalent number of screens
using a single assay version (Extended Data Fig. 1d, Supplementary Table 4).

To construct the reference interactome, we performed nine screens of Space lll, three with
each Y2H assay version, followed by pairwise testing in quadruplicate, sequence confirmation,
and validation using two orthogonal assays, MAPPIT'® and GPCA'. Screen PPIs were
recovered at rates that were similar or superior to Lit-BM over a large range of score thresholds
(Fig. 1e, Extended Data Fig. 1e-g, Supplementary Table 5), confirming the high quality of the

interactome dataset. Each additional screen identified novel PPIs and proteins, with the largest
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gains obtained by switching assay versions (Fig. 1f, g, Extended Data Fig. 1d), highlighting the
importance of performing multiple screens and using several assay versions. The dataset,
versioned HI-IlI-19 (Human Interactome obtained from screening Space lll, published in 2019),
contains 52,569 verified PPIs involving 8,275 proteins (Supplementary Table 6). Given its
systematic nature, completeness and scale, we consider HI-11I-19 to be the first draft of the
Human Reference Interactome (HuRI).

To assess whether assay complementarity can partially stem from different steric constraints
in the protein fusions, we integrated HuRI with protein structure data®® and observed that the
dataset is depleted for PPIs where the interaction interface is a short spatial distance (< 20A)
from the protein terminus fused to the AD domain (Extended Data Fig. 2a, b, Supplementary
Table 7). These results provide the first systematic investigation into the impact of protein tags
on PPI detection.

Molecular mechanisms can be more readily inferred from direct PPIs, yet, the fraction of
direct versus indirect PPIls reported in various human protein interactome maps is unknown.
Using three-dimensional structural information from protein complexes with at least three

subunits®®?’

, we show that the vast majority of PPIs in HuRI (90%) correspond to direct
biophysical contacts, significantly higher than in Lit-BM (81%, P = 0.019, two-sided Fisher’s
exact test, n = 121 (HuRI), 410 (Lit-BM)) or in protein complex interactome maps (less than
50%, P < 0.001 for all, two-sided Fisher's exact test) (Fig. 1h, Supplementary Table 8),
demonstrating that HuRI represents a unique dataset of direct PPIs. Combining HuRI with all
previously published systematic screening efforts at CCSB yields 64,006 binary PPIs involving
9,094 proteins (HI-union) (Supplementary Table 9), which is approximately five-fold more PPIs
than the entirety of high-quality binary PPIs curated from the literature (Fig. 1i). The union of Lit-
BM and Hl-union represent the most complete collection of high quality direct PPI data available
to date (http://interactome.dfci.harvard.edu/huri/).

PPIs in HuRI vary by the number of screens and assay versions in which they were
detected (Extended Data Fig. 2¢, d). To investigate any potential relationship between these
factors and PPI false discovery rate, we compared MAPPIT recovery rates of HuRI and Lit-BM
PPIs found in different numbers of screens. Interestingly, both sets of PPIs show that MAPPIT
recovery rates increase with the number of screens in which an interaction was detected
(Extended Data Fig. 2e, Supplementary Table 10). This trend persists even when titrating Lit-
BM to higher numbers of experimental evidence (Extended Data Fig. 2f), suggesting that
differences in PPI recovery rates are driven by factors other than veracity of a PPI. In HuRI the

number of screens in which an interaction is detected is weakly correlated with both the size of
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the molecular interfacial area (o = 0.15, P = 0.026, two-sided permutation test, n = 234)
(Extended Data Fig. 2g) and the number of atomic contacts (o = 0.14, P = 0.038, two-sided
permutation test, n = 234) (Extended Data Fig. 2h, Supplementary Table 11), suggesting that
identification of a PPl in a screen is impacted by interaction strength and may therefore be
reflecting ‘detectability’ rather than accuracy. Indeed, PPIs in HuRI found in at least two screens
corresponded more often to direct PPIs within rather than between well-described stable protein
complexes??® (P = 3 x 1078, two-sided Fisher’s exact test, n = 1817) (Extended Data Fig. 2i, 3,
Supplementary Table 12). Because the majority of PPIs in HURI were found in only one screen,
our data further reinforces previous observations”?* that the protein interactome might be
dominated by weak, more transient PPls, that are harder to detect. PPI detectability may impact
previous assessments of overlap between PPl datasets, as well as estimates of interactome

size.

Multiple layers of functional relationships between proteins in HuRI

Based on the observation that HuRI is enriched in direct PPls, we hypothesize that proteins in
HuRI with similar interaction interfaces should share a significant number of their interaction
partners. For example, retinoic acid receptors RXR-y and -B (Fig. 2a, left panel) share
previously reported interaction partners involving binding to retinoic acid receptor RAR types?
and oxysterol receptors?®®. We derived a profile similarity network (PSN) from HuRI
(Supplementary Table 13), and found that the number of pairs of proteins in HuRI with similar
interaction profiles is significantly higher than random (P < 0.01, one-sided empirical test)
(Extended Data Fig. 4a) and proteins of overall higher sequence identity tend to exhibit higher
interaction profile similarities (P < 0.01, one-sided empirical test) (Extended Data Fig. 4b).
However, proteins with a tendency to share interaction partners often have interaction interfaces
that are similar, as opposed to complementary, and therefore tend not to interact, unless both
proteins originate from the same ancestral protein that was able to self-interact’’ (Extended
Data Fig. 4c). Indeed, only 5% of the proteins found to interact in HuRI share more than 10% of
their interaction partners. HURI and the PSN display significant enrichment to link proteins of
similar function (P < 0.01, one-sided empirical test) (Fig. 2b, Extended Data Fig. 4d, €) and both
contain much higher numbers of functional modules®® compared to our previously published
interactome maps'®"" (Fig. 2c). Because HuRI and the PSN display little link overlap but both
are functionally enriched, this suggests that HuRIl and the PSN complement each other in

revealing functional relationships between proteins.
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As shown above, global sequence identity between two proteins is indicative of shared
interaction interfaces, however, it likely fails to identify pairs of proteins whose shared interaction
interface is small. Indeed, 50% (502) of all pairs of proteins in HuRI with interaction profile
similarities = 0.5 exhibit less than 20% sequence identity, showing that the functional
relationships between proteins cannot necessarily be identified by sequence identity. One such
pair of proteins is the endoplasmic reticulum (ER) transmembrane protein TMEM258 and the
uncharacterized protein C190RF18, which display a sequence identity of only 10% but share
80% of their interactors (Fig. 2a, right panel). TMEM258 catalyzes the first step in N-
glycosylation of proteins in the ER and might play a role in protein translocation across the ER%.
Roles in protein transport and ER function have also been ascribed to two of the four shared
interaction partners, ARL6IP1*° and IER3IP1°!, suggesting that C190RF18 as well as the other
two shared yet unstudied interaction partners MFSD6 and AC012254.2 might contribute to ER-

related functions of protein maturation and transport.

Uncharted network neighborhoods of disease-related genes

Unlike Lit-BM, HuRI was generated by systematically testing pairs of proteins for interaction.
While Lit-BM is highly biased towards the most highly studied genes'®, HuRI covers the
genome-by-genome space, as ranked by number of publications, more uniformly and at
increased depth compared to Lit-BM and our previous screening efforts (Fig. 3a). Considering
these differences in interactome space coverage, we find that among the best-studied genes,
where Lit-BM is most complete, the agreement between Lit-BM and HuRlI is highest, with ~40%
of the PPIs in HuRI being previously identified (Fig. 3b). Because of its uniform coverage, HuRI
substantially expands the set of genes of biomedical interest for which high-quality direct PPI
data is available (Fig. 3c, Extended Data Fig. 4g), and extends their network neighborhood to
previously uncharted regions of the protein interactome (Fig. 3d, Extended Data Fig. 49).

10,32

As previously shown *“, study bias can skew interactome coverage and the assessment of

systems properties of genes. Using HuRI, we find no evidence of reported correlations between

a protein’s number of interaction partners (degree) and various gene properties, i.e. lethality®*>*,

loss-of-function intolerance’, fitness effect®®, and age®*" (Fig. 3e-g). Moreover, these
correlations weaken for protein complex and Lit-BM interactome maps when they are corrected
for confounding protein expression or study bias, respectively (Fig. 3e-g). These results
highlight the value of HuRI as a uniformly-mapped reference for the study of systems properties

of genes and networks.
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Identification of subcellular compartment-specific roles of PPIs

Proteins are localized to specific subcellular compartments to exert functions that can depend
both on the subcellular environment and the local PPI network. Despite available proteome-wide
datasets on the localization of individual proteins®®, experimental determination of cellular
localization-specific PPI networks remains challenging®. We find that proteins localized to a
diverse range of subcellular compartments are evenly represented in HuRI (Fig. 4a) suggesting
that cellular localization-specific PPl networks can be inferred for many different cellular
compartments via integration of HuRI with available protein localization data.

One such compartment, extracellular vesicles (EVs), has been intensively studied using
proteomics approaches®, however, our understanding of the molecular mechanisms that lead
to protein recruitment into EVs and subsequent secretion, remains limited. The subnetwork of
interactions between EV proteins (Fig. 4b) shows significantly higher connectivity in HuRI than
in degree-controlled randomized networks (P < 0.001, one-sided empirical test) (Fig. 4c)
enabling prediction of EV recruiters using the number of EV interaction partners. Seven of the
top 20 most connected proteins in this EV network have established roles in EV biogenesis or
cargo recruitment*'*? (Fig. 4b). SDCBP (syntenin-1) functions in ESCRT-dependent exosome
generation and its knockout shows reduced EV production*>. SDCBP has 48 PPIs with other EV
proteins and is frequently detected in EVs (Fig. 4b), suggesting that it regulates recruitment of
interacting proteins to EVs. To test this hypothesis (Fig. 4d), we knocked out SDCBP in the
U373vlll cell line (Extended Data Fig. 5a) and found that three of six SDCBP partners detected
in the U373vlll EV proteome, CALM1, CEP55 and HPRT1, displayed significantly reduced (P <
0.05, one-sided empirical test, fold change < 0.66) (Fig. 4e) protein levels in EVs in the SDCBP
knockout line. In contrast, only 15% of the non-interaction partners of SDCBP were reduced (P
< 0.05, one-sided empirical test) (Extended Data Fig. 5b). Thus, SDCBP may play a role in the
recruitment of proteins into EVs, highlighting the potential value of HuRI in studying protein
function within specific subcellular contexts.

Despite a significant tendency for interactions in HuRI to link proteins localized to the same
compartment (P < 0.01, one-sided empirical test) (Fig. 2b), a considerable number of
interactions were identified between proteins not reported to co-localize. We find that HuRI PPls
between non-colocalized proteins tended to connect proteins from compartments that
significantly overlapped (P < 0.001, one-sided empirical test) (Extended Data Fig. 5c-e). This
suggests that the lack of co-localization results from incompleteness of the underlying
localization annotation and that HuRI could prove useful in predicting additional protein locations

and dynamics.


https://doi.org/10.1101/605451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/605451; this version posted April 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Principles of tissue-specific cellular function
Despite recent advances in systematic genome-wide identification of tissue-preferentially

2% we lack a concrete understanding of how the surprisingly

expressed genes (TiP genes)
small set of TiP genes operate together and coordinate their activity with the core housekeeping
cellular machinery to mediate tissue-specific functions. Insights can be obtained from
investigating the tissue-specific network context of TiP proteins, inferred from integrating protein
interactome data with tissue transcriptomes. However, we find that protein complex” and
literature-curated interactome maps*® as well as our previously published binary PPI

datasets'®"

are strongly depleted for TiP proteins, whereas they are well-represented in HuRl,
making it the most suitable interactome map available to study the network context of TiP
proteins (Fig. 5a, Extended Data Fig. 6a).

