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Abstract

Background: One of the challenges of next generation sequencing (NGS) is
contaminating reads from other samples. We used the Genotype-Tissue Expression
(GTEX) project, a large, diverse, and robustly generated dataset, as a useful resource to

understand the factors that contribute to contamination.

Results: We obtained 11,340 RNA-Seq samples, DNA variant call files (VCF) of 635
individuals, and technical metadata from GTEx as well as read count data from the
Human Protein Atlas (HPA) and a pharmacogenetics study. We analyzed 48 tissues in
GTEXx. Of these, 24 had variant co-expression clusters of four known highly expressed
and pancreas-enriched genes (PRSS1, PNLIP, CLPS, and CELA3A). Fifteen additional
highly expressed genes from other tissues were also indicative of contamination (KRT4,
KRT13, PGC, CPA1, GP2, PRL, LIPF, CTRB2, FGA, HP, CKM, FGG, MYBPC1, MYH2,
ZG16B). Sample contamination by non-native genes was highly associated with a
sample being sequenced on the same day as a tissue that natively has high levels of
those genes. This was highly significant for both pancreas genes (p=2.7E-75) and
esophagus genes (p= 8.9E-154). We used genetic polymorphism differences between
individuals as validation of the contamination. Specifically, 11 SNPs in five genes shown
to contaminate non-native tissues demonstrated allelic differences between DNA-based
genotypes and contaminated sample RNA-based genotypes. Low-level contamination
affected 1,841 (15.8%) samples (defined as 2500 PRSS1 read counts). It also led to
eQTL assignments in inappropriate tissues among these 19 genes. In support of this
type of contamination occurring widely, pancreas gene contamination (PRSS1) was
also observed in the HPA dataset, where pancreas samples were sequenced, but not in

the pharmacogenomics dataset, where they were not.

Conclusions: Highly expressed, tissue-enriched genes basally contaminate the GTEXx
dataset impacting on some downstream GTEXx data analyses. This type of
contamination is not unique to GTEX, being shared with other datasets. Awareness of
this process will reduce assigning variable, contaminating low-level gene expression to

disease processes.

Key Words: GTEX, RNA-Seq, Contamination, eQTL, PEER factors
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Introduction

The rise of next generation sequencing has allowed for unparalleled data
generation for a variety of nucleic acid studies including RNA expression. As cost per
basepair decreases, more large-scale transcriptome projects can be performed that will
inform on tissue expression patterns in health and disease [1-4]. These data sources
are generally publicly-available and have been used by hundreds of researchers for

secondary analyses of high impact [5, 6].

Limitations exists for all —omics technologies, including bulk RNA sequencing
(RNA-Seq). Issues of hybridization biases, library preparation biases, and
computational biases such as positional fragment bias are known limitations of RNA-
Seq experiments [7-9]. Another challenge of high throughput RNA-Seq is
contamination, leading to the presence of sequence data within a dataset of one sample
that originates from a separate sample. This contamination can come from many
different aspects of the modern sequencing process, such as human error, machine or
equipment contamination, intrinsic preparation and sequencing errors, and
computational errors, including errors that can occur based on the multiplexing methods
used [10-12]. Contamination has been better characterized for DNA sequencing

projects [13-15].

The Genotype-Tissue Expression project (GTEX) aims to create a large publicly
available database of tissue-specific expression quantitative trait loci (eQTL) from over
40 tissues [1]. It is an ongoing project with over 700 individuals and 11,000 tissue

samples. GTEx combines genotyping from whole genome sequencing with gene
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expression levels from bulk RNA-Seq. GTEx has made their RNA-Seq, phenotype,

genotype, and technical data available for public access with permission.

In an analysis of variation in the GTEx RNA-Seq data (V7), we detected
unexpected sources of variation that we hypothesized were likely contaminating
sequence reads found at low, but variable levels across different tissues. Herein we
describe how we identified the source of contamination and establish basal rates of

contamination in the GTEx RNA-Seq data.

