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Abstract 19 

Several genomic prediction models incorporating genotype x environment (G×E) interactions 20 
have recently been developed and used in genomic selection (GS) in plant breeding programs. 21 
G×E interactions decrease selection accuracy and limit genetic gains in plant breeding. Two 22 
genomic data sets were used to compare the prediction ability of multi-environment G×E 23 
genomic models and two kernel methods (a linear kernel (genomic best linear unbiased 24 
predictor, GBLUP) (GB) and a nonlinear kernel (Gaussian kernel, GK)) and prediction accuracy 25 
(PA) of five genomic prediction models: (1) one without environmental data (BSG); (2) a single-26 
environment, main genotypic effect model (SM); (3) a multi-environment, main genotypic effect 27 
model (MM); (4) a multi-environment, single variance GxE deviation model (MDs); and (5) a 28 
multi-environment, environment-specific variance GxE deviation model (MDe). We evaluated 29 
the utility of GS with 435 rubber tree individuals in two sites and genotyped the individuals with 30 
genotyping-by-sequencing (GBS) of single-nucleotide polymorphisms (SNPs). Prediction 31 
models were estimated for diameter (DAP) and height (AP) at different ages, with a heritability 32 
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ranging from 0.59 to 0.75 for both traits. Applying the model (BSG, SM, MM, MDs, and MDe) 33 
and kernel method (GBLUP and GK) combinations to rubber tree data showed that models with 34 
the nonlinear GK and linear GBLUP kernel had similar PAs. Multi-environment models were 35 
superior to single-environment genomic models regardless the kernel (GBLUP or GK), 36 
suggesting that introducing interactions between markers and environmental conditions increases 37 
the proportion of variance explained by the model and, more importantly, the PA. In the best 38 
scenario (well-watered (WW / GK), an increase of 6.7 and 8.7 fold of genetic gain can be 39 
obtained for AP and DAP, respectively, with multi-environment GS (MM, MDe and MDS) than 40 
by conventional genetic breeding model (CBM). Furthermore, GS resulted in a more balanced 41 
selection response in DAP and AP and if used in conjunction with traditional genetic breeding 42 
programs will contribute to a reduction in selection time. With the rapid advances in and 43 
declining costs of genotyping methods, balanced against the overall costs of managing large 44 
progeny trials and potential increased gains per unit time, we are hopeful that GS can be 45 
implemented in rubber tree breeding programs. 46 

1 Introduction 47 

Generally, the rubber tree breeding program is characterized by breeding cycles of 25-30 years 48 
and includes the production of crosses, evaluation, and selection of field progeny, and 49 
propagation of selected superior material (Gonçalves et al., 2006). Compared to animal and 50 
annual crop breeding, forest tree breeding is still in its infancy, and the most advanced programs 51 
are in their third or fourth cycle of breeding, with very little differentiation of the bred 52 
populations from natural populations (Isik, 2014). Rubber tree breeding programs are complex 53 
and costly because the large size of trees requires experiments over large tracts of land to test 54 
progeny, and the progeny tests are expensive to establish, manage over many years, and evaluate 55 
via measurement. 56 

The main objective of rubber tree breeding is the development of early selection methods that 57 
support the accurate prediction of mature phenotypes at a younger stage and are therefore 58 
important for shortening breeding cycles and, in the end, improving the cost efficiency of such 59 
breeding programs. Hevea breeding needs to significantly reduce the time taken to derive a 60 
clone, Priyadarshan (2017) proposed  two strategies: (1) to cut short the breeding steps being 61 
followed by conventional means and (2) to inculcate genomics into breeding programmes 62 
specially to identify high-yielding genotypes in half-sibs, full-sibs and poly-cross seedlings 63 
during juvenile stage that can minimize both space and time. 64 

Traditional plant breeding programs depend mainly on phenotypes being evaluated in various 65 
environments; selection and recombination are based solely on the resulting data plus pedigree 66 
information, when available. Genomic selection (GS), a new approach using whole-genome 67 
molecular markers, has the potential to quickly improve complex traits with low heritability, 68 
significantly reduce the cost of the line and hybrid development and increase grain production in 69 
less time to improve quantitative traits in large plant breeding populations (Meuwissen et al. 70 
2001). 71 

Genomic prediction combines marker data with phenotypic and pedigree data in an attempt to 72 
increase the accuracy of the prediction of breeding and genotypic values. The method depends 73 
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on dense genome-wide marker coverage to produce genomic estimated breeding values 74 
(GEBVs) from an ensemble analysis of all markers. 75 

