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Summary (135 words): RNA-sequencing analyses are often limited to identifying lowest p-value
transcripts, which does not address polygenic phenomena. To overcome this limitation, we
developed an integrative approach that combines large scale transcriptomic meta-analysis of
patient brain tissues with single-cell sequencing data of CNS neurons, short RNA-sequencing of
human male- and female-originated cell lines, and connectomics of transcription factor- and
microRNA-interactions with perturbed transcripts. We used this pipeline to analyze cortical
transcripts of schizophrenia and bipolar disorder patients. While these pathologies show massive
transcriptional parallels, their clinically well-known sexual dimorphisms remain unexplained. Our
method explicates the differences between afflicted men and women, and identifies disease-
affected pathways of cholinergic transmission and gp130-family neurokine controllers of immune
function, interlinked by microRNAs. This approach may open new perspectives for seeking
biomarkers and therapeutic targets, also in other transmitter systems and diseases.
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Introduction

Recent large-scale genomic (Anttila ez al., 2018) and transcriptomic (Gandal et al., 2018) analyses
uncovered previously unknown magnitudes of transcriptional correlation (71%) in cortical tissues
of schizophrenia (SCZ) and bipolar disorder (BD) patients. This suggests a shared SCZ/BD
spectrum, but leaves the causes for the widely divergent sex-specific manifestations of these
clinical pathologies largely unclear. Compared to women, men present a higher prevalence of SCZ
(odds ratio (OR) = 1.4), a ten years earlier mean age of highest disease risk (15-25 vs. 25-35 years
of age) and a worse prognosis (Leger and Neill, 2016). In comparison, BD incidence is not
dissimilar in men and women, but 80-90% of “Rapid Cyclers” with a particularly bad prognosis
are women, and major depressive disorder (MDD), which is a prerequisite for BD diagnosis,
affects women more often (OR = 2) (Berger, 2014). Both diseases involve premorbid cognitive
impairments and reduced intelligence, but those are more frequent and severe in SCZ than in BD
(Bortolato ef al., 2015), compatible with its original description as “dementia praecox” (premature
dementia) early in the 20" century (Kraepelin, 1913).

The genomic origin of SCZ and BD is tremendously complex. Genome-wide association studies
(GWADS) have identified several genotype markers distinguishing the (sub-) phenotypes of BD and
SCZ (Ruderfer et al., 2018) in genes encoding receptors (e.g. for dopamine, glutamate, or
acetylcholine (ACh)), scaffolding proteins (e.g. DISCI, “disrupted in schizophrenia®),
transcription factors (TFs), microRNAs (miRs), or non-coding genomic regions without known
function (Harrison, 2015; Henriksen et al., 2017; Kanazawa et al., 2017). However, the impact of
non-coding genomic regions on disease phenotypes was low, possibly indicating that they exert
minor effects or do not change expression levels, but rather modify the expression patterns of
secondary gene products (Gulyas-Kovacs et al., 2018).

Notably, central cholinergic processes are closely associated with disease characteristics and their
sexual dimorphism: Male SCZ patients self-administer more nicotine by smoking than females
(7.2 vs 3.3 weighted average OR with 90% life time prevalence (Leon and Diaz, 2005)), and
pharmacological intervention targeting cholinergic processes is subject to substantial sexual
dimorphism (Giacobini and Pepeu, 2018). More specifically, cognitive deficits in SCZ and BD
have both been associated with cholinergic dysfunctions (Van Enkhuizen et al., 2015; Smucny and
Tregellas, 2017) and with the sum of anticholinergic medications (Gray et al., 2015; Eum et al.,
2017), and a polymorphism in the a5 nicotinic ACh receptor associates with both SCZ and
smoking in humans, with parallel manifestations in engineered male mice (Koukouli ez al., 2017)
and rats (Forget et al., 2018). Correspondingly, cholinergic activation may improve cognition
(Sacco et al., 2004; Rowe et al., 2015; Lewis et al., 2017) and mood (Higley and Picciotto, 2014),
but provokes schizotypic behavior in Alzheimer’s disease patients (Degirmenci and Kegeci, 2016).

Identifying the cholinergic elements involved in SCZ and BD is challenging. While it is well
established that cholinergic projection neurons in the basal forebrain (nuclei Ch1-Ch4) (Li et al.,
2017) depend on trophic support from their target neurons by retrograde supply of nerve growth
factor (NGF) (Levi-Montalcini et al., 1996; Mufson et al., 2009), not much is known about their
cortical counterparts. Other neurotrophic factors repeatedly associated with cholinergic function
are the neurokines (McManaman and Crawford, 1991), including Interleukin-6 (IL-6), ciliary
neurotrophic factor (CNTF), and leukemia inhibiting factor (LIF). This subgroup of cytokines
shares receptors and second messenger pathways. The receptors for IL-6 and CNTF are soluble,
secreted proteins, whose signaling depends on binding the other, dimeric transmembrane receptors
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(Erta et al., 2012): the gp130 co-receptor (also known as IL6ST, IL-6 signal transducer), and the
LIF-receptor. Gp130-family neurokines unite properties of neurotrophic (e.g. on dopaminergic
neurons) and immunogenic nature, both prominent facets in the molecular etiology of SCZ and
BD (Harrison, 2015) and in cholinergic signaling (Stanke et al., 2006). Neurokines can activate
JAK1/2, TYK2 and STATI1/3/5A/5B (Rawlings, 2004), affecting neurotransmission as well as
immunity. However, to the best of our knowledge, their roles in SCZ/BD were not yet studied.

SCZ/BD hallmarks also involve circadian perturbations. The cholinergic-catecholaminergic
imbalance in BD (Van Enkhuizen et al., 2015) follows variable transcriptionally-regulated
rhythms (e.g. CLOCK, ARNTL, RORA), and affected individuals exhibit decreased REM latency
(the duration from onset of sleep to the first rapid eye movement phase) and increased vulnerability
for disease that can be modulated by muscarinic agonists/antagonists (Ising et al., 2005).
Correspondingly, the muscarinic M1/M3 receptor genes are essential for REM sleep (Niwa et al.,
2018), and sleep deprivation exerts short-term antidepressant effects (Wu and Bunney, 1990),
reduced cortical ACh levels (Boonstra et al., 2007), and vast transcriptional changes in basal
forebrain cholinergic neurons (Nikonova et al., 2017).

The quantitative measurement of disease-relevance of individual perturbed genes is a common
methodological problem in transcriptomic analyses. To reduce complexity, transcripts are often
filtered by their p-values, leading to bias towards few highly expressed and differentially regulated
genes. This does not agree with a polygenic model where each component contributes a small
effect. To alleviate this bias while still attempting the necessary complexity reduction, we
developed an integrative approach of multiple perspectives.
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Results

We first explored the neuronal transcriptomic properties of SCZ and BD in a meta-analysis of
deposited cortical male and female patient samples; gene ontology (GO) enrichment analysis of
diverging transcripts helped define an objective set of ontological categories to guide further
studies. Next, we ascertained co-expression of the corresponding subsystems in cortical tissues by
single-cell sequencing analysis, investigating the putative trophic role of neurokine signaling in
cortical cholinergic systems and their transcriptional regulation by TFs and miRs. Using pro-
cholinergic intervention (stimulation by neurokines) in two closely related cellular models of male
and female neuronal origin, we validated the predicted controllers of this molecular interface and
identified sexual dimorphisms and affected pathways.

SCZ/BD transcriptome meta-analysis

Sex-independent pathways discriminating between SCZ and BD associate with immunity

Replicating recent reports of sex-independent overlap in patient brain transcriptomes (Gandal et
al., 2018), we validated the high correlation of SCZ/BD expression beta values (139 SCZ and 82
BD brains with matched controls; Spearman’s rho = 0.7100, p < 0.001). To identify transcript
subgroups distinguishing between diseased men and women, we then segregated data of males and
females. In both cases, this yielded lower correlations between SCZ and BD than sex-independent
data (F: 0.6150, p < 0.001, M: 0.5783, p < 0.001). We sought the most discriminating molecular
pathways (i.e., those exhibiting the largest difference in Spearman's ranks between SCZ and BD),
and examined their function. Sex-independently, gene ontology (GO) enrichment of the top 100
diverging genes yielded numerous terms connected to inflammation and immunity ("acute
inflammatory response", p = 0.003, "cellular response to cytokine stimulus", p =0.01).