Results

Patterns of extreme tissue variation identified usual gene signatures

We embarked on a project to expand our initial description of the causes of lung
expression variation in GTEX to all tissue samples using DEseq?2 variance stabilizing
transformation to normalize read counts from 11,340 samples [16, 17]. We filtered
genes in each tissue keeping those with a mean transformed count >5. The median
number of genes above the expression threshold was 17,729 with the highest and
lowest gene counts being 23,930 and 13,807 in the testis and whole blood respectively.
As previously described, we correlated and hierarchically clustered variable genes (>4
variance across samples) for all tissues with >70 samples (N=48) in the GTEx dataset
[16]. Our algorithm identified multiple gene clusters per tissue, based on their Kendall's
tau correlations. It additionally reported non-clustering, highly variable genes. Most
clusters were the result of biologic and phenotypic features related to the tissues. For
example, a cluster of Y chromosome genes and XIST appeared in 42 of 43 non-sex

specific tissues. However, there was one consistent pattern of 3-4 genes (PNLIP,
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PRSS1, CELA3A, and/or CLPS) identified in 24 of the 48 tissues, that failed to have an

intuitive explanation as these genes are highly-expressed and specific to the pancreas.

We then determined if there were other highly expressed tissue enriched genes

appearing variably in other samples. To further understand this, we utilized a list of

tissue enriched proteins generated by the Human Protein Atlas (HPA) and cross-

referenced this to GTEx TPM data (Table 1) [18, 19]. From this list, we noted 19 genes

from 7 tissues including two esophagus genes KRT13 and KRT4 that are highly

expressed in their native tissue and identified as variable in three or more other

unrelated tissues (Fig. 1a, Additional File 1: Fig. S1).

Table 1 GTEx and HPA highly expressed, tissue-enriched genes present in other

tissues through contamination

Times Highest Second HPA

other tissues tissue HPA tissue | tissue
PRSS1 41 Pancreas 99,100 81,683 | Ovary 257
PNLIP 33 Pancreas 33,660 93,703 | Ovary 288
CPAl 30 Pancreas 54,500 48,857 | Ovary 133
GP2 29 Pancreas 14,280 7,530 Duodenum 36
CELA3A 23 Pancreas 27,130 56,988 | Ovary 162
KRT13 20 Esophagus 33,960 35,139 | Tonsil 1,728
PGC 19 Stomach 36,720 22,276 | Duodenum 1,302
KRT4 18 Esophagus 22,290 14,862 | tonsil 599
PRL 17 Pituitary 54,500 -- -- --
LIPF 14 Stomach 29,380 22,415 | Duodenum 259
CLPS 13 Pancreas 51,640 56,632 | Ovary 214
CTRB2 8 Pancreas 20,760 29,060 | Ovary 74
FGA 6 Liver 5,717 9,265 Stomach 39

Bone
HP 6 Liver 12,710 28,407 | marrow 155.8
Skeletal
CKM 5 muscle 11,138 23,799 | Heart 1,419
FGG 5 Liver 6,623 8,699 Lung 75
5
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Skeletal
MYBPC1 5 muscle 3,587 3,918 Prostate 125
Skeletal
MYH2 5 muscle 1,064 4,306 Esophagus 44
ZG16B 5 Salivary gland 17,540 19,471 | Prostate 87

As both abundant and tissue-enriched genes were unlikely to be randomly and
lowly expressed in a range of other tissues, we performed analyses to determine the

source of the contamination.

Nucleic acid isolation is a minor source of contamination

We first questioned if the contamination occurred during tissue harvesting,
hypothesizing that occasionally small fragments of a tissue could contaminate a
separate sample from shared dissection tools or surfaces. For that to be true, we
reasoned that organs near the pancreas/esophagus, or temporally collected relative to
the pancreas/esophagus would be most affected. However, a pancreas gene
contamination cluster was found in transformed fibroblasts which were grown over
multiple passages and would not retain other cell types over that time period, excluding
this possibility (Additional File 1: Figure S1). Using the available technical metadata, we
found a modest association between nucleic acid isolation date and the presence of
contamination (p= 0.003, linear regression model). Thus, date of nucleic acid isolation

may represent a small aspect of the contamination.

