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Abstract 1 

Background: One of the challenges of next generation sequencing (NGS) is 2 

contaminating reads from other samples. We used the Genotype-Tissue Expression 3 

(GTEx) project, a large, diverse, and robustly generated dataset, as a useful resource to 4 

understand the factors that contribute to contamination. 5 

Results: We obtained 11,340 RNA-Seq samples, DNA variant call files (VCF) of 635 6 

individuals, and technical metadata from GTEx as well as read count data from the 7 

Human Protein Atlas (HPA) and a pharmacogenetics study. We analyzed 48 tissues in 8 

GTEx. Of these, 24 had variant co-expression clusters of four known highly expressed 9 

and pancreas-enriched genes (PRSS1, PNLIP, CLPS, and CELA3A). Fifteen additional 10 

highly expressed genes from other tissues were also indicative of contamination (KRT4, 11 

KRT13, PGC, CPA1, GP2, PRL, LIPF, CTRB2, FGA, HP, CKM, FGG, MYBPC1, MYH2, 12 

ZG16B). Sample contamination by non-native genes was highly associated with a 13 

sample being sequenced on the same day as a tissue that natively has high levels of 14 

those genes. This was highly significant for both pancreas genes (p= 2.7E-75) and 15 

esophagus genes (p= 8.9E-154). We used genetic polymorphism differences between 16 

individuals as validation of the contamination. Specifically, 11 SNPs in five genes shown 17 

to contaminate non-native tissues demonstrated allelic differences between DNA-based 18 

genotypes and contaminated sample RNA-based genotypes. Low-level contamination 19 

affected 1,841 (15.8%) samples (defined as ≥500 PRSS1 read counts). It also led to 20 

eQTL assignments in inappropriate tissues among these 19 genes. In support of this 21 

type of contamination occurring widely, pancreas gene contamination (PRSS1) was 22 

also observed in the HPA dataset, where pancreas samples were sequenced, but not in 23 

the pharmacogenomics dataset, where they were not.  24 

Conclusions: Highly expressed, tissue-enriched genes basally contaminate the GTEx 25 

dataset impacting on some downstream GTEx data analyses. This type of 26 

contamination is not unique to GTEx, being shared with other datasets. Awareness of 27 

this process will reduce assigning variable, contaminating low-level gene expression to 28 

disease processes. 29 

Key Words: GTEx, RNA-Seq, Contamination, eQTL, PEER factors  30 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 8, 2019. ; https://doi.org/10.1101/602367doi: bioRxiv preprint 

https://doi.org/10.1101/602367
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 1 

 The rise of next generation sequencing has allowed for unparalleled data 2 

generation for a variety of nucleic acid studies including RNA expression. As cost per 3 

basepair decreases, more large-scale transcriptome projects can be performed that will 4 

inform on tissue expression patterns in health and disease [1-4].  These data sources 5 

are generally publicly-available and have been used by hundreds of researchers for 6 

secondary analyses of high impact [5, 6].  7 

Limitations exists for all –omics technologies, including bulk RNA sequencing 8 

(RNA-Seq). Issues of hybridization biases, library preparation biases, and 9 

computational biases such as positional fragment bias are known limitations of RNA-10 

Seq experiments [7-9]. Another challenge of high throughput RNA-Seq is 11 

contamination, leading to the presence of sequence data within a dataset of one sample 12 

that originates from a separate sample. This contamination can come from many 13 

different aspects of the modern sequencing process, such as human error, machine or 14 

equipment contamination, intrinsic preparation and sequencing errors, and 15 

computational errors, including errors that can occur based on the multiplexing methods 16 

used [10-12]. Contamination has been better characterized for DNA sequencing 17 

projects [13-15]. 18 

The Genotype-Tissue Expression project (GTEx) aims to create a large publicly 19 

available database of tissue-specific expression quantitative trait loci (eQTL) from over 20 

