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Abstract

Pyramidal cells in layer 5 of the neocortex have two distinct integration sites. These cells inte-
grate inputs to basal dendrites in the soma while integrating inputs to the tuft in a site at the
top of the apical trunk. The two sites communicate by action potentials that backpropagate to
the apical site and by backpropagation-activated calcium spikes (BAC firing) that travel from the
apical to the somatic site. Six key messages arise from the probabilistic information-theoretic anal-
yses of BAC firing presented here. First, we suggest that pyramidal neurons with BAC firing
could convert the odds in favour of the presence of a feature given the basal data into the odds in
favour of the presence of a feature given the basal data and the apical input, by a simple Bayesian
calculation. Second, the strength of the cell’s response to basal input can be amplified when rel-
evant to the current context, as specified by the apical input, without corrupting the message
that it sends. Third, these analyses show rigorously how this apical amplification depends upon
communication between the sites. Fourth, we use data on action potentials from a very detailed
multi-compartmental biophysical model to study our general model in a more realistic setting,
and demonstrate that it describes the data well. Fifth, this form of BAC firing meets criteria for
distinguishing modulatory from driving interactions that have been specified using recent defi-
nitions of multivariate mutual information. Sixth, our general decomposition can be extended to
cases where, instead of being purely driving or purely amplifying, apical and basal inputs can
be partly driving and partly amplifying to various extents. These conclusions imply that an ad-
vance beyond the assumption of a single site of integration within pyramidal cells is needed, and
suggest that the evolutionary success of neocortex may depend upon the cellular mechanisms of
context-sensitive selective amplification hypothesized here.

Author summary

The cerebral cortex has a key role in conscious perception, thought, and action, and is predom-
inantly composed of a particular kind of neuron: the pyramidal cells. The distinct shape of the
pyramidal neuron with a long dendritic shaft separating two regions of profuse dendrites allows
them to integrate inputs to the two regions separately and combine the results non-linearly to
produce output. Here we show how inputs to this more distant site strengthen the cell’s output
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when it is relevant to the current task and environment. By showing that such neurons have ca-
pabilities that transcend those of neurons with the single site of integration assumed by many
neuroscientists, this ‘splitting of the neuronal atom’ offers a radically new viewpoint from which
to understand the evolution of the cortex and some of its many pathologies. This also suggests
that approaches to artificial intelligence using neural networks might come closer to something
analogous to real intelligence, if, instead of basing them on processing elements with a single site
of integration, they were based on elements with two sites, as in cortex.

Introduction

Contextual disambiguation is crucial to cognition in general and perception in particular [1], as
highlighted by the work of many artists such as René Magritte and Maurits Escher. It can be con-
sidered to be a context-sensitive form of Bayesian inference because it uses prior knowledge to
make inferences from new data. Context-sensitive selection applies not only to conscious expe-
rience and behavior but also to individual neurons [2, 3]. A plausible neuronal mechanism for
context-sensitive selective amplification in cortical pyramidal neurons that exploits the architec-
ture of long-range connectivity in the cortex and the intrinsic properties of some pyramidal cell
dendrites has been proposed [4]. Contextual information arriving at the neuron’s apical tuft can
activate the apical integration site (AIS) that generates long-lasting dendritic spikes. This pro-
cess, however, is contingent on the presence of back-propagating action potentials that lower the
threshold in the AIS (‘BAC firing’ [4, 5, 6, 7, 9, 10]). Thus, as argued elsewhere [11], the two-
point neurons hypothesized here challenge the assumption held by many [12] that, from a system
point of view, neurons in general operate as integrate-and-fire processors with a single point of
integration.

According to our hypotheses, ‘contextual disambiguation’ cannot be identified with a partic-
ular kind of information, such as information about the particular time and place at which events
occur. It is a particular way of using information. Contextual modulation in two-point neurons
influences the AIS to amplify (or attenuate) transmission of information about the cell’s basal and
perisomatic inputs. Perisomatic inputs are assumed to convey information about data specific to
the features being processed in that region (or column) of the cortex. From this perspective the no-
tion of ambiguity can be interpreted broadly to include ambiguities of a signal’s presence, identity,
emotional valence, and relevance to current goals.

A currently prominent view of neocortical function suggests that context-sensitive integration
of prior knowledge and sensory data occurs in a Bayesian fashion. Here, we show how the func-
tion of BAC firing can be interpreted in context-sensitive Bayesian terms because it is contingent
on internal knowledge stored in the strengths of the basal and apical synapses. In brief, we sug-
gest that the output of a pyramidal neuron can be interpreted as approximating the probability
of a (columnar) feature given both the basal input and the context and that it is facilitated by the
apical dendrite that approximately computes the probability of the context given the feature and
the basal input. Unlike two neurons connected via synapses, the two dendritic compartments
are linked via a privileged connection, the apical trunk, that allows non-linear bi-directional sig-
nalling via active dendritic currents and spikes. This therefore endows the pyramidal neuron
with processing capabilities for context-selective amplification that would otherwise require more
sophisticated neural circuitry and thus more time and energy.

The hypotheses presented here assume that learning can be viewed as statistical representation
of feature-related and contextual information. It has previously been shown that, given function-
ally distinct receptive and contextual field inputs, learning rules can change synaptic strengths
so as to adapt them to the latent statistical structure in their inputs [15, 13, 14, 16]. It has been
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suggested that BAC firing can provide the activation functions used in those theories [17], but till
now that has not been shown explicitly. Furthermore, though the pyramidal cell as a whole can
be analyzed as an activation function with two inputs and one output, we show here that it can
be more explicitly related to BAC firing by describing each of the somatic and apical integration
sites as operating as a three-term activation function with one input from outside the cell and
one input from inside the cell. This more realistic representation may not be as complicated as it
sounds, however, because we show that the somatic site, the apical site and the cell as a whole
can all be described using the same general form of activation function. Though BAC firing has
previously been studied using computational models [7, 10], it has not till now been explicitly
related to Bayesian inference.

It is known that single spikes are unreliable and having several spikes within a short win-
dow (a burst) increases the reliability of information transfer and thus bursts may make a special
contribution to brain function [18]. Hence, the fact that apical activity greatly enhances the prob-
ability of a second spike makes the output of the cell more reliable and more likely to contribute
to perception [19] and behavior [20]. To further simplify the analyses we build on the fact that the
probabilities being estimated are of a binary event, i.e. whether or not a second AP is generated.
This enables us to use the ratio of these two probabilities, known as the odds, and the log of that
ratio, known as the log odds. Though less intuitive, the log odds provides a simple description of
a wide range of physiological and psychophysical phenomena [21]. In our application, the basal
input is taken into account before the apical input so, using Bayes’ theorem, the posterior log odds
given both these inputs can be written as a sum of three terms: the prior log odds, the weight
of evidence in favor of a second AP provided by the basal input, and the additional weight of
evidence in favor of a second AP provided by the apical input given the basal input. The weight
of evidence was first used in [22]. Such expressions of the posterior odds are found in [23, 25, 24],
where their use is attributed to A. M. Turing in the 1940s; see also [26].

Thus, our approach contradicts four widely held assumptions. First, we deny that neurons
in general function as point processors. Second, we deny that Bayesian-like computations nec-
essarily imply supra-neuronal generative systems. Third, we deny that if a Bayesian inference is
sensitive to context then the terms in the Bayesian inference must all be conditioned on context, as
proposed by Lee and Mumford [27]. Instead, we argue that biological plausibility and functional
potential are enhanced by first conditioning on the basal input. Fourth, we deny that amplifica-
tion can be identified with multiplicative interactions, which are symmetric, and which have been
found to transmit no information unique to either of the interacting terms [28]. In contrast to that,
the apical amplification that we hypothesize is asymmetric, and it has been found [29] to transmit
information unique to the basal but not to the apical input. This last point is crucial to our ap-
proach because it shows how a neuron’s output can be amplified or attenuated by variables that
do not thereby become part of the essential information content of the neuron’s output.

The main body of the paper is organized as follows. We begin by presenting a simple ideal-
ized sketch of inputs to and outputs from the two integration sites and of the interaction between
them via the apical trunk. A Bayesian interpretation of the intra-cellular computation is then intro-
duced and decompositions of log odds are presented. General activation functions are introduced
and then used in a comparison of two models for the analysis of binarised data from a detailed
multi-compartment model of apical function developed in [10]. A categorised version of the data
from [10] is then analysed using information theory and partial information decomposition [30].
Finally, results are presented for general decompositions of log odds for cases in which the basal
and apical inputs may be partly driving and partly amplifying to various extents.
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Results

Two sites of integration that interact via backpropagation and BAC firing in layer 5
pyramidal cells

An idealization of integration within and communication between the somatic and apical sites
is shown in Fig 1. This is designed to relate known physiological processes to the probabilistic
analyses presented in the following sections. Each integration site receives input from two sources,
one that is extracellular and one that is intracellular. The somatic site receives extracellular input
from basal/perisomatic synapses, and we refer to it as the ‘basal input’, b. It also receives internal
input, c, from the apical site. The apical site receives extracellular input from apical synapses in
layer 1, which we refer to as the ‘apical input’, a. It also receives internal input, z1, in the form of
the action potential that is backpropagated from the somatic site.