Identification of sequencing date as a correlate to contamination
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We then ascertained if the contamination was occurring at the time of
sequencing. A linear regression model estimated that contamination was 0.85 standard
deviations higher when a sample was sequenced on the same day as a pancreas
sample (p= 2.66e-75). (Fig. 1b,c). When the model included both nucleic acid isolation
date and sequencing date, the association with nucleic acid isolation was not significant
(p=0.31), whereas the sequencing date remained strongly associated with
contamination (p= 1.436e-73), suggesting that the sequencing date was the primary
cause of contamination. A comparison of the aforementioned models using a one way
anova test indicated nucleic acid isolation date did not significantly increase the
variance explained in normalized contamination scores (p= 0.31). A similar association
between sequencing data and contamination was observed with esophageal gene
contamination, which in the same model, had a strong association with nucleic acid
isolation date (p= 4.59e-16) but a stronger association with sequencing date (p= 8.95e-
154). In the samples, contamination by esophagus-enriched genes had a negative
association with having nucleic acid isolation on the same day as an esophagus (-0.306
Z-Score, p= 4.59e-16), discounting nucleic acid isolation date as the main point of
contamination. Despite this strong correlation with sequencing, some high Z-scores
came from samples that were not sequenced on the same days as pancreata. Further
analysis showed that essentially all of these samples were sequenced within a few days
of a pancreas (Fig. 1d). This additionally implicated the library preparation process (for
which date information is lacking in GTEX) which is temporally related to sequencing,

rather than the sequencing itself.

Genetic polymorphisms confirm contamination is derived from other samples
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To prove that pancreas/esophagus transcripts were contaminating from other
(non-self) samples we investigated for incongruencies between a person’s genotype
(from DNA data) and the genotype in matching loci in the pancreas/esophagus
contaminated RNA-Seq samples. We required both the individuals’ DNA genotype and
their contamination source RNA-Seq as we are aware of both RNA editing and
preferential allele expression. Based on sample requirements and limited by available
raw sequencing files, we identified 11 contaminated tissues to evaluate. For each, we
obtained and processed their raw RAN-Seq FASTQ sequences to identify variants in
both their contaminated tissues and their matched pancreas or esophagus tissue
(depending on the gene source of contamination). Additionally, we used the GTEXx
filtered VCF file from their sequenced DNA to further establish their SNP allele patterns.
Across all tissues, 533 SNPs, rare variants, and private variants, were investigated in
pancreas associated gene coding sequences (PNLIP, CLPS, and CELA3A) and 190 in
esophagus associated gene coding sequences (KRT13, KRT4). As a comparison
group, 287 variants were investigated in two control gene coding sequences (GAPDH,
and RAB7A) that have near ubiquitous expression across all tissues. Of 1,010 variants
obtained from the combined VCF files, 11 had some degree of allelic heterogeneity

(Table 2). No incongruencies were found in the 287 variants of the two control genes.

Table 2 Allelic incongruencies found in contaminated samples

Enriched Tissue Contaminated
Major/ Major Major
Individual Gene SNP Minor Reads Allele % Tissue Type Reads Allele %
GTEX-1 KRT13 rs903 C/A 101,908 0% Fibroblast Cells 252 50%
GTEX-1 KRT4 rs7959052 T/C 74,468 100% Fibroblast Cells 203 12%
GTEX-1 KRT4 rs7956809 C/G 85,803 100% Fibroblast Cells 204 13%
GTEX-1 KRT4 rs2035879 T/C 72,978 51% Fibroblast Cells 164 7%
8
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GTEX-1 KRT4 rs17119475 G/A 71,592 49% Fibroblast Cells 226 98%
GTEX-9 CELA3A rs3820285 C/G 98,896 1% Adipose 5,178 48%
GTEX-9 CELA3A rs9187 C/T 105,462 75% Adipose 6,082 97%
GTEX-9 CELA3A rs12908 G/A 108,681 75% Adipose 6,313 98%
GTEX-8 CELA3A rs9187 C/T 162,318 73% Tibial Nerve 1,155 100%
GTEX-8 CELA3A rs12908 G/A 169,394 74% Tibial Nerve 1,215 100%
GTEX-10 CLPS rs3748050 T/C 80,019 47% C Artery 1,117 99%

