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22 Abstract

23 Decrease in the frequency of arginine and increase in lysine are the trends that have
24 been identified in the genomes of cold adapted bacteria. However, some cold adapted
25 taxa show only limited or no detectable changes in the frequencies of amino acid
26 composition. Here, we examined Arthrobacter spp. genomes from a wide range of
27  environments on whether the genomic adaptations can be conclusively identified
28  across genomes of taxa from polar and alpine regions. Phylogenetic analysis with a
29  concatenated alignment of 119 orthologous proteins revealed a monophyletic
30 clustering of seven polar and alpine isolated strains. Significant changes in amino acid
31 composition related to cold adaptation were exclusive to seven of the twenty-nine
32 strains from polar and alpine regions. Analysis of significant indicator genes and cold
33 shock genes also revealed that clear differences could only be detected in the same
34  seven strains. These unique characteristics may result from a vast exchange of
35 genome content at the node leading to the monophyletic cold adapted Arthrobacter
36  cluster predicted by the birth-and-death model. We then experimentally validated that
37  strains with significant changes in amino acid composition have a better capacity to
38 grow at low temperature than the mesophilic strains.

39  Importance

40  Acquisition of novel traits through horizontal gene transfer at the early divergence of
41  the monophyletic cluster may accelerate their adaptation to low temperature. Our
42  study reached a clear relationship between adaptation to cold and genomic features

43 and would advanced in understanding the ambiguous results produced by the previous
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44  studies on genomic adaption to cold temperature.

45  Keywords: Cold adaptation, Genomic featrues, Arthrobacter, Polar and alpine
46  regions

47

48  Introduction

49  Separated by large distances and climatic barriers, high Arctic, Antarctic, and high
50 alpine regions represent extreme cold environments, which have been successfully
51  colonized by cold-adapted microorganisms (1-3). In the polar and alpine regions,
52  cold-adapted microorganisms play a key role in biogeochemical transformations such
53 as carbon, nitrogen, and iron, which have both local and global impacts (4-6); thus, it
54 is important to understand the adaptation strategy of microorganisms in the extreme
55  cold biome.

56

57  Temperature is a strong selective force that shapes the structure and function of
58  microorganisms (7). Thriving in cold environments requires cold-adapted bacteria to
59  synthesize enzymes that perform effectively at low temperatures, one of the major
60  strategies is the modification to enzymes (8-10). Cold-adapted enzymes possess
61 generally a number of amino acid changes that impart higher degree of structural
62  flexibility (fewer salt bridges by reduce arginine and proline contents) and higher
63  specific activity (more local mobility by increase asparagine, methionine and glycine
64  contents) at low temperatures than their mesophilic counterparts (11). The increased

65 low temperature activity of enzymes via change in amino acid composition was
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66  validated by analysis the structural, kinetic and microcalorimetric of cold adapted
67 enzymes, e.g. aminopeptidase, B-lactamases, and dienelactone hydrolase (GaDlh)
68  (12-14).

69

70  Comparative genomic analyses to examine differences in amino acid composition
71 toward cold adaptation came through the study of two methanogenic Archaea,
72 Methanogenium frigidum and Methanococcoides burtonii from Ace Lake, Antarctica
73 (15). Proteins from these cold-adapted Archaea were characterized by a higher
74  proportion of non-charged polar amino acids, such as glutamine and threonine, and a
75  lower proportion of hydrophobic amino acids, particularly leucine (15). The amino
76  acid shifts toward increased enzyme flexibility, which confers catalytic efficiency and
77  contribute to cold adaptation can be identified in genomes of Psychromonas
78 ingrahamii 37, Exiguobacterium sibiricum 255-15, Psychrobacter arcticus 273-4,
79  Shewanella spp. and Glaciecola spp. (16-19). However, these changes were limited in
80  Colwellia psychrerythraea 34H, Planococcus halocryophilus Orl, Rhodococcus sp.
81 JG3, Arthrobacter spp., Actinotalea sp. KRMCY2, Polaromonas sp. Eur3 1.2.1,
82  Paenisporosarcina sp. Eurl 9.01.10, Methylobacterium sp. AL-11 and Kocuria sp.
83 KROCY?2 (13, 20-24). Even, no changes in amino acid composition was identified in
84  Desulfotalea psychrophila, Psychroflexus torquis and Arcticibacter spp. (25-27). Thus,
85  these analyses, which attempt to find specific adaptations to cold environments by
86 comparing the amino acid composition seem to have resulted in inconsistent

87  outcomes (22, 28). Furthermore, Csp (cold shock protein) genes may vary widely
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88 across psychrophiles’ genomes, and are even absent in some strains, such as
89  Rhodoferax ferrireducens T118 and Methanolobus psychrophilus R15. This indicates
90 an ambiguous correlation between the number of Csp genes and cold tolerance (9, 29).
91 It remains unknown why these genomic shifts toward cold adaptations are not
92  common features that shared by strains isolated across the alpine and polar regions.

