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1 Abstract

> Colonic bacterial populations are thought to have a role in the development of colorectal cancer
s with some protecting against inflammation and others exacerbating inflammation. Short-chain
+ fatty acids (SCFAs) have been shown to have anti-inflammatory properties and are produced
s in large quantities by colonic bacteria which produce SCFAs by fermenting fiber. We assessed
s whether there was an association between fecal SCFA concentrations and the presence of colonic
7 adenomas or carcinomas in a cohort of individuals using 16S rRNA gene and metagenomic shotgun
s sequence data. We measured the fecal concentrations of acetate, propionate, and butyrate within
s the cohort and found that there were no significant associations between SCFA concentration and
10 tumor status. When we incorporated these concentrations into random forest classification models
11 trained to differentiate between people with normal colons and those with adenomas or carcinomas,
12 we found that they did not significantly improve the ability of 16S rRNA gene or metagenomic gene
13 sequence-based models to classify individuals. Finally, we generated random forest regression
12 models trained to predict the concentration of each SCFA based on 16S rRNA gene or metagenomic
15 gene sequence data from the same samples. These models performed poorly and were able to
16 explain at most 14% of the observed variation in the SCFA concentrations. These results support
17 the broader epidemiological data that questions the value of fiber consumption for reducing the
18 risks of colorectal cancer. Although other bacterial metabolites may serve as biomarkers to detect

19 adenomas or carcinomas, fecal SCFA concentrations have limited predictive power.
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2 Importance

21 Considering colorectal cancer is the third leading cancer-related cause of death within the United
22 States, it is important to detect colorectal tumors early and to prevent the formation of tumors.
23 Short-chain fatty acids (SCFAs) are often used as a surrogate for measuring gut health and for
24 being anti-carcinogenic because of their anti-inflammatory properties. We evaluated the fecal SCFA
25 concentration of a cohort of individuals with varying colonic tumor burden who were previously
26 analyzed to identify microbiome-based biomarkers of tumors. We were unable to find an association
27 between SCFA concentration and tumor burden or use SCFAs to improve our microbiome-based
2s models of classifying people based on their tumor status. Furthermore, we were unable to find an
29 association between the fecal community structure and SCFA concentrations. Our results indicate

s that the association between fecal SCFAs, the gut microbiome, and tumor burden is weak.
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a1 Colorectal cancer is the third leading cancer-related cause of death within the United States (1).
32 Less than 10% of cases can be attributed to genetic risk factors (2). This leaves a significant
33 role for environmental, behavioral, and dietary factors (3, 4). Colorectal cancer is thought to be
a4 initiated by a series of mutations that accumulate as the mutated cells begin to proliferate leading
35 to adenomatous lesions, which are succeeded by carcinomas (2). Throughout this progression,
3 there are ample opportunities for bacterial populations to have a role as some bacteria are known
37 to cause mutations, induce inflammation, and accelerate tumorigenesis (5—7). Additional cross
ss sectional studies in humans have identified microbiome-based biomarkers of disease (8). These
39 studies suggest that in some cases, it is the loss of bacterial populations that produce short-chain

s fatty acids (SCFAs) that results in increased inflammation and tumorigenesis.

41 Many microbiome studies use the concentrations of SCFAs and the presence of 16S rRNA gene
42 sequences from organisms and the genes involved in producing them as a biomarker of a healthy
43 microbiota (9, 10). Depending on the concentrations, SCFAs can have proliferative activities
44 at low concentrations or anti-proliferative activities at higher concentrations; they can also have
«s anti-inflammatory activities (11). Direct supplementation of SCFAs or feeding of fiber caused
4 an overall reduction in tumor burden in mouse models of colorectal cancer (12). These results
47 suggest that supplementation with fiber, which many colonic bacteria ferment to produce SCFAs,
4 may confer beneficial effects against colorectal cancer. Regardless, there is a lack of consistent
49 evidence that increasing SCFA concentrations can protect against colorectal cancer in humans.
so Case-control studies that have investigated possible associations between SCFAs and colon tumor
51 status have been plagued by relatively small numbers of subjects, but have reported increased total
s2 and relative fecal acetate levels and decreased relative fecal butyrate concentrations in subjects with
ss colonic lesions (13). In randomized controlled trials fiber supplementation has been inconsistently
s« associated with protection against tumor formation and recurrence (14, 15). Such studies are
ss confounded by difficulties ensuring subjects took the proper dose and using subjects with prior
ss polyp history who may be beyond a point of benefiting from fiber supplementation. Together, these
57 findings temper enthusiasm for treatments that target the production of SCFAs or for using them as

ss  biomarkers for protection against tumorigenesis.