40 tissues [1]. It is an ongoing project with over 700 individuals and 11,000 tissue 21 

samples. GTEx combines genotyping from whole genome sequencing with gene 22 
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expression levels from bulk RNA-Seq. GTEx has made their RNA-Seq, phenotype, 1 

genotype, and technical data available for public access with permission.  2 

 In an analysis of variation in the GTEx RNA-Seq data (V7), we detected 3 

unexpected sources of variation that we hypothesized were likely contaminating 4 

sequence reads found at low, but variable levels across different tissues. Herein we 5 

describe how we identified the source of contamination and establish basal rates of 6 

contamination in the GTEx RNA-Seq data. 7 

Results 8 

Patterns of extreme tissue variation identified usual gene signatures 9 

 We embarked on a project to expand our initial description of the causes of lung 10 

expression variation in GTEx to all tissue samples using DEseq2 variance stabilizing 11 

transformation to normalize read counts from 11,340 samples [16, 17]. We filtered 12 

genes in each tissue keeping those with a mean transformed count >5. The median 13 

number of genes above the expression threshold was 17,729 with the highest and 14 

lowest gene counts being 23,930 and 13,807 in the testis and whole blood respectively. 15 

As previously described, we correlated and hierarchically clustered variable genes (>4 16 

variance across samples) for all tissues with >70 samples (N=48) in the GTEx dataset 17 

[16]. Our algorithm identified multiple gene clusters per tissue, based on their Kendall’s 18 

tau correlations. It additionally reported non-clustering, highly variable genes. Most 19 

clusters were the result of biologic and phenotypic features related to the tissues. For 20 

example, a cluster of Y chromosome genes and XIST appeared in 42 of 43 non-sex 21 

specific tissues. However, there was one consistent pattern of 3-4 genes (PNLIP, 22 
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PRSS1, CELA3A, and/or CLPS) identified in 24 of the 48 tissues, that failed to have an 1 

intuitive explanation as these genes are highly-expressed and specific to the pancreas. 2 

We then determined if there were other highly expressed tissue enriched genes 3 

appearing variably in other samples. To further understand this, we utilized a list of 4 

tissue enriched proteins generated by the Human Protein Atlas (HPA) and cross-5 

referenced this to GTEx TPM data (Table 1) [18, 19]. From this list, we noted 19 genes 6 

from 7 tissues including two esophagus genes KRT13 and KRT4 that are highly 7 

expressed in their native tissue and identified as variable in three or more other 8 

unrelated tissues (Fig. 1a, Additional File 1: Fig. S1). 9 

Table 1 GTEx and HPA highly expressed, tissue-enriched genes present in other 10 

tissues through contamination 11 

Gene 

Times 
identified as 
variable in 

other tissues 

Highest 
expressed 
GTEx/HPA 

tissue 

GTEx TPM 
HPA 
TPM 

Second 
highest 

expressed 
HPA tissue 

HPA 
TPM in 
second 
tissue 

PRSS1 41 Pancreas 99,100 81,683 Ovary 257 

PNLIP 33 Pancreas 33,660 93,703 Ovary 288 

CPA1 30 Pancreas 54,500 48,857 Ovary 133 

GP2 29 Pancreas 14,280 7,530 Duodenum 36 

CELA3A 23 Pancreas 27,130 56,988 Ovary 162 

KRT13 20 Esophagus 33,960 35,139 Tonsil 1,728 

PGC 19 Stomach 36,720 22,276 Duodenum 1,302 

KRT4 18 Esophagus 22,290 14,862 tonsil 599 

PRL 17 Pituitary 54,500 -- -- -- 

LIPF 14 Stomach 29,380 22,415 Duodenum 259 

CLPS 13 Pancreas 51,640 56,632 Ovary 214 

CTRB2 8 Pancreas 20,760 29,060 Ovary 74 

FGA 6 Liver 5,717 9,265 Stomach 39 

HP 6 Liver 12,710 28,407 
Bone 
marrow 155.8 

CKM 5 
Skeletal 
muscle 11,138 23,799 Heart 1,419 

FGG 5 Liver 6,623 8,699 Lung 75 
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MYBPC1 5 
Skeletal 
muscle 3,587 3,918 Prostate 125 

MYH2 5 
Skeletal 
muscle 1,064 4,306 Esophagus 44 

ZG16B 5 Salivary gland 17,540 19,471 Prostate 87 

 1 

 2 

 As both abundant and tissue-enriched genes were unlikely to be randomly and 3 

lowly expressed in a range of other tissues, we performed analyses to determine the 4 

source of the contamination. 5 

Nucleic acid isolation is a minor source of contamination 6 

 We first questioned if the contamination occurred during tissue harvesting, 7 

hypothesizing that occasionally small fragments of a tissue could contaminate a 8 

separate sample from shared dissection tools or surfaces. For that to be true, we 9 

reasoned that organs near the pancreas/esophagus, or temporally collected relative to 10 