One SNP site (rs7956809), was particularly informative. SNP rs7956809 (C/G),
located in KRT4, had a relatively low allelic variation, with only 5 individuals in the entire
GTEx cohort homozygous for the alternative allele (G). One sample (arbitrarily GTEX1)
was homozygous C at rs7956809 in both its DNA (VCF file) and matched esophagus
(RNA-Seq FASTQ data) (Fig. 1e). However, the rs7956809 SNP in the GTEX1
fibroblast sample was 87% G and 13% C. Six esophagus samples were sequenced on
the same day as the GTEX1 fibroblast sample. No other esophagus samples were
sequenced within 4 days. One of those six samples, GTEX2, was homozygous G at
rs7956809. The five other samples were homozygous C. This strongly implicates the
GTEX2 esophagus sample as the dominant contaminant of the GTEX1 fibroblast

sample.

We further investigated the relationship between the GTEX1 fibroblast sample
and the GTEX2 esophagus sample finding no clear connection. The two samples were
sequenced on different machines and in different flow cells. Of some interest, the
sequencing sample adapters (molecular indexes) were similar (Additional File 2: Table

S1).

The extent of highly expressed, tissue-enriched gene contamination in GTEx
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After establishing that contamination exists in GTEX, identifying a temporal association
and polymorphism validation, we then attempted to address the extent of contamination
in the GTEXx dataset. To characterize this we investigated the various levels of pancreas
enhanced gene expression in non-pancreatic tissue (Table 1). In the 10,298 non-
pancreas samples investigated, <0.5% had >10,000 read counts of PRSS1, the most
abundant pancreas gene (Table 3). However, at a threshold of >100 read counts, over

half of samples contained some PRSS1.

Table 3 Extent of contamination of 11,092 non-pancreas samples by pancreas genes.

Gene Read Count > 10,000 | Read Count > Read Count > 100
1,000

PRSS1 49 (0.44%) 782 (7.1%) 5802 (52.3%)

PNLIP 30 (0.27%) 278 (2.5%) 4511 (40.6%)

CELA3A 24 (0.22%) 253 (2.3%) 4102 (37.1%)

CLPS 13 (0.12%) 122 (1.1%) 2587 (23.3%)

Numbers indicate the amount of affected samples and their percentage

PEER factor normalization does not fully correct for contamination

The GTEx analysis pipeline uses probabilistic estimation of expression residuals
(PEER) factor to correct for possible confounders [20, 21]. This method identifies hidden
factors that explain much of the expression variability and can be used to normalize
RNA expression data. We focused on just one tissue, lung, and followed the GTEX
analysis pipeline to determine the extent to which PEER factor normalization can
identify and correct for this contamination. Sixty PEER factors were identified with the
top two identifying a difference between “in hospital” (short postmortem interval) and

“outside of hospital” (longer postmortem interval) deaths (Fig. 2a). This relationship is

10
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consistent with our prior report of variation in lung [16]. Similar to the global findings of

Fig. 1, PNLIP expression was increased in lung samples sequenced on the same day

as a pancreas. Despite correcting for 35 or even 60 PEER factors, this difference was
not fully accounted for (Fig. 2b). Indeed, of five genes evaluated, only one gene (KRT4)
was fully corrected for by PEER factors (Table 4). We then explored if this lack of full
correction impacted eQTL analysis in the GTEXx program.
Table 4. Significance of same-day sequencing of lung with contaminating tissues on
gene expression.
P. value after P. value after ,
P. value correcting for | correcting for Beta estimate
Gene | before PEER 35 PEER 60 PEER after.
correction correction
factors factors
PNLIP 4.34e-14 1.38e-11 3.03e-06 0.54
PRSS1 6.29e-14 8.07e-11 5.18e-06 0.52
CELA3A 5.91e-14 8.78e-11 4.86e-06 0.52
KRT4 0.0034 0.055 0.22 0.15
KRT13 8.29e-17 3.70e-08 0.0050 0.36

