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Abstract

Many genome variants shaping mammalian phenotype are hypothesized to regulate gene
transcription and/or to be under selection. However, most of the evidence to support this
hypothesis comes from human studies. Systematic evidence for regulatory and evolutionary
signals contributing to complex traits in a different mammalian model is needed. Sequence
variants associated with gene expression (eQTLs) and concentration of metabolites (mQTLS),
and under histone modification marks in several tissues were discovered from multi-omics
data of over 400 cattle. Variants under selection and evolutionary constraint were identified
using genome databases of multiple species. These analyses defined 30 sets of variants and
for each set we estimated the genetic variance the set explained across 34 complex traitsin
11,923 bulls and 32,347 cows with 17,669,372 imputed variants. The per-variant trait
heritability of these sets across traits was highly consistent (r>0.94) between bulls and cows.
Based on the per-variant heritability, conserved sites across 100 vertebrate species and
mQTLs ranked the highest, followed by eQTLS, young variants, those under histone
modification marks and selection signatures. From these results, we defined a Functional-
And-Evolutionary Trait Heritability (FAETH) score indicating the functionality and predicted
heritability of each variant. In 7,551 Danish cattle, the high FAETH-ranking variants had
significantly increased genetic variances and genomic prediction accuraciesin 3 production
traits compared to the low FAETH-ranking variants. The FAETH framework combines the
information of gene regulation, evolution and trait heritability to rank variants and the
publicly available FAETH data provides a set of biological priors for cattle genomic selection

worldwide.
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Introduction

Understanding how mutations lead to phenotypic variation is a fundamental goal of
genomics. With afew exceptions, complex traits with significance in evolution, medicine and
agriculture are determined by many mutations and environmental effects. Genome-wide
association studies (GWAYS) are successful in finding associations between single nucleotide
polymorphisms (SNPs) and complex traits (1). Usually, there are many variants, each of

small effect which contribute to trait variations. Consequently, very large sample sizeis
needed to find significant associations which explain most of the observed genetic variation.
In humans sample size has reached over 1 million (2).

To test the generality of the findings in humansit is desirable to have another species with
very large sample size and cattle is a possible example. There are over 1.46 billion cattle
worldwide (3) and millions are being genotyped or whole genome sequenced and phenotyped
(4, 5). Cattle have been domesticated from two subspecies of the humpless taurine (Bos
taurus) and humped zebu (Bos indicus), which diverged approximately 0.5 million years ago
from extinct wild aurochs (Bos primigenius) (6). The increasing amount of genomic sequence
data and an outbred genome make cattle the only comparable GWAS model to humans. In
addition, cattle have avery different demographic history than humans. While humans went
through an evolutionary bottleneck about 10,000 to 20,000 years ago and then expanded to a
population of billions, cattle have declined in effective population size due to domestication
and breed formation leading to a different pattern of linkage disequilibrium (LD) to humans.
Insights into the genome-phenome rel ationships from cattle provide a valuable addition to the
knowledge for other mammals. The knowledge of cattle genomics is also of direct practical
value as rearing cattle isa major agricultural industry worldwide.

Despite the huge sample sizes used in human GWAS, identification of the causal variants for

acomplex trait is still difficult. Thisis due to the small effect size of most causal variants and
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the LD between variants. Consequently, there are usually many variantsin high LD, any one
of which could be the cause of the variation in phenotype. Prioritisation of these variants can
be aided by functional information on genomic sites. For instance, mutations that change an
amino acid are more likely to affect phenotype than synonymous mutations.

Many mutations affecting complex traits regulate gene transcription related activities. This
has been demonstrated in many studies of human genomics, including but not limited to the
analysis of intermediate trait quantitative trait loci (QTLS), such as metabolic QTLs (mQTLSs)
(7) and expression QTLs (eQTLSs) (8) and analysis of regulatory elements, such as promoters
(9) and enhancers (10) which can be identified with chromatin immunoprecipitation
sequencing (ChlP-seq). In animals, the Functional Annotation of Anima Genomes
(FAANG) project has started (11) and animal functional data species has been accumulating
(12-14). However, it is unclear which types of functional information improve the
identification of causal mutations.

Mutations affecting complex traits may be subject to natural or artificial selection which
leaves a‘signature’ in the genome (15, 16). Given the unique evolutionary path of cattle
which has been significantly shaped by human domestication (17), it is attractive to test
whether variants showing signatures of selection contribute to variation in complex traits.
Mutations within genomic sites, that are conserved across species, may also affect complex
traits. A previous study in humans showed that amongst a number of functional annotations,
conserved sites across 29 mammals had the strongest enrichment of heritability in 17
complex traits (18).

We aim to determine which of several possible indicators of function are most useful for
predicting which sequence variants are most likely to affect 34 traits in Bos taurus dairy
cattle. Theindicators considered fall into 3 groups: (1) functional annotations of the bovine

genome based, for instance, on ChlP-seq experiments; (2) evolutionary data such as asite
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being under selection; (3) GWAS data from traits that are relatively close to the primary
action of the mutation, such as gene expression. Using these indicators of function, we define
30 sets of variants and estimate the variance explained by each set across 34 traitsin 44,270
cattle. We then combine the estimates of heritability per variant across traits and across
functional and evolutionary categories to define a Functional-And-Evolutionary Trait
Heritability (FAETH) score that ranks variants on variance explained in complex traits. We
validate the FAETH scorein 7,551 Danish cattle. The FAETH score of over 17 million
variants with the detailed user instructions are publicly available at:

https://melbourne.figshare.com/s/f42b718e81e63dc488ac.

Results

Analysis overview

Our approach was to estimate the trait variance explained by a set of variants defined by
some external data, such as the mapping of the gene expression QTLs (geQTLS), RNA
splicing QTLs (sQTLs), or genome annotation, for 34 traits measured in dairy cattle.
Sequence variants available to this study included over 17 million SNPs and indels. Any
large set of variants can explain almost all the genetic variance due to the LD between
surrounding and causal variants. Therefore, we fitted each externally defined set of variants
in amodel together with a standard set of 630K SNPs from the bovine high-density (HD)
SNP array. We combined the results from all 34 traits and all sets of variants to derive a score
for each variant based on its expected contribution to the genetic variance in these 34 traits
and tested the validity of this score in an independent cattle dataset.

Our analysis had four major steps (Figure 1):

(1) The 17M sequence variants (1000 bull genome Run6 (19)) were classified according to

external information from the discovery analysis of the function and evolution of each
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genomic site. The basis for this classification was either publicly available data or our own
data as described in the methods. The genome was partitioned 15 different ways aslisted in
Table 1. For example, the category of geQTL partitioned the genome variants into a set of
targeted variants with geQTL p value < 0.0001 and a set of remaining variants (i.e. the ‘rest’
of the variants). Another partition, e.g., variant annotation, based on publicly available
annotation of the bovine genome, divided variants into several non-overlapping sets, such as
‘intergenic’, ‘intron’ and ‘ splice sites'.

