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Abstract 40 

One of the most powerful excitatory synapses in the entire brain is formed by cerebellar 41 

climbing fibers, originating from neurons in the inferior olive, that wrap around the proximal 42 

dendrites of cerebellar Purkinje cells. The activation of a single olivary neuron is capable of 43 

generating a large electrical event, called “complex spike”, at the level of the postsynaptic 44 

Purkinje cell, comprising of a fast initial spike of large amplitude followed by a slow 45 

polyphasic tail of small amplitude spikelets. Several ideas discussing the role of the 46 

cerebellum in motor control are centered on these complex spike events. However, these 47 

events are extremely rare, only occurring 1-2 times per second. As a result, drawing 48 

conclusions about their functional role has been very challenging, as even few errors in their 49 

detection may change the result. Since standard spike sorting approaches cannot fully handle 50 

the polyphasic shape of complex spike waveforms, the only safe way to avoid omissions and 51 

false detections has been to rely on visual inspection of long traces of Purkinje cell recordings 52 

by experts. Here we present a supervised deep learning algorithm for rapidly and reliably 53 

detecting complex spikes as an alternative to tedious visual inspection. Our algorithm, 54 

utilizing both action potential and local field potential signals, not only detects complex spike 55 

events much faster than human experts, but it also excavates key features of complex spike 56 

morphology with a performance comparable to that of such experts.   57 

 58 

Key words: Convolutional neural network, complex spike, simple spike, LFP, action 59 

potentials, cerebellum   60 
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Significance statement 65 

Climbing fiber driven “complex spikes”, fired at perplexingly low rates, are known to play a 66 

crucial role in cerebellum-based motor control. Careful interpretations of these spikes require 67 

researchers to manually detect them, since conventional online or offline spike sorting 68 

algorithms (optimized for analyzing the much more frequent “simple spikes”) cannot be fully 69 

trusted. Here, we present a deep learning approach for identifying complex spikes, which is 70 

trained on local field and action potential recordings from cerebellar Purkinje cells. Our 71 

algorithm successfully identifies complex spikes, along with additional relevant 72 

neurophysiological features, with an accuracy level matching that of human experts, yet with 73 

very little time expenditure.            74 

 75 
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Introduction 86 

The Purkinje cell (PC) output, the sole output of the cerebellar cortex, is characterized by two 87 

distinct types of responses (Fig. 1A, bottom), the simple spike (SS) and the complex spike 88 

(CS) (Thach, 1968). SSs are ordinary sodium-potassium spikes with a simple bi- or tri-phasic 89 

shape in extracellular recordings (Fig. 1B). These spikes, lasting only a fraction of a 90 

millisecond and firing up to several hundred times per second, reflect the concerted impact of 91 

mossy fiber input, mediated via the granule cell-parallel fiber system, as well as inhibitory 92 

interneurons. On the other hand, an individual CS (Fig. 1C), elicited by a single climbing 93 

fiber originating from the inferior olivary nucleus and pervading the proximal dendrites of a 94 

PC, is characterized by a polyphasic somatic spike consisting of a first back propagated 95 

axonal spike component followed by a series of spikelets riding on a long-lasting, calcium 96 

dependent depolarization (Eccles et al., 1967; Fujita, 1968; Thach, 1968; Llinas and 97 

Sugimori, 1980; Stuart and Häusser, 1994; Davie et al., 2008). In addition to an exceptional 98 

morphology, CSs also exhibit an unusual, perplexingly low firing rate of at most two spikes 99 

per second (Fig. 1A, bottom). What could these infrequent, yet unique events possibly tell us 100 

about their purpose, and what might be the best statistical tool allowing us to unravel the full 101 

extent of information carried by them? These are questions that have kept researchers busy 102 

until today.  103 

Thinking about the role of CSs has been guided by two, not necessarily incompatible, ideas: 104 

motor timing and motor learning. The first idea, championed by Llinás and his coworkers, 105 

was prompted by the characteristic 8-10 Hz rhythmicity and synchronicity of inferior olivary 106 

neurons, a pattern that seemed to reflect the temporal structure of many forms of motor 107 

behavior, as well as physiological and pathological tremor (Llinas, 1974; Leznik and Llinás, 108 

2005). The second idea emphasized the role of performance errors in driving motor learning. 109 

On experiencing an error, the climbing fiber system is assumed to produce a CS, which helps 110 
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to predictively correct future manifestations of the same motor behavior by modifying the 111 

impact of parallel fibers on targeting PCs (Marr, 1969; Albus, 1971; Ito, 1972). This concept 112 

has indeed received support from a number of experimental studies (Oscarsson, 1980; 113 

Kitazawa et al., 1998; Medina and Lisberger, 2008; Herzfeld et al., 2015, 2018). However, 114 

not all findings have been fully compatible with this so-called Marr-Albus-Ito hypothesis, at 115 

least not in its original form. For instance, recent work on oculomotor learning has suggested 116 

that CS discharge is not only influenced by a current error, but also by a memory of past 117 

errors suitable to stabilize behavioral adaptations (Catz et al., 2005; Dash et al., 2010; Junker 118 

et al., 2018). An analogous influence of past errors on CS discharge has also been noted in 119 

recent studies of eye-blink conditioning (Ohmae and Medina, 2015). Finally, others have 120 

advocated that CSs may not be confined to encoding unexpected errors, but to also offer a 121 

prediction of the multiple kinematic parameters of the upcoming movement (Streng et al., 122 