the pancreas/esophagus would be most affected. However, a pancreas gene 11 

contamination cluster was found in transformed fibroblasts which were grown over 12 

multiple passages and would not retain other cell types over that time period, excluding 13 

this possibility (Additional File 1: Figure S1). Using the available technical metadata, we 14 

found a modest association between nucleic acid isolation date and the presence of 15 

contamination (p= 0.003, linear regression model). Thus, date of nucleic acid isolation 16 

may represent a small aspect of the contamination. 17 

Identification of sequencing date as a correlate to contamination 18 
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 We then ascertained if the contamination was occurring at the time of 1 

sequencing. A linear regression model estimated that contamination was 0.85 standard 2 

deviations higher when a sample was sequenced on the same day as a pancreas 3 

sample (p= 2.66e-75). (Fig. 1b,c). When the model included both nucleic acid isolation 4 

date and sequencing date, the association with nucleic acid isolation was not significant 5 

(p= 0.31), whereas the sequencing date remained strongly associated with 6 

contamination (p= 1.436e-73), suggesting that the sequencing date was the primary 7 

cause of contamination. A comparison of the aforementioned models using a one way 8 

anova test indicated nucleic acid isolation date did not significantly increase the 9 

variance explained in normalized contamination scores (p= 0.31).  A similar association 10 

between sequencing data and contamination was observed with esophageal gene 11 

contamination, which in the same model, had a strong association with nucleic acid 12 

isolation date (p= 4.59e-16) but a stronger association with sequencing date (p= 8.95e-13 

154). In the samples, contamination by esophagus-enriched genes had a negative 14 

association with having nucleic acid isolation on the same day as an esophagus (-0.306 15 

Z-Score, p= 4.59e-16), discounting nucleic acid isolation date as the main point of 16 

contamination. Despite this strong correlation with sequencing, some high Z-scores 17 

came from samples that were not sequenced on the same days as pancreata. Further 18 

analysis showed that essentially all of these samples were sequenced within a few days 19 

of a pancreas (Fig. 1d). This additionally implicated the library preparation process (for 20 

which date information is lacking in GTEx) which is temporally related to sequencing, 21 

rather than the sequencing itself. 22 

Genetic polymorphisms confirm contamination is derived from other samples 23 
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To prove that pancreas/esophagus transcripts were contaminating from other 1 

(non-self) samples we investigated for incongruencies between a person’s genotype 2 

(from DNA data) and the genotype in matching loci in the pancreas/esophagus 3 

contaminated RNA-Seq samples. We required both the individuals’ DNA genotype and 4 

their contamination source RNA-Seq as we are aware of both RNA editing and 5 

preferential allele expression. Based on sample requirements and limited by available 6 

raw sequencing files, we identified 11 contaminated tissues to evaluate. For each, we 7 

obtained and processed their raw RAN-Seq FASTQ sequences to identify variants in 8 

both their contaminated tissues and their matched pancreas or esophagus tissue 9 

(depending on the gene source of contamination). Additionally, we used the GTEx 10 

filtered VCF file from their sequenced DNA to further establish their SNP allele patterns. 11 

Across all tissues, 533 SNPs, rare variants, and private variants, were investigated in 12 

pancreas associated gene coding sequences (PNLIP, CLPS, and CELA3A) and 190 in 13 

esophagus associated gene coding sequences (KRT13, KRT4). As a comparison 14 

group, 287 variants were investigated in two control gene coding sequences (GAPDH, 15 

and RAB7A) that have near ubiquitous expression across all tissues. Of 1,010 variants 16 

obtained from the combined VCF files, 11 had some degree of allelic heterogeneity 17 

(Table 2).  No incongruencies were found in the 287 variants of the two control genes. 18 

Table 2 Allelic incongruencies found in contaminated samples 19 

    Enriched Tissue Contaminated 

Individual Gene SNP 
Major/ 
Minor  Reads 

 Major 
Allele %  Tissue Type  Reads 

Major 
Allele % 

GTEX-1 KRT13 rs903 C/A 101,908 0% Fibroblast Cells 252 50% 

GTEX-1 KRT4 rs7959052 T/C 74,468 100% Fibroblast Cells 203 12% 

GTEX-1 KRT4 rs7956809 C/G 85,803 100% Fibroblast Cells 204 13% 

GTEX-1 KRT4 rs2035879 T/C 72,978 51% Fibroblast Cells 164 7% 
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GTEX-1 KRT4 rs17119475 G/A 71,592 49% Fibroblast Cells 226 98% 

