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I. ABSTRACT 

Aging is characterised by accumulation of structural and metabolic changes in the brain. Recent 
studies suggest transmodal brain networks are especially sensitive to aging, which, we 
hypothesise, may be due to their apical position in the cortical hierarchy. Studying an open-
access healthy cohort (n=102, age range = 30-89 years) with MRI and Aβ PET data, we 
estimated age-related cortical thinning, hippocampal atrophy and Aβ deposition. In addition to 
carrying out surface-based morphological and metabolic mapping, we stratified effects along 
neocortical and hippocampal resting-state functional connectome gradients derived from 
independent datasets. The cortical gradient depicts an axis of functional differentiation from 
sensory-motor regions to transmodal regions, whereas the hippocampal gradient recapitulates 
its long-axis. While age-related thinning and increased Aβ deposition occurred across the entire 
cortical topography, increased Aβ deposition was especially pronounced towards higher-order 
transmodal regions. Age-related atrophy was greater towards the posterior end of the 
hippocampal long-axis. No significant effect of age on Aβ deposition in the hippocampus was 
observed. Imaging markers correlated with behavioural measures of fluid intelligence and 
episodic memory in a topography-specific manner. Our results strengthen existing evidence of 
structural and metabolic change in the aging brain and support the use of connectivity gradients 
as a compact framework to analyse and conceptualize brain-based biomarkers of aging. 	
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I. INTRODUCTION 

Aging is a multifactorial process defined as a time-dependant functional decline that affects 
most living organisms (López-Otín et al., 2013). Though not fully understood, aging involves 
the accumulation of structural and metabolic changes that ultimately lead to impairments in 
multiple cognitive domains, including executive function, episodic memory, and word retrieval 
(Baciu et al., 2016; Fjell et al., 2017; Tromp et al., 2015). Collectively, these contribute to 
increasing challenges for psychosocial functioning, wellbeing, and quality of life (Pan et al., 
2015; Wilson et al., 2013). 

Ongoing advances in multimodal neuroimaging have identified structural, functional, and 
metabolic substrates of both healthy cognitive functioning (Tomasi and Volkow, 2012) and of 
its decline in aging (Draganski et al., 2013; McConathy & Sheline, 2015; Steffener et al., 2013). 
Progress in Magnetic Resonance Imaging (MRI) acquisition and modelling techniques now 
allows for the fine-grained mapping of neocortical and subcortical morphology in-vivo (B. 
Fischl & Dale, 2000). In healthy individuals, age is associated with decreased hippocampal 
volume and cortical thinning (Fjell et al., 2014; Fraser et al., 2015; Salat et al., 2004; Shaw et 
al., 2016; Sowell et al., 2003; Yao et al., 2012; Yang et al., 2016), both of which measurably 
contribute to cognitive decline (Fjell et al., 2006; Leal & Yassa, 2015; Mielke et al., 2012; 
Walhovd et al., 2006). These findings are complemented by functional and metabolic studies, 
particularly work based on positron emission imaging (PET) of tracers sensitive to deposits 
associated with healthy and pathological aging. Notably, PET-based quantification of amyloid 
beta (Aβ), generally considered a marker of neurodegenerative conditions like Alzheimer’s 
Disease, has demonstrated elevated levels in the brains of cognitively normal older adults as 
well (Jansen et al., 2015; Rodrigue, Kennedy, & Devous, 2012; Sperling et al., 2011). Cortical 
Aβ has furthermore been associated with multi-domain cognitive impairment, such as episodic 
and semantic memory together with executive and visuospatial abilities (Baker et al., 2017; 
Farrell et al., 2017; Jansen et al., 2018; Mortamais et al., 2017).  

With increasing availability of open-access and multimodal data aggregation and dissemination 
initiatives, it is now possible to adopt an integrated approach, combining several imaging 
markers to better understand biological factors contributing to cognitive decline. Recent studies 
in cognitively normal older adults have suggested a synergistic relationship between cerebral 
amyloid pathology and hippocampal atrophy (Bilgel et al., 2018), whereas others suggest that 
cortical thickness may represent a more approximate marker of the pathophysiological 
underpinning of cognitive decline than Aβ deposition (Knopman et al., 2018). In addition to 
the potentially complementary value of imaging markers as surrogates of cognitive abilities, 
aging effects do not seem to be uniform across different regions (McGinnis et al., 2011). 
Notably, several reports have supported a role of large-scale functional network topology, and 
changes in structural covariance networks, on the risk for cognitive decline in aging (Andrews-
Hanna et al., 2007; Buckner, 2004; Fox et al., 2005; Sambataro et al., 2010; Spreng & Turner, 
2013; Spreng et al., 2010; Zhao et al., 2015). Structural and metabolic changes in transmodal 
regions known to engage in more higher-order and integrative processing, such as the default 
mode network (DMN) and frontoparietal networks, have been demonstrated to contribute to 
cognitive decline in healthy subjects (Lim et al., 2014). An overlap between elements of the 
DMN and Aβ pathology has been previously reported in Alzheimer’s Disease (Buckner et al., 
2005), with recent studies indicating that core DMN regions being among the earliest sites of 
Aβ deposition in preclinical stages (Palmqvist et al., 2017). This pathological accumulation is 
thought to contribute to memory dysfunction associated with dementia, as the DMN has been 
shown to be engaged during activation of episodic memory (Buckner et al., 2008). Pathological 
Aβ deposition is not unique to the DMN however, with early accumulation also reported in the 
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fronto-parietal network as well as other transmodal regions with high connectivity (Buckner et 
al., 2009; Elman et al., 2016; He et al., 2014; Wang et al., 2007).  

