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Abstract

One of the most powerful excitatory synapses in the entire brain is formed by cerebellar
climbing fibers, originating from neurons in the inferior olive, that wrap around the proximal
dendrites of cerebellar Purkinje cells. The activation of a single olivary neuron is capable of
generating a large electrical event, called “complex spike”, at the level of the postsynaptic
Purkinje cell, comprising of a fast initial spike of large amplitude followed by a slow
polyphasic tail of small amplitude spikelets. Several ideas discussing the role of the
cerebellum in motor control are centered on these complex spike events. However, these
events are extremely rare, only occurring 1-2 times per second. As a result, drawing
conclusions about their functional role has been very challenging, as even few errors in their
detection may change the result. Since standard spike sorting approaches cannot fully handle
the polyphasic shape of complex spike waveforms, the only safe way to avoid omissions and
false detections has been to rely on visual inspection of long traces of Purkinje cell recordings
by experts. Here we present a supervised deep learning algorithm for rapidly and reliably
detecting complex spikes as an alternative to tedious visual inspection. Our algorithm,
utilizing both action potential and local field potential signals, not only detects complex spike
events much faster than human experts, but it also excavates key features of complex spike

morphology with a performance comparable to that of such experts.

Key words: Convolutional neural network, complex spike, simple spike, LFP, action

potentials, cerebellum
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Significance statement

Climbing fiber driven “complex spikes”, fired at perplexingly low rates, are known to play a
crucial role in cerebellum-based motor control. Careful interpretations of these spikes require
researchers to manually detect them, since conventional online or offline spike sorting
algorithms (optimized for analyzing the much more frequent “simple spikes”) cannot be fully
trusted. Here, we present a deep learning approach for identifying complex spikes, which is
trained on local field and action potential recordings from cerebellar Purkinje cells. Our
algorithm successfully identifies complex spikes, along with additional relevant
neurophysiological features, with an accuracy level matching that of human experts, yet with

very little time expenditure.
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86  Introduction

87  The Purkinje cell (PC) output, the sole output of the cerebellar cortex, is characterized by two
88  distinct types of responses (Fig. 1A, bottom), the simple spike (SS) and the complex spike
89  (CS) (Thach, 1968). SSs are ordinary sodium-potassium spikes with a simple bi- or tri-phasic
90 shape in extracellular recordings (Fig. 1B). These spikes, lasting only a fraction of a
91  millisecond and firing up to several hundred times per second, reflect the concerted impact of
92  mossy fiber input, mediated via the granule cell-parallel fiber system, as well as inhibitory
93 interneurons. On the other hand, an individual CS (Fig. 1C), elicited by a single climbing
94  fiber originating from the inferior olivary nucleus and pervading the proximal dendrites of a
95 PC, is characterized by a polyphasic somatic spike consisting of a first back propagated
96  axonal spike component followed by a series of spikelets riding on a long-lasting, calcium
97 dependent depolarization (Eccles et al., 1967; Fujita, 1968; Thach, 1968; Llinas and
98  Sugimori, 1980; Stuart and Hausser, 1994; Davie et al., 2008). In addition to an exceptional
99  morphology, CSs also exhibit an unusual, perplexingly low firing rate of at most two spikes
100 per second (Fig. 1A, bottom). What could these infrequent, yet unique events possibly tell us
101  about their purpose, and what might be the best statistical tool allowing us to unravel the full
102  extent of information carried by them? These are questions that have kept researchers busy

103  until today.

104  Thinking about the role of CSs has been guided by two, not necessarily incompatible, ideas:
105 motor timing and motor learning. The first idea, championed by Llinas and his coworkers,
106  was prompted by the characteristic 8-10 Hz rhythmicity and synchronicity of inferior olivary
107  neurons, a pattern that seemed to reflect the temporal structure of many forms of motor
108  behavior, as well as physiological and pathological tremor (Llinas, 1974; Leznik and Llinas,
109  2005). The second idea emphasized the role of performance errors in driving motor learning.

110  On experiencing an error, the climbing fiber system is assumed to produce a CS, which helps
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111  to predictively correct future manifestations of the same motor behavior by modifying the
112 impact of parallel fibers on targeting PCs (Marr, 1969; Albus, 1971; Ito, 1972). This concept
113  has indeed received support from a number of experimental studies (Oscarsson, 1980;
114  Kitazawa et al., 1998; Medina and Lisberger, 2008; Herzfeld et al., 2015, 2018). However,
115 not all findings have been fully compatible with this so-called Marr-Albus-1to hypothesis, at
116 least not in its original form. For instance, recent work on oculomotor learning has suggested
117  that CS discharge is not only influenced by a current error, but also by a memory of past
118  errors suitable to stabilize behavioral adaptations (Catz et al., 2005; Dash et al., 2010; Junker
119 et al,, 2018). An analogous influence of past errors on CS discharge has also been noted in
120  recent studies of eye-blink conditioning (Ohmae and Medina, 2015). Finally, others have
121  advocated that CSs may not be confined to encoding unexpected errors, but to also offer a
122  prediction of the multiple kinematic parameters of the upcoming movement (Streng et al.,

123 2017).

124  Reaching consensus on the diverse views of CS functions would be substantially facilitated
125 by more data on these sparse neural events, collected in conjunction with advanced
126  behavioral paradigms. Yet, it is exactly their unique properties of rarity and complex and
127  highly idiosyncratic spike morphology that have hampered progress. In fact, CS spike
128  morphology not only differs between individual PCs, but it also often changes over the
129  course of a single recording from the same PC. This is why using standard spike sorting
130 software to detect CSs has turned out to be error prone. Critically, given the rarity of CSs,
131 even a few missing or erroneously detected CS events will have profound impacts on
132  conclusions drawn about their functional role. Consequently, researchers are compelled to
133  meticulously label CSs manually, or at least to visually control the CSs detected by
134  conventional spike sorting approaches, an exhausting approach that constrains the amount of

135  experimental data that can be processed.
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136  Inthis paper, we exploited a state-of-the-art convolutional neural network (CNN) approach to
137  dramatically reduce the burden of investigators in identifying CSs. We show that our network
138 is able to learn fast and that it easily matches the performance of an experienced human
139  expert in detecting CSs. Our algorithm also extracts a number of key parameters on CS
140 timing and morphology, in a regularized and systematic manner, which we believe is

141  particularly important for understanding the functional role of CSs.