2017).  123 

Reaching consensus on the diverse views of CS functions would be substantially facilitated 124 

by more data on these sparse neural events, collected in conjunction with advanced 125 

behavioral paradigms. Yet, it is exactly their unique properties of rarity and complex and 126 

highly idiosyncratic spike morphology that have hampered progress. In fact, CS spike 127 

morphology not only differs between individual PCs, but it also often changes over the 128 

course of a single recording from the same PC. This is why using standard spike sorting 129 

software to detect CSs has turned out to be error prone. Critically, given the rarity of CSs, 130 

even a few missing or erroneously detected CS events will have profound impacts on 131 

conclusions drawn about their functional role. Consequently, researchers are compelled to 132 

meticulously label CSs manually, or at least to visually control the CSs detected by 133 

conventional spike sorting approaches, an exhausting approach that constrains the amount of 134 

experimental data that can be processed.   135 
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In this paper, we exploited a state-of-the-art convolutional neural network (CNN) approach to 136 

dramatically reduce the burden of investigators in identifying CSs. We show that our network 137 

is able to learn fast and that it easily matches the performance of an experienced human 138 

expert in detecting CSs. Our algorithm also extracts a number of key parameters on CS 139 

timing and morphology, in a regularized and systematic manner, which we believe is 140 

particularly important for understanding the functional role of CSs.  141 

 142 

 Materials and Methods 143 

Animals, preparation, surgical procedures, and recording methods 144 

Two adult male rhesus macaques (Macaca mulatta) of age 10 (monkey K) and 8 (monkey E) 145 

years, purchased from the German Primate Center, Göttingen, were subjects in this study. 146 

Initial training of all animals required them to voluntarily enter an individually customized 147 

primate chair and get accustomed to the setup environment, a procedure that could last for up 148 

to three months. Following initial training, they underwent the first major surgical procedure 149 

in which foundations of all implants were fixed to the skull using titanium bone screws, and 150 

then allowed to rest for a period of approximately 3-4 months to improve the long-term 151 

stability of the implant foundations. Then, a titanium-based hexagonal tube-shaped head post 152 

was attached to the implanted head holder base to painlessly immobilize the head during 153 

experiments, and scleral search coils were implanted to record eye positions using 154 

electromagnetic induction (Judge et al., 1980; Bechert and Koenig, 1996). Within 2-3 weeks 155 

of recovery from the eye-coil implantation procedure, monkeys quickly recapitulated the 156 

already learned chair-training protocol, and were trained further on their respective 157 

behavioral paradigms. Once fully trained, a cylindrical titanium recording chamber, whose 158 

position and orientation were carefully planned based on pre-surgical MRI and later 159 
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confirmed by post-surgical MRI, was finally mounted on the implanted chamber base, tilting 160 

backwards by an angle of 30° with respect to the frontal plane, right above the midline of the 161 

cerebellum. A part of the skull within the chamber was removed to allow precise electrode 162 

access to our region of interest, the oculomotor vermis (OMV, lobuli VIc/VIIa), for 163 

electrophysiological recordings. All surgical procedures were carried out under aseptic 164 

conditions using general anesthesia, and post-surgical analgesics were delivered until full 165 

recovery. See Prsa et al. (2009) for full details. All experiments and surgical procedures were 166 

approved by the local animal care authority (Regierungspräsidium Tübingen) and complied 167 

with German and European law as well as the National Institutes of Health’s Guide for the 168 

Care and Use of Laboratory Animals. All procedures were carefully monitored by the 169 

veterinary service of Tübingen University. 170 

  171 

Behavioral tasks 172 

In‐house software (NREC), running on a Linux PC (http://nrec.neurologie.uni-tuebingen.de), 173 

was used for data collection, stimulus presentation, and operations control. The two monkeys 174 

were trained on a fatigue inducing repetitive fast eye movements (saccades) task (Fig. 1A, 175 

top; Prsa et al., 2010). A trial started with a red fixation dot (diameter: 0.2°) displayed at the 176 

center of a CRT monitor placed 38 cm in front of the monkey. After a short and variable 177 

fixation period (400-600 ms from trial onset), the fixation dot disappeared and at the same 178 

time, a target, having the same features as the fixation dot, appeared on the horizontal axis at 179 

an eccentricity of 15°. In a given session, the target was presented consistently either on the 180 

left or right of the central fixation dot. The maximum number of trials (>200) per session 181 

depended on the willingness of the monkey to cooperate and on the duration for which a PC 182 

could be kept well isolated. Each trial lasted for 1200 ms, and inter-trial intervals were kept 183 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/600536doi: bioRxiv preprint 

http://nrec.neurologie.uni-tuebingen.de/
https://doi.org/10.1101/600536
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

very short (100 ms) to maximize the induction of fatigue. At the end of every correct trial, 184 

monkeys were rewarded with a drop of water. 185 

  186 

Electrophysiological recordings 187 

Extracellular recordings with commercially available glass-coated tungsten microelectrodes 188 

(impedance: 1-2 MΩ; Alpha Omega Engineering, Nazareth, Israel) were performed using a 189 

modular multi-electrode manipulator (Electrode Positioning System and Multi-Channel 190 

Processor, Alpha Omega Engineering) whose position was estimated, based on the position 191 

and orientation of the chamber relative to the brain, using a stereotactic apparatus and later 192 

confirmed by post-surgical MRI scans. Saccade-related modulation of an intense background 193 

activity, reflecting multi-unit granule cell activity, paralleled by saccade-related modulation 194 

in the local field potential record (LFP, <150 Hz bandwidth) served as electrophysiological 195 

criteria for identifying the OMV (Fig. 1A, middle). Extracellular potentials, sampled at 25 196 

KHz, were high band-pass (300 Hz - 3 KHz) and low-pass filtered (<150 Hz) to differentiate 197 

PC action potentials and LFP signals, respectively (Fig. 1A, bottom).  198 

 199 

Multi Spike Detector: the online spike sorting algorithm  200 

Single PC units were identified online by the presence of a high-frequency SS discharge 201 

accompanied by the signatory, low-frequency CS discharge using a real-time spike sorter, the 202 

Alpha Omega Engineering Multi Spike Detector (MSD). The MSD, designed for detecting 203 

sharp waveforms uses a template matching algorithm developed by Wörgötter et al. (1986), 204 

sorts waveforms according to their shape. The algorithm employs a continuous comparison of 205 

the electrode signal against an 8-point template defined by the experimenter to approximate 206 

the shape of the spike of interest. The sum of squares of the difference between template and 207 

electrode signal is used as a statistical criterion for the goodness of fit. Whenever the 208 
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goodness of fit crosses a threshold, the detection of a spike is reported. The 8-point template 209 

can be adjusted manually or alternatively, run in an adaptive mode that allows it to keep track 210 

of waveforms that may gradually change over time.  211 

 212 

Identification of simple spikes and complex spikes in Purkinje cells 213 

As opposed to short duration SSs (Fig. 1B), characterized by short median inter-spike 214 

intervals (Fig. 1E), the long duration CSs (Fig. 1C) were much more rare. In addition to the 215 

