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Abstract

Several genomic prediction models incorporating genotype x environment (GXE) interactions
have recently been developed and used in genomic selection (GS) in plant breeding programs.
GXE interactions decrease selection accuracy and limit genetic gainsin plant breeding. Two
genomic data sets were used to compare the prediction ability of multi-environment GXE
genomic models and two kernel methods (a linear kernel (genomic best linear unbiased
predictor, GBLUP) (GB) and anonlinear kerndl (Gaussian kernel, GK)) and prediction accuracy
(PA) of five genomic prediction models. (1) one without environmental data (BSG); (2) asingle-
environment, main genotypic effect model (SM); (3) a multi-environment, main genotypic effect
moded (MM); (4) amulti-environment, single variance GXE deviation model (MDs); and (5) a
multi-environment, environment-specific variance GxE deviation model (MDe). We evaluated
the utility of GS with 435 rubber tree individuals in two sites and genotyped the individuals with
genotyping-by-sequencing (GBS) of single-nucleotide polymorphisms (SNPs). Prediction
models were estimated for diameter (DAP) and height (AP) at different ages, with a heritability
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ranging from 0.59 to 0.75 for both traits. Applying the model (BSG, SM, MM, MDs, and MDe)
and kernel method (GBLUP and GK) combinations to rubber tree data showed that models with
the nonlinear GK and linear GBLUP kernel had similar PAs. Multi-environment models were
superior to single-environment genomic models regardless the kernel (GBLUP or GK),
suggesting that introducing interactions between markers and environmental conditions increases
the proportion of variance explained by the model and, more importantly, the PA. In the best
scenario (well-watered (WW / GK), an increase of 6.7 and 8.7 fold of genetic gain can be
obtained for AP and DAP, respectively, with multi-environment GS (MM, MDe and MDS) than
by conventional genetic breeding model (CBM). Furthermore, GS resulted in a more balanced
selection responsein DAP and AP and if used in conjunction with traditional genetic breeding
programs will contribute to areduction in selection time. With the rapid advances in and
declining costs of genotyping methods, balanced against the overall costs of managing large
progeny trials and potential increased gains per unit time, we are hopeful that GS can be
implemented in rubber tree breeding programs.

1 I ntroduction

Generally, the rubber tree breeding program is characterized by breeding cycles of 25-30 years
and includes the production of crosses, evaluation, and selection of field progeny, and
propagation of selected superior material (Gongalves et al., 2006). Compared to animal and
annual crop breeding, forest tree breeding is till in itsinfancy, and the most advanced programs
arein their third or fourth cycle of breeding, with very little differentiation of the bred
populations from natural populations (Isik, 2014). Rubber tree breeding programs are complex
and costly because the large size of trees requires experiments over large tracts of land to test
progeny, and the progeny tests are expensive to establish, manage over many years, and evaluate
via measurement.

The main objective of rubber tree breeding is the devel opment of early selection methods that
support the accurate prediction of mature phenotypes at a younger stage and are therefore
important for shortening breeding cycles and, in the end, improving the cost efficiency of such
breeding programs. Hevea breeding needs to significantly reduce the time taken to derive a
clone, Priyadarshan (2017) proposed two strategies: (1) to cut short the breeding steps being
followed by conventional means and (2) to inculcate genomics into breeding programmes
specially to identify high-yielding genotypes in half-sibs, full-sibs and poly-cross seedlings
during juvenile stage that can minimize both space and time.

Traditional plant breeding programs depend mainly on phenotypes being evaluated in various
environments; selection and recombination are based solely on the resulting data plus pedigree
information, when available. Genomic selection (GS), a new approach using whole-genome
molecular markers, has the potential to quickly improve complex traits with low heritability,
significantly reduce the cost of the line and hybrid devel opment and increase grain production in
less time to improve quantitative traits in large plant breeding populations (Meuwissen et al.
2001).

Genomic prediction combines marker data with phenotypic and pedigree datain an attempt to
increase the accuracy of the prediction of breeding and genotypic values. The method depends
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74 on dense genome-wide marker coverage to produce genomic estimated breeding values
75 (GEBVs) from an ensemble analysis of all markers.

76  According to Lorenz et al. (2011), the accuracy of GS, which is measured as the correlation

77  between the GEBVs and true breeding values, is affected by the relationship between the training
78  andtest sets, the number of individualsin the training set, linkage disequilibrium (LD) between
79  markers and quantitative trait loci (QTLS), the distribution of underlying QTL effects, the

80  statistical method used to estimate the GEBV's, and the trait heritability.