According to Lorenz et al. (2011), the accuracy of GS, which is measured as the correlation 76 
between the GEBVs and true breeding values, is affected by the relationship between the training 77 
and test sets, the number of individuals in the training set, linkage disequilibrium (LD) between 78 
markers and quantitative trait loci (QTLs), the distribution of underlying QTL effects, the 79 
statistical method used to estimate the GEBVs, and the trait heritability. 80 

GS was proposed by Meuwissen et al. (2001) and has received increasing interest from forest 81 
tree breeders. The initial experimental reports in Pinus and Eucalyptus (Resende et al., 2012a,b) 82 
demonstrated the encouraging prospects of this new method and have since confirmed the 83 
potential for GS in conifers, pines and eucalypts (Zapata-Valenzuela et al., 2013; Lima, 2014; El-84 
Dien et al., 2015; Ratcliffe et al., 2015; Bartholome et al., 2016; Isik et al., 2016), further 85 
supporting the potential for GS to accelerate the breeding of forest trees. 86 

In the rubber tree breeding program, pedigree-based analysis has been widely used to evaluate 87 
field experiments, estimate genetic parameters, and predict breeding values (Furlani et al., 2005). 88 
However, due to the decreasing costs of genotyping thousands or millions of markers and the 89 
increasing costs of phenotyping (Krchov and Bernardo, 2015), GS is arising as an alternative 90 
genome-wide marker-based method to predict future genetic responses. 91 

Appropriate GS methods provide accurate predictions even for untested genotypes, allowing 92 
considerable progress in breeding programs by reducing the number of field-tested genotypes 93 
and, consequently, the costs of phenotyping (Krchov and Bernardo, 2015). The benefits of GS 94 
are more evident when traits are difficult, time-consuming, expensive to measure, and several 95 
environments need to be evaluated. 96 

The objective of this paper was to evaluate the predictive capacity of GS implementation in 97 
rubber trees using linear and nonlinear kernel methods and the performance of such prediction 98 
when including GxE interactions in each of the four models described by Bandeira et al. (2017). 99 
Thus, for all data sets, we fitted models with a linear kernel using the genomic best linear 100 
unbiased predictor (GBLUP) (GB) or nonlinear Gaussian kernel (GK) with a bandwidth 101 
parameter estimated according to (Pérez-Elizalde et al., 2015). We also compared the prediction 102 
accuracy (PA) of the two kernel regression methods for the four models. The models included a 103 
single-environment, main genotypic effect model (SM), a multi-environment, main genotypic 104 
effect model (MM) (Jarquin et al., 2014), a multi-environment, single variance G×E deviation 105 
model (MDs) (Jarquin et al., 2014) and a multiple-environment, environment-specific variance 106 
G×E deviation model (MDe) (Lopez-Cruz et al., 2015). 107 

To the best of our knowledge, this is the first attempt to apply the GS technique in a rubber tree 108 
breeding program. The development of robust methods enables the implementation of GS in 109 
routine evaluations to accelerate genetic progress. 110 

2 Materials and methods 111 

2.1 Population and phenotypes 112 
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The data set included 435 samples, consisting of 252 F1 hybrids derived from a cross between 113 
PR255 × PB217 from the Michelin Ltda. Breeding program (Souza et al., 2013), 146 F1 hybrids 114 
derived from open pollination between the genotypes GT1 and RRIM701 (Conson et al., 2018), 115 
37 genotypes of GT1 x PB235 crosses and four testers (GT1, PB235, RRIM701 and the 116 
commercial clone RRIM600) from the Agronomic Institute Campinas breeding program. The 117 
parents of two-parent families are not related to each other, except PB217 and PB235 who are 118 
half-siblings. 119 

Two traits were analyzed: (i) height of the trees (AP), taken at the insertion of the highest leaf 120 
into the trunk, and (ii) circumference of the trunk (DAP), measured 1 m above the soil (data 121 
available in Souza et al., 2013; Conson et al., 2018), in two periods: low water (LW) and well-122 
watered (WW) (Supplementary Table 1). 123 

2.2 Genotypic data and single nucleotide polymorphism (SNP) calling 124 

Genomic DNA was extracted according to Souza et al. (2013) and Conson et al. (2018). 125 
Genotyping-by-sequencing (GBS) library preparation and sequencing were performed as 126 
described by Elshire et al. (2011). Genome complexity was reduced by digesting individual 127 
genomic DNA samples with EcoT22I, a methylation-sensitive restriction enzyme, and 96 128 
samples per sequencing lane. The resulting fragments from each sample were directly ligated to 129 
a pair of enzyme-specific adapters and combined into pools. PCR amplification was carried out 130 
to generate the GBS libraries, which were sequenced with the Illumina platform (Illumina Inc., 131 
USA). 132 

