

1 **Pangenome analysis reveals genetic isolation in *Campylobacter hyoilealis* subspecies adapted to
2 different mammalian hosts**

3

4 Daniela Costa^{1,2}, Simon Lévesque³, Nitin Kumar⁴, Pablo Fresia¹, Ignacio Ferrés¹, Trevor D. Lawley⁴, Gregorio
5 Iraola^{1,5,*}

6

7 ¹ Microbial Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay

8 ² Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay

9 ³ Laboratoire de Santé Publique du Québec, Québec, Canada

10 ⁴ Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom

11 ⁵ Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile

12

13 * Correspondence: Gregorio Iraola, e-mail: giraola@pasteur.edu.uy, Institut Pasteur Montevideo, Montevideo

14 11400, Uruguay

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 **Abstract.** *Campylobacter hyoilealis* is an emerging pathogen currently divided in two subspecies: *C.*
41 *hyoilealis* subsp. *lawsonii* which is restricted to pigs, and *C. hyoilealis* subsp. *hyoilealis* which can
42 be found in a much wider range of mammalian hosts. Despite *C. hyoilealis* has been reported as an
43 emerging pathogen, its evolutionary and host-associated diversification patterns are still vastly unexplored. For
44 this reason, we whole-genome sequenced 13 *C. hyoilealis* subsp. *hyoilealis* strains and performed a
45 comprehensive comparative analysis including publicly available genomes of *C. hyoilealis* subsp.
46 *hyoilealis* and *C. hyoilealis* subsp. *lawsonii* to gain insight into the genomic variation of these
47 differentially-adapted subspecies. Both subspecies are distinct phylogenetic lineages which present a barrier to
48 homologous recombination, suggesting genetic isolation. This is further supported by accessory gene patterns
49 that recapitulate the core genome phylogeny. Additionally, *C. hyoilealis* subsp. *hyoilealis* presents a
50 bigger and more diverse accessory genome, which probably reflects its capacity to colonize different mammalian
51 hosts unlike *C. hyoilealis* subsp. *lawsonii* that is host-restricted. This greater plasticity in the accessory
52 genome of *C. hyoilealis* subsp. *hyoilealis* correlates to a higher incidence of genome-wide
53 recombination events, that may be the underlying mechanism driving its diversification. Concordantly, both
54 subspecies present distinct patterns of gene families involved in genome plasticity and DNA repair like CRISPR-
55 associated proteins and restriction-modification systems. Together, our results provide an overview of the
56 genetic mechanisms shaping the genomes of *C. hyoilealis* subspecies, contributing to understand the
57 biology of *Campylobacter* species that are increasingly found as emerging pathogens.

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79 **Introduction**

80

81 The genus *Campylobacter* consists of a diverse group of bacteria currently classified into 29 species and
82 12 subspecies. Among them, *C. jejuni* and *C. coli* have drawn most of the attention because they are leading
83 causes of human gastroenteritis worldwide¹. However, the recent application of whole-genome sequencing to
84 study bacterial populations has increased the clinical awareness of campylobacteriosis and highlighted the
85 importance of other neglected *Campylobacter* species, like *C. fetus*²⁻⁴, as causative agents of human and animal
86 infections. Among them, *C. hyoilealis* is an emerging pathogen that was first isolated from swine with
87 proliferative enteritis⁵ and has since been sporadically recovered from human infections but also as a commensal
88 from a wide variety of wild, farm and domestic mammals (including cattle, pigs, dogs, hamsters, deer and
89 sheep⁶).

90 *C. hyoilealis* is currently divided in two subspecies, namely *C. hyoilealis* subsp. *lawsonii* and
91 *C. hyoilealis* subsp. *hyoilealis*, based on genetic and phenotypic traits^{9,10}. While *C. hyoilealis*
92 subsp. *hyoilealis* has a broad host range, *C. hyoilealis* subsp. *lawsonii* is restricted to pigs. Some
93 pioneering studies at both genetic and protein levels have suggested that *C. hyoilealis* harbors even further
94 intra-species diversity¹¹⁻¹³ which could facilitate its adaptation to diverse hosts and environments. However,
95 these observations remain to be assessed at higher resolution due to the lack of available genomic data for both
96 subspecies, so the evolutionary forces driving its genetic and ecological distinction have not been explored at the
97 whole-genome level.