(2) For each set of variants in each partition of the genome, separate genomic relationship
matrices (GRMs) were calculated among the 11,923 bulls or 32,347 cows. Where a partition
included only 2 sets (e.g. geQTL and the rest) a GRM was calculated only for the targeted set
(e.g. geQTL).

(3) For each of the 34 traits, the variance explained by random effects described by each
GRM was estimated using restricted maximum likelihood (this analysisis referred to as a
genomic REML or GREML). Each GREML analysis fitted a random effect described by the
targeted GRM and a random effect described by the GRM calculated from the HD SNP chip
(630,002 SNPs). Each GREML analysis estimated the proportion of genetic variance, h?,
explained by the targeted GRM in each of the 34 decorrelated traits (Cholesky
orthogonalisation (20), see methods) in each sex. The h? explained by each targeted set of
variants was divided by the number of variantsin the set to calculate the h? per variant, i.e.
per-variant h?, and this was averaged for each variant across the 34 decorrelated traits.

(4) The FAETH score of all variants was calculated by averaging the per-variant h? across
traits and informative partitions (13 out of 15). 2 partitions determined as not informative
were not included in the FAETH score computation. Variance explained and the accuracy of
genomic predictions (using an independent dataset of 7,551 Danish cattle with three milk

production traits) were compared between variants of high and low FAETH score.
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Characteristics of variant sets with regulatory and evolutionary significance

Based on the 15 partitions of the genome in Table 1, we defined 30 sets of variants. The
details of the discovery analysis defining these sets can be found in Methods. Briefly,
regulatory variant setsincluding geQTLs, sQTLs and alele specific expression QTLs
(aseQTLs) were discovered from multiple tissues including white blood and milk cells, liver
and muscle. Milk cells which were dominated by immune cells contained a portion of
mammary epithelial cells and had high transcriptomic similarities to mammary gland tissues
(13, 21). The polar lipid metabolites mQTLs were discovered using the multi-trait meta-
analysis (22) of 19 metabolite profiles, such as phosphatidylcholine,
phosphatidylethanolamine and phosphatidylserine (23), from bovine milk fat. The ChiP-seq
data used in our analysis contained previously published H3K27Ac and H3K4me3 marksin
liver and muscle tissues (24, 25) and newly generated H3K4M e3 marks from the mammary
gland.

Figure 2 illustrates some of the properties of these variant sets. Many sQTLs with strong
effects on the intron excision ratio (26) were discovered in a meta-analysis of sQTLS mapped
in white blood and milk cells, liver and muscle (13) (Figure 2A). many Significant aseQTLS
were discovered using a gene-wise meta-analysis of the effects of the driver variant
(dVariant) on the transcript variant (tVariant) at exonic heterozygous sites (27) from blood
and milk cells (Figure 2B). Figure 2C showed that variants tagged by the H3K4Me3 marks, a
marker for promoters, were closer to the transcription start site than other variants.

The variant annotation partition had 7 merged sets (Table 1, SI Appendix, Table S1) based on
the Variant Effect Prediction of Ensembl (28) and NGS-variant (29). Additional information
of variant function annotation was obtained from the Human Projection of Regulatory

Regions (HPRS) as published in (30) and predicted CTCF sites as published in (31).
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The evolutionary variant sets were discovered from cross- and within- species genome
analyses. Variants within cross-species conserved sites were lifted over from human genome
sites (hg38), those with the PhastCon score > 0.9 calculated using genome sequences of 100
vertebrate species. The LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) rate from
human conserved sites to bovine was 92.3%, which was higher than the LiftOver rate using
the human sites with the PhastCon score > 0.9 across 30 mammalian species. Detailed results
of the analysis of conserved sites can be found in SI Appendix, Note S1.

The within-species analysis used the whole genome seguence variants from Run6 of the 1000
bull genomes database (32). Those variants with higher frequency in dairy than in beef breeds
(‘selection signature’, Table 1, Figure 2D and Sl Appendix, Figure S1) were detected from a
GWAS where the breed-type was modelled as a binary phenotype in the linear mixed model
(33) of 15 beef and dairy breeds.

With the 1000 bull genomes data, we used a novel statistic to identify variants possibly
subject to artificial and/or natural selection, PPRR, the Proportion of Positive correlations (r)
with Rare variants. SI Appendix, Figure S2A illustrates a coal escence where a mutation has
been positively selected, i.e. isrelatively young, and increased in frequency rapidly. In this
coalescence the selected mutation was seldom on the same branch as rare mutations and so
the LD r between the selected mutation and rare alleles was typically negative. This was
similar to the logic employed by (34). In this partition of the genome, the 1% of variants with
the lowest PPRR, after correcting for the variants' own allele frequency (see SI Appendix,
Figure S2 and M ethods) were defined as young variants.

The quartile categories partitioned the genome variants into four sets of variants of similar
size based on either their LD score (sum of LD r? between avariant and all the variantsin the
surrounding 50kb region, GCTA-LDS (35)), or the number of variants within a 50kb window

(variant density) or their minor allele frequency (MAF) (36) (Table 1). Note that the 4™
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quartile had the highest value and the 1¥ quartile the lowest value for LD score, MAF and
SNP density.

The proportion of genetic variance for 34 traits explained by each set of variants

In the test datasets of 11,923 bulls and 32,347 cows, common variants (MAF>=0.001) of the
sets described above were used to make GRMs (33). Each of these GRMs were then fitted
together with the high-density variant chip GRM (variant number = 632,002) in the GREML
analysis to estimate the proportion of additive genetic variance explained by each functional

and evolutionary set of variants, hZ,,, in each of the 34 decorrelated traits separately in bulls

and cows (Table 2). Overall, the ranking of the averaged hZ,, across 34 traits, E was
highly consistent between bulls and cows (r = 0.94). All the hZ,, estimates, except that of the
intergenic variants, were higher for bull traits than cow traits, consistent with the higher
heritability of phenotypic records in bulls than in cows (37) because bull phenotypes are
actually the average of many daughters of the bull. When the HD variants were fitted alone
they explained on average 17.8% (+£2.7%) of the variance in bulls and 4.7% (+£1.4%) in cows
(Sl Appendix, Table S2). The hZ,, estimates of mQTLs and the conserved sites across 100
species were much larger than their genome fractions in both sexes (Table 2). For other
variant sets, the hZ,, estimates generally increased with the number of variants in the set. For
example, expression QTLS, including exon expression eeQTLS, splicing sQTLs and allele
specific expression aseQTLSs, which included around 5% of the total variants explained
11~15% of trait variance in bulls and 2.5%~4% of trait variance in cows. The young variants

inferred by the novel statistic PPRR, which accounted for 0.54% of the total variants,

explained 0.78% trait variance in bulls and 0.12% trait variance in cows.