Transcriptional sexual dimorphism differs between SCZ and BD

Given the possible male or female biases, we studied all of the 2x2 combinations of the four
possible groups (SCZ males, SCZ females, BD males, BD females) by calculating expression beta
values inside of each group (against matched controls). We then subjected the most diverging beta
values (i.e. the most biased genes) in any meaningful combination to GO enrichment analysis
(Figure 1, Data S1). The results indicated a larger divergence between sexes in SCZ than in BD:
SCZ-biased genes of males and females showed no overlapping GO terms (Figure 1A), but the top
100 BD-biased genes of males and females showed large GO term overlap, particularly in
inflammatory components (Figure 1B). Notably, specific components of neurokine signalling
(Rawlings, 2004) were elevated in both males (/L-6, p = 0.007) and females (JAK/STAT, p=0.01)
with BD.

Male-biased genes overlap between SCZ and BD

GO terms shared by SCZ and BD patients emerged for male-biased, but not female-biased genes.
Males with either disease showed elevated inflammation- and immunity-related genes (Figure 1C).
In contrast, female-biased BD genes were enriched in terms associated with CNS function or
development (Figure 1D), but enrichment analysis of female-biased SCZ genes yielded no CNS-
relevant terms. GO terms pertaining to immune processes were very specific, many referring to
single mechanistic components (e.g., IL-6), whereas terms focused on neuronal processes failed to
implicate specific neurotransmitters. Since the cholinergic systems present significant overlaps
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with facets of both SCZ and BD, as well as involvement with neurokine signalling (McManaman
and Crawford, 1991) and inflammation (Chavan et al., 2017), we chose to focus on the diverging
cholinergic transcriptomes in males and females with SCZ/BD.

Cholinergic systems in the CNS

Circos plot analysis of curated functional and anatomical research (Figure 2) and 3D tracing
experiments ((Oh et al., 2014), Video S1) demonstrate a wide-spread influence of cholinergic
systems on both rudimentary and higher cognitive processes throughout the entire mammalian
brain (Woolf, 1991; Bina et al., 1993; Sarter et al., 2009; Mesulam, 2013; Luchicchi ez al., 2014;
Eskow Jaunarajs et al., 2015; Gonzales and Smith, 2015; Lin et al., 2015; Ballinger et al., 2016;
Herman et al., 2016; Prado et al., 2017; Haam and Yakel, 2017; McLaughlin et al., 2017).
However, trophic factor dependency has only been proven for basal forebrain projection neurons
Ch1-Ch4, leaving many open questions about the nature of cholinergic interneurons in the striatum
and cortex (Mufson et al., 2009) and their transcriptomic features.

Single cell transcriptome analysis

Cortical cholinergic cells are mainly neurons and possess neurokine receptors

The predicted transcriptomic interaction between cholinergic and trophic factor systems can only
be pathologically relevant if the key elements of both pathways coexist in the same cell. However,
patient tissues are almost exclusively collected from brain regions (cortex, hippocampus, seldom
striatum) where cholinergic cells are vastly underrepresented (von Engelhardt ez al., 2007), which
complicates the direct retrieval of information on cholinergic processes from total transcriptomes.
To examine trophic influences, we turned to web-available single cell sequencing datasets
(Darmanis et al., 2015; Zeisel et al., 2015; Habib et al., 2016; Tasic et al., 2016) and identified
putative cholinergic cells in these datasets as those expressing the cholinergic biomarkers choline
acetyltransferase (CHAT) and/or the vesicular ACh transporter SLC18A3 (aka vAChT). Notably,
most of these cells or clusters expressed the neuronal marker RBFOX3 (aka Neu-N), but not the
microglial marker AIF1. The oligodendrocyte and astrocyte markers OLIGI and GFAP were both
detected in a minority of samples, indicating sparse cholinergic functions in non-neuronal cells. In
both mouse and human brains, the identified cells co-expressed the low-affinity neurotrophin
receptor Ngfr (aka p75), and the two transmembrane neurokine receptor proteins, gp130 (aka
IL6ST) and LIFR (Figure 3 A-D), but not the high-affinity receptor for NGF, NTRK]. In summary,
the identified cortical neurons distinguished themselves from basal forebrain cholinergic
projection neurons by lacking NGF receptive ability, but possessing the molecular machinery to
process neurokine signaling.

Neuronal transcripts predict regulatory transcription factor and microRNA circuits

TFs exhibit particularly high complexity in the central nervous system (Marbach et al., 2016), as
do short and long non-coding RNAs (ncRNAs), regulatory elements whose expression is modified
in mental diseases (Harrison, 2015). The best studied ncRNA species are microRNAs (miRs),
small (18-22 bases) single-stranded RNAs which interfere with translation of transcribed mRNA
via guiding an RNA-Induced Silencing Complex (RISC) to the mRNA through sequence
complementarity followed by inhibition and/or degradation of those mRNAs. By targeting
multiple genes, miRs can exert complex contextual regulation in a temporal and/or spatial fashion
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(Greenberg and Soreq, 2014), retaining homeostasis, which is paramount for nervous system
health (Shaltiel et al., 2013), or leading to nervous system disease when disturbed (Bekenstein et
al.,2017; Rajman and Schratt, 2017).

To pursue the coding and non-coding regulatory elements of cholinergic/neurokine processes, we
employed targeting analyses of TF-gene and miR-gene interactions in a graph database specifically
constructed from comprehensive state-of-the-art data (miRNet, see Methods), using random
permutation to empirically estimate false discovery ratio (FDR). This identified 288 miR
candidates (out of all 2588 annotated mature miRs) and 18 TFs (out of 618) with FDR < 5%, and
22 miRs and 2 TFs with FDR < 0.1%. The indicated TFs are controlled by a subset of the identified
miRs (69 predicted, 12 of those with experimental support), indicating nested layers of regulation
(Figure 3E, Data S2). This gave rise to the hypothesis outlined in Figure 3F-I, whereby a
cooperative pathway regulation by miRs and TFs connects cholinergic neuronal function with
endocrine or paracrine trophic signalling through neurokines. Together, these analyses called for
experimental validation of the indicated regulatory pathways linking TFs, neurokine-cholinergic
signaling and miRs, in male and female cells.

Short RNA profiling

Neurokine-induced cholinergic differentiation distinctly alters short RNAs in male and female
human neuronal cells

Identifying sexually dimorphic miRs of cholinergic relevance in homogenized patient brain
samples is challenging due to their tissue-specific and low-level expression (Liu ef al., 2016). As
an alternative, we used immortalized cell lines of male and female human neuronal origin which
undergo cholinergic differentiation when subjected to neurokine stimulation (McManaman and
Crawford, 1991). Briefly, we exposed the female cell line LA-N-2 and the male cell line LA-N-5
to CNTF, and used short RNA-sequencing (GSE132951, 4 biological replicates) to identify the
affected miRs following exposure to this neurokine (Figure 4A). Both cell lines exhibited an
immediate response of miR expression as early as 30 minutes after CNTF onset, with increasing
numbers of differentially expressed (DE) miRs under prolonged CNTF exposure (Figure 4B, Data
S3). In total, we detected 490 DE mature miRs: 107 in LA-N-2, 269 in LA-N-5, and 114 in both.
Notably, the female-originated LA-N-5 cells responded more strongly to the neurokine stimulus,
showing more DE miRs with a trend towards higher count-change values (mean of absolute count-
change across all DE time points, 20907 vs 3066, p = 0.08).