Studying the openly-available Dallas Lifespan Aging Study (DLBS) dataset (Park, 2018), the 
current work integrated measures of neocortical and hippocampal morphology and Aβ 
deposition to examine age-related differences and their relationship to cognition. In addition to 
leveraging surface-based processing and multimodal co-registration techniques, we harnessed 
a novel analysis reference frame determined by the putative neocortical hierarchy. Initially 
formulated in non-human primates (Mesulam, 1998), the hierarchy follows a ‘sensory-fugal’ 
gradient from low-level cortices involved in interactions with the external world to higher-
order transmodal areas involved in self-generated, abstract cognition (Buckner and Krienen, 
2013; Huntenburg et al., 2018; Margulies et  al., 2016; Paquola et al., 2018). Recent application 
of unsupervised compression techniques applied to cortico-cortical functional connectivity 
data recapitulated a similar gradient in humans (Margulies et al., 2016). By being functionally 
and anatomically distant from sensory systems, DMN activity is likely to be shielded from 
environmental input (Kiebel, Daunizeau, & Friston, 2008) and may also perform cross-modal 
integration of information (van den Heuvel & Sporns, 2013). Equivalent compression 
techniques have been applied to hippocampus-to-cortex connectivity profiles, also revealing a 
principal gradient of connectivity. In the hippocampus, this gradient follows its ‘long axis’, 
with anterior segments being closely connected to transmodal DMN and temporo-limbic 
networks, while posterior sections increasingly interact with posterior cortical areas including 
the visual and dorsal/ventral attention networks (Vos de Wael et al., 2018).  

Stratification of aging biomarkers based on neocortical and hippocampal connectivity 
gradients, provides an alternative viewpoint to voxel- or parcellation-based studies of 
macroscale organization and connectivity which in turn, may complement recent literature 
demonstrating increased vulnerability of higher-order networks to pathological protein 
accumulation (Buckner et al., 2009; Elman et al., 2016; He et al., 2014; Palmqvist et al., 2017), 
and age-related reductions in cortical thickness across higher-order and sensorimotor networks 
(Bajaj et al., 2017). Furthermore, by sidestepping the need to define discrete communities 
through the use of clustering (Eickhoff, Yeo, & Genon, 2018; Yeo et al., 2011) or connectivity 
boundary mapping techniques (Cohen et al., 2008), topographic connectome profiling provides 
a continuous coordinate system to aggregate and analyze aging biomarkers, allowing for the 
study of pathological advance along a quantifiable map of the neocortical hierarchy and 
hippocampal long-axis, ultimately furthering our understanding of neurological aging and the 
associated cognitive decline. 
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II. MATERIALS AND METHODS 

Participants  

We selected 144 healthy adult native English speakers (89 females, 30-89 years, mean±SD 
age= 62±16.9 years, 93.4% White/Caucasian) from the openly-shared DLBS, a comprehensive 
study designed to understand cognitive functioning at different stages of the adult lifespan 
[http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html; (Park, 2018)]. Participants were well 
educated (mean±SD=16.8±2.3 years of education) and scored highly on the Mini-Mental State 
Examination [MMSE; (Folstein et al., 1975); mean±SD=28±1.2 points]. As previously 
outlined (Rodrigue et al., 2012), participants were screened for neurological and psychiatric 
disorders, loss of consciousness >10 minutes from a traumatic insult to the head, drug/alcohol 
abuse, stroke and major heart surgery, chemotherapy within 5 years, and immune system 
disorders. Participants were right-handed and recruited from the Dallas-Fort Worth 
metropolitan area. Specifically, we selected only those who underwent a research-dedicated 
anatomical MRI and Aβ PET examination.  

The DLBS was approved by the University of Texas at Dallas and University of Texas 
Southwestern Medical Centre respective ethics committees. All DLBS subjects provided 
written consent prior to enrolment.  

 

Neuropsychological Test Battery 

Participants completed a battery of neuropsychological tests assessing the following domains; 
processing speed (Salthouse & Babcock, 1991; Wechsler, 2008), working memory (Turner & 
Engle, 1989; Wechsler, 2008), episodic memory (Brandt, 1991; Robbins et al., 2010), 
crystallized abilities (Zachary, 1986), executive function (Robbins et al., 2010), and fluid 
reasoning (Ekstrom et al., 1976; Raven, 1996). A single subject was missing a single score for 
the Digit Symbol Task (0.1% missing data). Due to this number being so small, we did not 
want to exclude the subject from analysis, but instead imputed the missing data point using 
linear interpolation. Results from all neuropsychological tests were standardized to z-scores. 
To reduce data dimensionality, we iteratively performed a maximum likelihood common factor 
analysis with varimax rotation with two- to five-factor solutions (Harman, 1976). Overfitting 
occurred with three or more factors (Heywood, 1931), thus the two-factor solution was utilised 
in subsequent analyses. Neuropsychological tests pertaining to fluid intelligence strongly 
contributed to the first factor (henceforth, F1), specifically Ravens Progressive matrices, 
Educational Testing Service (ETS) Letter Sets, Digit Symbol Test, Digit Comparison Test, 
CANTAB Spatial Working Memory Test and CANTAB Stockings of Cambridge Test. 
Whereas tests pertaining to episodic memory contributed highly to the second factor 2 (F2), 
specifically Hopkins Verbal Learning Immediate Recall, Delayed Recall, and Recognition. For 
specific factor loadings across tests, see SUPPLEMENTARY TABLE 1.  