81 GSwas proposed by Meuwissen et al. (2001) and has received increasing interest from forest

82 treebreeders. Theinitial experimental reportsin Pinus and Eucalyptus (Resende et al., 2012a,b)
83 demonstrated the encouraging prospects of this new method and have since confirmed the

84  potential for GSin conifers, pines and eucalypts (Zapata-Vaenzueaet al., 2013; Lima, 2014; El-
85 Dienetal., 2015; Ratcliffe et al., 2015; Bartholome et al., 2016; Isik et al., 2016), further

86  supporting the potential for GS to accel erate the breeding of forest trees.

87 Intherubber tree breeding program, pedigree-based analysis has been widely used to evaluate
88 fidd experiments, estimate genetic parameters, and predict breeding values (Furlani et al., 2005).
89 However, due to the decreasing costs of genotyping thousands or millions of markers and the

90 increasing costs of phenotyping (Krchov and Bernardo, 2015), GSis arising as an aternative

91 genome-wide marker-based method to predict future genetic responses.

92  Appropriate GS methods provide accurate predictions even for untested genotypes, allowing
93 considerable progress in breeding programs by reducing the number of field-tested genotypes
94  and, consequently, the costs of phenotyping (Krchov and Bernardo, 2015). The benefits of GS
95 aremore evident when traits are difficult, time-consuming, expensive to measure, and several
96 environments need to be evaluated.

97  Theobjective of this paper was to evauate the predictive capacity of GS implementation in

98  rubber trees using linear and nonlinear kernel methods and the performance of such prediction

99  when including GXE interactionsin each of the four models described by Bandeira et al. (2017).
100 Thus, for al data sets, we fitted models with alinear kernel using the genomic best linear
101  unbiased predictor (GBLUP) (GB) or nonlinear Gaussian kernel (GK) with a bandwidth
102  parameter estimated according to (Pérez-Elizalde et al., 2015). We also compared the prediction
103  accuracy (PA) of the two kernel regression methods for the four models. The modelsincluded a
104  single-environment, main genotypic effect model (SM), a multi-environment, main genotypic
105 effect model (MM) (Jarquin et al., 2014), a multi-environment, single variance GXE deviation
106 modd (MDs) (Jarquin et a., 2014) and a multiple-environment, environment-specific variance
107  GXxE deviation model (MDe) (Lopez-Cruz et al., 2015).

108 Tothe best of our knowledge, thisisthe first attempt to apply the GS techniquein arubber tree
109  breeding program. The development of robust methods enables the implementation of GSin
110 routine evaluationsto accelerate genetic progress.

111 2 M aterials and methods

112 2.1 Population and phenotypes
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113  Thedata set included 435 samples, consisting of 252 F1 hybrids derived from a cross between
114  PR255 x PB217 from the Michelin Ltda. Breeding program (Souzaet al., 2013), 146 F1 hybrids
115  derived from open pollination between the genotypes GT1 and RRIM 701 (Conson et al., 2018),
116 37 genotypes of GT1 x PB235 crosses and four testers (GT1, PB235, RRIM701 and the

117  commercia clone RRIM600) from the Agronomic Institute Campinas breeding program. The
118  parents of two-parent families are not related to each other, except PB217 and PB235 who are
119  half-siblings.

120 Two traits were analyzed: (i) height of the trees (AP), taken at the insertion of the highest |eaf
121  intothetrunk, and (ii) circumference of the trunk (DAP), measured 1 m above the soil (data
122 availablein Souzaet al., 2013; Conson et al., 2018), in two periods. low water (LW) and well-
123  watered (WW) (Supplementary Table 1).

124 2.2 Genotypic data and single nucleotide polymor phism (SNP) calling

125 Genomic DNA was extracted according to Souza et al. (2013) and Conson et al. (2018).

126  Genotyping-by-sequencing (GBS) library preparation and sequencing were performed as

127  described by Elshire et al. (2011). Genome complexity was reduced by digesting individual

128  genomic DNA samples with EcoT22I, a methylation-sensitive restriction enzyme, and 96

129  samples per sequencing lane. The resulting fragments from each sample were directly ligated to
130 apair of enzyme-specific adapters and combined into pools. PCR amplification was carried out
131 to generate the GBS libraries, which were sequenced with the Illumina platform (Illumina Inc.,
132 USA).