System-wide properties of TiP proteins can be determined by assessing their connectivity
and centrality in a PPI network compared to “non-TiP” proteins*®. In HURI we observe that TiP
proteins can engage in as many PPIs and be as central in a PPI network as the more uniformly
expressed proteins (degree: Spearman p = 0.005, centrality: Spearman p = -0.008) (Extended
Data Fig. 6b), contrary to previous observations derived from literature-curated PPI networks®*"
9 This result, paired with the fact that PPls mediated by a TiP protein are effectively also
tissue-specific, leads to the finding that the protein interactome as characterized by HuRI is
more tissue-specific than the expressed genome (Fig. 5b). This indicates that substantial
information on tissue-specific function can only be obtained from the interactome. The opposite
is observed for Lit-BM, likely owing to its bias against TiP genes (Fig. 5b).

To investigate the local network neighborhoods of TiP proteins within their respective tissue

2,50

context, we used HuRI to derive protein interactome maps for 35 tissues“™ (Supplementary
Table 14). Each contained an average of 25,000 PPIs that link proteins expressed in that tissue
(Extended Data Fig. 6¢, d). Within each tissue PPl network, we focused on the interactions
involving at least one TiP protein (Fig. 5¢). The TiP PPI networks show extensive interactions
between TiP proteins and non-TiP proteins, with very few TiP-TiP PPIs dispersed through the
network, as exemplified for brain (Fig. 5c, d). Indeed, TiP-TiP PPlIs in brain are not enriched, nor
is the average shortest path among TiP proteins shorter than in degree-controlled randomized
networks (P > 0.05, empirical test) (Fig. 5e). Using either metric, TiP proteins were found to be
significantly close to each other in six of 35 tissues, in four of which signals were dominated by
clusters of specifically expressed keratins or late-cornified envelope proteins (Extended Data
Fig. 6e). Overall, these results provide support for a model in which tissue-specific functions

emerge through interactions between TiP proteins and more uniformly expressed members of

10
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the basic cellular machinery, presumably modulating and adapting common cellular processes
for cellular context-specific needs®’.

To further investigate functional roles of the identified interactions in HURI between the basic
cellular machinery and preferentially expressed proteins, we selected apoptosis, a biological
process with known cell type and developmental stage-specific homeostatic roles®***. We
predicted apoptosis-related functions for proteins based on an enrichment of known apoptosis
regulators in the protein network neighborhood (Supplementary Table 15). Among the ten most
significant predictions were five proteins with demonstrated roles in apoptosis (BCL2L2*,
BCL2L1%°, LCN2°®, BCL2A1*" and BCL2L10%) supporting the validity of the approach. Among
the genes with predicted apoptosis function were C60RF222, OTUDG6A, and NHSL2, three
uncharacterized and highly specifically expressed genes (Extended Data Fig. 6f, g). To test the
predicted role of the three genes in apoptosis, we assessed their impact on cell viability upon
over-expression. Abundance of OTUDGA negatively correlated with time-of-death after addition
of TRAIL (TNF-related apoptosis-inducing ligand, P = 0.012, two-sided, empirical test, n = 40
cells) (Extended Data Fig. 6h), contrary to expression of OTUDGA alone (Extended Data Fig.
6h, Supplementary Table 16). This suggests that OTUDG6A participates in the apoptosis
pathway but is not itself an inducer of cell death. We found OTUDGA to interact with DYNLL1
and 2 (Extended Data Fig. 6i), two integral members of motor complexes that sequester
BCL2L11 and BMF, two “BH3-only” proteins, to the cytoskeleton thereby inhibiting their pro-

59,60

apoptotic function®™®". OTUDG6A expression is generally repressed with low expression in

eosinophils®™®*

(Extended Data Fig. 6f) and significant upregulation in response to Decitabine
treatment, a drug effective against acute myeloid leukemia®®*. Thus, OTUDBA might exert an
apoptosis sensitization function via transcriptional activation in a haematopoietic cellular context
(Extended Data Fig. 6i).

We were unable to generate a sufficient number of cells expressing C60RF222 or NHSL2
to perform the cell death assay. However, C6ORF222 contains a BH3 domain® that likely
mediates the binding to BCL2L2 and BCL2L1 identified in HuRI (Extended Data Fig. 6i). The
interaction between C60ORF222 and the apoptosis regulator MAPK9 identified in HuRI
(Extended Data Fig. 6i) was also reported in BioPlex (unpublished released BioPlex data®)
providing further support for a functional role of C6ORF222 in apoptosis, probably in a digestive
tract-specific cellular context (Extended Data Fig. 6g,i). OTUD6A and C60RF222 represent two
examples of specifically expressed genes that might adapt the basic apoptosis machinery to

cellular context-specific needs.
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Molecular mechanisms of tissue-specific Mendelian diseases

Many Mendelian diseases display highly tissue-specific phenotypes, which are rarely explained
by tissue-specific expression of genes carrying disease-associated mutations®®®’ (Fig. 5f,
Extended Data Fig. 6j). Such mutations have been shown to broadly or specifically affect the
formation of PPls involving the mutated protein®. Perturbations of PPIs between uniformly
expressed disease-associated proteins and TiP proteins in the corresponding affected tissues
have been suggested to underlie the tissue-specific phenotypes of those diseases®’. Searching
the HuRlI-derived tissue PPl networks, we find 130 such PPIs involving 63 distinct non-TiP
causal proteins and 94 TiP proteins (Fig. 5g). Although we do not observe a significant trend for
PPIs between causal proteins and TiP proteins to occur more often than in random networks
(Extended Data Fig. 6k), this does not rule out the possibility that perturbations of some of these
interactions mediate tissue-specific phenotypes of Mendelian diseases.

To further explore this hypothesis, we experimentally tested whether pathogenic variants
associated with the corresponding Mendelian diseases were able to perturb these PPls. Of ten
causal proteins tested, seven showed perturbation of PPls to preferentially expressed
interaction partners in the corresponding “disease tissues” (Fig. 5g-h, Extended Data Fig. 7,
Supplementary Table 17). One example is the gene PNKP, mutations in which have been
associated with microcephaly, seizures and developmental delay®. PNKP, a polynucleotide
kinase 3’-phosphatase, is involved in DNA damage repair®®. The well-established pathogenic
mutation (Glu326Lys) affects neither the DNA kinase nor DNA phosphatase activity of PNKP,
rendering the mechanism of pathogenicity unclear’®. We observed that Glu326Lys perturbed
PPIs with two partners preferentially expressed in the brain, SYNGR1 and TRIM37, whereas the
benign mutation Pro20Ser”’ did not affect any of these PPIs (Fig. 5i). Interestingly, TRIM37 is
known to facilitate DNA repair’® suggesting a potential mechanism through which the
perturbation of this interaction might affect the brain-specific DNA repair function of PNKP.

In two other cases, CTNNA3 and SUCLAZ2, the identified TiP interaction partners TRIM54
and ARLGIP1, respectively, themselves cause similar diseases with overlapping symptoms”"*,
reinforcing the likely pathogenic relevance of the interactions. Overall, this study yields
hypotheses of molecular mechanisms for otherwise unexplained tissue-specific phenotypes of
seven Mendelian diseases (Fig. 5h) and demonstrates the utility of HURI as a reference to study

biological mechanisms within specific disease contexts.
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Exploration of isoform-specific protein function during development
Transcripts of most human genes undergo alternative splicing, leading in many cases to altered
protein sequences. Due to loss or gain of protein interaction-mediating domains or linear motifs,
alternative isoforms of the same gene have been found to differ in their interaction profiles”"®.
Modulation of cellular function by alternative splicing is especially prevalent during
developmental processes and in some select adult tissues such as brain or testis’’, yet most
alternative splice products remain uncharacterized. Although we screened only one isoform per
gene, HuRI is unique among available human protein interactome maps in providing information
about the exact full-length protein sequence of each interaction partner. To aid in the functional
characterization of alternative splice products, we aimed at identifying isoforms of a gene with a
dominant-negative effect on overall gene function. We combined HuRI with isoform-dependent
expression data’® to identify genes with isoforms expressed in the same tissue. These genes
were further filtered to identify those for which an alternative isoform was predicted to lose some
but not all of its interaction-mediating domains’®, thus likely to lose some but not all of its
interaction partners compared to the isoform screened in HuRI"® (Fig. 6a).

Of the 192 candidate genes identified (involving known examples of altered alternative
isoform function, Supplementary Table 18), we further considered NCK2. NCK2 displayed a well

studied principal (long) isoform®®®’

and an uncharacterized alternative (short) isoform in which
three of four predicted interaction-mediating domains are lost (Fig. 6b). Both isoforms are
expressed in brain, suggesting specific functional modulation by alternative splicing during brain
development (Fig. 6¢, Extended Data Fig. 8a, Supplementary Table 19). Known brain-specific
functions of NCK2 include synaptic transmission®, organization of neuronal circuits®®, and axon
guidance®® . Interestingly, a variant associated with autism was found near a splice site of the
alternative exon of NCK2 further suggesting a functional implication of alternative splicing of
NCK2 in brain development®®®’.

Pairwise testing interaction partners of the long isoform of NCK2 with the short isoform
confirms the loss of some but not all interaction partners (Fig. 6d) consistent with the retention
of one interaction-mediating domain in the short isoform (Fig. 6b). We used zebrafish as a
model to test the hypothesized dominant-negative function of the short isoform over the long
isoform of NCK2 during brain development (Extended Data Fig. 8b-d). We successfully knocked
down both isoforms of zNCK2B in zebrafish using morpholinos (Extended Data Fig. 8e) to
measure the impact of loss of zZNCK2B on the size of the developing zebrafish brain. While
expression of the hNCK2 long isoform in zebrafish under knockdown condition of the

endogenous zNCK2B gene partially rescued the phenotype, expression of the short isoform did
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not (Fig. 6e, Extended Data Fig. 8f, g). Furthermore, expression of the short isoform of hNCK2
in zebrafish brain led to a significant decrease in the size of the developing zebrafish brain, an
effect that was not observed with expression of the long isoform of hNCK2 (Fig. 6e). These
observations support the predicted dominant negative effect of the short isoform of NCK2 and
highlight the power of HuRI to serve as a reference to study isoform-specific protein function in

a developmental cellular context.