Figure 1: Integration within and between somatic and apical sites.
An idealization of integration within and communication between somatic and apical sites in the
case where an initiating bAP has been generated and BAC firing is triggered. z1 is a binary variable
that equals 1 if there has been a somatic action potential and zero if not. A backpropagated action
potential amplifies transmission of information, via c = f(a) + g(a, z1), about the apical input, a,
to the somatic integration site, where it is used to amplify transmission of information about the
basal input, b, to other cells. The functions, f, g, are defined below. (The layer 5 pyramidal cell on
the left is from Fig 4G of [31].)

Basal dendrites typically receive their input from a few narrowly specified feedforward sources
that in sensory and perceptual regions ascend the hierarchy of neocortical abstraction. Apical den-
drites typically receive input from diverse sources that include feedback from higher neocortical
regions, higher-order thalamus, the amygdala, and the adrenergic and cholinergic systems. This
diverse set of sources provides contextual information that guides processing and learning of the
feedforward data. For simplicity we refer to this set of diverse inputs collectively as ‘context’. It
amplifies response to feedforward signals that are relevant given that particular context. We refer
to the post-synaptic locations that receive feedforward information as ‘basal’, however they may
also include perisomatic locations, as shown in Fig 1. Positive values of a and b are taken to be
analogous to net depolarization at that site, and negative values to hyperpolarization. Computa-
tion of the net basal and apical inputs are shown in Fig 1 as occurring outside their respective sites
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of integration, but we assume that it occurs as part of the integration within sites.
Empirical data indicates that BAC firing most frequently adds one more AP to the initiating

AP; sometimes two; and rarely more. We assume that our focus on the 10 ms time-scale is justified
because two or more spikes within about 10 ms is a faster and more energy efficient signal than
mean spike rate over 100 ms, and because both data and models indicate that apical depolarization
has more effect on bursting than on mean spike rate (e.g. [10, 8, 9]). To extend our analysis to ade-
quately cover bursts of different lengths, inter-burst intervals, and fast regular spiking we would
have to include the effects of negative feedback from inhibitory interneurons, including those spe-
cific to the tuft. The refractory nature of AP generation and synaptic facilitation/accomodation
would also become relevant if we were to present the analysis as being concerned with a sequence
of APs. The present analysis makes no assumptions about those things but simply considers the
dependence of AP probability on a and b given that a back-propagating action potential (bAP) has
occurred. There are subtle simplifications in the idealization presented, e.g. a and b are considered
to be stable on the brief time-course of the BAC firing effect. We first discuss the case where the
apical input provides amplifying ‘context’, while the basal input is driving.

A Bayesian interpretation of intra-site computation

We represent the net apical input by the continuous random variable, A, which is a weighted and
summed combination of inputs from various sources in the apical dendrites. The observed value
of A is the a used in Fig 1. We represent the net basal input by the continuous random variable,
B, which is a weighted and summed combination of inputs from various sources in the basal
dendrites. The observed value of B is the b used in Fig 1. The binary random variable Z1 denotes
whether or not a first, initiating bAP is generated; its observed value, z1, is used in Fig 1, and
z1 = 1 when an initiating bAP has been generated. Z2 indicates whether or not a second AP is
emitted. When discussing odds and log odds in the sequel the symbol, S2, will denote the event
Z2 = 1, with S̄2 as the complementary event. We use the symbol ‘P ’ for probabilities, given the
discrete nature of the Zi, and ‘p’ for continuous probability density functions.

We consider first the scenario in which the BAC firing in the apical site has been triggered by
the arrival of an initiating bAP, as illustrated in Fig 1. We then focus on the resulting computation
in the somatic site. We have a prior distribution on Z2, with O(S2) denoting the prior odds in
favour of a second AP, and a generative model for the basal input, b, given that Z2 = z2, where
z2 = 0 or 1. These are combined using Bayes’ theorem to produce the posterior probability that
Z2 = 1 given the basal input, b :

P (Z2 = 1|b) =
P (Z2 = 1)× p(b|Z2 = 1)

p(b)
. (1)

As explained in the Methods section, we can use (1) to deduce the following relationships
between prior and posterior odds and log odds in favour of a second AP.

O(S2|b) = O(S2)× exp (W [S2 : b]), (2)

L(S2|b) = L(S2) +W [S2 : b], (3)

where W [S2 : b] is the weight of evidence in favour of a second AP that is provided by the basal
input.

Then the posterior probability in (1) is updated by taking into account the observed apical
input, a, and using Bayes’ theorem to give

P (Z2 = 1|b, a) =
P (Z2 = 1|b)× p(a|Z2 = 1, b)

p(a|b)
. (4)

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/604066doi: bioRxiv preprint 

https://doi.org/10.1101/604066
http://creativecommons.org/licenses/by-nc-nd/4.0/


In (4), p(a|Z2 = 1, b) is a generative model for the apical input given the observed basal input, b,
and the event Z2 = 1. Using (4), we can write the updated odds and log odds as follows.

O(S2|b, a) = O(S2|b)× exp (W [S2 : a|b]), (5)

L(S2|b, a) = L(S2|b) +W [S2 : a|b], (6)

where W [S2 : a|b] is the weight of evidence in favour a second AP that is provided by the apical
input, given the basal input.

Using (2), (5), we offer a Bayesian interpretation of computation within the somatic site, once
BAC firing has been triggered. We start with the prior odds in favour of a second AP, O(S2).
Taking the basal input into account and using Bayes’ theorem, this prior odds is updated to form
the posterior odds in favour of a second AP, O(S2|b), given the basal input. These posterior odds
will increase (decrease) when the weight of evidence in favour of a second AP provided by the
basal input is positive (negative). Then the posterior odds O(S2|b) is updated by computing the
posterior odds in favour of a second AP, O(S2|b, a), given also the apical input. The odds O(S2|b)
are thus amplified or attenuated depending on whether the weight of evidence provided by the
apical input in addition to the basal input is positive or negative.

From (3), (6) we can summarize this Bayesian interpretation as a three-term additive decom-
position of the posterior log odds in favour of a second AP,

L(S2|b, a) = L(S2) +W [S2 : b] +W [S2 : a|b], (7)

in terms of the prior log odds in favour of a second AP, the weight of evidence in favour of a second
AP provided by the basal input and the weight of evidence in favour of a second AP provided by
the apical input in addition to the basal input. This computation relates to the somatic integration
site, but the termW [S : a | b] would not be available without the two-way communication between
the sites by which the increased apical activation is transmitted to the somatic site, thus increasing
the odds of the propagation of a second AP within a time interval of around 10 ms. An illustration
of the implementation of the Bayesian interpretation is provided in S2 File.

General decomposition of log odds

In Eqs (2), (7), based on the specification of generative models for the basal and apical inputs, the
weight of evidence term W [S2 : b] is a function of b and W [S2 : a : b] is a function of both a and
b. By analogy, and not based on generative models, we now define expressions of the log odds in
terms of general activation functions f(b) and g(a, b) that will be used in the sequel.

L(S2|b) = L(S1) + f(b), (8)
L(S2|b, a) = L(S1) + f(b) + g(a, b) (9)

The general functions employed have the following forms.

f(x) = x, and g(x, y) = (1− s)x[exp (mxy)− 1], (10)

where 0 < s < 1 and m > 0, and we set the free constants, s,m, using the values s = 1
2 ,m =

1, although in the work described below in the Bayesian Modeling subsection it is necessary to
employ much smaller values for m. The specific forms of activation function used are given in
Table 1, and further discussion is provided in the Methods section.
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Table 1: Specific activation functions.
Specific expressions for the activation functions in the apical and somatic sites during Phase 1
(when no initiating action potential is emitted from the basal site) and Phase 2 (when an initiating
bAP has been received from the basal site and BAC firing has been triggered)

Phase 1 Phase 2
Site z1 = 0 z1 = 1

Apical a 1
2a(1 + ea)

Somatic b 1
2b[1 + exp [12ba(1 + ea)]]

In the following subsections, we discuss computation in the somatic integration site (SIS) and
make use of activation functions in which the apical input is purely amplifying and the basal
input is purely driving. In the final subsection on alternative modes of apical function, we con-
sider activation functions in which the basal and apical inputs may be partly driving and partly
amplifying.

Dependence of second AP probability on apical and basal input

We now consider general expressions for the posterior probabilities of a second AP, given basal
input, and given both basal and apical input, respectively. First we note that P (S2) gives the prior
probability of a second AP, which we set to 0.005.