133  Theraw data were processed, and SNP calling was performed using TASSEL 5.0 (Glaubitz et
134  al., 2014). Initially, the FASTQ files were demultiplexed according to the assigned barcode. The
135 readsfrom each sample were trimmed, and the tags were identified using the following

136  parameters. a kmer length of 64 bp, minimum quality score within the barcode and read length of
137 20, minimum kmer length of 20 and a minimum count of reads for atag of 6. All sequence tags
138 from each sample were aligned to the reference rubber tree genome (Tang et al., 2016) with

139 Bowtie 2 (Langmead and Salzberg, 2012) using the very sensible option. SNP calling was

140 performed using the TASSEL 5 GBSVv2 pipeline (Glaubitz et al., 2014) and filtered with

141  snpReady software (Granato and Fritsche-Neto, 2018). The following criteria were used: missing
142  data of 20% and minor allele frequency (MAF) greater than or equal to 5% (MAF of 0.05). Only
143  hiallelic SNPs were maintained using the software V CFtools (Danecek et al., 2011). After

144 filtering, missing data were imputed using snpReady software (Granato and Fritsche-Neto,

145  2018).

146 23 GSanalysis

147  For each character, the phenotypic analysis was carried out jointly for all years of evaluation
148  using the mixed model approach.

149  Prediction based on genomic relationships and predictive ability assessment was performed

150 using arelationship matrix-based approach for genomic prediction (Habier et a., 2007); the

151 matrix G was the central object denoting the genomic relationship matrix. Two kernel methods
152  wereused: thelinear kernel (GBLUP, GB) method used by Jarquin et al. (2014) and Lopez-Cruz
153 et al. (2015) and the nonlinear kernel (GK) method proposed by Cuevas et a. (2016). The matrix

4
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154  for the GB and GK methods was obtained with the function G.matrix in snpReady software

155 (Granato and Fritsche-Neto, 2018). Statistical models for genomic predictions taking genotype x

156 environment (GXE) interactions into account (Jarquin et al., 2014; Lopez-Cruz et a., 2015)

157  combine genetic information from molecular markers or from pedigrees (Pérez-Rodriguez et al .,

158  2015) with environmental covariates, while the Lépez-Cruz model decomposes the marker effect
159 acrossall environments and the interaction for each specific environment.

160 The GS modes implemented with arrays of GK and GB pedigrees for the AP and DAP traits
161 wereimplemented in breedR software (Mundz and Sanchez, 2017); using frequentist statistics
162  with the function remif90, em method, 5 folds and 5 repetitions, the training population (TRN)
163  was created with 4 folds, whereas the test population (TST) was created with one fold. The PA
164  was obtained from the correlation between the predicted BLUPs and the observed BLUPs.

165 For AP and DAP, five statistical prediction models were fitted to all data sets to study their PA
166  using random cross-validation (CV) schemes. The main objective was to compare the prediction
167  ability of the two proposed multi-environment GXE genomic models.

168 ThePA of the two kernel regression methods was also compared for single environments and
169  multi-environments: a single-environment, main genotypic effect model (SM), a multi-

170  environment, main genotypic effect model (MM) (Jarquin et al., 2014), a multi-environment,
171  singlevariance GXE deviation model (MDs) (Jarquin et al., 2014) and a multi-environment,

172  environment-specific variance GxE deviation model (MDe) (Lopez-Cruz et al., 2015). The SM,
173 MM, MDs, and MDe modéls fitted with the GB and GK methods were used on the entire data
174  setsfor al thetraits, and the phenotypic data were centered and standardized. These analyses
175 were performed to derive estimates of variance components. The following variance components
176  resulting from the residual effects, main genetic effect, and genetic environment-specific effects
177  of the four models described above for thetrait (LW - low water, and WW — well-watered) data
178  setswere computed. All models were fitted with GxE interactions using the software BGGE
179 (Granato et al., 2018).

180 24 Assessing PA by random cross-validation (CV) GXE

181 The PA of the SM mode-method combinations was evaluated with 80% of the hybrids

182 comprising the TRN set, the remaining 20% of the individuals comprising the TST set and none
183 of thelinesto be predicted in the TST set in the TRN set using 5 random partitions arranged in 5
184  foldswith 100 random partitions each. This procedure was performed separately in each

185  environment, namely, LW and WW, and the SM models were fitted separately for each

186  environment.