10-20 msec long pause triggered by a CS in the SS firing (e.g. Fig. 1F, Bell and Grimm, 216 

1969; Latham and Paul, 1971; McDevitt et al., 1982), the presence of a CS was also indicated 217 

by a massive deflection of the LFP signal, lasting for the whole duration of a CS (Fig. 1D). 218 

While the MSD-based detection of abundantly available SS events can be trusted most of the 219 

time, since the consequences of erroneously including or missing a few SSs are less 220 

problematic, MSD-based detection of much rarer CS events is error prone, the costs of which 221 

cannot be neglected. Consequently, thorough analysis of PC data often requires 222 

experimenters to visually control the quality of MSD-based detections post-hoc, and many 223 

times, to even manually identify CS events.  224 

 225 

Convolutional neural network 226 

We used the architecture of a CNN that was originally designed to segment images (“U-Net”, 227 

Ronneberger et al., 2015) and later successfully adapted for the detection of saccades in eye 228 

position recordings (“U’n’Eye”; see Bellet et al. (2018) for details). For CS detection, we 229 

input the LFP and action potential signals, sampled at the same frequency of 25 KHz, to the 230 

network (Fig. 2A, top). The output was a bin-wise predictive probability of CS occurrence 231 

(Fig. 2A, bottom).  232 
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The network consists of convolutional and max-pooling layers. Max-pooling is an operation 233 

that down-samples the input in order to reduce the dimensionality of its representation in the 234 

network. It filters the input with a certain window size and extracts only the maximum value. 235 

It then steps further on the input, repeating the same operation on the next time window. 236 

Convolutional layers extract relevant features of the input signal by learning the parameters 237 

of its convolutional kernel during training. We chose the size of the max-pooling (mp) and 238 

convolutional kernels (c) as 7 and 9 bins, respectively. These influence the signal interval (SI) 239 

taken into account for labeling one time bin in the output, as described by the formula, 240 

𝑆𝐼 =
𝑚𝑝2 + (𝑚𝑝2 × 𝑐) + (𝑚𝑝 × 𝑐) − 𝑚𝑝 + 2 × 𝑐 − 2)

2
 

In our case, the SI corresponds to 281 time bins before and after each classified bin.   241 

 242 

Training and testing procedures  243 

We recorded a total of 160 PCs, out of which 119 PCs were selected, based on careful visual 244 

assessment of MSD-based CS detection by a human expert (author AM), for in-depth 245 

statistical analysis. These PCs remained stable throughout the recording session with clearly 246 

isolated CSs and associated signatory SS pauses and LFP deflections. The remaining 41 PCs, 247 

for which it was deemed that MSD-based analysis might have led to spurious detections of 248 

SSs and CSs, were excluded from analysis.   249 

To prepare the training set, we asked our human expert, who is experienced in 250 

electrophysiological recordings from PCs, to visually identify CS events and manually label 251 

their start and end points. The expert used small segments of action potential and LFP 252 

recordings during labeling, without access to eye movement data. For each PC, 24 segments, 253 

each 250 ms long, were manually labeled. To avoid having segments in which a part of a CS 254 

may have been truncated (at the beginning or end of a segment), we excluded the first and 255 

last 9 ms of each segment during training, thereby reducing its size to 232 ms. Since the 256 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/600536doi: bioRxiv preprint 

https://doi.org/10.1101/600536
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

network was trained on the manually labeled data, recording segments from the excluded set 257 

of 41 PCs, for which the MSD-based CS detection was poor but the human expert-based 258 

visual identification was still feasible, were also included for training the network in addition 259 

to the selected set of 119 PCs. The number of recording segments for a given PC included in 260 

training naturally varied with the number of CSs found in the particular cell, but we ensured 261 

including recording segments from all 160 PCs in training.  262 

 263 

Since the MSD-based CS detection in 41 PCs was already unsatisfactory, as stated above, a 264 

comparison based on the performance of our algorithm and the MSD on these particular PCs 265 

would have been too biased in favor of our algorithm. Therefore, to fully test our algorithm’s 266 

performance while still giving the MSD-based approach the benefit of the doubt, we used 267 

cross-validation on recordings from only the selected pool of 119 PCs. For every PC tested 268 

for CS detection, we trained a separate network excluding the currently tested PC from the 269 

training set. This allowed us to test how well the network generalized to new data sets, on 270 

which it had not been trained, and it also allowed us to have multiple performance tests on 271 

our algorithm. Therefore, the training set always comprised the remaining 159 PCs not being 272 

currently tested. The total number of recording segments used in any given training set was 273 

970-988, depending on the PC under test. Other parameters of network training such as loss 274 

function, learning rate, batch size, and early stopping criterion, were chosen as described in 275 

Bellet et al. 2018 for U’n’Eye. 276 

We also performed one more performance test of our algorithm, which was concerned with 277 

establishing consistency with expert labeling. For 7 PCs (out of our 119 selected ones 278 

described above), we asked our human expert to manually label CSs in the entire records, and 279 

not just a small training subset within each of them. This allowed us to directly compare the 280 

labeling of the entire records of these 7 PCs by both our algorithm and the human expert. Our 281 
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algorithm in this case was based on training the network on segments from the remaining 159 282 

PCs (other than the currently tested one), as described above.      283 

 284 

Post-processing 285 

We implemented three post-processing steps to enhance the quality of CSs detected by our 286 

algorithm. First, time shifts between the detected start points of all CSs fired by a particular 287 

PC were corrected by re-aligning them. To this end, we computed the average waveform 288 

from the first estimation of start times of all detected CSs. This average-waveform template 289 

was then used as a reference to realign each waveform within a ±2 ms window around CS 290 

start so that the cross-correlation was maximized (Fig. 2B). Second, action potential and LFP 291 

waveforms, occurring within 2 ms after CS start, were projected onto a two-dimensional 292 

plane (Fig. 2C) using the UMAP dimensionality reduction technique (McInnes et al., 2018). 293 