142

143 Materials and Methods

144  Animals, preparation, surgical procedures, and recording methods

145  Two adult male rhesus macaques (Macaca mulatta) of age 10 (monkey K) and 8 (monkey E)
146  years, purchased from the German Primate Center, Goéttingen, were subjects in this study.
147  Initial training of all animals required them to voluntarily enter an individually customized
148  primate chair and get accustomed to the setup environment, a procedure that could last for up
149  to three months. Following initial training, they underwent the first major surgical procedure
150 in which foundations of all implants were fixed to the skull using titanium bone screws, and
151 then allowed to rest for a period of approximately 3-4 months to improve the long-term
152  stability of the implant foundations. Then, a titanium-based hexagonal tube-shaped head post
153  was attached to the implanted head holder base to painlessly immobilize the head during
154  experiments, and scleral search coils were implanted to record eye positions using
155  electromagnetic induction (Judge et al., 1980; Bechert and Koenig, 1996). Within 2-3 weeks
156  of recovery from the eye-coil implantation procedure, monkeys quickly recapitulated the
157 already learned chair-training protocol, and were trained further on their respective
158  behavioral paradigms. Once fully trained, a cylindrical titanium recording chamber, whose

159  position and orientation were carefully planned based on pre-surgical MRI and later
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160  confirmed by post-surgical MRI, was finally mounted on the implanted chamber base, tilting
161  backwards by an angle of 30° with respect to the frontal plane, right above the midline of the
162  cerebellum. A part of the skull within the chamber was removed to allow precise electrode
163  access to our region of interest, the oculomotor vermis (OMV, lobuli Vic/VIla), for
164  electrophysiological recordings. All surgical procedures were carried out under aseptic
165 conditions using general anesthesia, and post-surgical analgesics were delivered until full
166  recovery. See Prsa et al. (2009) for full details. All experiments and surgical procedures were
167  approved by the local animal care authority (Regierungsprésidium Tibingen) and complied
168  with German and European law as well as the National Institutes of Health’s Guide for the
169 Care and Use of Laboratory Animals. All procedures were carefully monitored by the
170  veterinary service of Tibingen University.

171

172  Behavioral tasks

173  In-house software (NREC), running on a Linux PC (http://nrec.neurologie.uni-tuebingen.de),

174  was used for data collection, stimulus presentation, and operations control. The two monkeys
175  were trained on a fatigue inducing repetitive fast eye movements (saccades) task (Fig. 1A,
176  top; Prsa et al., 2010). A trial started with a red fixation dot (diameter: 0.2°) displayed at the
177  center of a CRT monitor placed 38 cm in front of the monkey. After a short and variable
178  fixation period (400-600 ms from trial onset), the fixation dot disappeared and at the same
179  time, a target, having the same features as the fixation dot, appeared on the horizontal axis at
180  an eccentricity of 15°. In a given session, the target was presented consistently either on the
181  left or right of the central fixation dot. The maximum number of trials (>200) per session
182  depended on the willingness of the monkey to cooperate and on the duration for which a PC

183  could be kept well isolated. Each trial lasted for 1200 ms, and inter-trial intervals were kept
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184  very short (100 ms) to maximize the induction of fatigue. At the end of every correct trial,
185  monkeys were rewarded with a drop of water.

186

187  Electrophysiological recordings

188  Extracellular recordings with commercially available glass-coated tungsten microelectrodes
189  (impedance: 1-2 MQ; Alpha Omega Engineering, Nazareth, Israel) were performed using a
190 modular multi-electrode manipulator (Electrode Positioning System and Multi-Channel
191  Processor, Alpha Omega Engineering) whose position was estimated, based on the position
192 and orientation of the chamber relative to the brain, using a stereotactic apparatus and later
193  confirmed by post-surgical MRI scans. Saccade-related modulation of an intense background
194  activity, reflecting multi-unit granule cell activity, paralleled by saccade-related modulation
195 in the local field potential record (LFP, <150 Hz bandwidth) served as electrophysiological
196 criteria for identifying the OMV (Fig. 1A, middle). Extracellular potentials, sampled at 25
197  KHz, were high band-pass (300 Hz - 3 KHz) and low-pass filtered (<150 Hz) to differentiate
198  PC action potentials and LFP signals, respectively (Fig. 1A, bottom).

199

200  Multi Spike Detector: the online spike sorting algorithm

201  Single PC units were identified online by the presence of a high-frequency SS discharge
202  accompanied by the signatory, low-frequency CS discharge using a real-time spike sorter, the
203  Alpha Omega Engineering Multi Spike Detector (MSD). The MSD, designed for detecting
204  sharp waveforms uses a template matching algorithm developed by Worgotter et al. (1986),
205  sorts waveforms according to their shape. The algorithm employs a continuous comparison of
206  the electrode signal against an 8-point template defined by the experimenter to approximate
207  the shape of the spike of interest. The sum of squares of the difference between template and

208 electrode signal is used as a statistical criterion for the goodness of fit. Whenever the
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209  goodness of fit crosses a threshold, the detection of a spike is reported. The 8-point template
210  can be adjusted manually or alternatively, run in an adaptive mode that allows it to keep track
211  of waveforms that may gradually change over time.