Perspectives

By systematically screening about 90% of the protein-coding genome for binary PPIs using a
panel of Y2H assays, we generated HuRI, a first reference map of the human protein
interactome. Via integration of HURI with contextual genome, transcriptome and proteome data,
we infer cellular context-specific PPI networks that prove to be powerful resources in delineating
aspects of cellular context-specific function and organization. Inferred cellular context-specific
interactome maps will further gain in accuracy from advances in transcriptomics and proteomics
technologies with increasing sensitivities down to the single cell level®. Transition from discrete
(presence/absence) towards more continuous network models may be achieved by using
expression levels to assign weights to interactions®®, and further improved with large-scale
measurements of interaction strengths®. Integration of inferred cellular context-specific networks
with experimentally-derived cellular context-specific molecular interaction data® will be critical to
further refine those models. Future efforts to generate binary protein interactome maps will
benefit from development of new PPl assays'® capable of identifying PPIs for the proteins still

%91 3re needed to take

absent from HuRI. New cloning and faster screening technologies
interactome mapping from testing one isoform per gene to the ensemble of proteoforms
generated within the cell. Although multiple challenges remain to be solved for a complete and
context-specific map of protein functions, interactions, and higher-level organization, HuRI
provides an unbiased genome-scale scaffold with which to coordinate this information as it

emerges.
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METHODS

Construction of Reference ORFeome and definition of screening space

(space lll)

Selection of existing clones

We supplemented our human ORFeome collection hORFeome version 7.1 (v7.1)
(http://horfdb.dfci.harvard.edu/hv7)® with clones from additional genes from the ORFeome
Collaboration®®  (http://www.orfeomecollaboration.org), = DNASU  plasmid  repository®
(https://dnasu.org) and other collaborators. All clones are in Gateway compatible entry vectors
with spectinomycin or kanamycin resistance markers, as appropriate. While native stop codons
of most clones have been removed, 617 clones contain native stop codons.

To select a single Open Reading Frame (ORF) for genes with multiple ORFs available,
for each gene, we aligned the sequences of the corresponding ORFs to human genome
GRCh37 using BLAT®® (v36x1) and chose the longest ORF with more than 95% of its sequence
aligned to the genome. If no such ORF was available, we chose the ORF with the highest

percentage of alignment to the genome.

Cloning of new ORFs

After collecting available ORFs from different resources, about ~3,000 human protein-coding
genes remained uncovered (no ORF available). To obtain ORF clones for these missing genes,
we attempted RT-PCR on a pool of cDNA libraries from brain, heart, and liver ordered from
Biochain (Human Adult Normal Tissue: Brain, catalog number C1234035, lot number C203351;
Human Adult Normal Tissue: Heart, catalog number C1234122, lot number B901100; Human
Adult Normal Tissue: Liver, catalog number C1234149, lot number C203352). We designed
primers for all the missing genes for which we could find coding sequences from RefSeq®
(https://www.ncbi.nIm.nih.gov/refseq; downloaded April 13th, 2015). In total, we attempted 2,257
primer pairs and successfully cloned 481 ORFs into pDONR223 vector, all without native stops.
The sequences of the clones were verified using lllumina sequencing. We named the combined

collection hORFeome v9.1.
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Definition of the human protein-coding genome

GENCODE?®" annotation (ftp:/ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_27) and
DNA and protein sequences were filtered for information on transcript entries. After removing
PseudoAutosomal Regions on the Y chromosome (PAR) genes, all genes of gene_type
“protein_coding” with annotated transcripts yielded the 19,818 protein-coding genes used in this
study. External datasets were mapped via gene or protein IDentifiers (IDs) to the Ensembl gene

ID space, and genes, proteins, or transcripts that did not map were removed.

Mapping of ORFs to GENCODE release 27

To assign Ensembl gene IDs to ORFs in the hORFeome v9.1 collection, we aligned ORFs to

protein-coding transcripts in GENCODE®" and determined the best match for each ORF-
transcript pair. Briefly, ORF protein sequences were aligned to all protein sequences of protein-
coding transcripts using BLASTP® (NCBI BLAST v2.2.30) with default parameters. Alignments
were further refined using MUSCLE® (v3.8.31; default parameters). For each Ensembl gene,
we kept only alignments with identity = 95%, ORF coverage = 50%, transcript coverage either =
50% or with at least two exons covered. The best match was determined based on the
combination of ORF coverage, transcript coverage and alignment identity.

Each ORF could generally be assigned to only one Ensembl gene, but where alignments
were fully identical among different genes (e.g. histones), the ORF was assigned to multiple
genes. Finally, we removed 33 ORFs containing known disease mutations based on HGMD'®
v2016 annotation. Using this pipeline, hORFeome v9.1 was matched to 17,408 protein-coding
genes (Supplementary Table 20).

Generation and benchmarking of Yeast Two-Hybrid (Y2H) assay versions

Vector design

To generate pDest-AD-AR67 [Activation Domain (AD) at C-terminus (C-term) with yeast
centromere (CEN)], a fragment encoding an ADH1 promoter, Gateway recombination cassette,
and C-terminal AD was PCR amplified from pGADCg'' using forward primer AP36 (5’
GAAGGCTTTAATTTGCAAAGCTCGGGATCCGGGCCCCCCCTCGAGATCCGcatctattgaagtaat
aataggcgcatg 3) and reverse primer AP37 (5
CAACCTTGATTGGAGACTTGACCAAACCTCTGGCGAAGAAGTCCAAAGCTctgaataagccctcegt
aatatattttcatg 3’) and cloned into EcoRI (New England Biolabs, NEB) and Sall (NEB) digested
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pDEST-AD via homologous recombination gap repair in yeast. To generate pDest-AD-AR68
(AD at Cterm with yeast 2u), the same fragment encoding the ADH1 promoter, Gateway
recombination cassette, and C-terminal AD was instead PCR amplified from pGADCg using
forward primer AP36 and reverse primer AP38 ()
GCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGcatctattgaagtaat
aataggcgcatg 3’) and cloned into Notl- and Xmal-digested (NEB) pDest-AD-QZ213 via
homologous recombination in yeast. See Supplementary Table 21 for details on vector design

and Y2H assay versions.

Benchmarking pairwise test performance

Assay versions were benchmarked by Y2H using a positive reference set of 92 well-
documented interacting human protein pairs (Positive Reference Set; PRS v1) and a set of 92
random human protein pairs (Random Reference Set; RRS v1), as previously described™.
Briefly, haploid yeast strains Y8800 and Y8930 carrying plasmids expressing AD and DB
reference set fusions, respectively, were mated overnight and diploid selection was performed.
Diploids were spotted onto Synthetic Complete media without Leucine, Tryptophan and
Histidine with 1 mM 3-Amino-1,2,4-triazole (SC-Leu-Trp-His+1 mM 3AT for assay versions 1 &
2) or SC-Leu-Trp-His+10 mM 3AT (for assay version 3) solid media, incubated at 30°C for 4
days, and interactions were scored based on the strength of GAL71::HIS3@LYS2 reporter
activation. Pairs that displayed AD-independent GAL17::HIS3@LYS2 autoactivation were

designated as negatives.

Benchmarking screening capabilities of Y2H assay versions on a test space

For each assay version we performed several screens of a test space’® covering ~1% of the
total space (~2,000 DB’s against ~2,000 AD’s) to adjust the protocol for high-throughput
screening. Based on that, we were able to calculate how many screens per assay version are
needed to reach saturation and how many new pairs are found by screening a space several
times. For Y2H assay version 1, 2 and 3, we performed 12, 3, and 6 screens, respectively. The
screens were performed and validated as described below in the Y2H screening, retest, and

validation sections.
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Subcloning into Y2H vectors

Preparation of Y2H destination clones by 1-to-1 Gateway cloning

ORFs from the hORFeome v9.1 collection were transferred by Gateway recombinational cloning
(Invitrogen) into Y2H destination vectors pDEST-DB and pDEST-AD-CYH2 to generate DB and
AD-hybrid proteins (DB-ORF and AD-ORF, respectively), as described previously'®. In addition,
all ORFs were transferred into pDest-AD-QZ213 for assay version 2 and all ORFs without a
stop codon into pDest-AD-ARG68 for assay version 3.

Preparation of Y2H destination clones by en masse Gateway cloning

To increase the throughput and efficiency of the cloning, we transferred the majority of the
clones into the pDest-AD-AR68 vector en masse. To enable future use in the barcode fusion

genetics Y2H system®. As described previously®®®’

, we generated randomly barcoded Y2H
destination plasmid pools and carried out en masse Gateway LR reactions, bacterial
transformations, colony pickings, and sequencing to identify ORFs and barcodes. After
obtaining the raw sequencing reads, we ran lllumina bcl2fastq (v2.20 with options “--no-lane-
splitting -r 3 -p 10 -w 3”) to demultiplex all the reads into different plates according to the i5/i7
index sequences. Extracting well-tag from each read, identified by locating conserved flank
sequences, allowed assignment of reads from each plate to the corresponding well of origin.
Full length (24-26 nt) barcodes within one base-pair mismatch were merged to identify the
dominant barcode for each well. ORF reads in each well were aligned to reference ORF
sequences via Bowtie 2'% (v2.2.3). For wells containing more than one clone, we filtered all the
ORF and barcode pairs found in each well by calculating the percentage of reads aligned to
each ORF. Only dominant barcoded-ORFs were selected, as defined by the ORF with the
highest fraction of reads (at least, 20 reads and 20%) and 25X more reads than those for the
second dominant ORF. About 1% of clones were validated by Sanger sequencing with 295%

validation rate.

Primary screening

Yeast strains and transformation

Competent yeast strains Y8800, mating type MATa, and Y8930, mating type MATa, both
harboring the genotype leu2-3,112 trp1-901 his3A200 ura3-52 gal4A gal80A GAL2::ADEZ2
GAL1:HIS3@LYS2 GAL7:lacZ@MET2cyh2R were transformed with individual AD-ORF and
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DB-ORF constructs respectively, and plated onto SC-Trp or SC-Leu to select for AD-ORF or
DB-ORF plasmids'%.

Auto-activator identification and removal

Prior to Y2H screening, haploid DB-ORF yeast strains were tested for auto-activation of the
GAL1::HIS3 reporter gene in the absence of any AD-ORF plasmid. Individual DB-ORF yeast
strains showing growth in a spotting assay on SC-His-Leu+3AT media were considered auto-

activators and removed from the collection of strains to be screened.

Y2H screening

Fresh overnight cultures of individual Y8930:DB-ORF yeast strains (bait) were mated against
Y8800:AD-ORF libraries containing ~1,000 different Y8800:AD-ORF yeast strains (prey). After
overnight growth at 30°C in liquid rich medium (YEPD), mated yeast cells were transferred into
liquid SC-Leu-Trp media to select for diploids. After overnight incubation at 30°C diploid yeast
cells were spotted onto SC-Leu-Trp-His+3AT solid media to select for activation of the
GAL1::HIS3 reporter gene. In parallel, diploid yeast cells were transferred onto SC-Leu-
His+3AT solid media supplemented with 1 or 10 mg/l CHX for assay version 1 or 2 and 3,
respectively. All AD-ORF plasmids carry the counter-selectable marker CYH2, which allows
selection on CHX-containing medium of yeast cells that do not contain any AD-ORF plasmid in
order to identify spontaneous DB-ORF auto-activators'®?. After 72h incubation at 30°C, yeast
that grew on SC-Leu-Trp-His+3AT media but not on SC-Leu-His+3AT+CHX media were picked
into SC-Leu-Trp overnight and then processed to determine the identity of the respective bait

and prey proteins.

Yeast colony PCR and sequencing

Because each DB-ORF yeast strain was mated against a library of ~1,000 AD-ORF yeast
strains in the first-pass screens, one bait protein could interact with more than one prey proteins
per mini-library. To account for this, we picked between three and five colonies (primary
positives) from each growth spot on SC-Leu-Trp-His+3AT media to 96-well plates. Primary
positive colonies were processed as described'® to generate lysates for PCR. Three microliters
of diluted lysate was used as a template for PCR amplification to generate DB-ORF and AD-
ORF PCR amplicons.

