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Abstract1

Colonic bacterial populations are thought to have a role in the development of colorectal cancer2

with some protecting against inflammation and others exacerbating inflammation. Short-chain3

fatty acids (SCFAs) have been shown to have anti-inflammatory properties and are produced4

in large quantities by colonic bacteria which produce SCFAs by fermenting fiber. We assessed5

whether there was an association between fecal SCFA concentrations and the presence of colonic6

adenomas or carcinomas in a cohort of individuals using 16S rRNA gene and metagenomic shotgun7

sequence data. We measured the fecal concentrations of acetate, propionate, and butyrate within8

the cohort and found that there were no significant associations between SCFA concentration and9

tumor status. When we incorporated these concentrations into random forest classification models10

trained to differentiate between people with normal colons and those with adenomas or carcinomas,11

we found that they did not significantly improve the ability of 16S rRNA gene or metagenomic gene12

sequence-based models to classify individuals. Finally, we generated random forest regression13

models trained to predict the concentration of each SCFA based on 16S rRNA gene or metagenomic14

gene sequence data from the same samples. These models performed poorly and were able to15

explain at most 14% of the observed variation in the SCFA concentrations. These results support16

the broader epidemiological data that questions the value of fiber consumption for reducing the17

risks of colorectal cancer. Although other bacterial metabolites may serve as biomarkers to detect18

adenomas or carcinomas, fecal SCFA concentrations have limited predictive power.19
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Importance20

Considering colorectal cancer is the third leading cancer-related cause of death within the United21

States, it is important to detect colorectal tumors early and to prevent the formation of tumors.22

Short-chain fatty acids (SCFAs) are often used as a surrogate for measuring gut health and for23

being anti-carcinogenic because of their anti-inflammatory properties. We evaluated the fecal SCFA24

concentration of a cohort of individuals with varying colonic tumor burden who were previously25

analyzed to identify microbiome-based biomarkers of tumors. We were unable to find an association26

between SCFA concentration and tumor burden or use SCFAs to improve our microbiome-based27

models of classifying people based on their tumor status. Furthermore, we were unable to find an28

association between the fecal community structure and SCFA concentrations. Our results indicate29

that the association between fecal SCFAs, the gut microbiome, and tumor burden is weak.30
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Colorectal cancer is the third leading cancer-related cause of death within the United States (1).31

Less than 10% of cases can be attributed to genetic risk factors (2). This leaves a significant32

role for environmental, behavioral, and dietary factors (3, 4). Colorectal cancer is thought to be33

initiated by a series of mutations that accumulate as the mutated cells begin to proliferate leading34

to adenomatous lesions, which are succeeded by carcinomas (2). Throughout this progression,35

there are ample opportunities for bacterial populations to have a role as some bacteria are known36

to cause mutations, induce inflammation, and accelerate tumorigenesis (5–7). Additional cross37

sectional studies in humans have identified microbiome-based biomarkers of disease (8). These38

studies suggest that in some cases, it is the loss of bacterial populations that produce short-chain39

fatty acids (SCFAs) that results in increased inflammation and tumorigenesis.40

Many microbiome studies use the concentrations of SCFAs and the presence of 16S rRNA gene41

sequences from organisms and the genes involved in producing them as a biomarker of a healthy42

microbiota (9, 10). Depending on the concentrations, SCFAs can have proliferative activities43

at low concentrations or anti-proliferative activities at higher concentrations; they can also have44

anti-inflammatory activities (11). Direct supplementation of SCFAs or feeding of fiber caused45

an overall reduction in tumor burden in mouse models of colorectal cancer (12). These results46

suggest that supplementation with fiber, which many colonic bacteria ferment to produce SCFAs,47

may confer beneficial effects against colorectal cancer. Regardless, there is a lack of consistent48

evidence that increasing SCFA concentrations can protect against colorectal cancer in humans.49

Case-control studies that have investigated possible associations between SCFAs and colon tumor50

status have been plagued by relatively small numbers of subjects, but have reported increased total51

and relative fecal acetate levels and decreased relative fecal butyrate concentrations in subjects with52

colonic lesions (13). In randomized controlled trials fiber supplementation has been inconsistently53

associated with protection against tumor formation and recurrence (14, 15). Such studies are54

confounded by difficulties ensuring subjects took the proper dose and using subjects with prior55

polyp history who may be beyond a point of benefiting from fiber supplementation. Together, these56

findings temper enthusiasm for treatments that target the production of SCFAs or for using them as57

biomarkers for protection against tumorigenesis.58

Fecal SCFA concentrations did not vary with diagnosis or treatment. To test for a significant59
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association between colorectal cancer and SCFAs, we quantified the concentration of acetate,60

propionate, and butyrate in feces of previously characterized individuals with normal colons (N=172)61

and those with colonic adenomas (N=198) or carcinomas (N=120) (16). We were unable to detect62

a significant difference in any SCFA concentration across the diagnoses groups (all P>0.15; Figure63