212

213  Identification of simple spikes and complex spikes in Purkinje cells

214  As opposed to short duration SSs (Fig. 1B), characterized by short median inter-spike
215 intervals (Fig. 1E), the long duration CSs (Fig. 1C) were much more rare. In addition to the
216  10-20 msec long pause triggered by a CS in the SS firing (e.g. Fig. 1F, Bell and Grimm,
217  1969; Latham and Paul, 1971; McDevitt et al., 1982), the presence of a CS was also indicated
218 by a massive deflection of the LFP signal, lasting for the whole duration of a CS (Fig. 1D).
219  While the MSD-based detection of abundantly available SS events can be trusted most of the
220 time, since the consequences of erroneously including or missing a few SSs are less
221  problematic, MSD-based detection of much rarer CS events is error prone, the costs of which
222 cannot be neglected. Consequently, thorough analysis of PC data often requires
223 experimenters to visually control the quality of MSD-based detections post-hoc, and many
224 times, to even manually identify CS events.

225

226 Convolutional neural network

227  We used the architecture of a CNN that was originally designed to segment images (“U-Net”,
228  Ronneberger et al., 2015) and later successfully adapted for the detection of saccades in eye
229  position recordings (“U’n’Eye”; see Bellet et al. (2018) for details). For CS detection, we
230 input the LFP and action potential signals, sampled at the same frequency of 25 KHz, to the
231  network (Fig. 2A, top). The output was a bin-wise predictive probability of CS occurrence

232 (Fig. 2A, bottom).
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233  The network consists of convolutional and max-pooling layers. Max-pooling is an operation
234  that down-samples the input in order to reduce the dimensionality of its representation in the
235  network. It filters the input with a certain window size and extracts only the maximum value.
236 It then steps further on the input, repeating the same operation on the next time window.
237  Convolutional layers extract relevant features of the input signal by learning the parameters
238  of its convolutional kernel during training. We chose the size of the max-pooling (mp) and
239  convolutional kernels (c) as 7 and 9 bins, respectively. These influence the signal interval (SI)
240 taken into account for labeling one time bin in the output, as described by the formula,

_mp®+ (mp? xc)+ (mpXxc)—mp+2xc—2)

SI
2

241  Inour case, the Sl corresponds to 281 time bins before and after each classified bin.

242

243  Training and testing procedures

244  We recorded a total of 160 PCs, out of which 119 PCs were selected, based on careful visual
245  assessment of MSD-based CS detection by a human expert (author AM), for in-depth
246  statistical analysis. These PCs remained stable throughout the recording session with clearly
247  isolated CSs and associated signatory SS pauses and LFP deflections. The remaining 41 PCs,
248  for which it was deemed that MSD-based analysis might have led to spurious detections of
249  SSsand CSs, were excluded from analysis.

250 To prepare the training set, we asked our human expert, who is experienced in
251  electrophysiological recordings from PCs, to visually identify CS events and manually label
252  their start and end points. The expert used small segments of action potential and LFP
253  recordings during labeling, without access to eye movement data. For each PC, 24 segments,
254  each 250 ms long, were manually labeled. To avoid having segments in which a part of a CS
255 may have been truncated (at the beginning or end of a segment), we excluded the first and

256 last 9 ms of each segment during training, thereby reducing its size to 232 ms. Since the
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257  network was trained on the manually labeled data, recording segments from the excluded set
258 of 41 PCs, for which the MSD-based CS detection was poor but the human expert-based
259  visual identification was still feasible, were also included for training the network in addition
260  to the selected set of 119 PCs. The number of recording segments for a given PC included in
261 training naturally varied with the number of CSs found in the particular cell, but we ensured
262 including recording segments from all 160 PCs in training.

263

264  Since the MSD-based CS detection in 41 PCs was already unsatisfactory, as stated above, a
265  comparison based on the performance of our algorithm and the MSD on these particular PCs
266  would have been too biased in favor of our algorithm. Therefore, to fully test our algorithm’s
267  performance while still giving the MSD-based approach the benefit of the doubt, we used
268  cross-validation on recordings from only the selected pool of 119 PCs. For every PC tested
269  for CS detection, we trained a separate network excluding the currently tested PC from the
270  training set. This allowed us to test how well the network generalized to new data sets, on
271  which it had not been trained, and it also allowed us to have multiple performance tests on
272 our algorithm. Therefore, the training set always comprised the remaining 159 PCs not being
273  currently tested. The total number of recording segments used in any given training set was
274 970-988, depending on the PC under test. Other parameters of network training such as loss
275  function, learning rate, batch size, and early stopping criterion, were chosen as described in
276  Bellet et al. 2018 for U'n’Eye.

277  We also performed one more performance test of our algorithm, which was concerned with
278  establishing consistency with expert labeling. For 7 PCs (out of our 119 selected ones
279  described above), we asked our human expert to manually label CSs in the entire records, and
280  not just a small training subset within each of them. This allowed us to directly compare the

281 labeling of the entire records of these 7 PCs by both our algorithm and the human expert. Our

10
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282  algorithm in this case was based on training the network on segments from the remaining 159
283  PCs (other than the currently tested one), as described above.

284

285  Post-processing

286  We implemented three post-processing steps to enhance the quality of CSs detected by our
287  algorithm. First, time shifts between the detected start points of all CSs fired by a particular
288 PC were corrected by re-aligning them. To this end, we computed the average waveform
289  from the first estimation of start times of all detected CSs. This average-waveform template
290 was then used as a reference to realign each waveform within a £2 ms window around CS
291  start so that the cross-correlation was maximized (Fig. 2B). Second, action potential and LFP
292  waveforms, occurring within 2 ms after CS start, were projected onto a two-dimensional
293  plane (Fig. 2C) using the UMAP dimensionality reduction technique (Mclnnes et al., 2018).
294  This allowed us to use the third post-processing step to cluster waveforms into suitable CSs
295  and unsuitable ones. In this third step, groups of waveforms were identified (Fig. 2D) using
296 HDBSCAN, a hierarchical clustering algorithm (Campello et al., 2013) that builds a tree to
297  describe the distance between data points. The algorithm minimizes the spanning size of the
298 tree and further reduces the complexity of the tree to end up with a minimum number of leaf
299  nodes, corresponding to the clusters. We used the default parameters for HDBSCAN with the
300 option to find only one cluster. Waveforms were excluded if they belonged to a cluster for
301  which the average predictive probability output from the network remained below 0.5 for
302  more than 3 ms (Fig. 2E).

