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SUMMARY 

Recent discussions of human brain evolution have largely focused on increased neuron numbers and 

changes in their connectivity and expression. However, it is increasingly appreciated that 

oligodendrocytes play important roles in cognitive function and disease. Whether both cell-types follow 

similar or distinctive evolutionary trajectories is not known. We examined the transcriptomes of neurons 

and oligodendrocytes in the frontal cortex of humans, chimpanzees, and rhesus macaques. We 

identified human-specific trajectories of gene expression in neurons and oligodendrocytes and show 

that both cell-types exhibit human-specific upregulation. Moreover, oligodendrocytes have undergone 

accelerated gene expression evolution in the human lineage compared to neurons. The signature of 

acceleration is enriched for cell type-specific expression alterations in schizophrenia. These results 

underscore the importance of oligodendrocytes in human brain evolution. 
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INTRODUCTION 

Increased brain size, accompanied by increased neuron numbers, has been a central theme in human 

brain evolutionary studies (Gabi et al., 2016; Preuss, 2017).  However, such changes alone are unlikely 

to entirely account for the evolved cognitive capabilities of humans (Sousa et al., 2017a). Changes in 

gene expression have been hypothesized as a key facet of human brain evolution (Khaitovich et al., 

2006; King and Wilson, 1975), and previous bulk transcriptome studies have shown that gene 

expression changes in neurons have been extensive (Konopka et al., 2012; Liu et al., 2012; Sousa et 

al., 2017b). However, non-neuronal cell-types, particularly oligodendrocytes, show altered functional 

and disease-related patterns in humans compared to other primates (Donahue et al., 2018; Miller et 

al., 2012; Rilling and van den Heuvel, 2018). For example, compared to non-human primates, human 

brains have greater than expected connectivity requiring myelination (Rilling and van den Heuvel, 

2018), myelination in human brains has a protracted developmental timing, and myelination and 

oligodendrocyte function has been implicated in neuropsychiatric diseases such as schizophrenia (SZ) 

(Mighdoll et al., 2015). Moreover, ~75% of non-neurons in the human cortex consist of oligodendrocytes 

(Herculano-Houzel, 2014; Pelvig et al., 2008). Along with the growing appreciation of oligodendrocyte 

involvement in cognition (Fields et al., 2014; Voineskos et al., 2013), this suggests that 

oligodendrocytes may have been important targets of change in human brain evolution.  

 

RESULTS 

Cell-type evolutionary trajectories highlight oligodendrocyte acceleration on the human lineage. 

To address the contribution of cell-types to human brain evolution, we compared the cell-type specific 

transcriptome profiling of sorted nuclei from humans to chimpanzees, our closest extant relative, using 

rhesus macaque as an outgroup. We analyzed genome-wide expression levels in adult human 

Brodmann area 46 (BA46, NeuN: n=27, OLIG2: n=22), and the homologous regions of chimpanzee 

(NeuN: n=11, OLIG2: n=10), and rhesus macaque (NeuN: n=15, OLIG2: n=10) (Table S1). Prefrontal 

area BA46 was selected due to its association with human-specific cognitive abilities and evolution as 
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well as neuropsychiatric disorders (Donahue et al., 2018; Fu et al., 2011; Teffer and Semendeferi, 

2012). Cell-type specific whole transcriptome data was obtained using fluorescence-activated nuclei 

sorting (FANS) (Jiang et al., 2008) with antibodies to either NeuN or OLIG2 to isolate neurons (NeuN) 

or oligodendrocytes and their precursors (OLIG2), respectively (Figure S1A-E). Covariates such as age 

and sex, and technical confounders such as RNA integrity number (RIN) explained only a small portion 

of the variance in both cell-types (Figure S1F). Comparisons of our data with single-cell transcriptome 

data from human brain (Boldog et al., 2018) demonstrate that NeuN gene expression was 

representative of both inhibitory and excitatory neuronal expression signatures while OLIG2 gene 

expression was primarily representative of oligodendrocyte expression signatures, supporting our 

FANS approach (Figure S1G).  

 

Using only high-confidence orthologous genes, we detected 8759 protein-coding genes expressed in 

at least one species in NeuN and 7362 protein-coding genes in OLIG2. Principal component analysis 

revealed that gene expression in each cell type separated by species (Figure 1A-B). Using a parsimony 

method, we detected species-specific differentially expressed genes (DEG) (Figure S1H; Table S2; 

Methods). The lineage connecting the rhesus macaque to the ancestor of humans and chimpanzees 

had the largest number of DEGs, which is consistent with the idea that gene expression changes 

accumulate with divergence times (Figure 1C) (Konopka et al., 2012; Liu et al., 2012; Sousa et al., 

2017b). Furthermore, greater number of genes exhibited upregulation compared to downregulation in 

the human lineage, for both NeuN and OLIG2 in comparison with the non-human primates (X2 test, p 

= 1x10-06 and p = 4x10-05 respectively) (Figure 1C). Interestingly, human-specific expression was more 

pronounced in OLIG2 compared to NeuN. Specifically, OLIG2 exhibited greater effect sizes in pairwise 

comparisons (human versus chimpanzee, mean(log2(FC)): 0.26 NeuN, 0.59 OLIG2, P < 2x10-16, K-S 

test; human versus rhesus macaque, mean(log2(FC)): 0.25 NeuN, 0.58 OLIG2, P < 2x10-16, K-S test) 

as well as greater number of differentially expressed genes per million years (Figure 1D-E) compared 

to NeuN. Importantly, to ensure that these observations were not due to different numbers of samples 
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in each species, we used a cross-validation method by using the same numbers of samples between 

species, which effectively is a downsampling of the human and macaque samples (Figure S2; 