This allowed us to use the third post-processing step to cluster waveforms into suitable CSs 294 

and unsuitable ones. In this third step, groups of waveforms were identified (Fig. 2D) using 295 

HDBSCAN, a hierarchical clustering algorithm (Campello et al., 2013) that builds a tree to 296 

describe the distance between data points. The algorithm minimizes the spanning size of the 297 

tree and further reduces the complexity of the tree to end up with a minimum number of leaf 298 

nodes, corresponding to the clusters. We used the default parameters for HDBSCAN with the 299 

option to find only one cluster. Waveforms were excluded if they belonged to a cluster for 300 

which the average predictive probability output from the network remained below 0.5 for 301 

more than 3 ms (Fig. 2E). 302 

 303 

Quality metrics 304 

We evaluated the performance of our algorithm in detecting CSs using the so-called F1 score 305 

(Dice, 1945; Sørensen, 1948), which compares the consistency of CS labels predicted by the 306 
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algorithm, to “ground-truth” labels provided by the human expert. The F1 score is the 307 

harmonic mean of recall (the ratio of true positive detections and all true CS labels) and 308 

precision (the ratio of true positive detections and all CS labels predicted by the algorithm), 309 

as given by the following equation  310 

𝐹1 =
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

In our case, an F1 score of 1 would suggest that the CSs predicted by our algorithm perfectly 311 

matched the “ground-truth” labels provided by the human expert. However, a lower F1 score 312 

may suggest that CSs were either erroneously missed or falsely detected. For quality 313 

assessment, we also computed the post-CS firing rate of SSs, a signatory feature immune to 314 

labels detected by the human expert, which served as a reliable and objective criterion for the 315 

identification of a CS. Finally, the resulting CS waveforms were scrutinized by visual 316 

inspection.      317 

 318 

Results 319 

CNN-based algorithm reliably detects complex spikes 320 

The main idea of our approach was to train a classifier to extract relevant features from 321 

electrophysiological recordings of PCs and to identify CSs. This was realized with the help of 322 

a CNN that uses the LFP and action potential signals as inputs (Fig. 2A, top). We chose these 323 

two inputs because human experts achieve consensus on the presence or absence of a CS, 324 

more easily and reliably, if both action potentials and LFPs are simultaneously available. Our 325 

network uses convolutional and max pooling operations to extract the temporal features 326 

relevant for distinguishing CSs from the surrounding signal. In the end, the network predicts 327 

the probability of the presence of a CS for each time bin. Time bins for which the predictive 328 

probability exceeded the threshold of 0.5 are classified as CSs (Fig. 2A, bottom). The 329 
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prediction for each time bin depends on an interval in the input signal whose size is 330 

determined by the size of the max-pooling and convolutional kernels of the CNN (Methods). 331 

Our analysis considered an interval of 281 time bins before and after the time bin containing 332 

a predicted CS event. As our sampling rate was 25 kHz, a 10 ms duration CS would span 250 333 

time bins. This means that the network was often using information surrounding CS events 334 

(281 versus 250 time bins) to classify CSs. 335 

One of the key requirements for correct CS classification is the quality of the recorded PC 336 

signal, which may naturally depend on several factors. For example, subtle drifts between 337 

electrode tip and the cell body during a recording session can lead to sudden or gradual 338 

changes in the signal-to-noise ratio of the PC signal, and potentially change the morphology 339 

of the CS waveform. Also, several SSs firing in close proximity to each other might lead to 340 

complex waveforms that may erroneously be detected as CS events. Furthermore, there is 341 

also a possibility of CS waveforms being modified by the presence of preceding SSs (Servais 342 

et al., 2004; Zang et al., 2018). In order to make our algorithm more resilient to such 343 

influences, we added automatic post-processing steps at the output of the CNN. We first fine-344 

tuned the CS start points (Fig. 2B, Methods), and we then differentiated between candidate 345 

waveforms using a clustering algorithm in a dimensionally-reduced space (Fig. 2C, 346 

Methods). The waveform clusters after dimensionality reduction represented potential 347 

candidates for CSs of the recorded PC. Some of these candidates needed to be excluded. For 348 

example, if the network in the first step mistakenly classified non-CS events as CSs, then the 349 

clustering method would help to refine the classification and exclude these events post-hoc: 350 

amongst the CS events erroneously detected by the network might be SSs that are revealed by 351 

a separate cluster in the two-dimensional space (Fig, 2C and D, black vs. orange and blue). 352 

These false positive events were removed by applying a threshold to the average predictive 353 

probability output of the network of the respective cluster (Fig. 2E). Not only non-CS events 354 
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might have contributed to a distinct cluster separated from the main CS cluster, but true CSs 355 

with slightly deviant waveforms (Fig. 2D orange vs. blue) might also have led to separate 356 

clusters in the two-dimensional space (Fig 2C orange vs. blue). For all CS clusters that met 357 

the defined threshold criterion on predictive probability (Fig. 2E, cluster 1 and 2), the output 358 

of our algorithm, CS timing and corresponding cluster IDs, allowed the user to carefully 359 

inspect each cluster and decide whether to include clusters with deviant, yet true, CSs or not. 360 

 361 

Objective quality measure confirms identity of complex spikes 362 

It is well-established that SS firing rate decreases during 10-20 ms after the emission of a CS 363 

(Bell and Grimm, 1969; Latham and Paul, 1971; McDevitt et al., 1982, Fig. 1F). This 364 

physiological feature, independent of the subjective assessment of the human expert, 365 

provided us with an additional means for objectively measuring the CS labeling quality of our 366 

algorithm. For 119 PCs, we evaluated SS firing rates before and after the occurrence of CSs 367 

detected by our algorithm. As depicted in Fig. 3, CSs identified by the algorithm were 368 

followed by a clear and significant decrease in the neurons’ SS firing rates by 96% on 369 

average (Fig. 3A). In the pre-CS period of 3 to 8 ms, median SS firing rate of the 119 PCs 370 

was 58.7 spikes/s; this dropped to 10.5 spikes/s in the post-CS period of 10-15 ms (Fig. 3B, 371 