187  Inthe multi-environment models, the PA of the model-method combinations was generated
188  using two different CV designs (Burguefio et al., 2012). The random CV 1 design (CV1)

189  assumesthat newly developed lines have not been evaluated in any environment; in this case,
190 20% of thelines were not observed (not phenotyped) in all the environments and had to be
191 predicted. Therandom CV 2 design (CV2) smulates linesthat are tested in incomplete field
192  trials, where some lines are evaluated in some environments but not included in other

193  environments.
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All the parameters of the models, including the variance components resulting from residual
effects, main genetic effects, G x E interaction effects, and environment-specific effects, werere-
estimated from the TRN data in each of the 50 random TRN-TST partitions, and models were
fitted to the TRN data set. PA was assessed by computing Pearson's product-moment correlation
between predictions and phenotypes in the TST data set within environments.

2.5 Expected genetic gain (EGG)

Selection gain was estimated in two ways: the classic way for rubber tree breeding using the
breeder's equation and phenotypic data and with information from the SNPs obtained via GS.

2.6 EGGc - sdlection gain using only phenotypic infor mation

The genetic gains obtained by a classical breeding cycle were estimated under the assumption
that the time of selection isten years (EGGc), representing the minimum time required to make
the crosses, obtain seeds, and evaluate and select the progenies at a small scale:

VH.i.8g
T

EGGc= Expected Gain of Classic Breeding Selection

EGGc =

H= Broad heritability
i= Selected individuals
6g= Additive genetic standard deviation

2.7 EGGgs- Sdection gain using molecular mar ker information

The simulation of breeding cycles using GS was based on the EGGgs equation assuming atime
of 3 years for each selection cycle, representing the time required for crossing, seed selection and
selection of the best individuals via molecular markers.

PA. .
EGGgs = w
EGGgs = Expected Gain of Selection with Genomic Selection
PA= Prediction accuracy
H= Broad heritability
i= Selected individuals
6g= Additive genetic standard deviation

3 Results
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220 3.1 SNPcalling

221  We started with 435 genotypes, but three genotypes were replicates and thus merged, and the
222  function sweep removed 27 individuals based on criteria of <0.05 (for quality purposes), leaving
223 411 genotypes. After analysis, atotal of 259.224 million reads of sequence data were obtained,
224 of which 69.8% were good barcoded reads. The overall alignment rate of these reads to the

225  rubber tree reference genome (Tang et a., 2016) was 83.70%, and 23.1% were aligned exactly
226 onetime.

227 A total of 107.294 SNPswereidentified. After excluding markers (1) with more than 20%
228 missing data, (2) withaMAF < 0.05 or (3) SNPs with more than two alleles, the whole dataset
229  wasreduced to 30.546 SNPs.

230 3.2 Estimatesof genetic parametersusing SNP genotyping

231  With the genotyped SNPs, the population structure was assessed using a principal component
232 analysis (PCA), and the plots indicated that the 411 genotypes fell into two mgjor clusters

233  (Supplementary Figure 1), which mainly contained hybrids derived from PR255 x PB217 and
234  hybridsderived from GT1 x RRIM701 and of GT1 x PB235 crosses. The first two PCs explained
235 19.51% and 2.18% of thetotal variance, respectively, clearly splitting the groups along the x and
236  y-axes.

237 3.3 Descriptive statistics

238  The genetic correlations between DAP and AP in both environments, namely, LW and WW,
239  were positive and significant, ranging from 0.72 (AP-LW x DAP-WW) to 0.99 (DAP x DAP-
240 LW)

241  To assess how much the phenotypic variation is genetically controlled and thus efficient for GS,
242 wefirst estimated the broad-sense heritability (H) of DAP and AP. The heritability ranged from
243  0.60to0 0.75 for both traits, and when we analyzed the variation separately in each environment,
244 namely, LW and WW, the heritability varied between 0.33 and 0.34 for DAP and 0.41 and 0.42
245  for AP (Table 1).

246  For all the evaluated characters, environmental variation, progeny and the interaction between
247  thesetwo factors were highly significant, indicating that the environments used were contrasting,
248  therewas genetic variability among genotypes, and these genotypes presented differential

249  performance according to the environment, respectively. The coefficients of experimental

250 variation obtained in the joint analysis were following those reported in the literature for the

251 same characters, indicating that the experiments were performed with good precision. All

252  components of the variance were nonzero, and estimates were obtained with reasonable

253  accuracy, which was verified by the confidence intervals of these estimates (Table 1).