93

94  In the present study, we aimed to verify whether there are genomic features that could
95  be conclusively identified by investigating the genomic patterns of Arthrobacter spp.
96 that are isolated from permanently cold environments. These strains share close last
97  common ancestry, and therefore differences observed between cold derived genomes
98 and the reference genomes are more likely to be the result of cold adaptation (22, 30).
99  Furthermore, we also investigated whether changes in the amino acid composition
100  towards cold adaptation can promote growth at low temperatures.

101

102 Materials and Methods

103  Sixteen Arthrobacter strains were isolated from the Tibetan Plateau (TP) using R2A
104  medium at 4 °C, (Supplementary Table S1). Growth curves at various temperatures
105 (25 °C, 5 °C and —1 °C) was measured in R2A broth. For the —1 °C temperature
106  treatment, the temperature was maintained with ice—water mixtures and by controlling
107  the ambient temperatures at 0 °C. The R2A broth remained liquid at —1 °C (27). Other
108  temperature treatments were sustained using a constant-temperature incubator. To

109  monitor growth, absorbance was measured at 600 nm on a Microplate Reader (MD
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110  SpectraMax Mb). L. Stokes (31) have suggested a one week period of incubation at
111 0 °C in order to define how well microorganisms are adapted to cold. However, in the
112 present study we performed 10 days of incubation at —1 °C. The growth curve tests
113 performed on strains were deposited at the CGMCC (China General Microbiological
114  Culture Collection Center) under the accession numbers Arthrobacter sp. N199823 =
115 CGMCC1.16197, Arthrobacter sp. 4R501 = CGMCC1.16194, Arthrobacter sp.
116 B1805 = CGMCC1.16193, Arthrobacter sp. 08Y14 = CGMCC1.16198 and
117  Arthrobacter sp. 9E14 = CGMCC1.16188. Strains Arthrobacter sp. A3
118 (CGMCC1.8987), A. alpinus CGMCC1.8950, A. globiformis CGMCC1.1894 and A.
119  luteolus CGMCC1.1218 were from CGMCC. The whole genome shotgun sequences
120  were deposited at DDBJ/ENA/GenBank under the BioProject PRINA421662.

121

122 The genomic DNA of the sixteen strains were extracted using TIANamp Bacteria
123 DNA Kit (TTANGEN, Beijing) following to the manufacturer’s instructions. The
124  concentration of genomic DNA was assessed with a NanoDrop spectrophotometer
125  (2000c, Thermo Scientific, USA) and had an OD 260/280 ratio of 1.8-2.0. The DNA
126 was stored in TE buffer (pH 8.0) for genome sequencing. Sequencing was performed
127 using Illumina Hiseq 2000. Reads were assembled using SPAdes v3.11.1 with
128  default options (32). As the algorithm is sensitive to sequencing errors, low-quality
129  reads were filtered prior to de novo assembly using Fastp with default options (33).
130

131  Reference genomes were downloaded from NCBI in March 2017. The completeness
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132 of genomes was calculated using CheckM v1.0.7 with options lineage wf, -t 16, -x
133 fna (34). rRNA genes were called using RNAmmer (v.1.2) (35). Genomes with a
134  completeness of less than 96% and lack of extractable full-length 16S rRNA reads
135 were removed. The resulting set of 39 reference Arthrobacter genomes were used for
136  further analysis along with the 16 genomes obtained in this study. Of the 55 genomes,
137 29 were from extreme cold polar and alpine regions, and 26 were from
138 non-extreme-cold environments (Supplementary Table S1).

139

140  The air temperatures (2 m from surface) were downloaded from the European Centre
141  for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis Database
142 (http://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/) (36). Periods of
143 2008-2017 were selected from ERA-Interim with a spatial resolution 1.5°*1.5°. For
144  the strains of A. woluwensis NBRC 107840, A. woluwensis DSM 10495 and A.
145  luteolus NBRC 107841 isolated from human body we used 37 °C as the environment
146  temperature.