 

MRI Acquisition 

Anatomical images were acquired with a Philips Achieva 3T whole-body scanner (Philips 
Medical Systems, Bothell, WA) and a Philips 8-channel head coil at the University of Texas 
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Southwestern Medical Center using the Philips SENSE parallel acquisition technique. A 3D 
T1-weighted sagittal magnetization-prepared rapid acquisition gradient echo (MPRAGE) 
structural image was obtained (T1w, Repetition time [TR]=8.1 ms, echo time [TE]=3.7 ms, 
flip-angle=12°, FOV=204×256 mm2, resulting in 160 slices with 1×1×1 mm3 voxels).  

 

Amyloid PET Acquisition 

All participants were injected with a 370 MBq (10mCi) bolus of 18F-Florbetapir. At 30 minutes 
post-injection, subjects were positioned on the imaging table of a Siemens ECAT HR PET 
scanner. Velcro straps and foam wedges were used to secure the participants head and 
participant positioning was completed using laser guides. A 2-min scout was acquired to ensure 
the brain was in the field of view and that there was no rotation in either plane. At 50 minutes 
post injection, a 2-frame by 5-minute dynamic emission acquisition was started, followed 
immediately by a 7-minute internal rod source transmission scan. The transmission image was 
reconstructed using backprojection and a 6-mm full-width-at-half-maximum (FWHM) 
Gaussian filter. Emission images were processed by iterative re-construction, specifically 4 
iterations and 16 subsets with a 3 mm FWHM ramp filter.  

 

Multimodal image processing in neocortical and hippocampal regions 

a) Generation of neocortical surfaces. To generate models of the cortical surface and measure 
cortical thickness, native T1w images of each participant were processed using FreeSurfer 6.0 
(http://surfer.nmr.mgh.harvard.edu). Previous work has cross-validated this pipeline with 
histological analysis (Cardinale et al., 2014; Rosas et al., 2002) and manual measurements 
(Kuperberg et al., 2003). Processing steps have been described in detail elsewhere (Dale et al., 
1999; Fischl et al., 1999). In short, the pipeline includes brain extraction, tissue segmentation, 
pial and white matter surface generation, and registration of individual cortical surfaces to the 
fsaverage surface template. The latter step aligns vertices among participants, whilst 
minimising metric distortion. Cortical thickness was calculated as the closest distance from the 
white matter to the pial boundary at each vertex. FreeSurfer quality control and manual edits 
were carried out by a single rater (AL) and included pial corrections and addition of control 
points, followed by reprocessing. 

b) Hippocampal subfield surface mapping. We applied a recently developed approach for 
hippocampal subfield segmentation, the generation of surfaces running through the core of 
each subfield, and subsequent “unfolding” for surface-based analysis of hippocampal imaging 
features (Bernhardt et al., 2016; Caldairou et al., 2016; Kim et al., 2014; Vos de Wael et al., 
2018). In brief, each participant’s native-space T1w image underwent	automated correction for 
intensity non-uniformity, intensity standardization, and linear registration to the MNI152 
template. Each image was processed using a multi-template surface-patch algorithm (Caldairou 
et al., 2016), which automatically segments the hippocampal formation into subiculum, CA1-
3, and CA4-DG subfields. An open-access database of manual subfield segmentations and 
corresponding high-resolution 3T MRI data (Kulaga-Yoskovitz et al., 2015) was used to train 
the algorithm (https://www.nitrc.org/projects/mni-hisub25). The algorithm was previously 
validated in healthy individuals, where Dice coefficients above 0.8 were demonstrated across 
subfields even when millimetric T1w images were used as input (Caldairou et al 2016). 
Notably, the algorithm also generates medial sheet representations running through the core of 
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each subfield, which allow for the sampling of intensity parameters with minimal partial 
volume effect, while guaranteeing point correspondence across subjects. Prior validation 
experiments in epileptic patients showed that these features reliably predict hippocampal 
histopathology and focus laterality (Bernhardt et al., 2017, 2016; Kim et al., 2014). After 
parametrizing subfield surfaces using spherical harmonic shape descriptors (Styner et al., 
2006), a Hamilton-Jacobi approach generated a medial surface running through the central path 
of each subfield (Kim et al., 2014). To estimate local atrophy, we calculated columnar volume 
(Kim et al., 2014). This index is calculated as the distance between a vertex on the medial sheet 
of each subfield and the corresponding outer shell multiplied by the average surface area of the 
surrounding triangles between the subfield boundary and the medial surface. In prior work, we 
showed a high correlation between columnar volume and degrees of hippocampal cell loss in 
patients with temporal lobe epilepsy (Bernhardt et al., 2016). 

c) PET-MRI integration. We mapped PET data to T1w imaging space generated by the 
pipelines in a) and b), allowing for a surface-based integration of Aβ uptake with structural 
imaging features along neocortical and hippocampal subfield surfaces. In both cases, boundary-
based procedures estimated the registration between a native PET image and the corresponding 
T1w images (Greve & Fischl, 2009), followed by vertex-wise interpolation within the cortical 
ribbon. Neocortical PET data were resampled to fsaverage5 to improve correspondence across 
measurements; in the case of hippocampal PET features, the sampling grid was already aligned 
via the spherical parameterization during processing (Kim et al., 2014). Following previous 
approaches (Rodrigue et al., 2012), neocortical and hippocampal Aβ values were normalized 
by mean cerebellar grey matter Aβ uptake, providing a standardized uptake value ratio (SUVR) 
per vertex. To control for cerebro-spinal fluid partial volume effects (CSF-PVE), each 
participant’s T1w image was skull stripped and segmented into tissue types and partial volume 
estimates (Zhang et al., 2001). CSF-PVE maps were mapped to neocortical and hippocampal 
surfaces. Using surface wide linear models, we controlled Aβ SUVR values for effects of CSF-
PVE at each vertex in all participants. 