The raw data were processed, and SNP calling was performed using TASSEL 5.0 (Glaubitz et 133 
al., 2014). Initially, the FASTQ files were demultiplexed according to the assigned barcode. The 134 
reads from each sample were trimmed, and the tags were identified using the following 135 
parameters: a kmer length of 64 bp, minimum quality score within the barcode and read length of 136 
20, minimum kmer length of 20 and a minimum count of reads for a tag of 6. All sequence tags 137 
from each sample were aligned to the reference rubber tree genome (Tang et al., 2016) with 138 
Bowtie 2 (Langmead and Salzberg, 2012) using the very sensible option. SNP calling was 139 
performed using the TASSEL 5 GBSv2 pipeline (Glaubitz et al., 2014) and filtered with 140 
snpReady software (Granato and Fritsche-Neto, 2018). The following criteria were used: missing 141 
data of 20% and minor allele frequency (MAF) greater than or equal to 5% (MAF of 0.05). Only 142 
biallelic SNPs were maintained using the software VCFtools (Danecek et al., 2011). After 143 
filtering, missing data were imputed using snpReady software (Granato and Fritsche-Neto, 144 
2018). 145 

2.3 GS analysis 146 

For each character, the phenotypic analysis was carried out jointly for all years of evaluation 147 
using the mixed model approach. 148 

Prediction based on genomic relationships and predictive ability assessment was performed 149 
using a relationship matrix-based approach for genomic prediction (Habier et al., 2007); the 150 
matrix G was the central object denoting the genomic relationship matrix. Two kernel methods 151 
were used: the linear kernel (GBLUP, GB) method used by Jarquin et al. (2014) and Lopez-Cruz 152 
et al. (2015) and the nonlinear kernel (GK) method proposed by Cuevas et al. (2016). The matrix 153 
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for the GB and GK methods was obtained with the function G.matrix in snpReady software 154 
(Granato and Fritsche-Neto, 2018). Statistical models for genomic predictions taking genotype x 155 
environment (G×E) interactions into account (Jarquin et al., 2014; Lopez-Cruz et al., 2015) 156 
combine genetic information from molecular markers or from pedigrees (Pérez-Rodríguez et al., 157 
2015) with environmental covariates, while the López-Cruz model decomposes the marker effect 158 
across all environments and the interaction for each specific environment. 159 

The GS models implemented with arrays of GK and GB pedigrees for the AP and DAP traits 160 
were implemented in breedR software (Munõz and Sanchez, 2017); using frequentist statistics 161 
with the function remlf90, em method, 5 folds and 5 repetitions, the training population (TRN) 162 
was created with 4 folds, whereas the test population (TST) was created with one fold. The PA 163 
was obtained from the correlation between the predicted BLUPs and the observed BLUPs. 164 

For AP and DAP, five statistical prediction models were fitted to all data sets to study their PA 165 
using random cross-validation (CV) schemes. The main objective was to compare the prediction 166 
ability of the two proposed multi-environment G×E genomic models. 167 

The PA of the two kernel regression methods was also compared for single environments and 168 
multi-environments: a single-environment, main genotypic effect model (SM), a multi-169 
environment, main genotypic effect model (MM) (Jarquin et al., 2014), a multi-environment, 170 
single variance G×E deviation model (MDs) (Jarquin et al., 2014) and a multi-environment, 171 
environment-specific variance G×E deviation model (MDe) (Lopez-Cruz et al., 2015). The SM, 172 
MM, MDs, and MDe models fitted with the GB and GK methods were used on the entire data 173 
sets for all the traits, and the phenotypic data were centered and standardized. These analyses 174 
were performed to derive estimates of variance components. The following variance components 175 
resulting from the residual effects, main genetic effect, and genetic environment-specific effects 176 
of the four models described above for the trait (LW - low water, and WW – well-watered) data 177 
sets were computed. All models were fitted with GxE interactions using the software BGGE 178 
(Granato et al., 2018). 179 

2.4 Assessing PA by random cross-validation (CV) GxE 180 

The PA of the SM model-method combinations was evaluated with 80% of the hybrids 181 
comprising the TRN set, the remaining 20% of the individuals comprising the TST set and none 182 
of the lines to be predicted in the TST set in the TRN set using 5 random partitions arranged in 5 183 
folds with 100 random partitions each. This procedure was performed separately in each 184 
environment, namely, LW and WW, and the SM models were fitted separately for each 185 
environment. 186 