The hZ,, increased greatly from MAF quartile 1 to 4. However, the dramatically low h2,,

set

estimates for the 1¥ MAF quartile may be associated with the reduced imputation accuracy
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for low MAF variants. By contrast @ increased only slightly with LD score and even less

with variant density.
Estimates of @ were divided by the number of variants in the set to calculate the per-
variant h_é; allowing comparison of the genetic importance of variant sets made with varied

number of variants. Since the per-variant @ was estimated independently in bulls and cows

yet showed high consistency between sexes (SI Appendix, Figure S3), the average per-variant
@ across sexes was used to rank each variant set (Figure 3). Conserved 100 species and

mMQTLs made the top of the rankings (Figure 3), due to their highly concentrated @ (41.4%
in bullsand 17.4% in cows for conserved 100 species, and 0.71% in bulls and 0.12% in cows
for mQTLs, Table 2) in arelatively small genome fraction (2.2% and 0.03%, Table 2). These
two top sets were followed by several expression QTLs sets, including eeQTLs, sQTLS,
geQTLs and aseQTLs (Figure 3). Similar rankings were achieved by the ‘non.coding related’
set (0.03% of genome variants, included variants annotated as
‘non_coding_transcript_exon_variant’ and ‘mature_ miRNA_variant’ (Sl Appendix, Table
S1), the ‘splicesite’ set (0.06% of genome variants, including all the variants annotated as
associated with splicing functions) and the set of young variants (0.54% of genome variants).
The 'UTR’ set, which included variants annotated as within 3’ and 5" untranslated regions of
genes, and the ‘geneend’ set, which included variants annotated as downstream and upstream
of genes, both had modest rankings along with the ChlP-seq set and selection signatures. The
‘coding.related’ set, which were dominated by variants annotated as synonymous and
missense (SI Appendix, Table S1), ranked higher than top 1% HPRS, intergenic variants and
predicted CTCF sites. Intron and the 1% quartile MAF set had the lowest per variant h%

The impact of MAF on the ranking of variant sets was examined by calculating, for each set,

the per-variant @ expected from the number of variantsin aset belonging to each MAF

10


https://doi.org/10.1101/601658
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/601658; this version posted July 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

quartile. This MAF expected per-variant @ was then subtracted from the observed per-
variant h_é; to calculate the MAF adjusted per-variant @ (SI Appendix, Note S2).
Excluding the sets based on MAF quartiles, the ranking of the unadjusted per-variant @
was well correlated (r = 0.9) with their ranking on the MAF adjusted per-variant @ These

results suggested an overall small impact of the MAF on the variant set ranking of per-variant

h2,..

Variants from sets highly ranked for per-variant @ were highlighted in important QTL
regions with the multi-trait GWAS results (Figure 4). In the expanded region of beta-casein
(CN2), amgjor but complex QTL for milk protein due to the existence of multiple QTL with
strong LD, different high-ranking variant sets tended to tag variants with strong effects from
multiple locations (Figure 4A). Many variants with the strongest effects and close to CSN2
were tagged by sQTLs. Several clusters of variants from up and downstream of CSN2 with
slightly weaker effects were tagged by sets of ChlP-Seq marks, young variant and mQTLSs.
Conversely, for the expanded region of microsomal glutathione S-transferase 1 (MGST1), a
major QTL for milk fat, variants from high-ranking sets were more enriched in two major
locations (Figure 4B). The top variant within the MGST1 gene was again a sSQTL, confirming
previous results (13). Although not enriched in the MGST1 peak region, conserved sites
tagged many variants that were not tagged by other top sets. The young variant sets appear to
have tagged a different variant cluster around 0.7Mb downstream from MGST1 (Figure 4B).
The FAETH score of sequence variants

To quantify the importance of variants using a combination of functionality, evolutionary
significance as well as their trait heritability, a novel framework was introduced to score
variants based on their memberships to the sets of variants. Each time the genome variants

were partitioned into non-overlapping sets, each variant was a member of only one set and

was assigned the per-variant @ of that variant. Therefore, all variants were assigned the

11
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same number (13 partitions) of per-variant @ and the average of these 13 partitions was

calculated for each variant and called the FAETH score. A criterion of per-variant @ > per-

variant @ was also imposed to determine whether the variant set was informative. This
criterion determined that two variant sets (HPRS and predicted CTCF sites) were not
informative and they were not included in the FAETH scoring (see methods). The FAETH
score of 17,669,372 sequence variants for their genetic contribution to complex traits has

been made publicly available at https://melbourne.figshare.com/s/f42b718e81e63dcA88ac.

Variants with high FAETH scor e have consistent effects

In the above analyses the effect of a variant was estimated across all breeds. However, it is
possible to fit anested model in which both the main effect and an effect of the variant nested
within abreed are included. If avariant is causal or in high LD with a causal variant, we
might expect the effect to be similar in al breeds. Whereas if the variant is merely in LD with
the causal variant, the effect might vary between breeds. Based on the FAETH score, the top
1/3 and bottom 1/3 ranked sequence variants in the Australian data were selected as * high’
and ‘low’ ranking variants, respectively. Figure 5A showed the estimates of across breed and
within breed variances for both high- and low-ranking variants. In both cases the within breed
variance was small, but the high-ranking variants had alarger across breed variance and a
smaller within-breed variance than the low-ranking variants. Thisimplied that the FAETH
score identifies variants with consistent phenotypic effects across breeds.

Additional datawere obtained to test the FAETH score. Table 3 highlighted the FAETH
annotation of several causal or putative causal mutations where all of them were categorised
as high FAETH-ranking. Figure 5B showed that the high-ranking variants had significantly
(z-scoretest p < 0.0001) higher heritability estimates than the low-ranking ones for traits of
fat yield, body length and rump length (original traits, not the Cholesky transformed traits)

that were not part of the Australian dairy 34 traits used to calculate the FAETH score. Also,

12
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as aproof of concept, high FAETH-ranking variants had significant enrichment (p=4.5e-35)
with pleotropic SNPs significantly associated with 32 traits in beef cattle containing Bos
taurus and Bos indicus subspecies (S| Appendix, Figure $4). The enrichment of the low
FAETH-ranking variants in these significant beef cattle pleotropic SNPs was not different
from random (SI Appendix, Figure $4). These results supported the generality of the FAETH
variant ranking in different traits, breeds and subspecies.