 

Quality Control and Final Sample Selection 

The DLBS open-access data set contains structural and functional data with variable image 
quality. All T1w images, segmentations, and co-registrations were visually inspected by a 
single researcher (AL). We removed datasets with artefacts leading to inaccurate cortical 
segmentations (n=25) Additionally, data with inaccurate hippocampal segmentations (n=17), 
characterised by gross errors or inclusion of neighbouring white matter voxels, were removed. 
Following quality control, the final sample included 102 healthy individuals (69 females, 30-
89 years, mean±SD age=59±16.1 years, 90.2% White/Caucasian), who were highly educated 
(mean±SD=16.1±2.2 years of education), and scored highly on the MMSE 
(mean±SD=28±1.1). The age of our sample was approximately normally distributed 
(SUPPLEMENTARY FIGURE 1). 

 

Statistical Analysis 

Analyses were performed using SurfStat (Worsley et al., 2009) for Matlab (The Mathworks, 
Natick, MA, R2017B). All linear models outlined below additionally controlled for sex and 
years of education.  
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a) Regional analysis along neocortical and hippocampal surfaces. Surface-wide linear models 
examined effects of age on cortical thickness.  

      

     Ti = β0 + β 1*Age + β 2*Sex + β 3*Education 

Where Ti is the thickness at vertex i, and Age, Sex and Education are the model terms and the 
betas the estimated model parameters. Similar models assessed the relationship between 
cortical Aβ deposition and age. We corrected for multiple comparisons using the false 
discovery rate (FDR) procedure (Benjamini & Hochberg, 1995). We selected a two-tailed pFDR 
of <0.05. An analogous approach assessed age effects on columnar volume and Aβ across 
hippocampal subfield surfaces. 

b) Relation to cognitive factors. We computed Pearson’s correlation coefficients and tested for 
associations between age and neuropsychological factor scores F1 and F2. Furthermore, we 
correlated mean cortical thickness, hippocampal volume, and Aβ values within significant 
clusters computed in a) with the factor scores. As for the previous analysis, findings were 
corrected using an FDR procedure.  

c) Multimodal profiling based on connectome topographic mapping. We used previously 
derived maps of neocortical and hippocampal resting-state functional connectome gradients 
(Margulies et al., 2016; Vos de Wael et al., 2018) based on the human connectome project 
dataset (Van Essen et al., 2012) to stratify findings. In the neocortex, the first principal gradient 
describes a continuous transition from unimodal sensory areas via task-positive networks, such 
as the salience, dorsal attention, and fronto-parietal network, towards the DMN core regions 
(Margulies et al., 2016), thus recapitulating earlier models of a cortical hierarchy with low-
level sensorimotor regions on the one end, and transmodal regions participating in higher-order 
functions on the other end (Mesulam, 1998). In the hippocampus, the first principal gradient of 
hippocampal connectivity runs from anterior to posterior regions across all subfields, with the 
former being more strongly connected to transmodal DMN than the posterior part (Vos de Wael 
et al., 2018). Both gradients were discretized into 20 bins, following a recent approach to 
stratify task-based fMRI data using connectome topographies (Murphy et al., 2018). Each bin 
contained the same number of vertices to ensure comparable sensitivity. We employed the 
same analysis as in a) and mapped significant t-values to the discretized gradient using a sliding 
window approach. Thus, each gradient bin had a specific t-value representing the effect of age 
on brain markers in that bin. This was plotted graphically against bin ordering (1-20). A linear 
model between bin ordering and the t-value within each bin explored interactions between 
gradient ordering and age effects on brain markers. To assess the relationship between gradient 
values and cognition, we computed the mean cortical thickness and amyloid values in each of 
the 20 gradient bins controlling for gender and level of education. The residual bin values were 
then fed into a linear model with factor score 1 and 2 and resultant t-values were plotted against 
bin ordering to produce gradient-cognition plots. A linear model between bin ordering and the 
t-values then explored interaction between gradient ordering and cognition. This approach, 
thus, provided a low-dimensional representation of structural and Aβ changes along the 
neocortical and hippocampal functional topography. 
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Data and code availability 

All data are based on the openly-shared Dallas Lifespan Brain Study dataset, available under 
http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html. Preprocessed and quality controlled 
surface feature data are available upon request. Surface-wide statistical comparisons were 
carried out using SurfStat for Matlab (http://www.math.mcgill.ca/keith/surfstat/). Gradient 
mapping tools used in this work are available via https://github.com/MICA-
MNI/micaopen/diffusion_map_embedding.   

