

1 Positional dynamics and glycosomal recruitment of developmental regulators during

2 trypanosome differentiation

3

4 Balázs Szöör ^{a#}, Dorina V. Simon ^a, Federico Rojas ^a, Julie Young ^a, Derrick R. Robinson ^b,

5 Timothy Krüger^c, Markus Engstler^c and Keith R. Matthews^{a##}

6

7 Running title: Trypanosome development

8

9 a. Institute for Immunology and Infection Research, School of Biological Sciences,
10 University of Edinburgh; Edinburgh, EH9 3JT, United Kingdom

11 b. CNRS, Microbiology Fundamental and Pathogenicity, MFP UMR 5234,
12 University of Bordeaux, 146 rue Léo Saignat, Batiment 3A - 1er étage,
13 33076 Bordeaux Cedex; Bordeaux, France.

14 c. Cell and Developmental Biology; University of
15 Würzburg; Biozentrum; Am Hubland; D-97074
16 Würzburg; Germany

17

18 5054 words

19

20 [#]Address correspondence to:

21 Balázs Szöör; Balazs.Szoor@ed.ac.uk

22 Keith R Matthews; keith.matthews@ed.ac.uk

23

24

25

26 **Abstract**

27

28 Glycosomes are peroxisome-related organelles that compartmentalise the glycolytic enzymes
29 in kinetoplastid parasites. These organelles are developmentally regulated in their number
30 and composition, allowing metabolic adaptation to the parasite's needs in the blood of
31 mammalian hosts or within their arthropod vector. A protein phosphatase cascade regulates
32 differentiation between parasite developmental forms, comprising a tyrosine phosphatase,
33 TbPTP1, that dephosphorylates and inhibits a serine threonine phosphatase TbPIP39 that
34 promotes differentiation. When TbPTP1 is inactivated, TbPIP39 is activated and during
35 differentiation becomes located in glycosomes. Here we have tracked TbPIP39 recruitment to
36 glycosomes during differentiation from bloodstream stumpy forms to procyclic forms.
37 Detailed microscopy and live cell imaging during the synchronous transition between life
38 cycle stages revealed that in stumpy forms, TbPIP39 is located at a periflagellar pocket site
39 closely associated with TbVAP, that defines the flagellar pocket endoplasmic reticulum.
40 TbPTP1 is also located at the same site in stumpy forms, as is REG9.1, a regulator of
41 stumpy-enriched mRNAs. This site provides a molecular node for the interaction between
42 TbPTP1 and TbPIP39. Within 30 minutes of the initiation of differentiation TbPIP39
43 relocates to glycosomes whereas TbPTP1 disperses to the cytosol. Overall, the study
44 identifies a 'stumpy regulatory nexus' (STuRN) that co-ordinates the molecular components
45 of life cycle signalling and glycosomal development during transmission of *Trypanosoma*
46 *brucei*.

47

48

49

50

51 **Importance**

52

53 African trypanosomes are parasites of sub-Saharan Africa responsible for both human and
54 animal disease. The parasites are transmitted by tsetse flies and completion of their life cycle
55 involves progression through several development steps. The initiation of differentiation
56 between blood and tsetse forms is signalled by a phosphatase cascade, ultimately trafficked
57 into peroxisome-related organelles called glycosomes that are unique to this group of
58 organisms. Glycosomes undergo substantial remodelling of their composition and function
59 during the differentiation step but how this is regulated is not understood. Here we identify a
60 cytological site where the signalling molecules controlling differentiation converge before the
61 dispersal of one of them into glycosomes. This coincides with a specialised ER site that may
62 contribute to glycosome developmental biogenesis or regeneration. In combination, the study
63 provides the first insight into the spatial co-ordination of signalling pathway components in
64 trypanosomes as they undergo cell-type differentiation.

65

66

67

68 **Introduction**

69 The dynamic regulation of organelle biogenesis or composition often involves intimate
70 contact between the endoplasmic reticulum and the membrane of the target organelle (1).
71 This enables the maturation and modification of organellar protein content, influencing
72 mitochondrial, Golgi or peroxisomal components, whereas inter-organelar contacts can also
73 contribute to signalling events within cells, bringing regulatory molecules into proximity, or
74 trafficking them for degradation (2). The protein contacts at the interface between organelles
75 are often diverse and characteristic of each organellar type, predominantly interacting with
76 vesicle associated membrane protein associated proteins (VAPs) on the ER membrane.

77 In addition to the conventional organelles typical of eukaryotic cells, evolutionarily
78 divergent kinetoplastid parasites are characterised by their possession of glycosomes,
79 specialist organelles that harbour the enzymes of glycolysis (3). Although unique in their
80 compartmentation of glycolytic enzymes, glycosomes are related to peroxisomes, sharing
81 with those organelles a similar (though divergent) machinery for import, insertion of
82 membrane proteins (PEX16, PEX19) and peroxisome proliferation, as well as their capacity
83 for either lipid, purine and pyrimidine biosynthesis (4). Glycosomes are also dynamic in
84 composition and number in response to the metabolic demands of the parasite, their synthesis
85 and turnover involving similar biogenesis and degradation mechanisms to those of the
86 peroxisomes of yeast and mammalian cells. This capacity for biosynthesis and turnover
87 enables peroxisomes and glycosomes to exploit different nutrient conditions or adapt to
88 different developmental forms.

89 Kinetoplastid parasites comprise pathogens of mammals that are frequently
90 transmitted by arthropod vectors. Among the best characterised and tractable are the African
91 trypanosomes, *Trypanosoma brucei*. These parasites live extracellularly in the bloodstream

92 and tissues of mammalian hosts, where they cause human sleeping sickness and the livestock
93 disease nagana (5, 6). Trypanosomes are spread by blood feeding tsetse flies, the passage
94 between the blood and the insect gut involving a switch from glucose based energy
95 metabolism to one reliant on amino acids (7). Pivotal to the successful colonisation of the
96 tsetse fly are so called ‘stumpy forms’, quiescent bloodstream forms that show several
97 adaptations for survival upon uptake by tsetse flies (8), including partial elaboration of their
98 mitochondrion in preparation for the switch from glucose-dependent energy generation *via*
99 glycolysis (9-12). Stumpy forms arise from proliferative slender forms in the bloodstream in
100 a quorum sensing response dependent upon parasite density (13). This results in the
101 accumulation of uniform populations of stumpy forms that are cell cycle arrested in G1/G0
102 and sensitised for differentiation when taken up in a tsetse fly blood meal (14), this
103 culminating in the production of a population of differentiated procyclic forms that colonise
104 the tsetse midgut. The same transition can also be enacted *in vitro* by exposing stumpy forms
105 to reduced temperature and *cis*-aconitate/citrate, this generating a highly synchronised
106 differentiation model allowing cytological events to be readily tracked and quantitated in the
107 population (15).

108 The signalling events that stimulate the differentiation of stumpy forms to procyclic
109 forms are quite well characterised. Thus, stumpy forms are held poised for differentiation by
110 the action of a negative regulator of differentiation, TbPTP1, a tyrosine specific phosphatase
111 (16, 17). A substrate of TbPTP1 is the DxDXT/V class serine threonine phosphatase
112 TbPIP39, which is dephosphorylated on tyrosine 278 by TbPTP1, this interaction reducing
113 the activity of TbPIP39 and so preventing differentiation (18). When exposed to reduced
114 temperature, as would occur during a tsetse bloodmeal (19), blood citrate is transported by
115 ‘PAD’ proteins whose expression is elevated on stumpy forms at 20°C (20). When exposed to
116 citrate/*cis*-aconitate, TbPTP1 is inactivated and TbPIP39 becomes phosphorylated and

117 activated, this stimulating differentiation of the parasites. Interestingly, sequence analysis of
118 TbPIP39 revealed the presence of a PTS1 glycosomal localisation motif (-SRL) and this
119 localisation was confirmed in procyclic forms by both its co-localisation with glycosomal
120 markers (17) and its detection in glycosomal proteome analysis (21). This linked
121 differentiation signalling in the bloodstream form parasites with glycosomal signalling during
122 differentiation, with TbPIP39 being expressed in stumpy forms but not slender forms and
123 being localised in glycosomes in procyclic forms.

124 Here we have exploited the differential expression and glycosomal location of
125 TbPIP39 to explore the spatial positioning of differentiation signalling molecules during the
126 transformation of stumpy forms to procyclic forms. Our results reveal the coincidence of
127 TbPIP39 and TbPTP1 in bloodstream stumpy forms at a novel periflagellar pocket location,
128 closely associated with a flagellar pocket ER contact site defined by TbVAP (22). This
129 provides a novel signalling response linking environmental perception with organellar
130 dynamics during the developmental cycle of the parasites and provides the earliest yet
131 identified event in the initiation of trypanosome differentiation.

132 **Results**

133 *TbPIP39 redistributes during synchronous differentiation*

134 TbPIP39 is expressed in stumpy forms but not slender forms, and is maintained in
135 established procyclic forms in glycosomes (17). To assay the recruitment of TbPIP39 to
136 glycosomes during differentiation we analysed parasites undergoing synchronous
137 development from stumpy to procyclic forms. Specifically, a stumpy enriched (80-90%)
138 population was stimulated to undergo differentiation by exposure to 6mM *cis*-aconitate *in*
139 *vitro*. Interestingly, the stumpy form location of TbPIP39 was distinct from that of the
140 glycosomal marker protein glycosomal triosephosphate isomerase (gTIM). Rather than being
141 detected in a punctate location throughout the cell typical of glycosomal staining, there was a
142 concentration of staining close to the enlarged flagellar pocket, positioned between the
143 nucleus and kinetoplast of the cell (Figure 1A). In contrast, procyclic forms exhibited the
144 expected distribution of TbPIP39, where co-localisation with both glycosomal aldolase and
145 gTIM was evident. To quantitate this location, slender, stumpy and procyclic form parasites
146 were co-stained for TbPIP39 and gTIM, or for aldolase and gTIM and analysed by confocal
147 microscopy, with co-localisation determined by global Pearson correlation using Volocity
148 software (Figure 1B). This confirmed that aldolase and gTIM showed correlation of >0.8 in
149 each life cycle stage consistent with the ubiquitous expression of these marker glycosomal
150 proteins. In contrast, the correlation of TbPIP39 and gTIM was less than 0.15 in slender
151 forms (where TbPIP39 is not expressed at significant levels), and less than 0.2 in stumpy
152 forms (where TbPIP39 is expressed), whilst in procyclic forms the correlation was over 0.8
153 This indicated that TbPIP39 may be recruited to glycosomes during the differentiation
154 between bloodstream and procyclic forms.

155

156 To analyse the kinetics of recruitment, the distribution of TbPIP39 and gTIM were
157 analysed at time points after exposure of stumpy form parasites to 6mM *cis*-aconitate *in vitro*.
158 Figure 2A, B demonstrates that the periflagellar pocket staining of TbPIP39 was detectable at
159 0, 20 and 60 minutes following exposure to *cis*-aconitate, but was lost beyond that point.
160 Conversely, a punctate glycosomal signal for TbPIP39 that co-localised with gTIM was
161 detectable by 20 minutes, such that both a glycosomal and periflagellar location was present
162 for TbPIP39 at this early time point. At 60 minutes the periflagellar staining was still
163 detectable on some cells but the glycosomal staining was more emphasised and beyond this
164 timepoint, the staining was mainly glycosomal.

165 To quantitate the redistribution of the TbPIP39 signal, 250 cells were scored at each
166 time point after exposure to *cis*-aconitate and the parasites assayed for signal either at the
167 periflagellar pocket region alone, at the periflagellar pocket region and glycosomes or in
168 glycosomes alone. Figure 3A demonstrates that there was a transition during differentiation,
169 with a predominantly glycosomal signal evident at 30 minutes and beyond in the
170 differentiation time course. In contrast, parasites maintained *in vitro* at 27 °C without *cis*-
171 aconitate retained the signal close to the flagellar pocket, although there was also some
172 glycosomal staining evident in some (20-50%) of the cells at 20 minutes and beyond.
173 However, few (5%) cells exhibited only glycosomal staining, unlike when differentiation was
174 stimulated with *cis*-aconitate, where >95% exhibited exclusively glycosomal location at 24h.
175 A global Pearson correlation analysis of parasites undergoing differentiation demonstrated
176 that the colocalization of TbPIP39 and gTIM increased from around 30% at 30 minutes to
177 nearly 80% at 120 minutes, highlighting the rapidity of the redistribution. In contrast, in the
178 absence of *cis*-aconitate, the correlation never exceeded 40% (Figure 3B). The correlation
179 between aldolase and gTIM in the same analysis in contrast was consistently above 80%

180 demonstrating the stability of the co-localisation between these glycosomal markers through
181 the differentiation time course.

182

183 *Cytological analysis of the periflagellar staining of TbPIP39 in stumpy and differentiating*
184 *cells*

185

186 To examine the unusual periflagellar pocket location of TbPIP39 in stumpy forms more
187 closely, we carried out confocal microscopy to visualise the three-dimensional distribution of
188 TbPIP39 at 30 minutes after exposure to *cis*-aconitate. Figure 3C shows the concentration of
189 the TbPIP39 around the flagellar pocket of the cell. As expected at 30 minutes after exposure
190 to *cis*-aconitate, TbPIP39 was also detected in the glycosomal material anterior of the
191 nucleus. Cells were also examined by deconvolution fluorescence microscopy after labelling
192 for TbPIP39 and the lysosomal marker, p67 (Figure 4A). This again demonstrated the
193 periflagellar pocket location of TbPIP39 but revealed that the signal was not evenly
194 distributed around the flagellar pocket periphery but rather concentrated at discrete foci
195 around the pocket. Furthermore, in cells where the flagellar pocket was collapsed during
196 fixation, the TbPIP39 focused to a tight point supporting the distribution of the signal around,
197 not in the flagellar pocket (Figure 4B). The site of TbPIP39 localisation was also investigated
198 by immunoelectron microscopy (Figure 5A-E). Although signal was not abundant we were
199 able to detect clusters of TbPIP39 labelling within the lumen of membrane bound structures
200 and at vesicle membranes distinct from the flagellar pocket membrane and close to
201 glycosomes in this region of the cell.