Validation of the FAETH score in Danish cattle

An independent dataset of 7,551 Danish cattle of multiple breeds were used to test the
FAETH score. The Australian high- and low- ranking variant sets were mapped in the Danish
data. In the GREML analysis of Danish data, the high-ranking variants had significantly
higher heritability than the low-ranking variants across three production traits (z-score test
p<0.001 for protein yield and p< 0.0001 for fat and milk yield) (Figure 5C). The genomic
best linear unbiased prediction (gBLUP) of Danish traits were also evaluated where the
models were trained in the multiple-breed reference data to predict three production traitsin
each of three breeds (3 x 3 = 9 scenarios, Figure 5D). Out of these 9 scenarios, high-ranking
variants had higher accuracies than the low-ranking variants in 8 scenarios. Based on the
sample sizes of the Danish candidate subset (500 Holstein, 517 Jersey and 192 Danish Red),
the significance of the increase of prediction accuracy in the high-ranking variants for these 8
scenarios were: protein yield (z-scoretest p < 0.01), fat yield (p < 0.0001) and milk yield (p <
0.001) in the Holstein; protein yield (p = 0.12), fat yield (p = 0.064) and milk yield (p = 0.12)
in the Red; and protein yield (p = 0.41) and fat yield (p = 0.29) in the Jersey (Figure 5D).
Discussion

GWAS have been very successful in finding variants associated with complex traits but they
have been less successful in identifying the causal variants because often there are alarge

group of variants, in high LD with each other (particularly in livestock), that are all
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associated with the trait. To distinguish among these variants, it would be useful to have
information, externa to the traits being analysed, that point to variants which are likely to
have an effect on phenotype. In this paper we have evaluated 30 sources of external
information based on genome annotation, evolutionary data and intermediate traits such as
gene expression and milk metabolites. Then, we assessed the variance that each set of
variants explained when they were included in a statistical model that also included a
constant set of 600k SNPs from the bovine HD SNP array. The purpose of this method isto
find sets of variants which add to the variance explained by the HD SNPs, presumably
because they are in higher LD with the causal variants than the HD SNPs are. Since the
causal variants themselves are likely to be among the sequence variants anaysed, this method
isafilter for classes of variants that are enriched for causal variants or variantsin high LD
with them. Although developed in cattle, the general framework of estimating FAETH score
by combining the information of functionality, evolution and complex trait heritability can be
well applied to other species. Additional tests of FAETH outside of the analysed 34 traits and
multiple beef cattle traits and the positive validation results in the Danish data support the
cross-breed, cross-subspecies and cross-country usage of the FAETH score. Further, FAETH
score not only contains aranking of millions of variants which can be used as biological prior
for genomic prediction (e.g., BayesRC (38)), but aso includes the information of the variant
membership to different functional and evolutionary categories. This additional information
can be used by other researchers to annotate their variants of interests (e.g., Table 3).

Our results agreed with the reports in humans (18) that the conserved sites had very strong
enrichment of trait heritability. Interestingly, our analysis showed that genomic sites with
conservation across a larger number of species appeared to have tagged variants with stronger
enrichment of heritability, compared to the sites conserved across a smaller number of

species (Sl Appendix, Note S1). It may be worth studying the impact of the extent of the
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Cross-speci es conservation on the amount of trait variation explained by the tagged variantsin
the future.

Our analysis also highlights the importance of intermediate trait QTL, including QTLs for
metabolic traits and gene expression (MQTLs, geQTLs, eeQTLs, sQTLsand aseQTLS). This
isnot asurprising result as the significant contribution of different intermediate trait QTLs to
complex trait variations have been reported in humans (7, 26, 39-41) and cattle (13, 42-44).
An advantage of these intermediate traits over conventional phenotypesis that individual
QTL explain alarger proportion of the variance. For instance, cis eQTL tend to have alarge
effect on gene expression. Thisincreases the signal-to-noise ratio and so increases power to
distinguish causal variants from variantsin partial LD with them. However, an intermediate
QTL mapping study requires alarge amount of resources, especially when considering
different metabolic profiles and tissues with alarge sample size. In the current analysis we
utilised several methods to combine results from individual studies of intermediate QTL
mapping (20, 22, 27) (equation 1, 2, 3, 5in Methods and SI Appendix, Note S3). This could
reduce the noise from individual analysis and thisis likely to increase the chance of finding
causal mutations.

To our knowledge, no study has systematically compared the genetic importance of mQTLs
with eQTLs. The high ranking of mQTLs over eQTLs in our study might be related to the
fact that the mQTLs were discovered from the milk fat and the analysed phenotype in the test
data contained several milk production traits. However, out of the 5,365 chosen mQTL
variants, 961 variants were from the +2Mb region of DGAT1 gene while no mQTLs were
from chromosome 5 which harbors the MGST 1 gene (SI Appendix, Table S3, Figure 4B),
both of which are known major milk fat QTL. This suggests that many variants from the
mQTL set, not only influence milk fat production, but may have other functions including

contributing to variations in general fat synthesis which is active in many mammalian tissues.
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Severa large-scale human studies have highlighted the importance of mQTLs in various
complex traits (7, 45).

Consistent with previous studies in cattle and humans (13, 26, 41), splicing sQTLs and its
related eeQTLs ranked slightly higher than other eQTLs (Figure 3). Cattle aseQTLs and
0eQTLs were found to have a similar magnitude of enrichment with trait QTL (27) and thisis
consistent with the current observation.

We proposed anovel method to identify variants that are young but at moderate frequency
and found this set was enriched for effects on quantitative traits (Figure 3, Figure 4).
However, Kemper et a (46) showed that variants identified by selection signatures using
traditional methods, such as Fst (47) and iHS (48) had little contribution to complex traitsin
cattle. In the current study, the selection signatures between beef and dairy cattle (* Selection
signature’ set as shown in Table 1) explained some genetic variation in complex traits,
although its quantity is relatively small (Table 2, Figure 3). It is possible that the inclusion of
many non-production traits in the current study increased the chance of finding the trait-
related sequence variants that are under artificial selection. The use of sequence variantsin
the current study may also have increased power compared with the study conducted by
Kemper et al that used HD chip variants (46).

The set of variants with low PPRR (‘young variants’) had a higher ranking of genetic
importance to the complex traits than the other artificial selection signatures (Figure 3). The
identification of relatively young variants is based on the theory that very recent selection
will increase the frequency of the favoured alleles (34). Thus, the young variant set could
contain variants that were either under artificial selection and/or recently appeared and this
may be the reason that it explained more trait variation than the artificial selection signatures.

As shown in Figure 4, many young variants can be found in major production trait QTL.
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Genome regulatory elements such as enhancers and promoters are important regulators of
gene expression and they can be identified by ChlP-seq assays. In humans, ChlP-seq tagged
binding QTLs (bQTL) showed significant enrichments in complex and disease traits (49). We
currently did not have enough individuals with ChlP-seq data to identify bQTLs. However,
with only alimited amount of ChlP-seq data, variants tagged by H3K4me3 ChiP-seq showed
closer distance to the transcription start sites (Figure 2C) and H3K4me3 and H3K27ac
together tagged variants had some contribution to complex trait variation (Figure 3). Also, the
FAETH ranking of the ChlP-seq tagged variant set was similar to the ranking of variant
annotation sets of gene end (variants within down- and up- stream of genes) and UTR
(variantswithin 3" and 5" UTR). It islogical that variants with the potential to affect
promoters and/or enhancers are annotated as close to genes or located in gene regulatory
regions.