98 Here, we whole-genome sequenced 13 *C. hyoilealis* subsp. *hyoilealis* strains isolated from
99 healthy cattle and one strain isolated from a natural watercourse that were sampled on farms located around
100 Sherbrooke, Québec, Canada. By incorporating this information to the available genomes of both subspecies, we
101 performed a pangenome analysis to elucidate the main sources of molecular diversity in both subspecies and the
102 probable genetic mechanisms and functional characteristics that distinguish the host-restricted *C. hyoilealis*
103 subsp. *lawsonii* from the generalist *C. hyoilealis* subsp. *hyoilealis*. Our work provides the first
104 comprehensive analysis of *C. hyoilealis* subspecies at the pangenome level and will guide future efforts to
105 understand the patterns of host-associated evolution in emerging *Campylobacter* pathogens.

106

107 **Results**

108

109 By whole-genome sequencing 13 *C. hyointestinalis* subsp. *hyointestinalis* strains, we enlarged by 45%
110 the current collection of available genomes for *C. hyointestinalis*. Then, by recovering 29 additional genomes of
111 *C. hyointestinalis* subsp. *hyointestinalis* (n = 19) and *C. hyointestinalis* subsp. *lawsonii* (n = 10) from public
112 databases, we built a genomic dataset consisting of 42 genomes (Table 1). These genomes represent strains
113 isolated between 1985 and 2016 from 5 different hosts in 6 different countries. This dataset was subsequently
114 used to apply comparative pangenomic, phylogenetic and ecological approaches to uncover the main sources of
115 genetic variability in *C. hyointestinalis* subspecies.

116

117 ***C. hyointestinalis* subspecies are genetically isolated lineages.** We first reconstructed the species clonal
118 phylogeny starting from a core genome alignment that consisted in 1,320,272 positions (representing 66% of the
119 longest genome), but after removing recombinations only 81,000 positions (representing 6% of the original core
120 genome alignment) remained in the clonal frame. The resulting clonal phylogeny showed a highly structured
121 topology with both subspecies completely separated in two distinct lineages (Fig. 1A, Fig. S1). This observation,
122 together with the clear differences in host distribution suggesting that both subspecies possess isolated ecological
123 niches (Fig. 1B), led us to hypothesize that *C. hyointestinalis* subspecies are undergoing a speciation process
124 driven by host allopatry. Indeed, this was supported by a mean Average Nucleotide Identity (ANI) of ~95%
125 separating *C. hyointestinalis* subsp. *hyointestinalis* from *C. hyointestinalis* subsp. *lawsonii* (Fig. 1C), which is
126 assumed to be a lower boundary to assign bacterial genomes to the same species¹⁴. Further evidence supporting
127 the genetic isolation of both subspecies come from exploring genome-wide recombination patterns, which
128 revealed a strong barrier to homologous recombination between *C. hyointestinalis* subsp. *hyointestinalis* from *C.*
129 *hyointestinalis* subsp. *lawsonii* (with the exception of *C. hyointestinalis* subsp. *hyointestinalis* strains S1499c and
130 006A-0180 that have recombined with *C. hyointestinalis* subsp. *lawsonii* strains) (Fig. 1D). Furthermore, *C.*
131 *hyointestinalis* subsp. *hyointestinalis* seems to be much more recombinogenic than *C. hyointestinalis* subsp.
132 *lawsonii*, as evidenced by a significantly higher proportion of their genomes contained within recombinant
133 regions (Fig. 1E). Together, these results indicate that both *C. hyointestinalis* subspecies are separate lineages
134 with considerable genetic isolation probably product of their ecological distinction, as they colonize different
135 mammalian hosts.