254 3.4 Estimatesof variance components

255  Estimates of variance components for each of the GS models derived from the full dataanalysis
256 arepresentedin Table 2.
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257  For the SM model of the two traitsin each environment, the estimated residual variance

258  components for the GK method were smaller than those for the GB method (Table 2), and in
259  compensation, the variance in genetic effects in each environment was dightly more substantial
260 for the SM-GB model-method combination than for the SM-GK combination. Both the genetic
261 variance and phenotypic variance were more significant in LW than in WW.

262  Theinclusion of the interaction term (GXE) when using the MM, MDe and MDs induced a more
263  significant reduction in the estimated residual variance for both traits (DAP and AP) (Table 2). In
264  the six model-method combinations, the residuals were even lower for DAP with the GK

265 method, whereas for AP, the values were similar.

266  For the variance component associated with the genetic interaction effect, the values were, on
267  average, 65% lower for the GK method than for the GB method.

268 3.5 Assessment of PA

269  The PA without environmental data (BSG) is shown in Figure 1. The estimated correlations

270  between correlated phenotypes and predictions obtained in the CV test are shown in Figure 2 for
271  thesingle-environment model (SM) and Figure 3 for the multi-environment models (MM, MDs
272  and MDe).

273  3.5.1 PA without environmental data (BSG)

274  For DAP, the PA was not significantly different between the GB and GK models without multi-
275  environmental data. The same result was obtained for GB and GK (0.18), whereas for DAP,
276  therewas asmall difference between GK (0.26) and GB (0.27) (Figure 1).

277 3.5.2 Singleenvironment (SM)

278  For all traits, the random CV (CV1) applied to only one environment (LW or WW). The results
279  for AP and DAP showed that the PA of the SM-GK model-method combination was higher than
280 that for the SM-GB combination in both LW and WW. The PAsfor AP in the LW conditions
281 were0.17 for SM-GB and 0.18 for SM-GK and in the WW environment were 0.19 for SM-GB
282 and 0.20 for SM-GK. Theresultsfor DAPwere 0.17 in LW for the SM-GB, and 0.19 for the
283 SM-GK and in WW environment were 0.27 for SM-GB and 0.28 for SM-GK.

284  3.5.3 Multi-environment (MM, MDe, and M Ds)

285 The PA varied considerably between the CV1 and CV2 conditions, with an average PA 72.6%
286  higher for CV2 than for CV 1 (Supplementary Figure 3). Considering only random CV2, the PA
287  wasdlightly higher in WW conditions for both characters (AP and DAP), ranging from 0.87
288 (MDs-GK-WW) to 0.80 (GK-MDe-LW).

289  Theresults obtained with the model-method combinations were very similar; generally, for the
290 LW environment, the best modedl was GK, without any difference between the methods. In DAP-
291 LW, the PA was0.84, and for AP-LW, it ranged from 0.81 (MM) to 0.83 (MDe and MDs) with
292  the GK model. When we applied the GB mode in DAP-LW, the PA was 0.82 for MDs, 0.83 for
293 MDeand0.84 for MM, and in AP-LW, it ranged from 0.80 for MDsto 0.81 for MDe and MM
294  (Figure 3). For the WW environment in AP the model-method combinations presented the same
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295  values, with a PA of 0.83 for both the GK and GB (Figure 3). For WW the PA ranged from 0.86
296 for MM to 0.87 for MDe and MDs, respectively, for both the GK and GB (Figure 3).

297 36 EGG

298  For rubber tree breeding, the investigated alternative breeding strategies differed considerably in
299 thenumber of years required to finish one breeding cycle. For classic improvement, we consider
300 aminimum time of ten years for the beginning of the selection of the best genotypes. In the case
301 of GS, we consider three years for the first selection.