 

III. RESULTS 

Effects of age on neocortical and hippocampal subfield markers 
 
a) Morphology. Vertex-wise analysis revealed widespread reductions in cortical thickness with 
increasing age (FDR-corrected p-value, pFDR<0.025; FIGURE 1A). Laterally, clusters occupied 
bilateral frontal, central, temporal, and parietal cortices with a relative sparing of the 
orbitofrontal and occipital cortices. Medially, clusters occupied bilateral precuneus, cingulate, 
paracentral, superior frontal, fusiform and parahippocampal cortices. Considering the 
hippocampus, subfield analysis of columnar volume revealed effects predominantly in 
posterior portions, spanning subiculum, CA1-3, and CA4-DG bilaterally. Additional clusters 
were also observed in bilateral anterior CA1-3 (pFDR<0.025; FIGURE 1A).  

b) Aβ. We observed higher Aβ deposition with increasing age (pFDR<0.025) in a different spatial 
pattern than the cortical thickness findings. Specifically, we observed bilateral increases in 
predominantly limbic and transmodal cortices, encompassing lateral and medial temporal, 
insula, orbitofrontal, cingulate and midline parietal, as well as supramarginal regions, with a 
relative sparing of primary motor, occipital and mesial frontal cortices (FIGURE 1B). In the 
hippocampus, neither increases nor decreases in Aβ survived FDR-correction. At uncorrected 
thresholds (p<0.025), we observed mainly trends for increased Aβ in bilateral anterior CA1-3 
(FIGURE 1B). 

[Figure 1] 

 
Effects of age and imaging markers on cognition 
  
Older age correlated with lower cognitive factors scores i.e., poorer fluid intelligence (F1: r=-
0.66, p<0.001) and episodic memory (F2: r=-0.48, p<0.001; FIGURE 2A).     

Post-hoc analysis between mean cortical thickness in regions of significant age effects (see 
Figure 1A) showed positive correlations with both F1 (r=0.58, p<0.001) and F2 (r=0.41, 
p<0.001), indicating better performance in individuals with higher thickness (FIGURE 2B). On 
the other hand, increases in mean Aβ deposition (see Figure 1B) related to lower scores on both 
F1 (r=-0.31, p<0.001) and F2 (r=-0.23, p<0.05) (FIGURE 2B). At the level of the hippocampus, 
we observed positive correlations between columnar volumes in regions of age effects and F1 
(r=0.55, p<0.001) and F2 (r=0.43, p<0.001). Regarding hippocampal Aβ deposition in regions 
of uncorrected age effects, no significant correlations were observed with F1 (r=-0.15, p=0.13) 
nor with F2 (r=-0.08, p=0.3). 
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A post-hoc mediation analysis between age, cognition and brain markers in regions of 
significant age effects was performed. The brain markers selected as potential mediators were 
those which demonstrated a significant correlation with both factor scores (FIGURE 2B/C). As 
such, hippocampal Aβ deposition was not included. Following the methodology described by 
Zhao et al. (2010), we found cortical thickness (F1: a*b = 0.007 [CI = 0.005 – 0.009], F2: a*b 
= 0.004 [CI = 0.003 – 0.006]) cortical Aβ deposition (F1: a*b =-0.002 [CI = -0.004 - -0.002], 
F2: a*b = -0.001 [CI = -0.003 - 0.000]) and hippocampal volume (F1: a*b = 0.006 [CI = 0.005 
– 0.008]. F2: a*b = 0.005 [CI = 0.003 – 0.006]) all to be significant mediators of the relationship 
between age and both F1 and F2. All brain markers were categorized as ‘Complimentary’ 
mediators (Zhao et al., 2010), indicating the likely presence of additional mediating variables 
on the relationship between age and cognition.  

[Figure 2] 

 

Profiling of age effects on brain markers and cognition via connectome gradients   
 
a) Age effects. Age-related cortical thinning was diffuse across the entire cortical functional 
gradient (pFDR <0.025), with no marked difference between uni- and transmodal areas (t=-1.64, 
p=0.11) (FIGURE 3A). On the other hand, although age-related increases in Aβ deposition also 
occurred across the entire neocortical gradient, we observed a significant incline towards 
transmodal regions (t=6.96, p<0.001) (FIGURE 3A). Hippocampal age-effects were not as 
strong as in the neocortex and did not reach significance. Yet, effect sizes for age-related 
volume loss were larger towards the posterior aspect of the hippocampal ‘long-axis’ gradient 
(t=-9.51, p<0.001) while we observed trends for increased Aβ in anterior regions (FIGURE 3B).  

b) Cognition. Considering cortical thickness, we found that measures across the entire 
neocortical gradient positively correlated with F1, with largest effects in sensory regions (t=-
2.40, p<0.05), and with F2, which demonstrated no significant difference between sensory and 
higher order bins (t=-1.60, p=0.13). Aβ deposition across almost the entire gradient correlated 
with F1. However, in contrast to the thickness findings, we found that transmodal values were 
most closely related to F1 scores (t=-5.00, p<0.001). With regards to F2, although values across 
gradient bins did not reach significance, reduced scores on F2 were still observed as Aβ 
deposition increased in transmodal regions of the neocortical gradient (t=-6.80, p<0.001) 
(FIGURE 3C).  

Hippocampal volume in low-level bins, corresponding to the posterior hippocampus correlated 
with higher F1 scores (t=-16.33, p<0.001) (FIGURE 3C) and higher F2 scores. Values in the 
posterior aspect of the gradient was again shown to have greater predictive power compared to 
the anterior portion (t=-15.44, p<0.001). Unlike the neocortical findings, gradient-wise 
hippocampal Aβ deposition did not correlate with scores for F1 and F2 (FIGURE 3C).  