Pico- to nanomolar concentrations of CNTF, well within its physiological range (Sun et al., 2016),
elevated the cholinergic marker genes CHAT (Ppay3 = 0.005, Ppays = 4.1E-05) and SLC18A3 (aka
VAChT, Ppay2 = 0.002, Ppays = 0.001). In the female-originated LA-N-2 cells, CHAT elevation was
visible at low concentrations and significant at medium concentrations (Figure 4C). Also, the
impact of 440 pM CNTF appeared to peak at or before 48 h, whereas 4.4 nM elicited a dramatic
long-term response. Conversely, the male-originated LA-N-5 cells reacted most strongly to CNTF
at 440 pM, showing an "inverted U" type dose-response curve (Figure S2). As many as 77.8% of
the DE miRs in LA-N-2 reproduced those of a prior sequencing experiment (GSE120520, same
layout, only 3 biological replicates).

Apart from this significant overlap, the DE miR profiles showed exclusivities, which might
translate to sex-specific regulatory processes in neuronal cholinergic differentiation. However, the
log-fold change metric is not ideally suited for assessing the potential impact of expression changes
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for individual miRs, because it does not reflect mean expression levels. To determine the change
in expression, we introduced the count-change metric, a combination of base mean expression and
log-fold change, to weigh DE miRs against one another. Count-change values of the 114 miRs
detected as DE in both cell lines correlated well, whether the change was observed same- (76 miRs,
Spearman's rho = 0.9066, p <2.2E-16) or opposite-directionally (38 miRs, tho =-0.9294, p <2.2E-
16) (Figure 4D). Neurokine-induced differentiation of LA-N-2 and LA-N-5 cells further induced
a subset of the conserved, primate-specific, and TF-targeting miRs predicted via single cell
analysis of cortical cholinergic neurons (Figure 4E, see also Figure 3E). Literature query of two
curations of miR precursors in SCZ (Beveridge and Cairns, 2012) and BD (Fries et al., 2018)
revealed 76 DE miR precursors to be associated with one or both of the diseases (Figure 4F, Data
S4). Mature miRs in this case could not be assessed because the curated datasets partly lacked
strand information.

Transcriptional interactions

Male and female cells respond to cholinergic differentiation by 5 shared and 12 diverging miR
Sfamilies

miRBase.org currently features 151 human miR families (designated "mir" with lowercase "r")
based on homology; we found members of 71 families DE in LA-N-2 and LA-N-5 cells. Gene set
enrichment revealed 5 families which were sex-independently enriched in both cell lines, with
highest counts of individual members in the families let-7 (Fisher's exact test, p = 1.6E-08) and
mir-30 (p = 0.015); 12 families were only enriched in one of the two lines, with highest counts in
families mir-515 (p = 2.9E-06 in LA-N-2) and mir-154 (p = 3.5E-12 in LA-N-5) (Figure 5A). Of
all miR families identified in this analysis, five have previously been associated with SCZ (both
sexes: let-7, mir-27; male: mir-181, mir-199; female: mir-10), and three with BD and SCZ (both
sexes: mir-30, male: mir-154, female: mir-17).

Considering the mechanism of action of miRs, i.e. their multiple-targeting behavior, it is of interest
how broadly these families act on gene targets. Seeking the per-family mean target count (via
miRNet), we found that families enriched in only male or female cells had significantly less targets
than those enriched in both cells (217 vs. 378, Welch two-sample t-test, p = 0.001). Relative to
their size, 4 families show significantly lower target numbers than all other families: mir-10 (p =
0.016), mir-192 (p = 0.042), mir-379 (p = 0.011), and mir-515 (p < 0.001) (Figure 5A, right hand
side). This might indicate a spectrum of functional categories, from broadly acting families such
as let-7 with sex-independent function to families with narrow target profile such as mir-10, whose
restricted function can associate with sex-specific impact.

Enriched families regulate genes involved in immunity, neuronal development and sex

To assess their putative functions, we performed GO enrichment analysis of the 300 most-targeted
genes in each of the enriched miR families. This revealed involvement in 1124 biological
processes, manual curation of which enabled us to infer the functional roles of each family (Figure
5B, Data S5). Resultant terms related to neuronal development, cytokine- and leukocyte-mediated
immune processes, and sexual dimorphism. Compatible with the hypothesis of "broad to narrow"
functioning families, we also found terms with lower incidence and higher specialization in
subgroups of families.


https://doi.org/10.1101/600932
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/600932; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Differentially expressed families self-organize in a force-directed network

Unbiased graphical network analysis of the 212 DE miRs from all enriched families and their
12495 targeted genes (via miRNet) yielded a complex interactome. A force-directed algorithm
(Jacomy et al., 2014) yielded apparent clustering and, in some cases, subdivisions of families
(Figure 5C). Two main clusters emerged for male and female DE miRs, from families mir-515 and
mir-17 (female) and families mir-154, -379, -329, -129, -374, and -23 (male). Most other families
show marginal localization, distributed around the network's edge. Three small families show high
centrality and high count-change: mir-27, targeting particularly many genes, and the neurokine-
associated mir-10 and mir-199, with lower target count.

The mir-10 and mir-199 families show sexual dimorphism of expression and ontological
association to neurokine and circadian mechanisms

Single members of the mir-10 and mir-199 families were detected in each of the DE categories:
female only, male only, and similar- as well as opposite-directionally. In the comprehensive
network, mir-10 and mir-199 form two distinct clusters ("[08a], [12a]" and "[08b], [12b]")
composed of opposite strands of their respective miR precursors. Ontologically, they associate
with neurokine and circadian genes. Further, 125a/b-5p (members of mir-10), and 199a/b-5p
belong to those miRs predicted to target genes expressed in single cholinergic neurons (see Figure
3E/4E).

Further analysis requires a closer look into subnetworks (e.g. of individual families), which are
astoundingly heterogeneous in size, layout, and in their individual sexual dimorphism; a
comprehensive assessment is outside the scope of this study. Fully interactive versions of all
individual enriched family networks and further information can be accessed at
https://slobentanzer.github.io/cholinergic-neurokine; the entire network in tabular format is
provided as a resource (Data S6). Below, we describe the cholinergic/neurokine subnetwork.

The cholinergic/neurokine interface

Creation of a cholinergic/neurokine sub-connectome by gene- and miR-filtering

To exemplify the proposed complexity reduction technique, we looked for the common
denominator enclosing all aspects of this study; a limited connectome analysis requires a defined
set of genes and miRs. In the beginning, we performed an unbiased analysis of sexual dimorphism
in SCZ and BD, which implicated processes of neuronal, immunological, and circadian origin
(Figure 1). Since our experimental data is based on cholinergic processes, we compiled a list of
relevant cholinergic genes (Soreq, 2015), adding to it genes from pathways that had emerged in
the previous analyses: neurokine signaling and circadian rhythm. Returning to the collection of
web-available patient data, we subjected this limited set of 76 genes and their 18 neuronal TFs to
differential expression analysis (Data S7).