302 Todetermine the best EGG, we used the best scenario found in the analyses, so we chose to

303  work with the GK matrix and the phenotypic data from the WW environment; however, we

304  present the other resultsin Supplementary Table 2. Using the classical breeding method (CBM),
305  which takes into account only the phenotypic data, the selection gains ranged from 0.058 (DAP)
306 t00.064 (AP) (Figure 4). When we predict breeding value without environmental effects (BSG),
307 genetic gainsincrease from 0.068 in AP to 0.114 in DAP (figure 4). When we incorporated the
308 molecular information in a single environment (SM), the genetic gain increased to 0.160 (DAP)
309 and 0.105 (AP). When we used the multi-environment strategy, the gains were much higher; for
310 MM, the genetic gain was 0.497 for DAP and 0.434 for AP; in MDs and MDe, we obtained

311 0.503 and 0.434 for both DAP and AP, respectively (Figure 4).

312 4 Discussion

313 Inrecent years, many statistical models have been proposed for applying GSin plant and animal
314  breeding programs. However, to the best of our knowledge, these models have not yet been
315 applied to rubber tree breeding programs.

316 Theéfficiency of early selection depends mainly on the early-mature correlation and the

317  heritability of juveniletraits. In this study, all pairwise correlations between environments were
318 strong and positive. This finding isimportant because the GXE model has the limitation of better
319 and more efficient prediction when applied to subsets of environments that have positive and
320 similar correlations (Crossa et al., 2016).

321 Inastudy by Moreti et a. (1994), with estimates of genetic parameters and expected gains with
322 the sdection of juvenile charactersin rubber tree progenies using classical breeding, some

323  parameters stood out positively (rubber production, bark thickness, and stem circumference).
324  Goncalves et al. (1996) observed the same behavior of the results obtained by Moreti et al.

325 (1994), showing acorrelation and its applicability in the selection process. Strong phenotypic
326  and genetic correlations were observed between yield and stem diameter, indicating the

327 possibility of obtaining young clones of good productive capacity and great vigor (Gongalves et
328 al., 1984). Plants with rapid development of trunk circumference may be more productive, and
329 thismay be a useful feature with which to predict more productive hybridsvia GS, together with
330 thefact that latex production has a good heritability, better than growth in diameter, because the
331 influence of the rootstock is lower in the production, this will be very important in future studies
332 with this population.

333  The multi-environment genomic prediction was successfully implemented using a GBLUP
334  model; however, depending on the genetic architecture of the trait and germplasm, nonlinear
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semiparametric approaches, such the GK, could produce better accuracies (Cuevas et al., 2016).
We compared two models that used the GB and GK methods, and similar values were found for
the PA in all tested conditions.

Using genomic prediction without multi-environment data (BSG) for both GB and GK produced
the same results (0.18) for AP and asmall change from 0.26 to 0.27 between GK and GB,
respectively. When a single-environment model was applied to only one environment (LW or
WW), the best PA values were in the environment of higher water availability. For AP, we
obtained the best values (0.20) using the GK matrix. On the other hand, for DAP, the best PA
was obtained via GK matrix (0.28) (Figure 2).

In this study, the PA of multi-environment models was assessed by applying the CV strategy.
The CV2 validation strategy performed better than the CV 1 strategy when applied to the multi-
environment models (Lopez-Cruz et d., 2015; Crossa et al., 2016); this result was expected
because we did not evaluate all individuals in both environments. Considering only random
CV2, the PA was dlightly higher in WW conditions for both characters (AP and DAP), ranging
from 0.87 (MDs-GK-WW) to 0.81 (GK-MDe-LW).

Evaluating plants during the season with the best hydric conditions resulted in a higher PA,
which may have occurred because more measurements were taken in WW than in LW, which in
turn improved the performance of the analyses. However, according to (Conson et al., 2018), the
climatological water balance revealed that phenotypic sampling was performed in consecutive
water deficit periods, with exceptionsincluding very brief intervals with very high precipitation
levels, and the two regions where the experiments were carried out suffer from low water
availability for alarge part of the year.

Multi-environment models are superior to single-environment genomic models with the GBLUP
and GK. This finding suggests that introducing interactions between markers and environmental
conditions can increase the proportion of variance accounted for by the model and, more
importantly, can increase the PA. GXE interactions are essential in many aspects of a breeding
program, and the increase in PA with the inclusion of environmental information represents a
favorable result with important implications for both breeding and agronomic recommendations.
Interactionsin field trials affect mature selection and early selection; thus, when evaluating the
effectiveness of early selection, it isimperative to determine whether the GXE interaction among
sites has a meaningful impact on the early-mature genetic correlation.