[Figure 3] 

Additional control analyses  

Although main models included sex and education as control covariates, similar effects were 
observed using models that omitted their control (SUPPLEMENTARY FIGURE 3). Furthermore, 
we observed virtually identical results when additionally controlling for APOE-e4 genotype 
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(SUPPLEMENTARY FIGURE 4), and when performing a subgroup analysis restricted to only 
non-APOE4-e4 carriers (SUPPLEMENTARY FIGURE 5).  

Given that functional connectivity in healthy subjects has been shown to differ with age 
(Ferreira et al., 2016; Sala-Llonch et al., 2014), we also performed a separate control analysis 
in which we built functional connectivity gradients in the hippocampus and neocortex from a 
different healthy life span dataset (n=39, 20 females, age range: 18-77, mean±SD=45±22.9 
years) (SUPPLEMENTARY METHODS). Gradients estimated in this cohort were largely similar 
in overall shape to the original ones i.e. describing a system level transition from unimodal to 
transmodal areas in neocortices and the hippocampal long-axis. Gradient-stratified findings 
based on the lifespan functional data were thus virtually identical to the original findings based 
on the HCP cohort, both for the neocortex (SUPPLEMENTARY FIGURE 6) and hippocampus 
(SUPPLEMENTARY FIGURE 7). 

Finally, we also mapped levels of laminar differentiation to our cortical surface models similar 
to our previous work integrating 3D histology and neuroimaging (Paquola et al. 2018).  To this 
end, each cortical node was assigned to one of four levels of laminar differentiation (i.e., 
idiotypic, unimodal, heteromodal or paralimbic) derived from the seminal model of the cortical 
hierarchy formulated by Mesulam, which was built on the integration of neuroanatomical, 
electrophysiological, and behavioural studies in human and non-human primates (Mesulam, 
1998). Laminar differentiation-based analysis confirmed highest aging related Aβ deposition 
in paralimbic transmodal areas (t>3.9), with effect sizes descending down the hierarchy i.e. 
heteromodal association areas and unimodal association areas (t=3.5) followed by idiotypic 
sensory and motor cortices (t=2.77).  For thickness, findings were more diffuse as for the 
gradient based profiling with highest negative aging effects seen in unimodal and heteromodal 
association areas (t>3.3), followed by idiotypic (t=3.0), and then limbic areas (t=2.0).   

 

VI. DISCUSSION 

Our work targeted age-related differences in morphology and amyloid deposition across 
neocortical and hippocampal subregions and confirms widespread structural-metabolic 
differences with advancing age. Age effects on thickness were diffuse along the entire 
neocortical functional gradient, whereas effects on volume were stronger in posterior segments 
of the hippocampal long-axis. Regarding Aβ deposition, age-related increases were observed 
along the entire neocortical gradient with significantly stronger effects observed in higher-order 
transmodal neocortices while no gradient-based modulation of age effects was observed for 
hippocampal Aβ.  Structural and amyloid measures correlated with behavioural indices of fluid 
intelligence and episodic memory, again in a topography-dependent manner, emphasizing the 
power of our analytical framework to compactly represent and conceptualize brain aging in the 
context of macroscale functional systems.  

At a whole-brain level, our image processing strategy incorporated several desirable elements 
to combine imaging metrics of neocortical and hippocampal subregions. Indeed, unconstrained 
surface-based morphometric MRI and Aβ-PET analysis in neocortical regions extends work 
focussing on a-priori defined region-of-interest (Rodrigue et al., 2012; Thambisetty et al., 
2010). Likewise, by unfolding its complex and interlocked anatomical organization, we could 
address subregional changes in the hippocampal formation along its long-axis, building upon 
prior work operating at the whole-hippocampus (Fjell et al., 2009) or subfield-wise level (de 
Flores et al., 2015). Notably, although Aβ sampling was carried out within the cortical ribbon 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601146doi: bioRxiv preprint 

https://doi.org/10.1101/601146
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lowe et al.   Topographic profiling of brain and cognitive aging 

	 13 

to minimize cerebrospinal fluid partial voluming, we additionally controlled for these effects 
at each vertex using statistical techniques and normalized Aβ uptake data against cerebellar 
grey-matter values, a reference region thought to be relatively unaffected by aging (Rodrigue 
et al., 2012; Vandenberghe et al., 2010). These steps likely increased specificity, while 
minimizing morphological confounds. At the level of the neocortical surface, we could observe 
a divergence between the effects of age on thickness and Aβ. Indeed, while the former affected 
a widespread fronto-centro-temporal territory, in line with prior work (Fjell et al., 2009; 
McGinnis et al., 2011; Salat et al., 2004; Yang et al., 2016; Yao et al., 2012), increased Aβ was 
observed in a more restrictive and predominantly limbic-transmodal circuitry (Rodrigue et al., 
2012; Sperling et al., 2009). Following FreeSurfer edits and quality control, results remained 
largely the same, supporting that little or no age-related differences reflect a genuine sparing 
with increasing age. The regional divergence of morphological and Aβ effects was paralleled 
in the hippocampus, where we observed age-related reductions in local columnar volume 
mainly in posterior segments, while Aβ was marginally increased in the proximity of the 
hippocampal head.	