303

304  Quality metrics

305 We evaluated the performance of our algorithm in detecting CSs using the so-called F1 score

306 (Dice, 1945; Sgrensen, 1948), which compares the consistency of CS labels predicted by the

11
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307 algorithm, to “ground-truth” labels provided by the human expert. The F1 score is the
308 harmonic mean of recall (the ratio of true positive detections and all true CS labels) and
309 precision (the ratio of true positive detections and all CS labels predicted by the algorithm),
310 as given by the following equation

2 X recall X precision
F1 =

recall + precision

311 Inour case, an F1 score of 1 would suggest that the CSs predicted by our algorithm perfectly
312  matched the “ground-truth” labels provided by the human expert. However, a lower F1 score
313 may suggest that CSs were either erroneously missed or falsely detected. For quality
314  assessment, we also computed the post-CS firing rate of SSs, a signatory feature immune to
315 labels detected by the human expert, which served as a reliable and objective criterion for the
316 identification of a CS. Finally, the resulting CS waveforms were scrutinized by visual
317  inspection.

318

319 Results

320 CNN-based algorithm reliably detects complex spikes

321 The main idea of our approach was to train a classifier to extract relevant features from
322  electrophysiological recordings of PCs and to identify CSs. This was realized with the help of
323 a CNN that uses the LFP and action potential signals as inputs (Fig. 2A, top). We chose these
324  two inputs because human experts achieve consensus on the presence or absence of a CS,
325 more easily and reliably, if both action potentials and LFPs are simultaneously available. Our
326  network uses convolutional and max pooling operations to extract the temporal features
327  relevant for distinguishing CSs from the surrounding signal. In the end, the network predicts
328 the probability of the presence of a CS for each time bin. Time bins for which the predictive

329  probability exceeded the threshold of 0.5 are classified as CSs (Fig. 2A, bottom). The

12
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330 prediction for each time bin depends on an interval in the input signal whose size is
331  determined by the size of the max-pooling and convolutional kernels of the CNN (Methods).
332 Our analysis considered an interval of 281 time bins before and after the time bin containing
333 apredicted CS event. As our sampling rate was 25 kHz, a 10 ms duration CS would span 250
334  time bins. This means that the network was often using information surrounding CS events

335 (281 versus 250 time bins) to classify CSs.

336  One of the key requirements for correct CS classification is the quality of the recorded PC
337  signal, which may naturally depend on several factors. For example, subtle drifts between
338 electrode tip and the cell body during a recording session can lead to sudden or gradual
339 changes in the signal-to-noise ratio of the PC signal, and potentially change the morphology
340 of the CS waveform. Also, several SSs firing in close proximity to each other might lead to
341 complex waveforms that may erroneously be detected as CS events. Furthermore, there is
342  also a possibility of CS waveforms being modified by the presence of preceding SSs (Servais
343 et al.,, 2004; Zang et al., 2018). In order to make our algorithm more resilient to such
344 influences, we added automatic post-processing steps at the output of the CNN. We first fine-
345  tuned the CS start points (Fig. 2B, Methods), and we then differentiated between candidate
346  waveforms using a clustering algorithm in a dimensionally-reduced space (Fig. 2C,
347  Methods). The waveform clusters after dimensionality reduction represented potential
348  candidates for CSs of the recorded PC. Some of these candidates needed to be excluded. For
349  example, if the network in the first step mistakenly classified non-CS events as CSs, then the
350 clustering method would help to refine the classification and exclude these events post-hoc:
351 amongst the CS events erroneously detected by the network might be SSs that are revealed by
352 aseparate cluster in the two-dimensional space (Fig, 2C and D, black vs. orange and blue).
353  These false positive events were removed by applying a threshold to the average predictive

354  probability output of the network of the respective cluster (Fig. 2E). Not only non-CS events
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355  might have contributed to a distinct cluster separated from the main CS cluster, but true CSs
356  with slightly deviant waveforms (Fig. 2D orange vs. blue) might also have led to separate
357  clusters in the two-dimensional space (Fig 2C orange vs. blue). For all CS clusters that met
358 the defined threshold criterion on predictive probability (Fig. 2E, cluster 1 and 2), the output
359  of our algorithm, CS timing and corresponding cluster IDs, allowed the user to carefully
360 inspect each cluster and decide whether to include clusters with deviant, yet true, CSs or not.
361

362  Objective quality measure confirms identity of complex spikes

363 It is well-established that SS firing rate decreases during 10-20 ms after the emission of a CS
364  (Bell and Grimm, 1969; Latham and Paul, 1971; McDevitt et al., 1982, Fig. 1F). This
365 physiological feature, independent of the subjective assessment of the human expert,
366  provided us with an additional means for objectively measuring the CS labeling quality of our
367 algorithm. For 119 PCs, we evaluated SS firing rates before and after the occurrence of CSs
368 detected by our algorithm. As depicted in Fig. 3, CSs identified by the algorithm were
369 followed by a clear and significant decrease in the neurons’ SS firing rates by 96% on
370 average (Fig. 3A). In the pre-CS period of 3 to 8 ms, median SS firing rate of the 119 PCs
371  was 58.7 spikes/s; this dropped to 10.5 spikes/s in the post-CS period of 10-15 ms (Fig. 3B,
372 Wilcoxon signed-rank test: p = 2.18 x 10%). This indicates a very low probability of false
373  positive CS detections, since such false positives would increase the apparent post-CS firing