Therefore, we may write

L(S2) = log
P (S2)

P (S̄2)
≡ β1

.
= −5.2933. (11)

Using, from Table 1,

f(b) = b, and g(b, c) = 1
2b[1 + exp [12ba(1 + ea)]− 1]

in Eqs (8), (9) we have that

L(S2|b) = β1 + b and L(S2|b, a) = β1 + 1
2b[1 + exp [12ba(1 + ea)]]. (12)

By using the connection between probability and log odds, we can write the posterior probabilities
as

πb ≡ P (Z2 = 1|b) ≡ P (S2|b) =
1

1 + exp (−L(S2|b))
, (13)

πba ≡ P (Z2 = 1|b, a) ≡ P (S2|b, a) =
1

1 + exp (−L(S2|b, a))
. (14)

The posterior probabilities πb, given only the basal input, and πba, given both basal and apical
inputs, are shown for different positive strengths of apical input in Fig 2.
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Figure 2: Dependence of second AP probability on apical and basal input.
Posterior probabilities, πba, πb, are plotted against positive values of the basal input, b, using five
different values of the apical input, a. The dashed line indicates points on the curves at which the
posterior probability is 0.5. The typical baseline firing probability, P (S2), is assumed to be 0.005.

We see that due to apical amplification the posterior probability, πba, of a second AP given
both apical and basal input is larger than the corresponding posterior probability, πb, given only
the basal input. Apical input has little or no effect when basal input is very weak or very strong,
but has a dramatic effect at intermediate values of basal input strength. This supralinear effect be-
comes more pronounced as the strength of the apical input increases. Defining the basal threshold
as that value of the basal input for which the posterior probability is 0.5, we notice, in particular,
that this threshold decreases markedly as the strength of the apical input increases. This effect of
apical input on response to basal input is well matched to that sketched in Fig 2c of [4]. It is also
well matched to the performance of a two ‘compartment’ model (e.g. Figure 5b of [32]) which
shows that apical amplification depends strongly on calcium conductance in the apical trunk.

Bayesian modelling of the binarised action potential data from a detailed multi-compartment
model

Shai et al. [10] used a multi-compartmental model to produce data on the frequency of somatic
spike output for 31 given numbers of basal inputs, 0, 10, 20, . . . , 300, equally spaced between 0
and 300, and 21 given numbers of apical tuft inputs, 0, 10, 20, . . . , 200, equally spaced between 0
and 200. They then developed a phenomenological composite sigmoidal model for the frequency
data, thus providing an explanation for coincidence detection between basal and apical tufts. They
also produced data on the number of action potentials for the same given combinations of basal
and apical tuft inputs, but they did not report any analysis of these data.

Our interest lies in modeling the posterior probability of a second AP within around 10 ms
since an initial bAP has been generated. The number of APs in the data file ranges from 0 to
4. We are interested in the occurrence of a second AP, i.e. 2 APs, and this event happens also
when 3 or 4 APs are observed. The data were therefore recoded by setting 0 or 1 AP to 0 and 2-4
APs to 1, thus creating a binary matrix where a ‘1’ denotes the occurrence of a second AP and ‘0’
means that this event has not happened. An alternative interpretation of these binary data, for
each combination of the numbers of basal and apical inputs, is that a ‘1’ indicates that bursting
(2-4 APs) has happened while a ‘0’ means ‘no bursting’ (0-1 APs).
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The data are shown in Fig 3A. For each number of tuft inputs, the points of transition from
‘blue’ to ‘red’ along each row give a noisy indication of the threshold – the value of the basal input
for which the posterior probability is equal to 0.5. It is clear from the plot that the thresholds vary
according to the number of tuft inputs: the threshold is large when the number of tuft inputs is
low whereas it is low when the number of tuft inputs is large.

Figure 3: The binary data and estimated threshold curve.
Illustrations of the binary AP data based on [10]. (A) An image of the binary data on a 21 by 31
grid, with points showing the estimated thresholds. (B) The predicted threshold curve given (in
black) as the median of the posterior predictive threshold distribution, together with pointwise
95% posterior predictive intervals (in red) for each number of tuft inputs, obtained by applying
weighted Bayesian nonlinear regression with the estimated thresholds (given as points) as re-
sponses, the number of tuft inputs as the explanatory variable, and the mean threshold given as a
four parameter logistic function of the number of tufts inputs. These intervals were computed for
each of the 21 numbers of apical inputs and interpolation used.

We use Bayesian modelling to fit two phenomenological models to these binary data [33] using
rstan [34]. We take the prior log odds L(S2) to be -5.2993, as before.

A threshold model

The composite model in [10] is based on two logistic functionsM,T of the tuft inputs. M modeled
the maximum AP frequencies for each number of tuft inputs, while T modeled the thresholds.
Since we consider binary output, for which the maxima are 1 for each number of tuft inputs, there
is no need for M here (it is 1). We therefore model only the thresholds.

For each of the na = 21 apical inputs, a = {ai}, used in [10], a penalized binary logistic
regression model was fitted, using ‘R’ [35, 36, 37, 38]. The explanatory variable was the number of
basal inputs, {bi}. The level of basal input for which the probability of a second AP is equal to 0.5
was estimated to give the estimated thresholds, t = {ti}, and the estimated thresholds are shown
as points in Figs 3A, B. The estimated standard errors associated with these estimates were noted
and used to define weights in the subsequent analysis. The weight, wi, for each threshold estimate
was taken to be the estimated standard error associated with the estimated threshold, ti, and is
assumed to be known. The basal and threshold values were each scaled to lie in the interval [0,
2], and the weights were changed accordingly. A weighted Bayesian nonlinear regression model,
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with p(ti|ai,θ) assumed to be a Gaussian pdf with mean

µ(ai) = θ1 +
θ2

1 + exp (−(ai − θ3)/θ4)

and variance (σ/wi)
2, where θ = {θ1, θ2, θ3, θ4, σ2} are unknown parameters. It was assumed

that the {ti} are conditionally independent given the {ai} and θ. The θi and σ parameters were
assumed a priori to be mutually independent with weakly informative priors: Gaussian with mean
0 and variance 10 for each of the θi and Uniform on [0, 20] for σ. The posterior distribution for θ
given the data D1 ≡ {t,a} is

p(θ|D1) ∝ σ−21
21∏
i=1

exp
(
− wi

2σ2
(ti − µ(ai))

2
)
× p(θ).

The constraints, θ2 > 0, θ4 < 0, were added to ensure that an increasing logistic function was
fitted. This model was fitted using rstan [34], and large samples from the posterior distributions
of the parameters were produced for subsequent computation of the posterior predictive proba-
bilities of a second AP, as described below in Eqs (15) − (18). Further detail is referenced in the
supplementary S1 File. Some details of the fitted model are given in Table 2.

Table 2: Posterior summary: threshold curve fitting.
The posterior mean and standard deviation, based on 10,000 MCMC samples, for each parameter
in the nonlinear regression model. Also shown are the effective samples sizes and the values of
the statistic R, which should be close to 1 if the four chains used have all converged to the same
distribution.

Parameter Mean SD neff R

θ1 2.685× 10 4.275 4339 1.000
θ2 1.675× 102 9.551 3338 1.001
θ3 7.100× 10 2.821 5184 1.000
θ4 −1.460× 10 2.946 3856 1.001
σ 9.340× 10−1 1.817× 10−1 4001 1.001

It is also of interest to predict the threshold, tnew, given a new value, anew, of the apical input.
The posterior predictive distribution for tnew is given by

p(tnew|anew,D1) =

∫
p(tnew|anew,θ) p(θ|D1) dθ. (15)

The same Gaussian model, as described above, was assumed for each tnew, given anew and
θ. For each new apical input, anew, a large number of values for the predicted threshold were
then produced to provide a sampled version of the posterior predictive distribution in Eq 15.
The prediction, t̂new, is taken to be the median of these sampled predictions, and pointwise 95%
posterior predictive limits were obtained by using the 0.025th and 0.975th quantiles.

The threshold logistic curve given by the median of each posterior predictive threshold dis-
tribution is shown in Fig 3B, together with 95% pointwise prediction intervals. The threshold
logistic curve decreases monotonically as the number of tuft inputs increases. The pointwise pos-
terior prediction intervals give an indication of the uncertainty of the predicted thresholds. There
is greater uncertainty when the number of tuft inputs is larger than 120 or less than 50.
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Attention turns now to computing posterior predictive probabilities of a second AP for new
values, a, b, of the apical and basal input, respectively, given the data, D1. By analogy with the
composite model in [10], we define a general decomposition for the log odds in favor of a second
AP provided by the net basal and apical inputs in terms of the parameter vector θ as

L(S2|b, a,θ) = L(S2) + b− µ(a) ≡ b− θ1 −
θ2

1 + exp (−(a− θ3)/θ4)
(16)

and so the posterior probability of a second AP under this threshold model is

P (S2|b, a,θ) =
1

1 + exp (−L(S2|b, a,θ))
. (17)

The posterior predictive probability of a second AP for new values b, a of basal and apical input,
given the data D1 is then

P (S2|b, a,D1) =

∫
P (S2|b, a,θ) p(θ|D1) dθ. (18)

The computation of these probabilities is described in the Methods section.

