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Summary (135 words): RNA-sequencing analyses are often limited to identifying lowest p-value 
transcripts, which does not address polygenic phenomena. To overcome this limitation, we 
developed an integrative approach that combines large scale transcriptomic meta-analysis of 
patient brain tissues with single-cell sequencing data of CNS neurons, short RNA-sequencing of 
human male- and female-originated cell lines, and connectomics of transcription factor- and 
microRNA-interactions with perturbed transcripts. We used this pipeline to analyze cortical 
transcripts of schizophrenia and bipolar disorder patients. While these pathologies show massive 
transcriptional parallels, their clinically well-known sexual dimorphisms remain unexplained. Our 
method explicates the differences between afflicted men and women, and identifies disease-
affected pathways of cholinergic transmission and gp130-family neurokine controllers of immune 
function, interlinked by microRNAs. This approach may open new perspectives for seeking 
biomarkers and therapeutic targets, also in other transmitter systems and diseases.  
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Introduction 
Recent large-scale genomic (Anttila et al., 2018) and transcriptomic (Gandal et al., 2018) analyses 
uncovered previously unknown magnitudes of transcriptional correlation (71%) in cortical tissues 
of schizophrenia (SCZ) and bipolar disorder (BD) patients. This suggests a shared SCZ/BD 
spectrum, but leaves the causes for the widely divergent sex-specific manifestations of these 
clinical pathologies largely unclear. Compared to women, men present a higher prevalence of SCZ 
(odds ratio (OR) = 1.4), a ten years earlier mean age of highest disease risk (15-25 vs. 25-35 years 
of age) and a worse prognosis (Leger and Neill, 2016). In comparison, BD incidence is not 
dissimilar in men and women, but 80-90% of “Rapid Cyclers” with a particularly bad prognosis 
are women, and major depressive disorder (MDD), which is a prerequisite for BD diagnosis, 
affects women more often (OR = 2) (Berger, 2014). Both diseases involve premorbid cognitive 
impairments and reduced intelligence, but those are more frequent and severe in SCZ than in BD 
(Bortolato et al., 2015), compatible with its original description as “dementia praecox” (premature 
dementia) early in the 20th century (Kraepelin, 1913).  

The genomic origin of SCZ and BD is tremendously complex. Genome-wide association studies 
(GWAS) have identified several genotype markers distinguishing the (sub-) phenotypes of BD and 
SCZ (Ruderfer et al., 2018) in genes encoding receptors (e.g. for dopamine, glutamate, or 
acetylcholine (ACh)), scaffolding proteins (e.g. DISC1, “disrupted in schizophrenia”), 
transcription factors (TFs), microRNAs (miRs), or non-coding genomic regions without known 
function (Harrison, 2015; Henriksen et al., 2017; Kanazawa et al., 2017). However, the impact of 
non-coding genomic regions on disease phenotypes was low, possibly indicating that they exert 
minor effects or do not change expression levels, but rather modify the expression patterns of 
secondary gene products (Gulyas-Kovacs et al., 2018). 

Notably, central cholinergic processes are closely associated with disease characteristics and their 
sexual dimorphism: Male SCZ patients self-administer more nicotine by smoking than females 
(7.2 vs 3.3 weighted average OR with 90% life time prevalence (Leon and Diaz, 2005)), and 
pharmacological intervention targeting cholinergic processes is subject to substantial sexual 
dimorphism (Giacobini and Pepeu, 2018). More specifically, cognitive deficits in SCZ and BD 
have both been associated with cholinergic dysfunctions (Van Enkhuizen et al., 2015; Smucny and 
Tregellas, 2017) and with the sum of anticholinergic medications (Gray et al., 2015; Eum et al., 
2017), and a polymorphism in the α5 nicotinic ACh receptor associates with both SCZ and 
smoking in humans, with parallel manifestations in engineered male mice (Koukouli et al., 2017) 
and rats (Forget et al., 2018). Correspondingly, cholinergic activation may improve cognition 
(Sacco et al., 2004; Rowe et al., 2015; Lewis et al., 2017) and mood (Higley and Picciotto, 2014), 
but provokes schizotypic behavior in Alzheimer’s disease patients (Değirmenci and Keçeci, 2016). 
Identifying the cholinergic elements involved in SCZ and BD is challenging. While it is well 
established that cholinergic projection neurons in the basal forebrain (nuclei Ch1-Ch4) (Li et al., 
2017) depend on trophic support from their target neurons by retrograde supply of nerve growth 
factor (NGF) (Levi-Montalcini et al., 1996; Mufson et al., 2009), not much is known about their 
cortical counterparts. Other neurotrophic factors repeatedly associated with cholinergic function 
are the neurokines (McManaman and Crawford, 1991), including Interleukin-6 (IL-6), ciliary 
neurotrophic factor (CNTF), and leukemia inhibiting factor (LIF). This subgroup of cytokines 
shares receptors and second messenger pathways. The receptors for IL-6 and CNTF are soluble, 
secreted proteins, whose signaling depends on binding the other, dimeric transmembrane receptors 
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(Erta et al., 2012): the gp130 co-receptor (also known as IL6ST, IL-6 signal transducer), and the 
LIF-receptor. Gp130-family neurokines unite properties of neurotrophic (e.g. on dopaminergic 
neurons) and immunogenic nature, both prominent facets in the molecular etiology of SCZ and 
BD (Harrison, 2015) and in cholinergic signaling (Stanke et al., 2006). Neurokines can activate 
JAK1/2, TYK2 and STAT1/3/5A/5B (Rawlings, 2004), affecting neurotransmission as well as 
immunity. However, to the best of our knowledge, their roles in SCZ/BD were not yet studied.  

SCZ/BD hallmarks also involve circadian perturbations. The cholinergic-catecholaminergic 
imbalance in BD (Van Enkhuizen et al., 2015) follows variable transcriptionally-regulated 
rhythms (e.g. CLOCK, ARNTL, RORA), and affected individuals exhibit decreased REM latency 
(the duration from onset of sleep to the first rapid eye movement phase) and increased vulnerability 
for disease that can be modulated by muscarinic agonists/antagonists (Ising et al., 2005). 
Correspondingly, the muscarinic M1/M3 receptor genes are essential for REM sleep (Niwa et al., 
2018), and sleep deprivation exerts short-term antidepressant effects (Wu and Bunney, 1990), 
reduced cortical ACh levels (Boonstra et al., 2007), and vast transcriptional changes in basal 
forebrain cholinergic neurons (Nikonova et al., 2017).  

The quantitative measurement of disease-relevance of individual perturbed genes is a common 
methodological problem in transcriptomic analyses. To reduce complexity, transcripts are often 
filtered by their p-values, leading to bias towards few highly expressed and differentially regulated 
genes. This does not agree with a polygenic model where each component contributes a small 
effect. To alleviate this bias while still attempting the necessary complexity reduction, we 
developed an integrative approach of multiple perspectives. 
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Results 
We first explored the neuronal transcriptomic properties of SCZ and BD in a meta-analysis of 
deposited cortical male and female patient samples; gene ontology (GO) enrichment analysis of 
diverging transcripts helped define an objective set of ontological categories to guide further 
studies. Next, we ascertained co-expression of the corresponding subsystems in cortical tissues by 
single-cell sequencing analysis, investigating the putative trophic role of neurokine signaling in 
cortical cholinergic systems and their transcriptional regulation by TFs and miRs. Using pro-
cholinergic intervention (stimulation by neurokines) in two closely related cellular models of male 
and female neuronal origin, we validated the predicted controllers of this molecular interface and 
identified sexual dimorphisms and affected pathways. 

SCZ/BD transcriptome meta-analysis 

Sex-independent pathways discriminating between SCZ and BD associate with immunity 

Replicating recent reports of sex-independent overlap in patient brain transcriptomes (Gandal et 
al., 2018), we validated the high correlation of SCZ/BD expression beta values (139 SCZ and 82 
BD brains with matched controls; Spearman’s rho = 0.7100, p < 0.001). To identify transcript 
subgroups distinguishing between diseased men and women, we then segregated data of males and 
females. In both cases, this yielded lower correlations between SCZ and BD than sex-independent 
data (F: 0.6150, p < 0.001, M: 0.5783, p < 0.001). We sought the most discriminating molecular 
pathways (i.e., those exhibiting the largest difference in Spearman's ranks between SCZ and BD), 
and examined their function. Sex-independently, gene ontology (GO) enrichment of the top 100 
diverging genes yielded numerous terms connected to inflammation and immunity ("acute 
inflammatory response", p = 0.003, "cellular response to cytokine stimulus", p = 0.01). 