In the multi-environment models, the PA of the model-method combinations was generated 187 
using two different CV designs (Burgueño et al., 2012). The random CV 1 design (CV1) 188 
assumes that newly developed lines have not been evaluated in any environment; in this case, 189 
20% of the lines were not observed (not phenotyped) in all the environments and had to be 190 
predicted. The random CV 2 design (CV2) simulates lines that are tested in incomplete field 191 
trials, where some lines are evaluated in some environments but not included in other 192 
environments. 193 
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All the parameters of the models, including the variance components resulting from residual 194 
effects, main genetic effects, G × E interaction effects, and environment-specific effects, were re-195 
estimated from the TRN data in each of the 50 random TRN-TST partitions, and models were 196 
fitted to the TRN data set. PA was assessed by computing Pearson's product-moment correlation 197 
between predictions and phenotypes in the TST data set within environments. 198 

2.5 Expected genetic gain (EGG) 199 

Selection gain was estimated in two ways: the classic way for rubber tree breeding using the 200 
breeder's equation and phenotypic data and with information from the SNPs obtained via GS. 201 

2.6 EGGc - selection gain using only phenotypic information 202 

The genetic gains obtained by a classical breeding cycle were estimated under the assumption 203 
that the time of selection is ten years (EGGc), representing the minimum time required to make 204 
the crosses, obtain seeds, and evaluate and select the progenies at a small scale: 205 

���� �
√�. �. 	


�
 

EGGc= Expected Gain of Classic Breeding Selection 206 

H= Broad heritability 207 

i= Selected individuals 208 

δg= Additive genetic standard deviation 209 

2.7 EGGgs - Selection gain using molecular marker information 210 

The simulation of breeding cycles using GS was based on the EGGgs equation assuming a time 211 
of 3 years for each selection cycle, representing the time required for crossing, seed selection and 212 
selection of the best individuals via molecular markers. 213 

����
 �
�
��
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�
 

EGGgs = Expected Gain of Selection with Genomic Selection 214 

PA= Prediction accuracy 215 

H= Broad heritability 216 

i= Selected individuals 217 

δg= Additive genetic standard deviation 218 

3 Results 219 
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3.1 SNP calling 220 

We started with 435 genotypes, but three genotypes were replicates and thus merged, and the 221 
function sweep removed 27 individuals based on criteria of <0.05 (for quality purposes), leaving 222 
411 genotypes. After analysis, a total of 259.224 million reads of sequence data were obtained, 223 
of which 69.8% were good barcoded reads. The overall alignment rate of these reads to the 224 
rubber tree reference genome (Tang et al., 2016) was 83.70%, and 23.1% were aligned exactly 225 
one time.  226 

A total of 107.294 SNPs were identified. After excluding markers (1) with more than 20% 227 
missing data, (2) with a MAF ≤ 0.05 or (3) SNPs with more than two alleles, the whole dataset 228 
was reduced to 30.546 SNPs.  229 

3.2 Estimates of genetic parameters using SNP genotyping 230 

With the genotyped SNPs, the population structure was assessed using a principal component 231 
analysis (PCA), and the plots indicated that the 411 genotypes fell into two major clusters 232 
(Supplementary Figure 1), which mainly contained hybrids derived from PR255 × PB217 and 233 
hybrids derived from GT1 x RRIM701 and of GT1 x PB235 crosses. The first two PCs explained 234 
19.51% and 2.18% of the total variance, respectively, clearly splitting the groups along the x and 235 
y-axes. 236 

3.3 Descriptive statistics 237 

The genetic correlations between DAP and AP in both environments, namely, LW and WW, 238 
were positive and significant, ranging from 0.72 (AP-LW x DAP-WW) to 0.99 (DAP x DAP-239 
LW) 240 

 To assess how much the phenotypic variation is genetically controlled and thus efficient for GS, 241 
we first estimated the broad-sense heritability (H) of DAP and AP. The heritability ranged from 242 
0.60 to 0.75 for both traits, and when we analyzed the variation separately in each environment, 243 
namely, LW and WW, the heritability varied between 0.33 and 0.34 for DAP and 0.41 and 0.42 244 
for AP (Table 1). 245 