202 Finally, to evaluate whether the periflagellar pocket location of TbPIP39 was an
203 artefact of indirect immunofluorescence we generated cell lines with TbPIP39 fused to
204 mNeon (Figure S1A) and used live cell imaging to detect the fluorescent protein in stumpy

205 forms restrained in a hydrogel matrix. Figure S1B (movie S1A) revealed that in stumpy
206 forms the fluorescent protein localised at the same periflagellar pocket site as previously
207 visualised by immunofluorescence microscopy, a profile also seen with a YFP-TbPIP39
208 fusion protein (shown later in Figure 7C). Moreover, the signal redistributed to glycosomes in
209 parasites exposed to *cis*-aconitase for 2 h, and 24 h (movie S1B, movie S1C).

210 Combined our results demonstrated that TbPIP39 was positioned close to, but not in,
211 the flagellar pocket of the stumpy form parasites and distributed to glycosomes within 1-2h
212 of the initiation of their differentiation to procyclic forms.

213

214 *Glycosomal dynamics during differentiation upon TbPIP39 depletion*

215

216 During differentiation between stumpy forms and procyclic forms there is turnover of
217 the glycosomal population presumably contributing to the metabolic adaptation of the
218 parasites as they enter the tsetse fly. To determine whether TbPIP39 recruitment contributed
219 to the control of glycosomal turnover and maturation during differentiation, we analysed the
220 distribution of glycosomal aldolase and the lysosomal marker p67 during differentiation with
221 TbPIP39 either depleted or not by RNAi. Previously, lysosomal and glycosomal staining
222 patterns during differentiation have been subjectively categorised according to the
223 distribution of aldolase and p67 in several cytological subtypes (A-E)(23). To determine if
224 glycosomal/lysosomal dynamics were perturbed by reduced TbPIP39 recruitment during
225 differentiation, pleomorphic *T. brucei* EATRO 1125 AnTat1.1. 90:13 bloodstream form
226 parasites - competent for stumpy formation and inducible RNA interference - were generated
227 able to deplete TbPIP39 under doxycycline regulation. When grown in mice provided either
228 with or without doxycycline in their drinking water, uniform populations of stumpy forms
229 were generated where TbPIP39 mRNA was targeted for RNAi, or not. In mice, the low levels

230 of TbPIP39 were not significantly further reduced by RNAi and normal differentiation to
231 stumpy forms occurred, as previously seen (18). However, when these stumpy form
232 populations were induced to differentiate to procyclic forms with *cis*-aconitate, the normal
233 increase of TbPIP39 levels was not observed over 24h, supporting RNAi mediated depletion
234 during differentiation (Figure 6A). Over this period, procyclin expression occurred but was
235 less efficient than in uninduced parasites, highlighting delayed or reduced differentiation with
236 a reduction in TbPIP39, as previously reported (18).

237 To determine the consequences of TbPIP39 RNAi for the glycosomal and lysosomal
238 configurations, cells were assayed during differentiation for the abundance of each
239 glycosomal/lysosomal category (A to E) subjectively defined by (23) (Figure 6B). We
240 observed no clear change in the distribution of the glycosome and lysosomal signal either in
241 the presence or absence of *cis*-aconitate, or when TbPIP39 was depleted or not. The
242 differentiated cells were also allowed to proliferate as procyclic forms for five days after the
243 initiation of differentiation with TbPIP39 RNAi depletion maintained or not with
244 doxycycline. Figure 6C demonstrates that although TbPIP39 remained significantly reduced
245 with RNAi induction in the differentiated procyclic cells, these grew at an equivalent level to
246 cells where TbPIP39 was not depleted.

247 We conclude that preventing the accumulation of TbPIP39 by RNAi does not
248 significantly alter the changes in the glycosomal dynamics during differentiation from
249 stumpy forms to procyclic forms. Moreover, differentiated procyclic forms do not require
250 abundant TbPIP39 to sustain *in vitro* growth. Instead the dominant function of TbPIP39
251 under the growth conditions used appears to be restricted to regulating the efficiency of
252 differentiation between bloodstream and procyclic forms.

253

254

255 *TbPTP1 and REG9.1 localise close to TbPIP39 in stumpy forms*

256 TbPIP39 is negatively regulated by the tyrosine phosphatase TbPTP1 that acts as an inhibitor
257 of differentiation in stumpy forms. Previously, TbPTP1 had been difficult to localise using
258 antibody specific for that molecule (16), and so we clarified its localisation with respect to
259 TbPIP39 using an inducible N-terminally Ty1 epitope tagged copy (Figure 7A). Here,
260 TbPTP1 was detected at the discrete periflagellar pocket location, with TbPIP39 co-labelling
261 confirming that the location of the two signalling phosphatases was coincident in stumpy
262 forms (Figure 7B). After 1h exposure to *cis*-aconitate, TbPIP39 relocated to glycosomes as
263 seen earlier, whereas TbPTP1 became more diffuse at the periflagellar pocket site and by 4 h
264 the signal was distributed throughout the cell body in the differentiating cells.

265 The TbPIP39/TbPTP1 node was also similar to the location of REG9.1, a regulator of
266 stumpy specific transcripts previously observed at the periflagellar pocket region of stumpy
267 forms, in addition to along the flagellum or FAZ (26). Therefore, we colocalised REG9.1
268 with TbPIP39 using a REG9.1 specific antibody and YFP-tagged TbPIP39 during
269 differentiation and observed redistribution from the periflagellar pocket node to the
270 cytoplasmic distribution previously in stumpy forms within 4 h (Figure 7C). Hence,
271 TbPTP39, TbPTP1 and REG9.1 are all colocalised in stumpy forms at the same cellular site
272 before their redistribution and separation at the onset of differentiation.

273

274 *The periflagellar location of TbPIP39 and TbPTP1 coassociates with flagellar pocket ER.*

275

276 The observed location of TbPIP39 in stumpy forms was reminiscent of a specialised
277 region of the ER at the flagellar pocket identified by electron tomography of procyclic form
278 cells (22). This region of the cell is defined by the presence of TbVAP, a flagellum

279 attachment zone (FAZ) ER membrane contact protein. TbVAP depletion by RNAi in
280 procyclic forms results in loss of the FAZ ER and flagellar pocket ER, but no detectable
281 growth deficit (22). To determine if the TbPIP39 location in stumpy forms associated at the
282 flagellar pocket ER, we colocalised TbPIP39 with TbVAP detected by its incorporation of N
283 terminal mNEON Ty1 epitope tag and expression in pleomorphic cells. Figure 8A
284 demonstrates that the TbPIP39 and TbVAP signals are closely-located in the flagellar pocket
285 region of stumpy forms, but not completely coincident, with TbPIP39 sometimes between
286 two separated TbVAP foci. Matching previous analysis in procyclic form cells (22), TbVAP
287 signal also extended along the flagellum attachment zone with further staining in the cell
288 body.

289 To explore the association of TbPIP39 and TbVAP at this periflagellar pocket
290 location in more detail, we exploited CRISPR to delete the TbVAP gene in pleomorphic
291 bloodstream form trypanosomes (24). Thus, the Cas9 expressing cell line *T. brucei* EATRO
292 1125 AnTat90:13 J1339 (25) was transfected with repair templates targeted to the TbVAP
293 gene genomic location, and mutants were isolated (Figure S2A). The resulting cell lines were
294 found to retain a TbVAP gene copy despite their successful insertion of the drug resistance
295 gene (Figure S2B); further attempts to delete the remaining allele were unsuccessful. These
296 TbVAP depleted cells exhibited stumpy formation *in vivo* with similar kinetics as wild type
297 cells (Figure 8B) allowing the location of TbPIP39 and its relocation after the initiation of
298 differentiation to procyclic forms to be assayed.

299 In TbVAP single KO stumpy forms, TbPIP39 was detected at the periflagellar pocket
300 location, similar to that seen in wild type parasites. Correspondingly, when cells were
301 induced to differentiate to procyclic forms with *cis*-aconitase, TbPIP39 relocated to
302 glycosomes and the cells expressed procyclin, indicating that TbVAP depletion did not alter
303 glycosomal TbPIP39 loading or differentiation (not shown). However, when the TbVAP

304 single KO cells were analysed after 24h in differentiation conditions (*i.e.* with *cis*-aconitate)
305 the parasites appeared enlarged and rounded and were dying, unlike wild type parasites at this
306 time point (Figure 8C) (mean=82% from an analysis of three independent null mutant lines,
307 versus 13% and 14% in the parental and VAP-Ty1 line, respectively, n=250 cells per sample;
308 Figure 8D). Thus, both alleles of TbVAP are necessary for the viability of differentiating
309 cells, but not for the normal relocation of TbPIP39 early in the process.
310
311

312 **Discussion**

313

314 The differentiation of African trypanosomes between life cycle stages is enacted rapidly upon
315 transition from the blood of mammalian hosts to the midgut of the tsetse fly. We have shown
316 previously that two phosphatases are important in the signalling of the changes from one
317 environment to the next, TbPTP1 and TbPIP39. Of these TbPIP39 is glycosomal in procyclic
318 forms, signalled through its C terminal PTS 1. Here we show that when first made in stumpy
319 forms, TbPIP39 is not glycosomal but rather is localised at a periflagellar pocket region of
320 the parasite where it colocalises with the differentiation inhibitor, TbPTP1. However, upon
321 reception of the differentiation signal TbPIP39 is rapidly (within approximately 20 minutes)
322 relocated into glycosomes, whereas TbPTP1 becomes dispersed to a non-glycosomal,
323 possibly cytosolic site. It is also coincident with the location of a regulator of stumpy form
324 transcripts, REG9.1. Interestingly, this periflagellar pocket site is close to the specialised
325 FAZ endoplasmic reticulum, defined by TbVAP, that may represent a site of glycosomal
326 biogenesis in the differentiating cells. We propose this molecular node comprising TbPIP39,
327 TbPTP1 and REG9.1 generates a ‘stumpy regulatory nexus’ (STuRN) where the events
328 initiating differentiation between bloodstream and procyclic forms occur.

329 The biogenesis of peroxisomes and glycosomes can involve new organelles that arise
330 from pre-existing peroxisomal/glycosomal structures or *de novo* synthesis from the
331 endoplasmic reticulum. However, in eukaryotes subject to environmental change, peroxisome
332 composition can be modulated to allow metabolic adaptation, and this can be achieved by *de*
333 *novo* loading from the ER (27) as well as the growth and division of existing glycosomes.
334 The dynamics of environmental adaptation in procyclic form parasites have been analysed
335 both during differentiation and upon exposure of procyclic forms to low and high glucose
336 concentrations. In differentiation, autophagy is considered important due to the co-

337 association of lysosomes and glycosomes early in the transition between stumpy and
338 procyclic forms (23). The assessment of this is relatively subjective and we observed limited
339 co-association between the lysosomal marker p67 and glycosomal aldolase during
340 synchronous differentiation, at least in the first 2 hours. In contrast, TbPIP39 relocated from
341 the STuRN to glycosomes within 20 minutes, this region being neither the flagellar pocket
342 lumen or the flagellar pocket membrane. Instead the STuRN was adjacent to a specialised
343 region of the endoplasmic reticulum that has been visualised by electron tomography of
344 procyclic forms cells (22) and is also the site of ER concentration in procyclic forms in low
345 glucose. In this region of the cell, ER is associated with both the flagellar pocket and
346 flagellum attachment zone, the region being defined by TbVAP, an orthologue of VAMP
347 associated protein. This molecule is proposed to co-ordinate ER in this region of the cell
348 through linking the specialised four microtubules positioned at the flagellar pocket region of
349 the cytoskeleton to the endoplasmic reticulum or controlling interaction between central ER
350 and the flagellar pocket associated ER. In a previous study, procyclic form viability was not
351 compromised by efficient RNA interference targeting TbVAP suggesting that it is not
352 essential or that significant depletion of its protein levels after RNA interference does not
353 compromise cell viability and replication. By CRISPR/Cas9 mediated gene deletion we also
354 found that bloodstream forms were viable after the deletion of one allele although both alleles
355 could not be deleted. This may reflect that the protein is essential, contrasting with RNAi-
356 depletion experiments, although technical reasons cannot be excluded. Interestingly, however
357 the TbVAP single KO mutants – although able to initiate differentiation between stumpy and
358 procyclic forms - lost cell integrity after 24h, and appeared swollen and balloon like. This
359 suggests that the levels of this molecule are important during differentiation.

360 Our data invoke a model where in stumpy forms TbPIP39 is poised for glycosome
361 recruitment through its recruitment to the STuRN in a pre-glycosomal concentration similar

362 to pre-peroxisomal vesicles (Figure 9). At this site, the presence of TbPTP1 inhibits its
363 activity. With the initiation of differentiation however, TbPTP1 is inactivated and the
364 TbPIP39 protein is activated by phosphorylation through the activity of an -as yet-
365 unidentified kinase and assembled into glycosomes where it can no longer be accessed by
366 TbPTP1. Removing the inhibitor TbPTP1 from its substrate, TbPIP39, renders the
367 differentiation signalling irreversible - a commitment event that has been mapped to
368 approximately 1 hour after exposure to citrate/*cis*-aconitate (18, 28), coincident with the
369 dispersal of TbPIP39 and TbPTP1 in differentiating cells. The glycosomal pool rapidly turns
370 over through autophagy during differentiation, but the loading of new glycosomes generated
371 at the flagellar pocket region allows the remodelling of the glycosomal pool to its procyclic
372 composition. It remains to be established whether TbPIP39 activity is necessary in the mature
373 glycosomes that arise during differentiation or in procyclic forms, since TbPIP39 RNAi did
374 not affect the growth of differentiated cells *in vitro*. It will be interesting to explore the fitness
375 of procyclic forms depleted of TbPIP39 in different culture conditions more closely
376 mimicking conditions in the fly gut, such as when alternative carbon sources are available
377 (29, 30).