The variant annotation sets of non-coding related and splice sites ranked relatively high for
their contribution to trait variation (Figure 3). Previously, variants annotated as splice sites
had a high ranking of genetic importance to cattle complex traits (50). The mgjority of the
variants from the non-coding related set are ‘non_coding_transcript_exon_variant’ (S|
Appendix, Table S1) which is ‘a sequence variant that changes non-coding exon sequencein
anon-coding transcript’ according to VEP (28). This group of variants can be associated with
long non-coding RNAs and they are found to contribute to complex traits in humans (51) and
cattle (52). Variants annotated as coding related, of which the magjority of variants are
missense and synonymous (Sl Appendix, Table S1), had relatively low ranking of genetic
importance to complex traits (Figure 3). It seems a surprising result, but Koufariotis et al also
reported similar observations in cattle (50). Perhaps coding variants that influence phenotype
are subject to purifying selection and hence have low heterozygosity and hence low

contribution to variance.

17


https://doi.org/10.1101/601658
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/601658; this version posted July 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

The contribution of variants with different LD properties to complex traits is an ongoing
debate in humans (53-55). In our analysis of cattle, a domesticated species with strong LD
between variants, negligible influences of variant LD differences to complex traits were
observed (Table 2). Also, variants within regions that have more variants (variant density) did
not explain more trait variation. Common variants, as expected (56), had substantial
contribution to complex traits (Table 2, Figure 3).

Based on the variant membership to differentially partitioned genome sets and the value of

the per-variant @ the FAETH score of sequence variants combined the information of
evolutionary and functional significance and heritability estimates across multiple complex
traits for each variant. This novel analytical framework provides simple but effective and
comprehensive ranking for each variant that entered the analysis. Additiona information of
functional and/or evolutionary datasets can be easily integrated and linked to the variant
contributions to multiple complex traits. A single score for each variant also makes the
potential use of FAETH score easy and straightforward. For example, variants can be
categorised as high and low FAETH ranking to create biological priorsto inform Bayesian
modelling for genomic selection (38). Additionally, different genome partitions of the variant
setsin the FAETH data can be used to annotate interesting variants such as finding conserved
sitesthat are also eQTLs. For example, we used FAETH data to annotate some causal or
potential causal mutations for dairy cattle complex traits (Table 3). These results could
improve our understanding of the biology behind the variant contribution to complex traits.
The FAETH score was further tested using Australian data. By building the within-breed
GRM and comparing it with the multi-breed GRM (Figure 5A), our analysis suggested that
the variants with the high FAETH ranking contained variants with consistent effects across
different breeds. Although estimated using 34 traits, our results show that FAETH ranking of

variants can distinguish informative and uninformative variants beyond these 34 traits (Figure
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5B). Also, FAETH ranking of variants showed signs of being able to identify informative
genetic markers for multiple traits in beef cattle including Bos indicus sub-species (Sl
Appendix, Figure $4). All these results support the general use of FAETH variant scoring
across different traits and breeds.

Variants with high FAETH ranking explained significantly more genetic variancein protein,
fat and milk yield in the Danish data, compared to the variants with low FAETH ranking
(Figure 5C). When evaluated in the genomic prediction trained in multiple breeds and
predicted into single breeds, high-ranking variants had increased prediction accuracy
compared to low-ranking variants for all 3 traitsin Danish Holstein and Red breeds and for
protein and fat yield in the Danish Jersey breed (Figure 5D). However, small p values for the
significant increase in prediction accuracies for the high-FAETH variants were mostly seen in
the Holstein breed. Future systematic analysis with increased breed diversity will provide
better evaluation of the performance of the FAETH ranked variants in cross-breed genomic
models.

In humans, Finucane et a (18) combined many sources of data to calculate a prior probability
that a variant affects a phenotype. Our approach is different to theirs in some respects. They
used GWAS summary data and stratified LD score regression, whereas we used raw data and
GREML. They fitted all sources of information simultaneously whereas we fitted one at a
time in competition with the HD variants. We were unable to fit all sources at once with
GREML for computational reasons but also because the extensive LD in cattle makes it
harder to separate the effects of multiple variant sets. On the other hand, GREML is more
powerful than LD score regression (57).

Our study demonstrates that the increasing amount of genomic and phenotypic datais making
the cattle model a robust and critical resource of testing genetic hypotheses for large

mammals. A recent large-scale study for cattle stature also supports the general utility of the
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cattle model in GWAS (5). In this study, we highlight the contribution of the variants
associated with intermediate QTLs and non-coding RNAs to complex traitsand thisis
consistent with many observations in human studies (8, 9, 26). However, we also provide
contrasting evidence to results from humans. We found LD property of variants had
negligible influences on trait heritability, contrasting the recent evidence for the strong
influences of LD property on human complex traits (53). In addition, variants under artificial
selection, which are absent from humans where natural selection clearly operates on complex
traits (58), had limited contributions to bovine complex traits. While the reasons for these
contrasting results are yet to be studied, our findings from cattle add valuable insights into the
ongoing discussions of genetics of complex traits.

Our study has limitations. While some discovery analyses of the intermediate QTLs used
relatively large sample size, the number of tissues and/or types of ‘ omics data included for
discovering expression QTLs and mQTLs is yet to be increased. Also, in the discovery
analysis, the selection criteria for informative variants to be included for building GRMs were
relatively simple. In the test analysis, the heritability estimation for different GRMs used the
GREML approach which has been under some debate because of its potential bias (54, 59).
Analysis of functional categories by the genomic feature models with BLUP has been
previously tested (60), although this method can be computationally intensive. We aimed to
treat each discovery dataset as equally possible and al GRMs were analysed in the test
dataset the same systematic way. The positive results from the validation analysis suggest
that informative variants have been well captured in the discovery and test analyses. The
current version of FAETH score is based on included functional and evolutionary datasets.
The FAETH score will update as more functional and evolutionary datasets become

available.
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Conclusions

We provide the first extensive evaluation of the contribution of sequence variants with
functional and evolutionary significance to multiple bovine complex traits. While developed
using genomic and phenotypic datain the cattle model, the novel analytical approaches for
the functional and evolutionary datasets and the FAETH framework of variant ranking can be
well applied in other species. With their utility demonstrated, the publicly available FAETH
score will provide functional and evolutionary annotation for sequence variants and effective

and simple-to-implement prior data for advanced genome-wide mapping and prediction.

Materialsand Methods

Discovery analysis

Discovery data availability was detailed in SI Appendix, Table $4. A total of 360 cows from
athree-year experiment at the Ellinbank research facility of Agriculture Victoriain Victoria,
Australia, were used to generate RNA-seq, and milk fat metabolites datasets(animal use was
approved by Agriculture Victoria Animal Ethics Committee application number2013-23).
The data of geQTLs, eeQTLs and sQTLs in each tissue of white blood and milk cellsin a
total of 131 Holstein and Jersey cows as previously published (13) were used. The data of
0eQTLs, eeQTLs and sQTLs from liver and semitendinosus muscle samples from Angus
steers were also used (13). The aseQTLs were discovered using the RNA-seq data of white
blood and milk cellsin atotal of 112 Holstein cows (5). The meta-analysis of these four types
of eQTLs, including equation 1-3 (published in (13, 61)), were detailed in SI Appendix, Note
S3.