Transcriptional sexual dimorphism differs between SCZ and BD 

Given the possible male or female biases, we studied all of the 2x2 combinations of the four 
possible groups (SCZ males, SCZ females, BD males, BD females) by calculating expression beta 
values inside of each group (against matched controls). We then subjected the most diverging beta 
values (i.e. the most biased genes) in any meaningful combination to GO enrichment analysis 
(Figure 1, Data S1). The results indicated a larger divergence between sexes in SCZ than in BD: 
SCZ-biased genes of males and females showed no overlapping GO terms (Figure 1A), but the top 
100 BD-biased genes of males and females showed large GO term overlap, particularly in 
inflammatory components (Figure 1B). Notably, specific components of neurokine signalling 
(Rawlings, 2004) were elevated in both males (IL-6, p = 0.007) and females (JAK/STAT, p = 0.01) 
with BD. 

Male-biased genes overlap between SCZ and BD 

GO terms shared by SCZ and BD patients emerged for male-biased, but not female-biased genes. 
Males with either disease showed elevated inflammation- and immunity-related genes (Figure 1C). 
In contrast, female-biased BD genes were enriched in terms associated with CNS function or 
development (Figure 1D), but enrichment analysis of female-biased SCZ genes yielded no CNS-
relevant terms. GO terms pertaining to immune processes were very specific, many referring to 
single mechanistic components (e.g., IL-6), whereas terms focused on neuronal processes failed to 
implicate specific neurotransmitters. Since the cholinergic systems present significant overlaps 
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with facets of both SCZ and BD, as well as involvement with neurokine signalling (McManaman 
and Crawford, 1991) and inflammation (Chavan et al., 2017), we chose to focus on the diverging 
cholinergic transcriptomes in males and females with SCZ/BD.  

Cholinergic systems in the CNS 
Circos plot analysis of curated functional and anatomical research (Figure 2) and 3D tracing 
experiments ((Oh et al., 2014), Video S1) demonstrate a wide-spread influence of cholinergic 
systems on both rudimentary and higher cognitive processes throughout the entire mammalian 
brain (Woolf, 1991; Bina et al., 1993; Sarter et al., 2009; Mesulam, 2013; Luchicchi et al., 2014; 
Eskow Jaunarajs et al., 2015; Gonzales and Smith, 2015; Lin et al., 2015; Ballinger et al., 2016; 
Herman et al., 2016; Prado et al., 2017; Haam and Yakel, 2017; McLaughlin et al., 2017). 
However, trophic factor dependency has only been proven for basal forebrain projection neurons 
Ch1-Ch4, leaving many open questions about the nature of cholinergic interneurons in the striatum 
and cortex (Mufson et al., 2009) and their transcriptomic features.  
 

Single cell transcriptome analysis 

Cortical cholinergic cells are mainly neurons and possess neurokine receptors 

The predicted transcriptomic interaction between cholinergic and trophic factor systems can only 
be pathologically relevant if the key elements of both pathways coexist in the same cell. However, 
patient tissues are almost exclusively collected from brain regions (cortex, hippocampus, seldom 
striatum) where cholinergic cells are vastly underrepresented (von Engelhardt et al., 2007), which 
complicates the direct retrieval of information on cholinergic processes from total transcriptomes. 
To examine trophic influences, we turned to web-available single cell sequencing datasets 
(Darmanis et al., 2015; Zeisel et al., 2015; Habib et al., 2016; Tasic et al., 2016) and identified 
putative cholinergic cells in these datasets as those expressing the cholinergic biomarkers choline 
acetyltransferase (CHAT) and/or the vesicular ACh transporter SLC18A3 (aka vAChT). Notably, 
most of these cells or clusters expressed the neuronal marker RBFOX3 (aka Neu-N), but not the 
microglial marker AIF1. The oligodendrocyte and astrocyte markers OLIG1 and GFAP were both 
detected in a minority of samples, indicating sparse cholinergic functions in non-neuronal cells. In 
both mouse and human brains, the identified cells co-expressed the low-affinity neurotrophin 
receptor Ngfr (aka p75), and the two transmembrane neurokine receptor proteins, gp130 (aka 
IL6ST) and LIFR (Figure 3 A-D), but not the high-affinity receptor for NGF, NTRK1. In summary, 
the identified cortical neurons distinguished themselves from basal forebrain cholinergic 
projection neurons by lacking NGF receptive ability, but possessing the molecular machinery to 
process neurokine signaling. 

Neuronal transcripts predict regulatory transcription factor and microRNA circuits 

TFs exhibit particularly high complexity in the central nervous system (Marbach et al., 2016), as 
do short and long non-coding RNAs (ncRNAs), regulatory elements whose expression is modified 
in mental diseases (Harrison, 2015). The best studied ncRNA species are microRNAs (miRs), 
small (18-22 bases) single-stranded RNAs which interfere with translation of transcribed mRNA 
via guiding an RNA-Induced Silencing Complex (RISC) to the mRNA through sequence 
complementarity followed by inhibition and/or degradation of those mRNAs. By targeting 
multiple genes, miRs can exert complex contextual regulation in a temporal and/or spatial fashion 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/600932doi: bioRxiv preprint 

https://doi.org/10.1101/600932
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Greenberg and Soreq, 2014), retaining homeostasis, which is paramount for nervous system 
health (Shaltiel et al., 2013), or leading to nervous system disease when disturbed (Bekenstein et 
al., 2017; Rajman and Schratt, 2017). 

To pursue the coding and non-coding regulatory elements of cholinergic/neurokine processes, we 
employed targeting analyses of TF-gene and miR-gene interactions in a graph database specifically 
constructed from comprehensive state-of-the-art data (miRNet, see Methods), using random 
permutation to empirically estimate false discovery ratio (FDR). This identified 288 miR 
candidates (out of all 2588 annotated mature miRs) and 18 TFs (out of 618) with FDR < 5%, and 
22 miRs and 2 TFs with FDR < 0.1%. The indicated TFs are controlled by a subset of the identified 
miRs (69 predicted, 12 of those with experimental support), indicating nested layers of regulation 
(Figure 3E, Data S2). This gave rise to the hypothesis outlined in Figure 3F-I, whereby a 
cooperative pathway regulation by miRs and TFs connects cholinergic neuronal function with 
endocrine or paracrine trophic signalling through neurokines. Together, these analyses called for 
experimental validation of the indicated regulatory pathways linking TFs, neurokine-cholinergic 
signaling and miRs, in male and female cells.  

Short RNA profiling 

Neurokine-induced cholinergic differentiation distinctly alters short RNAs in male and female 
human neuronal cells  

Identifying sexually dimorphic miRs of cholinergic relevance in homogenized patient brain 
samples is challenging due to their tissue-specific and low-level expression (Liu et al., 2016). As 
an alternative, we used immortalized cell lines of male and female human neuronal origin which 
undergo cholinergic differentiation when subjected to neurokine stimulation (McManaman and 
Crawford, 1991). Briefly, we exposed the female cell line LA-N-2 and the male cell line LA-N-5 
to CNTF, and used short RNA-sequencing (GSE132951, 4 biological replicates) to identify the 
affected miRs following exposure to this neurokine (Figure 4A). Both cell lines exhibited an 
immediate response of miR expression as early as 30 minutes after CNTF onset, with increasing 
numbers of differentially expressed (DE) miRs under prolonged CNTF exposure (Figure 4B, Data 
S3). In total, we detected 490 DE mature miRs: 107 in LA-N-2, 269 in LA-N-5, and 114 in both. 
Notably, the female-originated LA-N-5 cells responded more strongly to the neurokine stimulus, 
showing more DE miRs with a trend towards higher count-change values (mean of absolute count-
change across all DE time points, 20907 vs 3066, p = 0.08). 