374  rate of SSs.
375
376  The new algorithm outperforms a widely-used online sorter

377  The spike sorting application MSD, based on a template matching algorithm suggested by

378  Worgotter et al. (1986) for online CS detection, has been widely used by several laboratories
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379 as an aid in supporting the visual inspection of PC records (e.g. Catz et al., 2005). This is
380 why we compared the performance of our CNN-based approach to that of the MSD for the
381 same 119 PCs used to test the performance of the algorithm in the previous section. Overall,
382  our algorithm detected 23% more CS events than the MSD (p = 1.4 x 10, Wilcoxon signed-
383 rank test; Fig. 4A). In order to objectively quantify the difference in CS detection by our
384  algorithm and the MSD, and to verify that the additionally detected events were indeed CSs,
385  we again evaluated the decrease of post-CS SS firing rate. The median decrease of SS firing
386 rate after CSs detected only by our algorithm and not by the MSD was significantly stronger
387  than the decrease induced by CSs detected only by the MSD and not by our algorithm (p =
388  1.4x 10, Wilcoxon signed-rank test; Fig. 4B). This indicates that the CSs detected by our
389  algorithm and missed by the MSD were veridical, whereas CSs only detected by the MSD
390 and not by our algorithm were probably erroneous detections (false positives). This view is
391 also supported by a consideration of the time course of SS firing rate aligned to the start time
392  of detected CSs. SS firing rate for CSs only detected by our algorithm and not by the MSD
393 revealed a peak, approximately 3 ms earlier than in the case of CSs that were detected only
394 Dby the MSD (Fig. 4C). This suggests that SSs occurring shortly before a CS altered the
395 waveform of the latter (Servais et al., 2004) (also see Fig. 2D showing how the amplitude of
396 the average CS waveform of cluster 2 was reduced), therefore impeding its detection by the

397 MSD.

398 We also found that CS waveforms for CSs only detected by our algorithm and not by the
399  MSD were similar in shape to the CSs detected by both our algorithm and the MSD (Fig. 5,
400 middle column vs. left). CSs labeled only by the MSD, on the other hand, deviated from this
401  waveform shape (Fig. 5 right vs. left). This impression clearly also concurs with the weaker

402  post-CS depression of SS firing rate seen in the pool of CS events detected only by the MSD
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403  (Fig. 4C). In summary, our algorithm is both more sensitive and less error prone than the

404  MSD-based detection.

405  We also evaluated to what extent the predictions from both approaches agreed with labels
406  from a human expert. To this end, we computed the F1 score (see Methods) on short
407  recording segments from the same 119 neurons as in the previous section for which we had
408  “ground-truth” labels from the human expert. The F1 score is a measure of consistency in
409  performance between an algorithm and the human expert. As shown in Fig. 6, our algorithm
410 achieved overall higher F1 scores than the MSD, and it also showed much less variability
411  between the different PC records (Fig. 6A). In fact, for the majority of recorded PCs, our
412  algorithm agreed with the human expert on all CS labels, reflected by an F1 score of 1. This
413 indicates that the predictions by our approach are more “human-like” than the ones labeled by
414  the MSD. To achieve good performance in terms of F1 score, our algorithm also did not need
415  a lot of training data. With only 50 training records of 232 ms of data each (sampled at 25
416  kHz), our algorithm outperformed the MSD algorithm (Fig. 6B). Larger training sets, of

417  course, yielded even higher performance (Fig. 6B).

418

419  CNN approach reaches human expert-level performance

420  Finally, for 7 PCs, we asked our human expert to fully label the entire recorded data for each
421  neuron, instead of only a tiny training set (Methods). We then compared the CS labels of our
422  algorithm to the ones placed by the human expert on the entire records of the neurons
423  (spanning a time range of approximately 8-14 minutes of neural recording). Overall, the
424  predictions of our algorithm agreed very well with the human labeling (Fig. 7A). A few
425  events were identified as CSs by our algorithm but not by the human expert. However, also

426  the waveforms of these events matched the waveforms of CSs that were labeled by the
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427  human expert (Fig 7A, cells 3, 5, and 6), indicating that the CSs ignored by the expert were
428 indeed genuine CSs. For one of the PCs, the waveforms of additionally detected events
429 indicated that our algorithm mistakenly labeled some SSs as CSs (Fig. 7, cell 7). These false
430  positive detections, whose average predictive probability remained above the threshold (0.5)
431  for more than 3 ms and were not removed during automatic post-processing, however, would
432  appear as isolated clusters after dimensionality reduction (Fig. 2C). Hence, such false
433  detections could be easily removed post-hoc by inspecting the properties of the CSs in the
434  respective isolated cluster. For false positive labels, the average duration of pause in SS firing
435  after these events would also be reduced to the average refractory period of SSs in this

436  recording.

437  The comparison with human labels further showed that our algorithm reliably identified the
438 ends of CSs and, considering knowledge of CS start, provided a quantitative estimate of CS
439  duration. For the recording segments from the 119 PCs, we compared the end times of all
440  CSs that were detected by both our algorithm and the human expert. As shown in Fig. 8A, the
441  estimate of CS end times provided by our algorithm and the human expert differed only very
442  slightly. Correspondingly, average CS durations per neuron predicted by our algorithm and
443  the human expert were highly correlated (p = 0.78, p = 1.12 x 10%, Spearman correlation;
444  Fig. 8B). In light of a possible CS duration code supplementing a CS rate code (Yang and
445  Lisberger, 2014; Herzfeld et al., 2015; Warnaar et al., 2015; Herzfeld et al., 2018; Junker et
446  al., 2018), it is important to precisely identify the end times of CSs and to track changes in
447  CS duration in conjunction with behavioral changes even within individual PCs. Our
448  algorithm was indeed capable of identifying small variations in CS duration similar to the
449  expert. This is indicated by a strong correlation (p = 0.62, p = 6.81 x 10%?, Spearman

450 correlation) of the residuals of human-labeled and algorithm-labeled CS end times of the
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451  selected 119 PCs, obtained by subtracting the mean CS duration of the respective PC (Fig.