136

137 **Accessory genes discriminate both *C. hyointestinalis* subspecies.** To gain further insight on the genomic
138 evolution of *C. hyointestinalis* subspecies we reconstructed its pangenome. A total of 4,317 gene clusters were
139 identified out of which 3,040 (70%) were accessory genes. The accessory genome median size was 580 (IQR =
140 493-677) and 538 (IQR = 501-575) for *C. hyointestinalis* subsp. *hyointestinalis* and *C. hyointestinalis* subsp.
141 *lawsonii*, respectively. Accordingly, Figure 2A shows a slightly significant difference in the accessory genome
142 size in favor of *C. hyointestinalis* subsp. *hyointestinalis* (p = 0.023, Mann-Whitney U test). This tendency was
143 also observable when calculating the diversity of accessory genes using the inverted Simpson's index for both
144 subspecies (p = 0.00021, Mann-Whitney U test) (Fig. 2B). Accessory gene presence/absence patterns also

145 allowed to completely discriminate between *C. hyointestinalis* subsp. *hyointestinalis* and *C. hyointestinalis*
146 subsp. *lawsonii* using a Principal Components Analysis, indicating that they have subspecies-specific accessory
147 gene repertoires (Fig. 2C). Indeed, 1,562 accessory gene clusters were exclusively found in *C. hyointestinalis*
148 subsp. *hyointestinalis* genomes while only 618 were specific to *C. hyointestinalis* subsp. *lawsonii* genomes.
149 These results support the hypothesis that both subspecies have been diverging isolated from each other for a
150 considerably long time, which probably has impacted the dynamics of their accessory genes and has resulted in
151 specific gene repertoires confined to each subspecies.

152

153 **Functional distinctions in the accessory genome of *C. hyointestinalis* subspecies.** To evaluate possible
154 functional aspects associated to the different accessory genomes distinguishing *C. hyointestinalis* subsp.
155 *hyointestinalis* and *C. hyointestinalis* subsp. *lawsonii*, we performed a functional classification of accessory
156 genes based on the eggNOG database¹⁵. First, we found a complete separation when using functional annotations
157 to perform a Principal Components Analysis ($p = 0.001$, Permanova test), supporting that accessory genomes are
158 functionally different between both subspecies (Fig. 3A). Then, when looking for those functional categories
159 with greatest contribution to discriminate both subspecies, we found that genes involved in DNA replication,
160 recombination and repair presented the most informative patterns to functionally distinguish *C. hyointestinalis*
161 subsp. *hyointestinalis* from *C. hyointestinalis* subsp. *lawsonii* (Fig. 3B). Given this evidence, we then studied
162 two protein families that are involved in DNA recombination and repair like CRISPR-associated proteins (Cas)
163 and restriction-modification (R-M) systems. Figure 4 shows that both the abundance and diversity of these
164 families in *C. hyointestinalis* subsp. *hyointestinalis* and *C. hyointestinalis* subsp. *lawsonii* present opposite
165 patterns. While R-M systems are significantly more abundant and diverse in *C. hyointestinalis* subsp. *lawsonii*
166 (Fig. 4A-B), Cas proteins are significantly more abundant and diverse in *C. hyointestinalis* subsp. *hyointestinalis*
167 (Fig. 4C-D) ($p < 0.01$, Mann-Whitney U test). Together, these results indicate that *C. hyointestinalis* subsp.
168 *hyointestinalis* and *C. hyointestinalis* subsp. *lawsonii* genomes harbor distinct molecular machineries involved in
169 DNA recombination and repair, which are probably influencing the differential plasticity observed in their
170 accessory genomes.