Pico- to nanomolar concentrations of CNTF, well within its physiological range (Sun et al., 2016), 
elevated the cholinergic marker genes CHAT (PDay3 = 0.005, PDay4 = 4.1E-05) and SLC18A3 (aka 
vAChT, PDay2 = 0.002, PDay4 = 0.001). In the female-originated LA-N-2 cells, CHAT elevation was 
visible at low concentrations and significant at medium concentrations (Figure 4C). Also, the 
impact of 440 pM CNTF appeared to peak at or before 48 h, whereas 4.4 nM elicited a dramatic 
long-term response. Conversely, the male-originated LA-N-5 cells reacted most strongly to CNTF 
at 440 pM, showing an "inverted U" type dose-response curve (Figure S2). As many as 77.8% of 
the DE miRs in LA-N-2 reproduced those of a prior sequencing experiment (GSE120520, same 
layout, only 3 biological replicates). 

Apart from this significant overlap, the DE miR profiles showed exclusivities, which might 
translate to sex-specific regulatory processes in neuronal cholinergic differentiation. However, the 
log-fold change metric is not ideally suited for assessing the potential impact of expression changes 
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for individual miRs, because it does not reflect mean expression levels. To determine the change 
in expression, we introduced the count-change metric, a combination of base mean expression and 
log-fold change, to weigh DE miRs against one another. Count-change values of the 114 miRs 
detected as DE in both cell lines correlated well, whether the change was observed same- (76 miRs, 
Spearman's rho = 0.9066, p < 2.2E-16) or opposite-directionally (38 miRs, rho = -0.9294, p < 2.2E-
16) (Figure 4D). Neurokine-induced differentiation of LA-N-2 and LA-N-5 cells further induced 
a subset of the conserved, primate-specific, and TF-targeting miRs predicted via single cell 
analysis of cortical cholinergic neurons (Figure 4E, see also Figure 3E). Literature query of two 
curations of miR precursors in SCZ (Beveridge and Cairns, 2012) and BD (Fries et al., 2018) 
revealed 76 DE miR precursors to be associated with one or both of the diseases (Figure 4F, Data 
S4). Mature miRs in this case could not be assessed because the curated datasets partly lacked 
strand information. 

Transcriptional interactions 

Male and female cells respond to cholinergic differentiation by 5 shared and 12 diverging miR 
families 

miRBase.org currently features 151 human miR families (designated "mir" with lowercase "r") 
based on homology; we found members of 71 families DE in LA-N-2 and LA-N-5 cells. Gene set 
enrichment revealed 5 families which were sex-independently enriched in both cell lines, with 
highest counts of individual members in the families let-7 (Fisher's exact test, p = 1.6E-08) and 
mir-30 (p = 0.015); 12 families were only enriched in one of the two lines, with highest counts in 
families mir-515 (p = 2.9E-06 in LA-N-2) and mir-154 (p = 3.5E-12 in LA-N-5) (Figure 5A). Of 
all miR families identified in this analysis, five have previously been associated with SCZ (both 
sexes: let-7, mir-27; male: mir-181, mir-199; female: mir-10), and three with BD and SCZ (both 
sexes: mir-30, male: mir-154, female: mir-17). 

Considering the mechanism of action of miRs, i.e. their multiple-targeting behavior, it is of interest 
how broadly these families act on gene targets. Seeking the per-family mean target count (via 
miRNet), we found that families enriched in only male or female cells had significantly less targets 
than those enriched in both cells (217 vs. 378, Welch two-sample t-test, p = 0.001). Relative to 
their size, 4 families show significantly lower target numbers than all other families: mir-10 (p = 
0.016), mir-192 (p = 0.042), mir-379 (p = 0.011), and mir-515 (p < 0.001) (Figure 5A, right hand 
side). This might indicate a spectrum of functional categories, from broadly acting families such 
as let-7 with sex-independent function to families with narrow target profile such as mir-10, whose 
restricted function can associate with sex-specific impact. 

Enriched families regulate genes involved in immunity, neuronal development and sex 

To assess their putative functions, we performed GO enrichment analysis of the 300 most-targeted 
genes in each of the enriched miR families. This revealed involvement in 1124 biological 
processes, manual curation of which enabled us to infer the functional roles of each family (Figure 
5B, Data S5). Resultant terms related to neuronal development, cytokine- and leukocyte-mediated 
immune processes, and sexual dimorphism. Compatible with the hypothesis of "broad to narrow" 
functioning families, we also found terms with lower incidence and higher specialization in 
subgroups of families. 
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Differentially expressed families self-organize in a force-directed network 

Unbiased graphical network analysis of the 212 DE miRs from all enriched families and their 
12495 targeted genes (via miRNet) yielded a complex interactome. A force-directed algorithm 
(Jacomy et al., 2014) yielded apparent clustering and, in some cases, subdivisions of families 
(Figure 5C). Two main clusters emerged for male and female DE miRs, from families mir-515 and 
mir-17 (female) and families mir-154, -379, -329, -129, -374, and -23 (male). Most other families 
show marginal localization, distributed around the network's edge. Three small families show high 
centrality and high count-change: mir-27, targeting particularly many genes, and the neurokine-
associated mir-10 and mir-199, with lower target count.  

The mir-10 and mir-199 families show sexual dimorphism of expression and ontological 
association to neurokine and circadian mechanisms 

Single members of the mir-10 and mir-199 families were detected in each of the DE categories: 
female only, male only, and similar- as well as opposite-directionally. In the comprehensive 
network, mir-10 and mir-199 form two distinct clusters ("[08a], [12a]" and "[08b], [12b]") 
composed of opposite strands of their respective miR precursors. Ontologically, they associate 
with neurokine and circadian genes. Further, 125a/b-5p (members of mir-10), and 199a/b-5p 
belong to those miRs predicted to target genes expressed in single cholinergic neurons (see Figure 
3E/4E).  

Further analysis requires a closer look into subnetworks (e.g. of individual families), which are 
astoundingly heterogeneous in size, layout, and in their individual sexual dimorphism; a 
comprehensive assessment is outside the scope of this study. Fully interactive versions of all 
individual enriched family networks and further information can be accessed at 
https://slobentanzer.github.io/cholinergic-neurokine; the entire network in tabular format is 
provided as a resource (Data S6). Below, we describe the cholinergic/neurokine subnetwork. 

The cholinergic/neurokine interface 

Creation of a cholinergic/neurokine sub-connectome by gene- and miR-filtering 

To exemplify the proposed complexity reduction technique, we looked for the common 
denominator enclosing all aspects of this study; a limited connectome analysis requires a defined 
set of genes and miRs. In the beginning, we performed an unbiased analysis of sexual dimorphism 
in SCZ and BD, which implicated processes of neuronal, immunological, and circadian origin 
(Figure 1). Since our experimental data is based on cholinergic processes, we compiled a list of 
relevant cholinergic genes (Soreq, 2015), adding to it genes from pathways that had emerged in 
the previous analyses: neurokine signaling and circadian rhythm. Returning to the collection of 
web-available patient data, we subjected this limited set of 76 genes and their 18 neuronal TFs to 
differential expression analysis (Data S7).  