1A). Among the individuals with adenomas and carcinomas, a subset (Nadenoma=41, Ncarcinoma=26)64

were treated and sampled a year later (17). None of the individuals showed signs of recurrence65

and yet none of the SCFAs exhibited a significant change with treatment (all P>0.058; Figure 1B).66

For both the pre-treatment cross-sectional data and the pre/post treatment data, we also failed to67

detect any significant differences in the relative concentrations of any SCFAs (P>0.16). Finally, we68

pooled the SCFA concentrations on a total and per molecule of carbon basis and again failed to69

observe any significant differences (P>0.077). Although some of the P-values from our analyses70

were close to 0.05, the effect sizes were all relatively small and inconsistent given the disease71

progression (Figure 1). These results demonstrated that there were no significant associations72

between fecal SCFA concentration and diagnosis or treatment.73

Combining SCFA and microbiome data does not improve the ability to diagnose individual74

as having adenomas or carcinomas using a random forest model. We previously found that75

binning 16S rRNA gene sequence data into operational taxonomic units (OTUs) based on 97%76

similarity or into genera enabled us to classify individuals as having adenomas or carcinomas77

using random forest machine learning models (8, 16). We repeated that analysis but added the78

concentration of the SCFAs as possible features to train the models (Figure S1). Models trained79

using SCFAs to classify individuals as having adenomas or carcinomas rather than normal colons80

had median areas under the receiver operator characteristic curve (AUROC) that were significantly81

greater than 0.5 (Padenoma<0.001 and Pcarcinoma<0.001). However, the AUROC values to detect82

the presence of adenomas or carcinomas were only 0.54 and 0.55, respectively, indicating that83

SCFAs had poor predictive power on their own (Figure 2A). When we trained the models with84

the SCFAs concentrations and OTU or genus-level relative abundances the AUROC values were85

not significantly different from the same models trained without the SCFA concentrations (P>0.15;86

Figure 2A). These data demonstrate that knowledge of the SCFA profile from a subject’s fecal87

sample did not improve the ability to diagnose a colonic lesion.88
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Knowledge of microbial community structure does not predict SCFA concentrations using89

a random forest model. We next asked whether the fecal community structure was predictive90

of fecal SCFA concentrations, regardless of a person’s diagnosis. We trained random forest91

regression models using 16S rRNA gene sequence data binned into OTUs and genera to predict the92

concentration of the SCFAs (Figure S2). The largest R2 between the observed SCFA concentrations93

and the modeled concentrations was 0.14, which was observed when using genus data to predict94

butyrate concentrations (Figure 2B). We also used a smaller dataset of shotgun metagenomic95

sequencing data generated from a subset of our cohort (Nnormal=27, Nadenoma=25, and Ncancer=26)96

(18). We binned genes extracted from the assembled metagenomes into operational protein families97

(OPFs) or KEGG categories and trained random forest regression models using metagenomic98

sequence data to predict the concentration of the SCFAs (Figure S2). Similar to the analysis using99

16S rRNA gene sequence data, the metagenomic data was not predictive of SCFA concentration.100

The largest R2 was 0.055, which was observed when using KEGG data to predict propionate101

concentrations (Figure 2B). Because of the limited number of samples that we were able to102

generate metagenomic sequence data from, we used our 16S rRNA gene sequence data to impute103

metagenomes that were binned into metabolic pathways or KEGG categories using PICRUSt104

(Figure S2). SCFA concentrations could not be predicted based on the imputed metagenomic105

data. The largest R2 was 0.085, which was observed when using KEGG data to predict propionate106

concentrations (Figure 2B). The inability to model SCFA concentrations from microbiome data107

indicates that the knowledge of the abundance of organisms and their genes was insufficient to108

predict fecal SCFA concentrations.109

Conclusion. Our data indicate that fecal SCFA concentrations are not associated with the presence110

of adenomas or carcinomas and that they provide weak predictive power to improve the ability111

to diagnose someone with one of these lesions. Furthermore, knowledge of the taxonomic and112

genetic structure of gut microbiota was not meaningfully predictive of SCFA concentrations. These113

results complement existing literature that suggest that fiber consumption and the production of114