For all the evaluated characters, environmental variation, progeny and the interaction between 246 
these two factors were highly significant, indicating that the environments used were contrasting, 247 
there was genetic variability among genotypes, and these genotypes presented differential 248 
performance according to the environment, respectively. The coefficients of experimental 249 
variation obtained in the joint analysis were following those reported in the literature for the 250 
same characters, indicating that the experiments were performed with good precision. All 251 
components of the variance were nonzero, and estimates were obtained with reasonable 252 
accuracy, which was verified by the confidence intervals of these estimates (Table 1).  253 

3.4 Estimates of variance components 254 

Estimates of variance components for each of the GS models derived from the full data analysis 255 
are presented in Table 2. 256 
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For the SM model of the two traits in each environment, the estimated residual variance 257 
components for the GK method were smaller than those for the GB method (Table 2), and in 258 
compensation, the variance in genetic effects in each environment was slightly more substantial 259 
for the SM-GB model-method combination than for the SM-GK combination. Both the genetic 260 
variance and phenotypic variance were more significant in LW than in WW. 261 

The inclusion of the interaction term (G×E) when using the MM, MDe and MDs induced a more 262 
significant reduction in the estimated residual variance for both traits (DAP and AP) (Table 2). In 263 
the six model-method combinations, the residuals were even lower for DAP with the GK 264 
method, whereas for AP, the values were similar. 265 

For the variance component associated with the genetic interaction effect, the values were, on 266 
average, 65% lower for the GK method than for the GB method. 267 

3.5 Assessment of PA 268 

The PA without environmental data (BSG) is shown in Figure 1. The estimated correlations 269 
between correlated phenotypes and predictions obtained in the CV test are shown in Figure 2 for 270 
the single-environment model (SM) and Figure 3 for the multi-environment models (MM, MDs 271 
and MDe). 272 

3.5.1 PA without environmental data (BSG) 273 

For DAP, the PA was not significantly different between the GB and GK models without multi-274 
environmental data. The same result was obtained for GB and GK (0.18), whereas for DAP, 275 
there was a small difference between GK (0.26) and GB (0.27) (Figure 1). 276 

3.5.2 Single environment (SM) 277 

For all traits, the random CV (CV1) applied to only one environment (LW or WW). The results 278 
for AP and DAP showed that the PA of the SM-GK model-method combination was higher than 279 
that for the SM-GB combination in both LW and WW. The PAs for AP in the LW conditions 280 
were 0.17 for SM-GB and 0.18 for SM-GK and in the WW environment were 0.19 for SM-GB 281 
and 0.20 for SM-GK. The results for DAP were 0.17 in LW for the SM-GB, and 0.19 for the 282 
SM-GK and in WW environment were 0.27 for SM-GB and 0.28 for SM-GK. 283 

3.5.3 Multi-environment (MM, MDe, and MDs) 284 

The PA varied considerably between the CV1 and CV2 conditions, with an average PA 72.6% 285 
higher for CV2 than for CV1 (Supplementary Figure 3). Considering only random CV2, the PA 286 
was slightly higher in WW conditions for both characters (AP and DAP), ranging from 0.87 287 
(MDs-GK-WW) to 0.80 (GK-MDe-LW). 288 

The results obtained with the model-method combinations were very similar; generally, for the 289 
LW environment, the best model was GK, without any difference between the methods. In DAP-290 
LW, the PA was 0.84, and for AP-LW, it ranged from 0.81 (MM) to 0.83 (MDe and MDs) with 291 
the GK model. When we applied the GB model in DAP-LW, the PA was 0.82 for MDs, 0.83 for 292 
MDe and 0.84 for MM, and in AP-LW, it ranged from 0.80 for MDs to 0.81 for MDe and MM 293 
(Figure 3). For the WW environment in AP the model-method combinations presented the same 294 
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values, with a PA of 0.83 for both the GK and GB (Figure 3). For WW the PA ranged from 0.86 295 
for MM to 0.87 for MDe and MDs, respectively, for both the GK and GB (Figure 3). 296 

3.6 EGG 297 

For rubber tree breeding, the investigated alternative breeding strategies differed considerably in 298 
the number of years required to finish one breeding cycle. For classic improvement, we consider 299 
a minimum time of ten years for the beginning of the selection of the best genotypes. In the case 300 
of GS, we consider three years for the first selection. 301 

To determine the best EGG, we used the best scenario found in the analyses, so we chose to 302 
work with the GK matrix and the phenotypic data from the WW environment; however, we 303 
present the other results in Supplementary Table 2. Using the classical breeding method (CBM), 304 
which takes into account only the phenotypic data, the selection gains ranged from 0.058 (DAP) 305 
to 0.064 (AP) (Figure 4). When we predict breeding value without environmental effects (BSG), 306 
genetic gains increase from 0.068 in AP to 0.114 in DAP (figure 4). When we incorporated the 307 
molecular information in a single environment (SM), the genetic gain increased to 0.160 (DAP) 308 
and 0.105 (AP). When we used the multi-environment strategy, the gains were much higher; for 309 
MM, the genetic gain was 0.497 for DAP and 0.434 for AP; in MDs and MDe, we obtained 310 
0.503 and 0.434 for both DAP and AP, respectively (Figure 4).  311 