The miRs were gradually filtered by multiple consecutive steps: (i) Permutation analysis of 
comprehensive miR targeting data specific for genes expressed in cholinergic neurons (Figure 3) 
yielded a list of miR candidates that shows overlap with (ii) miRs DE in our two models of 
neurokine-induced cholinergic differentiation (Figure 4). (iii) We included only families of miRs 
we found to be enriched in differential expression (Figure 5). This filtering process yielded 69 
miRs from 12 families (Data S8), which were assembled in a force-directed network with the 94 
genes of the previously compiled list; as a "spike-in", we added miR-132-3p (DE in LA-N-5), a 
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well-studied miR which is known to influence cholinergic processes (Shaked et al., 2009; Shaltiel 
et al., 2013; Hanin et al., 2018). The resultant network (Figure 6A) shows high structural 
homology to the comprehensive Figure 5C network, with similar groupings and spatial 
organization of families.  

mir-10/199 family members are pivotal factors in the cholinergic/neurokine interface 

Of the 23 genes we found perturbed in the re-analyzed SCZ/BD patient data, miR-125a-5p and 
miR-125b-5p targeted 9 genes each, followed by let-7a-3p, let-7f-1-3p, miR-199a-5p, miR-199b-
5p, and miR-30a-5p (targeting 7 genes each). In this sub-connectome, the most-targeted DE genes 
(as indicated by node size) are the circadian regulators CLOCK and RORA, and the neurokine 
pathway genes LIFR and STAT3. Members of mir-10/199 are intricately involved in the control 
of all of these factors, indicated by their closeness and central location. 

mir-10 family member miR-125b-5p is highly differentially expressed in LA-N-2 and LA-N-5 and 
targets AChE 

Of all miRs in the reduced set, hsa-miR-125b-5p exhibits the highest absolute count-change, and 
displays most experimentally validated targeting relationships with cholinergic/neurokine genes, 
targeting several inflammation-related neurokine pathway genes (miRTarBase accessions; IL6: 
MIRT022105, IL6R: MIRT006844, JAK2: MIRT734987, LIF: MIRT001037, LIFR: 
MIRT732494, STAT3: MIRT005006), and other inflammatory pathways (e.g. TNF: 
MIRT733472, IRF4: MIRT004534). Additionally, hsa-miR-125b-5p harbors a seed sequence 
predicting both subunits of the nicotinic α4β2 receptor and AChE as targets.  
To experimentally test the capacity of hsa-miR-125b-5p to impact cholinergic signaling, we 
performed a cell culture luciferase assay, cell death and endogenous enzyme suppression tests on 
the secreted AChE protein (Figure 6 B-D). This analysis revealed functional suppression of AChE 
by miR-125b-5p with similar efficacy to that of the positive control miR-132-3p (Shaked et al., 
2009; Hanin et al., 2018). Lentiviral infection with miR-132 and -125b led to equally efficient 
suppression of luciferase activity in HEK293T cells stably transfected with a plasmid expressing 
luciferase fused to the AChE mRNA 3’-UTR (one-way ANOVA: p = 0.004, Figure 6B). Further, 
lentiviral infection of human monocyte-like U937 cells with miR-125b-5p suppressed endogenous 
AChE hydrolytic activity (one-way ANOVA: p = 0.005, Figure 6C), and co-transfection of miR-
125b-5p with a lentiviral vector expressing a cytotoxic sensor fused to AChE 3’-UTR resulted in 
cell survival with similar efficacy to that of the positive miR-132-3p control in HEK293T cells 
(n = 3, Figure 6D). In addition to the already experimentally validated interactions, this makes hsa-
miR-125b-5p a prime candidate of cholinergic/neurokine mediation.  
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Discussion 
The magnitude of interactions shown by network analyses, further complicated by high between-
tissue variability, presents one of today's largest obstacles in microRNA research. As miRs exert 
individual effects of low impact, the outcome of their cooperative action can be more adequately 
represented by a network approach than by traditional molecular interaction studies (Salta and De 
Strooper, 2017). While experimental validations are necessary, they often significantly exceed the 
scope of scientific publications even for one single miR. On the other hand, purely bioinformatical 
interaction studies lack predictive power, particularly for non-canonical miR targeting, with high 
false positive and false negative rates (Hart et al., 2018). Bioinformatically supported high-
throughput techniques such as short RNA sequencing can serve as an integrative middle ground. 
Our study addresses this purpose by facilitating the identification of manageable numbers of 
interaction partners for deeper analyses of subnetworks involved in specific ontological categories 
of coding genes. We chose the cholinergic/neurokine interface as an example due to our interest 
in cholinergic transmission, which is intrinsically linked to many processes relevant in SCZ/BD 
(Figure 2). Co-expression of cholinergic and neurokine markers in single cortical cells (Figure 3), 
the pro-cholinergic influence of neurokines on our model cell system (Figure 4), and the 
identification of neurokine signalling and circadian rhythm in GO enrichment analysis of specific 
miR families (Figure 5) highlight the relevance of this choice to our current study. 

Limitations 

We chose a human cellular model over in vivo-experimentation for several reasons. First, 
implementation of cholinergic differentiation in the brain of a living animal is not straightforward, 
and individual types of cholinergic neurons are quantitatively inferior to supporting cells in the 
cortex (von Engelhardt et al., 2007). Second, a recent study (Naqvi et al., 2019) demonstrates that 
most sex bias in gene expression has arisen since the last common ancestor of boroeutherian 
mammals (including mouse, rat, dog, macaque, and human), resulting in inadequate representation 
of sexual dimorphism in any non-human model organism; and third, current animal models of SCZ 
and BD do not faithfully represent human pathology, showing no predictive power for clinical 
efficacy of therapeutics (Jones et al., 2011). Additionally, the resolution of differential expression 
analysis in sequencing is much higher in a homogeneous cell population such as neuronal cell 
culture, as sexual dimorphism can also manifest in distinct tissue composition (Naqvi et al., 2019). 
However, this choice also entails limitations: Although very similar, LA-N-2 and LA-N-5 are 
immortalized cells derived from two distinct donating individuals, which must be considered when 
interpreting sexual dimorphisms based on their total transcriptional divergence. Specifically, the 
stronger response of LA-N-5 to CNTF might have influenced the detection limit of miRs 
designated "male" by their lack of detection in LA-N-2, partly leading to the dominant male cluster 
in the comprehensive network. On the other hand, this increases the power of detection of 
"female"-designated miRs (e.g. mir-515), because they were not detected in LA-N-5 cells in spite 
of higher sensitivity. 

Notwithstanding these limitations, we consider our approach a viable alternative in situations 
which require a sophisticated perspective on sexual dimorphisms, particularly in diseases where 
representative animal models are not available. In the present study, we defined ontological 
categories implicated in SCZ/BD dimorphisms via meta-analysis of deposited patient data, 
ascertained co-expression of our principal systems of interest in the context of single cortical cells, 
assessed differential expression via suitable cellular models, and comprehensively analyzed the 
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transcriptional interactions of identified miRs in their genome-scale regulatory network. We used, 
as well as created, comprehensive web-available resources that can aid focused studies by 
generating hypotheses and candidate lists, or by putting experimental results into context. We 
advocate the application of this integrative methodology to make use of the many excellent data 
collections created by modern science.  

The cholinergic/neurokine interface 

Our approach identified a trophic role for neurokine signalling in cortical cholinergic systems, 
particularly for IL-6, distinguishing these cortical neurons from the NGF-dependent basal 
forebrain population. The consistent identification of inflammatory processes across all aspects of 
our integrative study protocol lends further support to the neuroinflammatory aspect of SCZ/BD, 
for example via IL6-mediated temporary overstimulation (Lurie, 2018). Basal neurokine levels in 
the brain are comparatively low, and current methods of measurement do not allow an analysis of 
short-term fluctuations in living human subjects. However, it has been shown that CNTF can 
influence behaviour through its impact on cholinergic neurons in the arcuate nucleus (Couvreur et 
al., 2012). Paracrine control of cholinergic neurons by neurokine-affected supporting cells such as 
glia or astrocytes is also physiologically feasible, pending further analyses.  

Compatible with our previous findings (Cohen et al., 2002), we found a paramount role of CLOCK 
in the mir-10/mir-199 regulatory network, indicating circadian regulation of neurokine control 
over cholinergic signalling. In RNA sequencing of 600 prefrontal cortices of SCZ patients and 
controls, IL6ST (aka gp130), and the host gene for the IL6ST-targeting hsa-miR-335, were among 
the top 50 imprinted genes (Gulyas-Kovacs et al., 2018). While the data used in that study yields 
surprisingly little DE genes, it discovered significant depression of the CNTFR and cholinergic 
receptors, accompanied by an elevation of CLOCK and RORA. Conversely, a knockdown of 
CLOCK in in-vitro differentiated human neurons (Fontenot et al., 2017) caused parallel neurokine 
receptor and cholinergic transcript perturbations, suggesting an intrinsic relationship of these 
systems.  