GTEX-9 CELA3A rs3820285 C/G 98,896 1% Adipose 5,178 48% 

GTEX-9 CELA3A rs9187 C/T 105,462 75% Adipose 6,082 97% 

GTEX-9 CELA3A rs12908 G/A 108,681 75% Adipose 6,313 98% 

GTEX-8 CELA3A rs9187 C/T 162,318 73% Tibial Nerve 1,155 100% 

GTEX-8 CELA3A rs12908 G/A 169,394 74% Tibial Nerve 1,215 100% 

GTEX-10 CLPS rs3748050 T/C 80,019 47% C Artery 1,117 99% 

 1 

One SNP site (rs7956809), was particularly informative. SNP rs7956809 (C/G), 2 

located in KRT4, had a relatively low allelic variation, with only 5 individuals in the entire 3 

GTEx cohort homozygous for the alternative allele (G). One sample (arbitrarily GTEX1) 4 

was homozygous C at rs7956809 in both its DNA (VCF file) and matched esophagus 5 

(RNA-Seq FASTQ data) (Fig. 1e).  However, the rs7956809 SNP in the GTEX1 6 

fibroblast sample was 87% G and 13% C. Six esophagus samples were sequenced on 7 

the same day as the GTEX1 fibroblast sample. No other esophagus samples were 8 

sequenced within 4 days. One of those six samples, GTEX2, was homozygous G at 9 

rs7956809. The five other samples were homozygous C. This strongly implicates the 10 

GTEX2 esophagus sample as the dominant contaminant of the GTEX1 fibroblast 11 

sample.  12 

We further investigated the relationship between the GTEX1 fibroblast sample 13 

and the GTEX2 esophagus sample finding no clear connection. The two samples were 14 

sequenced on different machines and in different flow cells. Of some interest, the 15 

sequencing sample adapters (molecular indexes) were similar (Additional File 2: Table 16 

S1).  17 

The extent of highly expressed, tissue-enriched gene contamination in GTEx  18 
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After establishing that contamination exists in GTEx, identifying a temporal association 1 

and polymorphism validation, we then attempted to address the extent of contamination 2 

in the GTEx dataset. To characterize this we investigated the various levels of pancreas 3 

enhanced gene expression in non-pancreatic tissue (Table 1). In the 10,298 non-4 

pancreas samples investigated, <0.5% had >10,000 read counts of PRSS1, the most 5 

abundant pancreas gene (Table 3). However, at a threshold of >100 read counts, over 6 

half of samples contained some PRSS1.  7 

  8 

Table 3 Extent of contamination of 11,092 non-pancreas samples by pancreas genes.  9 

Gene Read Count > 10,000 Read Count > 
1,000 

Read Count > 100 

PRSS1 49 (0.44%) 782 (7.1%) 5802 (52.3%) 

PNLIP 30 (0.27%) 278 (2.5%) 4511 (40.6%) 

CELA3A 24 (0.22%) 253 (2.3%) 4102 (37.1%) 

CLPS 13 (0.12%) 122 (1.1%) 2587 (23.3%) 

Numbers indicate the amount of affected samples and their percentage 10 

PEER factor normalization does not fully correct for contamination 11 

The GTEx analysis pipeline uses probabilistic estimation of expression residuals 12 

(PEER) factor to correct for possible confounders [20, 21]. This method identifies hidden 13 

factors that explain much of the expression variability and can be used to normalize 14 

RNA expression data. We focused on just one tissue, lung, and followed the GTEx 15 

analysis pipeline to determine the extent to which PEER factor normalization can 16 

identify and correct for this contamination. Sixty PEER factors were identified with the 17 

top two identifying a difference between “in hospital” (short postmortem interval) and 18 

“outside of hospital” (longer postmortem interval) deaths (Fig. 2a).  This relationship is 19 
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consistent with our prior report of variation in lung [16]. Similar to the global findings of 1 