To cost-effectively identify both bait and prey proteins for hundreds of thousands positive

colonies, we developed a method called SWIM-seq (Shared-well Interaction Mapping by
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sequencing). Using SWIM-seq, we took advantage of next generation sequencing technology
and pooled DB-ORF and AD-ORF PCR products that contain well-specific and plate-specific
nucleotide sequences from tens of thousands colonies together in one sequencing run. Briefly,
PCR was performed using AD and DB well index primers together with universal primers (see
table below). All PCR was done using Platinum Taq (Life Technologies). After PCR, the
products from each PCR plate were pooled into one single well in a 96-well plate (SWIM plate).
The SWIM plates were purified (Qiagen, PCR Purification Kit) and processed to make an
lllumina sequencing library, during which Illumina adapter sequences, i7 and i5, were
incorporated as plate indexes. The library was then paired-end-sequenced using an lllumina
platform (MiSeq or NextSeq 500). See Supplementary Table 22 for the primers used for the

different Y2H assay versions.

Identification of pairs of AD-ORF and DB-ORF

We developed a computational pipeline to process demultiplexed paired-end reads and identify

the matching ORF pairs corresponding to Y2H-positive colonies. Paired-end reads are in a fastq
format, with one read, R1, containing a part of the ORF sequence and the other paired read,
R2, containing the well index. Briefly, we used Bowtie 2'® (v2.2.3) to align all R1 reads to
reference sequences and extracted the well-identifying indices from the R2 reads. AD-ORFs
and DB-ORFs that shared the same well indices were paired together. Pairs identified from the
primary screen were calls FiPPs (First Pass Pairs). To identify likely true interacting pairs, we
developed a “SWIM score” S that takes into account the AD and DB reads in each well, total

reads returned from the sequencing run, and other factors.

a+|l'f+d+h

where x and y are read counts of an AD-ORF and DB-ORF in a given well respectively, a and d
are total read counts of all aligned AD-ORF and DB-OREF in that well, and M and N are pseudo-
counts for AD and DB respectively, which were constant for each sequencing batch but varied
for different batches.

We then selected FiPPs for pairwise test using a cutoff that balances the risk of testing
too many FiPPs that are not protein-protein interactions (PPls) versus not testing too many
FiPPs that are actual PPls. The cutoff varied for different screens and sequencing runs to

accommodate slight variations in the screening and sequencing protocol.
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Pairwise test

Design of pairwise test and scoring

No FiPP is considered a PPl and released before it has been verified in a pairwise test using
Y2H. For all FiPPs, each protein was picked from the stock collection and mated with its
partner. This experiment was done in quadruplicate, with yeast spotted on both SC-Leu-Trp-
His+3AT plates and SC-Leu-His+3AT+CHX to test for spontaneous auto-activation. As positive
and negative controls in each test batch, 92 pairs from PRS v1, 250 randomly selected Lit-BM
pairs (literature binary multiple pairs), and 250 pairs of proteins randomly selected from the
search space were included. Experiments were considered successful if at most 1% of the
random protein pairs and 10% or more of the Lit-BM or PRS v1 pairs scored positive. Positive
and negative controls were combined in the same batches with FiPPs and scored blindly. To
ensure the mating of the corresponding plates with each other (AD-X with DB-Y) and identify
any potential plate rotations or swaps, each retest plate has a unique pattern of empty wells. We
developed a pipeline to semi-automate the scoring of growing yeast in 384 or 96 format.
Growing yeast colonies were first scored automatically by software that uses the python library
Colonyzer' to process the images. The scores were then manually checked prior to saving
and pixel intensities were used to estimate the strength of growth. Both retest plates and CHX
control plates were independently scored and scores combined to produce a final score of each
well. A pair was scored invalid (NA) for 96-well format if the well was unscorable (contaminated,
not spotted, etc.); or, if in 384 format, if at least 2 of the 4 quadruplicates were unscorable on the
retest plate; or, if the corresponding well on the CHX plate was unscorable. If a pair was not
scored as NA but grew at least as strongly on the CHX plate compared to the growth on the
retest plate (average of quadruplicates), then it was scored as a spontaneous auto-activator. If a
pair was neither NA nor an auto-activator and showed growth in at least 3 of 4 replicates on the

retest plate, then it was scored as positive; otherwise, negative.

Treatment of pairs scored as spontaneous auto-activators

Because validation data has suggested that the CHX control is over-sensitive for 2u vectors and
removes many actual PPls, we performed one more pairwise test for pairs that scored as
spontaneous auto-activators in the pairwise test in assay versions 2 and 3. For these retests,
the DB-ORF was separately mated with an “AD-nul” plasmid without any ORF in the cloning
site. If a yeast colony grew more strongly when mated to the corresponding AD-ORF than the

AD-null strain, we “rescued” this PPI and added it to the dataset after sequence confirmation.
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Sequence confirmation of positive pairs from pairwise test

To guide the picking of all positive pairs for sequence confirmation, a “picking map” with all
positive pairs was generated by the scoring software and printed. Picked pairs were lysed and
SWIM-PCR was performed as described in the above section. lllumina reads were processed
via the computational pipeline described above. Only pairs identified from the pipeline that

matched the tested ORF pairs previously scored as positive were considered PPls.

Validation of screens with orthogonal PPl assays

Design of validation experiments

To validate each of the nine screens of Space lll, we randomly selected ~340 positives from
each screen and tested them in several batches using two assays, MAPPIT (MAmmalian
Protein-Protein Interaction Trap) and GPCA (Gaussia princeps luciferase protein
complementation). For each batch, we included ~200 randomly selected PPIls from Lit-BM as
PRS and ~400 pairs of proteins randomly selected from the search space as RRS. For each
pair, a random bait-prey configuration was assigned. All tested pairs and control pairs were
combined in batches and tested blindly.

For the test space validation, unlike in the main screen where we chose PPls for each
screen, we randomly chose PPIs from all positive pairs together regardless of which screens
they were from. All Lit-BM PPls (~200) and ~400 random pairs of proteins from within the tested

space were treated as a positive reference set and a random reference set respectively.

MAPPIT assay

MAPPIT experiments were performed as previously described’. Briefly, HEK293T cells were

grown in 384-well plates and co-transfected with a luciferase reporter and plasmids for both bait
and prey fusion proteins. Twenty-four hours post-transfection, cells were either stimulated with
ligand (erythropoietin) or left untreated, then incubated for an additional 24 hours before
luciferase activity was measured in duplicate. The MAPPIT validation experiment was deemed
valid if both bait and prey were successfully cloned into expression vectors and bait expression
was detected. “Fold-induction” values (signal from stimulated cells divided by signal from
unstimulated cells) were calculated for each tested pair, and two negative controls (no bait with

prey and bait with no prey). Each tested pair was assigned a quantitative score: the fold-
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induction value of the pair divided by the maximum of the fold-induction value of the two

negative controls.

GPCA assay
As an orthogonal validation assay, GPCA experiments were performed as described

elsewhere'®. Briefly, GPCA N1 and N2 vectors are based on two fragments of the Gaussia
princeps luciferase with humanized codon usage (herein referred as GLuc)". Both GLuc
fragments were linked to the N-terminus of the tested proteins via a flexible linker polypeptide of
20 amino acid residues, including the Gateway recombinational cloning sites. To normalize
mRNA translation initiation, a consensus Kozak translation start sequence was added. Both
constructs were carried by the same CytoMegaloVirus (CMV)-driven mammalian expression
vector (pCl-neo derived, Promega) and were maintained at high copy number via the presence
of the SV40 replication origin.

HEK293T cells were seeded at 6x10* cells per well in 96-well, flat-bottom, cell culture
microplates (Greiner Bio-One), and cultured in Dulbecco's Modified Eagle's Medium (DMEM)
supplemented with 10% fetal calf serum at 37°C and 5% CO,. 100 ng of purified plasmid DNA
for each protein of a pair was transfected into HEK293T cells in 96-well, flat bottom, cell culture
plates (Greiner Bio-One) supplemented with 10% Fetal Bovine Serum (FBS) in DMEM using
PolyEthylenimine (PEI)'. The DNA/PEI ratio (mass:mass) was 1:3. Cell culture medium was
removed 24 h after DNA transfection, and cells were gently washed with 150 pL pre-warmed 1x
PBS (phosphate buffered saline). 40 pL of lysis buffer was added to each well, and cell lysis
was performed under vigorous plate shaking for 20 min at 900 rpm. Luminescence was
measured by auto-injecting 50 uL Renilla luciferase substrate (Renilla Luciferase Assay system,
Promega) in each well and integrating light output for 4 s using a TriStar luminometer (Berthold)
to obtain quantitative scores. GPCA has not been performed on PPls of screens 7, 8, and 9

generated with Y2H assay version 3.

Processing of data and calculation of validation rates

In MAPPIT and GPCA assays, if a pair is positive or negative was determined by thresholds set
at the 99th percentile of the RRS scores (equivalent to a 1% false discovery rate). This was
determined separately for each experimental batch and calculated using the quantile function in
the Python pandas library. Pairs without valid quantitative scores were dropped, and recovery
rates were calculated as the number of positive pairs over the sum of the positive and negative

pairs. The error bars on the recovery rates were calculated using a Bayesian model (a binomial
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likelihood with a uniform prior), taking the central 68.27% interval of Beta (p + 1, n + 1), where p

and n are the number of pairs testing positive and negative, respectively.

Testing of PPIs in MAPPIT that were found in multiple screens and analysis of data

Randomly sampled PPls were selected for validation assessment from individual screens and
from additional randomly-sampled pairs from subsets of PPIs that were defined by the number
of screens in which the PPl was detected. Every pair in HuRI that was also in any of the
literature curated datasets [Lit-BM / Lit-BS (literature binary singleton pairs) / Lit-NB (literature

not binary)] was also selected for validation assessment.

Processing of external transcriptome datasets: GTEx, FANTOM and Human

Protein Atlas

Genotype-Tissue Expression project (GTEx)? v6 transcriptome data previously processed with
the R YARN package® was downloaded from
http://networkmedicine.org:3838/gtex_data/gtex_portal_normalized.rds on March 15th, 2016
and processed with R v3.5.1 to extract normalized log read count data for every gene and tissue
sample. The median expression of every gene across all samples from a given subtype (tissue
or cell line) was calculated and considered as the expression level of the genes in those tissues.
A median expression cutoff of >5 was applied to consider a gene being expressed in a given
tissue. Cell line samples were excluded and genes were restricted to the set of protein-coding
genes (see above). The YARN package collapses the 16 brain subregions into three brain
tissues, basal ganglia, cerebellum, and other, which have been used in this study
(Supplementary Table 23).

Transcripts Per Kilobase Million (TPM) from Cap Analysis Gene Expression (CAGE)
peak data was extracted from the hg19.cage_peak phaseland2combined_tpm.osc.ixt file
(http://fantom.gsc.riken.jp/5/datafiles/latest/extra/ CAGE_peaks/; version November 11th, 2014).
Entrez gene IDs were mapped to Ensembl gene IDs and the dataset was restricted to protein-
coding genes. For each gene from FANTOM?®, we computed the mean of cage peak TPM
values of all samples associated to any FANTOM primary cell category. Samples were mapped
to primary cells using FANTOM SSTAR (http://fantom.gsc.riken.jp/5/sstar/). Primary cell

categories that were considered to be biologically too similar and of close TPM expression were
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merged. TPM values were log2 transformed and a gene was considered expressed if its value >
0.

RNA-seq data from 64 cell lines processed at the gene level with TPM values
downloaded on December 1st, 2017 from the Human Protein Atlas' (https:/proteinatlas.org).

Genes with TPM = 1 were considered expressed.