P. values are shown before and after PEER correction.

Contamination affects GTEx eQTL reporting

Using the GTEx eQTL browser, we identified 75 tissues reported as having significant
eQTLs for the 19 genes listed in Table 1. Eight tissues matched the known dominant

expression patterns of the genes. An additional 25 tissues were deemed possible based

on expression patterns noted by RNA and protein immunohistochemistry in which

expression (in TPM) was above the basal level of all tissues. However, 42 inappropriate

11
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1 tissues were identified as harboring eQTLs even though these genes are not natively

2 expressed in these tissues, appearing only as a result of contamination (Table 5).

3  Table 5 Distribution of GTEx eQTLSs by tissue type in contaminating genes

Genes Aqrproprlate Possible tissues Inappropriate tissues
issues
PRSS1 -- Small intestine Liver, coronary, skin, lung
PNLIP -- -- --
CPAl -- -- Coronary
GP2 -- -- Brain
CELA3A Pancreas Stomach Liver
KRT13 Vagina -- Lung
PGC -- Lung, pancreas Tibial artery
KRT4 Esophagus Skin, lung Colon, brain, thyroid
PRL Gastroesophageal junction,
B B skin, tibial artery
LIPF Stomach -- --
CLPS Pancreas -- --
CTRB2 Pancreas -- Aorta, brain, lung, thyroid
FGA Liver Stomach --
Whole blood,
HP B adipose (2), artery | brain, esophagus mucosa,
(3), lung, tibial heart,
nerve
CKM -- -- Aorta, whole blood
FGG Liver Lung, adrenal --
Heart, prostate, Esophagus (2), colon, lung,
MYBPCL | -- brain (2) thyroid
MYH2 -- -- Colon, lung
Adipose, adrenal,
7G16B B Skin (2), stomach, | esophagus, fibroblasts, lung,
prostate, colon pituitary, spleen, testis,
thyroid, whole blood

5 Non-GTEx data sets confirm contamination

6 To determine if highly-expressed tissue-enriched contamination is a feature of

7 sequencing in general, we searched for RNA-Seq datasets that had similar protocols to

8 GTEkx, that both included or did not include pancreas samples. We identified an HPA

9 sequencing study which included pancreas [22] and a pharmacogenetics study which

12



https://doi.org/10.1101/602367
http://creativecommons.org/licenses/by-nc-nd/4.0/

O©CO~NOOOTA~AWNPE

10

11

12

13

14

15

16

17

18

19

20

21

bioRxiv preprint doi: https://doi.org/10.1101/602367; this version posted April 8, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

did not include pancreas [23]. Both studies were sequenced on Illlumina 2000 or 2500
sequencers. The HPA study multiplexed their samples, 15 per lane, but the
pharmacogenetics study did not report multiplexing. These data sets demonstrate
PRSS1 contamination of the HPA data (N=19), with essentially no PRSS1

contamination in the pharmacogenetics study (N=74) (Fig. 2c).

Discussion

The GTEXx dataset represents an ideal resource to study sequence
contamination. Its 11,000+ samples from 700+ individuals from a diverse set of tissues
with all library preparation and sequencing performed at one center is unique. During
our initial variation analysis of 46 tissues spanning 10,294 samples, we detected a
variable signal of pancreas genes in 24 of those tissues. From there we noticed genes
that were highly expressed in esophagus, stomach, pituitary and other tissues also
appearing in shared clusters across unrelated tissues. These highly expressed, tissue-
enriched genes were found at low, variable levels in other organs and represented

some of the most frequent causes of variation between samples of the same tissue
type.