Methods). Doing so reduced the number of DEGs per million year due to smaller sample size and 

heterogeneity within and between species; however, downsampled DEGs show the same pattern of 

acceleration in OLIG2 compared with NeuN, further supporting the result that oligodendrocytes have 

undergone an evolutionary acceleration on the human lineage.  We next examined previous gene 

expression studies of frontal cortex evolution (Berto and Nowick, 2018; Konopka et al., 2012; Somel et 

al., 2010; Sousa et al., 2017b) to assess how bulk tissue expression profiles may have been 

confounded by cell-type specific trajectories. We found that human-specific upregulated genes in the 

bulk tissue studies were enriched with human-specific NeuN upregulated DEGs. In comparison, 

human-specific DEGs in OLIG2 were not enriched in the previous studies (Figure 1F), indicating that 

studies using bulk tissues may have been underpowered to detect oligodendrocyte-specific 

evolutionary trajectories. Carrying out deconvolution analysis, we found that these bulk RNA-seq 

datasets were primarily comprised of neuronally derived gene-expression signatures (Figure S3A-D). 

Thus, using a cell-type specific approach, we detected a previously undiscovered signal of rapid 

acceleration of oligodendrocyte-gene expression compared with neurons in the human lineage.   

 

Gene co-expression network highlights human-specific modules. 

To place the human specific changes within a systems-level context and identify the relevant biological 

processes associated with these changes, we next applied a permuted weighted gene co-expression 

analysis (Langfelder and Horvath, 2008) to detect human-specific cell-type co-expression modules 

(Figure 2A; Table S3; Methods). Using the expression data that were adjusted for potential variation 

explained by covariates and surrogate variables, we defined two modules in NeuN and two modules in 

OLIG2 that exhibited human-specific expression and showed a strong enrichment for human-specific 

DEGs (Figure 2B and C; Figure S4A-B). These modules showed higher association with species than 

with other covariates (Figure S4C-D). Human-specific DEGs in both NeuN and OLIG2 exhibited 
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significantly greater connectivity compared with other genes across all modules, indicating their pivotal 

roles in human frontal cortex transcriptional networks (Figure 2D). NeuN human upregulated module 

NM21 was enriched for genes involved in synaptic function and vesicular transport (Figure 2E; Table 

S3). Interestingly, the OLIG2 human upregulated module OM15 was enriched for pathways implicated 

in RNA splicing, RNA metabolism, and chromatin remodeling (Figure 2F; table S3). Whereas 

downregulated module NM19 was not enriched for any specific function (Figure 2G), the OLIG2 

downregulated module OM2 functions were related to transcriptional regulation, histone methylation 

and modification (Figure 2H; Table S3). Of note, both OLIG2 modules that are associated with human-

specific expression are significantly enriched for transcription factors and RNA binding proteins (Figure 

S4E-F). These results suggest that alternative splicing and transcriptional regulation are biological 

functions linked with oligodendrocyte evolution in the human frontal cortex.  

 

Oligodendrocyte human-specific modules are enriched for variants associated with 

neuropsychiatric disorders. 

It is hypothesized that genes important for the evolution of human-specific cognitive abilities are linked 

with human-specific cognitive disorders (Doan et al., 2018; Hardingham et al., 2018). To investigate 

this hypothesis, we assessed the enrichment of human-specific co-expression modules with GWAS 

signals (Methods). While we did not find any enrichment for neuropsychiatric disorders GWAS signals 

in the human-specific neuronal modules NM19 and NM21 (Figure 3A), the OLIG2 human 

downregulated module OM2 showed a strong enrichment for attention deficit hyperactivity disorder 

(ADHD), bipolar disorder (BD), and SZ loci as well as loci associated with cognitive traits, education 

attainment and intelligence (Figure 3B; Table S4). The upregulated module OM15 showed enrichment 

for major depressive disorder (MDD) (Figure 3B; Table S4). In comparison, neither NeuN nor OLIG2 

human-specific modules showed significant enrichment for GWAS signals associated with non-brain 

related traits/disease. While very little is known about the role of oligodendrocytes in ADHD (Dark et 

al., 2018), BD, SZ, and MDD have been associated with alterations in white matter and differential 
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regulation of oligodendrocyte-related genes (Barley et al., 2009; Haroutunian et al., 2014; Srivastava 

et al., 2016; Tonnesen et al., 2018). These results suggest that human-specific co-expressed genes 

that are under evolutionary expression trajectories in oligodendrocytes are at risk to be associated with 

cognitive disease-related variants.  

 

Human-specific modules are enriched for neuropsychiatric differentially expressed genes.  

To further examine the potential relationship between dysregulation in neuropsychiatric disorders and 

human-specific changes using a large-scale gene expression dataset, we used recently published 

meta-analyses of cognitive disease brain gene expression from the PsychENCODE Consortium 

(Gandal et al., 2018) (Methods). We found that the NeuN human-specific upregulated module NM21 is 

overrepresented for genes in a neuronal module dysregulated in SZ and autism spectrum disorder 

(ASD) (geneM8; OR = 9.7, FDR = 1x10-08; Figure 4A). In contrast, the OLIG2 human-specific 

downregulated module OM2 is enriched for genes in an oligodendrocyte module containing genes 

dysregulated in ASD, BD, and SZ (geneM2; OR = 9.5, FDR = 8x10-09; Figure 4B). Interestingly, the 

OLIG2 upregulated module OM15 is enriched for genes in a module dysregulated in SZ and linked with 

splicing (geneM19; OR=10.1, FDR=1x10-09; Figure 4B), reflecting the functional enrichment we 

described (Figure 2F). We next assessed whether human-specific cell-type expression patterns are at 

risk in neuropsychiatric disorders using cell type-specific disease-relevant gene expression data 

(Methods). We examined cell type-specific whole transcriptome data from BA46 from 23 patients with 

SZ, generated following identical experimental procedures (unpublished data). Using genes differential 

expressed between SZ and healthy donors at the cell-type level (referred to as ‘szDEGs’; Table S5), 

we asked whether dysregulated genes in SZ were enriched for human-specific evolutionary changes 

of gene co-expression at the cell-type level. Whereas NeuN modules were not found enriched for cell-

type SZ genes (Figure 4C), we found that OLIG2 szDEGs were enriched for human OLIG2 modules 

(Figure 4D). Specifically, the downregulated module OM2 is enriched for SZ OLIG2 upregulated genes 

(OR = 2.9, FDR = 5x10-04) while the upregulated module OM15 is moderately enriched for SZ OLIG2 
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downregulated genes (OR = 1.6, FDR = 0.05). Taken together, these observations highlight the link 

between oligodendrocyte evolution and neuropsychiatric disease etiologies.  