SCFAs are unable to prevent the risk of developing colonic tumors. It is important to note that our115

analysis was based on characterizations of SCFA and microbiome profiles using fecal samples at a116

single time point. Furthermore, observations along the mucosa near the site of lesions may provide117
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a stronger association. This may be a cautionary result to temper enthusiasm for SCFAs as a118

biomarker of gut health more generally. Going forward it is critical to develop additional hypotheses119

for how the microbiome and host interact to drive tumorigenesis so that we can better understand120

tumorigenesis and identify biomarkers that will allow early detection of lesions.121
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Materials and Methods128

Study design and sampling. The overall study design and the resulting sequence data have129

been previously described (16, 17). In brief, fecal samples were obtained from 172 individuals130

with normal colons, 198 individuals with colonic adenomas, and 120 individuals with carcinomas.131

Of the individuals diagnosed as having adenomas or carcinomas, a subset (Nadenoma=41132

and Ncarcinoma=26) were sampled after treatment of the lesion (median=255 days between133

sampling, IQR=233 to 334 days). Tumor diagnosis was made by colonoscopic examination and134

histopathological review of the biopsies (16). The University of Michigan Institutional Review Board135

approved the studies that generated the samples and informed consent was obtained from all136

participants in accordance to the guidelines set out by the Helsinki Declaration.137

Measuring specific SCFAs. The measurement of acetate, propionate, isobutyrate, and butyrate138

used a previously published protocol that used High-Performance Liquid Chromatography (HPLC)139

(19). Two changes were made to the protocol. First, instead of using fecal samples suspended140

in DNA Genotek OmniGut tubes, we suspended frozen fecal samples in 1 mL of PBS. Second,141

instead of using the average weight of fecal sample aliquots to normalize SCFA concentrations, we142

used the actual weight of the fecal samples. These methodological changes did not affect the range143

of concentrations of these SCFAs between the two studies. The concentrations of isobutyrate were144

consistently at or below the limit of detection and were not included in our analysis.145

16S rRNA gene sequence data analysis. Sequence data from Baxter et al. (16) and Sze et146

al. (17) were obtained from the Sequence Read Archive (studies SRP062005 and SRP096978)147

and reprocessed using mothur v.1.42 (20). The original studies generated sequence data from148

V4 region of the 16S rRNA gene using paired 250 nt reads on an Illumina MiSeq sequencer. The149

resulting sequence data were assembled into contigs and screened to remove low quality contigs150

and chimeras. The curated sequences were then clustered into OTUs at a 97% similarity threshold151

and assigned to the closest possible genus with an 80% confidence threshold trained on the152

reference collection from the Ribosomal Database Project (v.16). We used PICRUSt (v.2.1.0-b)153

with the recommended standard operating protocol to generate imputed metagenomes based on154

the expected metabolic pathways and KEGG categories (21).155
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Metagenomic DNA sequence analysis. A subset of the samples from the samples described by156

Baxter et al. (16) were used to generate metagenomic sequence data (Nnormal=27, Nadenoma=25,157

and Ncancer=26). These data were generated by Hannigan et al. (18) and deposited into the158

Sequence Read Archive (study SRP108915). Fecal DNA was subjected to shotgun sequencing on159

an Illumina HiSeq using 125 bp paired end reads. The archived sequences were already quality160

filtered and aligned to the human genome to remove contaminating sequence data. We downloaded161

the sequences and assembled them into contigs using MEGAHIT (22), which were used to identify162

open reading frames (ORFs) using Prodigal (23). We determined the abundance of each ORF163

by mapping the raw reads back to the ORFs using Diamond (24). We clustered the ORFs into164

operational protein families (OPFs) in which the clustered ORFs were more than 40% identical to165

each other using mmseq2 (25). We also used mmseq2 to map the ORFs to the KEGG database166

and clustered the ORFs according to which category the ORFs mapped.167

Random forest models. The classification models were built to predict lesion type from microbiome168

information with or without SCFA concentrations. The regression models were built to predict the169