Fig. 1, PNLIP expression was increased in lung samples sequenced on the same day 2 

as a pancreas. Despite correcting for 35 or even 60 PEER factors, this difference was 3 

not fully accounted for (Fig. 2b).  Indeed, of five genes evaluated, only one gene (KRT4) 4 

was fully corrected for by PEER factors (Table 4).  We then explored if this lack of full 5 

correction impacted eQTL analysis in the GTEx program. 6 

Table 4. Significance of same-day sequencing of lung with contaminating tissues on 7 

gene expression.  8 

 9 

Gene 
P. value 

before PEER 
correction 

P. value after 
correcting for 

35 PEER 
factors 

P. value after 
correcting for 

60 PEER 
factors 

Beta estimate 
after 

correction 

PNLIP 4.34e-14 1.38e-11 3.03e-06 0.54 

PRSS1 6.29e-14 8.07e-11 5.18e-06 0.52 

CELA3A 5.91e-14 8.78e-11 4.86e-06 0.52 

KRT4 0.0034 0.055 0.22 0.15 

KRT13 8.29e-17 3.70e-08 0.0050 0.36 

P. values are shown before and after PEER correction. 10 

Contamination affects GTEx eQTL reporting 11 

Using the GTEx eQTL browser, we identified 75 tissues reported as having significant 12 

eQTLs for the 19 genes listed in Table 1. Eight tissues matched the known dominant 13 

expression patterns of the genes. An additional 25 tissues were deemed possible based 14 

on expression patterns noted by RNA and protein immunohistochemistry in which 15 

expression (in TPM) was above the basal level of all tissues. However, 42 inappropriate 16 
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tissues were identified as harboring eQTLs even though these genes are not natively 1 

expressed in these tissues, appearing only as a result of contamination (Table 5).  2 

Table 5 Distribution of GTEx eQTLs by tissue type in contaminating genes 3 

Genes 
Appropriate 

Tissues 
Possible tissues Inappropriate tissues 

PRSS1 -- Small intestine Liver, coronary, skin, lung 

PNLIP -- -- -- 

CPA1 -- -- Coronary 

GP2 -- -- Brain 

CELA3A Pancreas Stomach Liver 

KRT13 Vagina -- Lung 

PGC -- Lung, pancreas Tibial artery 

KRT4 Esophagus Skin, lung Colon, brain, thyroid 

PRL -- -- 
Gastroesophageal junction, 
skin, tibial artery 

LIPF Stomach -- -- 

CLPS Pancreas -- -- 

CTRB2 Pancreas -- Aorta, brain, lung, thyroid 

FGA Liver Stomach -- 

HP -- 

Whole blood, 
adipose (2), artery 
(3), lung, tibial 
nerve 

brain, esophagus mucosa, 
heart,  

CKM -- -- Aorta, whole blood 

FGG Liver Lung, adrenal -- 

MYBPC1 -- 
Heart, prostate, 
brain (2) 

Esophagus (2), colon, lung, 
thyroid 

MYH2 -- -- Colon, lung 

ZG16B -- 
Skin (2), stomach, 
prostate, colon 

Adipose, adrenal, 
esophagus, fibroblasts, lung, 
pituitary, spleen, testis, 
thyroid, whole blood 

 4 

Non-GTEx data sets confirm contamination 5 

 To determine if highly-expressed tissue-enriched contamination is a feature of 6 

sequencing in general, we searched for RNA-Seq datasets that had similar protocols to 7 

GTEx, that both included or did not include pancreas samples. We identified an HPA 8 

sequencing study which included pancreas [22] and a pharmacogenetics study which 9 
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did not include pancreas [23]. Both studies were sequenced on Illumina 2000 or 2500 1 

sequencers. The HPA study multiplexed their samples, 15 per lane, but the 2 

pharmacogenetics study did not report multiplexing. These data sets demonstrate 3 

PRSS1 contamination of the HPA data (N=19), with essentially no PRSS1 4 

contamination in the pharmacogenetics study (N=74) (Fig. 2c).  5 

 6 

Discussion 7 

The GTEx dataset represents an ideal resource to study sequence 8 

contamination.  Its 11,000+ samples from 700+ individuals from a diverse set of tissues 9 

with all library preparation and sequencing performed at one center is unique. During 10 

our initial variation analysis of 46 tissues spanning 10,294 samples, we detected a 11 

variable signal of pancreas genes in 24 of those tissues. From there we noticed genes 12 

that were highly expressed in esophagus, stomach, pituitary and other tissues also 13 

appearing in shared clusters across unrelated tissues. These highly expressed, tissue-14 

enriched genes were found at low, variable levels in other organs and represented 15 

some of the most frequent causes of variation between samples of the same tissue 16 