The application of eight combinations of four models (SM, MM, MDs, and MDe) and two kernel
methods (GBLUP and GK) to rubber tree data sets showed that models with the nonlinear GK
had dlightly higher PAs than the models with the linear GBLUP kernel. According to Gianola et
al. (2014), the GK has a better predictive ability and a more flexible structure than the GBLUP,
and the GK can capture nonadditive effects between markers.

Akdemir and Jannink (2015) presented different choices for estimating kernel functions: linear
kernel matrices incorporate only the additive effects of the markers, polynomial kernels
incorporate different degrees of marker interactions, and the GK function uses complex epistatic
marker interactions. GKs would be more appropriate for GS for rubber trees because of the
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375 possibility of exploiting these local epistatic effects captured in the GK and their interaction with
376  environments.

377 Many GS studies in plants have focused on breeding programs that generally evaluate cropsin
378 multiple environments, such asin different seasons/years or geographic locations, to determine
379 performance stability across environments (Crossa et al., 2016) and identify markers whose
380 effects are stable across environments as well as those that are environment-specific (Crossa et
381 al., 2016; Oakey et al., 2016). Lopez-Cruz et al. (2015) extended the single-trait GBLUP model
382  toamulti-environment context and showed substantial gainsin PA with the multi-environment
383 mode relative to single-environment analysis in whest.

384 Theadvantages of GS applied to the improvement of forest species have been successfully

385 demonstrated. For example, Wong and Bernardo (2008) and Iwata et al. (2011) demonstrated the
386 potential uses of GS, and all concluded that it could radically increase tree breeding efficiency.
387  The advantage of marker-based relationship matricesis that gapsin pairwise relatednessin forest
388 treepedigrees arefilled, which leads to an increase in the accuracy of selecting breeding

389 candidates (Muller et al., 2017; Tan et al., 2017).

390 Cuevaset a. (2016) modeled GXE interactions using both genetic markers and environmental
391 covariates, and (Granato et a., 2018) introduced the Bayesian Genomic Genotype X

392  Environment (BGGE) R package, which fits genomic linear mixed models to single

393  environments and multi-environments with GE models. These studies showed that modeling
394  multiple-environment interactions can lead to substantial gainsin the PA of GS for rubber tree
395  breeding programs.

396 GSisexpected to increase the accuracy of selection, especially for traits that cannot be measured
397 directly from breeding candidates and for traits with low heritabilities (Meuwissen et al., 2001),
398  which was confirmed in this study: the selection gain with GS varied between 0.434 and 0.503,
399 whilethe genetic gain with classical breeding varied between 0.058 and 0.064 for AP and DAP,
400 respectively. Comparing the conventional model of genetic breeding (CBM) for rubber trees

401  with the use of GS applying the multi-environment strategy (MM, MDe and MDS), GS produced
402 agenetic gain 6.7 and 8.7 times higher for AP and DAP, respectively. GS also resulted in amore
403  balanced selection response in the two traits (DAP and AP) and thus is preferred over traditional
404  selection because of the time saved in the selection of superior genotypes.

405 Developing new rubber tree cultivars adaptable to non-traditional rubber growing regionsis
406 fundamental for the success of rubber tree plantations. Cultivars considered productive in some
407  regions of Brazil may behave differently in other areas of the same region, especially areas with
408 different edaphoclimatic characteristics. Several agroclimatic elements, such as prolonged low
409 temperature and low precipitation in the winter, are the major factors limiting the devel opment
410 and production of the rubber tree and contribute to alarge amount of variability in the behavior
411  of cultivars (Ortolani et al., 1996).

412  Inrubber trees, the time required to complete a breeding cycle and recommend a clone for

413 commercial production can span multiple decades and is mainly divided into three selection

414  stages. First, theaim isto obtain progenies by controlled or open pollination to establish

415 nurseries. At two and a half years, based on yield evaluations performed by early testing of yield,
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416  vigor, and tolerance to diseases, the breeding plants are selected and cloned for testing at a small
417 scale. In this second stage of the selection cycle, after the first two years of tapping, promising
418 clones are multiplied and subsequently evaluated in large-scale or regional trials. Thislast stage
419  usually takes some 12 to 15 years, until it is possible to recommend a clone for large-scale

420  cropping. It, therefore, takes approximately 30 years to complete the breeding cycle, from

421  controlled pollination to final cultivar recommendation (Gongalves and Fontes, 2012). The use of
422  GS could dramatically reduce the time required for completion of a cycle of genetic

423  improvement by eliminating progeny phenotypic testing aimed at selecting the best individuals
424  (replaced by GS), significantly accelerating the genetic gain relative to that obtained by classical
425  breeding. Another advantage of GSis that more candidate genotypes are generated; therefore,
426  the population size for selection aswell. All of these candidates are genotyped, and those with
427  thebest-predicted test cross values are evaluated in the field, which can be regarded as an

428  indirect selection.