171

172 Discussion

173

174 Recently, the first comparative analysis of multiple *C. hyointestinalis* strains at whole-genome resolution
175 confirmed the previously observed highly diverse nature of this bacterial species. This study revealed a great
176 level of plasticity between *C. hyointestinalis* genomes, with high incidence of recombination and accessory gene
177 gain/loss as the main factors contributing to the observed diversity within this species¹⁶. However, this study was
178 mainly performed using *C. hyointestinalis* subsp. *hyointestinalis* genomes, including a single representative
179 genome of *C. hyointestinalis* subsp. *lawsonii*. This limitation prevented to compare if the observed trends were
180 conserved between both subspecies or if evolutionary forces are differentially impacting their genomes.

181 Accordingly, our work increased the availability of *C. hyoilealis* subsp. *hyoilealis* genomes from a
182 previously unsampled geographic region and by taking advantage of the recent release of novel *C.*
183 *hyoilealis* subsp. *lawsonii* genomes, we performed a comparative pangenome analysis that revealed the
184 main forces underpinning the genomic diversity found in *C. hyoilealis* subsp. *hyoilealis* and *C.*
185 *hyoilealis* subsp. *lawsonii*.

186 *C. hyoilealis* subspecies are ecologically distinct since *C. hyoilealis* subsp. *lawsonii* is
187 restricted to pigs while *C. hyoilealis* subsp. *hyoilealis* is a generalist that colonizes several mammalian
188 species. Host specialization has been observed in other *Campylobacter* species, such as in *C. fetus* lineages that
189 preferably infect cows, humans or reptiles^{4,17}, in phylogenetically distinct *C. coli* isolates from diseased humans
190 or riparian environments¹⁸, and in global clonal complexes of *C. jejuni* with differential host preferences¹⁹. In
191 most of these cases, strong lineage-specific recombination and accessory gene gain/loss patterns have been
192 identified, concordantly to what is expected for bacterial lineages that undergo ecological isolation. For example,
193 the barrier to homologous recombination evidenced between *C. hyoilealis* subspecies has been also detected
194 between mammal- and reptile-associated *C. fetus* subspecies¹⁷, and lineage-specific recombination patterns have
195 been found in the *C. jejuni* clonal complex ST-403 that is unable to colonize chicken²⁰. Interestingly, this is
196 correlated with the presence of lineage-specific repertoires of R-M systems, as well as we observed between *C.*
197 *hyoilealis* subspecies. Moreover, other molecular mechanisms involved in genome plasticity like
198 CRISPR/Cas systems are unevenly distributed in agricultural or non-agricultural *C. jejuni/coli* genomes²¹,
199 indicating that these systems are differentially present in ecologically distinct niches resembling again the
200 patterns we observed between *C. hyoilealis* subspecies.

201 The maintenance of lineage-specific repertoires of molecular machineries that modulate genome
202 plasticity is probably an extended mechanism in *Campylobacter*, considering that recombination is an important
203 evolutionary force for the adaptation and acquisition of a host signature in well-known *Campylobacter*
204 pathogens²². In general, adaptation occurs in favor of gradual host specialization, but generalism is also widely
205 observed in nature, for example in extremely successful *C. jejuni* lineages that can be found in high prevalence
206 from both agricultural sources or human infections²³. A generalist phenotype can be thought as an advantage for
207 bacteria that colonize farm animals, since it allows the subsistence in multiple mammalian species that thrive in
208 close proximity. However, this also represents an increased risk for zoonotic transmission since these animals
209 are usually in contact with humans. Indeed, this scenario is reflected in *C. hyoilealis* subspecies, given that
210 the generalist *C. hyoilealis* subsp. *hyoilealis* has been frequently isolated from human infections in
211 contrast to *C. hyoilealis* subsp. *lawsonii* that is restricted to pigs and very infrequently reported in humans.

212 Despite our analysis uncovered the main forces shaping the intra-specific diversity of *C. hyoilealis*
213 and our results support the observed epidemiological pattern in both subspecies, the integration of a more
214 comprehensive genomic collection from different hosts, geographic regions and clinical conditions must be
215 necessary to deepening our understanding of the genomic evolution in this emerging pathogen and other
216 neglected *Campylobacter* species.