A general model

In Fig 3A, we see that there is almost complete separation between the 0’s and the 1’s. Therefore it
is necessary to employ regularization, and here we take a Bayesian approach by defining a prior on
β which enforces this. There are 651 combinations of basal and apical inputs and binary outputs,
D2 ≡ {bi, ai, zi}, and for each combination there is a binary response, Zi, that takes the value 1,
with probability pi, when a second AP occurs and 0 otherwise. For each i, Zi has a Bernoulli
distribution with parameter pi. The {zi}were assumed to be conditionally independent given the
{ai, bi} and β. The binary logistic nonlinear regression model has the form

log
pi

1− pi
= L(S2) + β2bi(1 + exp (β3biai(1 + exp (1 + β4ai)))).

The posterior distribution of β given the data D2 is

p(β|D2) ∝
651∏
i=1

pzii (1− pi)1−zip(β).

The basal and apical data were scaled to lie in the intervals [0, 2] and [0, 3], respectively. The
parameters, β2, β3, β4 were assumed a priori to be mutually independent with each following a
uniform probability model on (0, 10), which provides a weakly informative prior. This interval
is chosen so that the βi parameters will not be allowed to become too large, which they would
otherwise do since there is almost complete separation between the 0’s and the 1’s in the data.

Therefore, the posterior log odds in favor of a second AP under the general model is

L(S2|b, a,β) = L(S2) + β2b [1 + exp (β3ba(1 + exp (β4a)))] (19)

and so the posterior probability of a second AP under this general model is

P (S|b, a,β) =
1

1 + exp (−L(S|b, a,β))
. (20)
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The posterior predictive probability of a second AP for new values, b, a, of basal and apical input,
given the data D2 is then obtained by

P (S2|b, a,D2) =

∫
P (S2|b, a,β) p(β|D2) dβ. (21)

The computation of these probabilities is described in the Methods section. Some details of the
fitted model are given in Table 3.

Table 3: Posterior summary: General Model.
The posterior mean and standard deviation, based on 10,000 MCMC samples, for each parameter
in the general model. Also shown are the effective samples sizes and the statistic R, which should
be close to 1 if the four chains used have all converged to the same distribution.

Parameter Mean SD neff R

β2 1.221× 10−2 7.568× 10−4 3579 1.001
β3 3.747× 10−5 4.860× 10−6 2942 1.002
β4 1.565× 10−2 7.740× 10−2 3238 1.001

A comparison of the two models

Contour plots of the posterior predictive probability functions are displayed in Figs 4A, 4B. The
regions of very high probability (> 0.9), or very low probability (< 0.1), are not identical but
they share similar combinations of numbers of basal and apical tuft inputs, and they have a large
overlap; of course, the specialized threshold model gives a better fit for the nonlinear boundary
between 0s and 1s. Maximum probability is attained not only when both the basal and apical
inputs are large, which indicates a form of coincidence detection, but also when the basal input is
large (200-300) while the apical input is low (0-50).
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Figure 4: Modeling the Binary Data.
(A, B) Contour plots for the surface of posterior predictive probability of a second AP as a func-
tion of the numbers of basal and apical tuft inputs, based on the threshold and general models,
respectively. (C, D) Surface plots of the posterior predictive probability of a second AP as a func-
tion of the numbers of basal and apical tuft inputs, based on the threshold and general models,
respectively. In each figure, the posterior predictive probabilities were computed on a 21 by 31
grid and interpolation used.

Figs 4C, 4D are surface plots of the posterior predictive probability functions. For the threshold
model in Fig 4C, we notice the rather sharp transitions from almost zero probability on one side
of the threshold curve to probability close to unity on the other side of the threshold curve. The
general model in Fig 4D also shows such sharp transitions, especially when the apical input is
large (100-200) while the basal input is low (0-100), and more gradual transitions when the apical
input is lower (0-100) and the basal input is large (200-300). The two surfaces are generally similar
in that for both models the sets of basal and apical inputs for which the posterior probability is
close to unity, or close to zero, have a large overlap. Comparison of Fig 4C with Fig 4D shows
that the posterior predictive probability surface for the general model rises more sharply for large
numbers of apical and low numbers of basal input, and less sharply for lower numbers of apical
input and all levels of basal input. This feature can also be noticed in the contour plots in Figs 4A,
4B.

The fit of each model to the binary response data was assessed by comparing the predictions
given by the model with the actual 651 binary responses. For the threshold model, 4.2% of the
responses were misclassified, whereas the error for the general model was 5.4%. Based on this
posterior predictive assessment of model fit we find that the general model performs very well,
and almost as well as the threshold model. The application of tenfold cross-validation in order to
assess ‘out-of-sample’ prediction produced similar results: 4.3% for the threshold model and 5.5%
with the general model. This similarity between ‘in-sample’ and ‘out-of-sample’ performance is
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due to the structure of the binary AP data.

Application of information theory

We argue above that apical input can amplify the transmission of information about basal periso-
matic input. To be made rigorous this requires quantification of information transmitted uniquely
about each of the two inputs. That cannot be adequately done using classical information theory,
because mutual information in that theory is defined only for a single input and a single out-
put. There have recently been advances in the decomposition of multivariate mutual information,
however, and these recent advances have now been used to specify criteria for distinguishing
modulatory from driving interactions in neural systems [29]. We now apply Shannon’s classical
information measures, together with partial information decompositions, to a categorised version
of the action potential data produced by the detailed compartmental model reported by Shai et
al. [10].

The categorised AP data based on [10]

The output response variable, O, is the number of APs emitted for each combination of the basal
and apical inputs. The numbers of APs range from 0 to 4, and they have been recoded into three
ordinal categories, O1 − O3, containing 0-1 APs, 2 APs, 3-4 APs, respectively, since there are rel-
atively few observations where 1 or 4 APs were obtained. The basal input was recoded into four
ordinal categories: 0-60, 70-140, 150-220, 230-300 inputs, coded asB1−B4, respectively. The apical
input was recoded into four ordinal categories: 0-50, 60-100, 110-150, 160-200 inputs, coded as
A1 −A4, respectively. This created a 4 by 4 by 3 contingency table of the recoded basal and apical
inputs and the AP output. The data are displayed in Fig 5, which shows the proportions for the
three AP categories for each combination of the four categories of basal input and the four cate-
gories of apical input. For the lowest category of basal input (0-60), the AP count is almost entirely
0-1 when the apical input is 0-100, but for an apical input of 110-200 we see that the proportion
of observations with AP count 2-4 is about 50%. In the second lowest basal category (70-140), the
AP count is 0-1 for the lowest apical category but 2-4 APs for observations in the higher apical
categories (60-200). This trend from blue to red via green continues into the highest two basal
categories where the AP count is 3-4 in the highest two apical categories (110-200).
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Figure 5: AP response distributions.
A bar chart illustrating the proportion of the observations within each of the three output AP
categories O1 (0-1), O2 (2), O3 (3-4) for each combination of the input basal categories B1 (0-60),
B2 (70-140), B3 (150-220), B4 (230-300) and the input apical categories A1 (0-50), A2 (60-100), A3

(110-150, A4 (160-200), based on the categorised version of the AP data from [10].

Shannon’s information measures

Using the symbol ‘H(X)’ to denote Shannon entropy of a random variable, X , we state some
standard definitions of the measures of conditional entropy and mutual information [39, 40].

H(O|B) = H(O,B)−H(B)

I(O;A) = H(O) +H(A)−H(O,A)

I(O;A|B) = H(O|B) +H(A|B)−H(O,A|B)

I(O;B,A) = I(O;B) + I(O;A|B) ≡ I(O;A) + I(O;B|A)

II(O;B;A) = I(O;B,A)− I(O;B)− I(O;A)

The interaction information [41], II(O;B;A), has been used as a measure of synergy [42, 43].

Application of Shannon’s information measures

The information measures were computed from these data and also the data obtained by fifteen
other splittings into a 4 by 4 by 3 contingency table, and summary statistics for each measure are
reported in Table 4. Details of the ‘splittings’ used are available, as referenced in the S1 File.

Table 4: Estimated information measures.
The estimated means and standard deviations (SD) of each Shannon information measure (in bits),
given to two significant figures, for the sixteen categorised versions of the AP data from [10],
where O denotes the output AP category, B denotes the basal input category and A is the apical
input category. Here the output variable is the output spike category O rather than the binary
output Z.

I(O;B) I(O;A) I(O;B|A) I(O;A|B) I(O;B,A) II(O;B;A)

Mean 0.50 0.17 0.80 0.47 0.97 0.30
SD 0.0092 0.0040 0.017 0.017 0.020 0.013
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Based on the sample means, the joint mutual information, I(O;B,A), between the output and
the bivariate distribution of the basal and apical inputs is 0.97 bits, and we notice that the mutual
information, I(O;B), between the basal input and the output, 0.50 bits, is almost three times larger
that the mutual information, I(O;A), between the apical input and the output, 0.17 bits. It is well
known that these estimates are biased upwards [44] and so estimates of the bias were obtained.
Since the number of observations (651) is large one might expect the biases to be small, and in
fact they would affect only the third significant figure in each of the estimates in Table 4 if a bias
correction were to be implemented.