 

DISCUSSION 

These data provide novel insights into cell-type species-specific expression patterns during primate 

brain evolution. Much of the recent focus on human brain evolution has highlighted changes in neuronal 

number and function in the human brain; however, the molecular characterization of the mechanisms 

driving such changes in neurons and as well as other cell-types is critical for understanding human 

brain evolution. Here, we show that NeuN human-specific DEGs encode genes important for synaptic 

function in line with previous data from bulk RNA-seq (Konopka et al., 2012; Liu et al., 2012; Sousa et 

al., 2017b). Surprisingly though, we find that gene expression in oligodendrocytes has undergone a 

more dramatic acceleration on the human lineage compared with neurons. We also show that previous 

comparative primate gene expression studies were likely underpowered to detect these non-neuronal 

expression changes.  

 

The human-specific oligodendrocyte genes are enriched for functional categories such as RNA 

metabolism and RNA processing. While such molecular functions are underexplored with respect to 

oligodendrocytes, there is increasing evidence that these functions are altered in cognitive diseases 

(Glatt et al., 2011; Quesnel-Vallieres et al., 2018; Reble et al., 2018). Moreover, the brain GWAS and 

PsychENCODE enrichments for cell-type expression modules suggest that human-specific cell type-

specific evolutionary trajectories of gene expression are implicated in disease pathophysiology in 

multiple cognitive disorders. Using the only available disease cell-type expression dataset, we also 

observe SZ cell type-specific downregulation among human-specific oligodendrocyte genes. Together, 

these data suggest a role for human-specific oligodendrocyte genes in disorders including SZ, MDD, 

BD, and ADHD.  Previous work has specifically singled out oligodendrocyte dysfunction in both SZ and 

MDD (Miyata et al., 2015). In addition, human brains have undergone a volumetric expansion of white 
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matter (Donahue et al., 2018; Rilling and van den Heuvel, 2018), while these white matter volumes are 

significantly reduced in SZ (Davis et al., 2003; Mighdoll et al., 2015). While we have focused on the 

novelty of the human-specific oligodendrocyte genes, there are clearly evolutionarily relevant changes 

in neurons that are likely important for cognitive disorders such as SZ and ASD too. Since neuronal 

activity can direct oligodendrocyte development and myelination (Gibson et al., 2014), the functional 

outcome of the interplay of gene expression changes in these two cell-types may be important for 

multiple cognitive disorders.  Future studies that connect changes in the functional properties of 

oligodendrocytes, for example at the level of RNA binding and/or processing, to either disease 

pathophysiology, white matter volume alterations, or response to neuronal activity will confirm the 

importance of the identified genes in human brain evolution. Our study highlights the importance of 

non-neuronal cell-types in brain evolution and cognitive disorders.  

 

Figure Legends  

Figure 1. Cell type-specific differential gene expression analysis of three primates. A-B) Principal 

component analysis of NeuN (A) and OLIG2 (B) nuclei. Blue = human, grey = chimpanzee, green = 

rhesus macaque. C) Barplots representing species-specific differentially expressed genes divided by 

up- (red) and downregulated (darkblue) for both NeuN and OLIG2. D-E) The number of DEGs per 

million year (myr; human = 6 myr, chimpanzee = 6 myr, rhesus macaque = 25 myr) for the unrooted 

tree of the study species of NeuN (D) and OLIG2 (E). (F) Heatmap showing FDR (parenthesis) and 

Odds Ratio of gene set enrichment for both for both NeuN (top) and OLIG2 (bottom). Enrichment is 

based on a Fisher’s exact test. X-axis shows the representative data included for this analysis (Berto 

and Nowick, 2018; Konopka et al., 2012; Somel et al., 2010; Sousa et al., 2017b).  

 

Figure 2. Co-expression analyses identify human-specific modules. A) Representative network 

dendrograms for NeuN (top) and OLIG2 (bottom). B-C) Dotplots with standard errors demonstrate the 

association of the modules detected by parsimony with species for NeuN (B) and OLIG2 (C). Standard 
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errors are calculated based on the eigengene across samples. Dots represent the mean eigengene for 

that module. (D) Boxplots show the difference in connectivity between human-specific genes in NeuN 

(left) and OLIG2 (right) across the entire co-expression network compared with the background genes 

(**** = P < 0.001; Wilcoxon’s rank sum test). E-H) Visualization of the top 200 connections ranked by 

weighted topological overlap values for NM21 (E), OM15 (F), NM19 (G), and OM2 (H). Node size 

corresponds to the number of edges (degree). Human-specific upregulated genes are highlighted in 

red. Human-specific downregulated genes are highlighted in blue. Side barplots show the top three 

functions of the module based on –log10(FDR). Red dashed line corresponds to the FDR threshold of 

0.05.  