The discovery of milk fat polar lipid metabolites mQTLs was based on the mass-

spectrometry quantified concentration of 19 polar lipids from 338 Holstein cows. The lipid
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extraction description and the multi-trait meta-analysis of single-trait GWAS including
equation 4 and 5 (22) can be found in SI Appendix, Note S3.

ChIP-seq marks indicative of enhancers and promoters from a combination of experimental
and published datasets were used. ChlP-seq peak data of trimethylation at lysine 4 of histone
3 (H3K4me3) from 9 bovine muscle samples (25) and H3K4me3 and acetylation at lysine 27
of histone 3 (H3K27ac) from 4 bovine liver samples (24) were downloaded. The generation
of mammary H3K4me3 ChlP-seq peaks from two lactating Holstein cows (collected with
approval of Agriculture Victoria Animal Ethics Committee application 2014-23) were
detailed in SI Appendix, Note S3.

The discovery of variant sets with evolutionary significance was based on the whole genome
sequences of Run 6 of the 1000 bull genomes project (32). The analysis used a subset of
1,370 cattle of 15 dairy and beef breeds with alinear mixed model method (equation 6, S|
Appendix, Note S3).

To fully utilise the data of 1000 bull genomes the metric PPRR, proportion of positive

correlations (r) with rare variants (MAF<0.01), was developed to infer the variant age.

PPRR was then calculated as rr,, = 2B WeWrarel (o iion 7), where 1, was the PPRR;

Ni[r(we,wrarel
Ny [+7r(W,, Wyere) | Was the count (N) of all the positive correlations (r) between the
genotypes of common variants (w.) and the genotypes of rare variants (w,4,-.) in agiven
window with asize of k (k = 50kb for this study for computational efficiency).
Ny [r(w,, wyere) ] Was the count of all correlations regardless of the sign. The calculation of
7, can be easily and effectively performed using plink1.9 (www.cog-

genomics.org/plink/1.9/). The rationale of PPRR computation was detailed in SI Appendix,

Note S3)
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Conserved genome sites in cattle were based on the lifted over (https://genome.ucsc.edu/cgi-
bin/hgLiftOver) human sites with PhastCon score (62) >0.9 computed across 100 vertebrate
species. The analysis was detailed in SI Appendix, Note S1).

The variant annotation category was based on Ensembl variant Effect Predictor (28) and
NGS-variant (29). Several variant annotations were merged from the original annotations to
achieve reasonable sizes for GREML (S| Appendix, Table S1). The gkm SVM score of
predicted regulatory potential for bovine genome sites were obtained from the HPRS (30).
Variantsin our study that overlapped with HPRS and within the top 1% of the SVM score
(169,773 variants) were selected. The predicted CTCF sites were obtained from Wang et a
(31). Variants that overlapped with predicted bovine CTCF sites from (31) were chosen
(252,234 variants).

Variant sets based on their distribution of LD score, density and MAF were created using
GCTA-LDMS method (36) based on imputed genome sequences of the test dataset of 11,923
bulls and in 32,347 cows (detailed below). Over 17.6 million genome variants were
partitioned into four quartiles of LD score per region (region size = 50kb), number of variants
per window (window size = 50kb) and MAF sets of variants which were used to make
GRMs. The quartile partitioning of sequence variants followed the default setting of the
GCTA-LDMS. As aby-product of GCTA LD score calculation, the number of variants per
50kb window was computed and the quartiles of the value of variant number per region for
each variant was used to generate the variant density sets.

Test analysis

An Australian dataset of 11,923 bulls and 32,347 cows from Holstein (9,739 &'/ 22,899 Q),
Jersey (2,059 &' /6,174 Q), mixed breed (0 &' / 2,850 Q) and Red dairy breeds (125 &' / 424

Q) obtained from DataGene (http://www.datagene.com.au/) with 34 phenotypic traits (trait

deviations for cows and daughter trait deviations for bulls (20)), including 5 production, 2
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reproduction, 3 management and 24 type traits, were used for the test analysis (SI Appendix,
Table S2). All the traits were ordered by their number of non-missing records and
transformed by Cholesky factorisation (20), so that they had minimal correlations with each
other. Briefly, the formulaof €, = L™ g,, (equation 8, published in (20)) was used where
C,was ak (number of traits)x1 vector of Cholesky scores for the animal n; L was the kxk
matrix of the Cholesky factor which satisfied LL* = COV, the kxk covariance matrix of raw
scores after standardisation as z-scores, g,, was an kx1 vector of traits for animal n. Asa
result, the k™ Cholesky transformed trait can be interpreted as the k™ original trait corrected
for the preceding k-1 traits and each Cholesky transformed trait had a variance of closeto 1
(SI Appendix, Table S2).

A total of 17,669,372 imputed sequence variants with Minimac3 imputation accuracy (63) R?
> 0.4 in above described bulls and cows using 1000 bull genome data (5, 32) as the reference
set were used in the test analysis. Lists of variant sets selected from the discovery analysis
with MAF > 0.001 in 11,923 bulls and in 32,347 cows were used to make targeted GRMs
using GCTA (33). A GRM of the high-density (HD) variant chip (630,002 variants) was also
made. Each targeted GRM was analysed in the 2-GRM REML model as: y,,, = X8 +
ZsetUser + Zypuyp + e (equation 9); where y,,.. was the vector of trait i"™ phenotypic trait of
analysed individuals; g was the vector of fixed effects (breeds); X was a design matrix
relating phenotypes to their fixed effects; u,,, was the vector of animal effects for the
targeted GRM whereug,,~N(0, Gsetagz), G,., wasthe GRM between the analysed
individuals made of the targeted variant set; Z,., was the incidence matrix made of the
targeted variant set; u;, was the vector of animal effects for the GRM made of the HD
variants where uy, ~N(0, Gy 0;), Gyp Was the GRM between the analysed individuals
made of the HD variants (630,002); e was the vector of residual. GREML was analysed using

MTG2 (64) for each trait separately in different sexes to calculate the heritability, h2,,, of the
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targeted GRM. For each GRM within each sex, the h2,, was calculated as the average across

set
34 traits. The per-variant @ was calculated as the@ divided by the number of variantsin
the targeted GRM.
To calculate the FAETH variant ranking, for genome partitions where one set of variants was
chosen, i.e., sets of eeQTLS, geQTLs, sQTLs, mQTLs, ChlP-seq, selection signatures, young
variants, conserved site variant, HPRS and CTCF, the heritability of the set of rest variants,
h2..., was calculated as h2;; ¢yps — h%.. This allowed that for each genome partition, each
variant had a membership to a set. For each trait, hZ;; ¢yps Was calculated using the same
model as equation 9, except that Z,, u,., Wasreplaced by Z,;; snpsUait snps- Uall snps Was for
the GRM where u; sxps~N(0, G o snps02)s Ganr sups Was the GRM between the analysed
individuals made of all variants considered with MAF > 0.001 (over 16.1 million variants);