452 8C).

453

454  Discussion

455  This study proposes a largely automated approach to CS detection as a sensitive and reliable
456  alternative to tedious and experience-dependent manual labeling. The approach is based on a
457  CNN, trained on two input vectors (Fig. 9A), a high frequency band pass signal for the
458  extraction of action potentials and a simultaneously sampled lower-frequency band pass
459  signal reflecting LFPs. After training with surprisingly little data, our algorithm outperformed
460 a widely used spike sorter deploying a user defined template. Moreover, our algorithm also
461  easily caught up with the performance of an experienced human expert. Searching manually
462  for rare events like CSs, amidst a sea of high-frequency SS signals, not only requires several
463  weeks of tedious effort, but, as demonstrated by research on visual search (Wolfe et al., 2005;
464  Evans et al., 2011), is also error prone, even among experts. Our network renders CS
465  detection not just feasible, but also, more objective and systematic. Steps describing the

466  general workflow of our algorithm are summarized in Fig. 9.

467

468  Limitations of conventional spike sorting algorithms

469 The major challenge that any approach for detecting CSs meets is the polymorphic
470  complexity of these neural events (Warnaar et al., 2015). The MSD spike sorter relies on user
471  defined templates to identify distinct spike waveforms. However, no matter how well isolated
472 a PC neuron may be, spike waveforms may change for internal reasons or because the

473  position of the neuron relative to the electrode may drift over time. The MSD, like other
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474  automatic online or offline sorting approaches, tries to accommodate these changes by
475  adapting the original template. The principal virtue of template adaptation notwithstanding, it
476  may not be sufficient to keep track of a changing CS or, alternatively, may gradually render
477  the template indistinguishable from the waveforms of unrelated neural activity (including the
478  much more frequent SSs in the signal). Hence, the sorter may miss a true CS or falsely
479  qualify other waveforms as CSs because of similar morphological features. To avoid
480  erroneous detections and omissions, most analysts resort to manual detection. Experienced
481  human experts may in principle reach a high level of agreement by using visual search to
482  identify CS events. However, this approach is very tedious and therefore inevitably
483  associated with fluctuations of attention, which jeopardizes the analyst’s performance (Wolfe
484 et al., 2005). The tediousness of the manual detection approach is increased even further if
485  attempts are made to pinpoint the times of CS start and end or to identify distinct features of
486  the CS morphology such as its spikelet architecture (Warnaar et al., 2015). Conventional
487  spike sorters based on template matching (Catz et al., 2005; Dash et al., 2010; Herzfeld et al.,
488 2015, 2018; Junker et al., 2018) or even simpler voltage-threshold crossings can be useful to
489  facilitate visual inspection. However, the need to double check detected CS events will

490 forestall gains in investments of time and effort only minimally.

491

492  Our algorithm is more sensitive and performs better than the online sorter

493  Our CNN-based algorithm, trained on action potential and LFP signals, clearly outperformed
494  the MSD. Not only was it more sensitive in detecting more CSs, but it also rejected many
495  false CSs, as compared to the MSD. This can best be seen in the example of Fig. 2C. In this
496  figure, the Cluster 1 waveforms, despite sharing a similar shape of the initial spike

497  component with the genuine CSs in Cluster 3, appeared as a clearly separated group in our
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498  dimensionally reduced space. These erroneous waveforms were therefore safely rejected. On
499  the other hand, waveforms belonging to Cluster 2, neighboring the main Cluster 3, were still

500 accepted due to close resemblance of their features to the genuine ones.

501 It is likely that there can be interactions between SS occurrence and CS waveform
502 appearance. Specifically, a study on PCs in non-anaesthetized mice has demonstrated that the
503 shape of the CS waveform can be altered by preceding SSs (Servais et al., 2004).
504  Furthermore, recently conducted experiments on climbing fiber responses in PCs have
505 revealed that the potassium currents, by means of voltage gating in a branch-specific manner,
506 can regulate the climbing fiber driven calcium ion influx leading to changes in CS waveform
507 amplitude (Zang et al., 2018). This may explain why the additional CSs detected by our
508 algorithm might have potentially deceived the online sorter. The genuine nature of the
509 additional CSs detected by our algorithm was confirmed with the help of another prominent
510 physiological marker-a pause in spontaneous firing activity of SSs 10-20 ms right after the
511  occurrence of a CS. The additional CSs that were detected by the online sorter and not by our

512  algorithm did not show a clear suppression of SS firing.

513 A major factor, contributing to unsatisfactory performance of conventional sorters, is the fact
514  that they typically rely only on information from the action potential record, rather than using
515 complementary information from time synchronized LFP recordings, which is what human
516  experts would do when searching PC recordings for CSs. In accordance with a very recent
517  Principal Component Analysis (PCA) based approach (Zur and Joshua, 2019), demonstrating
518 improved CS sorting by exploiting LFP frequency bands, the high performance of our
519  algorithm in detecting CSs also critically relies on the use of LFP signals. The virtue of the
520 PCA-based approach notwithstanding, it is clearly outperformed by our network. First, our
521  approach gives a good estimate of CS occurrence without requiring a subsequent manual

522  selection of the cluster in a principal component space. Second, as compared to the PCA, the
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523  UMAP dimensionality reduction technique is more resistant to changes in waveform shape,
524  such as reductions in waveform amplitude due to relative shifts in position between electrode
525 tips and cell bodies. Third, the performance of our algorithm is indifferent to occasional
526  oscillations that may occur in the LFP signal that may impede the performance of the PCA-
527  based approach, which relies on threshold crossings for event detection. Finally, as discussed
528  further below, the CNN, but not the PCA, offers precise information on timing, enabling us to

529  study CS durations much more systematically and objectively.