 

Figure 3. Human-specific genes are enriched for cognitive disease risk variants. A-B) Barplots 

highlighting the enrichment for genetic variants (–log10(FDR)). Bars correspond to (A) NeuN modules 

(NM19: tan, NM21: yellow) and (B) OLIG2 modules (OM2: blue, OM15: turquoise) species-specific 

modules (*** = FDR < 0.001, ** = FDR < 0.01, * = FDR < 0.05; MAGMA statistics). Red dashed line 

corresponds to the FDR threshold of 0.05. X-axis shows the acronyms for the GWAS data utilized for 

this analysis. ADHD: attention deficit hyperactivity disorder, ALZ: Alzheimer's disease, ASD: autism 

spectrum disorder from IPSYCH (Integrative Psychiatric Research), BP: bipolar disorder, MDD: major 

depressive disorder, SZ: schizophrenia, CognFunc: Cognitive functions, EduATT: educational 

attainment, BMI: body mass index, CAD: coronary artery disease, DIAB: diabetes, HGT: Height, 

OSTEO: osteoporosis. 

 

Figure 4. Cell type-specific expression in schizophrenia is related to human-specific genes.  

A) Bubble chart illustrates -log10(FDR) (X-axis) and Odds Ratio (Y-axis) of gene set enrichment for gene 

modules implicated in neuropsychiatric disorders (Gandal et al., 2018) and NeuN human-specific 

modules. Marked the modules with functional conservation. Dysreg: dysregulated. B) Bubble chart 

illustrates -log10(FDR) (X-axis) and Odds Ratio (Y-axis) of gene set enrichment for gene modules 
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implicated in neuropsychiatric disorders (Gandal et al., 2018) and OLIG2 human-specific modules. The 

modules with functional conservation with the PsychENCODE dataset are indicated. C) Heatmap 

illustrates FDR (parenthesis) and Odds Ratio of gene set enrichment (Fisher’s exact test). X-axis shows 

NeuN human-specific up-/downregulated genes. Y-axis shows SZ differentially expressed genes up-

/downregulated in NeuN. D) Heatmap illustrates FDR (parenthesis) and Odds Ratio of gene set 

enrichment. X-axis shows OLIG2 human-specific up-/downregulated. Y-axis shows SZ differentially 

expressed genes up-/downregulated in OLIG2.  

 

Figure S1. Generation and analyses of human-specific cell-type gene expression profiles. A-E) 

An example isolation of nuclei expressing either NeuN conjugated to Alexa 488 or OLIG2 conjugated 

to Alexa 555. Nuclei were first sorted for size and complexity for removing dead cells (A), followed by 

gating to exclude doublets that indicate aggregates of nuclei B-C), and then further sorted to isolate 

nuclei based on fluorescence (D). “-/-” nuclei are those that are neither NeuN+ nor OLIG2+. (E) An 

example of percentage nuclei at each selection step during FANS of a chimpanzee sample. Note that 

while in this example more nuclei were NeuN+, in other samples, the proportions might be reversed. 

NeuN-positive (NeuN+) nuclei represent neurons within the cerebral cortex as few NeuN-negative 

(NeuN-) cells in the mammalian cortex are neurons (e.g. Cajal-Retzius neurons). OLIG2-positive 

(OLIG2+) nuclei represent oligodendrocytes and their precursors. F) Variance explained by covariates 

weighted across the first 5 principal components (WAPV = Weighted average proportion variance) for 

NeuN or OLIG2. Gene expression patterns showed small variance explained by biological (Sex and 

Humanized Age) and technical (RIN) covariates. G) Deconvolution based on Allen Brain Institute single 

nuclei data from the human middle temporal gyrus (MTG) (Boldog et al., 2018). NeuN is explained by 

a high proportion of inhibitory and excitatory neurons. OLIG2 is explained by oligodendrocytes. Y-axis 

represents weighted proportion. X-axis represents the cell-type identified in the Allen Brain Institute 

single nuclei data from MTG (Hsap = Homo sapiens, PanTro = Pan troglodytes, MacMul = Macaca 

mulatta, Inh = inhibitory neurons, Exc = excitatory neurons, Oligo = oligodendrocytes, OPC = 
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oligodendrocyte precursor cells, Astro = astrocytes, Micro = microglia, Endo = endothelial cells). H) A 

parsimony approach based on linear model statistics from pairwise comparisons. Left panel: 

Upregulated genes were considered if FDR < 0.05 in species 1 vs species 2 and species 1 vs species 

3 with log2(FC) > 0.3 in both comparisons while not significantly differentially expressed (defined as 

FDR > 0.1) in species 2 vs species 3. Similarly, right panel: Downregulated genes were considered if 

FDR < 0.05 in species 1 vs species 2 and species 1 vs species 3 with log2(FC) < -0.3 in both 

comparisons with FDR > 0.1 in species 2 vs species 3. Additionally, we added a Bonferroni corrected 

ANOVA < 0.05 cutoff in the model across the three species analyzed. Blue = human, grey = 

chimpanzee, green = rhesus macaque. 

 

Figure S2. Cross-validation for differential expression analysis statistics. A-B) Leave-one-out 

(LOO) cross validation based on 100 bootstrap for (A) NeuN and (B) OLIG2. Observed number of DEGs 

(red dashed line) were falling in the distribution of the LOO DEGs based on ANOVA. C-D) Permutation 

analysis based on 100 permutation comparisons based on subject randomization for (C) NeuN and (D) 

OLIG2. Observed number of DEGs (red dashed line) were significantly different from the randomized 

DEGs based on ANOVA. E) Downsampled DEGs per million years based on 100 permutations. Values 

are calculated based on the average of species-specific DEGs. F) Downsampled DEGs per million 

years based on 100 permutations. Values are calculated based on the species-specific observed DEGs 

supported by the downsampling p-value in >90% of downsampled sets (Hsap = Homo sapiens, PanTro 

= Pan troglodytes, MacMul = Macaca mulatta). 

 

Figure S3. Deconvolution based on the Allen Brain Institute single nuclei data from human 

middle temporal gyrus (MTG) (Boldog et al., 2018). A) Primate transcriptomic meta-analysis data 

from Berto et al. (Berto and Nowick, 2018). B) Primate transcriptomic data from Konopka et al. 