Wilcoxon signed-rank test: p = 2.18 x 10
-20

). This indicates a very low probability of false 372 

positive CS detections, since such false positives would increase the apparent post-CS firing 373 

rate of SSs. 374 

 375 

The new algorithm outperforms a widely-used online sorter 376 

The spike sorting application MSD, based on a template matching algorithm suggested by 377 

Wörgötter et al. (1986) for online CS detection, has been widely used by several laboratories 378 
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as an aid in supporting the visual inspection of PC records (e.g. Catz et al., 2005).  This is 379 

why we compared the performance of our CNN-based approach to that of the MSD for the 380 

same 119 PCs used to test the performance of the algorithm in the previous section. Overall, 381 

our algorithm detected 23% more CS events than the MSD (p = 1.4 x 10
-25

,
 
Wilcoxon signed-382 

rank test; Fig. 4A).  In order to objectively quantify the difference in CS detection by our 383 

algorithm and the MSD, and to verify that the additionally detected events were indeed CSs, 384 

we again evaluated the decrease of post-CS SS firing rate. The median decrease of SS firing 385 

rate after CSs detected only by our algorithm and not by the MSD was significantly stronger 386 

than the decrease induced by CSs detected only by the MSD and not by our algorithm (p = 387 

1.4x 10
-5

, Wilcoxon signed-rank test; Fig. 4B). This indicates that the CSs detected by our 388 

algorithm and missed by the MSD were veridical, whereas CSs only detected by the MSD 389 

and not by our algorithm were probably erroneous detections (false positives). This view is 390 

also supported by a consideration of the time course of SS firing rate aligned to the start time 391 

of detected CSs. SS firing rate for CSs only detected by our algorithm and not by the MSD 392 

revealed a peak, approximately 3 ms earlier than in the case of CSs that were detected only 393 

by the MSD (Fig. 4C). This suggests that SSs occurring shortly before a CS altered the 394 

waveform of the latter (Servais et al., 2004) (also see Fig. 2D showing how the amplitude of 395 

the average CS waveform of cluster 2 was reduced), therefore impeding its detection by the 396 

MSD.  397 

We also found that CS waveforms for CSs only detected by our algorithm and not by the 398 

MSD were similar in shape to the CSs detected by both our algorithm and the MSD (Fig. 5, 399 

middle column vs. left). CSs labeled only by the MSD, on the other hand, deviated from this 400 

waveform shape (Fig. 5 right vs. left). This impression clearly also concurs with the weaker 401 

post-CS depression of SS firing rate seen in the pool of CS events detected only by the MSD 402 
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(Fig. 4C). In summary, our algorithm is both more sensitive and less error prone than the 403 

MSD-based detection.   404 

We also evaluated to what extent the predictions from both approaches agreed with labels 405 

from a human expert. To this end, we computed the F1 score (see Methods) on short 406 

recording segments from the same 119 neurons as in the previous section for which we had 407 

“ground-truth” labels from the human expert. The F1 score is a measure of consistency in 408 

performance between an algorithm and the human expert. As shown in Fig. 6, our algorithm 409 

achieved overall higher F1 scores than the MSD, and it also showed much less variability 410 

between the different PC records (Fig. 6A). In fact, for the majority of recorded PCs, our 411 

algorithm agreed with the human expert on all CS labels, reflected by an F1 score of 1. This 412 

indicates that the predictions by our approach are more “human-like” than the ones labeled by 413 

the MSD. To achieve good performance in terms of F1 score, our algorithm also did not need 414 

a lot of training data. With only 50 training records of 232 ms of data each (sampled at 25 415 

kHz), our algorithm outperformed the MSD algorithm (Fig. 6B). Larger training sets, of 416 

course, yielded even higher performance (Fig. 6B). 417 

 418 

CNN approach reaches human expert-level performance 419 

Finally, for 7 PCs, we asked our human expert to fully label the entire recorded data for each 420 

neuron, instead of only a tiny training set (Methods). We then compared the CS labels of our 421 

algorithm to the ones placed by the human expert on the entire records of the neurons 422 

(spanning a time range of approximately 8-14 minutes of neural recording). Overall, the 423 

predictions of our algorithm agreed very well with the human labeling (Fig. 7A). A few 424 

events were identified as CSs by our algorithm but not by the human expert. However, also 425 

the waveforms of these events matched the waveforms of CSs that were labeled by the 426 
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human expert (Fig 7A, cells 3, 5, and 6), indicating that the CSs ignored by the expert were 427 

indeed genuine CSs. For one of the PCs, the waveforms of additionally detected events 428 

indicated that our algorithm mistakenly labeled some SSs as CSs (Fig. 7, cell 7). These false 429 

positive detections, whose average predictive probability remained above the threshold (0.5) 430 

for more than 3 ms and were not removed during automatic post-processing, however, would 431 

appear as isolated clusters after dimensionality reduction (Fig. 2C). Hence, such false 432 

detections could be easily removed post-hoc by inspecting the properties of the CSs in the 433 

respective isolated cluster. For false positive labels, the average duration of pause in SS firing 434 

after these events would also be reduced to the average refractory period of SSs in this 435 

recording.  436 

The comparison with human labels further showed that our algorithm reliably identified the 437 

ends of CSs and, considering knowledge of CS start, provided a quantitative estimate of CS 438 

duration. For the recording segments from the 119 PCs, we compared the end times of all 439 

CSs that were detected by both our algorithm and the human expert. As shown in Fig. 8A, the 440 

estimate of CS end times provided by our algorithm and the human expert differed only very 441 

slightly. Correspondingly, average CS durations per neuron predicted by our algorithm and 442 

the human expert were highly correlated (ρ = 0.78, p = 1.12 x 10
-22

, Spearman correlation; 443 

Fig. 8B). In light of a possible CS duration code supplementing a CS rate code (Yang and 444 

Lisberger, 2014; Herzfeld et al., 2015; Warnaar et al., 2015; Herzfeld et al., 2018; Junker et 445 

al., 2018), it is important to precisely identify the end times of CSs and to track changes in 446 