530 It is well established (Eccles et al., 1967) that each PC receives input from only one climbing
531 fiber. Therefore, it is very unlikely to find a second CS with completely different properties
532 in addition to the first CS in a PC record. Surprisingly, we found two PCs (see Fig. 9C for an
533 example) for which the CNN delineated a completely separate, large cluster of CSs in
534  addition to the main cluster. At first glance, this might have suggested a violation of the
535 aforementioned architectural principle. However, the CSs found in the respective second
536  clusters could be easily discarded post-hoc because of the insufficient suppression that they
537 induced in SS firing as compared to the genuine CSs. Therefore, although rare, even if
538 genuine CSs that belonged to a neighboring PC (Fig. 9C, seen as much smaller amplitude
539 waveforms in Cluster 2) were captured by the electrode tip, these CSs could easily be

540 identified based on their cluster IDs and scrutinized for selection.

541  To test whether our algorithm could really take over the burden of labeling CSs manually, we
542 made a one to one comparison of the performance of the CNN and the human expert on
543  records of 7 PCs for which all CSs had been labeled manually. Indeed, our algorithm's
544  performance matched the human-level expertise in detecting CSs in all PCs, except for one in
545  which additional CSs were detected by our algorithm (Fig. 7, Cell 7). The location of these

546  CSs in a distinct cluster in two dimensional feature space allowed the experimenter to easily
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547  evaluate the validity of the identification of the waveform as CS and, in this case, to conclude

548 that it was spurious.

549

550  Our algorithm detects start and end points of CSs with human-level performance

551  The prevailing idea of CSs serving as the “teaching-signal” for post-synaptic PCs (Marr,
552  1969; Albus, 1971; Ito, 1972), for which the occurrence of each CS event might be the only
553  source of relevant information (Rushmer et al., 1976; Gellman et al., 1985), has been
554  challenged by studies that demonstrated that the duration of action potential bursts fired by
555  olivary neurons may vary and that this may be reflected by changes in the duration and the
556  spikelet architecture of CSs (Llinas and Yarom, 1981; Ruigrok and Voogd, 1995; Maruta et
557 al., 2007; Mathy et al., 2009; Bazzigaluppi et al., 2012; De Gruijl et al., 2012; Rasmussen et
558 al., 2013; Zang et al., 2018). These observations have suggested that not only the occurrence
559 of a CS, but also its duration may be relevant for motor learning. Addressing this possibility
560  requires experimenters to invest even more time to manually label the start and end times of
561  CS waveforms in addition to just detecting the events themselves. Not surprisingly, given the
562 amount of time and effort involved, only a handful of attempts have been made to test this
563 idea (Yang and Lisberger, 2014; Herzfeld et al., 2015, 2018; Junker et al., 2018) with
564  inconsistent results. In order to achieve consensus, larger data sets collected under more
565  diverse conditions would have to be explored, a necessity researchers have been reluctant to
566  meet because of the hassles of the manual timing analysis. Since our CNN-based approach is
567  able to effortlessly follow the performance of the human expert in detecting the start and end
568 of the CS waveforms, by applying the expert’s “mental rules” learned during training,
569  quantifying task related changes in the architecture of CSs collected at different times in an

570  experiment will become much more feasible in the future.
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571  Deep learning as a research tool

572  More broadly, deep learning allows modeling non-linear relationships between input and
573  output for which no analytical solutions may exist. It is exactly this property of deep learning
574  that explains why this machine learning approach has recently emerged as a potentially
575  powerful research tool, which can tremendously reduce the workload of scientists (Ciregan et
576 al., 2012; Havaei et al., 2017; Oztel et al., 2017; Bellet et al., 2018). In light of recent
577  developments, in which deep learning has been successfully utilized to not only design
578  stimuli with controlled higher order statistics (Gatys et al., 2015), but also to model non-
579 linear relationships in neural data (Ecker et al., 2018), it is not hard to imagine that the full
580 potential of deep learning will significantly boost the pace of neuroscientific research in the
581 coming years. Certainly, in the case of cerebellar neurophysiology, we believe that our use of
582 deep learning to detect the rare, but relevant, CS events will allow much renewed

583 investigation of the contentious functional roles of these events in motor control and beyond.

584

585  Conclusion

586  So far, all analysis involving CSs has been based on extremely laborious, manual, or semi-
587 automated methods lasting up to several weeks. This enormously slows down the pace of
588 developments in the field. On the other hand, our deep learning approach can reverse this
589 reality. For example, for a database like ours (160 PCs), our approach requires the human
590 expert to invest only 2-3 hours of CS labeling for training purposes and another 3-4 hours to
591 later verify the results. Given that it takes 3-4 hours to manually label all CSs found in
592  recordings of just one PC, this investment in time is negligible compared to the alternative of
593  manually labeling all recorded PCs. Moreover, our automated algorithm performs this task at

594  par with human experts, and it renders more systematic valuable information about the timing
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595  and morphology of CS waveforms. The algorithm will be made available for use via an open

596  source implementation https://github.com/jobellet/detect CS with provisions for retraining

597  the network to new users’ own measurements. We strongly believe that the gains in time and
598 reliability that our tool offers may substantially facilitate the quest for a better understanding

599  of the roles of the still largely mysterious CSs.