The miRs were gradually filtered by multiple consecutive steps: (/) Permutation analysis of
comprehensive miR targeting data specific for genes expressed in cholinergic neurons (Figure 3)
yielded a list of miR candidates that shows overlap with (ii) miRs DE in our two models of
neurokine-induced cholinergic differentiation (Figure 4). (iii) We included only families of miRs
we found to be enriched in differential expression (Figure 5). This filtering process yielded 69
miRs from 12 families (Data S8), which were assembled in a force-directed network with the 94
genes of the previously compiled list; as a "spike-in", we added miR-132-3p (DE in LA-N-5), a
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well-studied miR which is known to influence cholinergic processes (Shaked et al., 2009; Shaltiel
et al., 2013; Hanin et al., 2018). The resultant network (Figure 6A) shows high structural
homology to the comprehensive Figure 5C network, with similar groupings and spatial
organization of families.

mir-10/199 family members are pivotal factors in the cholinergic/neurokine interface

Of the 23 genes we found perturbed in the re-analyzed SCZ/BD patient data, miR-125a-5p and
miR-125b-5p targeted 9 genes each, followed by let-7a-3p, let-7f-1-3p, miR-199a-5p, miR-199b-
5p, and miR-30a-5p (targeting 7 genes each). In this sub-connectome, the most-targeted DE genes
(as indicated by node size) are the circadian regulators CLOCK and RORA, and the neurokine
pathway genes LIFR and STAT3. Members of mir-10/199 are intricately involved in the control
of all of these factors, indicated by their closeness and central location.

mir-10 family member miR-125b-5p is highly differentially expressed in LA-N-2 and LA-N-5 and
targets AChE

Of all miRs in the reduced set, hsa-miR-125b-5p exhibits the highest absolute count-change, and
displays most experimentally validated targeting relationships with cholinergic/neurokine genes,
targeting several inflammation-related neurokine pathway genes (miRTarBase accessions; IL6:
MIRT022105, IL6R: MIRT006844, JAK2: MIRT734987, LIF: MIRT001037, LIFR:
MIRT732494, STAT3: MIRTO005006), and other inflammatory pathways (e.g. TNF:
MIRT733472, IRF4: MIRT004534). Additionally, hsa-miR-125b-5p harbors a seed sequence
predicting both subunits of the nicotinic a4B2 receptor and AChE as targets.

To experimentally test the capacity of hsa-miR-125b-5p to impact cholinergic signaling, we
performed a cell culture luciferase assay, cell death and endogenous enzyme suppression tests on
the secreted AChE protein (Figure 6 B-D). This analysis revealed functional suppression of AChE
by miR-125b-5p with similar efficacy to that of the positive control miR-132-3p (Shaked et al.,
2009; Hanin et al., 2018). Lentiviral infection with miR-132 and -125b led to equally efficient
suppression of luciferase activity in HEK293T cells stably transfected with a plasmid expressing
luciferase fused to the AChE mRNA 3’-UTR (one-way ANOVA: p = 0.004, Figure 6B). Further,
lentiviral infection of human monocyte-like U937 cells with miR-125b-5p suppressed endogenous
AChE hydrolytic activity (one-way ANOVA: p = 0.005, Figure 6C), and co-transfection of miR-
125b-5p with a lentiviral vector expressing a cytotoxic sensor fused to AChE 3’-UTR resulted in
cell survival with similar efficacy to that of the positive miR-132-3p control in HEK293T cells
(n =3, Figure 6D). In addition to the already experimentally validated interactions, this makes hsa-
miR-125b-5p a prime candidate of cholinergic/neurokine mediation.
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Discussion

The magnitude of interactions shown by network analyses, further complicated by high between-
tissue variability, presents one of today's largest obstacles in microRNA research. As miRs exert
individual effects of low impact, the outcome of their cooperative action can be more adequately
represented by a network approach than by traditional molecular interaction studies (Salta and De
Strooper, 2017). While experimental validations are necessary, they often significantly exceed the
scope of scientific publications even for one single miR. On the other hand, purely bioinformatical
interaction studies lack predictive power, particularly for non-canonical miR targeting, with high
false positive and false negative rates (Hart er al., 2018). Bioinformatically supported high-
throughput techniques such as short RNA sequencing can serve as an integrative middle ground.
Our study addresses this purpose by facilitating the identification of manageable numbers of
interaction partners for deeper analyses of subnetworks involved in specific ontological categories
of coding genes. We chose the cholinergic/neurokine interface as an example due to our interest
in cholinergic transmission, which is intrinsically linked to many processes relevant in SCZ/BD
(Figure 2). Co-expression of cholinergic and neurokine markers in single cortical cells (Figure 3),
the pro-cholinergic influence of neurokines on our model cell system (Figure 4), and the
identification of neurokine signalling and circadian rhythm in GO enrichment analysis of specific
miR families (Figure 5) highlight the relevance of this choice to our current study.

Limitations

We chose a human cellular model over in vivo-experimentation for several reasons. First,
implementation of cholinergic differentiation in the brain of a living animal is not straightforward,
and individual types of cholinergic neurons are quantitatively inferior to supporting cells in the
cortex (von Engelhardt ez al., 2007). Second, a recent study (Naqvi et al., 2019) demonstrates that
most sex bias in gene expression has arisen since the last common ancestor of boroeutherian
mammals (including mouse, rat, dog, macaque, and human), resulting in inadequate representation
of sexual dimorphism in any non-human model organism; and third, current animal models of SCZ
and BD do not faithfully represent human pathology, showing no predictive power for clinical
efficacy of therapeutics (Jones et al., 2011). Additionally, the resolution of differential expression
analysis in sequencing is much higher in a homogeneous cell population such as neuronal cell
culture, as sexual dimorphism can also manifest in distinct tissue composition (Naqvi et al., 2019).
However, this choice also entails limitations: Although very similar, LA-N-2 and LA-N-5 are
immortalized cells derived from two distinct donating individuals, which must be considered when
interpreting sexual dimorphisms based on their total transcriptional divergence. Specifically, the
stronger response of LA-N-5 to CNTF might have influenced the detection limit of miRs
designated "male" by their lack of detection in LA-N-2, partly leading to the dominant male cluster
in the comprehensive network. On the other hand, this increases the power of detection of
"female"-designated miRs (e.g. mir-515), because they were not detected in LA-N-5 cells in spite
of higher sensitivity.

Notwithstanding these limitations, we consider our approach a viable alternative in situations
which require a sophisticated perspective on sexual dimorphisms, particularly in diseases where
representative animal models are not available. In the present study, we defined ontological
categories implicated in SCZ/BD dimorphisms via meta-analysis of deposited patient data,
ascertained co-expression of our principal systems of interest in the context of single cortical cells,
assessed differential expression via suitable cellular models, and comprehensively analyzed the
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transcriptional interactions of identified miRs in their genome-scale regulatory network. We used,
as well as created, comprehensive web-available resources that can aid focused studies by
generating hypotheses and candidate lists, or by putting experimental results into context. We
advocate the application of this integrative methodology to make use of the many excellent data
collections created by modern science.

The cholinergic/neurokine interface

Our approach identified a trophic role for neurokine signalling in cortical cholinergic systems,
particularly for IL-6, distinguishing these cortical neurons from the NGF-dependent basal
forebrain population. The consistent identification of inflammatory processes across all aspects of
our integrative study protocol lends further support to the neuroinflammatory aspect of SCZ/BD,
for example via IL6-mediated temporary overstimulation (Lurie, 2018). Basal neurokine levels in
the brain are comparatively low, and current methods of measurement do not allow an analysis of
short-term fluctuations in living human subjects. However, it has been shown that CNTF can
influence behaviour through its impact on cholinergic neurons in the arcuate nucleus (Couvreur et
al.,2012). Paracrine control of cholinergic neurons by neurokine-affected supporting cells such as
glia or astrocytes is also physiologically feasible, pending further analyses.