CS duration in conjunction with behavioral changes even within individual PCs. Our 447 

algorithm was indeed capable of identifying small variations in CS duration similar to the 448 

expert. This is indicated by a strong correlation (ρ = 0.62, p = 6.81 x 10
-92

, Spearman 449 

correlation) of the residuals of human-labeled and algorithm-labeled CS end times of the 450 
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selected 119 PCs, obtained by subtracting the mean CS duration of the respective PC (Fig. 451 

8C). 452 

 453 

Discussion   454 

This study proposes a largely automated approach to CS detection as a sensitive and reliable 455 

alternative to tedious and experience-dependent manual labeling. The approach is based on a 456 

CNN, trained on two input vectors (Fig. 9A), a high frequency band pass signal for the 457 

extraction of action potentials and a simultaneously sampled lower-frequency band pass 458 

signal reflecting LFPs. After training with surprisingly little data, our algorithm outperformed 459 

a widely used spike sorter deploying a user defined template. Moreover, our algorithm also 460 

easily caught up with the performance of an experienced human expert. Searching manually 461 

for rare events like CSs, amidst a sea of high-frequency SS signals, not only requires several 462 

weeks of tedious effort, but, as demonstrated by research on visual search (Wolfe et al., 2005; 463 

Evans et al., 2011), is also error prone, even among experts. Our network renders CS 464 

detection not just feasible, but also, more objective and systematic. Steps describing the 465 

general workflow of our algorithm are summarized in Fig. 9. 466 

 467 

Limitations of conventional spike sorting algorithms 468 

The major challenge that any approach for detecting CSs meets is the polymorphic 469 

complexity of these neural events (Warnaar et al., 2015). The MSD spike sorter relies on user 470 

defined templates to identify distinct spike waveforms. However, no matter how well isolated 471 

a PC neuron may be, spike waveforms may change for internal reasons or because the 472 

position of the neuron relative to the electrode may drift over time. The MSD, like other 473 
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automatic online or offline sorting approaches, tries to accommodate these changes by 474 

adapting the original template. The principal virtue of template adaptation notwithstanding, it 475 

may not be sufficient to keep track of a changing CS or, alternatively, may gradually render 476 

the template indistinguishable from the waveforms of unrelated neural activity (including the 477 

much more frequent SSs in the signal). Hence, the sorter may miss a true CS or falsely 478 

qualify other waveforms as CSs because of similar morphological features. To avoid 479 

erroneous detections and omissions, most analysts resort to manual detection. Experienced 480 

human experts may in principle reach a high level of agreement by using visual search to 481 

identify CS events. However, this approach is very tedious and therefore inevitably 482 

associated with fluctuations of attention, which jeopardizes the analyst´s performance (Wolfe 483 

et al., 2005).  The tediousness of the manual detection approach is increased even further if 484 

attempts are made to pinpoint the times of CS start and end or to identify distinct features of 485 

the CS morphology such as its spikelet architecture (Warnaar et al., 2015). Conventional 486 

spike sorters based on template matching (Catz et al., 2005; Dash et al., 2010; Herzfeld et al., 487 

2015, 2018; Junker et al., 2018) or even simpler voltage-threshold crossings can be useful to 488 

facilitate visual inspection. However, the need to double check detected CS events will 489 

forestall gains in investments of time and effort only minimally.   490 

 491 

Our algorithm is more sensitive and performs better than the online sorter  492 

Our CNN-based algorithm, trained on action potential and LFP signals, clearly outperformed 493 

the MSD. Not only was it more sensitive in detecting more CSs, but it also rejected many 494 

false CSs, as compared to the MSD. This can best be seen in the example of Fig. 2C. In this 495 

figure, the Cluster 1 waveforms, despite sharing a similar shape of the initial spike 496 

component with the genuine CSs in Cluster 3, appeared as a clearly separated group in our 497 
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dimensionally reduced space. These erroneous waveforms were therefore safely rejected. On 498 

the other hand, waveforms belonging to Cluster 2, neighboring the main Cluster 3, were still 499 

accepted due to close resemblance of their features to the genuine ones. 500 

It is likely that there can be interactions between SS occurrence and CS waveform 501 

appearance. Specifically, a study on PCs in non-anaesthetized mice has demonstrated that the 502 

shape of the CS waveform can be altered by preceding SSs (Servais et al., 2004). 503 

Furthermore, recently conducted experiments on climbing fiber responses in PCs have 504 

revealed that the potassium currents, by means of voltage gating in a branch-specific manner, 505 

can regulate the climbing fiber driven calcium ion influx leading to changes in CS waveform 506 

amplitude (Zang et al., 2018). This may explain why the additional CSs detected by our 507 

algorithm might have potentially deceived the online sorter. The genuine nature of the 508 

additional CSs detected by our algorithm was confirmed with the help of another prominent 509 

physiological marker-a pause in spontaneous firing activity of SSs 10-20 ms right after the 510 

occurrence of a CS. The additional CSs that were detected by the online sorter and not by our 511 

algorithm did not show a clear suppression of SS firing. 512 

A major factor, contributing to unsatisfactory performance of conventional sorters, is the fact 513 

that they typically rely only on information from the action potential record, rather than using 514 

complementary information from time synchronized LFP recordings, which is what human 515 

experts would do when searching PC recordings for CSs. In accordance with a very recent 516 

Principal Component Analysis (PCA) based approach (Zur and Joshua, 2019), demonstrating 517 

improved CS sorting by exploiting LFP frequency bands, the high performance of our 518 

algorithm in detecting CSs also critically relies on the use of LFP signals. The virtue of the 519 