378 The synchronous differentiation of trypanosome parasites and their developmental
379 adaptation of glycosomal composition provides a unique capability to explore the dynamics
380 of organellar development in an evolutionary divergent eukaryotic model. This study
381 provides the first temporal and positional tracking of signalling molecules, organellar
382 compartments and contact points at the STuRN, a potential site of glycosomal
383 biogenesis/regeneration as the parasite initiates its metabolic adaptation to a nutritionally
384 distinct environment. Coupled with the high definition understanding of the structural
385 organisation and cytoskeletal interactions in this region of the highly-ordered parasite cell

386 (31-33), trypanosomes provide an invaluable model for the precise regulation and kinetics of
387 inter-organellar exchange in a eukaryotic cell.

388

389

390 **Acknowledgements**

391

392 We thank Professor Paul Michels, University of Edinburgh, for advice and constructive
393 comments on the manuscript. DVS was supported by Erasmus+Mobility grant. DRR was
394 supported by internal grants (CNRS and university of Bordeaux) and support from the ANR,
395 LABEX ParaFrap, ANR-11-LABX-0024 (<http://www.labex-parafrap.fr/fr>). ME is supported
396 by DFG grants EN305, GRK2157 and SPP1726. Research in KRM's laboratory is funded by
397 a Wellcome Trust Investigator award (103740/Z14/Z) and Royal Society Wolfson Research
398 Merit award (WM140045).

399 The funders had no role in study design, data collection and interpretation, or the decision to
400 submit the work for publication.

401 **Materials and Methods**

402

403 **Parasites**

404 ***Cell lines and culturing in vitro***

405 Pleomorphic *Trypanosoma brucei* EATRO 1125 AnTat1.1 90:13 (TETR T7POL NEO HYG)

406 (19) and EATRO AnTat 1.1 J1139 (25) parasites were used throughout.

407 Pleomorphic bloodstream and double marker 29-13 procyclic form trypanosomes (34) were

408 cultured *in vitro* in HMI-9 (35) medium at 37°C 5% CO₂ or in SDM-79 (36) medium at 27°C

409 respectively.

410 The following selective drugs were used:

411 Hygromycin (2.5 µG/mL), Puromycin (0.5 µG/mL) and Blasticidin (2.5 µG/mL).

412

413 ***In vivo studies***

414 Trypanosome infections were carried out in female healthy outbred MF1 mice at least 10

415 weeks old, immunocompromised with 25mg/ml cyclophosphamide delivered

416 intraperitoneally 24 h prior to trypanosome infection.

417

418 No blinding was performed and the animals were not subject to previous procedures or drug

419 treatment. Animal experiments were carried out according to the United Kingdom Animals

420 (Scientific Procedures) Act under a license (PPL60/4373) issued by the United Kingdom

421 Home Office and approved by the University of Edinburgh local ethics committee. Animals

422 were kept in cages containing 1-5 mice on a 12h daylight cycle and maintained at room

423 temperature.

424

425 *In vivo* growth involved intraperitoneal injection of 10^5 parasites into cyclophosphamide-
426 treated mice and the course of parasitaemia was recorded by performing daily tail-snips to
427 estimate parasite numbers using a ‘rapid matching’ method involving visual comparisons of
428 live parasites in blood by microscopy with a published standardized chart of parasite numbers
429 per ml (37).

430

431 Ectopically expressed gene expression was induced by inclusion of doxycycline (200 mg/mL
432 in 5% sucrose) in the drinking water, with control mice being provided with 5% sucrose
433 alone. Between 2 and 3 mice were used per group.

434

435 Stumpy-enriched populations were obtained 6–7 d after infection by DEAE cellulose
436 purification (38).

437

438 For the initiation of differentiation conditions were used as described in (17).

439

440 ***Parasite transfection***

441 Parasite transfection was by Amaxa nucleofection according to previous detailed methods for
442 pleomorphic (39) and 29-13 procyclic form parasites (40).

443

444 **Plasmid construction and cell line generation**

445 ***Generating endogenously tagged TbPIP39 pleomorph cell lines***

446 Primers 1.-4. were used to endogenously tag the N-terminus of TbPIP39 using pPOTv4YFP
447 and pPOTv6 mNEONgreen plasmids according to (41).

448

449 ***Generating endogenously tagged TbPTP1 pleomorph cell lines***

450 The TbPTP1 open reading frame was amplified from *T. brucei* EATRO 1125 AnTat1.1 wild-
451 type genomic DNA by PCR using Primer 5 and Primer 6 (Table S1) with SpeI and Bgl II
452 restriction sites for insertion into the pDex577-Y vector (42) for tetracycline-inducible
453 overexpression with an N-terminal Ty1 epitope tag. The resulting overexpression constructs
454 were linearized with NotI and transfected into *Trypanosoma bucei* EATRO 1125 AnTat1.1
455 90:13 pleomorphs cells. Several independent cell lines were isolated and their growth
456 analyzed *in vitro* or *in vivo* in the presence or absence of tetracycline, or doxycycline,
457 respectively. Expression was confirmed by Western blotting using an anti-Ty1 antibody.

458

459 ***Generating endogenously tagged and knockout TbVAP pleomorph cell lines***

460 The LeishGEdit program was used (24) to design oligonucleotide primers (Table S1 Primers
461 7-11) to produce DNA fragments and sgRNAs for the production of Ty1 mNEONGreen
462 tagged VAP and KO VAP cell lines. To create the KO and endogenously tagged pleomorph
463 cell lines EATRO AnTat 1.1 J1139 cells were transfected as described in(25).

464 Several independent cell lines were isolated and their growth analyzed *in vitro* or *in vivo*.
465 Pleomorph cell lines with the mNEON-Ty1 tagged TbVAP was identified by Western
466 blotting and immunofluorescence using an anti-Ty1 antibody.

467 Several TbVAP knockout cell line candidates were isolated, and genomic DNA were purified
468 (QIAGene GenomicDNA kit). The genomic DNAs were used in PCR reactions to confirm
469 the presence of the Blastocidine drug resistance cassette (replacing the endogenous TbVAP)
470 (Table S1 primers 7-10) and also the lack of the endogenous TbVAP gene (Table S1 primers
471 14-15). TbPIP39 RNAi lines were described in (17).

472

473 **Western blotting, immunofluorescence and confocal, Immuno Electronmicroscopy and**
474 **live cell microscopy**

475

476 Protein expression analyses by Western blotting were carried out according to (17) with

477 antibody concentrations detailed in Table S2.

478

479 Approximately 1×10^9 EATRO AnTat1.1 90:13 stumpy (around 90-95% cells of the isolated

480 cells were stumpy forms, the rest were intermediates) cells from mice were purified on DE52

481 column in PSG buffer. After purification, cells were resuspended in HMI9 at 4×10^6 /ml and

482 left in a 37°C CO_2 incubator for 60 mins to recover. Then the culture was divided into two

483 aliquots and $\sim 5 \times 10^8$ stumpy cells treated with *cis*-aconitate (+ CA sample) and 5×10^8 stumpy

484 cells left untreated (-CA sample). After 60 mins CA induction cells were harvested by

485 centrifugation, washed in 15 ml of vPBS and repelleted, before resuspension in 10 ml vPBS

486 (2.5×10^8 cells/10 ml). Immunofluorescence was carried out according to (20) using the

487 antibody concentrations in Table S2. Phase-contrast and Immunofluorescence microscopy

488 images were captured on a Zeiss axioskop2 (Carl Zeiss microimaging) with a Prior Lumen

489 200 light source using a QImaging Retiga 2000RCCD camera; the objective was a Plan

490 Neofluar $\times 63$ (1.25 NA). Images were captured via QImage (QImaging). Cells were captured

491 for confocal microscopy or processed for immunoelectron or live cell microscopy as

492 described in Text S1.

493

494

495

496

References

497

- 498 1. Wu H, Carvalho P, Voeltz GK. 2018. Here, there, and everywhere: The importance of
499 ER membrane contact sites. *Science* 361.
- 500 2. Eden ER, White IJ, Tsapara A, Futter CE. 2010. Membrane contacts between
501 endosomes and ER provide sites for PTP1B-epidermal growth factor receptor
502 interaction. *Nat Cell Biol* 12:267-72.
- 503 3. Allmann S, Bringaud F. 2017. Glycosomes: A comprehensive view of their metabolic
504 roles in *T. brucei*. *Int J Biochem Cell Biol* 85:85-90.
- 505 4. Bauer S, Morris MT. 2017. Glycosome biogenesis in trypanosomes and the de novo
506 dilemma. *PLoS Negl Trop Dis* 11:e0005333.
- 507 5. Kennedy PG. 2013. Clinical features, diagnosis, and treatment of human African
508 trypanosomiasis (sleeping sickness). *Lancet Neurol* 12:186-94.
- 509 6. Giordani F, Morrison LJ, Rowan TG, HP DEK, Barrett MP. 2016. The animal
510 trypanosomiases and their chemotherapy: a review. *Parasitology* 143:1862-1889.
- 511 7. Bringaud F, Riviere L, Coustou V. 2006. Energy metabolism of trypanosomatids:
512 adaptation to available carbon sources. *Mol Biochem Parasitol* 149:1-9.
- 513 8. Silvester E, McWilliam KR, Matthews KR. 2017. The Cytological Events and
514 Molecular Control of Life Cycle Development of *Trypanosoma brucei* in the
515 Mammalian Bloodstream. *Pathogens* 6.
- 516 9. Vickerman K. 1965. Polymorphism and mitochondrial activity in sleeping sickness
517 trypanosomes. *Nature* 208:762-6.
- 518 10. Brown RC, Evans DA, Vickerman K. 1973. Changes in oxidative metabolism and
519 ultrastructure accompanying differentiation of the mitochondrion in *Trypanosoma*
520 *brucei*. *Int J Parasitol* 3:691-704.
- 521 11. van Grinsven KW, Van Den Abbeele J, Van den Bossche P, van Hellemond JJ,
522 Tielens AG. 2009. Adaptations in the glucose metabolism of procyclic *Trypanosoma*
523 *brucei* isolates from tsetse flies and during differentiation of bloodstream forms.
524 *Eukaryot Cell* 8:1307-11.
- 525 12. Dewar CE, MacGregor P, Cooper S, Gould MK, Matthews KR, Savill NJ, Schnaufer
526 A. 2018. Mitochondrial DNA is critical for longevity and metabolism of transmission
527 stage *Trypanosoma brucei*. *PLoS Pathog* 14:e1007195.

- 528 13. Vassella E, Reuner B, Yutzy B, Boshart M. 1997. Differentiation of African
529 trypanosomes is controlled by a density sensing mechanism which signals cell cycle
530 arrest via the cAMP pathway. *J Cell Sci* 110 (Pt 21):2661-71.
- 531 14. Matthews KR, Gull K. 1994. Evidence for an interplay between cell cycle progression
532 and the initiation of differentiation between life cycle forms of African trypanosomes.
533 *J Cell Biol* 125:1147-56.
- 534 15. Ziegelbauer K, Quinten M, Schwarz H, Pearson TW, Overath P. 1990. Synchronous
535 differentiation of *Trypanosoma brucei* from bloodstream to procyclic forms in vitro.
536 *Eur J Biochem* 192:373-8.
- 537 16. Szoor B, Wilson J, McElhinney H, Tabernero L, Matthews KR. 2006. Protein
538 tyrosine phosphatase TbPTP1: a molecular switch controlling life cycle differentiation
539 in trypanosomes. *J Cell Biol* 175:293-303.
- 540 17. Szoor B, Ruberto I, Burchmore R, Matthews K. 2010. A novel phosphatase cascade
541 regulates differentiation in trypanosomes via a glycosomal signaling pathway. *Genes*
542 and *Development* 24:1306-1316.
- 543 18. Szoor B, Dyer N, Ruberto I, Acosta Serrano A, K. M. 2013. Independent pathways
544 can transduce the life-cycle differentiation signal in *Trypanosoma brucei*. *PLOS*
545 *Pathogens* 10.1371/journal.ppat.1003689.
- 546 19. Engstler M, Boshart M. 2004. Cold shock and regulation of surface protein trafficking
547 convey sensitization to inducers of stage differentiation in *Trypanosoma brucei*.
548 *Genes Dev* 18:2798-811.
- 549 20. Dean S, Marchetti R, Kirk K, Matthews KR. 2009. A surface transporter family
550 conveys the trypanosome differentiation signal. *Nature* 459:213-7.
- 551 21. Colasante C, Ellis M, Ruppert T, Voncken F. 2006. Comparative proteomics of
552 glycosomes from bloodstream form and procyclic culture form *Trypanosoma brucei*
553 brucei. *Proteomics* 6:3275-93.
- 554 22. Lacomble S, Vaughan S, Deghelt M, Moreira-Leite FF, Gull K. 2012. A
555 *Trypanosoma brucei* protein required for maintenance of the flagellum attachment
556 zone and flagellar pocket ER domains. *Protist* 163:602-15.
- 557 23. Herman M, Perez-Morga D, Schtickzelle N, Michels PA. 2008. Turnover of
558 glycosomes during life-cycle differentiation of *Trypanosoma brucei*. *Autophagy*
559 4:294-308.