600
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603  Figure 1. Characteristics of an exemplary Purkinje cell. (A) Local field potential (LFP,
604  low passed, <150 Hz, middle panel) and action potential (AP, high band-passed, 300 Hz - 3
605 KHz, bottom panel) activity in relation to horizontal eye movements (top panel). CSs are
606 marked by asterisks. (B) Isolated SS waveforms aligned on SS start. (C) Isolated CS
607  waveforms aligned on CS start. (D) LFP responses aligned to CS start. (E) Histogram of

608 inter-spike intervals of SSs. Solid gray line depicts the median value (13.2 ms). (F) Raster
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609 plot showing a 17 ms pause in SS activity caused by the occurrence of a CS. Solid black line

610 represents the mean SS firing rate aligned to CS start.
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612  Figure 2. Pipeline for complex spike detection. (A) Input to the network (LFP and action
613  potential signal, labels as AP) as well as its output (bin-wise predictive probability for CS
614  occurrence and binary CS classification). (B) Waveforms aligned to the first estimation of
615  start times of all CSs detected by the network (upper panel) used for computing an average
616  waveform that served as a template for realigning the waveforms of all detected CS events
617  (lower panel). (C) Projection of the waveforms during the time interval shaded in gray in B
618 onto a two-dimensional plane and identification of clusters in this space. Different colors
619 indicate distinct clusters. (D) Waveforms of the clusters in (C). Note that Cluster 1 clearly
620 violates well-known CS waveform shapes. (E) Average predictive probability output of the
621 network for the events in each cluster. Clusters, whose probability output exceeds the
622  classification threshold of 0.5 (dashed gray line) for less than 3 ms, are excluded as not

623  representing CSs (Cluster 1).
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625 Figure 3. Decrease of SS rate after CSs. (A) Baseline-normalized mean SS firing rate
626  aligned to the start of CSs detected by our algorithm. Data shows mean £ SEM over 119 PCs.
627  Note that the small sharp peak in the SS response, seen immediately after CS start (vertical
628  dashed line in black), is a result of the detection of initial large components of CSs in some
629 PCs where these initial components resembled the shape of SSs and were most probably
630 falsely detected as SSs by the online sorter. (B) Violin plots showing SS firing rate -8 to -3
631 ms before and 10 to 15 ms after CS start. Each dot represents the average SS firing rate
632 aligned to start time of all CSs in one PC predicted by our algorithm. Thick lines indicate the

633  median SS firing rate of all PCs.
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Figure 4. Comparison of CS detection by our algorithm and by the online sorter

application, MSD. (A) Violin plots showing percentage of CSs detected exclusively by our
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640 algorithm and the online sorter. 100% corresponds to the number of CSs detected by both
641 methods. Our algorithm detected significantly more CSs than the MSD. (B) Violin plots
642  showing SS firing rate aligned to the start of the CSs predicted by both algorithms (gray) or
643  of the events additionally labeled as CSs by either our algorithm (pink) or the online sorter
644  (beige). The decrease in SS firing after CSs predicted by our algorithm but not by the online
645  sorter indicates a higher sensitivity of our algorithm. (A and B) Each dot represents the
646  average SS firing rate aligned to all CSs for the recording of one neuron. Thick lines indicate
647 the median. (C) Pause in averaged SS firing rate following a CS. Gray shaded region
648  represents the period of 3-8 ms before and 10-15 ms after CS start used for comparing SS
649  firing rates in panel B. The sharp increase in SS firing rate approximately 3 ms prior to CS
650  start (vertical dashed line in black), observed only for CSs detected by our algorithm (pink),
651 and not the MSD (beige), suggests that these SSs occurring shortly before the start of CSs
652  might have altered their waveform. Only our algorithm was sensitive enough to detect such
653  CSs with altered waveforms. Green bars on top show intervals with a significant difference

654  between the two traces (random permutations cluster-corrected for multiple comparisons).
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Figure 5. Waveforms of events labeled as CSs by our algorithm and the online sorter

application MSD. Examples from seven neurons showing the average waveform in the LFP

and action potentials of CSs detected by both methods (left), by our algorithm only (middle)

or by the online sorter only (right).
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663  Figure 6. Classification agreement of our algorithm and the online sorter application
664 MSD with a human expert. (A) Distribution of F1 scores of our algorithm and the online
665  sorter computed by comparing CS labels with the human expert. Data from 119 neurons. (B)
666  F1 score of our algorithm as a function of the number of recording segments used for training
667  (pink) and F1 score achieved by the online sorter (beige). Think lines indicate the mean and
668  the shaded area represents 95% confidence interval of the mean obtained by bootstrapping.
669
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Figure 7. Waveforms of events labeled as CSs by our algorithm and the human expert.

Examples from seven neurons showing the average waveform in the LFP and action

potentials of CSs detected by both the human expert and our algorithm (left), by our

algorithm only (middle) or by the human expert only (right).
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678  Figure 8. Comparison of CS end times estimated by our algorithm and by the human
679  expert. (A) Distribution of difference in CS end times labeled by our algorithm and by the
680  human expert. Data shows all CSs detected by both our algorithm and the human expert in
681  short recording segments from 119 neurons. (B) Correlation of CS end times estimated by
682  our algorithm (network) and the human expert. Each dot shows the average end time of all
683  CSs from one neuron. (C) Correlation of all CS end times pooled across the 119 neurons. The
684  end time of each CS was normalized by subtracting the average end time of the respective
685  neuron.
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698  Figure 9. Workflow for using our algorithm. (A) The experimenter selects small segments
699  of signal containing at least one CS each. Each segment is fed into the neural network in the
700 form of three matrices containing the action potentials, the LFPs, and the labels separately.
701  After training, the network outputs a set of weights. (B) The weights are used for evaluating
702  new signals. (C) The output of the algorithm contains information about waveform shape that
703 can be grouped in a dimensionality reduced space. This helps manual verifications, for
704  example by inspecting the pause in SS firing rate after CS events in each cluster.
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