type.  17 

 We found that contamination is best linked to the date of sequencing (linear 18 

regression model, p = 2.66e-75). However, both due to contamination being noted in 19 

some samples that are sequenced a few days apart from a possible contaminating 20 

source and the SNP-based evidence, we suspect the majority of the contamination 21 
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occurred during library preparation rather than the sequencing itself. Library preparation 1 

dates were not documented (personal communication, GTEx Help Desk).   2 

 A variety of contamination causes have been reported, all of which could have 3 

had some role in our findings. Contamination during the collection of samples from 4 

individuals is possible, especially if non-disposable tools such as forceps are not 5 

cleaned properly in between collections [24].  During tissue manipulation, a “floater” or 6 

tiny piece of tissue could end up in the fixation kit (PAXgene) [24]. Although we did not 7 

see either type of contamination, it would be the hardest to prove due to the shared 8 

genotype. 9 

 While the nucleic acid isolation date was only modestly associated with 10 

contamination, physical contamination can easily occur at this stage. GTEx RNA 11 

isolation was manually done in batches of 12 tissues, purposefully with a mix of donors 12 

and tissues to minimize batch effects. Samples were individually cut and placed into 13 

cryovials for homogenization, followed by further manipulations [25]. 14 

 At the stage of library preparation or sequencing where our data indicates most 15 

of the contamination occurred, there are multiple steps that could be implicated. The 16 

library preparation was completed automatically in 96 well plates with a mix of tissues 17 

and individuals to prevent batch effects [25]. Fluidic carryover could have occurred here. 18 

At the sequencing level, a major concern is index contamination where index 19 

oligonucleotides used for multiplexing can ligate to other sample transcripts, thus 20 

contaminating the data after demultiplexing. Index based contamination is machine and 21 

lane specific and can even occur at the creation of the indexes when multiple indexes 22 

are purified on the same high-performance liquid chromatography column [26]. 23 
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Additionally, if steps to clean libraries of free adapters/primers are not properly 1 

executed, the remaining indexes can contaminate clusters in the flow cells [11]. 2 

Molecular recombination of indexes during sequencing can also lead to read 3 

misassignment as multiplex clusters can become contaminated by other samples that 4 

acquire the indices of the native sample (index hopping).  GTEx’s use of dual indices 5 

reduces the amount of index hopping that can occur [25, 26].    6 

 Using other sequencing datasets with similar sequencing methods, HPA and the 7 

pharmacogenetics study, we validated that it is contamination, not low-level 8 

transcription, which causes these unusual expression findings. This also shows the 9 

generalizability of this type of contamination regardless of the labs in which they take 10 

place. 11 

 So how big is the contamination problem? It depends on how the data is to be 12 

used. Fortunately, in the GTEx data, the levels are overall low with only 0.46% of 13 

samples having relatively high levels of PRSS1. Thus, for many uses of GTEx data, this 14 

level is irrelevant.  However, for groups that are investigating differential expression in 15 

the GTEx dataset, these genes will repeatedly appear due to their variable levels of 16 

contamination.  As well, we note that the GTEx standard normalization pipeline using 17 

PEER factors did not entirely eliminate this source of variation and an abundance of 18 

eQTLs that were identified for the 19 genes described herein were located in incorrect 19 

tissues (84%). 20 

 Many publications have reported rare, but variable gene expression in their 21 

samples claiming their importance or disease-related behaviors [27]. Our findings call 22 

these reports into question.  The extent of cross-contamination, where one laboratories’ 23 
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samples get prepped and sequenced at the same time as a different laboratories’ 1 

unrelated samples through a university core sequencing facility or sequencing company 2 

is unknown, but likely frequent [28, 29]. The xenomiR story, that rice miRNAs are found 3 

in human blood through dietary means [30], was shown to result from library preparation 4 

contamination [31, 32]. Also, our work supports that work flows must be considered 5 

carefully in very-low DNA mutation detection analysis in clinical cancer samples as 6 

samples with higher tumor burdens may contaminate samples with lower tumor burdens 7 

and falsely suggest treatment approaches [33, 34]. Specific to GTEx, their data is 8 

available in many outlets including the UCSC Genome Browser and variable, low-level 9 

expression of PRSS1, CELA3A and others may falsely intrigue researchers, particularly 10 