Z... wWas the incidence matrix made of the all variant set. Then, this alowed for the

calculation of [12,, = h2, snps — hZ. for each trait and the h2,, asthe average across 34
traits. The per-variant % was then calculated as the% divided by the number of
variantsin theremaining (‘rest’’) set as the difference between the total number of variants
and the number of variants in the targeted set. A criterion of per-variant @ > per-variant
h_ﬁes_t was used to determine whether the variant set was informative. Based on this criterion,
the sets of HPRS and CTCF were determined not informative and their per-variant h%
estimates were not included in the FAETH ranking.

The FAETH ranking of variant sets used the estimates per-variant hZ,, and the ranki ng of

set

each variant was derived based on the variant membership to the non-overlapping sets within

each partition. If avariant belonged to atargeted set or arest set in the partition, the estimate

of per-variant @ or the per-variant hZ,,, was assigned to the variant accordingly. In the end,
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the variant FAETH ranking was based on the average of the 13 genome partitions retained
(excluding HPRS and CTCF).

Validation analysis

The validation used variants within the top 1/3 (high) and bottom 1/3 (low) ranking from the
Australian analysis to make GRMsin atotal of 7,551 Danish bulls of Holstein (5,411), Jersey
(1,203) and Danish Red (937) with atotal of 8,949,635 imputed sequence variantsin
common between the Danish and Australian datasets, with aMAF > 0.002 and imputation
accuracy measured by the info score provide by IMPUTEZ2 > 0.9 in the Danish data (65).
Deregressed proofs (DRP) were available for al animalsin the Danish dataset for milk, fat
and protein yield. The Danish dataset was divided into a reference and validation set, where
the reference set include 4,911 Holstein, 957 Jersey and 745 Danish Red bulls and the
candidate set included 500 Holstein, 517 Jersey and 192 Danish Red bulls. Over 1.25 million
high-ranking variants and over 1.25 million low-ranking variants were used to make the high-
and low- ranking GRMs. For the individuals in the reference set, each trait of protein, milk
and fat yield was analysed with the GREML model v, = XB + ZpanUpan + € (€quation
10) using GCTA (33), where ypan Was the vector of DRP of analysed Danish individuals;
was the vector of fixed effects (breeds); X was a design matrix relating phenotypes to their
fixed effects; u was the vector of animal effects whereup,,, ~N(0, Gpgn07), Gpan Wasthe
genomic relationship matrix between Danish individuals, Z,,,,, was the incidence matrix; e
was the vector of residual. This allowed the estimate of h* of high- and low- ranking variants
in the Danish data.

To test the variant ranking, genomic prediction with gBLUP was performed by dividing the
Danish individuals into reference and validation datasets. The —blup-variant option in GCTA
(33) was used to obtain variant effects from the GREML analyses, that were used to predict

GEBYV in the validation population. Prediction accuracies were computed for each of the
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breeds in the validation population, as the correlation between GEBV and DRP. More tests of
the FAETH score using additional Australian dairy and beef cattle data were detailed in S|

Appendix, Note S3.
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Figure legends:

Figure 1. Overview of the analysis. The discovery analysisinvolved selection of variants
from functional and evolutionary datasets, this figure shows examples of some of the datasets
used. In thetest analysis, each of the variant sets were used to make genomic relation
matrices (GRM)s. Then, each one was analysed in genome-wide restricted maximum
likelihood (GREML, gG;) together with the high-density SNP chip GRM (gGhp) for each one
of the 34 traits (Y, j= {1..34}). Once the heritability, h2,;, of each gG; was calculated, it was
averaged across traits and adjusted for the number of variants used to build the gG; to

calculate the per-variant hZ,,. The FAETH scoring of each variant was derived based on their

set*
memberships to differentially partitioned sets and the per-variant @ In the validation
analysis, variants with high and low FAETH ranking were tested in a Danish cattle data set
for GREML and genomic prediction of three production traits. The Australian test data set
contained 9,739 bulls and 22,899 cows of Holstein breed, 2,059 bulls and 6,174 cows of
Jersey, 2850 cows of mixed breeds and 125 bulls and 424 cows of Australian Red. The
Danish reference set contained 4,911 Holstein, 957 Jersey and 745 Danish Red bulls, and the
Danish validation population 500 Holstein, 517 Jersey and 192 Danish Red bulls.

Figure 2. Examples of regulatory and evolutionary signals from the discovery analysis.
A: A Manhattan plot of the meta-analysis of sQTLs from white blood and milk cells, liver
and muscle tissues. B: A Manhattan plot of the meta-analysis of aseQTLs in the white blood
cells. C: A digtribution density plot of variants tagged by H3K4M e3 ChiP-seq mark from
mammary gland within 2Mb of gene transcription start site. D: artificial selection signatures
between 8 dairy and 7 beef cattle breeds with the linear mixed model approach. The blue line
indicates -logio(p value) = 4.

Figure 3. Proportion of genetic variances explained by sets of variants selected from
functional and evolutionary categories. The ranking of variant sets based on the log10 scale

of per-variant @ averaged across bulls (left error bar) and cows (right error bar).

Figure 4. Example of top ranked variant setsin important bovinetrait QTL. A:
Manhattan plot of the meta-analysis of GWAS of 34 traitsin the +2Mb region surrounding
the beta casein (CSN2) gene, amajor QTL for milk protein yield. B: Manhattan plot of the
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meta-analysis of GWAS of 34 traits in the £1Mb region of the microsomal glutathione S-
transferase 1 (MGST1) gene, amaor QTL for milk fat yield. The dots are coloured based on
their set memberships. The black bar between the grey dots and the X-axis indicates the gene

locations.

Figure 5. Further tests of the variant FAETH score. A: The heritability of high and low
FAETH ranking variants for the multi-breed GRM and the within-breed GRM (2 GRMs
fitted together) estimated across 34 traits in the Australian data. The error bars are the
standard error of heritability calculated across 34 traits. B: The heritability of high and low
FAETH ranking variants for 3 additional traits to the 34 traits in the Australian data used to
calculate the FAETH score. C: The heritability of high and low FAETH variants for 3
production traits in Danish data. The error bars are the standard error of the heritability of
each GREML analysis. D: prediction accuracy of gBLUP of 3 production traitsin Danish
data using high and low FAETH variants (averaged between bulls and cows). HOL: Holstein;
JER: Jersey. p of significance difference based on z-score test: : <0.1; *: < 0.05, **: p<
0.01, ***: p< 0.001 and ****: p < 0.0001. Note that for the prediction accuracy r, the
significance of difference was based on the sample sizes of the Danish candidate subset
where there were 500 Holstein, 517 Jersey and 192 Danish Red (see Methods).
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Table 1. Variant sets selected from functional and evolutionary partitions.