miRNA families 

Our tests also implicated several novel factors pivotal for control of cholinergic function in BD 
and SCZ pathology. Recently, SCZ and BD have come to be recognized as instances of a spectrum 
of transcriptional perturbations with increasing "transcriptomic severity" from BD to SCZ (Gandal 
et al., 2018). Our approach identified 3 miR families associated with both diseases and 5 associated 
with SCZ, but none were associated with BD alone, retracing the aspect of increasing severity 
from a non-coding perspective. The closely related mir-10 and mir-199 families are intrinsically 
sexually dimorphic, have previously been associated with SCZ (Beveridge and Cairns, 2012; 
Szatkiewicz et al., 2014) and show a comparatively small number of gene targets, predicting a 
focused regulatory role. While individual members of large families such as let-7 or mir-515 often 
show distinct individual target profiles, mir-10 family members demonstrate overlapping 
functional features of their targets, even between their -5p and -3p variants. The evolutionarily 
conserved miR-132-3p, through its suppression of AChE, interrupts the cholinergic modulation of 
acute stress (Shaltiel et al., 2013), immune response (Shaked et al., 2009) and metabolic activities 
(Hanin et al., 2018) and leads to a transient increase of IL-6, which can be mitigated by nicotine 
(Shaked et al., 2009). However, miR-125b-5p but not miR-132-3p may also target the α4β2 
nicotinic receptor subunits, such that its modulation could have an additional impact. Additionally, 
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miR-125b-5p can influence inflammatory processes directly by targeting 5-lipoxygenase (Busch 
et al., 2015), and indirectly via regulation of epigenetic controllers (Zhang et al., 2017). Moreover, 
miR-125b-5p is directly induced by the Vitamin D-receptor (Giangreco et al., 2013), and 
decreased Vitamin D levels are thought to be a risk factor for SCZ/BD development (Cieslak et 
al., 2014). miR-125-5p hence possesses several cholinergic and non-cholinergic features 
potentially relevant to SCZ/BD pathology.  

Our experiments also indicate other miRs as potential mediators of sexually dimorphic cholinergic, 
neurokine, and circadian functions of human neurons. For example, miR-124 is DE between LA-
N-2 and LA-N-5 after neurokine induction. A recent analysis of a complete miR-124 knockout in 
human iPSCs (Kutsche et al., 2018) found extensive subsequent transcriptional perturbations, in 
STAT5B among others, and a shift from glutamate to ACh in the resulting functional neurons. 
Although the authors did not address this cholinergic aspect, their data and ours co-indicate an 
influence of miR-124 on the neuronal cholinergic phenotype. 

Therapy 

At present, treating cognitive malfunctioning through stimulation of the cholinergic system is 
limited to AChE inhibitors and nicotinic/muscarinic agonists (Rowe et al., 2015). Stimulations of 
nicotinic (e.g. α4β2, the α5-subunit, and α7 (Koukouli et al., 2017)) and muscarinic (e.g. M1) 
receptors (Vijayraghavan et al., 2018) display a therapy-limiting lack of specificity for individual 
receptors/subunits. On the other hand,  neurokine-based interventions have repeatedly failed due 
to intolerable side effects, even when applied directly to the brain (Mufson et al., 2009). In 
comparison, antisense oligonucleotide therapeutics can simultaneously target multiple disease-
relevant genes, be it as mimic/antagonist of an existing miR, or a synthetic oligonucleotide aptamer 
engineered for a specific target profile. The success of oligonucleotide therapy will depend on 
calibrating its impact on target genes and achieving a positive balance between target and off-
target effects (Greenberg and Soreq, 2014). Therapy with miR-like molecules can also potentially 
ameliorate tachyphylactic effects by targeting a gene and its regulatory elements at the same time 
(essentially via feed-forward-loops (Guzzi et al., 2015)), as implicated by the nested regulatory 
circuits we observed. Identification of lead molecules for development of therapeutics with defined 
profiles largely depends on an integrative approach combining gene- and TF-targeting. 

Recent clinical advances in personalized medicine involve evaluating the benefit of sex-specific 
therapeutic adjustments in cholinergic medication, at least for Alzheimer's disease (reviewed in 
(Giacobini and Pepeu, 2018)), but the molecular examination of cholinergic systems (e.g., with 
respect to co-expression of sex hormone receptors) has so far been limited to the basal forebrain 
Ch1-4 nuclei. While some of the datasets covered in the present study allow sex-specific analyses, 
many questions concerning sexual dimorphisms remain unaddressed and warrant extensive future 
studies. The advent of single-cell sequencing will hopefully enable application of this methodology 
in actual patient tissues. More immediately, our study paves the way for the investigation of other 
processes by application of our method to other ontological categories, e.g. dopaminergic 
signalling or innate immunity. High quality datasets large enough to allow statistical analyses can 
further enable the extension of this approach to different brain regions and other psychiatric and 
non-psychiatric polygenic disorders such as sporadic Alzheimer’s and Parkinson’s diseases.  
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Figure titles and legends 
Fig. 1. Diverging brain transcriptomes in males and females with SCZ/BD. Differential gene 

expression results of meta-analysis were dually compared: "SCZ vs BD" or "male vs 
female". GO enrichment of the top 100 distinguishing genes in one dimension was 
compared to the other, for each pair of combinations. (A) SCZ-biased genes diverge 
between males and females. (B) BD-biased genes share immunological ontology in both 
males and females. (C) Male-biased genes share immunological ontology in BD and SCZ. 
(D) Female-biased genes diverge between SCZ and BD. 

Fig. 2. The complexity of cholinergic networks in the mammalian brain. (A) Circos overview 
demonstrating the wide-spread interactions of the mammalian brain’s cholinergic systems 
with physiologic and cognitive processes. Projection origin denoted by closeness of 
connector and ideogram (first half clockwise), projection termini by spacing between 
connector and ideogram (second half clockwise). Cholinergic neurons have been shown in 
nuclei Ch1-Ch8 (smaller right half of ideogram) and interneurons in the striatum and cortex 
(outside of ideogram). Functional traits indicated by color of connectors (connector width 
is determined by geometry and has no implied meaning). (B) Brain regions and projection-
trait legend for (A). Grey = anatomical cholinergic structure with unknown function. 

Fig. 3. Single cell sequencing of ChAT/vAChT-positive cortical cells and analysis of their 
expressed transcripts. Expression values were normalized (0-1) for each data set. The 
order of genes in each heatmap reflects transcript clustering rather than level differences. 
Columns represent individual samples from original data (column names in Figure S1). (A) 
Clustered single cell sequences of transgenic mouse somatosensory cortex and 
hippocampus (Zeisel et al., 2015); (B) Clustered single cell sequences from transgenic 
mouse visual cortex (Tasic et al., 2016); (C) Single nucleus sequencing of adult mouse 
hippocampus (Habib et al., 2016); (D) Single cell sequencing of human developing 
neocortex (Darmanis et al., 2015). Cholinergic genes denoted in blue, neurokine receptors 
in orange. (E) Permutation analysis of miR- and TF-targeting data of genes expressed in 
cholinergic cells (via miRNet) identified putative cholinergic/neurokine co-regulators (*: p 
< 0.05, **: p < 0.001). Implicated TFs are regulated by a subset of miRs targeting 
cholinergic genes, indicating nested regulation (details in Data S2). (F-I) Gp130-family 
neurokine, cholinergic, and circadian signaling pathways are controlled by primate-
specific and evolutionarily conserved miRs. miR-targeting of individual genes (colored 
nodes) yields complex transcriptional interaction. Several miRs directly targeting the 
cholinergic pathway also target TFs controlling this pathway (circle and triangle). 

Fig. 4. Cholinergic response to CNTF induces partially overlapping miR changes in female-
and male-originated LA-N-2 and LA-N-5 cells. (A) CNTF differentiation of cells, 
timeline. (B) Bar graph of miRs differentially expressed (DE) during exposure of LA-N-2 
cells to 4,4 nM CNTF (pink), LA-N-5 cells to 440 pM CNTF (blue), or in both (green). 
(C) Time-dose boxplot of CHAT mRNA expression in LA-N-2 during differentiation with 
CNTF. For LA-N-5, see Figure S2. *: p < 0.05, **: p < 0.001. (D) DE miRs overlap 
between LA-N-2 and LA-N-5. miRs DE same- and opposite-directionally show highly 
correlated count-changes (arcsine transformation used because negative values prohibit 
log-fold display). (E) Neurokine-induced DE miRs partly overlap conserved, primate-
specific, and TF-targeting miRs predicted via single cell analysis (Figure 3E). (F) DE miR 
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precursors overlap with known BD- and SCZ-relevant miR precursors (Beveridge and 
Cairns, 2012; Fries et al., 2018).  