Compatible with our previous findings (Cohen et al., 2002), we found a paramount role of CLOCK
in the mir-10/mir-199 regulatory network, indicating circadian regulation of neurokine control
over cholinergic signalling. In RNA sequencing of 600 prefrontal cortices of SCZ patients and
controls, IL6ST (aka gp130), and the host gene for the /L6ST-targeting hsa-miR-335, were among
the top 50 imprinted genes (Gulyas-Kovacs et al., 2018). While the data used in that study yields
surprisingly little DE genes, it discovered significant depression of the CNTFR and cholinergic
receptors, accompanied by an elevation of CLOCK and RORA. Conversely, a knockdown of
CLOCK in in-vitro differentiated human neurons (Fontenot et al., 2017) caused parallel neurokine
receptor and cholinergic transcript perturbations, suggesting an intrinsic relationship of these
systems.

miRNA families

Our tests also implicated several novel factors pivotal for control of cholinergic function in BD
and SCZ pathology. Recently, SCZ and BD have come to be recognized as instances of a spectrum
of transcriptional perturbations with increasing "transcriptomic severity" from BD to SCZ (Gandal
et al.,2018). Our approach identified 3 miR families associated with both diseases and 5 associated
with SCZ, but none were associated with BD alone, retracing the aspect of increasing severity
from a non-coding perspective. The closely related mir-10 and mir-199 families are intrinsically
sexually dimorphic, have previously been associated with SCZ (Beveridge and Cairns, 2012;
Szatkiewicz et al., 2014) and show a comparatively small number of gene targets, predicting a
focused regulatory role. While individual members of large families such as let-7 or mir-515 often
show distinct individual target profiles, mir-10 family members demonstrate overlapping
functional features of their targets, even between their -5p and -3p variants. The evolutionarily
conserved miR-132-3p, through its suppression of AChE, interrupts the cholinergic modulation of
acute stress (Shaltiel et al., 2013), immune response (Shaked ef al., 2009) and metabolic activities
(Hanin et al., 2018) and leads to a transient increase of IL-6, which can be mitigated by nicotine
(Shaked et al., 2009). However, miR-125b-5p but not miR-132-3p may also target the 042
nicotinic receptor subunits, such that its modulation could have an additional impact. Additionally,
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miR-125b-5p can influence inflammatory processes directly by targeting 5-lipoxygenase (Busch
et al.,2015), and indirectly via regulation of epigenetic controllers (Zhang et al., 2017). Moreover,
miR-125b-5p is directly induced by the Vitamin D-receptor (Giangreco et al., 2013), and
decreased Vitamin D levels are thought to be a risk factor for SCZ/BD development (Cieslak et
al., 2014). miR-125-5p hence possesses several cholinergic and non-cholinergic features
potentially relevant to SCZ/BD pathology.

Our experiments also indicate other miRs as potential mediators of sexually dimorphic cholinergic,
neurokine, and circadian functions of human neurons. For example, miR-124 is DE between LA-
N-2 and LA-N-5 after neurokine induction. A recent analysis of a complete miR-124 knockout in
human iPSCs (Kutsche et al., 2018) found extensive subsequent transcriptional perturbations, in
STATSB among others, and a shift from glutamate to ACh in the resulting functional neurons.
Although the authors did not address this cholinergic aspect, their data and ours co-indicate an
influence of miR-124 on the neuronal cholinergic phenotype.

Therapy

At present, treating cognitive malfunctioning through stimulation of the cholinergic system is
limited to AChE inhibitors and nicotinic/muscarinic agonists (Rowe et al., 2015). Stimulations of
nicotinic (e.g. a4p2, the a5-subunit, and a7 (Koukouli ef al., 2017)) and muscarinic (e.g. M1)
receptors (Vijayraghavan et al., 2018) display a therapy-limiting lack of specificity for individual
receptors/subunits. On the other hand, neurokine-based interventions have repeatedly failed due
to intolerable side effects, even when applied directly to the brain (Mufson et al., 2009). In
comparison, antisense oligonucleotide therapeutics can simultaneously target multiple disease-
relevant genes, be it as mimic/antagonist of an existing miR, or a synthetic oligonucleotide aptamer
engineered for a specific target profile. The success of oligonucleotide therapy will depend on
calibrating its impact on target genes and achieving a positive balance between target and off-
target effects (Greenberg and Soreq, 2014). Therapy with miR-like molecules can also potentially
ameliorate tachyphylactic effects by targeting a gene and its regulatory elements at the same time
(essentially via feed-forward-loops (Guzzi et al., 2015)), as implicated by the nested regulatory
circuits we observed. Identification of lead molecules for development of therapeutics with defined
profiles largely depends on an integrative approach combining gene- and TF-targeting.

Recent clinical advances in personalized medicine involve evaluating the benefit of sex-specific
therapeutic adjustments in cholinergic medication, at least for Alzheimer's disease (reviewed in
(Giacobini and Pepeu, 2018)), but the molecular examination of cholinergic systems (e.g., with
respect to co-expression of sex hormone receptors) has so far been limited to the basal forebrain
Ch1-4 nuclei. While some of the datasets covered in the present study allow sex-specific analyses,
many questions concerning sexual dimorphisms remain unaddressed and warrant extensive future
studies. The advent of single-cell sequencing will hopefully enable application of this methodology
in actual patient tissues. More immediately, our study paves the way for the investigation of other
processes by application of our method to other ontological categories, e.g. dopaminergic
signalling or innate immunity. High quality datasets large enough to allow statistical analyses can
further enable the extension of this approach to different brain regions and other psychiatric and
non-psychiatric polygenic disorders such as sporadic Alzheimer’s and Parkinson’s diseases.
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Figure titles and legends

Fig. 1. Diverging brain transcriptomes in males and females with SCZ/BD. Differential gene
expression results of meta-analysis were dually compared: "SCZ vs BD" or "male vs
female". GO enrichment of the top 100 distinguishing genes in one dimension was
compared to the other, for each pair of combinations. (A) SCZ-biased genes diverge
between males and females. (B) BD-biased genes share immunological ontology in both
males and females. (C) Male-biased genes share immunological ontology in BD and SCZ.
(D) Female-biased genes diverge between SCZ and BD.

Fig. 2. The complexity of cholinergic networks in the mammalian brain. (A) Circos overview
demonstrating the wide-spread interactions of the mammalian brain’s cholinergic systems
with physiologic and cognitive processes. Projection origin denoted by closeness of
connector and ideogram (first half clockwise), projection termini by spacing between
connector and ideogram (second half clockwise). Cholinergic neurons have been shown in
nuclei Ch1-Ch8 (smaller right half of ideogram) and interneurons in the striatum and cortex
(outside of ideogram). Functional traits indicated by color of connectors (connector width
is determined by geometry and has no implied meaning). (B) Brain regions and projection-
trait legend for (A). Grey = anatomical cholinergic structure with unknown function.

Fig. 3. Single cell sequencing of ChAT/vAChT-positive cortical cells and analysis of their
expressed transcripts. Expression values were normalized (0-1) for each data set. The
order of genes in each heatmap reflects transcript clustering rather than level differences.
Columns represent individual samples from original data (column names in Figure S1). (A)
Clustered single cell sequences of transgenic mouse somatosensory cortex and
hippocampus (Zeisel et al., 2015); (B) Clustered single cell sequences from transgenic
mouse visual cortex (Tasic et al., 2016); (C) Single nucleus sequencing of adult mouse
hippocampus (Habib et al., 2016); (D) Single cell sequencing of human developing
neocortex (Darmanis et al., 2015). Cholinergic genes denoted in blue, neurokine receptors
in orange. (E) Permutation analysis of miR- and TF-targeting data of genes expressed in
cholinergic cells (via miRNet) identified putative cholinergic/neurokine co-regulators (*: p
< 0.05, **: p < 0.001). Implicated TFs are regulated by a subset of miRs targeting
cholinergic genes, indicating nested regulation (details in Data S2). (F-I) Gp130-family
neurokine, cholinergic, and circadian signaling pathways are controlled by primate-
specific and evolutionarily conserved miRs. miR-targeting of individual genes (colored
nodes) yields complex transcriptional interaction. Several miRs directly targeting the
cholinergic pathway also target TFs controlling this pathway (circle and triangle).

Fig. 4. Cholinergic response to CNTF induces partially overlapping miR changes in female-
and male-originated LA-N-2 and LA-N-5 cells. (A) CNTF differentiation of cells,
timeline. (B) Bar graph of miRs differentially expressed (DE) during exposure of LA-N-2
cells to 4,4 nM CNTF (pink), LA-N-5 cells to 440 pM CNTF (blue), or in both (green).
(C) Time-dose boxplot of CHAT mRNA expression in LA-N-2 during differentiation with
CNTF. For LA-N-5, see Figure S2. *: p < 0.05, **: p < 0.001. (D) DE miRs overlap
between LA-N-2 and LA-N-5. miRs DE same- and opposite-directionally show highly
correlated count-changes (arcsine transformation used because negative values prohibit
log-fold display). (E) Neurokine-induced DE miRs partly overlap conserved, primate-
specific, and TF-targeting miRs predicted via single cell analysis (Figure 3E). (F) DE miR
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precursors overlap with known BD- and SCZ-relevant miR precursors (Beveridge and
Cairns, 2012; Fries et al., 2018).