147

148  All the genomes were annotated simultaneously in the present study with RAST
149  (Rapid Annotation using Subsystem Technology) (37). Calculation of amino acid
150 composition was carried out with the PERL script ‘aminoacidUsage.pl’ (38).
151  One-way analysis of variance (ANOVA) was used to examine the differences in
152 amino acids composition. Statistical significance was considered at o < 0.05.

153
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154  For gene family clustering, Microbacterium sp. (No.7) was chosen as the out-group.
155  Microbacterium is one of the closest relatives to the Arthrobacter genus (39) and it is
156  placed right at the lineage outside the Arthrobacter. In general, out-groups that closely
157  related to the in-group species are better suited for phylogeny reconstruction than
158  distantly related out-groups (40). Gene families were clustered using FastOrtho
159  software (--pv_cutoff 1-e5 --pi_cutoff 50 --pmatch_cutoff 50)
160  (http://enews.patricbrc.org/fastortho/). At the amino acid level using an E value of 107
161  and > 50% global amino acid identity threshold, a total of 36, 699 orthologs were
162  identified. Among these, 148 were universal to all the genomes sampled and 119 were
163  single-copy orthologs. The number of single-copy identified in the present study is
164  approximately consistent to the study of D. H. Parks et al. (41) which found 120
165  shared single-copy proteins in bacteria. The 119 mono-copy orthologs were then
166  concatenated using custom-made PERL scripts. As a first step for a genome tree
167  construction, the concatenated orthologous genes were aligned at the amino acid
168  sequence level using Muscle software v3.8.31 (42). Non-conserved segments in the
169  alignments were then trimmed using the Gblock v0.9b (43) to discard all
170  gap-containing columns (-b1 = 50 -b4 = 5, other parameters were set as default). As a
171  second step, probabilistic phylogenetic approaches were used to analyze the
172 concatenation data (30, 366 sites) of the 119 orthologs. The PTHREADS version of
173 RAXML v8.2.4 (-f a —x 12345 —p 12345 -#100 -m GTRGAMMAI) and 1Q-TREE
174  v1.6.0 (-b 1000 -m GTR+I+G4) were used to construct a Maximum Likelihood

175  phylogenetic tree (44, 45). The MPI version of Mrbayes v3.2.6 (mcmc nchains = 16
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176  burnin = 0.25, samplefreq = 100, Ngen = 10000000, Iset nst = 6 rates = gamma) was
177  used to construct a Bayesian phylogenetic tree (46). As the evolutionary models for
178  different sites in multi-gene concatenated alignments may differ, PartitionFinder
179  software v2.1.0 was used to determine the best-fit partitioning scheme for RAXML
180 and Mrbayes (47) with default settings. The resultant trees were embellished with
181  Adobe Illustrator CS6 and iTOL v3 (48).

182

183  Ordinations and statistical analyses were performed using the vegan package v2.4.4
184  (49) using R v3.3.3. Genes significantly associated with cold and temperate
185  environments were calculated by Indicator Species Analysis as implemented in the R
186  library labdsv  (http://ecology.msu.montana.edu/labdsv/R/).  Significance was
187  calculated through random reassignment of groups with 1,000 permutations.

188

189  The 55 Arthrobacter genomes were used for ancestral reconstruction; the out-group
190  species Microbacterium sp. (No.7) was not included because reconstruction of
191  ancestral genome content using COUNT v9.1106 does not require out-group species
192 (50). The COUNT software uses birth-and-death models to identify the rates of gene
193  deletion, duplication, and loss in each branch and node of a phylogenetic tree. We
194 used the pan-genome matrices (Supplementary Table S2) and the phylogenetic
195  birth-and-death model implemented in COUNT, to reconstruct the ancestral genome
196  content of Arthrobacter species. Ancestral history reconstruction was performed by

197  posterior probabilities: one hundred rounds of rate optimization were computed with a
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198  convergence threshold of 10> prior to ancestral reconstruction, other parameters were
199  set as default; Horizontally-transferred genes (HTgenes) were identified using a
200 threshold of probability of gain higher value than 0.95 at the destination node and
201 excluding gains occurring in the last common ancestor with a probability higher than
202 0.5, as suggested by Oliveira and colleagues (51).