ss Fecal SCFA concentrations did not vary with diagnosis or treatment. To test for a significant
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s association between colorectal cancer and SCFAs, we quantified the concentration of acetate,
st propionate, and butyrate in feces of previously characterized individuals with normal colons (N=172)
s2 and those with colonic adenomas (N=198) or carcinomas (N=120) (16). We were unable to detect
es  a significant difference in any SCFA concentration across the diagnoses groups (all P>0.15; Figure
s« 1A). Among the individuals with adenomas and carcinomas, a subset (Nagenoma=41, Ncarcinoma=26)
es were treated and sampled a year later (17). None of the individuals showed signs of recurrence
s and yet none of the SCFAs exhibited a significant change with treatment (all P>0.058; Figure 1B).
o7 For both the pre-treatment cross-sectional data and the pre/post treatment data, we also failed to
es detect any significant differences in the relative concentrations of any SCFAs (P>0.16). Finally, we
ss pooled the SCFA concentrations on a total and per molecule of carbon basis and again failed to
70 observe any significant differences (P>0.077). Although some of the P-values from our analyses
71 were close to 0.05, the effect sizes were all relatively small and inconsistent given the disease
72 progression (Figure 1). These results demonstrated that there were no significant associations

73 between fecal SCFA concentration and diagnosis or treatment.

7 Combining SCFA and microbiome data does not improve the ability to diagnose individual
75 as having adenomas or carcinomas using a random forest model. We previously found that
76 binning 16S rRNA gene sequence data into operational taxonomic units (OTUs) based on 97%
77 similarity or into genera enabled us to classify individuals as having adenomas or carcinomas
78 using random forest machine learning models (8, 16). We repeated that analysis but added the
79 concentration of the SCFAs as possible features to train the models (Figure S1). Models trained
so using SCFAs to classify individuals as having adenomas or carcinomas rather than normal colons
st had median areas under the receiver operator characteristic curve (AUROC) that were significantly
s2 greater than 0.5 (Pagenoma<0.001 and P¢arcinoma<0.001). However, the AUROC values to detect
ss the presence of adenomas or carcinomas were only 0.54 and 0.55, respectively, indicating that
s« SCFAs had poor predictive power on their own (Figure 2A). When we trained the models with
ss the SCFAs concentrations and OTU or genus-level relative abundances the AUROC values were
ss not significantly different from the same models trained without the SCFA concentrations (P>0.15;
&7 Figure 2A). These data demonstrate that knowledge of the SCFA profile from a subject’s fecal

ss  sample did not improve the ability to diagnose a colonic lesion.
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ss Knowledge of microbial community structure does not predict SCFA concentrations using
o0 a random forest model. We next asked whether the fecal community structure was predictive
o1 of fecal SCFA concentrations, regardless of a person’s diagnosis. We trained random forest
%2 regression models using 16S rRNA gene sequence data binned into OTUs and genera to predict the
s concentration of the SCFAs (Figure S2). The largest R? between the observed SCFA concentrations
s« and the modeled concentrations was 0.14, which was observed when using genus data to predict
o5 butyrate concentrations (Figure 2B). We also used a smaller dataset of shotgun metagenomic
% Sequencing data generated from a subset of our cohort (Nnormai=27, Nagenoma=25, and Neancer=26)
o7 (18). We binned genes extracted from the assembled metagenomes into operational protein families
s (OPFs) or KEGG categories and trained random forest regression models using metagenomic
99 Sequence data to predict the concentration of the SCFAs (Figure S2). Similar to the analysis using
100 16S rRNA gene sequence data, the metagenomic data was not predictive of SCFA concentration.
w1 The largest R? was 0.055, which was observed when using KEGG data to predict propionate
102 concentrations (Figure 2B). Because of the limited number of samples that we were able to
103 generate metagenomic sequence data from, we used our 16S rRNA gene sequence data to impute
104 metagenomes that were binned into metabolic pathways or KEGG categories using PICRUSt
105 (Figure S2). SCFA concentrations could not be predicted based on the imputed metagenomic
106 data. The largest R? was 0.085, which was observed when using KEGG data to predict propionate
107 concentrations (Figure 2B). The inability to model SCFA concentrations from microbiome data
108 indicates that the knowledge of the abundance of organisms and their genes was insufficient to

100 predict fecal SCFA concentrations.