Fig. 5. Differentially expressed miR families enriched in LA-N-2 and LA-N-5 cells self-
organize in a comprehensive targeting network. (A) P-values of 17 enriched families
(left) in LA-N-2 and LA-N-5 (female/male symbol) and mean predicted gene target count
of each family (right). Color denotes family size (left) or contribution of sex to total target
numbers (right) as determined via DE context of individual family members. Asterisks
indicate families with significantly smaller gene target sets (see text). (B) Gene ontology
topics curated for enriched families. Frequent terms are immune-, neurodevelopment-, or
sex-related. The mir-10 and mir-199 families show rare association with neurokine
signaling and circadian rhythm. (C) Comprehensive network of all DE members of
enriched families targeting 12495 genes self-separates into family-dependent clusters by
application of a force-directed algorithm (46937 unique interactions). miR node size
denotes absolute count-change, color denotes DE context. Numbers in brackets correspond
to panel (A). mir-10 and mir-199 families form two distinct, sexually dimorphic clusters
near the center of the network (lighter background color).

Fig. 6. The cholinergic/neurokine interface and experimental validation of AChE targeting
by hsa-miR-125b. (A) miR families mir-10 and mir-199 pose a sexually dimorphic
interface of cholinergic, neurokine, and circadian regulation by targeting
nicotinic/muscarinic (e.g. a4f2, M1) and neurokine receptors, transcriptional regulators of
cholinergic differentiation (LHX, STAT) and circadian rhythm (CLOCK, RORA), AChE
and the AChE linker proteins PRIMAI/COLQ, and high affinity choline uptake (HACU).
Members of mir-10/199 families, "spike-in" miR-132-3p, and their targeted genes are
shown in color, other miR families that passed the multiple filtering are indicated as areas.
miR node size corresponds to count-change, gene node size to connectivity, color and
thicker edges indicate DE context and experimentally validated connections. (B-D)
Validation experiments of AChE targeting by miR-125b-5p, with miR-132-3p as a positive
control. (B) Lentiviral expression of miRs-132 and -125b suppresses luciferase fused to the
3’-UTR of AChE in HEK293T cells. (C) Lentiviral expression of miR-132 and miR-125b
suppresses the endogenous AChE hydrolytic activity of U937 cells with similar efficacy.
(D) Life/death assay of stably transfected HEK293T cells carrying the AChE 3°-UTR fused
to a cytotoxic sensor, and co-transfected with miR-125b-5p, -132-3p, or control plasmids.
Cells survive in case of binding of miR-132-3p and -125-5p to the 3’-UTR.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

We employed LA-N-2 (female) (DSMZ Cat# ACC-671, RRID:CVCL _1829) and LA-N-5 (male)
(DSMZ Cat# ACC-673, RRID:CVCL 0389) cells as our main experimental model system
(McManaman and Crawford, 1991). The cells were purchased at DSMZ (Braunschweig,
Germany). These cells respond to differentiation by several neurokines (CNTF, LIF, IL-6) by
cholinergic differentiation corresponding with elevation of choline acetyltransferase (ChAT), the
central cholinergic marker (mRNA, protein, and activity) as well as its intronic vesicular ACh-
transporter gene, VAChT (aka SLC18A3). Cells were maintained at 37°C in 8% CO> atmosphere
in medium consisting of 1:1 DMEM and RPMI 1640, with 20% FCS, with weekly splits.
Experiments were performed between splits 2-6 after thawing.

HEK293T and U937 cells were purchased at ATCC and maintained according to ATCC
guidelines. Experiments were performed between splits 2-10.

Human patient data

We used previously published data sets for several analyses. These comprise several cortical data
sets in raw format (Affymetrix) from NCBI GEO: GSE35978 (Chen et al., 2013) (SCZ & BD),
GSES53987 (Iwamoto et al., 2005) (SCZ & BD), GSE12649 (Lanz et al., 2015) (SCZ & BD),
GSE17612 (Maycox et al., 2009) (SCZ), GSE21138 (Narayan et al., 2008) (SCZ), GSE5392
(Ryan et al., 2006) (BD); next-generation sequencing from NCBI GEO: GSE80655 (Ramaker et
al., 2017), GSE106589 (Hoffman er al., 2017), GSE68559 (Webb et al., 2015), GSE96659
(Fontenot et al., 2017), GSE45642 (Li et al., 2013); data of DLPFC sequencing of 600 SCZ
patients and controls was obtained from the Common Mind Consortium (http://
www.synapse.org/CMC).
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METHOD DETAILS

Methodological outline

Focusing on a well-defined set of genes aims to avoid some of the data loss that occurs when
patient tissues comprising multiple cell types are homogenized for analysis. This is particularly
relevant for cortical cholinergic interneurons, where the cell type of interest is numerically inferior,
and transcriptomic data can be "diluted" by the other, more prominent cell types, such as glia or
astrocytes. The consequent increase in detection threshold can be re-lowered by reducing the
number of genes tested. Analysis of single cell datasets can ascertain that the genes analysed are
representative and fairly unique to the cell type in question, as was the case for cholinergic markers
in our study, and utmost care should be taken for any gene set of interest and any kind of tissue
subjected to this kind of analysis.

Our approach is based on the availability of suitable amounts of patient data in web-available form,
combined with a standardized pipeline of statistical pre-processing to equilibrate individual
statistical influences. Regardless of how patient data and the subset of genes of interest are
selected, the reduction in number of analyzed genes has to be performed after application of the
linear model to the batch- and covariate-corrected data to avoid interference with correct linear
regression. Once the expression data (be it array- or sequencing-derived) has been corrected for
batch effects and covariates, and outliers have been removed, it can be analyzed with a suitable
differential gene expression algorithm. The resulting, individual datasets should ideally converge
on similar logFC values, but may also show controversy between individual experiments, which
can result from a multitude of factors from biological variety to sampling procedures or exact
tissue composition, all of which have to be interpreted at the discretion of the scientist.

Neuronal differentiation/short RNA sequencing

Model

LA-N-2 and LA-N-5 cells respond to ciliary neurotrophic factor (CNTF) by cholinergic
differentiation corresponding with elevation of choline acetyltransferase (ChAT), the central
cholinergic marker (mRNA, protein, and activity) as well as its intronic vesicular ACh-transporter
gene, VAChT (aka SLCI18A3). We measured the changes in short RNA levels following this
intervention at several time points.

Differentiation

To determine effective concentrations of the differentiation agent, we performed a dose-response
experiment with both cell lines. Cells were seeded at approximately 200 000 cells per well in 12-
well plates, and after 24h incubated with 1, 10, or 100 ng/ml CNTF (Sigma-Aldrich). Dose-
response was measured by qPCR of CHAT mRNA, at time points 30 minutes, 60 minutes, 2 days,
and 4 days. For each sample, a corresponding control culture was generated.

RNA extraction for gPCR and sequencing

RNA was extracted in biological quadruplicates using TRIzol according to the manufacturer’s
instructions, as described in (Hanin et al., 2018). RNA was precipitated using ethanol, washed,
and air dried before resuspension in RNAse-free water. Concentration was measured by Nanodrop
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2000 (ThermoFisher Scientific), RNA quality was measured via Bioanalyzer 2100 (Agilent). RNA
quality for all samples was near optimal (RIN > 9).

Quantitative real-time PCR

RNA was analyzed on a BioRad CFX96 real-time PCR cycler using PowerUp SYBR Green
Master Mix (Applied Biosystems) in technical duplicates. Primers were designed using primer3
and are as follows (5' to 3'): ChAT [FW: CAC TTG GTG TCT GAG CA, RV: AGT TTC TGC
TGC AGG GTC TC], ACTB (housekeeping) [FW: GCT GTA TTC CCC TCC ATC GT, RV:
CTT CTC CAT GTC GTC CCA GT]; additional primers were ordered from BioRad, Germany:
VvAChT [PrimePCR  "qHsaCEDO0047922"], = RPLPO (housekeeping) [PrimePCR
"qHsaCEDO0038653"]. Data were analyzed with BioRad CFX manager and expression values
(normalized to housekeeping genes) exported for statistical testing in R.