217

218 **Methods**

219

220 **Sampling and bacterial isolation.** Samples were collected as described previously. Briefly, cattle feces samples
221 were transported in Enteric Plus medium (Meridian Bioscience Inc, Ohio, USA) and processed on the same day.
222 About 1-2 g of each fecal sample were transferred to 25 ml of Preston selective enrichment broth (Oxoid,
223 Nepean, Ontario, Canada) and incubated 3-4 h at 37° C and then transferred to 42° C and incubated for 48 h.
224 After incubation, 20 µl were streaked on a Karmali plate (Oxoid) and incubated at 42° C for 48 h. For
225 environmental water, 3000 ml of water were collected and transported on ice to the laboratory, held at 4°C and
226 tested within 24 h. Water was filtered through a 0.45 µm pore-size membrane filter and Preston broth and
227 Karmali plate were used as above to isolate *Campylobacter*.

228

229 **Whole genome sequencing, available data and taxonogenomic analyses.** Cells were pelleted from culture
230 plates and phosphate-buffered saline (PBS). Genomic DNA preparation was performed using a BioRobot M48
231 (Qiagen). DNA was prepared and sequenced using the Illumina Hi-Seq platform with library fragment sizes of
232 200-300 bp and a read length of 100 bp at the Wellcome Sanger Institute. Each sequenced genome was *de novo*
233 assembled with Velvet²⁴, SSPACE v2.0²⁵ and GapFiller v1.1²⁶. Resulting contigs were annotated using Prokka²⁷.
234 Species membership was checked by calculating the Average Nucleotide Identity (ANI) index as previously
235 described²⁸. Available genomic data at the time of designing this work consisted in 19 *C. hyoilealis* subsp.
236 *hyoilealis* strains and 10 *C. hyoilealis* subsp. *lawsonii* strains, that were added to the 13 *C.
237 hyoilealis* subsp. *hyoilealis* sequenced in this work to build a final dataset of 42 genomes (Table 1).

238

239 **Pangenome and recombination analyses.** A multiple genome alignment was performed with the
240 progressiveMauve algorithm²⁹ and the final core genome alignment was defined by concatenating locally
241 collinear blocks (LCBs) longer than 500 bp present in every genome. Recombinant regions were identified
242 running Gubbins³⁰ with default parameters. The pan-genome was reconstructed using a previously
243 implemented³¹ in-house pipeline (<https://github.com/iferres/pewit>). Briefly, for every genome, each annotated
244 gene is scanned against the Pfam database³² using HMMER3 v3.1b2 hmmsearch³³ and its domain architecture is
245 recorded (presence and order). A primary set of orthologous clusters is generated by grouping genes sharing
246 exactly the same domain architecture. Then, remaining genes without hits against the Pfam database are
247 compared to each other at protein level using HMMER3 v3.1b2 phmmmer and clustered using the MCL
248 algorithm³⁴. These coarse clusters are then splitted using a tree-pruning algorithm which allows to discriminate
249 between orthologous and paralogous genes. Standard ecological distances over accessory gene patterns were
250 calculated with the vegan package³⁵.

251

252 **Analysis of specific gene families and functional categories.** Several specific gene families of interest were
253 recovered and analyzed from *C. hyoilealis* genomes. CRISPR-associated protein (CAS) genes were
254 recovered by running HMMER3 v3.1b2 hmmsearch³³ against Hidden Markov Models for every single CAS
255 gene type from the CRISPRCasFinder database³⁶. The REBASE database³⁷ was used to retrieve R-M system
256 genes that were compared to the *C. hyoilealis* genomes using Blast+ blastp³⁸ with an identity >70% and
257 query coverage >70% as inclusion thresholds. Alpha diversity for each gene family in each genome was
258 calculated using the Shannon index as implemented in the vegan package³⁹. Functional categories were assigned
259 to annotated genes using the eggNOG database¹⁵ and the eggNOG-mapper tool³⁶.