- 560 24. Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E. 2017. A CRISPR Cas9
561 high-throughput genome editing toolkit for kinetoplastids. *R Soc Open Sci* 4:170095.
- 562 25. Rojas F, Silvester E, Young J, Milne R, Tettey M, Houston DR, Walkinshaw M,
563 Pérez-Pi I, Auer M, Denton H, Smith TK, Thompson J, Matthews KR. 2018.
564 Oligopeptide signaling through TbGPR89 drives trypanosome quorum sensing. *Cell*,
565 in press.
- 566 26. Rico E, Ivens A, Glover L, Horn D, Matthews KR. 2017. Genome-wide RNAi
567 selection identifies a regulator of transmission stage-enriched gene families and cell-
568 type differentiation in *Trypanosoma brucei*. *PLoS Pathog* 13:e1006279.
- 569 27. Kalel VC, Schliebs W, Erdmann R. 2015. Identification and functional
570 characterization of *Trypanosoma brucei* peroxin 16. *Biochim Biophys Acta*
571 1853:2326-37.
- 572 28. Domingo-Sananes MR, Szoor B, Ferguson MA, Urbaniak MD, Matthews KR. 2015.
573 Molecular control of irreversible bistability during trypanosome developmental
574 commitment. *J Cell Biol* 211:455-68.
- 575 29. Wargnies M, Bertiaux E, Cahoreau E, Ziebart N, Crouzols A, Morand P, Biran M,
576 Allmann S, Hubert J, Villafraz O, Millerioux Y, Plazolles N, Asencio C, Riviere L,
577 Rotureau B, Boshart M, Portais JC, Bringaud F. 2018. Gluconeogenesis is essential
578 for trypanosome development in the tsetse fly vector. *PLoS Pathog* 14:e1007502.
- 579 30. Mantilla BS, Marchese L, Casas-Sanchez A, Dyer NA, Ejeh N, Biran M, Bringaud F,
580 Lehane MJ, Acosta-Serrano A, Silber AM. 2017. Proline Metabolism is Essential for
581 *Trypanosoma brucei brucei* Survival in the Tsetse Vector. *PLoS Pathog* 13:e1006158.
- 582 31. Vaughan S. 2010. Assembly of the flagellum and its role in cell morphogenesis in
583 *Trypanosoma brucei*. *Curr Opin Microbiol* 13:453-8.
- 584 32. Sun SY, Kaelber JT, Chen M, Dong X, Nematbakhsh Y, Shi J, Dougherty M, Lim
585 CT, Schmid MF, Chiu W, He CY. 2018. Flagellum couples cell shape to motility in
586 *Trypanosoma brucei*. *Proc Natl Acad Sci U S A* 115:E5916-E5925.
- 587 33. Hoog JL, Bouchet-Marquis C, McIntosh JR, Hoenger A, Gull K. 2012. Cryo-electron
588 tomography and 3-D analysis of the intact flagellum in *Trypanosoma brucei*. *J Struct
589 Biol* 178:189-98.
- 590 34. Wirtz E, Leal S, Ochatt C, Cross GA. 1999. A tightly regulated inducible expression
591 system for conditional gene knock-outs and dominant-negative genetics in
592 *Trypanosoma brucei*. *Mol Biochem Parasitol* 99:89-101.

- 593 35. Hirumi H, Hirumi K. 1989. Continuous cultivation of *Trypanosoma brucei* blood
594 stream forms in a medium containing a low concentration of serum protein without
595 feeder cell layers. *J Parasitol* 75:985-9.
- 596 36. Brun R, Schonenberger. 1979. Cultivation and in vitro cloning or procyclic culture
597 forms of *Trypanosoma brucei* in a semi-defined medium. Short communication. *Acta*
598 *Trop* 36:289-92.
- 599 37. Herbert WJ, Lumsden WH. 1976. *Trypanosoma brucei*: a rapid "matching" method
600 for estimating the host's parasitemia. *Exp Parasitol* 40:427-31.
- 601 38. Lanham SM. 1968. Separation of trypanosomes from the blood of infected rats and
602 mice by anion-exchangers. *Nature* 218:1273-4.
- 603 39. MacGregor P, Rojas F, Dean S, Matthews KR. 2013. Stable transformation of
604 pleomorphic bloodstream form *Trypanosoma brucei*. *Mol Biochem Parasitol*
605 doi:S0166-6851(13)00092-3 [pii]
606 10.1016/j.molbiopara.2013.06.007.
- 607 40. Burkard G, Fragoso CM, Roditi I. 2007. Highly efficient stable transformation of
608 bloodstream forms of *Trypanosoma brucei*. *Mol Biochem Parasitol* 153:220-3.
- 609 41. Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. 2015. A toolkit
610 enabling efficient, scalable and reproducible gene tagging in trypanosomatids. *Open*
611 *Biol* 5:140197.
- 612 42. Kelly S, Reed J, Kramer S, Ellis L, Webb H, Sunter J, Salje J, Marinsek N, Gull K,
613 Wickstead B, Carrington M. 2007. Functional genomics in *Trypanosoma brucei*: a
614 collection of vectors for the expression of tagged proteins from endogenous and
615 ectopic gene loci. *Mol Biochem Parasitol* 154:103-9.
- 616 43. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T,
617 Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V,
618 Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for
619 biological-image analysis. *Nat Methods* 9:676-82.
- 620 44. Glogger M, Subota I, Pezzarossa A, Denecke AL, Carrington M, Fenz SF, Engstler
621 M. 2017. Facilitating trypanosome imaging. *Exp Parasitol* 180:13-18.
- 622

623 **Figure Legends**

624

625

626 **Figure 1**

627 A. Serial Z stack slices through a stumpy form trypanosome cell stained to localise the
628 differentiation regulator TbPIP39 (green) or glycosomal TIM (red). The cell nucleus
629 and kinetoplast are shown in blue. The TbPIP39 is located close to, but slightly
630 anterior of, the kinetoplast and is not collocated with the glycosomal marker.
631 Bar=5 μ m.

632 B. Pearson coefficient of colocalisation between TbPIP39 and glycosomal TIM or
633 between aldolase and glycosomal TIM in bloodstream slender and stumpy forms, or
634 in procyclic forms. Colocalisation values were calculated using Volocity software
635 based on captured confocal images. Threshold was set according to background of
636 images.

637

638 **Figure 2**

639

640 A. Representative images of trypanosomes undergoing differentiation from stumpy
641 forms to procyclic forms. Samples were taken at the time points indicated after the
642 initiation of differentiation by *cis*-aconitase. Cells were labelled for the location of
643 TbPIP39 (green) or the glycosomal marker gTIM (red), with the nucleus and
644 kinetoplast being labelled with DAPI (blue). Phase contrast images are shown on the
645 left-hand side and merged images shown on the right. Bar= 10 μ m.

646 B. Selected fields of cells stained for TbPIP39, gTIM or DAPI at time points after the
647 initiation of differentiation. The location of TbPIP39 proximally to the flagellar
648 pocket region of the cell is highlighted with arrowheads. Bar=12 μ m.

649

650 **Figure 3**

651

652 A. Quantitation of the distribution of TbPIP39 between the periflagellar pocket location
653 only (green), at the periflagellar pocket and in glycosomes (yellow) or exclusively in
654 glycosomes (red). At each time point and in each condition (with or without *cis*-
655 aconitate, to initiate differentiation), 250 cells were scored.

656 B. Pearson coefficient of colocalisation between TbPIP39 and glycosomal TIM or
657 between aldolase and glycosomal TIM at time points after the exposure of stumpy
658 forms to *cis*-aconitate. Colocalisation values were calculated using Volocity software
659 based on captured confocal images. The threshold was set according to background of
660 images.

661 C. 3-D reconstruction of a cell 30 minutes after exposure to *cis*-aconitate and stained for
662 TbPIP39 (green) and glycosomal gTIM (red). The cell nucleus (N) and kinetoplast
663 (K) are labelled blue. TbPIP39 is concentrated around the flagellar pocket of the cell
664 but also shows labelling at a dispersed glycosomal location more anterior in the cell,
665 coincident with the distribution of glycosomal gTIM. Bar=5 μ m.

666

667 **Figure 4**

668 A. Co-labelling of stumpy form cells (without exposure to *cis*-aconitate) stained for
669 TbPIP39 (green) and the lysosomal marker p67 (red). The nucleus and kinetoplast are
670 stained in blue. The TbPIP39 labelling is distinct from the lysosome, being positioned

671 unevenly around the flagellar pocket (cell i) or at a tight focus in cells where the
672 flagellar pocket is collapsed (Cell iii, iv). Cell ii has no staining detected at the
673 flagellar pocket region. Bar=5 μ m.

674 B. Co-labelling of stumpy form cells (without exposure to *cis*-aconitate) stained for
675 TbPIP39 (green) and the glycosomal gTIM (red). The flagellar pocket and cell surface
676 membrane are labelled blue with AMCA. Arrows indicate the distribution of the
677 TbPIP39 signal unevenly around the flagellar pocket (Cell *a* image i, ii; Cell *b*, image
678 iii, iv), or at a tight focus associated with a collapsed flagellar pocket (Cell *c*, image
679 iii, iv). Bar=5 μ m

680

681 **Figure 5**

682 A-D Immunoelectron micrographs taken of thin sections of the flagellar pocket region of
683 stumpy cells immunogold-labelled for TbPIP39. Arrows indicate the boundary of
684 membrane bound vesicles containing TbPIP39 signal; glycosomes are labelled 'G1'.
685 E Immunoelectron micrographs of the flagellar pocket region of stumpy cells in the
686 absence of primary antibody.

687

688

689 **Figure 6**

690 A. RNAi depletion of TbPIP39. *T. brucei* EATRO 1125 AnTat1.1 TbPIP39 RNAi cells
691 or *T. brucei* EATRO 1125 AnTat1.1 cells were grown in mice, with or without
692 doxycycline induction. The generated stumpy cells were then exposed, or not, to *cis*-
693 aconitate to initiate differentiation (with doxycycline remaining in the RNAi-induced
694 samples) and TbPIP39 protein detected at 24h. TbPIP39 levels increase during
695 differentiation (ms1, ms2) but this is greatly reduced in induced RNAi samples

696 (ms3). EF1 alpha provides a loading control, this being a little higher in cells exposed
697 to *cis*-aconitate due to their replication as differentiated procyclic forms. EP procyclin
698 staining shows relative differentiation in the presence or absence of *cis*-aconitate.
699 B. Distribution of the glycosomal marker aldolase and the lysosomal marker p67 during
700 differentiation between stumpy and procyclic forms. The panel shows the prevalence
701 of different categories of lysosomal/glycosomal staining (as defined by Herman et al.,
702 2008 (Reference [23]), and shown at the left-hand side) at time through differentiation
703 when TbPIP39 was depleted by RNAi or not.
704 C. Western blot of TbPIP39 in cells differentiated to proliferative procyclic forms with
705 TbPIP39 RNAi induced or not. EF1alpha shows the loading control. The lower panel
706 shows that by day 4 and 5 the cells remain proliferative (the cells were passaged at
707 day 2) despite expressing significantly less TbPIP39.
708

709 **Figure 7**

710 A. Schematic representation of the construct used to N-terminally tag TbPTP1 with the
711 Ty1 epitope tag.
712 B. Co-localisation of TbPTP1-ty (green), and TbPIP39 (red) in stumpy forms (0h) and
713 after 1h and 4h exposure to *cis*-aconitate. The TbPTP1 signal is detected as an
714 ectopically expressed copy incorporating an N terminal Ty1 epitope tag to allow its
715 detection. The TbPIP39 signal is detected using an antibody recognising that protein.
716 The cell nucleus and kinetoplast are labelled with DAPI (blue). TbPTP1 colocalised
717 with TbPIP39 in stumpy forms (arrowheads) but after 1h, TbPIP39 has relocated to
718 glycosomes, while TbPTP1 has become more diffuse, albeit some remaining
719 concentrated in the periflagellar pocket region (arrowheads). At 4h, TbPIP39 is
720 glycosomal while TbPTP1 is diffuse throughout the cell body. Bar=10µm.

721 C. Detection of YFP tagged TbPIP39 (green) in stumpy form cells and its location with
722 respect to REG9.1 (red). DAPI (blue) denotes the position of the cell nucleus and
723 kinetoplast. Bar=15 μ m.

724

725

726 **Figure 8**

727

728 A. Detection of Ty1 epitope tagged TbVAP in stumpy form cells and its location with
729 respect to TbPIP39. The Ty1 tagged TbVAP (green) is detected at the flagellar pocket
730 region, along the flagellum attachment zone and in the cell body. TbPIP39 (red) is
731 closely proximal at the flagellar pocket region but not precisely coincident. DAPI
732 (blue) denotes the position of the cell nucleus and kinetoplast. Arrowheads indicate
733 the region of TbPIP39. Bar=15 μ m.

734 B. Proportion of slender, intermediate and stumpy forms in TbVAP single knock out
735 cells versus parental cells, or epitope tagged TbVAP cells.

736 C. TbVAP single allele replacement mutants 24h after the initiation of differentiation to
737 procyclic forms. The differentiating cells (indicated by their expression of EP
738 procyclin, green) are swollen and lose integrity. TbPIP39 is punctate throughout the
739 cell, indicating a glycosomal rather than periflagellar pocket distribution. The merged
740 panel shows TbPIP39 (red), EP procyclin (green) and DAPI (blue) revealing the
741 nucleus and kinetoplast. Bar=25 μ m.

742 D. Quantitation of cells which exhibit a rounded morphology. Parental *T. brucei*
743 AnTat1.1 J1339 cells, TbVAP1-mNeon-Ty1 expressing cells or three TbVAP single
744 allele deletion mutants are shown. In each case the percentage of rounded cells is

745 shown after 24h either in the absence or presence of *cis*-aconitate as a differentiation
746 stimulus. At least 250 cells were scored for each cell line and each condition.

747

748

749 **Figure 9**

750 Schematic representation of the distribution of gTIM (representing glycosomes)
751 TbPIP39, TbPTP1, TbVAP and REG9.1 in stumpy forms and at 30 minutes and 60
752 minutes after exposure to *cis*-aconitate and in procyclic forms.

753

754

755 **Text S1**

756

757 **Supplementary material and methods**

758

759 **Confocal imaging**

760

761 Confocal imaging used a Leica SP5 confocal laser scanning microscope, using 63x oil
762 immersion objective (NA = 1.4) and 4.2x digital zoom. The green channel was imaged using
763 a 488-nm argon laser, and the red channel was imaged using a 543-nm helium/neon laser.