Short RNA sequencing

Short RNA sequencing was performed using Illumina NextSeq 550 according to the
manufacturer's instructions, after cDNA library preparation using the NEBNext Multiplex Small
RNA Library Prep Set for [llumina (New England BioLabs) as described (Bekenstein ez al., 2017).
Sequenced reads were aligned to miRBase v21 sequences via miRExpress (Wang et al., 2009)
(version 2.1.4). Differential expression was determined via R/DESeq2 (Love et al., 2014).

The count-change metric

We calculated the count-change for individual miRs by combining base mean expression with the
de-logarithmized fold-change (from DESeq2 output).

CC = (BM x 2LF¢y — BM
CC: countChange, BM: baseMean, LFC: log2-fold change

It is important to note that the count-change metric, by deriving from the base mean expression
across samples, is dependent on sequencing depth, and thus is not instantly generalizable, for
instance when comparing different experiments. However, it could be normalized to a degree by
considering the total amount of raw reads generated from each sample.

Whole transcriptome meta-analysis

Data preparation

We processed web-available patient transcriptome data sets by state-of-the-art procedures,
analogous to Gandal et al. (Gandal et al., 2018), to generate transcriptional disease profiles. The
following R packages (Bioconductor) were used according to the developer’s instructions: Raw
data read, RMA normalization, RNA degradation: affy (Gautier ez al., 2004). Batch correction (as
per chip scan date) involved: sva (Combat) (Johnson et al., 2007). Outliers were removed as
described in (Gandal et al., 2018). The array probes were annotated via ENSEMBL gene ID,
database version v75, to ensure congruency with prior analyses, using biomaRt (Durinck et al.,
2009), and were collapsed via the collapseRows function of WGCNA (Langfelder and Horvath,
2008). Prior to application of the generalized linear mixed model (nlme (Lindstrom and Bates,
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1990)), datasets were rebalanced and regressed to correct for technical and biological covariate
influences.

Regression analysis

Meta-analysis on all genes present in all datasets (12,391 genes in total) employed a generalized
linear mixed model to account for variation per dataset and individual, yielding log>-fold change
(logFC) values for each gene between control and disease, which were correlated between SCZ
and BD using Spearman’s method (Spearman, 1904). To determine significance, the meta-analysis
process was repeated 10,000 times with randomized case/control status, forming a permutation
null distribution of the individual correlation coefficients (Figure S3). Of note, several cholinergic
and neurokine genes were missing from the whole-genome meta-analysis because of annotation
deficits (CHRNA7, CHRM1, LHX8, CHKB, PRIMAI, CNTF), and, at this stage, could not be easily
re-introduced.

Gene ontology (GO) enrichment analyses

To focus on the differences, as opposed to the similarities, between BD and SCZ patient brain
transcriptomes, we performed GO enrichment analysis on the genes showing the highest rank
differences between datasets (Figure S4), using the R package topGO (Alexa et al., 2006). Briefly,
we evaluated (smaller) groups of genes for enrichment against a (bigger) background of genes for
presence in individual GO terms exceeding statistical estimates. The background comprised of the
first 2000 genes according to the applied rank system, computed as a function of Spearman’s rank
differences of regression beta values (logFC) between the two compared groups, either as absolute
values or “as is” (elevation in one group as opposed to the other). The target genes of the analysis
were defined as the 100 top ranked genes (top 5% of background), unless otherwise stated.
Statistically significant GO results were compiled and curated for CNS-relevant terms.

Sex influence on transcriptomic differences

Studying web-available datasets of non-degenerative mental disease patients revealed that SCZ
and BD datasets possessed sufficient numbers to allow sex-discriminative meta-analysis of
statistical significance. Hence, we repeated the above steps for the individual subsets of male and
female patients, with the sole change of eliminating the covariate regression for sex, as this would
preclude further analysis of this variable, in 4 distinct GO enrichment group comparisons between
SCZ-biased, BD-biased, male-biased, and female-biased genes.

miR-gene-TF-targeting: miRNet

To address miR-mRNA targeting relations, we developed an integrated miR-targeting graph
database (‘miRNet’) out of publicly available validated and predicted data, implementing a scoring
system derived from 10 leading prediction algorithms (Dweep and Gretz, 2015) based on their
statistical performance at the whole-genome level. To facilitate the selection process, targeting
data was cumulated by summing the amount of positive “hits” of prediction algorithms (1 point)
and positive experimental validations (only "strong" evidence, miRTarBase, 10,5 points) of the
targeting relationship, yielding a targeting score between 0 and 20,5. We found a minimal score of
6 to suffice for a good balance between type I and II errors. In case of whole-genome interactions,
this threshold was raised to 7 to enable computational accessibility in all steps (in this case,
graphical analysis was the bottleneck). The database was supplemented by comprehensive
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transcription factor targeting data via bioinformatically processed “cap analysis of gene
expression” (CAGE (Hon et al., 2017)), focusing on brain tissues (Marbach et al., 2016), including
the tissue-specific transcriptional activities (Figure S5). The code used to create and test this
database is available in the accompanying repository. A public release is planned, but not
completed at the moment; requests can be directed at the corresponding author.

Analyses performed using this database were implemented in R using the ‘RNeo4;’ package.

Limitations

Through recent methodical and bioinformatical advances, targeting data of transcription factors
and miRs has become comprehensive. However, these "complete" datasets are subject to
limitations derived from the methods used to accumulate raw data. For TF-targeting, CAGE 5'
peaks were analyzed towards their correlation with gene expression in all available tissues. A
cholinergic example of limitations derived from this data involves the CHAT gene, which does not
provide a measurable CAGE peak, leading to non-representation in the targeting dataset. In those
cases, targeting data acquired through conventional methods have to be substituted, but this cannot
be easily done for all affected genes, and is also not comprehensive. In the case of miR-targeting,
validated interactions are based on experimental work mainly performed on rodents, leading to a
research bias towards evolutionarily conserved miRs. Primate-specific miRs therefore are under-
represented, at least in validated data.

Permutation targeting analyses

In the current state of comprehensive data on miR-gene (and TF-gene) targeting, no statements
can be made with absolute certainty. Thus, an approach which considers relative measures is
preferable. For this reason, whenever whole-genome/whole-miRnome targeting was concerned,
we employed random permutation of the prediction dataset or each single predicted miR against a
randomized background of the same size as the original set (also considering family- and
precursor-relationships). The resulting null distribution yields a basis for determination of a false
discovery rate.

Neurokine-induced miRs and the cholinergic/neurokine pathway

Gene targets of the 490 differentially regulated miRs following CNTF exposure were determined
by miRNet query (targeting score minimum of 6). The full network, originally comprising
~160,000 unique relationships, was re-filtered by raising the threshold to score minimum of 7 to
be computationally accessible. The resulting network and individual miR-family-subnetworks
were plotted using a force-directed layout (Force Atlas 2) in gephi.

Single cell sequencing data set analysis and permutation

We analyzed 4 web-available datasets of brain single cell gene expression (Darmanis et al., 2015;
Zeisel et al., 2015; Habib et al., 2016; Tasic et al., 2016) for neurokine signaling transcripts in
cholinergic neurons, identified by their expression of the ACh-synthesizing enzyme choline
acetyltransferase (ChAT), and its embedded gene encoding the vesicular acetylcholine transporter
SLC18A3, also known as vVAChT. Raw gene expression data was normalized and then clustered
and plotted via R/pheatmap (Kolde and Kolde, 2015). The genes expressed in more than one
sample per dataset were enriched for targeting of TFs and miRs by random permutation analysis
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(via miRNet), with 10 000 permutations for conserved and primate miR-target relationships, and
human CNS TF interactions.