We wish in particular to estimate the synergy in the system, since the synergistic effect of basal
and tuft input is mentioned in [10]. Input from both of two distinct sources may be necessary
for some transmitted information to be present. Synergy as defined within a partial information
decomposition (PID) quantifies that transmission, and it plays a key role in the notion of am-
plification because it should be strong only when the signal being amplified is present but not
strong [29].

Application of partial information decomposition

Due to seminal work by Williams and Beer [45], it is possible to provide a finer decomposition
of the information that the apical and basal inputs provide about the somatic output category.
They decomposed the joint mutual information between the output category O and the basal and
apical inputs A,B, considered jointly, into a sum of four non-negative terms: the shared infor-
mation (Shd) that both the basal and apical inputs possess about the propagation of a somatic
output category (O), the unique information (UnqB) that the basal input has about O, the unique
information (UnqA) that the apical input has about O and the synergy (Syn) which is the informa-
tion that the apical and basal inputs possess jointly about O that cannot be obtained by observing
these two variables separately. The partial information decomposition has been applied to data in
neuroscience; see, e.g. [46, 47, 48, 49]. For a recent overview, see [50].

The basic equations [45] can be written as

I(O;B,A) = Shd + UnqB + UnqA + Syn
I(O;B) = UnqB + Shd, I(O;B|A) = UnqB + Syn
I(O;A) = UnqA + Shd, I(O;A|B) = UnqA + Syn

II(O;B;A) = Syn - Shd. (22)

The estimate of the interaction information, II(O;B;A), reported in Table 4 is approximately 0.30
bits, and so we can deduce from Eq (22) that the estimated synergy in the system is at least 0.30
bits, on average, which is 31% of the joint mutual information I(O;B,A). The partial informa-
tion decomposition [51, 52] was applied to the data and the results are given in Fig 6. The basal
and apical inputs combine to transfer 45% of the joint mutual information as synergy, and they
contribute to transferring 14% as shared information. There is a marked asymmetry in the esti-
mates of the unique informations, in that the unique information due to the basal input is about
ten times larger than the unique information due to the apical input. A value of zero for a unique
information in an input suggests that it can contribute to the transfer of information without con-
veying any information about itself, and such an input is purely amplifying. Since the unique
information transmitted about the apical input is close to zero (4%) this suggests that the apical
input can amplify the information transmitted by the basal input in relation to the output AP cat-
egory, while conveying only a very small amount of information about itself, and so is mostly
amplifying and driving just a little. This lends support to the presence of apical amplification
within the system; see e.g. [29]. On the other hand, the unique information transmitted about the
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basal input is large, at 37% of the joint mutual information, which suggests that the basal input is
predominantly driving.

Figure 6: Partial information decomposition
A bar chart indicating the values of the mean shared, unique and synergistic partial informa-
tion components obtained using the sixteen versions of the categorised version of the AP data
from [10]. Each mean value is normalised by dividing by the mean value of I(O;B,A) and ex-
pressed as a percentage. Error bars are also shown for each component as ± one standard devia-
tion of the sixteen values.

The results obtained with four other PIDs [45, 53, 54, 55] are provided in supplementary fig-
ure S1 Fig. The PIDs were computed using the Python package, dit [56].

Alternative modes of apical function

We have so far considered the case where apical input is purely amplifying and basal input is
purely driving, although intermediate cases are likely to occur. Figure 6, for example, shows that
a small amount of information was transmitted uniquely about the apical input. If the apical input
were purely amplifying then it would not have been small, but zero. Therefore, we now consider
a wider range of cases. We first consider the unlikely, but theoretically possible, case where the
functional asymmetry between apical and basal inputs is fully reversed, with apical being purely
driving and basal being purely amplifying. We then consider the wide range of intermediate
cases where apical and basal inputs can be partly driving and partly amplifying to various extents.
Finally, we consider the case where apical and basal inputs are simply summed linearly, as is often
assumed. Consideration of this wider range of cases will facilitate interpretation of any evidence
of contextual feedback to basal dendrites or of feedforward input to distal apical dendrites, which
may occur for various reasons to be discussed in detail elsewhere. In each of the cases considered
in this section (except in Figs 7C, 7D), P (S|a, b) is the posterior probability, P (Z = 1|a, b), of an AP
given apical and basal input.

The first scenario is where there is basal amplification of the response to apical input when
there has been no initiating bAP. Using the specific forms in Eq (10), we define the log odds and
posterior probability as

L[S|a, b] = L(S) + 1
2a[1 + exp (ab)]. (23)

P (Z = 1|a, b) ≡ P (S | a, b) =
1

1 + exp (−L(S|a, b))
. (24)
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Posterior probabilities of an AP given apical drive alone are displayed in Figs 7A, 7B whereas
posterior probabilities of a second AP given an initiating bAP and consequent BAC firing are
shown in Figs 7C, 7D. In Fig 7A, the posterior probability of an AP is plotted as a function of
positive apical input for values of the basal input ranging from 0.1 to 2.0. Even when the basal
input is very weak at 0.1, we see that the probability of an action potential approaches unity when
the apical input is large; the primary drive provided by the apical input is mostly responsible
for this behaviour. On the other hand, when there is appreciable basal input, saturation at unity
occurs very quickly for even small values of apical input. These characteristics are also evident in
Fig 7C but here the probability saturates even when the basal input is less than 1. The surface plots
in Figs 7B, 7D illustrate the rate at which the posterior probability saturates at unity for various
values of the apical and basal inputs. The plots indicate a slight asymmetry, but for most values
of a and b they are very similar, apart from the fact that the rate of saturation is more gradual in
Fig 7B than in Fig 7D for lower values of a and b. Thus our weight of evidence terms suggest
that basal driving coupled with BAC firing has a stronger effect than apical drive alone, especially
when the level of drive is low.

Figure 7: Comparing apical drive alone with basal drive
(A) Posterior probabilities of an AP plotted against positive values of the apical input for several
values of the basal input & (B) a surface plot of posterior probability of an AP plotted as a function
of the apical and basal inputs, both using Eqs (23), (24). (C) Posterior probabilities of a second AP
plotted against positive values of the basal input for several values of the apical input & (D) a
surface plot of posterior probability of a second AP plotted as a function of the apical and basal
inputs, both using Eqs (12)− (14). In (C) & (D) , the response probability increases rapidly when a
and b are both positive, which illustrates a version of ‘coincidence detection’. The typical a priori
firing probability, P (S), is assumed to be 0.005.

The second scenario is where the amplification results from a mixture of basal and apical in-
puts, and we also consider the case where the basal and apical inputs combine additively. In the
case of a general mixture, the forms of log odds and posterior probabilities, from (12), (23), used
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here are:

L(S|b, a) = L(S) + α
(
1
2b[1 + exp [12ba(1 + exp(a))]]

)
+ (1− α)

(
1
2a[1 + exp (ab)]

)
, (25)

P (Z = 1|b, a) ≡ P (S|b, a) =
1

1 + exp (−L(S|b, a))
. (26)

When the basal and apical inputs combine additively, the forms of log odds and posterior
probabilities used are:

L(S|a, b) = L(S) + b+ a, (27)

P (Z = 1|b, a) ≡ P (S|b, a) =
1

1 + exp (−L(S|a, b))
. (28)

In Fig 8A, the posterior probability of an AP is plotted as a function of the basal input under an
equal mixture of basal and apical amplification. The posterior probability curves saturate for small
values of basal input and larger values of apical input, although larger values of basal input are
required to produce saturation when the apical input is less than 1. The curves here are similar to
those in Fig 7C especially when the basal input is between 0 and 1 and the apical input is between
1 and 2. These similarities given by our weight of evidence terms suggest that the probability of
an AP when there is an equal mixture of basal and apical driving is similar to the probability of
a second AP given an initiating bAP and consequent BAC firing, for these ranges of basal and
apical input. By way of contrast, when basal and apical inputs are simply combined additively
a quite different picture emerges (Fig 8C); strengthening apical input increases the probability of
an action potential but has little effect on the rate at which it increases with the strength of basal
input. Comparison of the surface plots in Figs 8B, 8D indicates that the presence of amplifica-
tion, in contrast to linear summation, is shown by the steepening of the probability surface in Fig
8B. This distinctive effect of apical amplification has much in common with direct physiological
observations reported in [57].
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Figure 8: Equal mixture of basal and apical drive
(A) Posterior probabilities of a somatic action potential plotted against positive values of the basal
input for several values of the apical input & (B) a surface plot of posterior probability plotted
as a function of the apical and basal inputs, both using Eqs (25), (26). (C) Posterior probabilities
of a somatic action potential, when basal and apical inputs are summed linearly, plotted against
positive values of the basal input for several values of the apical input. (D) a surface plot of
posterior probability, when basal and apical inputs are summed linearly, plotted as a function
of the apical and basal inputs. Subfigures (C) and (D) are based on Eqs (27), (28). In (D), the
rate of increase of the response probability is much slower than in (B). The typical baseline firing
probability, P (S), is assumed to be 0.005.