We found that contamination is best linked to the date of sequencing (linear
regression model, p = 2.66e-75). However, both due to contamination being noted in

some samples that are sequenced a few days apart from a possible contaminating

source and the SNP-based evidence, we suspect the majority of the contamination

13
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occurred during library preparation rather than the sequencing itself. Library preparation

dates were not documented (personal communication, GTEx Help Desk).

A variety of contamination causes have been reported, all of which could have
had some role in our findings. Contamination during the collection of samples from
individuals is possible, especially if non-disposable tools such as forceps are not
cleaned properly in between collections [24]. During tissue manipulation, a “floater” or
tiny piece of tissue could end up in the fixation kit (PAXgene) [24]. Although we did not
see either type of contamination, it would be the hardest to prove due to the shared

genotype.

While the nucleic acid isolation date was only modestly associated with
contamination, physical contamination can easily occur at this stage. GTEx RNA
isolation was manually done in batches of 12 tissues, purposefully with a mix of donors
and tissues to minimize batch effects. Samples were individually cut and placed into

cryovials for homogenization, followed by further manipulations [25].

At the stage of library preparation or sequencing where our data indicates most
of the contamination occurred, there are multiple steps that could be implicated. The
library preparation was completed automatically in 96 well plates with a mix of tissues
and individuals to prevent batch effects [25]. Fluidic carryover could have occurred here.
At the sequencing level, a major concern is index contamination where index
oligonucleotides used for multiplexing can ligate to other sample transcripts, thus
contaminating the data after demultiplexing. Index based contamination is machine and
lane specific and can even occur at the creation of the indexes when multiple indexes

are purified on the same high-performance liquid chromatography column [26].
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Additionally, if steps to clean libraries of free adapters/primers are not properly
executed, the remaining indexes can contaminate clusters in the flow cells [11].
Molecular recombination of indexes during sequencing can also lead to read
misassignment as multiplex clusters can become contaminated by other samples that
acquire the indices of the native sample (index hopping). GTEX’s use of dual indices

reduces the amount of index hopping that can occur [25, 26].

Using other sequencing datasets with similar sequencing methods, HPA and the
pharmacogenetics study, we validated that it is contamination, not low-level
transcription, which causes these unusual expression findings. This also shows the
generalizability of this type of contamination regardless of the labs in which they take

place.

So how big is the contamination problem? It depends on how the data is to be
used. Fortunately, in the GTEXx data, the levels are overall low with only 0.46% of
samples having relatively high levels of PRSS1. Thus, for many uses of GTEx data, this
level is irrelevant. However, for groups that are investigating differential expression in
the GTEx dataset, these genes will repeatedly appear due to their variable levels of
contamination. As well, we note that the GTEx standard normalization pipeline using
PEER factors did not entirely eliminate this source of variation and an abundance of
eQTLs that were identified for the 19 genes described herein were located in incorrect

tissues (84%).

Many publications have reported rare, but variable gene expression in their
samples claiming their importance or disease-related behaviors [27]. Our findings call

these reports into question. The extent of cross-contamination, where one laboratories’
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samples get prepped and sequenced at the same time as a different laboratories’
unrelated samples through a university core sequencing facility or sequencing company
is unknown, but likely frequent [28, 29]. The xenomiR story, that rice miRNAs are found
in human blood through dietary means [30], was shown to result from library preparation
contamination [31, 32]. Also, our work supports that work flows must be considered
carefully in very-low DNA mutation detection analysis in clinical cancer samples as
samples with higher tumor burdens may contaminate samples with lower tumor burdens
and falsely suggest treatment approaches [33, 34]. Specific to GTEX, their data is
available in many outlets including the UCSC Genome Browser and variable, low-level
expression of PRSS1, CELA3A and others may falsely intrigue researchers, particularly

within the reported eQTLs.