To conceptualize these spatial patterns in a framework that more closely relates to macroscale 
functional organization, we utilized novel topographic mapping techniques guided by resting-
state functional connectivity information from a large sample of healthy adults. Specifically, 
we remapped cortical and hippocampal morphometric and Aβ measures according to the main 
axes of neocortical and hippocampal connectivity. Prior work has shown that neocortical 
connectivity variations follow a gradient running from unimodal towards transmodal regions 
while hippocampal connectivity gradually shifts along its long-axis (Margulies et al., 2016; 
Vos de Wael et al., 2018; Hong et al., 2019; Plachti et al., 2019). Representing neuroimaging 
data in this compact, and presumably hierarchical (Mesulam, 1998), reference frame can be 
seen as complementary to parcellation-based methods as it does not assume clear-cut 
boundaries between functional systems but rather gradual transitions when going from one 
network to the next. In keeping with our regional findings, topography-stratified analysis 
supported a difference between structural and Aβ changes relative to the neocortical axes. 
While age-effects on thickness were seen along the entire gradient, positive age-Aβ correlations 
were significantly larger towards the transmodal anchor. Our findings with respect to functional 
connectivity gradients is compatible with earlier work demonstrating age-related cortical 
thinning across multiple functional networks (Bajaj et al., 2017), and a selective vulnerability 
of higher-order midline networks to Aβ pathology (Mutlu et al., 2017; Myers et al., 2014; 
Palmqvist et al., 2017; Sperling et al., 2009). From a theoretical perspective, our approach 
complements earlier models assuming a spatial patterning of brain aging, for example models 
presuming that posterior structural and associated functional compromise may lead to increased 
activity in anterior regions (Davis et al., 2008; Grady et al., 1994; Payer et al., 2006), or even 
more general accounts that assume the engagement of supplementary networks to preserve 
cognitive function in the face of diffuse neurofunctional decline (Park & Reuter-Lorenz, 2009; 
Reuter-Lorenz & Park, 2014). Structural decline of neurotransmitter systems throughout the 
brain may also result in functional changes, including attenuation of neuronal gain control, 
resulting in suboptimal cognition (Li et al., 2001; Li & Rieckmann, 2014). In fact, our results 
provide support for hierarchy-specific shifts, whereby diffuse structural changes result in 
compensatory recruitment of higher-level regions. In other words, cortical atrophy across a 
large territory could evoke increased functional demands on higher-order default mode and 
frontal-parietal networks. Though not fully understood, the increase in activity, connectivity, 
and metabolic stress may in turn increase the susceptibility of higher-order networks to Aβ 
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pathology (Bero et al., 2011; Buckner et al., 2005; Lehmann et al., 2013). Regarding the 
hippocampal gradient, we observed larger age-related volume loss in posterior aspects of the 
hippocampal long-axis, supporting earlier literature demonstrating a vulnerability of the 
posterior hippocampus in aging (Pruessner, Collins, Pruessner, & Evans, 2001). We found no 
significant effect of age on hippocampal Aβ deposition across the entire hippocampal gradient, 
which is in keeping with our regional findings demonstrating only trends for increased 
deposition in the hippocampal head. We believe our lack of significant findings relating to Aβ 
across the hippocampus could be the result of low sensitivity of PET imaging to Aβ deposition 
in this structure. The unique anatomy of the hippocampal formation, coupled with its 
predisposition towards partial volume errors, has been hypothesised to reduce the reliability of 
PET imaging in this region (Sabri, Seibyl, Rowe, & Barthel, 2015). Nevertheless, we deemed 
it worthwhile to explore hippocampal Aβ, given theoretical benefits when studying metabolic 
data with subfield-surface analytics that offer reduced partial volume effect during parameter 
sampling and high spatial specificity.  

With regards to the cognitive substrates of our findings, thickness reductions across the 
neocortical gradient related to lower scores on measures of episodic memory and fluid 
intelligence, supporting a contribution of whole-cortex morphological integrity to this faculty 
(Fjell et al., 2006; Schretlen et al., 2000). As effect sizes were somewhat higher in unimodal 
portions of the gradient, our data may underline the contribution of externally-oriented 
attention networks to fluid intelligence (Majerus et al., 2012), with particularly the dorsal 
attention network being proximal to sensory and sensorimotor anchors on the neocortical 
gradient (Margulies et al., 2016).  The dorsal attentional network and sensorimotor regions are 
densely interconnected, and previous research has shown that externally-oriented operations 
broadly contribute to fluid intelligence (Hearne et al., 2016). With respect to Aβ, particularly 
transmodal neocortical increases related to worse scores, with effects significant for fluid 
intelligence but only trending for memory-related factor scores. Although not explored here, 
the observed structural and metabolic change across neocortical and hippocampal regions may 
reflect disruptions of large-scale structural networks, negatively affecting cognitive functions. 
Previous work indeed showed a decline white matter network efficiency with age (Collin & 
Van Den Heuvel, 2013; T. Zhao et al., 2015), with long-range connections and higher-order 
cognitive networks demonstrating considerable vulnerability (Montembeault et al., 2012; 
Spreng & Turner, 2013; Tomasi & Volkow, 2012).  