260

261

262 **References**

263

1. Friedman C.J. *et al.* Epidemiology of *Campylobacter jejuni* infections in the United States and other industrialized nations. In *Campylobacter* (eds Nachamkin, I. & Blaser, M.J.) (ASM Press, Washington (DC), 2000).
2. Fitzgerald, C. *et al.* *Campylobacter fetus* subsp. *testudinum* subsp. nov., isolated from humans and reptiles. *Int. J. Syst. Evol. Microbiol.* **64**, 2944-2948 (2014).
3. Iraola, G. *et al.* 2015. A rural worker infected with a bovine-prevalent genotype of *Campylobacter fetus* subsp. *fetus* supports zoonotic transmission and inconsistency of MLST and whole-genome typing. *Eur. J. Clin. Microbiol. Inf. Dis.* **34**, 1593-1596 (2015).
4. Iraola, G. *et al.* Distinct *Campylobacter fetus* lineages adapted as livestock pathogens and human pathobionts in the intestinal microbiota. *Nat. Commun.* **8**, 1367 (2017).
5. Gebhart, C.J., Ward, G.E., Chang, K. & Kurtz, H.J. *Campylobacter hyoilealis* (new species) isolated from swine with lesions of proliferative enteritis. *Am. J. Vet. Res.* **44**, 361-367 (1983).
6. Man, S.M. The clinical role of emerging *Campylobacter* species. *Nat. Rev. Gastroenterol. Hepatol.* **8**, 669-685 (2011).
7. Gorkiewicz, G., Feier, G., Zechner, R. & Zechner, E.L. Transmission of *Campylobacter hyoilealis* from pig to human. *J. Clin. Microbiol.* **40**, 2601-2605 (2001).
8. Bullman, S. *et al.* Emerging dynamics of human campylobacteriosis in Southern Ireland. *Pathog. and Dis.* **63**, 248-253 (2011).
9. On, S.L.W., Bloch, B., Holmes, B., Hoste, B. & Vandamme, P. *Campylobacter hyoilealis* subsp. *lawsonii* subsp. nov., isolated from the porcine stomach, and an emended description of *Campylobacter hyoilealis*. *Int. J. Syst. Bacteriol.* **45**, 767-774 (1995).
10. Miller, W.G. *et al.* Multilocus sequence typing methods for the emerging *Campylobacter* species *C. hyoilealis*, *C. lanienae*, *C. sputorum*, *C. concisus* and *C. curvus*. *Front. Cell. Infect. Microbiol.* **2**, 1-12 (2012).

288 11. Harrington, C.S. & On, S.L.W. Extensive 16S rRNA gene sequence diversity in *Campylobacter*
289 *hyoilealis* strains: taxonomic and applied implications. *Int. J. Syst. Bacteriol.* **49**, 1171-1175 (1999).

290 12. Salama, S.M., Tabor, H., Richter, M. & Taylor, D.E. Pulsed-field gel electrophoresis for epidemiologic
291 studies of *Campylobacter hyoilealis* isolates. *J. Clin. Microbiol.* **30**, 1982-1984 (1992).

292 13. On, S.L.W., Costas, M. & Holmes, B. Identification and intra-specific heterogeneity of *Campylobacter*
293 *hyoilealis* based on numerical analysis of electrophoretic protein profiles. *Syst. Appl. Microbiol.* **16**,
294 37-46 (1993).

295 14. Konstantinidis, K.T. & Tiedje, J.M. Genomic insights that advance the species definition for
296 prokaryotes. *Proc. Natl. Acad. Sci.* **102**, 2567-2572 (2005).

297 15. Huerta-Cepas, J. *et al.* eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated
298 orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res.* **47**, D309-D314
299 (2018).