764 The final image was acquired using Volocity Software (www.perkinelmer.co.uk) version 4.4.

765 3D fluorescence microscopy was performed using a fully automated Leica DMI6000B
766 inverse microscope equipped with a 100x (NA 1.4) oil immersion objective and a Leica
767 DFC365 FX CCD camera. Fluorescent and differential interference contrast (DIC) image
768 stacks were acquired by recording stacks of 50 images with a step size of 137 nm.
769 Fluorescent image stacks were deconvolved using Huygens Essential (SVI, Hilversum,
770 Netherlands). Images were visualised as z-stack projections using Fiji(43), or as volumetric
771 representations using Amira (Thermo Fisher Scientific).

772

773

774 **Electron microscopy**

775

776 After incubation of cells in an equal volume of vPBS and 8% paraformaldehyde, cells were
777 pelleted at 1,000x g for 15 min at 4°C. The supernatant was removed and the pellet
778 dehydrated with 30% ethanol at 4°C for 30min. The pellet was then taken through the

779 following series of methanol dehydrations, 60%, 90%, 3 x absolute (30 min each) at -20°C.
780 After dehydration, the pellet was incubated in 2mL of 30% HM20 Lowicryl monostep EM
781 resin (EMS - 14345) in methanol at -20°C, 30min, then taken through increasing
782 concentrations of HM20 (60 min each) then 3 x 100% absolute HM20 at -20°C. The pellet
783 was polymerised at -20°C for 24hr using UV light at 360nm, then left at -20 °C for 24h. The
784 block was cut using a diamond knife and 100nm thin sections were incubated on 100µL
785 droplets of 100mM glycine in PBS 2 x 10 min. Sections were then probed with primary
786 antibody 25µL droplets of rabbit anti-PIP39 diluted 1:100 in incubation buffer (PBS,
787 containing 0.1% Tween 20, 0.1% BSA, pH 7.3), for 2h at room temp. After washing, 4 x 10
788 min in incubation buffer, grids were incubated in a 1:1 mix of protein A (EMS - 25285), plus
789 protein G (EMS - 25315) 10 nm gold, diluted 1:25 in incubation buffer for 2h at room temp.
790 Grids were washed 2 x 10 min in PBS, containing 0.1% Tween 20, 0.1% BSA, pH 7.3, then 2
791 x 10 min in PBS, pH 7.3, then 2 x 10 min in Milli-Q water. Grids were stained in 2% uranyl
792 acetate for 1min at room temp then washed 4 x 10 min in Milli-Q water and visualised on a
793 Technai 12 at 120Kv.

794 **Live cell microscopy**

795

796 ***Sample preparation for live cell microscopy***

797 For studying stumpy to procyclic form differentiation by live cell microscopy 25 µL of
798 pH7.6, 0.6 M, filtered *cis*-aconitate was added to 2.5 ml of stumpy culture (4x10⁶/ml) to
799 induce differentiation.

800

801 After 10 mins 1mL sample of the induced culture was taken to concentrate for the hydrogel
802 fixation. Samples were spun for 10 min at 1400 rpm at 37⁰C and 980 μ L supernatants were
803 removed after the spin cells were carefully resuspended in 20 μ L culture media.

804
805 Immobilisation of living cells was performed with a two component hydrogel, consisting of
806 8-arm poly ethylene glycol (PEG) norborene and linear PEG-dithiol, essentially as described
807 in (44). 4 μ l of hydrogel produced with TDB was mixed with a 2 μ L solution containing
808 4x10⁵ differentiating stumpy cells and incubated 1 minute on ice. The mixture was
809 transferred to a glass bottom cell culture dish (FluoroDish, FD35, World Precision
810 Instruments) and allowed to polymerise at room temperature. Cells were viable in the
811 hydrogel for at least 60 minutes (Glogger et al., 2017). In the experiments for this work, the
812 hydrogel concentration was chosen so as to prevent translocation of cells, but still allow
813 flagellar movement. As a control, 100 μ L of the induced culture was taken and spun at the
814 same speed and time as the immobilised sample. The cell pellet was carefully resuspended in
815 1.9 ml of warm TDB (2x10⁵/ml) and was used to overlay the hydrogel droplet containing *cis*-
816 aconitate induced stumpy cells.

817 Live imaging was performed with a Leica DMI6000B fully automated inverse microscope
818 equipped with a 100x (NA1.4) oil immersion objective and a pco.edge SCIMOS camera
819 (PCO, Kelheim, Germany). Time series were recorded with 100 fps (100 ms resolution),
820 which allowed the accurate detection of dynamic fluorescent signals in the cytoplasm of the
821 living cells. Continuous videos were recorded switching between the fluorescence excitation
822 and DIC settings. Due to the repetitive, periodic beating of the flagellum and cell movement
823 of the immobilised trypanosome, the fluorescent and DIC images of corresponding phase
824 shifted time series could be overlaid using Fiji (Fig. S1B, 0h).

825

826

827

828

829

830 **Table S1. Oligonucleotides used in the study**

831

832

Number	Target gene	Primer name	Primer sequence
1.	PIP39	coding seq amplification Fwd	5' ggatcaggatcggttagtatggtgaggacgacacgctttc 3'
2.	PIP39	coding seq amplification Rev	5' gagattccaccacgtgcctc 3'
3.	PIP39	5'UTR seq amplification Fwd	5' atgcgactcttggtctcacc 3'
4.	PIP39	5'UTR seq amplification Rev	5' gcagcaggctgcattatacattcaatgagttccagttggg 3'
5.	PTP1	pDEX577SpelFwd	5' ccactagtagtccacagcgaagagttccatggctcaa 3'
6.	PTP1	pDEX577BglIIRev	5' gggagatctcgctttaagttaaatgtgcacaccagtc 3'
7.	VAP	Upstream Fwd	5' acctgcacaaatatactctgaaagcaaccagtataatgcagacctgtgc 3'
8.	VAP	Upstream Rev	5' aacagacggtgccgcgtttacttctcatactacccgatcctgtccag 3'
9.	VAP	Downstream Fwd	5' acgttgtttgctgggtggttgcctacggctggtagtgggtccgg 3'
10.	VAP	Downstream Rev Tag	5' ttctgttcttttccccccctttcccaatttgagagacctgtgc 3'
11.	VAP	Downstream Rev KO	5' ttctgttcttttccccccctttccctccgaaccactaccagaacc 3'
12.	VAP	Synthetic single guide RNA 5'	5' gaaattaatacgactcaactataggatcttacaatttctgcgtgttttagagctagaatgc 3'
13.	VAP	Synthetic single guide RNA 3'	5' gaaattaatacgactcaactataggagtgagtgcttcagaaagttagagctagaatgc 3'
14.	VAP	VAP Fwd	5' actctgaaagcaaccaacgc 3'
15.	VAP	VAP Rev	5' ccaccaccagcaaaacaacg 3'

833

834 **Table S2: Antibodies used in the study**

Antibody name	Animal raised in	Dilution used on Western Blot (W) or in immuno fluorescence assays (IF)
PIP39	Rb	1:750 W, 1:300 IF
BB2	Ms	1:5 W, 1:4 IF
EF1	Ms	1:7000 W
EP procyclin	Ms	1:3000 W, 1:250 IF
gTIM	Ms	1:500 IF
Aldolase	Ms	1:250 IF
p67	Ms	1:1000 IF
REG 9.1	Rb	1:1000 IF
Alexa568 Red	Ms/Rb	1:500 IF
Alexa488 Green	Ms/Rb	1:500 IF
Licor Red Rb	Ms/Rb	1:7500 W
Licor Green Ms	Ms/Rb	1:7500 W

835

836

837

838 **Figure S1.**

839

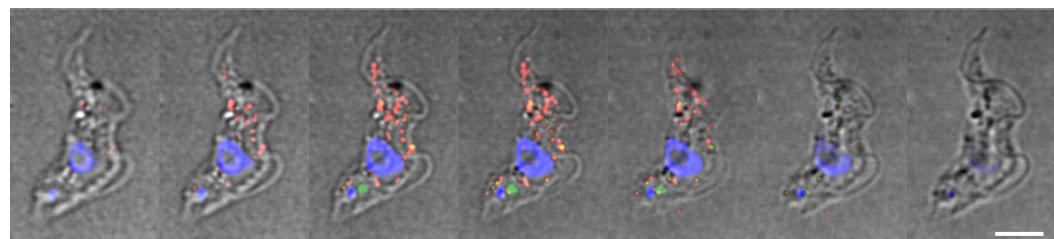
840 A. Schematic representation of the construct used to N-terminally tag TbPIP39 with
841 mNeon.

842 B. Video images of TbPIP39 mNeon signal in stumpy forms (0h), or 2h or 24h after
843 exposure to *cis*-aconitase to initiate differentiation. At 0h the signal is predominantly
844 periflagellar pocket, though with some dispersed glycosomal signal. At 2h there is
845 still some periflagellar pocket signal but stronger glycosomal signal. At 24h the signal
846 is exclusively glycosomal. Bar=20 μ m.

847

848

849 **Figure S2**


850 A. Schematic representation of the deletion of TbVAP alleles by CRISPR. The allele was
851 deleted through integration of a blasticidin resistance cassette.

852 B. PCR analysis of the insertion of a TbVAP replacement construct using CRISPR. All
853 cell lines derived have successfully incorporated the VAP replacement cassette but
854 also retain an intact copy of the TbVAP gene.