4 Discussion 312 

In recent years, many statistical models have been proposed for applying GS in plant and animal 313 
breeding programs. However, to the best of our knowledge, these models have not yet been 314 
applied to rubber tree breeding programs. 315 

The efficiency of early selection depends mainly on the early-mature correlation and the 316 
heritability of juvenile traits. In this study, all pairwise correlations between environments were 317 
strong and positive. This finding is important because the G×E model has the limitation of better 318 
and more efficient prediction when applied to subsets of environments that have positive and 319 
similar correlations (Crossa et al., 2016). 320 

In a study by Moreti et al. (1994), with estimates of genetic parameters and expected gains with 321 
the selection of juvenile characters in rubber tree progenies using classical breeding, some 322 
parameters stood out positively (rubber production, bark thickness, and stem circumference). 323 
Gonçalves et al. (1996) observed the same behavior of the results obtained by Moreti et al. 324 
(1994), showing a correlation and its applicability in the selection process. Strong phenotypic 325 
and genetic correlations were observed between yield and stem diameter, indicating the 326 
possibility of obtaining young clones of good productive capacity and great vigor (Gonçalves et 327 
al., 1984). Plants with rapid development of trunk circumference may be more productive, and 328 
this may be a useful feature with which to predict more productive hybrids via GS, together with 329 
the fact that latex production has a good heritability, better than growth in diameter, because the 330 
influence of the rootstock is lower in the production, this will be very important in future studies 331 
with this population. 332 

The multi-environment genomic prediction was successfully implemented using a GBLUP 333 
model; however, depending on the genetic architecture of the trait and germplasm, nonlinear 334 
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semiparametric approaches, such the GK, could produce better accuracies (Cuevas et al., 2016). 335 
We compared two models that used the GB and GK methods, and similar values were found for 336 
the PA in all tested conditions. 337 

Using genomic prediction without multi-environment data (BSG) for both GB and GK produced 338 
the same results (0.18) for AP and a small change from 0.26 to 0.27 between GK and GB, 339 
respectively. When a single-environment model was applied to only one environment (LW or 340 
WW), the best PA values were in the environment of higher water availability. For AP, we 341 
obtained the best values (0.20) using the GK matrix. On the other hand,  for DAP, the best PA 342 
was obtained via GK matrix (0.28) (Figure 2). 343 

In this study, the PA of multi-environment models was assessed by applying the CV strategy. 344 
The CV2 validation strategy performed better than the CV1 strategy when applied to the multi-345 
environment models (Lopez-Cruz et al., 2015; Crossa et al., 2016); this result was expected 346 
because we did not evaluate all individuals in both environments. Considering only random 347 
CV2, the PA was slightly higher in WW conditions for both characters (AP and DAP), ranging 348 
from 0.87 (MDs-GK-WW) to 0.81 (GK-MDe-LW). 349 

Evaluating plants during the season with the best hydric conditions resulted in a higher PA, 350 
which may have occurred because more measurements were taken in WW than in LW, which in 351 
turn improved the performance of the analyses. However, according to (Conson et al., 2018), the 352 
climatological water balance revealed that phenotypic sampling was performed in consecutive 353 
water deficit periods, with exceptions including very brief intervals with very high precipitation 354 
levels, and the two regions where the experiments were carried out suffer from low water 355 
availability for a large part of the year. 356 

Multi-environment models are superior to single-environment genomic models with the GBLUP 357 
and GK. This finding suggests that introducing interactions between markers and environmental 358 
conditions can increase the proportion of variance accounted for by the model and, more 359 
importantly, can increase the PA. GxE interactions are essential in many aspects of a breeding 360 
program, and the increase in PA with the inclusion of environmental information represents a 361 
favorable result with important implications for both breeding and agronomic recommendations. 362 
Interactions in field trials affect mature selection and early selection; thus, when evaluating the 363 
effectiveness of early selection, it is imperative to determine whether the GxE interaction among 364 
sites has a meaningful impact on the early-mature genetic correlation. 365 