Conclusion

We described low-level, variable expression contamination in the GTExX RNA-
Seq dataset. The contamination was most noticeable for 19 highly-expressed, tissue-
enriched genes. This contamination strongly correlates with the library preparation and
sequencing of the samples. Similar contamination was observed in the HPA dataset,
suggesting a universality to this type of contamination. Evaluating low-level variable
gene expression in RNA-Sequencing data sets must be performed with precaution and

awareness of potential sample contamination.

Methods

Retrieval of GTEx RNA-Seq dataset, FASTQ files, and sample Data

16


https://doi.org/10.1101/602367
http://creativecommons.org/licenses/by-nc-nd/4.0/

O©CO~NOOOTA~AWNPE

bioRxiv preprint doi: https://doi.org/10.1101/602367; this version posted April 8, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

10

11

12

13

14

15

16

17

18

19

20

21

22

aCC-BY-NC-ND 4.0 International license.

The gene read counts of the RNA-Seq GTEXx version 7 dataset (GTEx_Analysis_2016-
01-15 v7_RNASeQCv1.1.8_gene_reads.gct.gz) were downloaded from the GTEx
Portal (https://gtexportal.org/home/datasets), along with the de-identified sample
annotations (GTEx_v7_Annotations_SampleAttributesDS.txt). From dbGaP with the
required permissions, the FASTQ files of the tissue samples and the variant call file

(VCF) files of appropriate individuals were downloaded.

Retrieval of Human Protein Atlas tissue enriched gene list

We obtained the HPA tissue enriched genes by downloading a CSV file from this filtered
site

(https://www.proteinatlas.org/search/tissue specificity rna:any;Tissue%20enriched+AN

D+sort_by:tissue+specifict+score, visited on 6/21/18).

Bulk sequencing processing

The acquired raw read counts were segmented into separate tissue subsets (48
tissues with 270 samples each) and their read counts were normalized using the
Variance Stabilizing Transformation feature in DESeq2 version 1.22.1 in R version 3.5.1
[17]. This method incorporates estimated size factors based on the median-ratio
method, and transformed by the dispersion-mean relationship. We then filtered the
56,202 genes based on their mean expression (mean transformed count > 5) to reduce

noise and lessen the inflated effect of low expressing genes on correlations.

Identification of highly variable genes and clusters

All analyses were completed in R version 3.5.1 (2018/07/02). In each tissue a

threshold of a >4 variance of normalized read counts was used as our cut off for highly

17
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variable transcripts. These genes were then clustered using hierarchal clustering on a
distance generated by 1 - Kendall's rank-correlation coefficient. A tau critical value was
calculated based on the number of samples and genes expressed. The correlation-
based dendrogram was cut to produce gene clusters with average within cluster

correlation of at least the tau critical value.

Calculation of average gene expression Z-Scores

Approximate z-scores were calculated by subtracting the mean expression and
dividing by the median absolute deviation of the expression values for each gene across
all samples within a given tissue. These Z-scores provide a standard measure of
expression for all genes and allow one to summarize the expression of a gene cluster in

a sample by the average Z-score of the genes in that cluster.

Base pair incongruency analysis

Base pair incongruency analysis required a contaminated tissue expression
FASTQ, a native tissue expression FASTQ, and the individual’'s VCF file. FASTQ files
were mapped to the Genome Reference Consortium Human Build 37 (hg19) using the
software HISAT?2 version 2.1.0 [35]. The output SAM files were turned into BAM files
and indexed using samtools version 1.9 [36, 37]. Preliminary analysis and development
of figures were generated using the Integrative Genome Viewer version 2.4.13 [38, 39]).
Protein coding SNPs, rare variants, and personal variants (collectively referred to as
variants in this paper), were manually selected using IGV as a reference. Using the tool
bam-readcount version 0.8.0 in combination with a Python 3.6.2 script, a list of RNA-

Seq and genomic incongruencies were generated for the acquired sample BAM files.