Computing increase of HuRI with more assay versions and screens

To evaluate the number of PPIs and proteins observed as a function of the number and assay
version of screens used, the mean of the cumulative number of PPIls and proteins across all
matching screen combinations was used. For example, for five screens with three being assay
version 1 and two being assay version 2, the mean number of unique PPls was calculated for all
combinations of any 3 of the 12 assay version 1 screens and any 2 of the 3 assay version 2

screens.

Integrative analyses with protein structural information

Analysis of distances between protein termini and interaction interfaces

We retrieved experimental structures, or either complete or domain-based models (using
Interactome3D?' version 2018_04) involving any two proteins that have at least one interaction
in HURI. For each subunit in a complex structure, we defined its interaction interface as the
residues for which the Accessible Surface Area (ASA) changed more than 1 A? between the
bound and unbound state. The center of this interaction interface was determined as the Ca
atom being closest to the center of coordinates of the interaction interface. Next, we calculated
the distance from the N- and C-terminal Ca atoms to the center of the interaction interface.
Importantly, we only considered protein structures with complete N- or C-termini depending on
the analysis performed. In complexes with truncated tails, we searched for monomer structures
with a minimum of 50% coverage and complete terminal tails. In those cases, we superimposed
the monomers onto the respective complex subunits and calculated the distance from the
relevant terminus to the interaction interface center. Finally, we grouped these interactions
based on the Y2H assay version(s) in which they were detected and performed the analysis

separately for DB and AD fusions.
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Analysis of the fraction of PPIs in dataset that are direct

We queried Interactome3D?' (version 2018_04) for complexes involving three or more proteins
with experimental structure available. For all combinations of protein pairs within a complex,
Interactome3D calculated the number of residue-residue contacts by accounting for hydrogen
bonds, van der Waals interactions, and salt and disulfide bridges. We defined protein pairs with
five or more contacts as direct, and remaining pairs as indirect. Separately for each given PPI
dataset, the fraction of direct PPIs was calculated as the number of direct PPIs divided by the

number of direct and indirect PPls.

Analysis of correlation between number of screens and interaction strength

We downloaded from Interactome3D?' (version 2018 _04) the experimental structures involving
any two proteins in HURI (Human Reference Interactome). For each complex structure, we
calculated the interaction interface area by subtracting the ASA in the bound state from the total
ASA of the unbound proteins and by dividing the result by two. Additionally, we calculated the
number of residue-residue contacts as explained above. Finally, we grouped the protein pairs

by the number of HuRI screens in which an interaction was detected.

Retrieval and processing of other interactome datasets

Construction of Lit-BM

Literature curated datasets were derived from the Mentha resource®, which aggregates
literature-curated PPls from five source databases: MINT'®, IntAct'®, DIP'", MatrixDB'®® and
BioGRID'®. The data downloaded from Mentha was dated August 28th 2017. Data was filtered
to have valid IDs for the UniProt accession numbers, Pubmed IDs and PSI-M| terms. Each
piece of evidence for a protein pair must consist of a Pubmed ID and an interaction detection
method code in the PSI-MI controlled vocabulary''®. Duplicated evidence arises in cases where
different source databases curate the same paper. We merged duplicated entries for each pair,
as detected by multiple pieces of evidence with the same Pubmed ID and experimental
interaction detection codes which are either the same or have an ancestor-descendent
relationship in the PSI-MI ontology. (In the latter case, the more specific descendent term was
assigned to the merged evidence.) In order to select the subset of PPIs corresponding to binary
interactions (as opposed to co-complex associations) we developed a manual classification of
the PSI-MI interaction detection method'"® terms, which define the experimental technique used.

Our classification has been updated since previous versions, in order to cover new experimental
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methods which have been added to the controlled vocabulary in the intervening time. The
methods are classified into three categories; ‘invalid’, ‘binary’ and ‘indirect’. Where ‘invalid’
corresponds to terms that are not considered valid experimental protein-protein interaction
detection methods, ‘binary’ to terms that detect binary protein-protein interactions and ‘indirect’
to terms that detect potentially indirect interactions. An example term in the first category is
“colocalization”. All PPl evidences annotated with “invalid” terms are removed and not
considered. The other two categories are used to divide the protein pairs in the literature-
curated dataset into three categories, as follows. If a pair has no evidence that correspond to a
binary method it is classified as Lit-NB, if a pair has only one piece of evidence with a binary
method it is classified as Lit-BS and if a pair has multiple pieces of evidence, with at least one
corresponding to a binary method then it is annotated as Lit-BM. The resulting number of PPls
in each category is shown in (Extended Data Fig. 9a).

The interactions that make up the literature come from experiments that span a broad
range of different sizes. It is possible that there could be a difference in average quality between
experiments that report just a single or small number of PPls and those that use high-
throughput techniques to identify large numbers of PPIs. In order to investigate this we divided
the Lit-BM and Lit-BS into High-Throughput (HT) and Low-Throughput (LT) subsets, based on
the size of the smallest experiment, that provided a piece of evidence for that pair using a binary
experimental method. If 50 or more PPIls were reported in that experiment, it was classified as
HT and otherwise was classified as LT. Random samples of these subsets were pairwise tested
using Y2H (assay version 1) and MAPPIT (Extended Data Fig. 9b, c, Supplementary Table 24,
25). We observed no significant difference between the validation rates of the HT and LT
subsets and so we made the decision not to implement any cutoff in experiment size when
defining the literature dataset.

The main differences from the previous literature curated dataset Lit-BM-13'" are the
databases used. Random samples of Lit-BM-17 pairs show similar recovery rates to random
samples of Lit-BM-13 pairs in Y2H and MAPPIT (Extended Data Fig. 9d, e). PPIs from Lit-BM-
13 have been used as positive controls in experiments, PPls from Lit-BM-17 (Supplementary

Table 26) have been used in all computational analyses.

Processing of co-complex interactome maps BioPlex, QUBIC, CoFrac

BioPlex® v2.0 data was downloaded from http://bioplex.nms.harvard.edu on August 1st, 2018,
and protein IDs were mapped from UniProt to Ensembl gene IDs. QUBIC was downloaded from

the supplementary table of the previous study® and protein IDs were mapped from UniProt to
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Ensembl gene IDs. CoFrac’ was processed by downloading the data from
http://human.med.utoronto.ca on August 1st, 2018 and mapping from UniProt to Ensembl gene
IDs. All interatome maps were then filtered to contain interactions only involving Ensembl gene

IDs corresponding to protein-coding genes.

Processing of previously generated binary interactome maps at CCSB

To update the previous CCSB (the Center for Cancer Systems Biology) binary interactome
maps and convert them into Ensembl gene ID pairs, for each map, we retrieved the original
ORF based IDs stored in our database and mapped the ORF IDs to Ensembl gene IDs as
described above. PPIs involving ORFs that remained unmapped or were discarded or mapped

to non-protein-coding genes were removed.

Analysis of HuRI PPIs linking proteins within versus between protein

complexes

CORUM?? complexes were downloaded from http://mips.helmholtz-muenchen.de on August 1st
2018 and gene IDs were mapped from UniProt to Ensembl. Complexes with less than three
subunits were removed as well as complexes that overlapped 90% or more with another
complex (the smaller complex of both was removed). HuRI PPls were filtered to remove
homodimers and were restricted to those linking proteins annotated to be in at least one
CORUM complex (restriction to common space between HuRIl and CORUM). The fraction of
these HuRI PPIs that link a pair of interacting proteins that were observed to be at least once
part of the same CORUM complex was determined and these PPIs were further split into PPIs
found in only one of the 9 HuRI screens versus having been found in at least 2 screens. The
fractions plotted were 137/1042 and 232/775 for one screens and multiple screens, respectively.
CORUM complex membership was used to identify all interactions between them from BioPlex®

or HuRI. py2cytoscape’'’ was used to generate network models of each complex.

35


https://doi.org/10.1101/605451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/605451; this version posted April 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Functional enrichment analyses of HuRI and the Profile Similarity Network
(PSN) of HuRlI

Construction of PSN and randomizations

Jaccard similarity (number of shared interaction partners divided by union of interaction
partners) was calculated for every pair of proteins of degree = 2 in a given network. Only pairs
of proteins that shared at least one interaction partner were considered in any further analysis
using the PSN. Random PSNs were generated in the same way from degree-controlled
randomized HuRI networks that generated using the degree_sequence() function in the Python

igraph'"? library v0.7.1.

Calculation of pairwise sequence identity and correlation with Jaccard similarity

To calculate the sequence identity between a pair of proteins in HuRI, we aligned the two
corresponding ORF protein sequences using MUSCLE® (v3.8.31) with default parameters. We
then parsed the MUSCLE alignment file and calculated the sequence identity as the number of
matched amino acid positions divided by the length of the alignment. To assess whether higher
Jaccard similarity between two proteins in HuRI correlates with higher overall sequence
similarity between the two proteins as an indication for similar interaction interfaces while
controlling for degree biases, we computed for increasing sequence identity cutoffs the sum of
Jaccard similarities of all edges in the PSN that link two proteins with a sequence identity of or
above that cutoff. This sum was divided by the mean of the sums calculated in identical ways
from 100 random PSNs to obtain a fold change that was plotted. The lower and upper bound of
the 95% confidence interval of the fold change was computed by dividing the actual sum of the
Jaccard similarities with the 97.5th and 2.5th percentile of the random distribution, respectively,

and plotted as error bars.

Retrieval and processing of resources for functional annotations

Co-fitness relationships between human genes were kindly provided by Joshua Pan, calculated
as a Pearson correlation coefficient between the effects of the separate knockout of two genes

I'" as described previously®*. Gene IDs were mapped to

on the AVANA cancer cell line pane
Ensembl gene IDs and restricted to protein-coding genes. Co-expression data on the level of
correlated expression between two genes was downloaded from the SEEK'"* database on June
13th 2018 and restricted to protein-coding genes. Pathway membership of proteins was

obtained from Reactome, using a file mapping Ensembl gene IDs to lowest level pathways,
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downloaded on August 1st 2018. Subcellular compartment membership of proteins was
obtained from the Human Protein Atlas downloaded on August 1st 2018. Annotations of
‘Uncertain’ reliability were not used. Protein complex membership of proteins was obtained from
BioPlex® 2.0 supplementary table 7. Entrez gene IDs were mapped to Ensembl gene IDs and

restricted to protein-coding genes.

Calculation of significances for a network to link functionally related proteins

The significance of a given network [HuRI, HuRI 2ev (HuRI with multiple evidences), or the PSN
of HuURI] to link proteins that are co-expressed or that display similar growth defects on cell lines
was determined by computing for increasing correlation cutoffs the sum of the edge weights
(Jaccard similarities for PSN, edge weights = 1 for PPI networks) of all edges in the given
network that link two proteins with a correlation value of at least that cutoff. This sum was
divided by the mean of the sums obtained from randomized networks. the 95% confidence
interval was computed as described above. A single correlation cutoff (Pearson correlation
coefficient of 0.3 for growth defects and co-expression value of 0.86) was chosen for display
based on the number of pairs of proteins that met this cutoff. However, consistent trends were
observed across most cutoffs tested (Extended Data Fig. 4d, e). The significance and
confidence interval of a given network to link proteins that localize to the same subcellular
compartment, or work in the same pathway, or associate in the same protein complex was
computed in identical ways with the exception that no titration was performed to calculate

significances.