110 Conclusion. Our data indicate that fecal SCFA concentrations are not associated with the presence
111 of adenomas or carcinomas and that they provide weak predictive power to improve the ability
12 to diagnose someone with one of these lesions. Furthermore, knowledge of the taxonomic and
113 genetic structure of gut microbiota was not meaningfully predictive of SCFA concentrations. These
114 results complement existing literature that suggest that fiber consumption and the production of
115 SCFAs are unable to prevent the risk of developing colonic tumors. It is important to note that our
16 analysis was based on characterizations of SCFA and microbiome profiles using fecal samples at a

117 single time point. Furthermore, observations along the mucosa near the site of lesions may provide
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1s @ stronger association. This may be a cautionary result to temper enthusiasm for SCFAs as a
119 biomarker of gut health more generally. Going forward it is critical to develop additional hypotheses
120 for how the microbiome and host interact to drive tumorigenesis so that we can better understand

121 tumorigenesis and identify biomarkers that will allow early detection of lesions.
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12 Materials and Methods

129 Study design and sampling. The overall study design and the resulting sequence data have
130 been previously described (16, 17). In brief, fecal samples were obtained from 172 individuals
131 with normal colons, 198 individuals with colonic adenomas, and 120 individuals with carcinomas.
132 Of the individuals diagnosed as having adenomas or carcinomas, a subset (Nagenoma=41
133 and Nearcinoma=26) were sampled after treatment of the lesion (median=255 days between
134 sampling, IQR=233 to 334 days). Tumor diagnosis was made by colonoscopic examination and
135 histopathological review of the biopsies (16). The University of Michigan Institutional Review Board
136 approved the studies that generated the samples and informed consent was obtained from all

137 participants in accordance to the guidelines set out by the Helsinki Declaration.

133 Measuring specific SCFAs. The measurement of acetate, propionate, isobutyrate, and butyrate
139 used a previously published protocol that used High-Performance Liquid Chromatography (HPLC)
190 (19). Two changes were made to the protocol. First, instead of using fecal samples suspended
121 in DNA Genotek OmniGut tubes, we suspended frozen fecal samples in 1 mL of PBS. Second,
142 instead of using the average weight of fecal sample aliquots to normalize SCFA concentrations, we
143 Used the actual weight of the fecal samples. These methodological changes did not affect the range
124 Of concentrations of these SCFAs between the two studies. The concentrations of isobutyrate were

15 consistently at or below the limit of detection and were not included in our analysis.

126 16S rRNA gene sequence data analysis. Sequence data from Baxter et al. (16) and Sze et
147 al. (17) were obtained from the Sequence Read Archive (studies SRP062005 and SRP096978)
148 and reprocessed using mothur v.1.42 (20). The original studies generated sequence data from
129 V4 region of the 16S rRNA gene using paired 250 nt reads on an lllumina MiSeq sequencer. The
150 resulting sequence data were assembled into contigs and screened to remove low quality contigs
151 and chimeras. The curated sequences were then clustered into OTUs at a 97% similarity threshold
152 and assigned to the closest possible genus with an 80% confidence threshold trained on the
153 reference collection from the Ribosomal Database Project (v.16). We used PICRUSt (v.2.1.0-b)
154 with the recommended standard operating protocol to generate imputed metagenomes based on

155 the expected metabolic pathways and KEGG categories (21).


https://doi.org/10.1101/604678
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/604678; this version posted June 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

156 Metagenomic DNA sequence analysis. A subset of the samples from the samples described by
157 Baxter et al. (16) were used to generate metagenomic sequence data (Nnormai=27, Nadenoma=25,
158 and Ncancer=26). These data were generated by Hannigan et al. (18) and deposited into the
159 Sequence Read Archive (study SRP108915). Fecal DNA was subjected to shotgun sequencing on
10 an lllumina HiSeq using 125 bp paired end reads. The archived sequences were already quality
161 filtered and aligned to the human genome to remove contaminating sequence data. We downloaded
12 the sequences and assembled them into contigs using MEGAHIT (22), which were used to identify
163 open reading frames (ORFs) using Prodigal (23). We determined the abundance of each ORF
164 by mapping the raw reads back to the ORFs using Diamond (24). We clustered the ORFs into
165 operational protein families (OPFs) in which the clustered ORFs were more than 40% identical to
1e6 each other using mmseq2 (25). We also used mmseq2 to map the ORFs to the KEGG database
167 and clustered the ORFs according to which category the ORFs mapped.