203

204  Results

205  Distribution of Arthrobacter strains along their phylogenetic clade

206 We constructed phylogenetic clustering based on concatenated alignment of 119
207  orthologous to yield a high-resolution tree. The 55 Arthrobacter strains were clustered
208 into three main lineages (lineage 1, 2 and 3 in Fig. la; Fig. S1). Strains isolated from
209  polar and alpine environments were mixed in lineage 1 and 2 with the reference
210  strains. For example, despite being isolated from different environments, strains
211 Arthrobacter sp. Y81 from Tibetan Plateau (TP) lake, Arthrobacter sp. TB 26 from
212 Antarctica marine sponge (52), Arthrobacter sp. FB24 from soil in Seymour, Indiana
213 (53) and Arthrobacter sp. SPG23 from contaminated soil at the Ford Motor Company
214  site in Genk, Belgium (54), clustered together in the lineage 1. Strains of Arthrobacter
215  sp. Soil782 and Arthrobacter sp. H5 were located together in lineage 2, despite the
216  former was isolated from plant material and the latter was isolated from Antarctic soil
217 (24, 55). However, strains in lineage 3, in the middle of the phylogenetic tree (Fig. 1a),
218 were all isolated from polar or alpine environments. These included strains of

219  Arthrobacter sp. GMC3, Arthrobacter sp. A3, Arthrobacter sp. N199823, and A.
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220 alpinus ERGS4-06 (isolated from TP lake, permafrost, ice core and glacial stream
221 water); A. alpinus R3-8 (isolated from Antarctic soil); Arthrobacter sp. PAMC 25486
222 (isolated from Arctic soil) and A. alpinus DSM22274 (isolated from alpine soil).

223

224  Based on the clustering results, we classified these 55 strains into three groups for
225  comparative genomic analysis: group A comprised the 26 reference strains isolated
226  from non-extreme-cold environments (e.g. rhizosphere soil, plant leaf surface and
227  blood culture out of polar or alpine) in lineages 1 and 2; group B comprised 22 strains
228 isolated from cold environments (polar or alpine) in lineages 1 and 2; group C
229 comprised 7 strains isolated from cold environments in lineage 3 (Fig. la). We
230 detected a decrease in the frequency of arginine and an increase in lysine, which
231 occurred exclusively to the genomes of strains belonging to group C (Fig. 1b). The air
232 temperatures (2 m from surface) of the polar and alpine strains habitats was
233 significantly lower compared with the references strains habitat (ANOVA, P < 0.005,
234 F=4.052, Fig. 1c).

235

236  Strain growth at different temperatures

237  Strains isolated from Tibetan Plateau showed variable growth patterns, but in general
238 grew better at low temperatures (5 °C, -1 °C, Fig. 2) than the references strains.
239  Strains in group A and B grew faster than strains in group C in exponential phase
240  before 36 h at 25 °C (Fig. 2a). At 5 °C, strains in group C tended to grow faster than

241  strains in group A and group B in exponential phase before 144 h except strain
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242 Arthrobacter sp. 4R501; strains in group B grew faster than strains in group A (Fig.
243 2b). At -1 °C, strains in group C tended to grow faster than all the strains in group A
244  (growth was inhibited) and group B in exponential phase before 240 h (mean OD600
245  of group A, B and C was 0.00, 0.02 and 0.25 at 240 h, respectively, Fig. 2c). The
246 result is in consistent with the study on snow-bacteria of the Tibetan Plateau which
247  revealed the adaption to cold environments was the result from the expansion of their
248  minimum growth-temperature (56).

249

250 Features in amino acid composition

251  The pattern of amino acid distribution in Arthrobacter spp. displayed an overall
252 similar trends in their genomes, with alanine being most abundant, followed by
253 leucine, glycine, and valine, while methionine, tryptophan and to a lesser extent
254  cysteine were infrequent. However, compared against reference genomes, we found a
255  decrease in the frequency of arginine and an increase in lysine have occurred
256  exclusively in the genomes of strains belonging to group C. The shift in composition
257  of arginine and lysine is closely related with survival strategies of psychrophiles (11).
258  Then, we calculated the composition of the twenty common amino acids in whole
259  proteins to determine the differences in their frequencies between the three groups (A,
260 B and C). For group C, significant changes in twenty amino acids were apparent
261 (ANOVA, P < 0.005, F = 4.1491, Fig. 3a). Of the amino acids that increased in group
262  C, one is positively charged (lysine) and seven are uncharged (tryptophan, threonine,