Computation and visualization of functional modules

We used the SAFE software?® (v1.5) to determine and visualize significant functional modules in
various networks. The network layouts were generated with Cytoscape'” (v3.4.0) using the
edge-weighted spring embedded layout. PSNs were drawn using a Jaccard similarity cutoff of
>0.1 and using the Jaccard similarity as edge weight for the layout algorithm. Gene Ontology'™

(GO) terms for each gene were extracted from FuncAssociate'"” (

v3 - GO updated on February
2018). SAFE analysis was run with the default option except layoutAlgorithm = none (using
layout generated by Cytoscape), neighborhoodRadius = 200, and neighborhoodRadiusType =

absolute.
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Network coverage of genes of interest and correlation with gene properties

Acquisition and Processing of gene properties

The number of publications for each gene was determined as the number of unique PubMed
IDs associated with the gene, using the file gene2pubmed from NCBI downloaded on August
1st 2018, after mapping NCBI gene IDs to Ensembl gene IDs, using the ID mapping file
provided by NCBI, gene2ensembl, downloaded on August 1st 2018. Disease genes were
defined as all genes with a disease annotation in OMIM''®, using files generated on July 26th
2018. Pharmacological targets were taken from the IUPHAR/BPS Guide to
PHARMACOLOGY'" downloaded on July 26th 2018. Cancer genes were the Tier 1 genes of
the Cancer Gene Census'®. Genes with Single Nucleotide Polymorphism (SNP) from Genome-
Wide Association Study (GWAS) were selected using data from the GWAS Catalog'' v1.0.2
from July 17th 2018. Genes were selected if there was a SNP associated with a trait with P < 5
x 108, associated with the gene that belonged to a class that could affect the protein product.
Transcription factors (TFs) were all known and likely TFs from The Human Transcription

Factors'??

v1.01 downloaded on July 26th 2018. Cell growth genes were derived from the
AVANA CRISPR knockout screens’'®, using a file dated June 21st 2018 containing data for 436
cell lines. Cell growth genes were selected as those with a median relative growth < -0.5 across
the cell lines tested. We took the list of genes annotated with “embryonic lethality” from the MGI
database (v6.13)*. Transcript expression levels of genes were retrieved from GTEx, and
protein expression levels from HEK293T and HelLa cell lines from these studies®'®. Age
information was adopted from Protein Historian®® (http://lighthouse.ucsf.edu/ProteinHistorian,
downloaded on August 2nd 2018). Age time was computed based on OrthoMCL. LoF
intolerance was adopted from ExAC database’ (release 0.3.1 / updated February 27th 2017).

Summary and detailed information of gene properties is provided in Supplementary Table 27.

Calculation and plotting of binned adjacency matrices

The protein-coding genome is ranked by the number of publications of each gene. In the case
where multiple genes have the same number of publications, the order was randomized. The
genome was divided into equal-sized bins, dividing the symmetric genome-by-genome space

into two-dimensional bins.
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Processing of gene properties for network degree correlation analysis

We calculated the correlation and the partial correlation between network degree of each
network and protein properties within the set of proteins with at least one interaction in the
corresponding network and with the value for the corresponding property, using Matlab (version
2016a). To calculate the partial correlation based on expression, we used HEK293T proteomic
data from the BioPlex'?® v1.0 study, proteomics data from the Hela cell line from the QUBIC
study, GTEX tissue expression data and the number of publications from NCBI (method above)

for the networks BioPlex, QUBIC, CoFrac and Lit-BM, respectively.

Integrative analyses of HuRI with subcellular compartment data

Calculation of protein coverage of networks by subcellular compartments

The subcellular localization dataset was retrieved from Cell Atlas® and processed as described
above. Any compartments with less than 100 proteins were not considered in this analysis, and
additional extracellular region and extracellular vesicle annotations from the GO database were
included. Fisher's exact test was used to test for an enrichment or depletion of the proteins of
each network restricted to those that have at least one localization annotation. Odds ratios were

provided in log scale and colored with gray for non-significant enrichment (P > 0.05).

Calculation of trend between cellular compartment overlap and HuRI

For pairs of subcellular compartments, A and B, both the odds ratio of proteins to be annotated
in both A and B and the odds ratio of the density of PPIs between proteins annotated as being
in A and not B and B and not A, were calculated. The density of PPIs is the number of PPls
within a set of proteins, divided by the number of pairwise combinations of those proteins.
Haldane-Anscombe corrected odds ratios were used. The uncertainties on the log odds ratios
were calculated using the standard error approximation. Orthogonal distance regression (ODR)
was used to estimate the relationship between the two log odds ratios. ODR was chosen since
the subcellular compartments have a large variation in their sizes and so widely varying
uncertainties on both the x and y variables needed to be accounted for. The z-value of the
regression slope was used as the test-statistic and compared to a null distribution generated by
running the same regression analysis on 1,000 degree-preserved randomized networks. All
possible pairs of compartments were used, with the exclusion of pairs of compartments whose

annotations partially or fully excluded each other for technical reasons. The excluded pairs
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were: Nucleoplasm/Nucleus, Nucleoplasm/Nucleoli, Nucleus/Nuclear Speckles, Nucleoli fibrillar

center/Nucleoli, and Microtubule organizing center/Centrosome.

Analysis of HURI PPIs about extracellular vesicle function

Acquisition and processing of extracellular vesicle (EV) proteomic data from the EVpedia

database

We used EVpedia database**'**'® (

version: April 30th 2018) to define vesicular proteins. In
EVpedia, there are 487 studies for EV proteomics from human samples and an “ldentification
Count” for each protein, which is the number of EV proteomic studies with the corresponding
protein detected. If a protein was found in more than 45 different studies (~10% of the studies),
we defined it as a vesicular protein, resulting in 2,548 proteins in total (about top 10% among all
the identified EV proteins). The Largest Connected Component (LCC) of this EV network,

containing 525 proteins, was visualized with Cytoscape'"

(v3.4.0). To test the significance of
this EV protein network, we compared the number of PPIs between EV proteins in this network
to the number of PPIs between EV proteins obtained in 1,000 degree-controlled randomized

networks, deriving an empirical P < 0.001.

Design and Transfection of gRNA and selection for KO cells

We used gRNA shared in TKO database'®®. U373vlll cells were prepared at 70% confluency
prior transfection. For each gene to be KO, a pool of plasmids carrying the gRNAs were
transfected using JetPrime according to the manufacturer's guidelines (Polyplus Transfection).
The cells were submitted to Puromycin selection 36h after 48h of transfection. KO of SDCBP
was confirmed by Western Blot'®’ with the rabbit anti-SDCBP antibody (ab133267 with lot
number GR282684-7) purchased from Abcam (Cambridge).

Comparative proteomics

d'?" with some

We performed the EV comparative proteomics as previously describe
modifications. The conditioned media (CM) was collected from cells grown for 72 h in culture
media containing 10% EV-depleted FBS (generated by centrifugation at 150,000 g for 18 h at
4°C). CM was centrifuged at 400 g and then passed through 0.8 um pore-size filter. The
resulting filtrate was concentrated using Amicon Ultra-15 Centrifugal Filter Unit (EMD Millipore)
with 100,000 nominal molecular weight limit (NMWL) molecular cutoff. The concentrate was

mixed with 50% of iodixanol solution (Sigma) and processed for density gradient
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ultracentrifugation at 200,000 g for 2 h. The EV-enriched fraction of iodixanol was collected (at
the density of ~1.10 g/mL) and particles were confirmed to carry CD81, an established
exosome marker. The concentration of EV proteins was quantified using the BCA assay (Pierce
Biotechnology). For concentration and size distribution of EVs, nanoparticle tracking analysis
(NTA) was carried out with each collected iodixanol fraction using NanoSight NS500 instrument
(NanoSight Ltd.). Three recordings of 30 s at 37 °C were obtained and processed using NTA
software (v3.0).

The purified EV protein preparation (9 ug) was desalted with SDS-PAGE loaded onto the
stacking gel followed by staining and destaining. The in-gel trypsin digestion was carried out
under reducing conditions afforded by DiThioThreitol (DTT), and alkylation was achieved using
iodoacetic acid. The lyophilized peptides were re-solubilized in 0.1% aqueous formic acid/2%
acetonitrile, the peptides were loaded onto a Thermo Acclaim Pepmap (75 um inner diameter
with 2 cm length, C18, 3 um particle size, 100 A pore size; Thermo Fisher Scientific) pre-column
and onto an Acclaim Pepmap Easyspray (75 ym inner diameter with 15 cm length, C18, 2 ym
particle size, 100 A pore size; Thermo Fisher Scientific) analytical column. Separation was
achieved using a Dionex Ultimate 3000 uHPLC at 220 nL/min with a gradient of 2-35% organic
solvents (0.1% formic acid in acetonitrile) over 3 h. Peptides were analyzed using an Orbitrap
Fusion Tribrid mass spectrometer (Thermo Fisher Scientific) operating at 120,000 resolution
(FWHM in MS1, 15,000 for MS/MS). All experiments were carried out in three biological
replicates. The quantification of proteins was done by Maxquant program (v1.5.6.5) with default
parameters of label-free quantification with UniProt database of human proteins (SwissProt
release September 2016). To define the decreased proteins after knockout, P-value was
calculated by fitting a Gaussian kernel density estimation (KDE) to the distribution of t-statistics
obtained by randomly permuting the WT/KO labels for all proteins, as previously described'?.
Decreased proteins in EV after knockout were defined as the proteins with P < 0.05 and fold
change < 0.66 (Fig. 4e). The enrichment of decreased proteins among SDCBP interactors were
tested with empirical testing; among all the EV proteins from U373vlll, we randomly picked 6
proteins 10,000 times and calculated the fraction of cases with = 50% decrease proteins
(Extended Data Fig. 5b).
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Inference and analysis of tissue PPl networks from HuRlI

Calculation and assessment of tissue preferential expression

A z-score related statistic published in Sonawane et al.**

was applied on the sample expression
data of 35 tissues and testis to calculate a tissue preferential expression (TiP) value for every
gene-tissue pair (Extended Data Fig. 10a and Supplementary Table 28). However, at a given
TiP value cutoff, only those genes were considered preferentially expressed in a given tissue, if
they also showed a level of expression > 5 in that tissue. A unique value of preferential
expression for every gene was calculated by taking the maximum of all TiP values across the 35
tissues (Extended Data Fig. 10a). As noted by others®**, testis by far represents the tissue with
the largest number of TiP genes increasingly dominating the overall set of TiP genes for
increasing TiP value cutoffs (Extended Data Fig. 10b). The expression of many genes in testis
has been hypothesized to be linked to DNA integrity control mechanisms during reproduction’?®
suggesting that the majority of testis-specific genes are not related to testis-specific function.
Therefore, testis was excluded from any analysis involving tissue-preferential expression in this
study. The impact of that decision on the number of TiP genes defined for all other tissues was
minimal, leading to a small gain in TiP genes and essentially no loss (Extended Data Fig. 10c,
d). The number of TiP genes substantially decreases for increasing TiP value cutoffs (Extended
Data Fig. 10a). At higher TiP value cutoffs, some tissues are left without any TiP gene. At a TiP
value cutoff of 2, most TiP genes are not exclusively expressed. However, that fraction
increases with higher TiP value cutoffs and plateaus at about 75% with a cutoff of 8 or 9
(Extended Data Fig. 10e). Where applicable, analyses were performed without the application of
a TiP value cutoff to define TiP genes, however, whenever a cutoff was necessary, a cutoff of 2
(lenient but highly significant preferential expression), 3, and 8 were applied to test for

dependencies of results on the level of preferential expression considered.