PCA-based approach notwithstanding, it is clearly outperformed by our network.  First, our 520 

approach gives a good estimate of CS occurrence without requiring a subsequent manual 521 

selection of the cluster in a principal component space. Second, as compared to the PCA, the 522 
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UMAP dimensionality reduction technique is more resistant to changes in waveform shape, 523 

such as reductions in waveform amplitude due to relative shifts in position between electrode 524 

tips and cell bodies. Third, the performance of our algorithm is indifferent to occasional 525 

oscillations that may occur in the LFP signal that may impede the performance of the PCA-526 

based approach, which relies on threshold crossings for event detection. Finally, as discussed 527 

further below, the CNN, but not the PCA, offers precise information on timing, enabling us to 528 

study CS durations much more systematically and objectively.   529 

It is well established (Eccles et al., 1967) that each PC receives input from only one climbing 530 

fiber. Therefore, it is very unlikely to find a second CS with completely different properties 531 

in addition to the first CS in a PC record.  Surprisingly, we found two PCs (see Fig. 9C for an 532 

example) for which the CNN delineated a completely separate, large cluster of CSs in 533 

addition to the main cluster. At first glance, this might have suggested a violation of the 534 

aforementioned architectural principle. However, the CSs found in the respective second 535 

clusters could be easily discarded post-hoc because of the insufficient suppression that they 536 

induced in SS firing as compared to the genuine CSs. Therefore, although rare, even if 537 

genuine CSs that belonged to a neighboring PC (Fig. 9C, seen as much smaller amplitude 538 

waveforms in Cluster 2) were captured by the electrode tip, these CSs could easily be 539 

identified based on their cluster IDs and scrutinized for selection. 540 

To test whether our algorithm could really take over the burden of labeling CSs manually, we 541 

made a one to one comparison of the performance of the CNN and the human expert on 542 

records of 7 PCs for which all CSs had been labeled manually. Indeed, our algorithm's 543 

performance matched the human-level expertise in detecting CSs in all PCs, except for one in 544 

which additional CSs were detected by our algorithm (Fig. 7, Cell 7). The location of these 545 

CSs in a distinct cluster in two dimensional feature space allowed the experimenter to easily 546 
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evaluate the validity of the identification of the waveform as CS and, in this case, to conclude 547 

that it was spurious.    548 

 549 

Our algorithm detects start and end points of CSs with human-level performance  550 

The prevailing idea of CSs serving as the “teaching-signal” for post-synaptic PCs (Marr, 551 

1969; Albus, 1971; Ito, 1972), for which the occurrence of each CS event might be the only 552 

source of relevant information (Rushmer et al., 1976; Gellman et al., 1985), has been 553 

challenged by studies that demonstrated that the duration of action potential bursts fired by 554 

olivary neurons may vary and that this may be reflected by changes in the duration and the 555 

spikelet architecture of CSs (Llinás and Yarom, 1981; Ruigrok and Voogd, 1995; Maruta et 556 

al., 2007; Mathy et al., 2009; Bazzigaluppi et al., 2012; De Gruijl et al., 2012; Rasmussen et 557 

al., 2013; Zang et al., 2018). These observations have suggested that not only the occurrence 558 

of a CS, but also its duration may be relevant for motor learning. Addressing this possibility 559 

requires experimenters to invest even more time to manually label the start and end times of 560 

CS waveforms in addition to just detecting the events themselves. Not surprisingly, given the 561 

amount of time and effort involved, only a handful of attempts have been made to test this 562 

idea (Yang and Lisberger, 2014; Herzfeld et al., 2015, 2018; Junker et al., 2018) with 563 

inconsistent results. In order to achieve consensus, larger data sets collected under more 564 

diverse conditions would have to be explored, a necessity researchers have been reluctant to 565 

meet because of the hassles of the manual timing analysis. Since our CNN-based approach is 566 

able to effortlessly follow the performance of the human expert in detecting the start and end 567 

of the CS waveforms, by applying the expert’s “mental rules” learned during training, 568 

quantifying task related changes in the architecture of CSs collected at different times in an 569 

experiment will become much more feasible in the future. 570 
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Deep learning as a research tool 571 

More broadly, deep learning allows modeling non-linear relationships between input and 572 

output for which no analytical solutions may exist. It is exactly this property of deep learning 573 

that explains why this machine learning approach has recently emerged as a potentially 574 

powerful research tool, which can tremendously reduce the workload of scientists (Ciregan et 575 

al., 2012; Havaei et al., 2017; Oztel et al., 2017; Bellet et al., 2018). In light of recent 576 

developments, in which deep learning has been successfully utilized to not only design 577 

stimuli with controlled higher order statistics (Gatys et al., 2015), but also to model non-578 

linear relationships in neural data (Ecker et al., 2018), it is not hard to imagine that the full 579 

potential of deep learning will significantly boost the pace of neuroscientific research in the 580 

coming years. Certainly, in the case of cerebellar neurophysiology, we believe that our use of 581 

deep learning to detect the rare, but relevant, CS events will allow much renewed 582 

investigation of the contentious functional roles of these events in motor control and beyond. 583 

 584 

Conclusion 585 

So far, all analysis involving CSs has been based on extremely laborious, manual, or semi-586 

automated methods lasting up to several weeks. This enormously slows down the pace of 587 

developments in the field. On the other hand, our deep learning approach can reverse this 588 

reality. For example, for a database like ours (160 PCs), our approach requires the human 589 

expert to invest only 2-3 hours of CS labeling for training purposes and another 3-4 hours to 590 

later verify the results. Given that it takes 3-4 hours to manually label all CSs found in 591 

recordings of just one PC, this investment in time is negligible compared to the alternative of 592 

manually labeling all recorded PCs. Moreover, our automated algorithm performs this task at 593 

par with human experts, and it renders more systematic valuable information about the timing 594 
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and morphology of CS waveforms. The algorithm will be made available for use via an open 595 

source implementation https://github.com/jobellet/detect_CS with provisions for retraining 596 

the network to new users’ own measurements. We strongly believe that the gains in time and 597 

reliability that our tool offers may substantially facilitate the quest for a better understanding 598 

of the roles of the still largely mysterious CSs. 599 

600 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/600536doi: bioRxiv preprint 

https://github.com/jobellet/detect_CS
https://doi.org/10.1101/600536
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 

Figures 601 

 602 

Figure 1. Characteristics of an exemplary Purkinje cell. (A) Local field potential (LFP, 603 

low passed, <150 Hz, middle panel) and action potential (AP, high band-passed, 300 Hz - 3 604 