When controlling for APOEe4 genotype status, we observed no modulation or differences in 
cognitive score. Given recent data indicative of a significant effect of genotype status on 
cognition in aging (Schiepers et al., 2012), this result was quite surprising. One potential 
explanation for this finding is that the relatively small sample of APOEe4 carriers (n=23) in 
this current study was not large enough to demonstrate any significant effect. However, our 
results do lend support to earlier work demonstrating no effect of APOEe4 status on cognition 
in healthy aging (Mayeux, Small, Tang, Tycko, & Stern, 2001; Pendleton et al., 2002; B. J. 
Small et al., 2000; Brent J. Small, Basun, & Bäckman, 1998; Smith et al., 1998). Furthermore, 
in studies that do find an effect of APOEe4 on cognition, the effect is not consistent across 
cognitive domains, with attention, primary memory, verbal ability, visuospatial skill and 
perceptual speed demonstrating no significant deficits as a result of genotype status (Brent J. 
Small, Rosnick, Fratiglioni, & Bäckman, 2004; Wisdom, Callahan, & Hawkins, 2011). 
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A potential limitation to this study is that we were unable to control for subjective cognitive 
decline (SCD). SCD was assessed in the DLBS using the Metamemory in Adulthood 
questionnaire (Chen, Farrell, Moore, & Park, 2019), however, this data has yet to be released. 
SCD has been related to mesiotemporal atrophy and functional connectivity changes (Fan et 
al., 2018; Verfaillie et al., 2018), and might thus have been an interesting variable to relate to 
neocortical and hippocampal measures in the newly proposed gradient space. Furthermore, the 
DLBS only screened against physical health, neurological health, and MMSE>26 to cover a 
large range of individuals falling under a healthy aging umbrella. Measures of preclinical 
Alzheimer’s disease, including Amyloid beta SUVR cut-off points and/or Scheltens visual 
rating scale for mesiotemporal atrophy (Philip Scheltens, Launer, Barkhof, Weinstein, & van 
Gool, 1995) were thus not used for subject exclusion. It is, therefore, possible that some 
participants might have suffered from preclinical stages of Alzheimer’s disease with still high 
MMSE scores. Finally, please note that we restricted our analysis to 102/144 cases with higher-
quality MRI data. Although this nominally reduced statistical power, focussing on cases with 
high-quality imaging data and quality controlled hippocampal and cortical segmentations may 
improve inferences. In fact, it might even be more sensitive than an assessment of a larger 
dataset with potential confounds in image quality and surface extractions.  

In conclusion, our work presents a novel approach to represent age-related differences in brain 
structure, metabolism, and cognition. In addition to supporting previous work indicative of 
structural and metabolic change in the aging brain, the use of a compact analytical framework 
to relate brain-based biomarkers to macroscale functional systems allowed for novel insights 
into the interplay between pathological deposits and structural compromise, and how this 
subsequently impacts upon cognition in the healthy aging population.   
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FIGURE LEGENDS  
 
FIGURE 1.  Analysis of grey matter morphology and Aβ deposition (normalized by cerebellar grey matter and 
controlled for CSF PVE) along neocortical (left) and hippocampal subfield (right) surfaces. Effects of age on A) 
cortical thickness and hippocampal volume across all subfields and B) on Aβ deposition. Models controlled for 
sex and education. Age related increases are shown in warm and decreases in cold colors. Regions significant at 
a two-tailed pFDR<0.05 are shown with black outlines, uncorrected trends relating to increased hippocampal Aβ 
are shown in semi-transparent (B, bottom right). Correlations between age and markers of brain-aging are 
displayed in C). *Denotes statistical significance. 
PVE = Partial Volume Effect. NS = Non-Significant. 

 

 FIGURE 2. Associations between age-related brain markers and cognitive performance. A) Age of sample is 
displayed next to the results of the maximum likelihood common factor analysis with varimax rotation which 
identified two latent factors pertaining to measures of fluid intelligence (F1) and episodic memory (F2), 
respectively. The factor score matrix has been age-ordered with red indicating higher scores and blue indicated 
lower scores. Significant negative correlations between age and F1 and F2 scores are also displayed. B) Post-hoc 
correlation analysis, based on significant clusters of age-related cortical thickness and cortical amyloid deposition 
(See Figure 1) with F1 and F2. C) Correlation analysis between hippocampal volume and amyloid deposition 
with F1 and F2. Brain measures have been corrected for sex and education.  Please see Figure 1 for details on the 
multiple comparison’s correction. *Denotes statistical significance. 
SUVR = Standardized Uptake Value Ratio. NS = Non-Significant  
 

FIGURE 3) Topographic profiling of age effects and cognitive correlations in neocortical and hippocampal regions. 
A) Age effects on vertex-wise cortical thickness and Aβ deposition (left) were mapped to a reference space based 
on neocortical functional connectivity gradients (centre: adapted from Margulies et al., 2016) and an atlas of levels 
of laminar differentiation (right: adapted from Mesulam 1998; Paquola et al., 2018). Line profiles depict changes 
in t-statistics from primary sensory regions on the left side of the graph towards transmodal regions on the right 
(centre). Boxplots show the median and range of t-statistics within levels of laminar differentiation (right). Age-
related effects on cortical thickness were consistently high across the entire neocortical gradient, and did not differ 
across levels of laminar differentiation. In contrast, Aβ shows higher effect of age towards the transmodal end of 
the gradient, corresponding to the paralimbic cortex. B) Vertex-wise age-effects on hippocampal subregion 
volume and Aβ deposition (left), mapped to a ‘long-axis’ reference space based on hippocampal functional 
connectivity gradients (centre, adapted from Vos de Wael et al., 2018), showing more elevated deposition in 
anterior subregions. Right hemisphere gradients were virtually identical.  C) Gradient-based stratification of 
correlations between F1 and F2 on neocortical (left panels) and hippocampal measures (right panels). Solid lines 
represent significant t-values using Bonferroni correction, whereas dashed lines represent significant t-values 
using FDR correction for multiple comparisons. 
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