263  serine, asparagine, methionine, isoleucine and phenylalanine) (Fig. 3a). Of the amino
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264  acids that decreased in group C, three are charged (arginine, glutamic acid and
265  aspartic acid), and three are uncharged (proline, glycine and alanine) (Fig. 3a). By
266  exhibiting a number of amino acid changes that impart higher degree of structural
267  flexibility (fewer salt bridges by reduce arginine, glutamic acid, aspartic acid and
268  proline contents) and higher specific activity (more local mobility by increase
269  asparagine, methionine and lysine contents) (11, 57), the enzyme activities of group C
270  strains were predicted to be increased. The resulted increase in flexibility and decrease
271 in thermodynamic stability were consistent with the experimental data that strains in
272 group C grew better at low temperatures while weakly at a higher temperature
273  compared to the reference strains. For group B, there were only changes in glycine
274  (ANOVA, decrease with P = 0.0245, F = 4.052) and threonine (increase with P =
275 0.0366, F = 4.052) (Fig. 3b). The differences in arginine, lysine and proline
276 composition were not significant in group B.

277

278  Differences in the distribution of gene families between Arthrobacter strains

279  We performed a multivariate assessment of gene composition classified at the level of
280 function. Ordination of functional genes using two-dimensional nonmetric
281 multidimensional scaling (NMDS) revealed a clear separation of group C, while
282 group A and B were not clearly separated (Fig. 4a). The PERMANOVA analysis with
283 1000 permutations (58) showed significant difference between strains of group A and
284 C at a functional level (Fig. 4a, P = 0.001, F = 6.492). To remove the potential

285  difference introduced by the distance between lineage 1 and lineage 2, we performed
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286 the PERMANOVA analysis between group A and B separately in lineage 1 and
287  lineage 2. The results revealed no significant differences between cold-environment
288  derived strains and the reference strains in lineage 1 and lineage 2 (P = 0.505 and P =
289  0.171, respectively).

290

291 We further used indicator gene analysis to statistically define the characteristic genes
292  contributing to the differences between the three groups. When group A was
293  compared with group C, a total of 176 and 304 significant functional indicators were
294  found in group A and C, respectively (Fig. 4b, ANOVA, P < 0.05, supplementary
295  Table S3). In contrast, when group A was compared with group B, only 25 and 40
296 significant functional indicators were found, respectively (Fig. 4b, supplementary
297 Table S3). The group C indicator genes were mainly affiliated to the functional
298 category of  Carbohydrates, Amino  Acids and  Derivatives and
299  Cofactors/Vitamins/Prosthetic Groups/Pigments (Fig. 4b, supplementary Table S4).
300

301  Cold shock genes of Arthrobacter strains

302  All of the genomes in group C contained two predicted cold shock genes (one copy of
303  cspA and one cspC). All of the strains in group A and B had an extra 1 to 5 copies of
304  CSpA, except strain Arthrobacter sp. H5 (Supplementary Table S2). We generated
305 alignments and a maximum likelihood tree for cold shock genes. The phylogenetic
306  analyses showed that cspA and cspC genes of strains in group C were monophyletic,

307  while cold shock proteins (Csps) from group B were polyphyletic, interleaving with
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308  group A (Fig. 4c).

309

310

311 Ancestral reconstruction of Arthrobacter strains and the dynamics of genome
312 content

313  We obtained a phylogenomic tree of the 55 Arthrobacter strains to reconstruct the
314  ancestral genome content using three different phylogenomic approaches (IQ-TREE,
315 RAXML and MrBayes; Fig. 5a and Fig. S1). The phylogenetic birth-and-death model
316  imposed on the phylogenomic tree revealed a steady trend towards genome expansion
317  since the most recent common ancestor indicated by N54 (~ 2,460 gene families, Fig.
318  5a). The extant Arthrobacter genomes (2,867 to 4,521 gene families, average ~3,500
319 gene families, Fig. 5a) exhibited a complicated evolutionary path to net genome
320  expansion. Our attention was mainly focused on nodes of N27, N33 and N53 leading
321 tolineage 1 and lineage 2 and lineage 3 (refer to group C), because strains in group C
322 could be distinguished from group A with respect to overall amino acid composition,
323 NMDS analysis and indicator genes. In contrast, these differences could not be
324  detected between group A and B. Our results showed that node N33 that gained 876
325  genes, was more divergent than nodes N27 and N53 which gained 131 and 91 genes,
326  respectively (Fig. 5b). The average genes gained per branch, showed the same trend
327 (N33 =125, N27 = 5 and N53 = 4), indicating that the significant difference between
328 N33 and others was not due to the lineage size. The number of genes lost at node N33