SCFA concentrations of acetate, butyrate, and propionate from microbiome information. For170

classification and regression models, we pre-processed the features by scaling them to vary171

between zero and one. Features with no variance in the training set were removed from both the172

training and testing sets. We randomly split the data into training and test sets so that the training173

set consisted of 80% of the full dataset while the test set was composed of the remaining data. The174

training set was used for hyperparameter selection and training the model and the test set was used175

for evaluating prediction performance. For each model, the best performing hyperparameter, mtry,176

was selected in an internal five-fold cross-validation of the training set with 100 randomizations. The177

mtry parameter represents the number of features randomly sampled from the available features at178

a question point in the classification tree (i.e. called splits of nodes) that, when answered, lead to the179

greatest improvement in classification. Six values of mtry were tested and the value that provided180

the largest AUROC or R2 was selected. We trained the random forest model using the selected181

mtry value and predicted the held-out test set. The data-split, hyperparameter selection, training182

and testing steps were repeated 100 times to get a reliable and robust reading of model prediction183

performance. We used AUROC and R2 as the prediction performance metric for classification184
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and regression models, respectively. We used the randomForest R package (version 4.6-14) as185

implemented in the caret R package (version 6.0-81) for developing and testing our models.186

Statistical analysis workflow. Data summaries, statistical analysis, and data visualizations were187

performed using R (v.3.5.1) with the tidyverse package (v.1.2.1). To assess differences in SCFA188

concentrations between individuals normal colons and those with adenomas or carcinomas, we189

used the Kruskal-Wallis rank sum test. If a test had a P-value below 0.05, we then applied a190

pairwise Wilcoxon rank sum test with a Benjamini-Hochberg correction for multiple comparisons. To191

assess differences in SCFA concentrations between individuals samples before and after treatment192

we used paired Wilcoxon rank sum tests to test for significance. To compare the median AUCROC193

for the held out data for the model generated using only the SCFAs, we compared the distribution of194

the data to the expected median of 0.5 using the Wilcoxon rank sum test to test whether the model195

performed better than would be achieved by randomly assigning the data to each diagnosis. When196

we compared the random forest models generated without and with SCFA data included, we used197

Wilcoxon rank sum tests to determine whether the models with the SCFA data included did better.198

Code availability. The code for all sequence curation and analysis steps including an Rmarkdown199

version of this manuscript is available at https://github.com/SchlossLab/Sze_SCFACRC_mBio_200

2019/.201
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Figures277

Figure 1. SCFA concentrations did not vary meaningfully with diagnosis of colonic lesions278

or with treatment for adenomas or carcinomas. (A) The concentration of fecal SCFAs from279

individuals with normal colons (N=172) or those with adenoma (N=198) or carcinomas (N=120). (B)280

A subset of individuals diagnosed with adenomas (N=41) or carcinomas (N=26) who underwent281

treatment were resampled a year after the initial sampling; one extreme propionate value (124.4282

mmol/kg) was included in the adenoma analysis but censored from the visualization for clarity.283

Figure 2. SCFA concentrations do not improve models for diagnosing the presence of284

adenomas, carcinomas, or all lesions and cannot be reliably predicted from 16S rRNA285

gene or metagenomic sequence data. (A) The median AUROC for diagnosing individuals as286

having adenomas or carcinomas using SCFAs was slightly better than than chance (depicted by287

horizontal line at 0.50), but did not improve performance of the models generated using 16S rRNA288

gene sequence data. (B) Regression models that were trained using 16S rRNA gene sequence,289

metagenomic, and PICRUSt data to predict the concentrations of SCFAs performed poorly (all290

median R2 values < 0.14). Regression models generated using 16S rRNA gene sequence and291

PICRUSt data included data from 490 samples and those generated using metagenomic data292

included data from 78 samples.293

Figure S1. Comparison of training and testing results for classification models shows that294

the models are robust and are not overfit. random forest classification models were generated to295

differentiate between individuals with normal colons and those with adenomas or carcinomas using296

16S rRNA gene sequence data that were clustered into genera or OTUs with and without including297

the three SCFAs as additional features. random forest classification models were generated by298

partitioning the samples into a training set with 80% of the data and a testing set with the remaining299

samples for 100 randomizations.300

Figure S2. Comparison of training and testing results for regression models shows that301

the models are robust and are not overfit. random forest regression models were generated302

to predict the concentration of each SCFA using each individuals’ microbiome data generated303
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using 16S rRNA gene sequence and metagenomic sequence data. These regression models were304

generated by partitioning the samples into a training set with 80% of the data and a testing set with305

the remaining samples for 100 randomizations.306
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