Subset analyses

Cholinergic genes, transcription factor and neurokine analyses

To follow our cholinergic interest, we used a recent review (Soreq, 2015) to define a core set of
genes, adding to it the neurokine and circadian pathway genes indicated in the previous analyses
(to a total of 76 genes). Via miRNet permutation (Data S2), we identified 18 brain-expressed
“cholinergic” TFs (p < 0.05) and their CNS transcriptional activity towards each targeted
cholinergic gene. These 94 genes (Data S7) were then subjected to differential expression analysis
in the deposited patient datasets.

Execution of subset analyses

To separately analyze male and female data in the original datasets, we repeated the sex-
independent analyses of the identified 94 cholinergic genes and TFs using the limma (Ritchie et
al., 2015) pipeline. Pre-processing was identical to the whole-transcriptome approach, and dataset
reduction involved restricting the output table (topTable() function) to the studied genes. This
further allowed controlling of missing genes of interest by manually solving problems of
annotation, which in a whole-genome analysis would have led to loss of information on, e.g., the
nicotinic a7 and stress-responding M1 cholinergic receptors.

miR-125b-5p validation

To test binding of hsa-miR-125b-5p to the acetylcholinesterase (AChE) 3’-UTR, we performed
vector-based assays via suppression of a cytotoxic sensor as well as of Renilla luciferase, both
fused to the AChE-3’-UTR. Briefly, the 3’ untranslated region (3’-UTR) of human AChE mRNA
(Soreq et al., 1990) was cloned into the microRNA Target Selection System plasmid (System
Biosciences, CA, USA) multiple cloning site, using EcoRI and Notl restriction enzymes (New
England Biolabs). All plasmids were verified by DNA sequencing. For luciferase assays,
HEK293T cells were transfected with miRNA Target Selection-AChE-3"UTR, and selected in the
presence of Puromycin for 3 weeks. Stably transfected HEK293T (293T-AChE 3’UTR) cells
were grown on 12-well plates and infected with lentiviruses expressing miR-125b-5p, miR-132-
3p or a negative control sequence. After 48 hours incubation, cells were analyzed using the Dual
Luciferase Assay kit (Promega, WI USA) and Luciferase activity was measured using an Envision
luminescent plate reader (Perkin-Elmer, Waltham, MA), essentially as previously described
(Hanin et al., 2014). For each reporter construct, renilla luciferase activity was normalized
according to that of the firefly. Normalized activity after infection of miR-132-3p or miR-125b-5p
was expressed as relative to that obtained after infection with the same plasmid with miR negative
control. For life/death assay, a similar protocol was used. Stably transfected HEK293T (293T-
AChE 3’UTR) cells were infected with lentiviruses expressing miR-125b-5p, miR-132-3p or a
negative control sequence. 72 hours post-infection a cytotoxic reporter fused to AChE 3'-UTR was
added to the media and cells were kept for an additional 5 days to assess their viability. Statistical
significance was determined using ANOVA with correction for multiple testing. To show effects
of changes in this miR’s levels on real-life protein activities, we performed an AChE hydrolytic
activity assay following infection of human monocyte-like U937 cells with hsa-miR-125b-5p,
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miR-132-3p or a negative control lentiviral vector. AChE hydrolytic activity levels were assessed
by kinetic measurements of the hydrolysis rates of 1 mM acetylthiocholine (ATCh, Sigma) at room
temperature, following 20 min incubation with and without 5x10° M tetraisopropyl
pyrophosphoramide (iso-OMPA, Sigma), a specific inhibitor of butyrylcholinesterase, to
selectively assay for AChE-specific or total cholinesterase activity. Each sample was assayed in at
least 3 biological replicates. In all cases, hsa-miR-132-3p served as a positive control.


https://doi.org/10.1101/600932
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/600932; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed in R. Small sets of continuous variables, such as qPCR and
miR-125b-5p validation experiments, were tested using Welch's Two Sample t-test (because in
most cases, equal variance could not be assumed; R/t.test) and ANOVA; statistical significance
was assumed at p < 0.05. For sequencing count data, the negative binomial generalized linear
model was tested using the R/DESeq2 package ("Wald" test including log-fold change shrinkage)
to detect differentially expressed miRs, using the supplied independent filtering and correction for
multiple testing at an alpha level of 0.1. In cases where additional power was desirable or p-values
could not be obtained by other means (transcriptome meta-analysis, whole genome miR-targeting),
permutation analysis was performed. This comprised random assignment of test variables in the
same size as the original test set and repeating the analysis for a large number of times, such that
a null distribution of values could be generated, which can be used to determine a false discovery
ratio for the original result. Statistical significance was assumed at p < 0.05.

qPCR of ChAT/VAChT mRNA against housekeeping in LA-N-2, p-values are found in Results
(Welch two-sample t-test): Chat, Day 2, 10 ng/ml, t =-3.2436, df = 4.9872; 100 ng/ml, t = -2.349,
df =4.1296; Day 3, 10 ng/ml, t = -2.8481, df = 6.9658; 100 ng/ml, t = -6.3786, df = 3.3998; Day
4, 100 ng/ml, t =-9.0836, df = 6.9835. vAChT, Day 2, t = 5.9222, df = 5.3619; Day 4, t = 7.1016,
df =4.8784. Number of biological replicates: 4.

qPCR of ChAT mRNA against housekeeping in LA-N-5, p-values are found in Figure S2 legend
(Welch two-sample t-test): Day 2, 10 ng/ml, t = -4.5204, df = 3.059; Day 4, 10 ng/ml, t = -4.7639,
df=5.0369; 100 ng/ml, t =-4.9161, df = 2.0262. Number of biological replicates: 4.

Mean absolute count-change LA-N-5 vs LA-N-2, text of Figure 3 (Welch two-sample t-test): t =
2.6183, df = 1108. Number of compared miRs: 490.

Target count of families, Figure 5A: enriched in both vs. enriched in one cell, t = 3.1831, df = 73;
enriched in mir-10 vs. enriched in other sex-independent families, t = -3.28, df = 7.1879. Number
of compared families: 17 (5 vs 12).

Validation of miR-125b-5p targeting of AChE, p-values are found in Results (one-way ANOVA):
Figure 6B, n = 4, f-ratio value 9.19882, df between treatments 2, within treatments 9; Figure 6C,
control n = 5, 125b n = 4, 132 n = 3, f-ratio value 11.59814, df between treatments 2, within
treatments 8. N refers to biological replicates.
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Fig. S1, Single-cell sequencing expression heatmaps with original sample annotation from (A)
Zeisel et al 2015, (B) Tasic et al 2016, (C) Habib et al 2016, (D) Darmanis et al 2015,
related to Figure 3.


https://doi.org/10.1101/600932
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/600932; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

10-
CNTF .

Concentration

" Eopm

E3 44 pM
8" E383pM

B3 440 pM %
7- B3 4400 pM

ChAT mRNA Relative Expression (ACTB)

Day

Fig. S2, Dose-response-curve of LA-N-5 during CNTF-induced cholinergic differentiation as
measured by expression of CHAT mRNA relative to ACTB. Significant differences at 10
ng/ml CNTF after 2 days (p =0.019) and 4 days (p = 0.005), and 100 ng/ml after 4 days (p
=0.038). Related to Figure 4.
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Fig. S3, Unbiased meta-analysis null distributions of Spearman's rho in sex-independent, male,
and female datasets, related to STAR Methods - Whole transcriptome meta-analysis,
Figure 1.
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Fig. S4, Spearman rank-differences between any two compared conditions in the GO-enrichment
of beta-values from unbiased meta-analysis, related to STAR Methods - Whole
transcriptome meta-analysis, Figure 1.
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Fig. S5, Density plots of transcriptional activities in analysed CNS brain regions derived from the
dataset of Marbach et al 2016 (top 1% most active transcription factors in each brain
region), related to STAR Methods - miR-gene-TF targeting.
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