(Konopka et al., 2012). C) Primate transcriptomic data from Sousa et al. (Sousa et al., 2017b). D) 

Primate transcriptomic data from Somel et al. (Somel et al., 2010). All data show a high proportion of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2019. ; https://doi.org/10.1101/601062doi: bioRxiv preprint 

https://doi.org/10.1101/601062
http://creativecommons.org/licenses/by-nc-nd/4.0/


excitatory neurons and sparse proportion of other cell-types (< 0.25). Y-axis represents weighted 

proportion. X-axis represents the cell-type identified in the single nuclei data from MTG (Boldog et al., 

2018). (Hsap = Homo sapiens, PanTro = Pan troglodytes, MacMul = Macaca mulatta, Inh = inhibitory 

neurons, Exc = excitatory neurons, Oligo = oligodendrocytes, OPC = oligodendrocyte precursor cells, 

Astro = astrocytes, Micro = microglia, Endo = endothelial cells).  

 

Figure S4. Correlations among module eigengene and associated factors. A-B) Fisher’s exact test 

Odds Ratios with associated FDR adjusted p-values (within parentheses) representing enrichment of 

species specific DEGs in (A) NeuN modules and (B) OLIG2 modules. C-D) Spearman’s rank 

correlations with associated p-values (within parentheses) between covariates and module eigengene 

of the module detected in (C) NeuN modules and (D) OLIG2 modules. (HumAge = Humanized Age, 

Hsap = Homo sapiens, PanTro = Pan troglodytes, MacMul = Macaca mulatta). None of the modules 

selected showed significant association with technical or biological covariates. E-F) Fisher’s exact test 

Odds Ratios with associated FDR adjusted p-values (within parentheses) representing enrichment of 

RNA-binding proteins (RBP) and transcription factors (TF) in (E) NeuN modules and (F) OLIG2 

modules. 

 

Table S1. Demographic data. Demographic data with life traits, RNA-seq QC metrices, technical and 

biological covariates.   

 

Table S2. Differential gene expression summary statistics for NeuN and OLIG2 data for Human, 

Chimpanzee, and Rhesus macaque. All statistics for genes differentially expressed in each species, 

functional enrichment, and database for association with previous studies.   

 

Table S3. WGCNA statistics for NeuN and OLIG2 data. All statistics for module detection, overlap 

with differentially expressed genes, and functional enrichment.  
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Table S4. MAGMA summary statistics for NeuN and OLIG2 modules. All statistics for GWAS 

enrichment in NeuN and OLIG2 modules.   

 

Table S5. Differential gene expression summary statistics for NeuN and OLIG2 data for 

Schizophrenia vs Control. Genes differentially expressed in schizophrenia compared with controls in 

NeuN and OLIG2 with relative statistics.  
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METHODS 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will be fulfilled 

by the Lead Contact, Genevieve Konopka (Genevieve.Konopka@utsouthwestern.edu) 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Postmortem brain samples 

Human post-mortem brain samples from Brodmann area 46 were obtained from the NIH NeuroBioBank 

(the Harvard Brain Tissue Resource Center, the Human Brain and Spinal Fluid Resource Center, VA 

West Los Angeles Healthcare Center, and the University of Miami Brain Endowment Bank) and the UT 

Neuropsychiatry Research Program (Dallas Brain Collection) (Table S1). Nonhuman primate tissue 

samples were obtained from Yerkes National Primate Research Center (Table S1).  

 
Nuclei extraction, FANS, and RNA isolation 

Nuclei Isolation was performed as described previously (Jiang et al., 2008; Matevossian and Akbarian, 

2008) with some modifications. Approximately 700 mg of frozen postmortem tissue was homogenized 

with lysis buffer (0.32 M sucrose, 5 mM CaCl2, 3 mM Mg(Ac)2, 0.1 mM EDTA, 10 mM Tris-HCl pH8.0, 

0.1 mM PMSF, 0.1% (w/o) Triton X-100, 0.1% (w/o) NP-40, protease inhibitors (1:100) (#P8340, Sigma, 

St. Louis, MO), RNase inhibitors (1:200) (#AM2696, Thermo Fisher, Waltham, MA)) using a dounce 

homogenizer. Brain lysate was placed on a sucrose solution (1.8 M sucrose, 3mM Mg(Ac)2, 10mM Tris-

HCl pH8.0) to create a concentration gradient. After ultracentrifuge at 24,400 rpm for 2.5 hours at 4°C, 
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the upper layer of the supernatant was collected as the cytoplasmic fraction and set aside for RIN 

calculations. The pellet, which included nuclei, was resuspended with ice-cold PBS containing RNase 

inhibitors, and incubated with mouse Alexa488 conjugated anti-NeuN (1:200) (#MAB377X, Millipore, 

Billerica, MA) and rabbit Alexa555 conjugated anti-OLIG2 (1:75) (#AB9610-AF555, Millipore) 

antibodies with 0.5% BSA for 45 min at 4°C. Immuno-labeled nuclei were collected as NeuN-positive 

or OLIG2-positive populations by fluorescence-activated nuclei sorting (FANS). After sorting, gDNA 

and total RNA were purified from each nuclei population using a ZR-Duet DNA/RNA MiniPrep (Plus) 

kit (#D7003, Zymo Research, Irvine, CA) according to the manufacturer's instruction. Total RNA was 

treated with DNase I after separation from gDNA. 200 ng total RNA from each sample was treated for 

ribosomal RNA removal using the Low Input RiboMinus Eukaryote System v2 (#A15027, 

ThermoFisher) according to the manufacturer's instruction. After these purification steps, gDNA and 

total RNA were quantified by Qubit dsDNA HS (#Q32851, ThermoFisher) and RNA HS assay 

(#Q32852, ThermoFisher) kits, respectively.  