855

856

857

A

DAPI-TbPIP39-gTIM

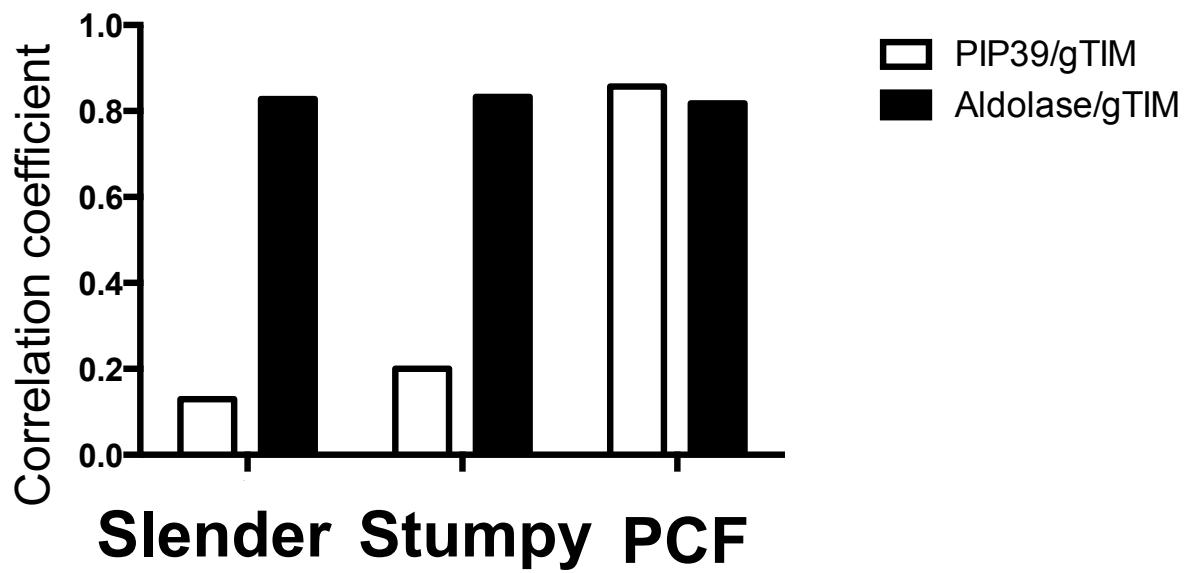
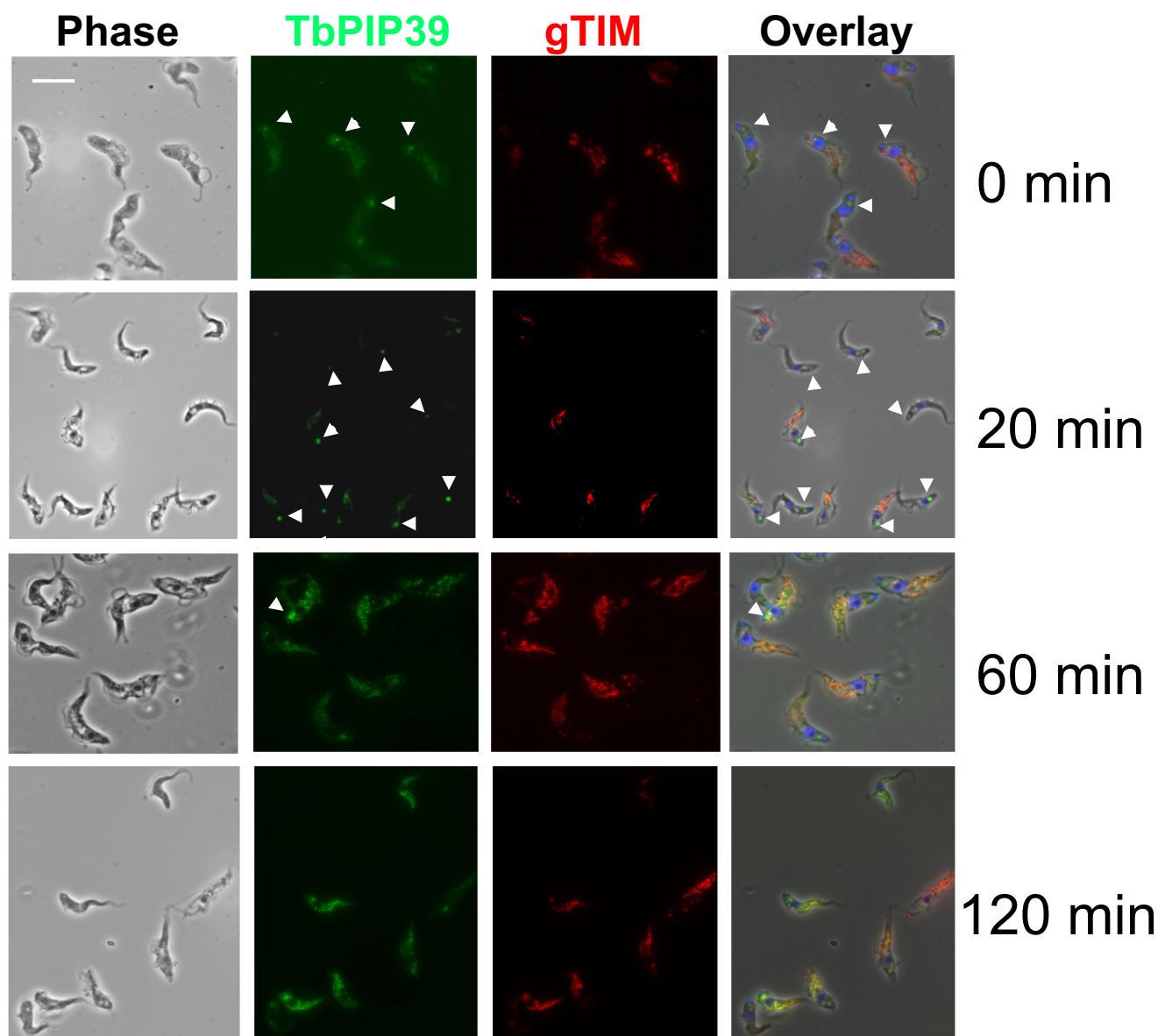
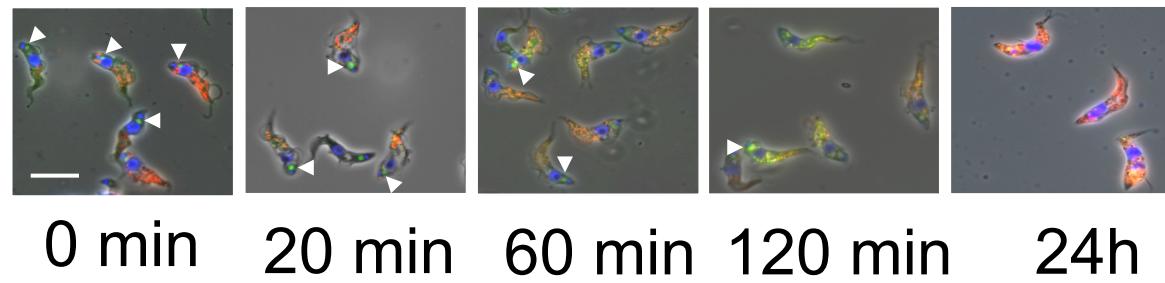
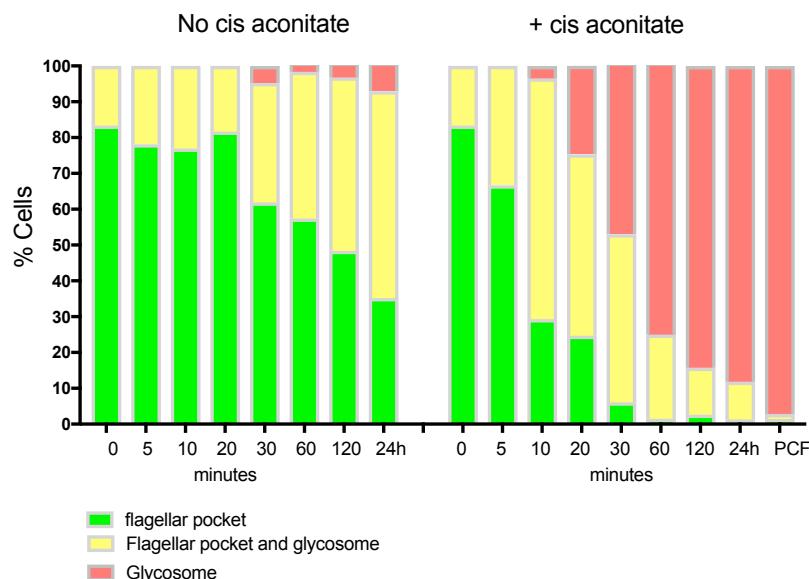
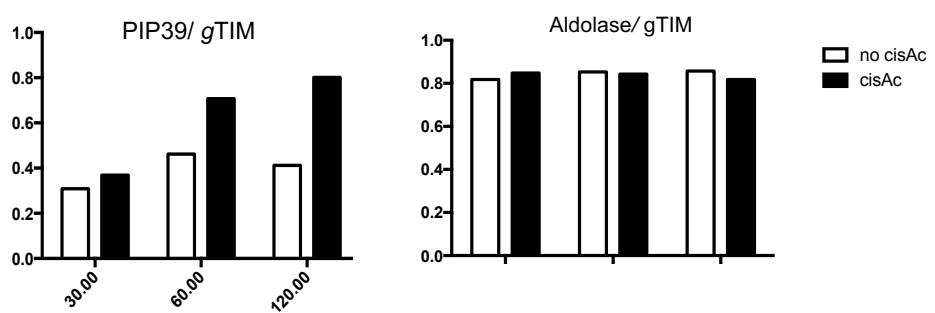
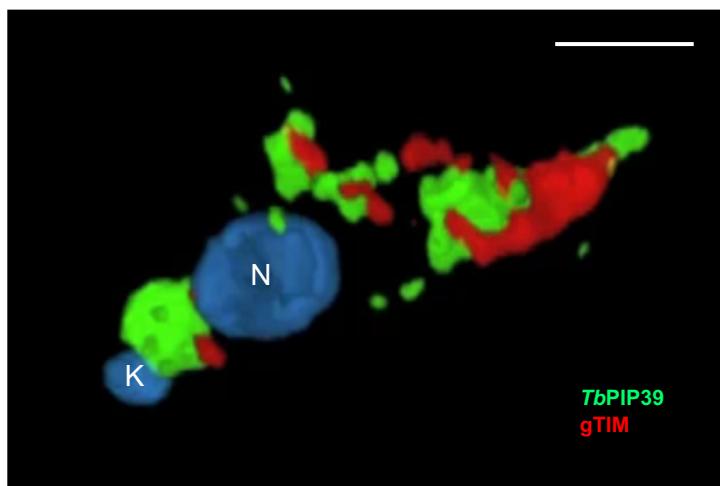
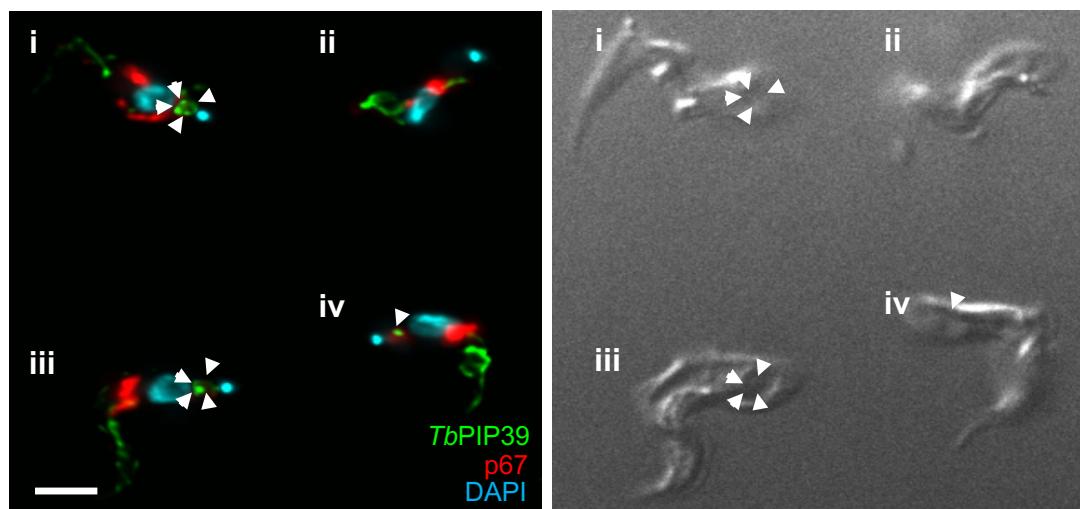
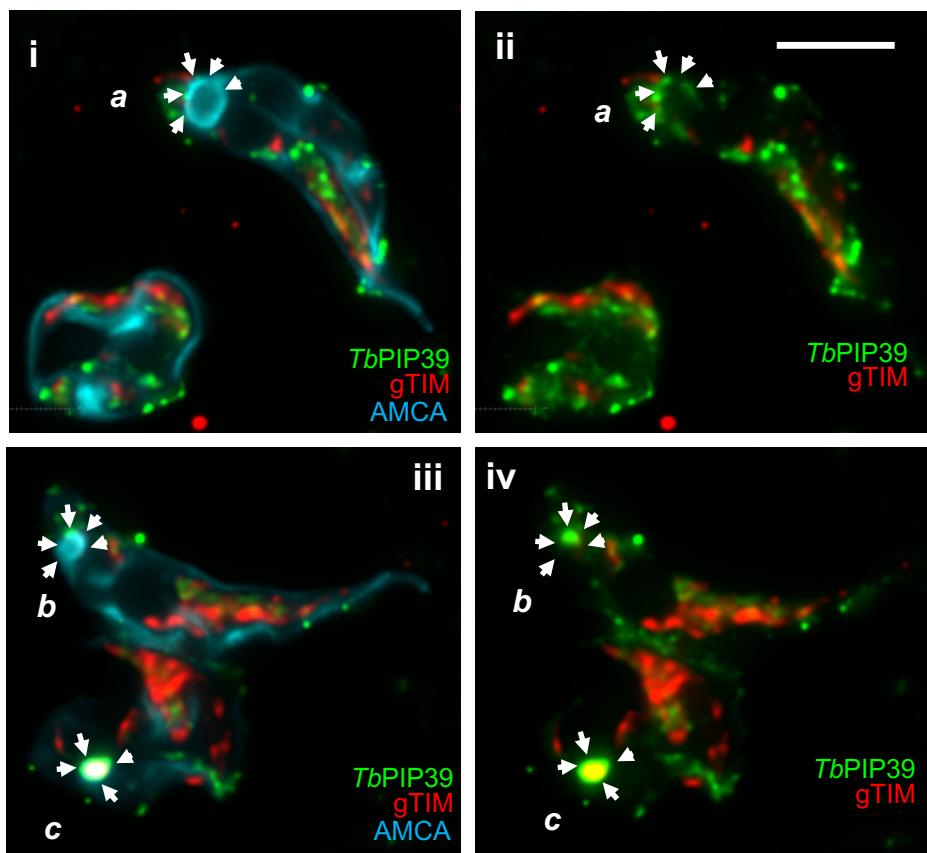

B

Figure 1







A**B**


Figure 2

A**B****C****Figure 3**

A

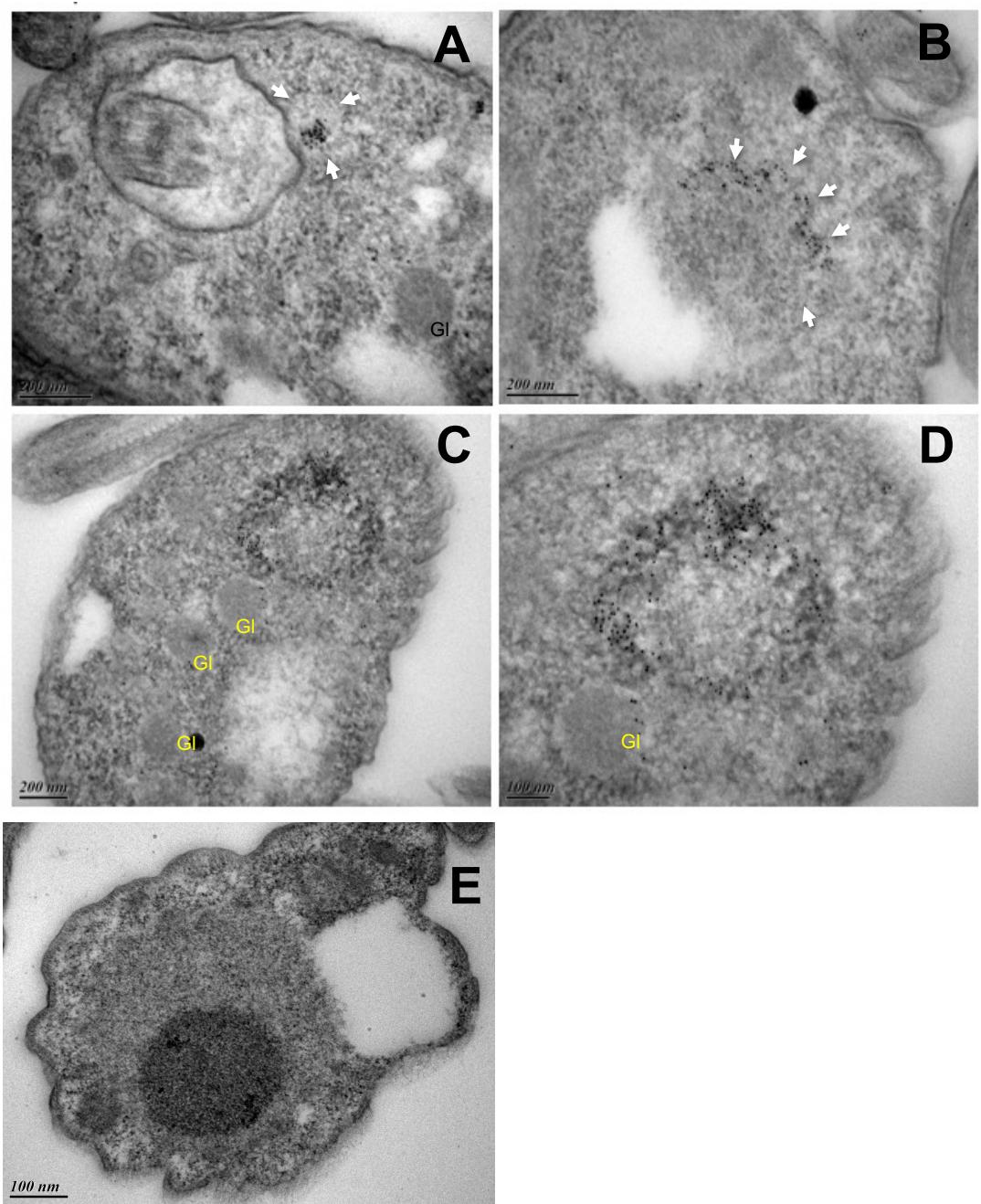
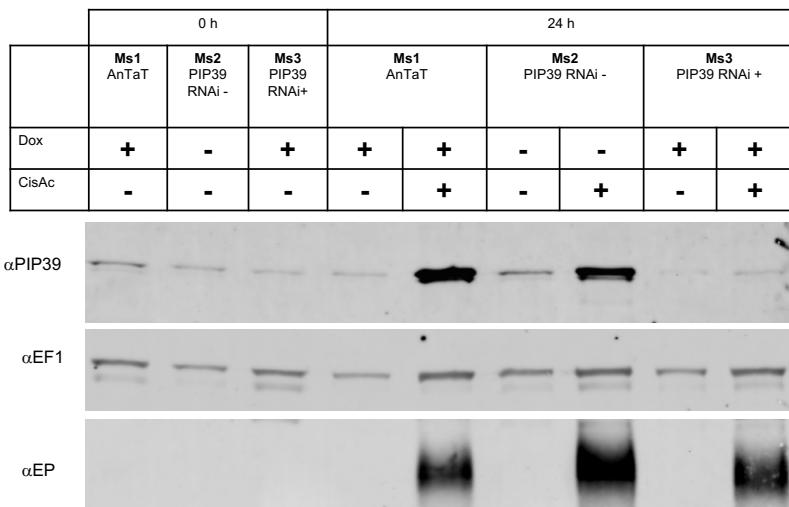
- i- Large FP
ii- No Stain around FP
iii- Large FP
iv- collapsed FP