Fig. 5. Differentially expressed miR families enriched in LA-N-2 and LA-N-5 cells self-
organize in a comprehensive targeting network. (A) P-values of 17 enriched families 
(left) in LA-N-2 and LA-N-5 (female/male symbol) and mean predicted gene target count 
of each family (right). Color denotes family size (left) or contribution of sex to total target 
numbers (right) as determined via DE context of individual family members. Asterisks 
indicate families with significantly smaller gene target sets (see text). (B) Gene ontology 
topics curated for enriched families. Frequent terms are immune-, neurodevelopment-, or 
sex-related. The mir-10 and mir-199 families show rare association with neurokine 
signaling and circadian rhythm. (C) Comprehensive network of all DE members of 
enriched families targeting 12495 genes self-separates into family-dependent clusters by 
application of a force-directed algorithm (46937 unique interactions). miR node size 
denotes absolute count-change, color denotes DE context. Numbers in brackets correspond 
to panel (A). mir-10 and mir-199 families form two distinct, sexually dimorphic clusters 
near the center of the network (lighter background color). 

Fig. 6. The cholinergic/neurokine interface and experimental validation of AChE targeting 
by hsa-miR-125b. (A) miR families mir-10 and mir-199 pose a sexually dimorphic 
interface of cholinergic, neurokine, and circadian regulation by targeting 
nicotinic/muscarinic (e.g. α4β2, M1) and neurokine receptors, transcriptional regulators of 
cholinergic differentiation (LHX, STAT) and circadian rhythm (CLOCK, RORA), AChE 
and the AChE linker proteins PRIMA1/COLQ, and high affinity choline uptake (HACU). 
Members of mir-10/199 families, "spike-in" miR-132-3p, and their targeted genes are 
shown in color, other miR families that passed the multiple filtering are indicated as areas. 
miR node size corresponds to count-change, gene node size to connectivity, color and 
thicker edges indicate DE context and experimentally validated connections. (B-D) 
Validation experiments of AChE targeting by miR-125b-5p, with miR-132-3p as a positive 
control. (B) Lentiviral expression of miRs-132 and -125b suppresses luciferase fused to the 
3’-UTR of AChE in HEK293T cells. (C) Lentiviral expression of miR-132 and miR-125b 
suppresses the endogenous AChE hydrolytic activity of U937 cells with similar efficacy. 
(D) Life/death assay of stably transfected HEK293T cells carrying the AChE 3’-UTR fused 
to a cytotoxic sensor, and co-transfected with miR-125b-5p, -132-3p, or control plasmids. 
Cells survive in case of binding of miR-132-3p and -125-5p to the 3’-UTR.  
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 
Cell lines 
We employed LA-N-2 (female) (DSMZ Cat# ACC-671, RRID:CVCL_1829) and LA-N-5 (male) 
(DSMZ Cat# ACC-673, RRID:CVCL_0389) cells as our main experimental model system 
(McManaman and Crawford, 1991). The cells were purchased at DSMZ (Braunschweig, 
Germany). These cells respond to differentiation by several neurokines (CNTF, LIF, IL-6) by 
cholinergic differentiation corresponding with elevation of choline acetyltransferase (ChAT), the 
central cholinergic marker (mRNA, protein, and activity) as well as its intronic vesicular ACh-
transporter gene, vAChT (aka SLC18A3). Cells were maintained at 37°C in 8% CO2 atmosphere 
in medium consisting of 1:1 DMEM and RPMI 1640, with 20% FCS, with weekly splits. 
Experiments were performed between splits 2-6 after thawing. 

HEK293T and U937 cells were purchased at ATCC and maintained according to ATCC 
guidelines. Experiments were performed between splits 2-10. 

Human patient data 
We used previously published data sets for several analyses. These comprise several cortical data 
sets in raw format (Affymetrix) from NCBI GEO: GSE35978 (Chen et al., 2013) (SCZ & BD), 
GSE53987 (Iwamoto et al., 2005) (SCZ & BD), GSE12649 (Lanz et al., 2015) (SCZ & BD), 
GSE17612 (Maycox et al., 2009) (SCZ), GSE21138 (Narayan et al., 2008) (SCZ), GSE5392 
(Ryan et al., 2006) (BD); next-generation sequencing from NCBI GEO: GSE80655 (Ramaker et 
al., 2017), GSE106589 (Hoffman et al., 2017), GSE68559 (Webb et al., 2015), GSE96659 
(Fontenot et al., 2017), GSE45642 (Li et al., 2013); data of DLPFC sequencing of 600 SCZ 
patients and controls was obtained from the Common Mind Consortium (http:// 
www.synapse.org/CMC).  
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METHOD DETAILS  
Methodological outline 
Focusing on a well-defined set of genes aims to avoid some of the data loss that occurs when 
patient tissues comprising multiple cell types are homogenized for analysis. This is particularly 
relevant for cortical cholinergic interneurons, where the cell type of interest is numerically inferior, 
and transcriptomic data can be "diluted" by the other, more prominent cell types, such as glia or 
astrocytes. The consequent increase in detection threshold can be re-lowered by reducing the 
number of genes tested. Analysis of single cell datasets can ascertain that the genes analysed are 
representative and fairly unique to the cell type in question, as was the case for cholinergic markers 
in our study, and utmost care should be taken for any gene set of interest and any kind of tissue 
subjected to this kind of analysis. 

Our approach is based on the availability of suitable amounts of patient data in web-available form, 
combined with a standardized pipeline of statistical pre-processing to equilibrate individual 
statistical influences. Regardless of how patient data and the subset of genes of interest are 
selected, the reduction in number of analyzed genes has to be performed after application of the 
linear model to the batch- and covariate-corrected data to avoid interference with correct linear 
regression. Once the expression data (be it array- or sequencing-derived) has been corrected for 
batch effects and covariates, and outliers have been removed, it can be analyzed with a suitable 
differential gene expression algorithm. The resulting, individual datasets should ideally converge 
on similar logFC values, but may also show controversy between individual experiments, which 
can result from a multitude of factors from biological variety to sampling procedures or exact 
tissue composition, all of which have to be interpreted at the discretion of the scientist. 

Neuronal differentiation/short RNA sequencing 

Model 

LA-N-2 and LA-N-5 cells respond to ciliary neurotrophic factor (CNTF) by cholinergic 
differentiation corresponding with elevation of choline acetyltransferase (ChAT), the central 
cholinergic marker (mRNA, protein, and activity) as well as its intronic vesicular ACh-transporter 
gene, vAChT (aka SLC18A3). We measured the changes in short RNA levels following this 
intervention at several time points. 

Differentiation 

To determine effective concentrations of the differentiation agent, we performed a dose-response 
experiment with both cell lines. Cells were seeded at approximately 200 000 cells per well in 12-
well plates, and after 24h incubated with 1, 10, or 100 ng/ml CNTF (Sigma-Aldrich). Dose-
response was measured by qPCR of CHAT mRNA, at time points 30 minutes, 60 minutes, 2 days, 
and 4 days. For each sample, a corresponding control culture was generated. 

RNA extraction for qPCR and sequencing 

RNA was extracted in biological quadruplicates using TRIzol according to the manufacturer´s 
instructions, as described in (Hanin et al., 2018). RNA was precipitated using ethanol, washed, 
and air dried before resuspension in RNAse-free water. Concentration was measured by Nanodrop 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/600932doi: bioRxiv preprint 

https://doi.org/10.1101/600932
http://creativecommons.org/licenses/by-nc-nd/4.0/


2000 (ThermoFisher Scientific), RNA quality was measured via Bioanalyzer 2100 (Agilent). RNA 
quality for all samples was near optimal (RIN > 9). 