Correlation analysis of network properties with tissue preferential expression

Networks were processed as described above. A PPl was considered to exist in a tissue, if both
proteins showed expression (at the transcript level, expression cutoff > 5) in the same sample
for more than 50% of all samples available for that tissue. For the network property analyses,
each PPI network was restricted to the PPIs being expressed in at least one tissue and to the
largest connected component. The degree and betweenness function from the python igraph
library''? (v0.7.1) were used to calculate the degree and betweenness of every protein in the

network. Degree and betweenness were assessed for correlation with the max TiP value of
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every protein using Spearman’s rank correlation in the python scipy library™ (v1.1.0). The 95%

confidence interval of Spearman’s p was calculated using 1,000 bootstrap samples.

Calculation of fraction of genome or network that is tissue-specific

Networks were processed as described above and restricted to PPIs linking proteins expressed
in the same tissue. Titrations were performed as described above, by the max TiP value of
every gene. The fraction of the genome that is tissue-specific at a given max TiP value cutoff
was calculated by dividing the number of TiP genes at the cutoff with the number of protein-
coding genes in GTEx. The fraction of proteins in a network that are tissue-specific were
calculated by dividing the number of TiP proteins at a given max TiP value cutoff that are in the
network with the total number of proteins in the filtered network. Error bars reflect standard error

of proportion.

Generation and visualization of TiP networks

TiP networks were drawn for every tissue by taking all TiP proteins for a given tissue with a TiP
value = 2 and all their interaction partners in HuRI that are expressed in the same tissue.
Networks were drawn with Cytoscape'" (v3.7.0) and manually adjusted for aesthetic purposes.

The human body clipart was obtained from smart.servier.com.

Calculation of closeness of TiP proteins in tissue PPl networks

For every tissue the number of PPIs in HuRI between TiP proteins of that tissue was determined
defining TiP proteins at a TiP value cutoff 2 2. This number was compared to the number of
PPIs between TiP proteins in 1,000 degree-controlled randomized networks (generated using
the degree_sequence function in the python igraph''? library) of the corresponding tissue PPI
network of HURI (all PPIs linking proteins expressed in this tissue). Tissues were excluded from
the analysis, if less than two TiP proteins were in the tissue PPl network. The average shortest
path between TiP proteins in a tissue PPI network was calculated by restricting the tissue PPI
network to the Largest Connected Component (LCC), determining the shortest path of every TiP
protein to the closest TiP protein and averaging those shortest paths, and comparing the
average shortest path to those from 1,000 degree-controlled randomized tissue PPI networks.
Tissue PPl networks with less than two TiP proteins in the LCC were excluded from the
analysis. Tissues in which TiP proteins are significantly close to each other were determined by
calculating the fraction of random networks with a number of TiP-TiP PPIs at least as high as in

the actual tissue PPI network (or with an average shortest path at least as small or smaller) and
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requiring that fraction to be < 0.05 x 35 (one-sided empirical p-value corrected for multiple

testing).

Gene function prediction and experimental testing

Analysis of annotation of TiP genes with tissue-specific GO terms

Assignment of tissues to GO'"® terms was done manually as described in detail elsewhere
(Basha et al. in preparation). These GO term - tissue annotations were further matched to the
35 tissues with transcriptome data from GTEx. GO Biological Process terms were downloaded

from FuncAssociate'”

on March 20th 2018 excluding annotations with evidence codes ND and
IBA. For every tissue all genes with a TiP value = 2 were selected and the fraction of those

determined with at least one GO term annotation assigned to that tissue.

Prediction of gene functions using guilt-by-association approach

Finding a new protein annotation can be described as a link prediction problem between a node
representing the function and the proteins. Initially, we connect the functional node to each of
the proteins annotated with this function and obtain a link prediction score for each other gene in
the network based on our recently developed link prediction method?’. As the result, the indirect
score of protein i is obtained as where aik is the connection weight between nodes i and k and
kj is the degree of node j. Intuitively, the indirect score integrates the amount of network
similarity of the candidate node to the known proteins involved in this function.

We then compare the original network-based indirect score (s) to a random benchmark,
obtained by randomizing the network several times in a degree-preserved way. Calculating the
z-score z=(s-sR)/sR is the traditional way of such comparison, obtained by standardizing the
original score with the expectation value (sR) and standard deviation (sR) of the score that
would be expected by chance. Yet, the z-score is not free from degree biases and prefers low-
degree nodes with an extremely small sR. As described elsewhere in detail (manuscript in
preparation), we propose to apply a related measure, called the effect size. The effect size s-
SR-asR is obtained by comparing the original score with the reasonably expected value of the
random benchmark, estimated as the mean value (sR) and a-times the standard deviation (sR).
In practice, we use a=2, selecting the same candidates as a traditional z-score threshold of z =
2, but ordering them based on the amount of signal beyond random expectations to avoid a bias

towards low-degree nodes. To generate the benchmark distribution for each gene, we perform
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10,000 degree-preserved randomizations over the human interactome and score each gene in
each of the random networks.

Functional annotations of genes with GO Biological Process terms were obtained as
described above and further restricted to annotations with the evidence codes EXP, IMP, TAS,
HMP, HEP, IDA, IGI, NAS, HGI, IEP, IC, HDA to avoid circularity introduced from using inferred

GO annotations based on PPI data to infer more GO annotations using PPI data again.

Cell culture, transfection and cell death assay

Cell death assay was performed as described previously''. HeLa cells (obtained from American
Type Culture Collection) were maintained in DMEM supplemented with 10% FBS, 0.2 mM L-
glutamine, 100 U/ml penicillin and 100 pg/ml streptomycin (Invitrogen) at 37°C and 5% COs..
Cells were plated onto 96-well imaging plates (BD Biosciences) and transient transfection was
performed using Lipofectamine 3000 according to the manufacturer’s instructions (Invitrogen).
After 24h in transfection reagent, the cells were imaged on a BD Pathway 855 Bioimager (BD
Biosciences) with a UAPO/340 20X objective (0.75 NA; Olympus). After 1 hour of imaging, cells
were treated with 100 ng/ml of recombinant human TRAIL Apo/2L (PeproTech). The
fluorescence signal and the time of death of transfected cells were calculated using ImagedJ
(NIH) software.

To assess the significance of a correlation between levels of OTUDGA expression and
time of death, a Pearson correlation coefficient was calculated and its significance assessed by
comparison to the Pearson correlation coefficients of 100,000 shufflings of the cell death and

fluorescence measurements.

Generation of apoptosis candidate networks
Networks around OTUDGBA and CB60RF222 were drawn with Cytoscape'’ (v3.7.0). All
interaction partners of OTUDG6A and C60RF222 in HuRI were selected as well as indirect

interaction partners, if they had a known apoptosis GO annotation (restricted to those used in
the gene function prediction, see above), to visualize the network neighborhood used to obtain
the apoptosis prediction for the two candidate genes. This reference network was filtered using
transcript expression data from GTEXx for colon_transverse (expression cutoff > 5) and transcript
expression data from the BLUEPRINT project®®® for major eosinophils (log2(TPM+1) > 0.3).
The same expression data was used to adjust the size of the nodes in the network to reflect

transcript expression levels.
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Analyses of tissue-specificity of Mendelian diseases

Quantification of tissue-specificity of Mendelian diseases and integration with tissue

gene expression data

Tissues affected in Mendelian diseases were manually curated as described in detail elsewhere
(Basha et al. manuscript in preparation). Briefly, disease information was downloaded from the
OMIM database’"® and tissues were annotated to diseases within phenotypic series. Affected
tissues were matched to the 35 tissue names from GTEXx. If brain was an affected tissue, all
three brain subregions for which transcriptome data from GTEx was available (see above for
processing of GTEx data), were assigned to the corresponding disease. Other tissues, such as
heart, were processed the same way. Annotated causal gene information from OMIM was
mapped and restricted to the protein-coding gene space.

The distribution for how many diseases affect how many tissues was calculated by
restricting the list of annotated Mendelian diseases and tissues to those where causal genes
showed to be expressed in at least one disease-associated tissue (GTEX tissue expression >
5). Tissues were grouped into tissue types (e.g. the three brain subregions were grouped into
brain) and tissue types were counted for each disease. Diseases with at most three tissue types
where the disease manifests were considered tissue-specific diseases and used in all
downstream analyses.

The diseases were split into those where all causal genes are TiP genes, some causal
genes are TiP genes and no causal gene is a TiP gene as follows. For a given disease, every
causal gene was assessed for its expression (expression > 5) in at least one of the annotated
affected tissues of the given disease and whether it is preferentially expressed or not in that
tissue (TiP value 2 2). For each disease, only causal genes that were expressed in at least one
affected tissue were considered. All these causal genes for a given disease were counted

based on their preferential expression and diseases grouped accordingly.

Test for significance of connectivity between causal proteins and TiP proteins in HuRI

To test for the significance of causal proteins of tissue-specific Mendelian diseases to interact
with preferentially expressed proteins of the corresponding disease-associated diseases
(hereafter referred to as disease tissues) we only considered those diseases where not a single
causal proteins was found to be preferentially expressed in any of the corresponding disease
tissues. Cutoffs were used as described above. For a given tissue only those HuRI PPls were

considered that linked proteins both expressed in that tissue. For every tissue, all causal genes
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are considered that are expressed in that tissue but that are not preferentially expressed in that
tissue and that are causal to a disease that specifically manifests in that tissue and where the
disease corresponds to the above mentioned criteria. No causal gene or interaction was
counted twice for the analysis within each tissue. The number of PPIs between these causal
proteins and TiP proteins for each tissue as well as the number of causal proteins with at least
one PPI to a TiP protein was determined for each tissue and compared to the distribution of the
same counts observed in 1,000 degree-controlled randomized networks that were generated

with the degree_sequence function in the python igraph library.

Experimental design of pairwise test in Y2H to test perturbation of PPIls between causal

proteins and TiP proteins by disease mutations

Causal proteins were selected as follows. Causal proteins from tissue-specific diseases were
considered, if that causal protein was expressed in a given disease tissue and interacted with a
TiP protein of that tissue where the causal protein itself was not preferentially expressed (cutoff
as described above) and the interaction between the causal protein and TiP protein was found
with the causal protein as DB fusion. For all assay versions in which a valid causal protein - TiP
protein interaction was found, all interactions from these assay versions found with the
corresponding causal protein as DB fusion were selected for pairwise test. Interactions involving
a causal protein with 30 or more interaction partners for a given assay version were removed to
control the size of the experiment. PRS v1 and RRS v1 pairs'’ were tested along as positive

and negative control.