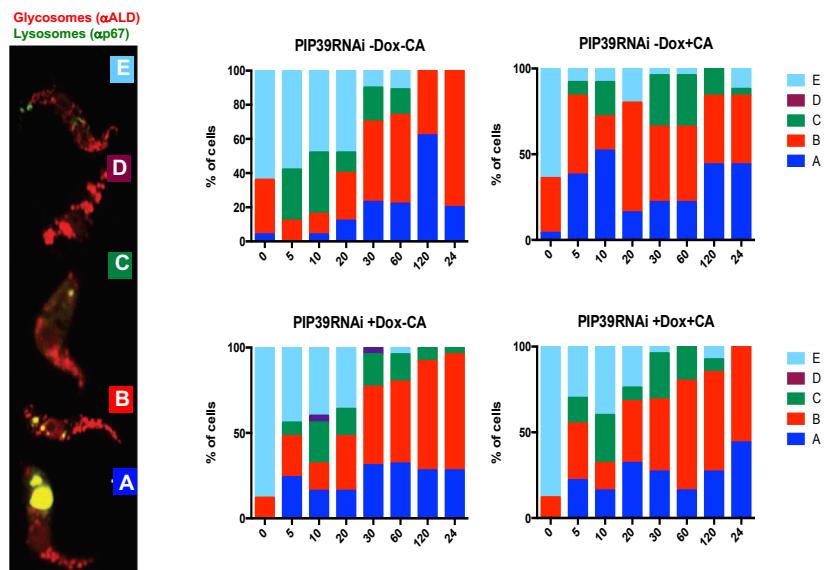
TbPIP39
p67
DAPI

B

- a- Large pocket
b- Medium pocket
c- Collapsed pocket

Figure 4


Figure 5

PIP39 RNAi induction ablates PIP39

A

B

C

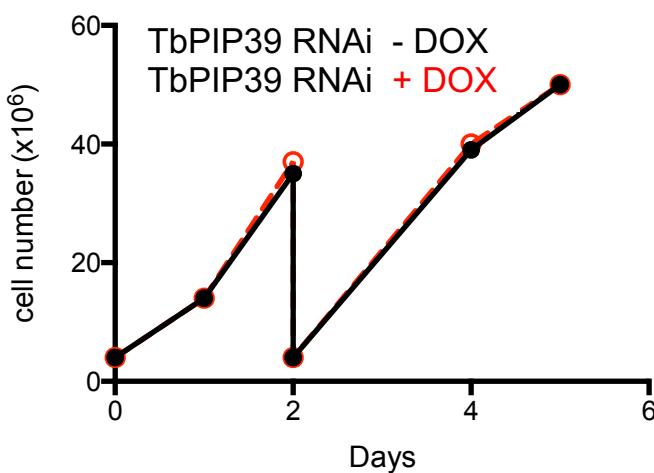
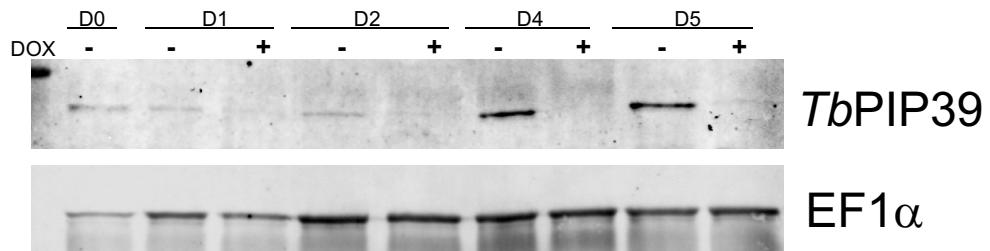
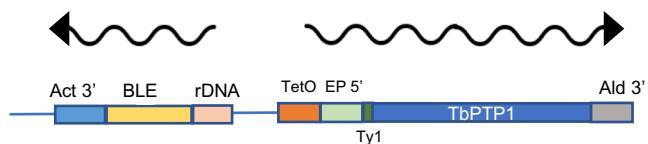
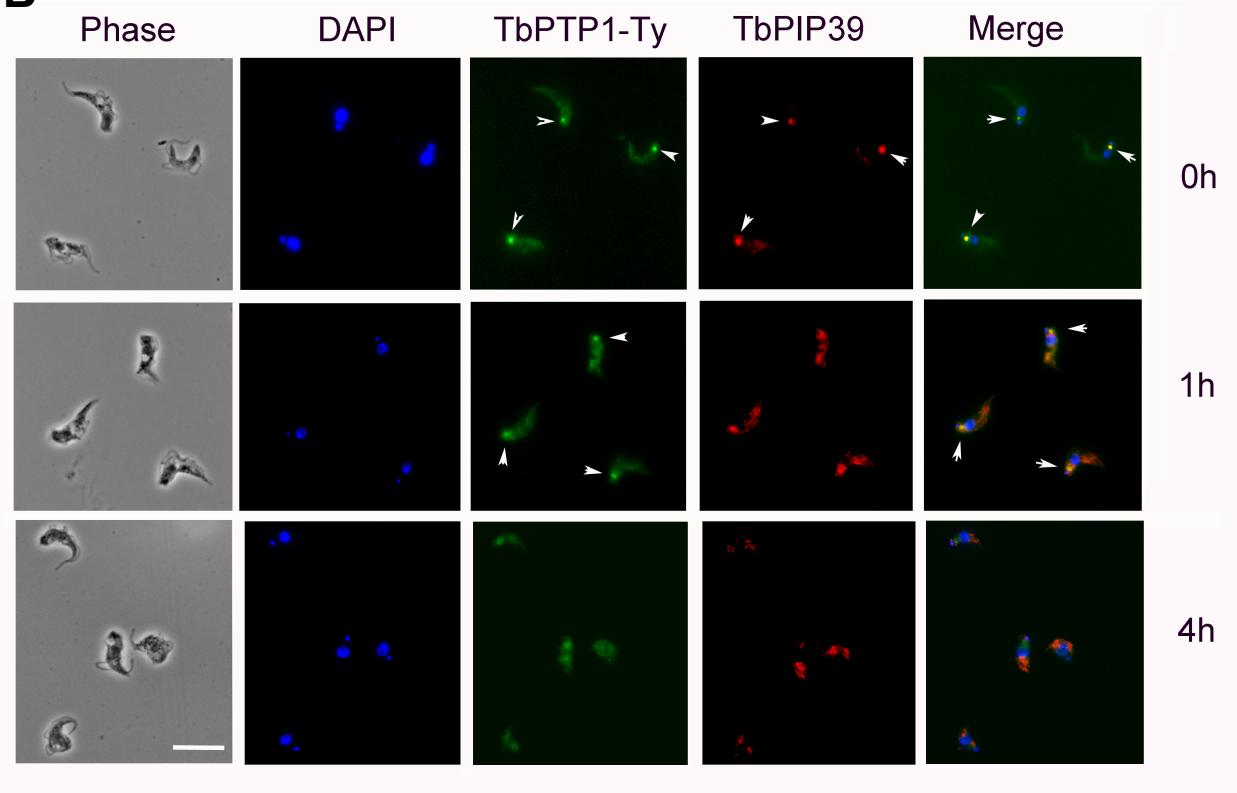
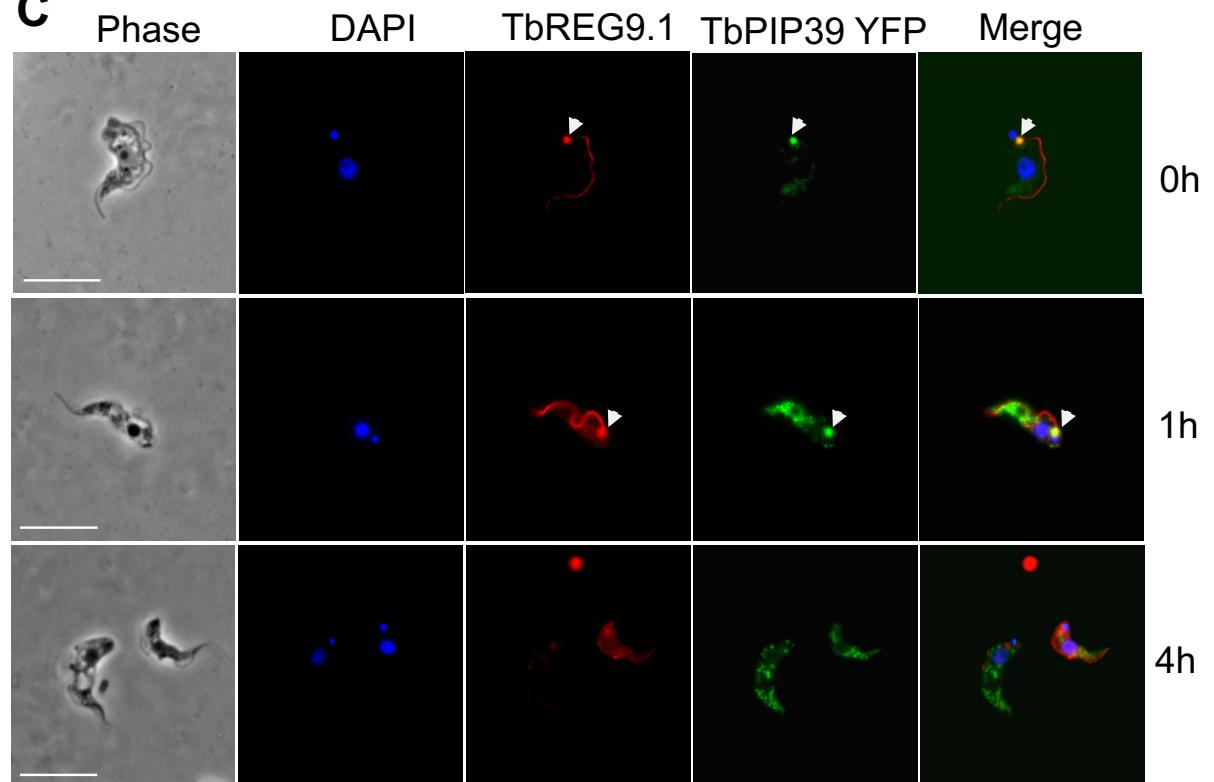