1ss  Random forest models. The classification models were built to predict lesion type from microbiome
1e0  information with or without SCFA concentrations. The regression models were built to predict the
170 SCFA concentrations of acetate, butyrate, and propionate from microbiome information. For
171 classification and regression models, we pre-processed the features by scaling them to vary
172 between zero and one. Features with no variance in the training set were removed from both the
173 training and testing sets. We randomly split the data into training and test sets so that the training
174 set consisted of 80% of the full dataset while the test set was composed of the remaining data. The
175 training set was used for hyperparameter selection and training the model and the test set was used
176 for evaluating prediction performance. For each model, the best performing hyperparameter, mtry,
177 was selected in an internal five-fold cross-validation of the training set with 100 randomizations. The
178 mtry parameter represents the number of features randomly sampled from the available features at
179 @ question point in the classification tree (i.e. called splits of nodes) that, when answered, lead to the
180 greatest improvement in classification. Six values of mtry were tested and the value that provided
1 the largest AUROC or R? was selected. We trained the random forest model using the selected
182 mtry value and predicted the held-out test set. The data-split, hyperparameter selection, training
183 and testing steps were repeated 100 times to get a reliable and robust reading of model prediction

18 performance. We used AUROC and R? as the prediction performance metric for classification
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185 and regression models, respectively. We used the randomForest R package (version 4.6-14) as

18s  implemented in the caret R package (version 6.0-81) for developing and testing our models.

157 Statistical analysis workflow. Data summaries, statistical analysis, and data visualizations were
188 performed using R (v.3.5.1) with the tidyverse package (v.1.2.1). To assess differences in SCFA
189 concentrations between individuals normal colons and those with adenomas or carcinomas, we
190 used the Kruskal-Wallis rank sum test. If a test had a P-value below 0.05, we then applied a
191 pairwise Wilcoxon rank sum test with a Benjamini-Hochberg correction for multiple comparisons. To
192 assess differences in SCFA concentrations between individuals samples before and after treatment
193 we used paired Wilcoxon rank sum tests to test for significance. To compare the median AUCROC
194 for the held out data for the model generated using only the SCFAs, we compared the distribution of
195 the data to the expected median of 0.5 using the Wilcoxon rank sum test to test whether the model
196 performed better than would be achieved by randomly assigning the data to each diagnosis. When
197 we compared the random forest models generated without and with SCFA data included, we used

198 Wilcoxon rank sum tests to determine whether the models with the SCFA data included did better.

199 Code availability. The code for all sequence curation and analysis steps including an Rmarkdown
200 Vversion of this manuscript is available at https://github.com/SchlossLab/Sze  SCFACRC_mBio_
200 2019/.

10
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277 Figures

27s  Figure 1. SCFA concentrations did not vary meaningfully with diagnosis of colonic lesions
279 Or with treatment for adenomas or carcinomas. (A) The concentration of fecal SCFAs from
280 individuals with normal colons (N=172) or those with adenoma (N=198) or carcinomas (N=120). (B)
281 A subset of individuals diagnosed with adenomas (N=41) or carcinomas (N=26) who underwent
282 treatment were resampled a year after the initial sampling; one extreme propionate value (124.4

283 mmol/kg) was included in the adenoma analysis but censored from the visualization for clarity.

23« Figure 2. SCFA concentrations do not improve models for diagnosing the presence of
265 adenomas, carcinomas, or all lesions and cannot be reliably predicted from 16S rRNA
236 gene or metagenomic sequence data. (A) The median AUROC for diagnosing individuals as
257 having adenomas or carcinomas using SCFAs was slightly better than than chance (depicted by
288 horizontal line at 0.50), but did not improve performance of the models generated using 16S rRNA
289 gene sequence data. (B) Regression models that were trained using 16S rRNA gene sequence,
200 metagenomic, and PICRUSt data to predict the concentrations of SCFAs performed poorly (all
201 median R? values < 0.14). Regression models generated using 16S rRNA gene sequence and
292 PICRUSt data included data from 490 samples and those generated using metagenomic data

293 included data from 78 samples.

204« Figure S1. Comparison of training and testing results for classification models shows that
205 the models are robust and are not overfit. random forest classification models were generated to
206 differentiate between individuals with normal colons and those with adenomas or carcinomas using
207 16S rRNA gene sequence data that were clustered into genera or OTUs with and without including
208 the three SCFAs as additional features. random forest classification models were generated by
200 partitioning the samples into a training set with 80% of the data and a testing set with the remaining

s0 samples for 100 randomizations.

sor  Figure S2. Comparison of training and testing results for regression models shows that
32 the models are robust and are not overfit. random forest regression models were generated

a3 to predict the concentration of each SCFA using each individuals’ microbiome data generated
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s+ using 16S rRNA gene sequence and metagenomic sequence data. These regression models were
305 generated by partitioning the samples into a training set with 80% of the data and a testing set with

ss the remaining samples for 100 randomizations.
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