KHz, bottom panel) activity in relation to horizontal eye movements (top panel). CSs are 605 

marked by asterisks. (B) Isolated SS waveforms aligned on SS start. (C) Isolated CS 606 

waveforms aligned on CS start. (D) LFP responses aligned to CS start. (E) Histogram of 607 

inter-spike intervals of SSs. Solid gray line depicts the median value (13.2 ms). (F) Raster 608 
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plot showing a 17 ms pause in SS activity caused by the occurrence of a CS. Solid black line 609 

represents the mean SS firing rate aligned to CS start.      610 
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 611 
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Figure 2. Pipeline for complex spike detection. (A) Input to the network (LFP and action 612 

potential signal, labels as AP) as well as its output (bin-wise predictive probability for CS 613 

occurrence and binary CS classification). (B) Waveforms aligned to the first estimation of 614 

start times of all CSs detected by the network (upper panel) used for computing an average 615 

waveform that served as a template for realigning the waveforms of all detected CS events 616 

(lower panel). (C) Projection of the waveforms during the time interval shaded in gray in B 617 

onto a two-dimensional plane and identification of clusters in this space. Different colors 618 

indicate distinct clusters. (D) Waveforms of the clusters in (C). Note that Cluster 1 clearly 619 

violates well-known CS waveform shapes. (E) Average predictive probability output of the 620 

network for the events in each cluster. Clusters, whose probability output exceeds the 621 

classification threshold of 0.5 (dashed gray line) for less than 3 ms, are excluded as not 622 

representing CSs (Cluster 1).   623 
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 624 

Figure 3. Decrease of SS rate after CSs. (A) Baseline-normalized mean SS firing rate 625 

aligned to the start of CSs detected by our algorithm. Data shows mean ± SEM over 119 PCs. 626 

Note that the small sharp peak in the SS response, seen immediately after CS start (vertical 627 

dashed line in black), is a result of the detection of initial large components of CSs in some 628 

PCs where these initial components resembled the shape of SSs and were most probably 629 

falsely detected as SSs by the online sorter. (B) Violin plots showing SS firing rate -8 to -3 630 

ms before and 10 to 15 ms after CS start. Each dot represents the average SS firing rate 631 

aligned to start time of all CSs in one PC predicted by our algorithm. Thick lines indicate the 632 

median SS firing rate of all PCs.  633 

 634 
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  636 

 637 

Figure 4. Comparison of CS detection by our algorithm and by the online sorter 638 

application, MSD. (A) Violin plots showing percentage of CSs detected exclusively by our 639 
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algorithm and the online sorter. 100% corresponds to the number of CSs detected by both 640 

methods. Our algorithm detected significantly more CSs than the MSD. (B) Violin plots 641 

showing SS firing rate aligned to the start of the CSs predicted by both algorithms (gray) or 642 

of the events additionally labeled as CSs by either our algorithm (pink) or the online sorter 643 

(beige). The decrease in SS firing after CSs predicted by our algorithm but not by the online 644 

sorter indicates a higher sensitivity of our algorithm. (A and B) Each dot represents the 645 

average SS firing rate aligned to all CSs for the recording of one neuron. Thick lines indicate 646 

the median. (C) Pause in averaged SS firing rate following a CS. Gray shaded region 647 

represents the period of 3-8 ms before and 10-15 ms after CS start used for comparing SS 648 

firing rates in panel B. The sharp increase in SS firing rate approximately 3 ms prior to CS 649 

start (vertical dashed line in black), observed only for CSs detected by our algorithm (pink), 650 

and not the MSD (beige), suggests that these SSs occurring shortly before the start of CSs 651 

might have altered their waveform. Only our algorithm was sensitive enough to detect such 652 

CSs with altered waveforms. Green bars on top show intervals with a significant difference 653 

between the two traces (random permutations cluster-corrected for multiple comparisons).  654 
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 655 

 656 

Figure 5. Waveforms of events labeled as CSs by our algorithm and the online sorter 657 

application MSD. Examples from seven neurons showing the average waveform in the LFP 658 

and action potentials of CSs detected by both methods (left), by our algorithm only (middle) 659 

or by the online sorter only (right).   660 
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 661 

 662 

Figure 6. Classification agreement of our algorithm and the online sorter application 663 

MSD with a human expert. (A) Distribution of F1 scores of our algorithm and the online 664 

sorter computed by comparing CS labels with the human expert. Data from 119 neurons. (B) 665 

F1 score of our algorithm as a function of the number of recording segments used for training 666 

(pink) and F1 score achieved by the online sorter (beige). Think lines indicate the mean and 667 

the shaded area represents 95% confidence interval of the mean obtained by bootstrapping. 668 

 669 

  670 
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 671 

 672 

Figure 7. Waveforms of events labeled as CSs by our algorithm and the human expert. 673 

Examples from seven neurons showing the average waveform in the LFP and action 674 

potentials of CSs detected by both the human expert and our algorithm (left), by our 675 

algorithm only (middle) or by the human expert only (right).  676 
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Figure 8. Comparison of CS end times estimated by our algorithm and by the human 678 

expert. (A) Distribution of difference in CS end times labeled by our algorithm and by the 679 

human expert. Data shows all CSs detected by both our algorithm and the human expert in 680 

short recording segments from 119 neurons. (B) Correlation of CS end times estimated by 681 

our algorithm (network) and the human expert. Each dot shows the average end time of all 682 

CSs from one neuron. (C) Correlation of all CS end times pooled across the 119 neurons. The 683 

end time of each CS was normalized by subtracting the average end time of the respective 684 

neuron.  685 

 686 
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 696 

 697 

Figure 9. Workflow for using our algorithm.  (A) The experimenter selects small segments 698 

of signal containing at least one CS each. Each segment is fed into the neural network in the 699 

form of three matrices containing the action potentials, the LFPs, and the labels separately. 700 

After training, the network outputs a set of weights. (B) The weights are used for evaluating 701 

new signals. (C) The output of the algorithm contains information about waveform shape that 702 

can be grouped in a dimensionality reduced space. This helps manual verifications, for 703 

example by inspecting the pause in SS firing rate after CS events in each cluster. 704 

 705 
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