Figure 6

A**B****C****Figure 7**

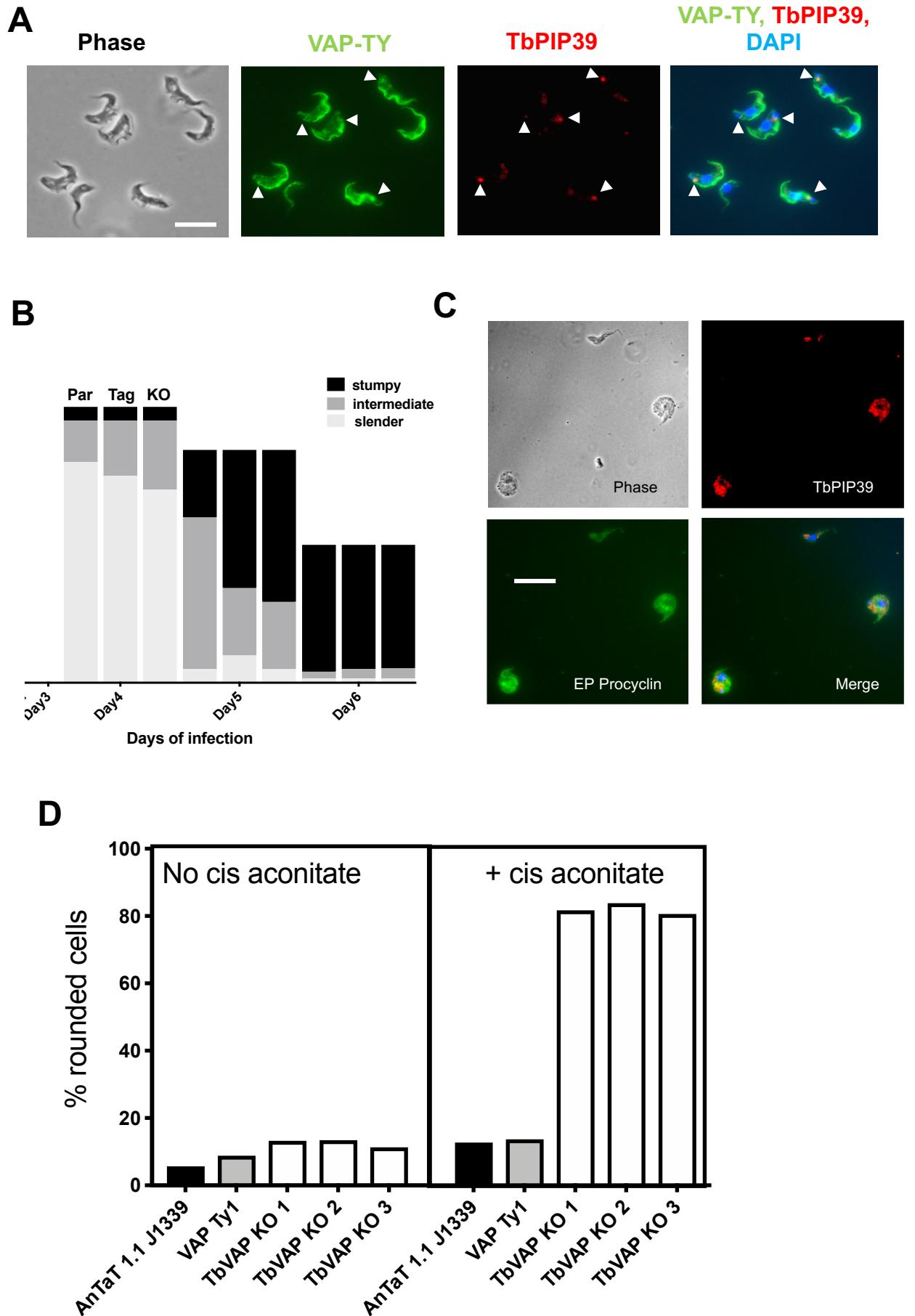
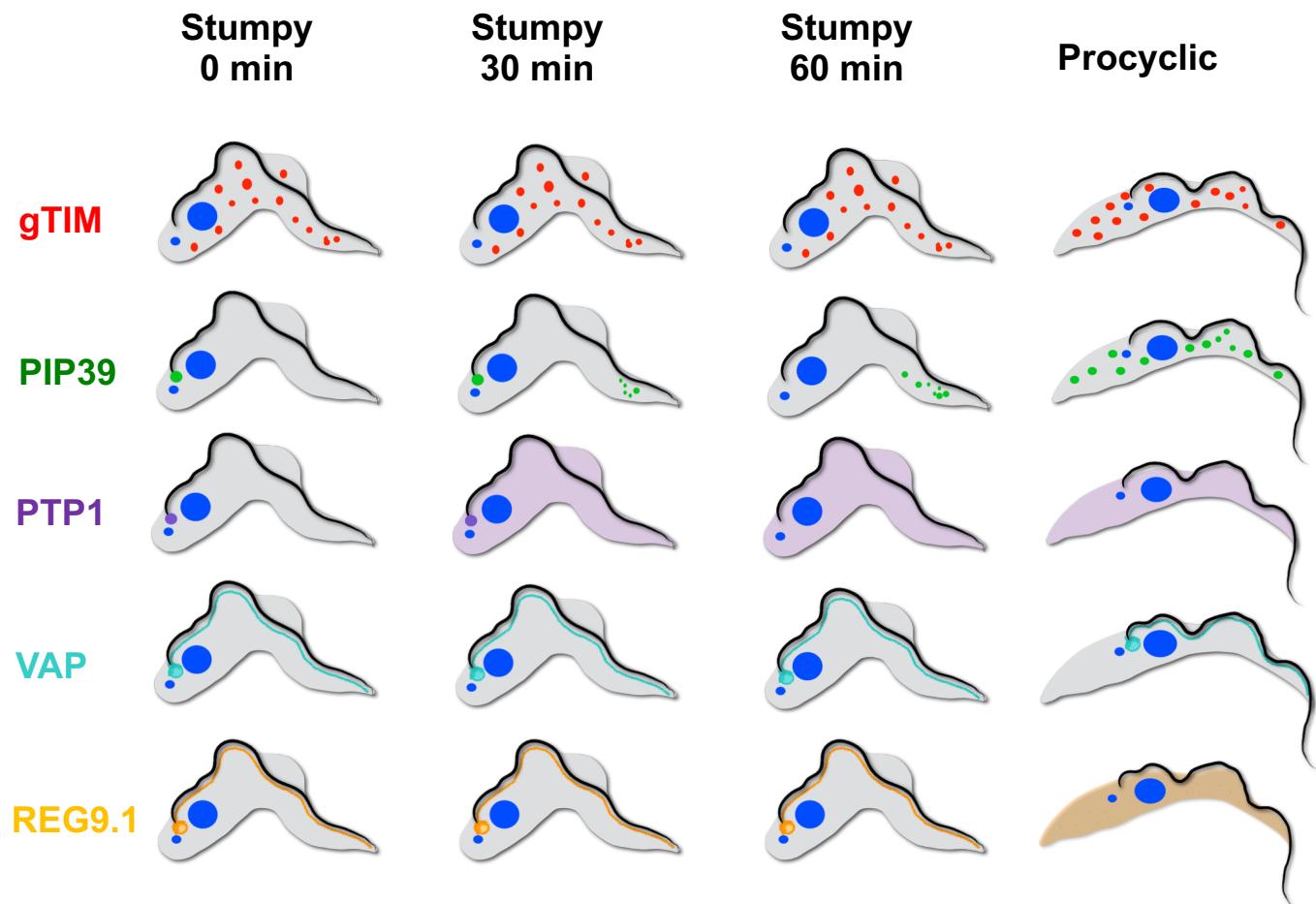
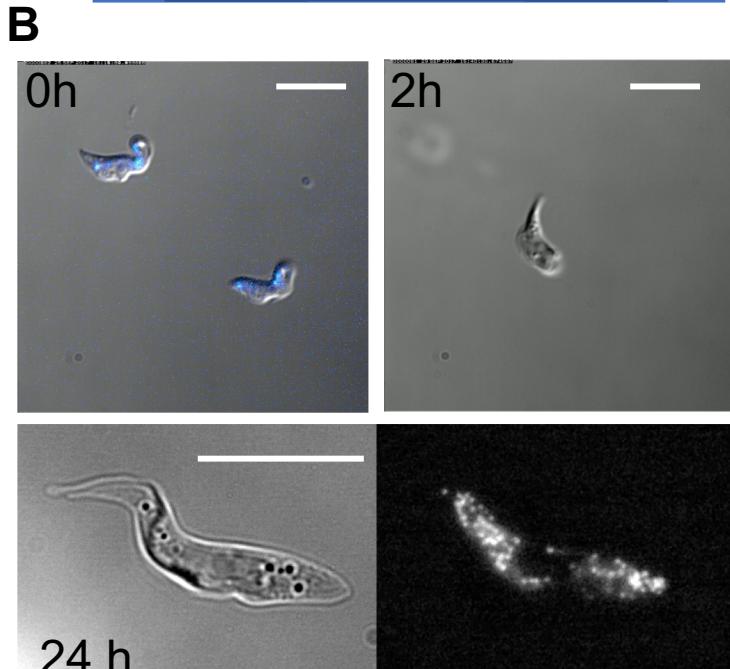
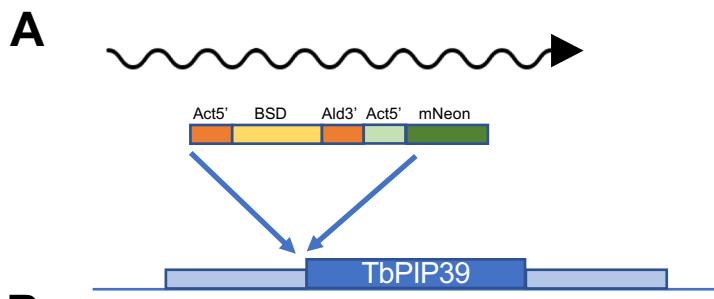
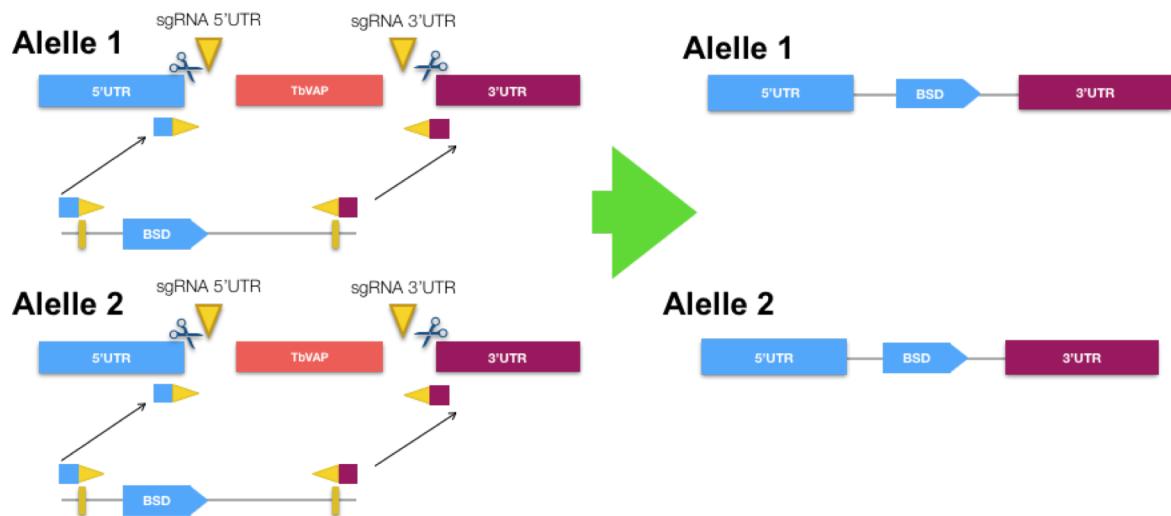
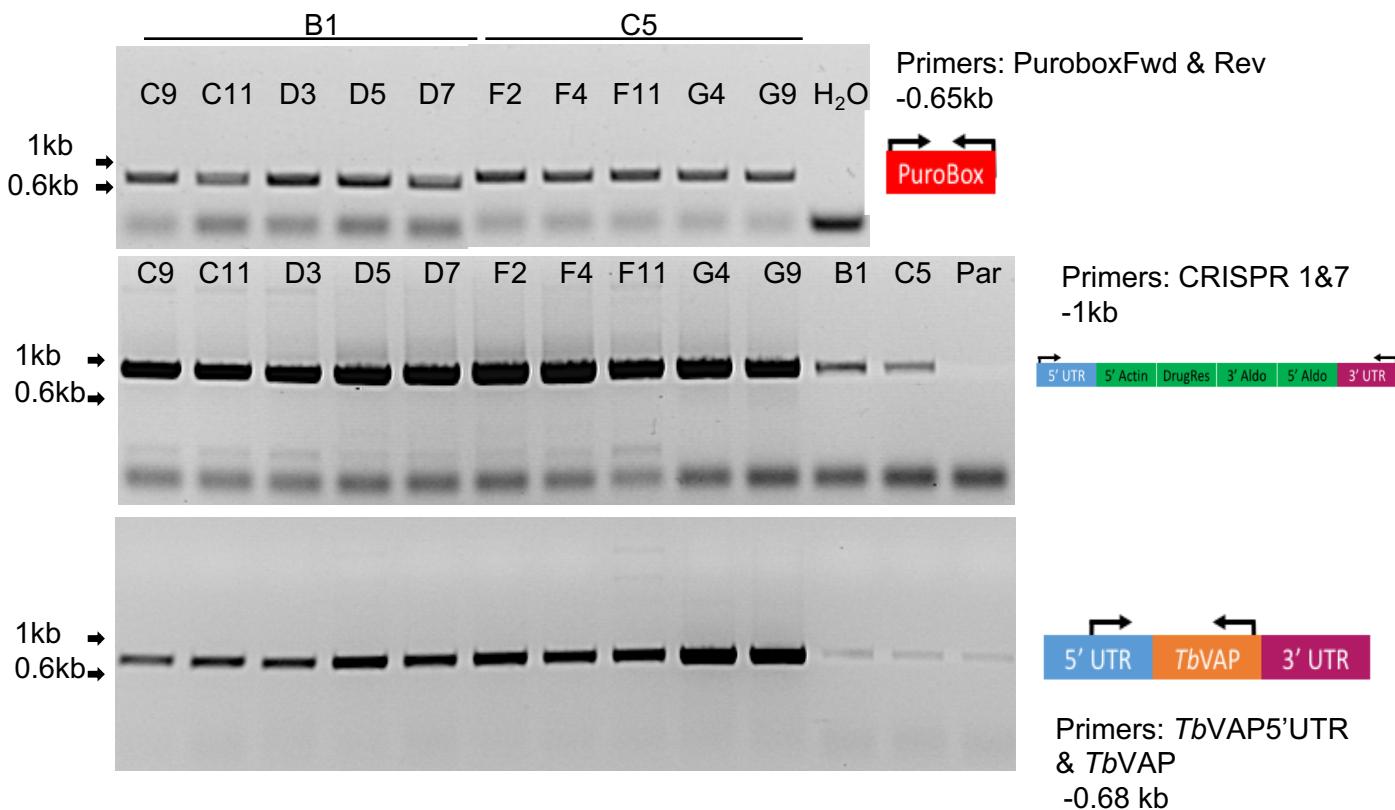


Figure 8

Differentiation



Figure 9

0h: movie S1A

2h: movie S1B

24h: movie S1C

A**B****Supplementary Figure 2**