Partitions Targeted variant sets (the number of variants) Animal no.

Gene expression geQTLs with meta-analysis p < 1e-4 from blood and milk cells, liver and muscle 209

QTLs (110,200)

Exon expression eeQTLs with meta-analysis p < 1e-4 from blood and milk cells, liver and muscle 209

QTLs (945,832)

Splicing QTLs sQTLs with meta-analysis p < 1e-4 from blood and milk cells, liver and muscle 209
(1,112,324)

Allele specific . : .

expression QTLS aseQTLs with meta-analysis p < 1e-4 from blood and milk cells (1,100,446) 112

Polar lipid . . ) .

metabolite QTLs mMQTLs with meta-analysis p < 1e-4 from 19 types of milk metabolites (5,365) 338

ChiP-seq peaks lenije;eEr5 g93§)4Me3 and H3K27Ac peaks from liver, muscle and mammary gland 15
Annotated as UTR (42,350), intergenic (11,869,145), geneend (1,007,214), intron

Variant annotation (4,629,025), splice.sites (11,080), coding.related (105,969), noncoding.related na
(4,589)

Predicted CTCF Variants tagged by mapped CTCF binding motifs from humans, mice, dogs and na

sites macagues as published by (25) (252,234)

HPRS Genome sites within the top 1% gkmSVM score from the Human Projection of na
Regulatory Regions as published by (26) (169,773)

Conserved 100 Bovine genome sites lifted over from human sites with PhastCon score (27) > 0.9 na

species calculated using genomes of 100 vertebrate species (378,301)

Selected signature GWAS p < 1e-4 between 7 beef and 8 dairy breeds, 1000 bull genome (6,218) 1,370

Y ouna variants Ranked within the bottom 1% of the proportion of positive correlations (PPRR) with 2330

9 rare variants, 1000 bull genome (893,986) '
LD score quartiles 1st quartile (4,417,033/4,416,205), 2nd quartile (4,418,731/4,419,930), 3rd quartile
q (4,415,633/4,415,481), 4th quartile (4,417,975/4,417,756)
Variant density 1st quartile (4,429,833), 2nd quartile (4,414,996), 3rd quartile (4,427,220), 4th
. ; 44,270
guartiles quartile (4,397,323)
MAF quartiles 1st quartile (4,414,292/4,417,036), 2nd quartile (4,421,093/4,417,428), 3rd quartile

(4,416,834/4,418,157), 4th quartile (4,417,153/4,418,157)

For the three categories of quartiles the numbers of variants on the left and right side of slash were for
the bulls and cows, respectively. LD score: sum of linkage disequilibrium correlation between a
variant and all variants in the surrounding 50kb region, GCTA-LDS (28). MAF: minor allele
frequency. The details of the variant annotations can be found in the SI Appendix, Table S1. The
animal number are the sample size in each discovery analysis. 4" quartile scores > 3" quartile > 2™
quartile > 1% quartile.
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Table 2. The relative proportion of selected variant in sets compared to the total number of variants

analysed (Genome fraction) and their averaged heritability (@) in bulls and cows, across 34 traits
with the standard error in the parenthesis.

Category Genome fraction h2 inbulls h2 in cows
eeQTLs 4.77% 14.52% (2.2%) 3.96% (1.2%)
KQTLs 5.57% 15.08% (2.5%) 3.88% (1.2%)
aseQTLs 5.21% 11.0% (2.0%) 2.47% (0.7%)
mQTLs 0.03% 0.71% (0.2%) 0.12% (0.04%)
0eQTLs 0.53% 1.54% (0.4%) 0.19% (0.06%)
ChiPseq 6.60% 4.21% (0.8%) 0.90% (0.3%)
noncoding.related 0.03% 0.06% (0.02%) 0.013% (0.004%)
Splice.sites 0.06% 0.08% (0.02%) 0.02% (0.005%)
UTR 0.24% 0.18% (0.03%) 0.03% (0.01%)
Coding.related 0.60% 0.26% (0.06%) 0.04% (0.012%)
Geneend 5.70% 3.76% (0.8%) 0.80% (0.2%)
Intron 26.2% 5.56% (0.7%) 1.53% (0.3%)
Intergenic 67.2% 10.3% (1.3%) 17.3% (2.2%)
Predicted CTCF sites 1.43% 0.36% (0.08%) 0.046% (0.02%)
HPRS 0.96% 0.31% (0.08%) 0.045% (0.02%)
Conserved 100 species 2.1% 41.4% (2.6%) 17.4% (2.3%)
Selection signatures 0.02% 0.011% (0.004%) 0.002% (0.0008%)
Y oung variants 0.54% 0.78% (0.2%) 0.12% (0.05%)
LD score g1 25% 4.57% (0.6%) 1.18% (0.3%)
LD score g2 25% 5.56% (0.7%) 1.45% (0.3%)
LD score g3 25% 6.38% (0.8%) 1.75% (0.4%)
LD score g4 25% 6.94% (0.9%) 2.01% (0.5%)
Variant density q1 25% 5.59% (0.7%) 1.49% (0.3%)
Variant density g2 25% 5.42% (0.7%) 1.45% (0.3%)
Variant density g3 25% 5.72% (0.7%) 1.55% (0.3%)
Variant density g4 25% 5.99% (0.7%) 1.65% (0.4%)
MAF g1 25% 1.36% (0.2%) 0.35% (0.08%)
MAF g2 25% 11.5% (1.3%) 3.51% (0.7%)
MAF g3 25% 29.2% (2.4%) 10.3% (1.8%)
MAF g4 25% 40.5% (2.8%) 15.6% (2.4%)

q1~g4 were the genome partitions based on the 1%, 2™, 3 and 4™ quartiles of minor allele frequency
(MAF), LD score and the number of variants (variant density) per 50kb windows. 4™ quartile > 3"
quartile > 2™ quartile > 1% quartile.
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Table 3. FAETH annotation of previously identified causal or putative causal mutations for dairy
cattle complex traits using the top variant sets. * High’ meant that the variant was ranked within the top

1/3 of the FAETH score.

Loci Causal candidates Annotation Tagging variant sets ':;\E;g
S.C37A1 Chr1:144377960 (38) intron aseQTL High
MGST1 Chr5:93945738 (39) intron eeQTL High
DGAT1  Chrl4:1802266 (40) coding.related gﬁ;;qeeQT'—' SQTL, 8seQTL,  ion
FASN Chr19:51386735 (41) intron mQTL, eeQTL, sQTL, ChIP-seq High
GHR Chr20:31909478 (41) coding.related  Conserved 100 species High
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