Quantitative real-time PCR 

RNA was analyzed on a BioRad CFX96 real-time PCR cycler using PowerUp SYBR Green 
Master Mix (Applied Biosystems) in technical duplicates. Primers were designed using primer3 
and are as follows (5' to 3'): ChAT [FW: CAC TTG GTG TCT GAG CA, RV: AGT TTC TGC 
TGC AGG GTC TC], ACTB (housekeeping) [FW: GCT GTA TTC CCC TCC ATC GT, RV: 
CTT CTC CAT GTC GTC CCA GT]; additional primers were ordered from BioRad, Germany: 
vAChT [PrimePCR "qHsaCED0047922"], RPLP0 (housekeeping) [PrimePCR 
"qHsaCED0038653"]. Data were analyzed with BioRad CFX manager and expression values 
(normalized to housekeeping genes) exported for statistical testing in R.  

Short RNA sequencing 

Short RNA sequencing was performed using Illumina NextSeq 550 according to the 
manufacturer's instructions, after cDNA library preparation using the NEBNext Multiplex Small 
RNA Library Prep Set for Illumina (New England BioLabs) as described (Bekenstein et al., 2017). 
Sequenced reads were aligned to miRBase v21 sequences via miRExpress (Wang et al., 2009) 
(version 2.1.4). Differential expression was determined via R/DESeq2 (Love et al., 2014). 

The count-change metric 

We calculated the count-change for individual miRs by combining base mean expression with the 
de-logarithmized fold-change (from DESeq2 output). 

 
𝐶𝐶 =  (𝐵𝑀 × 2𝐿𝐹𝐶)  −  𝐵𝑀 

CC: countChange, BM: baseMean, LFC: log2-fold change 

It is important to note that the count-change metric, by deriving from the base mean expression 
across samples, is dependent on sequencing depth, and thus is not instantly generalizable, for 
instance when comparing different experiments. However, it could be normalized to a degree by 
considering the total amount of raw reads generated from each sample.  

Whole transcriptome meta-analysis 

Data preparation 

We processed web-available patient transcriptome data sets by state-of-the-art procedures, 
analogous to Gandal et al. (Gandal et al., 2018), to generate transcriptional disease profiles. The 
following R packages (Bioconductor) were used according to the developer’s instructions: Raw 
data read, RMA normalization, RNA degradation: affy (Gautier et al., 2004). Batch correction (as 
per chip scan date) involved: sva (Combat) (Johnson et al., 2007). Outliers were removed as 
described in (Gandal et al., 2018). The array probes were annotated via ENSEMBL gene ID, 
database version v75, to ensure congruency with prior analyses, using biomaRt (Durinck et al., 
2009), and were collapsed via the collapseRows function of WGCNA (Langfelder and Horvath, 
2008). Prior to application of the generalized linear mixed model (nlme (Lindstrom and Bates, 
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1990)), datasets were rebalanced and regressed to correct for technical and biological covariate 
influences. 

Regression analysis 

Meta-analysis on all genes present in all datasets (12,391 genes in total) employed a generalized 
linear mixed model to account for variation per dataset and individual, yielding log2-fold change 
(logFC) values for each gene between control and disease, which were correlated between SCZ 
and BD using Spearman’s method (Spearman, 1904). To determine significance, the meta-analysis 
process was repeated 10,000 times with randomized case/control status, forming a permutation 
null distribution of the individual correlation coefficients (Figure S3). Of note, several cholinergic 
and neurokine genes were missing from the whole-genome meta-analysis because of annotation 
deficits (CHRNA7, CHRM1, LHX8, CHKB, PRIMA1, CNTF), and, at this stage, could not be easily 
re-introduced. 

Gene ontology (GO) enrichment analyses 

To focus on the differences, as opposed to the similarities, between BD and SCZ patient brain 
transcriptomes, we performed GO enrichment analysis on the genes showing the highest rank 
differences between datasets (Figure S4), using the R package topGO (Alexa et al., 2006). Briefly, 
we evaluated (smaller) groups of genes for enrichment against a (bigger) background of genes for 
presence in individual GO terms exceeding statistical estimates. The background comprised of the 
first 2000 genes according to the applied rank system, computed as a function of Spearman’s rank 
differences of regression beta values (logFC) between the two compared groups, either as absolute 
values or “as is” (elevation in one group as opposed to the other). The target genes of the analysis 
were defined as the 100 top ranked genes (top 5% of background), unless otherwise stated. 
Statistically significant GO results were compiled and curated for CNS-relevant terms.  

Sex influence on transcriptomic differences 

Studying web-available datasets of non-degenerative mental disease patients revealed that SCZ 
and BD datasets possessed sufficient numbers to allow sex-discriminative meta-analysis of 
statistical significance. Hence, we repeated the above steps for the individual subsets of male and 
female patients, with the sole change of eliminating the covariate regression for sex, as this would 
preclude further analysis of this variable, in 4 distinct GO enrichment group comparisons between 
SCZ-biased, BD-biased, male-biased, and female-biased genes. 

miR-gene-TF-targeting: miRNet 
To address miR-mRNA targeting relations, we developed an integrated miR-targeting graph 
database (‘miRNet’) out of publicly available validated and predicted data, implementing a scoring 
system derived from 10 leading prediction algorithms (Dweep and Gretz, 2015) based on their 
statistical performance at the whole-genome level. To facilitate the selection process, targeting 
data was cumulated by summing the amount of positive “hits” of prediction algorithms (1 point) 
and positive experimental validations (only "strong" evidence, miRTarBase, 10,5 points) of the 
targeting relationship, yielding a targeting score between 0 and 20,5. We found a minimal score of 
6 to suffice for a good balance between type I and II errors. In case of whole-genome interactions, 
this threshold was raised to 7 to enable computational accessibility in all steps (in this case, 
graphical analysis was the bottleneck). The database was supplemented by comprehensive 
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transcription factor targeting data via bioinformatically processed “cap analysis of gene 
expression” (CAGE (Hon et al., 2017)), focusing on brain tissues (Marbach et al., 2016), including 
the tissue-specific transcriptional activities (Figure S5). The code used to create and test this 
database is available in the accompanying repository. A public release is planned, but not 
completed at the moment; requests can be directed at the corresponding author. 

Analyses performed using this database were implemented in R using the ‘RNeo4j’ package. 

Limitations 

Through recent methodical and bioinformatical advances, targeting data of transcription factors 
and miRs has become comprehensive. However, these "complete" datasets are subject to 
limitations derived from the methods used to accumulate raw data. For TF-targeting, CAGE 5' 
peaks were analyzed towards their correlation with gene expression in all available tissues. A 
cholinergic example of limitations derived from this data involves the CHAT gene, which does not 
provide a measurable CAGE peak, leading to non-representation in the targeting dataset. In those 
cases, targeting data acquired through conventional methods have to be substituted, but this cannot 
be easily done for all affected genes, and is also not comprehensive. In the case of miR-targeting, 
validated interactions are based on experimental work mainly performed on rodents, leading to a 
research bias towards evolutionarily conserved miRs. Primate-specific miRs therefore are under-
represented, at least in validated data. 

Permutation targeting analyses 

In the current state of comprehensive data on miR-gene (and TF-gene) targeting, no statements 
can be made with absolute certainty. Thus, an approach which considers relative measures is 
preferable. For this reason, whenever whole-genome/whole-miRnome targeting was concerned, 
we employed random permutation of the prediction dataset or each single predicted miR against a 
randomized background of the same size as the original set (also considering family- and 
precursor-relationships). The resulting null distribution yields a basis for determination of a false 
discovery rate. 

Neurokine-induced miRs and the cholinergic/neurokine pathway 

Gene targets of the 490 differentially regulated miRs following CNTF exposure were determined 
by miRNet query (targeting score minimum of 6). The full network, originally comprising 
~160,000 unique relationships, was re-filtered by raising the threshold to score minimum of 7 to 
be computationally accessible. The resulting network and individual miR-family-subnetworks 
were plotted using a force-directed layout (Force Atlas 2) in gephi. 

Single cell sequencing data set analysis and permutation 

We analyzed 4 web-available datasets of brain single cell gene expression (Darmanis et al., 2015; 
Zeisel et al., 2015; Habib et al., 2016; Tasic et al., 2016) for neurokine signaling transcripts in 
cholinergic neurons, identified by their expression of the ACh-synthesizing enzyme choline 
acetyltransferase (ChAT), and its embedded gene encoding the vesicular acetylcholine transporter 
SLC18A3, also known as vAChT. Raw gene expression data was normalized and then clustered 
and plotted via R/pheatmap (Kolde and Kolde, 2015). The genes expressed in more than one 
sample per dataset were enriched for targeting of TFs and miRs by random permutation analysis 
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(via miRNet), with 10 000 permutations for conserved and primate miR-target relationships, and 
human CNS TF interactions. 