Conclusions and Discussion

The analyses presented above support the view that probabilistic inference can be context-sensitive
at the level of individual neurons in particular cortical pyramidal cells. Integrate-and-fire neurons
in general fire probabilistically based on knowledge stored in the strengths of their synapses. In
neurons with two initiation sites and a privileged connection between them, however, the acti-
vation of one initiation site can be contingent on the other. It is this contingency that makes the
two-compartmental pyramidal neurons of the cortex potentially context-sensitive and Bayesian
using the principle of BAC firing. In this article, we have explored this hypothesis and conclude
that BAC firing of pyramidal neurons could in principle be approximating the conditional prob-
ability that a given feature is present in the current information space given the current basal
input and context. More precisely, we conclude that pyramidal neurons with BAC firing could
convert the odds, O(feature present |basal data), into the odds, O(feature present | basal data and
context).Useful conceptions of how probabilistic Bayesian brains combine new data with prior
knowledge at the level of large neuronal circuits are already well developed [58, 59]. The im-
portance of investing this capability in single neurons is that the cerebral cortex can potentially
achieve this operation in a massively parallel fashion on all features and context simultaneously,
as discussed further below.

We draw five other key conclusions from these analyses. First, BAC firing can amplify the
cell’s response to basal depolarization contingent on near-coincident apical depolarization. This
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shows explicitly how BAC firing can be related in detail to the huge array of physiological and
psychophysical evidence for contextual modulation [2, 3] in its many forms. Unlike “simple” co-
incidence detection, this view of apical function depends upon the marked asymmetry between
the effects of apical and basal inputs that is clear in the physiological, psychophysical, and mod-
eling data [10] and depends on the separation of the two dendritic compartments. Thus, the
analyses of apical amplification presented here are consistent with previous demonstrations that
contextual modulation is not a purely multiplicative interaction, which is symmetrical, but is an
asymmetrical supralinear interaction [28], as shown here in Figures 2 and 6. This also implies that
BAC firing approximates the activation function central to a long-standing theory of cortical com-
putation [17, 15, 13] based on context-sensitive selective amplification, although there is no reason
to suppose that this activation function is unique in having this property.

Second, these analyses show how amplification depends upon differentiation and communi-
cation between the two sites of integration. The somatic and apical integration sites are shown
to have two functionally distinct inputs, one from outside the cell, and one from inside the cell.
We have also shown that the activation functions relating the two inputs to the outputs from each
site can have the same general form. This provides a clear account of the functional consequences
of communication between the two sites, and provides a basis for an adequate understanding of
regulation of that communication by cholinergic, adrenergic, and other modulatory systems.

Third, application of our general model to binarised AP data from a detailed multicompart-
mental model [10] (Figures 3 and 4) shows that the model fits the data well, based on posterior
predictive assessment, although it does not fit the data as well as the specialised threshold model.
In our general model, we used particular choices of the functions, f, g, but it seems likely that
other choices could fit the data just as well.

Fourth, application of multivariate information decomposition to categorized AP data from
the detailed multicompartmental model of [10] shows that the effects of apical input approximate
those expected of an amplifying interaction as defined in [29], i.e. the output transmits unique
information about basal input, but little or none about apical input, even though apical input has
large effects on AP output. We expect that synergy will be large only when basal input is present
but weak [29, 28].

Fifth, our general decomposition can be extended to include cases where, instead of being
either purely amplifying or purely driving, apical and basal inputs can each be driving and ampli-
fying to various extents. This enables application of the analyses to neurophysiological findings
providing evidence for driving effects of apical input under special conditions. This extension may
play a crucial role in characterizing differences in apical function across layers, regions, species,
and development. It may also help characterize changes in apical function across different states
of arousal, because there is also evidence that the effects of apical input depend upon the adrener-
gic and cholinergic systems that regulate waking state [61], that they have a causal role in guiding
overt perceptual detection [19], and that they may provide a common pathway for the effects of
some general anesthetics [62, 63].

A well established method for computation in a hierarchical Bayesian network of cells is that
by Lee and Mumford [27]. We haven’t used that in our Bayesian interpretation because we are
concerned with the processing within a single Layer 5 pyramidal cell, whereas Lee and Mumford’s
method is intended for a network of different cells. Thinking of a network of cells, the inter-cell
computation could be handled using Lee and Mumford’s method while for any pyramidal cells
such as those analyzed here we propose that the Bayesian interpretation described here could be
used for intra-cellular processing. Thus, the two approaches are complementary.

If context-sensitive Bayesian inference is performed at the cellular level, then it becomes a priv-
ileged operation that can be carried out in a massively parallel fashion, and that will be crucial to
our understanding of the information transmitted by pyramidal cells when operating in context-
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sensitive amplifying mode. The distinctive properties of context-sensitive two-point neurons are
likely to have major implications for the short-term and long-term dynamics of the network as a
whole, and though first investigated many years ago [13, 14, 8, 64, 65, ?] those implications remain
largely unexplored. When this operation is hard-wired into the fabric of the cellular tissue itself
it is likely to improve both speed and metabolic efficiency, and enable the cortex do things that it
would not otherwise have time or energy to do. Whether context-sensitive inference at the level of
the local processors also has information processing implications beyond that remains unknown.

The analyses presented here also leave many other crucial issues unresolved. As noted above,
one concerns the contrast between amplifying and multiplicative interactions [28]. We assume
that both forms of interaction occur in neocortex, but there are as yet few explicit empirical at-
tempts to distinguish between them, because it is usually taken for granted that if an interaction
is amplifying, then it is multiplicative [67]. That does not explain the clear functional asymmetry
between somatic and apical sites of integration, however, nor does it explain how input to one
site can amplify transmission of information specifically about input to the other. The contrast be-
tween amplifying and multiplicative interactions is therefore in need of thorough theoretical and
empirical investigation.

Another major limitation of the current analyses is that they considered only the pyramidal
neurons that, of course, exist in a complex local network - the cortical column. Although we offer
a prototype mathematical description from this point of view, it is likely that the precise details
of the local circuitry are ultimately vital for refining the exact description in Bayesian terms. For
instance, the model could be extended to include the effects of hyperpolarizing shunting or inac-
tivation units to the basal and apical dendrites [68, 69]. That will require clarification of the com-
munication of inhibition between apical and somatic sites, of the time courses of recovery from
inhibition, and of the local inhibitory microcircuitry. Closer attention to these issues is likely to en-
hance our understanding of apical function for at least three reasons. First, the types of inhibitory
interneuron that target distal apical dendrites are clearly distinct from those that target basal and
perisomatic regions [70, 71]. Second, there is evidence for inhibitory interneurons that amplify
the output of selected pyramidal cells by specifically disinhibiting the tuft [72]. Third, there is
evidence for a distinctively human class of inhibitory interneuron that targets tuft dendrites in a
highly specific way [73].

One specific issue worthy of further study concerns the attractor dynamics of simple recurrent
architectures in which the recurrence is provided by connections that are driving or amplifying
to various extents. When analyzing the dynamics of such architectures it will be necessary to
distinguish between the very fast intracellular phases of interaction between apical and somatic
sites, and the slower relaxation toward an attractor that arises from intercellular interactions.

Exploration of the extent to which the idealizations studied here do or do not generalize across
species, regions, development, and states of arousal has only just begun, and is likely to have far
to go. The idealizations analyzed here are based on evidence that has been largely, though not
wholly, collected from in vitro studies of the thick-tufted layer 5 cells of mature rodent sensory
cortex that integrate activity from across all layers and provide output from the cortex at all lev-
els of the abstraction hierarchy. Though there are grounds for supposing that they have broader
relevance, these issues remain largely unexplored. Nevertheless, there are already some relevant
discoveries and tantalizing hints. For example, there is evidence that somatic and apical sites
are both predominantly driving in infants, with the amplifying mode of apical function becom-
ing more available in mature animals [74, 75]. There is also evidence that apical input remains
predominantly driving in the most posterior, caudal, part of mature rodent primary visual cor-
tex (V1), whereas it is predominantly amplifying in other parts of rodent V1 [9]. Central roles
for feedforward drive and feedback modulation are well established in the hierarchical regions of
posterior cortex, but, as the various sub-regions of the prefrontal cortex do not seem to be orga-
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nized into a clear hierarchy, driving and amplifying functions may be less clearly distinguished at
both somatic and apical sites within prefrontal cortex. Cross-species variations in apical function
may be of great importance because direct electrical recordings from the somatic and apical sites
of human layer 5 pyramidal neurons show that they have enhanced electrotonic separation from
the soma, as compared to those from rodents [76]. Furthermore, though there are grounds for
supposing that apical function depends strongly on the state of adrenergic [61] and cholinergic
arousal [77], this issue has as yet received only scant attention.