within the reported eQTLs.  11 

Conclusion 12 

 We described low-level, variable expression contamination in the GTEx RNA-13 

Seq dataset. The contamination was most noticeable for 19 highly-expressed, tissue-14 

enriched genes. This contamination strongly correlates with the library preparation and 15 

sequencing of the samples. Similar contamination was observed in the HPA dataset, 16 

suggesting a universality to this type of contamination. Evaluating low-level variable 17 

gene expression in RNA-Sequencing data sets must be performed with precaution and 18 

awareness of potential sample contamination.  19 

Methods 20 

Retrieval of GTEx RNA-Seq dataset, FASTQ files, and sample Data 21 
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The gene read counts of the RNA-Seq GTEx version 7 dataset (GTEx_Analysis_2016-1 

01-15_v7_RNASeQCv1.1.8_gene_reads.gct.gz) were downloaded from the GTEx 2 

Portal (https://gtexportal.org/home/datasets), along with the de-identified sample 3 

annotations (GTEx_v7_Annotations_SampleAttributesDS.txt). From dbGaP with the 4 

required permissions, the FASTQ files of the tissue samples and the variant call file 5 

(VCF) files of appropriate individuals were downloaded.  6 

Retrieval of Human Protein Atlas tissue enriched gene list 7 

We obtained the HPA tissue enriched genes by downloading a CSV file from this filtered 8 

site 9 

(https://www.proteinatlas.org/search/tissue_specificity_rna:any;Tissue%20enriched+AN10 

D+sort_by:tissue+specific+score, visited on 6/21/18). 11 

Bulk sequencing processing 12 

   The acquired raw read counts were segmented into separate tissue subsets (48 13 

tissues with ≥70 samples each) and their read counts were normalized using the 14 

Variance Stabilizing Transformation feature in DESeq2 version 1.22.1 in R version 3.5.1 15 

[17]. This method incorporates estimated size factors based on the median-ratio 16 

method, and transformed by the dispersion-mean relationship. We then filtered the 17 

56,202 genes based on their mean expression (mean transformed count > 5) to reduce 18 

noise and lessen the inflated effect of low expressing genes on correlations.  19 

Identification of highly variable genes and clusters 20 

All analyses were completed in R version 3.5.1 (2018/07/02). In each tissue a 21 

threshold of a >4 variance of normalized read counts was used as our cut off for highly 22 
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variable transcripts.  These genes were then clustered using hierarchal clustering on a 1 

distance generated by 1 - Kendall's rank-correlation coefficient. A tau critical value was 2 

calculated based on the number of samples and genes expressed. The correlation-3 

based dendrogram was cut to produce gene clusters with average within cluster 4 

correlation of at least the tau critical value.  5 

Calculation of average gene expression Z-Scores 6 

Approximate z-scores were calculated by subtracting the mean expression and 7 

dividing by the median absolute deviation of the expression values for each gene across 8 

all samples within a given tissue. These Z-scores provide a standard measure of 9 

expression for all genes and allow one to summarize the expression of a gene cluster in 10 

a sample by the average Z-score of the genes in that cluster. 11 

Base pair incongruency analysis 12 

Base pair incongruency analysis required a contaminated tissue expression 13 

FASTQ, a native tissue expression FASTQ, and the individual’s VCF file. FASTQ files 14 

were mapped to the Genome Reference Consortium Human Build 37 (hg19) using the 15 

software HISAT2 version 2.1.0 [35]. The output SAM files were turned into BAM files 16 

and indexed using samtools version 1.9 [36, 37]. Preliminary analysis and development 17 

of figures were generated using the Integrative Genome Viewer version 2.4.13 [38, 39]). 18 

Protein coding SNPs, rare variants, and personal variants (collectively referred to as 19 

variants in this paper), were manually selected using IGV as a reference. Using the tool 20 

bam-readcount version 0.8.0 in combination with a Python 3.6.2 script, a list of RNA-21 

Seq and genomic incongruencies were generated for the acquired sample BAM files.  22 
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PEER factor analysis 1 