 

RNA-sequencing (RNA-seq)  

RNA-seq was performed as described previously (Takahashi et al., 2015) with some modifications. In 

order to determine the quality of the RNA from the nuclear samples, the RNA from the matched 

cytoplasmic fractions was extracted with the miRNeasy Mini kit (#217004, Qiagen, Hilden, Germany) 

according to the manufacturer’s instruction. The RNA integrity number (RIN) of total cytoplasmic RNA 

was quantified by an Agilent 2100 Bioanalyzer using an Agilent RNA 6000 Nano Kit (#5067-1511, 

Agilent, Santa Clara, CA). Samples with a total cytoplasmic RNA average RIN value of 7.5±0.16 were 

used for RNA-seq library preparation of the nuclear samples. For RNA-seq libraries, 50 ng of total RNA 

after rRNA removal was subjected to fragmentation, first and second strand syntheses, and clean up 

by EpiNext beads (#P1063, EpiGentek, Farmingdale, NY). Second strand cDNA was adenylated, 

ligated and cleaned up twice by EpiNext beads. cDNA libraries were amplified by PCR, and cleaned 

up twice by EpiNext beads. cDNA library quality was quantified by a 2100 Bioanalyzer using an Agilent 
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High Sensitivity DNA Kit (#5067-4626, Agilent, Santa Clara, CA). Barcoded libraries were pooled and 

underwent 75 bp single-end sequencing on an Illumina NextSeq 500. 

 

COMPUTATIONAL METHODS 

RNA-seq mapping, QC and expression quantification  

Reads from the three different primates were aligned to either the human hg19, chimpanzee PanTro4, 

or Rhesus macaque RheMac8 reference genome using STAR 2.5.2b (Dobin et al., 2013) with the 

following parameters: “--outFilterMultimapNmax 10 --alignSJoverhangMin 10 --alignSJDBoverhangMin 

1 --outFilterMismatchNmax 3 --twopassMode Basic”. For each sample, a BAM file including mapped 

and unmapped reads that spanned splice junctions was produced. Secondary alignment and multi-

mapped reads were further removed using in-house scripts. Only uniquely mapped reads were retained 

for further analyses. Quality control metrics were performed using RseqQC using the hg19 gene model 

provided. These steps include: number of reads after multiple-step filtering, ribosomal RNA reads 

depletion, and defining reads mapped to exons, UTRs, and intronic regions. Picard tool was 

implemented to refine the QC metrics (http://broadinstitute.github.io/picard/). CrossMap and liftOver 

were used to translate the non-human primate unique read coordinates into human coordinates based 

on hg19 (Casper et al., 2018; Zhao et al., 2014). Ensemble annotation for hg19 (version GRCh37.87) 

was used as reference alignment annotation and downstream quantification. Gene level expression 

was calculated using HTseq version 0.9.1 using intersection-strict mode by Exons (Anders et al., 2015). 

Counts were calculated based on protein-coding genes from the Ensemble GRCh37.87 annotation file. 

Orthologous genes were downloaded from Ensemble Biomart portal (Smedley et al., 2009). 

Orthologous genes were categorized using a high confidence score provided by ensemble and 

presence in known chromosomes in all three species analyzed. We removed sex chromosomes. A total 

of 14212 genes were considered for downstream analysis.  

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2019. ; https://doi.org/10.1101/601062doi: bioRxiv preprint 

https://doi.org/10.1101/601062
http://creativecommons.org/licenses/by-nc-nd/4.0/


Covariate adjustment and differential expression 

Counts were normalized using counts per million reads (CPM) with edgeR package in R (Robinson et 

al., 2010). Normalized data were log2 scaled with an offset of 1. Genes with no reads in human, 

chimpanzee, or rhesus macaque samples were removed. Normalized data were assessed for effects 

from known biological covariates (Gender, Age), technical variables related to sample processing 

(RIN), and technical variables related to surrogate variation (SVs). Other biological and technical 

covariates (e.g. Hemisphere, Pmi) were not considered for the analysis because these were 

confounded with species. Non-human primates’ ages were converted to human age referring to species 

life traits as maximal age reached, male sexual maturity, female sexual maturity, gestation, weaning, 

first reproduction, number of litters, teething deciduous first and last, teething permanent first and last 

as proposed in (Somel et al., 2010). Traits are stored in table S1. A linear model was applied between 

species life traits. Human age was converted into non-human primates in R as: 

hc <- lm(Chimpanzee_Traits ~ Human_Traits) 

hr <- lm(RhesusMacaque_Traits ~ Human_Traits) 

Human_Age <- seq(0.0,122.5,0.1) # min age, max age, month. 

Human_Chimpanzee = (Human_Age – hc$coef[1])/hc$coef[2] 

Human_RhesusMacaque = (Human_Age – hr$coef[1])/hr$coef[2] 

 

This method provided us with an accurate estimation of human age translated into non-human standard 

(e.g. 25 years old human corresponded to 13.2 years old chimpanzee and 8.0 years old rhesus 

macaque). Age was converted to categorical variables. Three groups were defined: less than 40 years 

old, between 40 and 60, and more than 60 years old. SVs were calculated using SVA in R based on a 

“two-step” method with 100 iterations (Leek et al., 2012).  The data were adjusted for technical 

covariates using a linear model: 

   lm(gene expression ~ Sex + Age + RIN + nSVs) 
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Adjusted CPM values were used for co-expression analysis and visualization. Differential expression 

analysis was performed in R using linear modeling. To fit our parsimony approach, we performed 

pairwise analysis between the three species analyzed (e.g. human – chimpanzee, human – rhesus 

macaque, and chimpanzee – rhesus macaque). Additionally, we performed an ANOVA based on the 

three species (e.g. human – chimpanzee – rhesus macaque) as following:  

   lm(gene expression ~ Species + Sex + Age + RIN + nSVs) 