Cloning of disease mutations

Within the causal genes described above, we cloned variants that were annotated as
pathogenic or likely pathogenic in ClinVar’' (May 2015) and disease modifying in HGMD'®
(v2016). Since then, ongoing reannotation efforts by ClinVar have classified some of these
pathogenic variants as benign, conflicting or variants of uncertain significance (VUS). We
generated the disease mutants by implementing an advanced high-throughput site-directed

68132133 ith some modifications as described below. For each mutation,

mutagenesis pipeline
two “primary PCRs” were performed to generate gene fragments containing the mutation and a
“stitch PCR” was performed to fuse the two fragments to obtain the mutated ORF. For the
primary PCRs, two universal primers (E2E forward and E2E reverse) and two ORF-specific
internal forwards and reverse primers were used. The two ORF-specific primers contained the

desired nucleotide change. The gene fragments generated by the primary PCRs were fused
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together by the stitch PCR using the universal primers to generate the mutated ORF. The final
product was a full length ORF containing the mutation of interest. All the mutated ORFs were
cloned into Gateway donor vector, pDONR223, by a BP reaction followed by bacterial
transformation and selection by spectinomycin. Two single colonies were picked per
transformant. The mutated ORF was sequence confirmed by M13 PCR followed by pooling and
sequencing the PCR products on the lllumina platform. The reads were aligned to the reference
ORFs using bowtie 2'% (v2.2.3) and samtools™* (v1.2). Only those colonies with the correct
mutation, fully covered by the reads, and without other mutations were considered sequence-
confirmed. The confirmed colonies were rearrayed and assembled followed by LR reaction and
bacterial transformation to transfer the mutated ORFs in pDEST-DB. The plasmids were purified
and transformed into Y8930 yeast strain for the pairwise test.

Primers used for the experiment:

E2E forward: GGCAGACGTGCCTCACTACTACAACTTTGTACAAAAAAGTTGGC

E2E reverse: CTGAGCTTGACGCATTGCTAACAACTTTGTACAAGAAAGTTGG

M13-reverse: GTAACATCAGAGATTTTGAGACAC

M13-forward: CCCAGTCACGACGTTGTAAAACG

See Supplementary Table 29 for ORF-specific primers used in the mutagenesis.

Pairwise test of disease mutations

All sequence-confirmed pathogenic, likely pathogenic, and reclassified alleles for all selected
causal genes (see above) were subject to pairwise test along with the wild-type allele paired
with all interaction partners in the respective assay versions as described above. Before the
pairwise test was performed, the yeast strains containing the mutated or wild-type ORFs were
Sanger sequenced to confirm the presence or absence of the mutations. Considering that all the
entry clones used in the experiments have been full-length sequence verified, we were less
stringent to call that a clone is sequence confirmed. Specifically, for ORFs with mutations, if
either forward or reverse sanger reads confirmed the identity of the ORF and the presence of
the mutations and there was no contradictory between the two reads, the clone was considered
as sequence confirmed. Wild-type ORFs required one of the sanger reads confirming the
identity of the ORF and absence of any of the tested mutations, and no contradictory between
reads.

The pairwise test was performed in 96 well format. In all, 50 mutants in 17 genes/ORFs
were subjected to pairwise test. The ORFs were inoculated in SC-Leu and SC-Trp media

overnight and mated in YEPD media the following day. After incubation at 30°C overnight, the
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mated yeasts were transferred into SC-Leu-Trp media to select for diploids. Next day, the
diploid yeasts were spotted on SC-Leu-Trp-His+3AT, SC-Leu-His+3AT+CHX and SC-Leu-Trp
media to control for mating success. In parallel, we made lysates of all SC-Leu-Trp plates to

perform SWIM PCR as described in the primary screening section.

Sequence confirmation of pairwise test positives and negatives

SWIM PCR product was sequenced and the sequencing reads were analyzed as described
above in the primary screening section. Due to the short read length of the Illumina sequencing
and the design of SWIM-seq, absence or presence of a mutation on the ORF sequence could
not always be confirmed. Therefore, for a given pair, as long as the identities returned from the
pipeline matched the tested ORF and its partner, the pair was considered as sequence
confirmed. Both positives and negatives were sequenced and only combinations of sequence
confirmed pairs including both wild-type and mutated ORFs with same interacting partners were

included in the final analysis.

Processing of pairwise test data

Each spot was scored with a growth score ranging from 0 to 4, 0 being no growth, 1 being one
or two colonies, 2 being some colonies, 3 being lot’s of colonies, 4 being a big fat spot where no
individual colonies can be distinguished. Pairs for which the SC-Leu-Trp spot was scored as 3
or 4 and for which the CHX and the 3AT spot were valid (yeasts were spotted and no
contamination or other experimental failure) were considered as successfully tested.
Successfully tested pairs were further classified into auto-activators, if growth on CHX was >2 or
growth on CHX was = 1 and less than 3 on 3AT, else negatives, if there was no growth (growth
score = 0) on 3AT or positives if there was growth > 0 on 3AT and no growth on CHX or growth

> 2 and growth = 1 on CHX. Pairs were scored blindly with respect to their identity.

Analysis of PPI perturbation data

Only pairs that were successfully tested, classified as positive or negative, for which the wild-
type allele was classified as positive with a growth score = 2, and that were sequence-confirmed
were considered for all further analysis. An interaction was considered perturbed by an allele, if
the growth score of the wild-type pair was at least 2 growth scores above the growth score for
that interaction with the respective allele. If an interaction involving an allele was tested in
multiple assay versions (because the wild-type PPl has been found in those originally), then a

final decision on that interaction for being perturbed or not was based on the results from the
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assay version where the wild-type interaction reached the highest growth score (in case of ties,
order of priority was given to assay version 1, 2, 6). A causal gene was included in the analyses,
if first, there was at least one interaction with a TiP interaction partner that was positive with a
growth score = 2 as wild-type and that was successfully tested (as defined above) for at least
one of the pathogenic alleles of that causal gene and second, if more than half of all interactions
of a causal protein subjected to pairwise test were classified as positive with a growth score = 2.

Network visualizations were drawn with Cytoscape'"® (v3.7.0).

Prediction and experimental confirmation of functionally divergent splice

isoforms

Finding tissue-requlated splicing exon

For tissue-regulated alternative splicing information, we used a dataset’

previously defined in
49 tissues, which was kindly shared by members of the Blencowe lab, and is now publicly
available via vastDB'®. For each of the events, we mapped Ensembl exon accession with
respect to their genome coordinate information. A tissue regulated exon was defined, if there is
more than 25% difference between maximum Percent Spliced-In (PSI) and minimum PSI (APSI

> 25) as previously described’.

Finding protein domain requlated by alternative splicing and defining hub protein with

possible partial loss of protein-protein interactions

Based on the tissue-regulated exons we defined, we computationally derived the spliced-out
HuRI ORFs without the corresponding exon. After that, we translated it and mapped domains
for HURI ORFs and the spliced-out HURI ORFs with InterProScan'® (v5.16-55.0) with Pfam™’
(v28.0). We restricted to domains that are previously known to mediate protein-protein
interactions using information from 3did”® (based on UniProt version 201804). The domains that
were missing in transcripts with spliced-out exons were defined as domains regulated by the
alternative splicing. If a spliced-out HURI ORF partially loses its PPIl-mediating domains, we
define that ORF as a possible candidate for partial PPI loss by tissue-regulated alternative

splicing (Supplementary Table 18).

Analysis of NCK2 isoform expression in brain samples

We gained the exon-specific RPKM (Reads Per Kilobase Million) from the Allen Institute for

138

Brain Science - BrainSpan Atlas of the Developing Human Brain™™ (www.brainspan.org). To
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estimate the fraction of exon A inclusion, we divided the RPKM of exon A by the average RPKM

of exon C1 and C2, which are two adjacent exons of exon A (Supplementary Table 19).

Pairwise test of interaction partners of NCK2 with short and long isoform

We used the orientation and Y2H assay version of the interactions where the corresponding
protein interactions were found in HuRI. The pairwise test of these interactions was done as

previously described'*.

NCK2 function in Zebrafish

An antisense morpholino oligonucleotide, as well as a 5 nt-mismatched control morpholino

oligonucleotide (Gene Tools, Inc.), was designed to knockdown expression of zNCK2B
(ortholog of human NCK2) via inhibiting the removal of intron 2. Zebrafish embryos at the 1-cell
stage were microinjected with 5 ng of the antisense zZNCK2B or control morpholinos, and
inhibition of splicing in zZNCK2B was confirmed via RT-PCR at 1 dpf (days post fertilization;
forward exon 2: TACGGCACAACAAGACCAGG, exon3 reverse:
TTGACTATGGCCGGAGTGTT, intron2 reverse: CGTGTGCGGTCAAATTTATGC). To rescue
the zNCK2B knockdown, full length and short form zNCK2B and human NCK2 (hNCK2)
messenger RNA was cloned into the multiple cloning site of pCS2+MT, and transcribed with the
SP6 mMessage machine kit (ThermoFisher). Purified mRNA was microinjected into 1-cell stage
zebrafish embryos either alone, or in combination with the above morpholinos at a concentration
sufficient to yield 0.5 fmol RNA per embryo. zZNCK2B knockdown and rescued embryos were
assayed at 48 hpf (hours post fertilization) for midbrain GFP expression in the zebrafish
enhancer trap line SAGFF(LF)223A, where GFP was inserted adjacent to 1hx9'*°. Wild-type AB
embryos were similarly injected with zZNCK2B or control morpholino and mRNA, fixed at 48 hpf
and assayed by whole mount in situ hybridization for lef1 expression as previously described".
The midbrain specific lef1 expression domain was imaged and quantified by measuring the 2-
dimensional area with Image-J; the experimental groups were then compared via t-test with
MicroSoft Excel.

Data availability

The PPl data from this publication has been submitted to the IMEx
(http://www.imexconsortium.org) consortium through IntAct'® and assigned the identifier IM-

25472. HuRlI, Lit-BM, and all previously published human interactome maps from CCSB are
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available at http://interactome.dfci.harvard.edu/huri/ for search and download. All HuRI-related
networks generated and analyzed in this study are available at NDExbio.org'*
(https:/ftinyurl.com/networks-HuRI-paper). The raw and analyzed proteomic data were
deposited in the PRIDE repository'*® with the accession number PXD012321.

Code availability

Custom code used in this study has been made available as Supplementary Data 1 for the

reviewers and will be made public on github.com upon acceptance.
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Fig. 5 | Tissue-specific functions are largely mediated by interactions
between TiP proteins and uniformly expressed proteins. a, Tissue-
preferentially expressed (TiP) protein coverage by PPI networks for increasing
levels of tissue-preferential expression. b, Fraction of HuRI and Lit-BM that
involve TiP proteins compared to fraction of genome that are TiP genes for
increasing levels of tissue-preferential expression. ¢, Tissue-preferential sub-
networks with enlarged brain sub-network. *: tissues with TiP proteins being
significantly close to each other (empirical P < 0.001). d, Fraction of PPIs
between TiP-TiP proteins in brain. e, Empirical test of closeness of TiP proteins
in the brain sub-network. f, Tissue-specific diseases split by tissue-preferential
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expression levels of causal genes. g, Network neighborhood of uniformly
expressed causal proteins of tissue-specific diseases found to interact with TiP
proteins in HuRlI, indicating PPI perturbation by mutations. h, Causal genes
split by mutation found to perturb PPI to TiP protein (dashed) or not (solid).

i, Expression profile of PNKP and interactors in brain tissues and PPI
perturbation pattern of disease causing (Glu326Lys) and benign (Pro20Ser)
mutation. Yeast growth phenotypes on SC-Leu-Trp (upper) or SC-Leu-Trp-His
+3AT media (lower) are shown, green/grey gene symbols: preferentially/not
expressed.
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samples. d, Pairwise test of long and short isoform of NCK2 with interaction
partners in HuRI. Yeast growth phenotypes on SC-Leu-Trp (upper) or SC-Leu
-Trp-His+3AT media (lower) are shown. e, In vivo test of distinct functions of
NCK2 isoforms. *** #** *: P<(0.001,0.01,0.05; n.s.: not significant by two-
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ortholog in zebrafish. Error bars are standard error.
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