329  was also higher compared to N27 and N53 (the number of lost genes: 362, 47 and 40,
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330 respectively; Fig. 5b). Almost half (429 of 876) of these genes were identified as
331  HTgenes for node N33, while none of them were identified as HTgenes at N27, N33
332 and N53. Genes gained at node N33 were related to cofactors/vitamins/prosthetic
333 groups/pigments (5.6%), membrane transport (3.7%), carbohydrates and amino acids
334  (3.7%) and derivatives (3.7%), but the function of large proportion of gene remained
335  unknown (65.2%) (Fig. 5¢).

336

337  Discussion

338 In the current study, we found that not all Arthrobacter strains isolated from polar and
339 alpine regions exhibited significant detectable changes in the genome composition.
340  Although changes in amino acid composition towards cold adaptation can be widely
341 identified in psychrophilic strains (9, 11), strains in our group B which were isolated
342  from cold environments and able to grow at 5 °C, exhibited no significance in
343 changes in amino acid composition. This has also been the case of Antarctic
344  Arthrobacter isolates, for example, strains Arthrobacter sp. FB24, Arthrobacter sp.
345  Brl8 and Arthrobacter sp. H5 were not located in lineage 3 in Fig. 1a, in which no
346 remarkable genomic features were identified (24). Thus, in certain cases, amino acid
347  shifts are limited and even no changes in amino acid composition can be identified,
348  despite the strains were able to grow at low temperatures. However, the trends in
349 amino acid composition in group C exhibited adaptations to cold environments in
350 terms of genome-wide amino acid composition, which were consistent with those of

351 cold adapted bacteria (9, 11). Thus, conserved genomic traits were exclusive to a
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352 certain group in Arthrobacter.

353

354  Strains in group C shared more genomic traits with the established rules for protein
355 adaptation to cold than that of in group B (15, 17, 18, 57, 59). Thus, strains in group C
356 may represent a “better adapted” genome type which were better adapted to their
357 native cold habitats, this is supported by the faster growth of strains in group C at 5
358 and —1 °C than strains in group A and B. The wide abundance of group C indicator
359  genes in the functional categories revealed that psychrophilic lifestyle is most likely
360  conferred by a collection of synergistic changes in overall genome content rather than
361 a unique set of genes (23). Grouping of bacteria isolated from cold environments
362  based on their growth pattern at low temperature and phylogenetic clustering helped
363 inthe identification of conserved genomic traits of cold adaptation.

364

365  Cold shock proteins (Csp) regulate the cold shock response and play a critical role in
366  bacterial growth at low temperatures (Jones and Inouye, 1994; Hébraud and Potier,
367 1999). Psychrophiles vary widely in the number of Csp genes present in their
368  genomes, indicating a weak correlation between the number of Csp genes and cold
369  tolerance (9). In the present study, we did not find any increase in the number of Csp
370  genes in group C, which contains strains that grew well at -1 °C. On the contrary,
371 strains in group C had fewer Csp genes than those in groups A and B despite the
372 group C strains exhibiting faster growth rates atlow temperatures. Thus, increase in

373 number of Csp genes may not be the strategy for cold adaptation of Arthrobacter spp.
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374

375  Strains in group C shared conserved genomic traits to cold adaptation and the
376  clustering of these strains in one monophyletic lineage suggests that they all have
377  evolved in cold environments and possess similar strategies to remain active and
378  survive low/freezing temperatures. The dynamic historical pattern of Arthrobacter
379  genomes is concordant with the emerging view that genomes evolve through a
380 dynamic process of expansion and streamlining (60-62). However, the evolution of a
381  cluster of strains which can be clearly separated from their relatives has rarely been
382  studied. Our results showed that the N33 node (which leads to the strains in group C)
383  exhibited early vast genome dynamics, which may play an important role in
384  promoting the growth of these strains at low temperatures. The result is consistent
385  with the study of Allen et al. (2009), which revealed the genome plasticity of M.
386  burtonii that have enabled adaptations to cold environments.Also, an inter-order
387  horizontal gene transfer event enabled the catabolism of compatible solutes by
388  Colwellia psychrerythraea 34H, which provided a selective advantage in cold (63).
389  This dynamic genome pattern is also in agreement with the general pattern of virtual,
390  higher taxa in Archaea and Streptococcus genomes, which have the key mechanisms
391  to help related taxa inhabit new niches (60, 61, 64). Because generation time in cold
392 environments is generally longer, horizontal gene transfer may be more effective for
393  acquiring beneficial traits rapidly (26, 65-68). This is experimentally validated by our
394  results that species belonging to group C, which exclusivity exhibited vast dynamic in

395 genome content, have a better capacity to grow at low temperature than their cold
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396  environment isolated counterparts.