Subset analyses 

Cholinergic genes, transcription factor and neurokine analyses 

To follow our cholinergic interest, we used a recent review (Soreq, 2015) to define a core set of 
genes, adding to it the neurokine and circadian pathway genes indicated in the previous analyses 
(to a total of 76 genes). Via miRNet permutation (Data S2), we identified 18 brain-expressed 
“cholinergic” TFs (p < 0.05) and their CNS transcriptional activity towards each targeted 
cholinergic gene.  These 94 genes (Data S7) were then subjected to differential expression analysis 
in the deposited patient datasets. 

Execution of subset analyses 

To separately analyze male and female data in the original datasets, we repeated the sex-
independent analyses of the identified 94 cholinergic genes and TFs using the limma (Ritchie et 
al., 2015) pipeline. Pre-processing was identical to the whole-transcriptome approach, and dataset 
reduction involved restricting the output table (topTable() function) to the studied genes. This 
further allowed controlling of missing genes of interest by manually solving problems of 
annotation, which in a whole-genome analysis would have led to loss of information on, e.g., the 
nicotinic α7 and stress-responding M1 cholinergic receptors.  

miR-125b-5p validation  
To test binding of hsa-miR-125b-5p to the acetylcholinesterase (AChE) 3’-UTR, we performed 
vector-based assays via suppression of a cytotoxic sensor as well as of Renilla luciferase, both 
fused to the AChE-3’-UTR. Briefly, the 3’ untranslated region (3’-UTR) of human AChE mRNA 
(Soreq et al., 1990) was cloned into the microRNA Target Selection System plasmid (System 
Biosciences, CA, USA) multiple cloning site, using EcoRI and NotI restriction enzymes (New 
England Biolabs). All plasmids were verified by DNA sequencing. For luciferase assays, 
HEK293T cells were transfected with miRNA Target Selection-AChE-3’UTR, and selected in the 
presence of  Puromycin for 3 weeks.  Stably transfected HEK293T (293T-AChE 3’UTR) cells 
were grown on 12-well plates and infected with lentiviruses expressing miR-125b-5p, miR-132-
3p or a negative control sequence. After 48 hours incubation, cells were analyzed  using the Dual 
Luciferase Assay kit (Promega, WI USA) and Luciferase activity was measured using an Envision 
luminescent plate reader (Perkin-Elmer, Waltham, MA), essentially as previously described 
(Hanin et al., 2014). For each reporter construct, renilla luciferase activity was normalized 
according to that of the firefly. Normalized activity after infection of miR-132-3p or miR-125b-5p 
was expressed as relative to that obtained after infection with the same plasmid with miR negative 
control. For life/death assay, a similar protocol was used. Stably transfected HEK293T (293T-
AChE 3’UTR) cells were infected with lentiviruses expressing miR-125b-5p, miR-132-3p or a 
negative control sequence. 72 hours post-infection a cytotoxic reporter fused to AChE 3'-UTR was 
added to the media and cells were kept for an additional 5 days to assess their viability.  Statistical 
significance was determined using ANOVA with correction for multiple testing. To show effects 
of changes in this miR’s levels on real-life protein activities, we performed an AChE hydrolytic 
activity assay following infection of human monocyte-like U937 cells with hsa-miR-125b-5p, 
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miR-132-3p or a negative control lentiviral vector. AChE hydrolytic activity levels were assessed 
by kinetic measurements of the hydrolysis rates of 1 mM acetylthiocholine (ATCh, Sigma) at room 
temperature, following 20 min incubation with and without 5x10–5 M tetraisopropyl 
pyrophosphoramide (iso-OMPA, Sigma), a specific inhibitor of butyrylcholinesterase, to 
selectively assay for AChE-specific or total cholinesterase activity. Each sample was assayed in at 
least 3 biological replicates. In all cases, hsa-miR-132-3p served as a positive control.  
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QUANTIFICATION AND STATISTICAL ANALYSIS  
Statistical analyses were performed in R. Small sets of continuous variables, such as qPCR and 
miR-125b-5p validation experiments, were tested using Welch's Two Sample t-test (because in 
most cases, equal variance could not be assumed; R/t.test) and ANOVA; statistical significance 
was assumed at p < 0.05. For sequencing count data, the negative binomial generalized linear 
model was tested using the R/DESeq2 package ("Wald" test including log-fold change shrinkage) 
to detect differentially expressed miRs, using the supplied independent filtering and correction for 
multiple testing at an alpha level of 0.1. In cases where additional power was desirable or p-values 
could not be obtained by other means (transcriptome meta-analysis, whole genome miR-targeting), 
permutation analysis was performed. This comprised random assignment of test variables in the 
same size as the original test set and repeating the analysis for a large number of times, such that 
a null distribution of values could be generated, which can be used to determine a false discovery 
ratio for the original result. Statistical significance was assumed at p < 0.05. 

qPCR of ChAT/vAChT mRNA against housekeeping in LA-N-2, p-values are found in Results 
(Welch two-sample t-test): Chat, Day 2, 10 ng/ml, t = -3.2436, df = 4.9872; 100 ng/ml, t = -2.349, 
df = 4.1296; Day 3, 10 ng/ml, t = -2.8481, df = 6.9658; 100 ng/ml, t = -6.3786, df = 3.3998; Day 
4, 100 ng/ml, t = -9.0836, df = 6.9835. vAChT, Day 2, t = 5.9222, df = 5.3619; Day 4, t = 7.1016, 
df = 4.8784. Number of biological replicates: 4. 

qPCR of ChAT mRNA against housekeeping in LA-N-5, p-values are found in Figure S2 legend 
(Welch two-sample t-test): Day 2, 10 ng/ml, t = -4.5204, df = 3.059; Day 4, 10 ng/ml, t = -4.7639, 
df = 5.0369; 100 ng/ml, t = -4.9161, df = 2.0262. Number of biological replicates: 4. 

Mean absolute count-change LA-N-5 vs LA-N-2, text of Figure 3 (Welch two-sample t-test): t = 
2.6183, df = 1108. Number of compared miRs: 490. 

Target count of families, Figure 5A: enriched in both vs. enriched in one cell, t = 3.1831, df = 73; 
enriched in mir-10 vs. enriched in other sex-independent families, t = -3.28, df = 7.1879. Number 
of compared families: 17 (5 vs 12). 

Validation of miR-125b-5p targeting of AChE, p-values are found in Results (one-way ANOVA): 
Figure 6B, n = 4, f-ratio value 9.19882, df between treatments 2, within treatments 9; Figure 6C, 
control n = 5, 125b n = 4, 132 n = 3, f-ratio value 11.59814, df between treatments 2, within 
treatments 8. N refers to biological replicates.  
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Fig. S1, Single-cell sequencing expression heatmaps with original sample annotation from (A) 

Zeisel et al 2015, (B) Tasic et al 2016, (C) Habib et al 2016, (D) Darmanis et al 2015, 
related to Figure 3. 
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Fig. S2, Dose-response-curve of LA-N-5 during CNTF-induced cholinergic differentiation as 

measured by expression of CHAT mRNA relative to ACTB. Significant differences at 10 
ng/ml CNTF after 2 days (p = 0.019) and 4 days (p = 0.005), and 100 ng/ml after 4 days (p 
= 0.038). Related to Figure 4. 

 
 

 
 
 

 

Fig. S3, Unbiased meta-analysis null distributions of Spearman's rho in sex-independent, male, 
and female datasets, related to STAR Methods - Whole transcriptome meta-analysis, 
Figure 1. 
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Fig. S4, Spearman rank-differences between any two compared conditions in the GO-enrichment 
of beta-values from unbiased meta-analysis, related to STAR Methods - Whole 
transcriptome meta-analysis, Figure 1. 

 

 

Fig. S5, Density plots of transcriptional activities in analysed CNS brain regions derived from the 
dataset of Marbach et al 2016 (top 1% most active transcription factors in each brain 
region), related to STAR Methods - miR-gene-TF targeting. 
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