18
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PEER factor analysis

We obtained the GTEx RNA-Seq dataset from lung (N=427). The data underwent
trimmed mean of m-values (TMM) normalization and filtering out of lowly expressed
genes (< 0.1 TPM for 80% or more of the samples) before running PEER to identify
potential confounders [20]. Following GTEX’s pipeline

(https://gtexportal.org/home/documentationPage#staticTextAnalysisMethods visited),

we then performed an inverse normal transformation (INT) on the expression values for
each gene in order to reduce the effect of outliers [21]. Z-scores for each gene are
based on TMM-normalization, inverse-normal transformation, and scaling/centering at

Zero.

Cross-referencing eQTLs with contamination findings

We obtained and tallied eQTL reports for the 19 genes in Table 1 from the GTEXx

eQTL browser (https://gtexportal.org visited on March 26, 2019). eQTLs were identified

by tissue association and conservatively placed in one of three categories: appropriate
expression, possible expression, and inappropriate expression. The appropriateness of
expression in any tissue was based on the evaluation of TPM levels in the tissue and

immunohistochemistry staining patterns as noted in the Human Protein Atlas [40].

Acquiring Human Protein Atlas and Pharmacogenetic Study Variation RNA-Seq

Data

Using the R package recount version 1.8.2, we downloaded HPA RNA-Seq data,
accession ERP003613 [22], and the RNA-Seq data of a pharmacogenetic

transcriptomic study, accession SRP060355 [23]. The HPA RNA-Seq was performed

19
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across 27 tissues including the pancreas and the pharmacogenetic RNA-Seq was
across 4 tissues not including pancreas. We filtered samples down to only the shared

tissues of liver, heart, and adipose.

Additional files

Additional File 1: Figure S1 A correlation heatmap of the highly variable gene clusters
in 343 transformed fibroblast samples. Red shows a positive correlation. Genes within
the contamination cluster are given. A, B and C represent other groups of co-variable

genes.

Additional File 2: Table S1: A technical comparison of the GTEXL1 fibroblast sample

and its main contaminating GTEX2 esophagus sample.

Figure Legends —

Fig. 1 Identification and explanation of sequencing contamination a A correlation
heatmap of highly variable subcutaneous adipose tissue genes across 442 subjects.
Red shows a positive correlation. The genes within the contamination cluster and the
sex cluster are given. Clusters A, B, and C represent other groups of co-variable genes.
b Z-score values of non-pancreas tissue sample PRSS1 reads coded by relationship to
being sequenced on the same day as a pancreas tissue. (p<l.21le-67, linear model)
over ~3 years. ¢ Violin plot of the same data showing a strong, but not complete
correlation of sequencing on a pancreas day. d Ranked order of all samples either
sequenced on the same day as a pancreas sample (black) or on a non-pancreas
sequencing day (colors) for PRSS1 in log10. Among samples not sequenced on a

pancreas day, 91% of samples with >100 reads were sequenced within 4 days of a

20
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known sequenced pancreas. The dashed line represents 100 reads. e Contamination of
GTEXT1’s fibroblast RNA-Seq predominately came from GTEX2. By DNA and RNA of
the appropriate tissue source of KRT4, sample GTEX1 is homozygous for the C allele at
rs7956809. The fibroblast sample is 87% G reads, primarily matching sample GTEX2.
The read count depth at the SNP in the GTEX1 esophagus was 85,803 and 204 for the

GTEX1 fibroblast.

Fig. 2 Impact of PEER factors on contamination. a The top two PEER factors separated
in hospital from out of hospital deaths. b With no PEER factor correction there is a
significant increase in PNLIP expression Z-scores in lung samples if sequenced on the
same day as a pancreas (No = 96, Yes = 331; p= 4.34e-14). After 35 (p= 1.38e-11) or
60 (p= 3.03e-06) PEER factor corrections, the difference remained. ¢ PRSS1
contamination across three data sets. Only in data sets where pancreas was collected
and sequenced (GTEx and HPA) are there notable contaminating PRSS1 reads. Key:

Pharma = Pharmacogenomics data set.
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