Another major unresolved issue arises from evidence that, under some circumstances, apical
depolarization can drive APs in the absence of basal depolarization [57]. We therefore extended
our analyses to include cases where each of the somatic and apical sites can be driving and am-
plifying to various extents. Intermodal effects in primary unimodal sensory regions provide clear
examples of cases where apical input is clearly amplifying rather than driving. For example,
anatomical and physiological evidence indicates that the effects of auditory information on pyra-
midal cells in V1 sharpens their selective sensitivity and raises the salience of their output via the
apical dendrites in layer 1 [78]. Nevertheless, as noted above, the balance between driving and
amplifying effects of apical input may vary even within a single neocortical region such as V1 [9].
There is some hint of a sharp transition from a driving to an amplifying effect of apical depo-
larization as apical trunk-length increases in V1 [9], but whether there is a clear dichotomy or a
continuum between these two forms of apical function in other regions remains unknown. Much
remains to be discovered concerning the conditions under which apical input is purely amplify-
ing, purely driving, or a mixture of the two. Whatever the resolution to those issues, however, if
some pyramidal cells do indeed often function as two-point processors, then system-level network
diagrams showing inputs to pyramidal neurons represented as single undifferentiated points of
integration, though abundant, are grossly underspecified.

Grounding context-sensitive selective amplification in subcellular processes may have far-
reaching implications not only for cognition [79, 62, 14, 64, 65] but also for psychopathology. It
may have relevance to psychopathology because there is evidence that apical malfunction is in-
volved in pathologies as diverse as schizophrenia [80, 81], autoimmune anti-NMDAR encephali-
tis [80, 82], absence epilepsy [83], and foetal alcohol spectrum disorder [84, 85]. If so, then studies
of apical function may cast light on those disorders, and those disorders may cast light on apical
function. For in-depth discussion of impaired context-sensitivity in schizophrenia see [86]. For
detailed compartmental modelling of ion channels by which risk genes for schizophrenia could
impair apical function see [87].

The evidence that some neocortical neurons can function as two-point processors raises the
possibility of using two-point processors to approximate some powerful machine learning algo-
rithms while making them more biologically plausible. This has already been explored to some
extent [88, 89, 90], but the use of apical input to amplify current response to basal depolarization
may not only make such algorithms more biologically plausible, but may also enhance their ca-
pabilities. As contextual amplification does not compromise the flow of uniquely feedforward
information, amplifying input could come from diverse sources, as it does in neocortex. Consider
the exceptionally well-known hierarchical feedforward architecture of [91], for example. At the
convolutional levels of that architecture contextual input to each local processing element could
include information from other streams at the same hierarchical level. It could also include infor-
mation about goal states specified for higher levels in the hierarchy, and that may be mediated via
intermediate levels, or be specified by direct feedback connections that skip levels, analogous to
those known to exist in neocortex [92]. That would remove one major difference between deep
learning algorithms and neocortex because learning in neocortex is usually the consequence of
effects on current processing, whereas back-propagation in deep learning algorithms effects learn-
ing but not processing of the current data. For initial studies of learning and processing in nets
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with many parallel streams of processing composed of two-point local processors with context
sensitivity see [13], and in nets with feedback from a higher level see [66]. For approximations by
which the learning rules used in those studies can be scaled-up see [15]. For discussion of how
that form of learning and processing may advance beyond the pioneering work of [93] see [94].
Though the development of any such enhanced form of machine learning algorithm would not
prove that the amplifying mode of apical function makes a crucial contribution to mental life, it
would certainly show that it could do so, and as a consequence greatly increase neurobiological
interest in these possibilities.

In summary, we conclude that neocortical pyramidal neurons with two functionally distinct
points of integration can plausibly be described as operating in a context-sensitive Bayesian way
on two distinct information streams. The key aspect of their biophysics is the privileged con-
nection (the apical dendrite) that connects these two separate sites of integration. In this way,
the operation of each of these sites can be contingent on the other in a way that enables context-
sensitive Bayesian inferences that would otherwise be far more complex to realize at the network
level.

Methods

A Bayesian interpretation of intra-site computation

Following the applications of Bayes’ theorem in the Results section, we provide derivations of
odds and log odds and discussion of the weight of evidence terms. The prior odds and log odds
in favour of a second AP are

O(S2) =
P (Z2 = 1)

P (Z2 = 0)
and L(S2) = logO(S2). (29)

Using (1), the posterior odds and log odds in favour of a second AP given the basal input are

O(S2|b) =
P (Z2 = 1|b)
P (Z2 = 0|b)

=
P (Z2 = 1)

P (Z2 = 0)

p(b|Z2 = 1)

p(b|Z2 = 0)
≡ O(S2)× exp (W [S2 : b]) (30)

and
L(S2|b) = logO(S2|b) ≡ L(S2) +W [S2 : b]. (31)

Here the weight of evidence term is

W [S2 : b] ≡ log
p(b|Z2 = 1)

p(b|Z2 = 0)
, (32)

which is the logarithm of the Bayes factor in favour of event S2 provided by the basal input, b. This
Bayes factor is a ratio of the likelihood of a second AP, given the basal input, and the likelihood of
no second AP, given the basal input. A value greater than 1 for the Bayes factor would favor the
event S2, as opposed to the complementary event S̄2, and this corresponds to a positive value for
the weight of evidence term.

Similarly, we can use Eq (4) to update the posterior odds in Eq (30) once the apical input is
observed in addition to the basal input:

O(S2|b, a) =
P (Z2 = 1|b, a)

P (Z2 = 0|b, a)
=
P (Z2 = 1|b)
P (Z2 = 0|b)

× p(a|b, Z2 = 1)

p(a|b, Z2 = 0)

≡ O(S1|b)× exp (W [S2 : a|b]), (33)
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where the weight of evidence term is

W [S2 : a|b] ≡ log
p(a|b, Z2 = 1)

p(a|b, Z2 = 0)
, (34)

which is the Bayes factor in favor of a second AP provided by the the apical input, a, given the
basal input, b. This Bayes factor is a ratio of the likelihood of a second AP, given both the basal
and apical inputs, and the likelihood of no second AP, given both inputs. A value greater than 1
for this Bayes factor would favor the occurrence of a second AP, as opposed to its non-occurrence,
and this corresponds to a positive value for the weight of evidence term. Applying logarithms in
Eq (33), we have

L(S2|b, a) = L(S2|b) +W [S2 : a | b] = L(S2) +W [S2 : b] +W [S2 : a | b], (35)

using Eq (31).

Activation functions used in the apical and somatic sites

The functional forms in (10) are used in both sites of integration. In the AIS, the apical input is
driving and the occurrence of a bAP is amplifying (or attenuating). Therefore, we take x = a and
y = z1, so that the apical activation in Phase 1 is just f(a) = a, and the apical activation during
Phase 2 is c = g(a, z1) = 1

2a(1 + ea).
In the SIS, the basal input is driving and the apical activation is amplifying (or attenuating).

Therefore, in the SIS where we are principally interested in Phase 2, we take x = b and y = c ≡
f(a) + g(a, z1) in (10), which results in the somatic activation during Phase 2 becoming

f(b) + g(b, c) = b+ 1
2b[exp(bc)− 1] = 1

2b[1 + exp[12ba(1 + ea)]].

The functions f, g in (10) are similar to those used in previous work on artificial neural nets [66,
13] and more recently in work on partial information decomposition [29, 28]. Further details
regarding these functions are given in the supplementary file S3 File.

Monte Carlo approximation of posterior predictive probabilities

We describe the formulae for the general model; they are analogous for the threshold model.
The posterior predictive probabilities in Eqs (18), (21) were computed using the output from

rstan as Monte Carlo approximations, using (36). The posterior predictive probability in Eq (21)
can be written as a posterior expectation, as follows:

P (S2|b, a,D2) =

∫
P (S2|b, a,β) p(β|D2) dβ

≡ Eβ|D2
[P (S2|b, a,β)]

.
=

1

N

N∑
i=1

P (S2|b, a, β̂i), (36)

where β̂i is the estimate of β generated in the ith of the N simulations. For further detail, see the
files referenced in the S1 File.

Supporting information

S1 File. Data analysis. Details of the modeling and analysis, together with R, RStan, Python and
Mathematica code.
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S2 File Bayesian interpretation An illustration of the implementation.

S3 File Choices of activation functions f, g. Details of the derivation and an application.

S1 Fig Results from other PIDs. Bar charts indicating the values of the mean shared, unique and
synergistic partial information components obtained using the sixteen versions of the categorised
version of the AP data from [10]. Each mean value is normalised by dividing by the mean value
of I(O;B,A) and expressed as a percentage. Error bars are also shown for each component as ±
one standard deviation of the sixteen values. A Imin [45], B Iproj [53], C Iccs [54], D Idep [55]
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[7] Larkum ME, Senn W, and Lüscher H-R. Top-down dendritic input increases the gain of layer
5 pyramidal neurons. Cerebral Cortex 2004;10: 1059-70.

[8] Siegel M, Körding KP, König P. Integrating Top-Down and Bottom-Up Sensory Processing by
Somato-Dendritic Interactions. Journal of Computational Neuroscience 2000;8(2):161-173.