 

Fitting this model, we estimated log2 fold changes and P-values. P-values were adjusted for multiple 

comparisons using a Benjamini-Hochberg correction (FDR). This method was used to detect human-

specific changes, chimpanzee-specific changes and rhesus macaque-specific changes using a 

standard cutoff of |log2(Fold-Change)| > 0.3 and FDR < 0.05. For example, in human, we considered 

specific upregulation where human showed log2(FC) > 0.3 and FDR < 0.05 in comparison with 

chimpanzee and macaque and where chimpanzee and macaque were not differentially expressed for 

FDR > 0.1. In addition, we considered in this paradigm the Bonferroni adjusted P-value from ANOVA 

of < 0.05. In contrast, for downregulated genes we consider log2(FC) < -0.3 and FDR < 0.05 in 

comparison with chimpanzee and macaque and where chimpanzee and macaque were not 

differentially expressed for FDR > 0.1. For the upregulated genes, we considered additional Bonferroni 

adjusted P-values from ANOVA of < 0.05.  

 

Cross-validation Analysis 

To validate the robustness of our differential expression analysis, we applied a leave-one-out cross-

validation by subsampling our data with N = # of Subject per Species –1 with # of Permutation = 100. -

log10(Observed ANOVA) strongly correlated with -log10(LOO ANOVA), underscoring that individual 

subjects are not driving differential expression detection. We additionally applied a permutation method 

by randomizing the subjects per species 200 times and re-calculating the species-specific DEGs across 

subjects. The number of observed DEGs were significant different for the randomized one for both cell-
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type. A downsampling analysis was applied to confirm the more pronounced acceleration in OLIG2 

compared with NeuN given the greater sample size for humans. Using the chimpanzee as the minimal 

number of subjects (NeuN = 11, OLIG2 = 10), we re-calculated the species-specific DEGs with the 

number of Permutation = 100. Due to the reduced sample size and high heterogeneity between and 

within species, the total number of species-specific DEGs was reduced. Nevertheless, this approach 

recapitulated the more pronounced acceleration in OLIG2, confirming the observed results based on 

the total number of samples. 

 

Co-expression network analysis 

 To identify modules of co-expressed genes in the RNA-seq data, we carried out weighted gene co-

expression network analysis (WGCNA) (Langfelder and Horvath, 2008). Signed networks were used 

for both NeuN and OLIG2 data. A soft-threshold power was automatically calculated for both NeuN and 

OLIG2 to achieve approximate scale-free topology (R2>0.85). Networks were constructed with 

blockwiseModules function with biweight midcorrelation (bicor). For NeuN data, we used corType = 

bicor, maxBlockSize = 10000, mergingThresh = 0.10, minCoreKME = 0.5, minKMEtoStay = 0.4, 

reassignThreshold = 1e-10, deepSplit = 4, detectCutHeight = 0.999, minModuleSize = 25, 

networkType=signed. For OLIG2 data, we used corType = bicor, maxBlockSize = 10000, 

mergingThresh = 0.10, minCoreKME = 0.5, minKMEtoStay = 0.4, reassignThreshold = 1e-10, deepSplit 

= 4, detectCutHeight = 0.999, minModuleSize = 35, networkType=signed.  

The modules were then determined using the dynamic tree-cutting algorithm. To ensure robustness of 

the observed network, we used a permutation approach recalculating the networks 200 times with 

permuted gene expression. Observed connectivity per gene were compared with the randomized one. 

None of the randomized networks showed similar connectivity, providing robustness to the network 

inference. We refer to this approach as permWGCNA. Additional analysis using a bootstrapping 

approach was performed. Briefly, we recalculated networks resampling the initial set of samples 200 

times and compared the observed connectivity per gene with the randomized one. As for the 
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permutation, none of the randomized networks showed similar connectivity. This additional test was 

applied to further provide robustness of the network inference.  

Module sizes (25/35 respectively) were chosen to detect small modules driven by potential noise on 

the adjusted data. Deep split of 4 was used to split more aggressively the data and create more specific 

modules. Spearman’s rank correlation was used to compute module eigengene – covariates 

associations. A parsimony approach was used to select the modules: human-specific modules were 

significantly correlated with the three species but oppositely correlated between human and the non-

human primates. Given the adjusted expression, covariates did not have effect on the variance 

explained by the gene of the detected modules. Modules were visualized based on the rank of the 

weight (weighted topological overlap value, WTO). Top 200 connections were selected for the 

visualizations. Node size was adjusted based on the degree (e.g. number of links). Visualization was 

rendered using Cytoscape (Shannon et al., 2003). 

 

Functional Enrichment 

The functional annotation of differentially expressed and co-expressed genes was performed using 

ToppGene (Chen et al., 2009). Analysis was replicated using GOstats in R (Falcon and Gentleman, 

2007). We used GO and KEGG databases. Pathways containing between 5 and 2000 genes were 

retained. Orthologous genes (14212) were used as custom background. A Benjamini-Hochberg FDR 

(P < 0.05) was applied as a multiple comparisons adjustment. 