429  With the rapid advances in and declining costs of genotyping methods, balanced against the
430 overall costs of managing large progeny trials and the potential for increased gains per unit time,
431  our cautiously optimistic expectation is that GS has excellent potential to beimplemented in
432  rubber tree breeding programs. However, further studies examining populations with a different
433  structure (which were not assessed in thisinitial work) are necessary before recommending GS
434  for operational implementation in tree breeding programs.
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574  Figurelegends

575 Figure 1. Correlation between phenotypes and predicted values (random CV partitions) with
576  standard deviations for the GBLUP kernel model (GB) and GK mode (GK) for the height of the
577  trees (AP) and circumference of the trunk (DAP).

578 Figure 2. Correlation between phenotypes and predicted values (random CV partitions) with
579 standard deviations for the single-environment, main genotypic effect model with the GBLUP
580 kernel method (SM-GB) and the single-environment, main genotypic effect model with the GK
581 method (SM-GK) for the height of the trees (AP) and circumference of the trunk (DAP) in low-
582  water (LW) and well-watered (WW) environments.

583 Figure 3. Prediction values for cross-validation (CV) partitions (CV2) and standard deviations
584  for the multi-environment, genotypic effect model with the GBLUP kernel (MM-GB), multi-
585  environment, main genotypic mode with the Gaussian kernel (MM-GK), multi-environment,
586 singlevariance GXE model with the GBLUP kernel (MDs-GB), multi-environment, single
587  variance GXE mode with the Gaussian kernel (MDs-GK), multi-environment, environment-
588  gpecific variance GXE model with the GBLUP kernel (MDe-GB), and multi-environment,

589  environment-specific variance GXE model with the Gaussian kernel (MDe-GK).

590 Figure4. Expected genetic gain (EGG) using the classical breeding method (CBM) and genomic
591  prediction without multi-environmental data (BSG), with the single-environment, main

592  genotypic effect model (SM), with the multi-environment, genotypic effect model (MM), with
593 the multi-environment, single variance GXE model (MDs), and with the multi-environment,

594  environment-specific variance GXE model (MDe) with the GK kernel method in the WW

595  environment.

596 Tables

597 Table 1. Phenotypic variation: heritability (H) of height (AP) and diameter (DAP), genotype x
598 environment interaction (GXE), residual (R) and genetic main effect (G) in the low-water (LW)
599 and well-watered (WW) environments considered together and alone, with p<.01 indicated by **

DAP AP DAP-LW DAP-WW AP-LW AP-WW
G 3.607** 0.115** 4.329** 3.690** 0.128** 0.089**
GxE 0.814** 0 - - - -
R 16.154 0.301 14.751 14.751 0.346 0.260
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H 0.600 0.750 0.340 0.330 0.420 0.410

600
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601 Table2. Estimates of different variance components for genomic selection (GS) models with no
602 environmental effect; only the GB and GK (SG) matrices; the single-environment, main

603  genotypic effect model (SM); the multi-environment, main genotypic effect model (MM); the
604  multi-environment, single variance GXE deviation model (MDs); and the multi-environment,
605 environment-specific variance GxE deviation model with the genomic best linear unbiased

606 predictor (GBLUP) and Gaussan kernel (GK) for two traits: plant height (AP) and plant

607 diameter (DAP).

Component DAP.GK |[DAP.GB |[AP.GK AP.GB
BSG G 0.750 0.230 0.070 0.040
E 2.000 2.170 0.040 0.060
G (WW) 1.102 1.101 0.062 0.069
SM G (LW) 2.528 2.691 0.105 0.140
E (WW) 1.532 1.773 0.037 0.052
E (LW) 2.628 3.164 0.047 0.065
MM 6.47 17.188 0.166 0.422
E 0.256 0.259 0.008 0.008
MDs G 6.515 17.568 0.167 0.433
E 0.127 0.15 0.004 0.004
MDe G 6.115 16.922 0.161 0.427
E 0.111 0.119 0.003 0.003
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