The application of eight combinations of four models (SM, MM, MDs, and MDe) and two kernel 366 
methods (GBLUP and GK) to rubber tree data sets showed that models with the nonlinear GK 367 
had slightly higher PAs than the models with the linear GBLUP kernel. According to Gianola et 368 
al. (2014), the GK has a better predictive ability and a more flexible structure than the GBLUP, 369 
and the GK can capture nonadditive effects between markers. 370 

Akdemir and Jannink (2015) presented different choices for estimating kernel functions: linear 371 
kernel matrices incorporate only the additive effects of the markers, polynomial kernels 372 
incorporate different degrees of marker interactions, and the GK function uses complex epistatic 373 
marker interactions. GKs would be more appropriate for GS for rubber trees because of the 374 
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possibility of exploiting these local epistatic effects captured in the GK and their interaction with 375 
environments. 376 

Many GS studies in plants have focused on breeding programs that generally evaluate crops in 377 
multiple environments, such as in different seasons/years or geographic locations, to determine 378 
performance stability across environments (Crossa et al., 2016) and identify markers whose 379 
effects are stable across environments as well as those that are environment-specific (Crossa et 380 
al., 2016; Oakey et al., 2016). Lopez-Cruz et al. (2015) extended the single-trait GBLUP model 381 
to a multi-environment context and showed substantial gains in PA with the multi-environment 382 
model relative to single-environment analysis in wheat.  383 

The advantages of GS applied to the improvement of forest species have been successfully 384 
demonstrated. For example, Wong and Bernardo (2008) and Iwata et al. (2011) demonstrated the 385 
potential uses of GS, and all concluded that it could radically increase tree breeding efficiency. 386 
The advantage of marker-based relationship matrices is that gaps in pairwise relatedness in forest 387 
tree pedigrees are filled, which leads to an increase in the accuracy of selecting breeding 388 
candidates (Muller et al., 2017; Tan et al., 2017). 389 

Cuevas et al. (2016) modeled G×E interactions using both genetic markers and environmental 390 
covariates, and (Granato et al., 2018) introduced the Bayesian Genomic Genotype × 391 
Environment (BGGE) R package, which fits genomic linear mixed models to single 392 
environments and multi-environments with GE models. These studies showed that modeling 393 
multiple-environment interactions can lead to substantial gains in the PA of GS for rubber tree 394 
breeding programs.  395 

GS is expected to increase the accuracy of selection, especially for traits that cannot be measured 396 
directly from breeding candidates and for traits with low heritabilities (Meuwissen et al., 2001), 397 
which was confirmed in this study: the selection gain with GS varied between 0.434 and 0.503, 398 
while the genetic gain with classical breeding varied between 0.058 and 0.064 for AP and DAP, 399 
respectively. Comparing the conventional model of genetic breeding (CBM) for rubber trees 400 
with the use of GS applying the multi-environment strategy (MM, MDe and MDS), GS produced 401 
a genetic gain 6.7 and 8.7 times higher for AP and DAP, respectively. GS also resulted in a more 402 
balanced selection response in the two traits (DAP and AP) and thus is preferred over traditional 403 
selection because of the time saved in the selection of superior genotypes. 404 

Developing new rubber tree cultivars adaptable to non-traditional rubber growing regions is 405 
fundamental for the success of rubber tree plantations. Cultivars considered productive in some 406 
regions of Brazil may behave differently in other areas of the same region, especially areas with 407 
different edaphoclimatic characteristics. Several agroclimatic elements, such as prolonged low 408 
temperature and low precipitation in the winter, are the major factors limiting the development 409 
and production of the rubber tree and contribute to a large amount of variability in the behavior 410 
of cultivars (Ortolani et al., 1996). 411 

In rubber trees, the time required to complete a breeding cycle and recommend a clone for 412 
commercial production can span multiple decades and is mainly divided into three selection 413 
stages. First, the aim is to obtain progenies by controlled or open pollination to establish 414 
nurseries. At two and a half years, based on yield evaluations performed by early testing of yield, 415 
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vigor, and tolerance to diseases, the breeding plants are selected and cloned for testing at a small 416 
scale. In this second stage of the selection cycle, after the first two years of tapping, promising 417 
clones are multiplied and subsequently evaluated in large-scale or regional trials. This last stage 418 
usually takes some 12 to 15 years, until it is possible to recommend a clone for large-scale 419 
cropping. It, therefore, takes approximately 30 years to complete the breeding cycle, from 420 
controlled pollination to final cultivar recommendation (Gonçalves and Fontes, 2012). The use of 421 
GS could dramatically reduce the time required for completion of a cycle of genetic 422 
improvement by eliminating progeny phenotypic testing aimed at selecting the best individuals 423 
(replaced by GS), significantly accelerating the genetic gain relative to that obtained by classical 424 
breeding. Another advantage of GS is that more candidate genotypes are generated; therefore, 425 
the population size for selection as well. All of these candidates are genotyped, and those with 426 
the best-predicted test cross values are evaluated in the field, which can be regarded as an 427 
indirect selection. 428 