[9] Fletcher LN, Williams SR. Neocortical topology governs the dendritic in-
tegrative capacity of layer 5 pyramidal neurons. Neuron 2019;101:76-90.
https://doi.org/10.1016/j.neuron.2018.10.048

[10] Shai AS, Anastassiou CA, Larkum ME, Koch C. Physiology of Layer 5 Pyramidal Neurons in
Mouse Primary Visual Cortex: Coincidence Detection through Bursting. PLOS Comput Biol
2015;11(3): e1004090. doi:10.1371/journal. pcbi.1004090

26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/604066doi: bioRxiv preprint 

https://doi.org/10.1101/604066
http://creativecommons.org/licenses/by-nc-nd/4.0/


[11] Phillips WA. Mindful neurons. Quarterly Journal of Experimental Psychology 2019; 72(3):
661-672.

[12] Rolls ET. Cerebral Cortex: Principles of Operation. Oxford, UK: Oxford University Press;
2016.

[13] Kay J, Floreano D, Phillips WA. Contextually guided unsupervised learning using local mul-
tivariate binary processors. Neural Networks 1998;11;117-140.

[14] Körding KP, König P. Learning with two sites of synaptic integration. Network: Computation
in Neural Systems 2000;11:1-15.

[15] Kay JW, Phillips WA. Coherent infomax as a computational goal for neural systems. Bulletin
of Mathematical Biology 2011;73(2):344-372.

[16] Kusmierz L, Takuya IT, Toyoizumi T. Learning with three factors: modulating
Hebbian plasticity with errors. Current Opinion in Neurobiology 2017;46:170-177.
http://dx.doi.org/10.1016/j.conb.2017.08.020

[17] Phillips WA, Cognitive functions of intracellular mechanisms for contextual amplification.
Brain and Cognition 2017;112:39-53.

[18] Lisman JE. Bursts as a unit of neural information: making reliable synapses reliable. Trends
in neurosciences 1997;20(1):38-43.

[19] Takahashi N, Oertner TG, Hegemann P, Larkum ME. Active cortical dendrites modulate
perception. Science 2016 Dec 23;354(6319):1587-1590. doi: 10.1126/science.aah6066. PMID
28008068.

[20] Brecht M, Schneider M, Sakman B, Magrie TW. Whisker movements evoked by stimulation
of single pyramidal cells in rat motor cortex. Nature 2004;427(6976):704.

[21] Zhang H, Maloney LT. Ubiquitous Log Odds: A Common Representation of Probability and
Frequency Distortion in Perception, Action, and Cognition. Front. Neurosci. 2012;6(1). doi:
10.3389/fnins.2012.00001

[22] Peirce CS. The probability of induction. Popular Science Monthly 1878;12:705-718.

[23] Wrinch D, Jeffreys H. On Certain Fundamental Principles of Scientific Inquiry. Philosophical
Magazine 1921;42:369-390.

[24] Good IJ. Weight of Evidence: A Brief Survey. In: Bernardo JM, DeGroot MH, Lindley DV,
Smith AFM. editors. Bayesian Statistics 2. North Holland: Elsevier Science Publishers B V;
1985. pp. 249-270.

[25] Good IJ. Studies in the history of probability and statistics. XXXVII. A.M. Turing’s statistical
work in World War II. Biometrika 1979;66:393-396.

[26] Gold JI, Shadlen MN. Banburismus and the Brain: Decoding Review of the Relationship
between Sensory Stimuli, Decisions, and Reward. Neuron 2002; 36:299-308.

[27] Lee TS, Mumford D. Hierarchical Bayesian inference in the visual cortex. JOSA A
2003;20(7):1434-1448.

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/604066doi: bioRxiv preprint 

https://doi.org/10.1101/604066
http://creativecommons.org/licenses/by-nc-nd/4.0/


[28] Kay JW, Phillips WA. Contrasting information theoretic decompositions of modu-
latory and arithmetic interactions in neural information processing systems. arXiv.
http://arxiv.org/abs/1803.05897

[29] Kay JW, Ince RAA, Dering B Phillips WA. Partial and Entropic Information Decompositions
of a Neuronal Modulatory Interaction. Entropy 2017;19(11):560. doi:10.3390/e19110560.

[30] Timme N, Alford W, Flecker B, Beggs JM. Synergy, redundancy, and multivariate infor-
mation measures: an experimentalist’s perspective. J. Comput. Neurosci. 2014; 36:119-140.
doi:10.1007/s10827-013-0458-4

[31] Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J. Synaptic integration in tuft den-
drites of layer 5 pyramidal neurons: a new unifying principle. Science 2009;325: 756-760.
doi: 10.1126/science. 1171958 PMID 19661433.

[32] Yi GS, Wang J, Wei XL, Deng B. Action potential initiation in a two-compartment
model of pyramidal neuron mediated by dendritic Ca2+ spike. Sci. Rep. 2017;7:45684. doi:
10.1038/srep45684

[33] Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian Data Analysis.
3rd ed. Boca Raton, USA: CRC Press; 2013.

[34] Stan Development Team (2018). RStan: the R interface to Stan.

[35] R Core Team (2018). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

[36] Heinze G, Ploner M. logistf: Firth’s Bias-Reduced Logistic Regression 2018. R package version
1.23. https://CRAN.R-project.org/package=logistf.

[37] Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Statis-
tics in Medicine 2002;21(16): 2409-2419.

[38] Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993;80(1): 27-38.

[39] Shannon CE. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948:27:379-423.
doi:10.1002/j.1538-7305.1948.tb01338.x.

[40] Cover TM, Thomas JA. Elements of Information Theory. New York, USA: Wiley-Interscience;
1991.

[41] McGill WJ. Multivariate Information Transmission. Psychometrika 1954; 19(2):97-116.

[42] Schneidman E, Bialek W, Berry MJ. Synergy, Redundancy, and Population Codes. J. Neurosci.
2003;23:11539-11553.

[43] Gat I, Tishby N. Synergy and redundancy among brain cells of behaving monkeys. In: Pro-
ceedings of the 1998 conference on Advances in neural information processing systems 2.
Cambridge, MA, USA: MIT Press 1999. pp. 111-117.

[44] Ince RAA, Petersen RS, Swan DC, Panzeri S. Python for information theoretic analysis of
neural data. Front. Neuroinform. 2009; 3(Art 4), (doi:10.3389/neuro.11.004.2009).

[45] Williams PL, Beer RD. Nonnegative decomposition of multivariate information. arXiv 2010,
arXiv:1004.2515. Available online: https://arxiv.org/abs/1004.2515 (accessed on 20 February
2019).

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/604066doi: bioRxiv preprint 

https://doi.org/10.1101/604066
http://creativecommons.org/licenses/by-nc-nd/4.0/


[46] Wibral M, Finn C, Wollstadt P, Lizier JT, Priesemann V. Quantifying Information Modification
in Developing Neural Networks via Partial Information Decomposition. Entropy 2017;19:494.

[47] Ince RAA, Giordano BL, Kayser C, Rousselet GA, Gross J, Schyns PG. A Statistical Frame-
work for Neuroimaging Data Analysis Based on Mutual Information Estimated via a Gaus-
sian Copula. Hum. Brain Mapp. 2017;38:1541-1573.

[48] Park H, Ince RAA, Schyns PG, Thut G, Gross J. Representational interactions during audiovi-
sual speech entrainment: Redundancy in left posterior superior temporal gyrus and synergy
in left motor cortex. PLOS Biology 2018;16(8), e2006558. doi:10.1371/journal.pbio.2006558.
PMID 30080855

[49] Wibral M, Lizier, JT, Priesemann, V. Bits from brains for biologically inspired computing.
Frontiers in Robotics and AI 2015; 2. https://doi.org/10.3389/frobt.2015.00005

[50] Lizier JT, Bertschinger N, Jost J, Wibral M. Information Decomposition of Target Effects from
Multi-Source Interactions: Perspectives on Previous, Current and Future Work. Entropy
2018;20(4):307. https://doi.org/10.3390/e20040307

[51] Bertschinger N, Rauh J, Olbrich E, Jost J, Ay N. Quantifying Unique Information. Entropy
2014;16:2161-2183.

[52] Griffith V, Koch C. Quantifying synergistic mutual information. In: Guided self-organization:
Inception. Emergence, complexity and computation 9. Berlin/Heidelberg: Springer; 2014,
pp.159-190

[53] Harder M, Salge C, Polani D. Bivariate measure of redundant information. Phys. Rev. E 2013;
87. doi:10.1103/PhysRevE.87.012130.

[54] Ince RAA. Measuring multivariate redundant information with pointwise common change
in surprisal. Entropy 2017;19:318.

[55] James RG, Emenheiser J, Crutchfield JP. Unique Information via Dependency Constraints.
Journal of Physics A: Mathematical and Theoretical 2018; 52(1):014002.

[56] James RG, Ellison CJ, Crutchfield JP. a Python package for discrete information theory. The
Journal of Open Source Software 2018; 25:738. https://doi.org/10.21105/joss.00738.
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