We obtained the GTEx RNA-Seq dataset from lung (N=427). The data underwent 2 

trimmed mean of m-values (TMM) normalization and filtering out of lowly expressed 3 

genes (< 0.1 TPM for 80% or more of the samples)  before running PEER to identify 4 

potential confounders [20].  Following GTEx’s pipeline 5 

(https://gtexportal.org/home/documentationPage#staticTextAnalysisMethods visited), 6 

we then performed an inverse normal transformation (INT) on the expression values for 7 

each gene in order to reduce the effect of outliers [21]. Z-scores for each gene are 8 

based on TMM-normalization, inverse-normal transformation, and scaling/centering at 9 

zero. 10 

Cross-referencing eQTLs with contamination findings 11 

 We obtained and tallied eQTL reports for the 19 genes in Table 1 from the GTEx 12 

eQTL browser (https://gtexportal.org visited on March 26, 2019). eQTLs were identified 13 

by tissue association and conservatively placed in one of three categories: appropriate 14 

expression, possible expression, and inappropriate expression. The appropriateness of 15 

expression in any tissue was based on the evaluation of TPM levels in the tissue and 16 

immunohistochemistry staining patterns as noted in the Human Protein Atlas [40].  17 

Acquiring Human Protein Atlas and Pharmacogenetic Study Variation RNA-Seq 18 

Data 19 

 Using the R package recount version 1.8.2, we downloaded HPA RNA-Seq data, 20 

accession ERP003613 [22], and the RNA-Seq data of a pharmacogenetic 21 

transcriptomic study, accession SRP060355 [23]. The HPA RNA-Seq was performed 22 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 8, 2019. ; https://doi.org/10.1101/602367doi: bioRxiv preprint 

https://gtexportal.org/home/documentationPage#staticTextAnalysisMethods
https://gtexportal.org/
https://doi.org/10.1101/602367
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

across 27 tissues including the pancreas and the pharmacogenetic RNA-Seq was 1 

across 4 tissues not including pancreas. We filtered samples down to only the shared 2 

tissues of liver, heart, and adipose.  3 

Additional files 4 

Additional File 1: Figure S1 A correlation heatmap of the highly variable gene clusters 5 

in 343 transformed fibroblast samples. Red shows a positive correlation. Genes within 6 

the contamination cluster are given. A, B and C represent other groups of co-variable 7 

genes. 8 

Additional File 2: Table S1: A technical comparison of the GTEX1 fibroblast sample 9 

and its main contaminating GTEX2 esophagus sample. 10 

Figure Legends –  11 

Fig. 1 Identification and explanation of sequencing contamination a A correlation 12 

heatmap of highly variable subcutaneous adipose tissue genes across 442 subjects. 13 

Red shows a positive correlation. The genes within the contamination cluster and the 14 

sex cluster are given. Clusters A, B, and C represent other groups of co-variable genes. 15 

b Z-score values of non-pancreas tissue sample PRSS1 reads coded by relationship to 16 

being sequenced on the same day as a pancreas tissue. (p<1.21e-67, linear model) 17 

over ~3 years. c Violin plot of the same data showing a strong, but not complete 18 

correlation of sequencing on a pancreas day. d Ranked order of all samples either 19 

sequenced on the same day as a pancreas sample (black) or on a non-pancreas 20 

sequencing day (colors) for PRSS1 in log10. Among samples not sequenced on a 21 

pancreas day, 91% of samples with >100 reads were sequenced within 4 days of a 22 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 8, 2019. ; https://doi.org/10.1101/602367doi: bioRxiv preprint 

https://doi.org/10.1101/602367
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

known sequenced pancreas. The dashed line represents 100 reads. e Contamination of 1 

GTEX1’s fibroblast RNA-Seq predominately came from GTEX2. By DNA and RNA of 2 

the appropriate tissue source of KRT4, sample GTEX1 is homozygous for the C allele at 3 

rs7956809. The fibroblast sample is 87% G reads, primarily matching sample GTEX2. 4 

The read count depth at the SNP in the GTEX1 esophagus was 85,803 and 204 for the 5 

GTEX1 fibroblast. 6 

 7 

Fig. 2 Impact of PEER factors on contamination. a The top two PEER factors separated 8 

in hospital from out of hospital deaths. b With no PEER factor correction there is a 9 

significant increase in PNLIP expression Z-scores in lung samples if sequenced on the 10 

same day as a pancreas (No = 96, Yes = 331; p= 4.34e-14). After 35 (p= 1.38e-11) or 11 

60 (p= 3.03e-06) PEER factor corrections, the difference remained. c PRSS1 12 

contamination across three data sets. Only in data sets where pancreas was collected 13 

and sequenced (GTEx and HPA) are there notable contaminating PRSS1 reads. Key: 14 

Pharma = Pharmacogenomics data set. 15 
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