397

398  Based on the result of reconstruction of most recent common ancestor, it is suggested
399 that group C strains may be cold evolutionary legacies. Cold adaptations are
400 superimposed on pre-existing microorganisms and the temperature-dependent
401  distribution of bacteria may not result from widespread contemporary dispersal but is
402 an ancient evolutionary legacy, as revealed by evolutional analysis of cold desert
403  cyanobacteria and thermal traits of Streptomyces sister-taxa (69, 70). Strain A. alpinus
404 DSM 22274 in group C is a new species isolated from Alps (71). Many other new
405  bacteria species have been described from polar and alpine regions further suggesting
406  that the level of cold origin taxa could be considerable, and these may represent
407  endemic species (72-79).

408

409  Conclusions

410  Changes in genome composition and obtaining new genes via horizontal gene transfer
411  may not essential for bacteria to survive in cold environments. However, for strains
412 Dbelonging to group C in our study, their adaptation to cold is accelerated by the
413 acquisition of novel traits through horizontal gene transfer (51). Our results indicate
414  that growth at 5 °C may not require significant changes in genome content, but
415  genomic modification seems to be essential for Arthrobacter spp. to grow well at
416  subzero temperature (-1 °C in this study). We found that significantly conserved

417  genomic traits could be detectable across the cold adapted strains that growth quickly
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418  at subzero temperature.
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654

655  Figure legends

656  Figure 1 (a) Phylogenetic clustering of Arthrobacter strains based on concatenated
657 alignment of 119 orthologous proteins using RAXML, numbers at nodes indicate
658  posterior probability/bootstrap percentages by MrBayes and RAXML. (b) Relative
659  composition (frequency compared to the total amino acids present) of lysine and
660 arginine in protein sequences of Arthrobacter proteomes, arrows highlighted
661  significant change in the relative composition of arginine and lysine. (c) Average

662 annual air temperature of the strains (from 2008 to 2017), the environment
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663  temperature of the polar and alpine strains was significantly lower than that of the
664  references strains (P < 0.005, F = 42.1).

665

666  Figure 2 Growth curves for the Group A (A. luteolus, A. globiformis and A.
667  subterraneus), group B (Arthrobacter sp. 4R501, Arthrobacter sp. 9E14 and
668  Arthrobacter sp. 08Y14), group C (A. alpinus, Arthrobacter sp. A3 and Arthrobacter
669  sp. N199823) grow at (a) 25 °C, (b) 5 °C and (c) -1 °C.

670

671  Figure 3 Changes in overall amino acid frequencies between (a) group A and B, (b)
672 groupAandC.

673

674  Figure 4 (a) Ordination of functional genes (classified at the level of function) using
675  two-dimensional nonmetric multidimensional scaling (NMDS). Shading shows clear
676  separation of group C (PERMANOVA, P = 0.001). (b) The frequency of significant
677 indicator genes (P < 0.05) in (1) a comparison of group A and C strains, (2) a
678  comparison of group A and B strains. (c) Phylogenetic relationships of genes related
679  to cold shock; a close clustering between cspA and cspC from genomes of group C
680  shows that these genes are monophyletic and can be clearly separated from those from
681  group A and B which have an interleaved clustering of genes.

682

683  Figure 5 (a) Ancestral genome content reconstruction using COUNT software. The

684  reconstruction is based on the RAXML Arthrobacter tree. The log-scale color coding
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685  represents the number of reconstructed gain and loss events for each lineage.
686  Numbers in parentheses are predicted gene numbers for ancestral nodes and observed
687  gene numbers for extant lineages. (b) Condensed and linearized maximum likelihood
688  cladogram, showing the genome dynamics on the branches leading to nodes N27, N33
689 and N53. (c) Bar plot showing the distribution of genes families gained at N27, N33
690  and N53.

691
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