With the rapid advances in and declining costs of genotyping methods, balanced against the 429 
overall costs of managing large progeny trials and the potential for increased gains per unit time, 430 
our cautiously optimistic expectation is that GS has excellent potential to be implemented in 431 
rubber tree breeding programs. However, further studies examining populations with a different 432 
structure (which were not assessed in this initial work) are necessary before recommending GS 433 
for operational implementation in tree breeding programs. 434 
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Figure legends 574 

Figure 1. Correlation between phenotypes and predicted values (random CV partitions) with 575 
standard deviations for the GBLUP kernel model (GB) and GK model (GK) for the height of the 576 
trees (AP) and circumference of the trunk (DAP). 577 

Figure 2. Correlation between phenotypes and predicted values (random CV partitions) with 578 
standard deviations for the single-environment, main genotypic effect model with the GBLUP 579 
kernel method (SM-GB) and the single-environment, main genotypic effect model with the GK 580 
method (SM-GK) for the height of the trees (AP) and circumference of the trunk (DAP) in low-581 
water (LW) and well-watered (WW) environments. 582 

Figure 3. Prediction values for cross-validation (CV) partitions (CV2) and standard deviations 583 
for the multi-environment, genotypic effect model with the GBLUP kernel (MM-GB), multi-584 
environment, main genotypic model with the Gaussian kernel (MM-GK), multi-environment, 585 
single variance G×E model with the GBLUP kernel (MDs-GB), multi-environment, single 586 
variance G×E model with the Gaussian kernel (MDs-GK), multi-environment, environment-587 
specific variance G×E model with the GBLUP kernel (MDe-GB), and multi-environment, 588 
environment-specific variance G×E model with the Gaussian kernel (MDe-GK). 589 

Figure 4. Expected genetic gain (EGG) using the classical breeding method (CBM) and genomic 590 
prediction without multi-environmental data (BSG), with the single-environment, main 591 
genotypic effect model (SM), with the multi-environment, genotypic effect model (MM), with 592 
the multi-environment, single variance G×E model (MDs), and with the multi-environment, 593 
environment-specific variance G×E model (MDe) with the GK kernel method in the WW 594 
environment. 595 

Tables 596 

Table 1. Phenotypic variation: heritability (H) of height (AP) and diameter (DAP), genotype x 597 
environment interaction (GxE), residual (R) and genetic main effect (G) in the low-water (LW) 598 
and well-watered (WW) environments considered together and alone, with p<.01 indicated by ** 599 

 DAP AP DAP-LW DAP-WW AP-LW AP-WW 

G 3.607** 0.115** 4.329** 3.690** 0.128** 0.089** 

GxE 0.814** 0 - - - - 

R 16.154 0.301 14.751 14.751 0.346 0.260 
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H 0.600 0.750 0.340 0.330 0.420 0.410 

  600 
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Table 2. Estimates of different variance components for genomic selection (GS) models with no 601 
environmental effect; only the GB and GK (SG) matrices; the single-environment, main 602 
genotypic effect model (SM); the multi-environment, main genotypic effect model (MM); the 603 
multi-environment, single variance G×E deviation model (MDs); and the multi-environment, 604 
environment-specific variance G×E deviation model with the genomic best linear unbiased 605 
predictor (GBLUP) and Gaussian kernel (GK) for two traits: plant height (AP) and plant 606 
diameter (DAP).  607 

  Component DAP.GK DAP.GB  AP.GK  AP.GB  

BSG 

G 0.750 0.230 0.070 0.040 

E 2.000 2.170 0.040 0.060 

SM 

G (WW) 1.102 1.101 0.062 0.069 

G (LW) 2.528 2.691 0.105 0.140 

E (WW) 1.532 1.773 0.037 0.052 

E (LW) 2.628 3.164 0.047 0.065 

MM 

G 6.47 17.188 0.166 0.422 

E 0.256 0.259 0.008 0.008 

MDs 

G 6.515 17.568 0.167 0.433 

E 0.127 0.15 0.004 0.004 

MDe 

G 6.115 16.922 0.161 0.427 

E 0.111 0.119 0.003 0.003 
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