 

GWAS data and enrichment 

We manually compiled a set of GWAS studies for several neuropsychiatric disorders and non-brain 

disorders (Autism Spectrum Disorders Working Group of The Psychiatric Genomics, 2017; Bipolar et 

al., 2018; Davies et al., 2018; Estrada et al., 2012; Grove et al., 2017; Jansen et al., 2019; Morris et al., 

2012; Okbay et al., 2016; Psychiatric, 2011; Savage et al., 2018; Schunkert et al., 2011; Wray et al., 

2018). Summary statistics from the genetic data were downloaded from Psychiatric Genomics 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2019. ; https://doi.org/10.1101/601062doi: bioRxiv preprint 

https://doi.org/10.1101/601062
http://creativecommons.org/licenses/by-nc-nd/4.0/


Consortium (http://www.med.unc.edu/pgc/results-and-downloads) and GIANT 

(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files). Gene 

level analysis was performed using MAGMA v1.04, which considers linkage disequilibrium between 

SNPs (de Leeuw et al., 2015). 1000 Genomes (EU) dataset was used as reference for linkage 

disequilibrium. SNPs annotation was based on the hg19 genome annotation 

(gencode.v19.annotation.gtf). MAGMA statistics and –log10(FDR) are reported in table S4 for each of 

the GWAS data analyzed. Brain GWAS: ADHD = attention deficit hyperactivity disorder, ASD = autism 

spectrum disorders from IPSYCH (Integrative Psychiatric Research), BIP = bipolar disorder, ALZ = 

Alzheimer's disease, MDD = major depressive disorder, SZ = schizophrenia. Cognitive traits: EduAtt = 

educational attainment, Intelligence = Intelligence, CognFunc = cognitive functions. Non-Brain GWAS: 

BMI = body mass index, CAD = coronary artery disease, DIAB = diabetes, HGT = height, OSTEO = 

osteoporosis.  

 

Primate data and enrichment 

Data were downloaded from respective NCBI GEO sources. Berto et al. 2018 and Konopka et al. 2012 

provide species-specific differentially expressed genes within supplementary information (Berto and 

Nowick, 2018; Konopka et al., 2012). For the Somel et al. microarray dataset (Somel et al., 2010), raw 

data were downloaded and analyzed with Affy in R (Gautier et al., 2004). Degradation and quality 

checks were performed to the data, detecting no significant differences between the three species 

analyzed. We next performed a computational mask procedure using the maskBAD in R (Dannemann 

et al., 2012). This method developed for microarray data removed probes with binding affinity 

differences between species. We considered only the probesets significantly detected in at least one 

individual (P < 0.05). A linear model used for our data was applied to the data detecting species-specific 

differentially expressed genes. For Sousa et al. RNA-seq data (Sousa et al., 2017b), RPKM data were 

provided by the first and corresponding authors of the study. To render the data comparable with the 

BA46 data in our study, we used human, chimpanzee and rhesus macaque samples from dorsolateral 
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prefrontal cortex (DFC). RPKM data were log2 scaled. Genes with RPKM = 0 in human, chimpanzee, 

or rhesus macaque samples were removed. A linear model was applied as used for our data to detect 

species-specific differentially expressed genes. Up-/Downregulated genes from these data were used 

for enrichment with our NeuN-/OLIG2- DEGs gene set.  

 

Transcription factors and RNA-binding proteins enrichment 

Transcription factors list was downloaded from http://humantfs.ccbr.utoronto.ca/download.php 

(Lambert et al., 2018). RNA-binding proteins list was downloaded from http://rbpdb.ccbr.utoronto.ca/ 

(Cook et al., 2011).  

 

Schizophrenia cell-specific data 

Differential expression analysis of cell-type expression between nuclei obtained from brain tissue 

derived from schizophrenia cases (SZ) and controls (CTL) was generated from GSE107638 

(unpublished data). Briefly, counts were normalized using CPM with the edgeR package in R (Robinson 

et al., 2010). Genes with no reads in either SZ or CTL samples were further removed. Normalized data 

were assessed for effects from known biological covariates (Diagnosis, Age, Gender, Hemisphere), 

technical variables related to sample processing (RIN, Brain Bank, PMI), and technical covariates 

related to surrogate variation (SV). Age and PMI were converted to categorical variables (named 

“AgeClass” and “PmiClass”). SVs were calculates using SVA based on “be” method with 100 iterations 

(Leek et al., 2012). For the differential expression analysis, we used the lmTest with “robust” parameter 

and ebayes functions in limma package in R (Ritchie et al., 2015) fitting all the covariates reported. 

Significant DEGs were categorized with |log2(FC)| > 0.3 and FDR < 0.01 for both NeuN and OLIG2 

cell-type SZ vs CTL analyses (table S5). Detailed information, methods and analysis are available here: 

https://github.com/konopkalab/Schizophrenia_CellType. 
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Gene set enrichment 

Gene set enrichment applied for primate DEGs as shown in Figure 1F, psychENCODE and 

schizophrenia cell-type DEGs as shown in Figure 4A-C and TF/RBP as shown in Figure S4 was 

performed using a Fisher’s exact test in R with the following parameters: alternative = “greater”, 

conf.level = 0.99, simulate.p.value = TRUE, B=1000. We reported Odds Ratios (OR) and Benjamini-

Hochberg adjusted P-values (FDR). Enrichment was further confirmed with a hypergeometric test in R.  

 

Deconvolution 

The human middle temporal gyrus (MTG) single nuclei RNA-seq data were downloaded from Allen 

Brain institute web-portal (http://celltypes.brain-map.org/rnaseq/human) (Boldog et al., 2018). 

Normalized data and cluster annotation were used to define cell-markers using FindAllMarkers function 

in Seurat (Satija et al., 2015) with the following parameters: logfc.threshold = 0.25, test.use = "wilcox", 

min.pct = 0.25, only.pos = TRUE, return.thresh = 0.01, min.cells.gene = 3, min.cells.group = 3. Cell-

type deconvolution was performed using MuSiC (Wang et al., 2019) with the following parameters: 

iter.max = 10000, nu = 1e-10, eps = 0.01, normalize=F.   

 

Availability of data and material 

The NCBI Gene Expression Omnibus (GEO) accession number for the human data reported in this 

manuscript is GSE107638 (token: wlgtcayypxsjvst). Non-human primate raw data are deposited with 

accession number GSE123936 (token: oxyzikskbfglvwv).  

 

Code availability 

Codes to support the DGE analysis, WGCNA, and shiny apps for data visualizations are available at 

https://github.com/konopkalab/Primates_CellType 
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