300 16. Wilkinson, D.A., *et al.* Updating the genomic taxonomy and epidemiology of *Campylobacter*
301 *hyoilealis*. *Sci. Rep.* **8**, 2393 (2018).

302 17. Gilbert, M.J. *et al.* Comparative genomics of *Campylobacter fetus* from reptiles and mammals reveals
303 divergent evolution in host-associated lineages. *Genom. Biol. Evol.* **8**, 2006-2019 (2016).

304 18. Sheppard, S.K. *et al.* Progressive genome-wide introgression in agricultural *Campylobacter coli*. *Mol.*
305 *Ecol.* **22**, 1051-1064 (2013).

306 19. Sheppard, S.K. *et al.* Cryptic ecology among host generalist *Campylobacter jejuni* in domestic animals.
307 *Mol. Ecol.* **23**, 2442-2451 (2013).

308 20. Morley, L. *et al.* Gene loss and lineage-specific restriction-modification systems associated with niche
309 differentiation in the *Campylobacter jejuni* sequence type 403 clonal complex. *Appl. Environ. Microbiol.*
310 **81**, 3641-3647 (2015).

311 21. Pearson, B.M., Louwen, R., van Baarlen, P., van Vliet, A.H.M. Differential distribution of Type II
312 CRISPR-Cas systems in agricultural and nonagricultural *Campylobacter coli* and *Campylobacter jejuni*
313 isolates correlates with lack of shared environments. *Genom. Biol. Evol.* **7**, 2663-2679 (2015).

314 22. Sheppard, S.K., Maiden, M.C.J. The evolution of *Campylobacter jejuni* and *Campylobacter coli*. *Cold*
315 *Spring Harb. Perspect. Biol.* **7**, a018119 (2015).

316 23. Dearlove, B.L., *et al.* Rapid host switching in generalist *Campylobacter* strains erodes the signal for
317 tracing human infections. *ISME J.* **10**, 721 (2016).

318 24. Zerbino, D.R. & Birney, E. Velvet: algorithms for *de novo* short read assembly using de Bruijn graphs.
319 *Genom. Res.* **18**, 821-829 (2008).

320 25. Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs
321 using SSPACE. *Bioinformatics*. **27**, 578-579 (2011).

322 26. Boetzer, M. & Pirovano, W. Toward almost closed genomes with GapFiller. *Genom. Biol.* **13**, R56
323 (2012).

324 27. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*. **30**, 2068-2069 (2014).

325 28. Piccirillo, A. *et al.* *Campylobacter geochelonis* sp. nov. isolated from the western Hermann's tortoise
326 (*Testudo hermanni hermanni*). *Int. J. Sys. Evol. Microbiol.* **66**, 3468-3476 (2016).

327 29. Darling, A.E., Mau, B. & Perna, N.T. progressiveMauve: multiple genome alignment with gene gain,
328 loss and rearrangement. *PLoS One* **5**, e11147 (2010).

329 30. Croucher, N.J., *et al.* Rapid phylogenetic analysis of large samples of recombinant bacterial whole
330 genome sequences using Gubbins. *Nucl. Acids Res.* **43**, e15 (2014).

331 31. Thibeaux R, Iraola G, Ferrés I, Bierque E, Girault D, Soupé-Gilbert M, Picardeau M, Goarant C.
332 Deciphering the unexplored *Leptospira* diversity from soils uncovers genomic evolution to virulence.
333 *Microb. Genom.* doi: 10.1099/mgen.0.000144 (2018).

334 32. Finn, R.D. *et al.* The Pfam protein families database: towards a more sustainable future. *Nucl. Acids Res.*
335 **44**, D279-D285.

336 33. Eddy, S.R. Accelerated profile HMM searches. *PLoS Comp. Biol.* **7**, e1002195 (2011).

337 34. Enright, A.J., Van Dongen, S. & Ouzounis, C.A. An efficient algorithm for large-scale detection of
338 protein families. *Nucl. Acids Res.* **30**, 1575-1584 (2002).

339 35. Oksanen J. Vegan: R functions for vegetation ecologists. 2005. Available from: <https://cran.r-project.org/web/packages/vegan/index.html>

340 36. Grissa, I. Vergnaud, G., Pourcel, C. CRISPRFinder: a web tool to identify clustered regularly
342 interspaced short palindromic repeats. *Nucleic Acids Res.* **35**, W52-W57 (2007).

343 37. Roberts, R.J. *et al.* REBASE—a database for DNA restriction and modification: enzymes, genes and
344 genomes. *Nucleic Acids Res.* **38**, D234-D236 (2009).

345 38. Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics*. **10**, 421 (2009).

346 39. Huerta-Cepas, J, *et al.* Fast genome-wide functional annotation through orthology assignment by
347 eggNOG-mapper. *Mol. Biol. Evol.* **34**, 2115-2122 (2017).

348

349

350 **Acknowledgments**

351

352 We acknowledge the Pathogen Informatics and Sequencing groups at the Wellcome Trust Sanger Institute for
353 technical support. We also thank to Mark Stares and Hilary Browne at the Host-Microbiota Interactions
354 Laboratory, Wellcome Trust Sanger Institute, for their technical support. G.I. and D.C. are supported by the
355 Agencia Nacional de Investigación e Innovación (ANII, Uruguay) grant FSSA_X_2014_1_105252. This work
356 received partial financial support from Fondo de Convergencia Estructural del Mercosur (FOCEM) grant COF
357 03/11, the Wellcome Trust grant number 098051 and the Medical Research Council UK grant number PF451.

358

359 **Author Contributions**

360

361 G.I. conceived the idea and designed the experiments. G.I., D.C., I.F., P.F., S.L. and N.K. performed the
362 experiments and analyzed the data. S.L. collected and provided samples and T.D.L. contributed to data analysis
363 and interpretation. G.I. and D.C. wrote the paper with suggestions from all authors. All authors approved the
364 manuscript prior to submission.

365

366 Competing interests

367 The authors declare that they have no competing interests.

368

369 Figure Legends

370

371 **Figure 1. Phylogeny and recombination of ecologically distinct *C. hyointestinalis* subspecies.** A) Core
372 genome phylogeny of species *C. hyointestinalis*. Red shade highlights the *C. hyointestinalis* subsp. *lawsonii*
373 lineage and blue shade highlights the *C. hyointestinalis* subsp. *hyointestinalis* lineage. Dots in the tree tips are
374 colored according to isolation source. B) Barplot showing the distribution of hosts in both *C. hyointestinalis*
375 subspecies. C) Boxplots showing ANI values calculated within and between genomes belonging to each
376 subspecies. Inter-subspecies ANI is around 95%, suggesting both subspecies are close to the species definition
377 boundary. D) Network analysis of shared recombinant blocks (edges) between *C. hyointestinalis* genomes
378 (vertices). A recombination barrier is evidenced between *C. hyointestinalis* subsp. *hyointestinalis* and *C.*
379 *hyointestinalis* subsp. *lawsonii* given by the lack of recombinant blocks shared between subspecies. E) Boxplots
380 showing the number of recombined positions in the genomes of both subspecies. A statistically significant
381 differences is observed in favor of *C. hyointestinalis* subsp. *hyointestinalis* ($p = 0.0035$, Mann-Whitney U test).

382

383 **Figure 2. Distinct accessory genomes in *C. hyointestinalis* subspecies.** A) Boxplots showing the number of
384 accessory genes (accessory genome size) in both subspecies. *C. hyointestinalis* subsp. *hyointestinalis* possesses a
385 slightly significantly bigger accessory genome than *C. hyointestinalis* subsp. *lawsonii*. ($p = 0.023$, Mann-
386 Whitney U test). B) Boxplots showing the diversity of accessory genes (as measured by the inverted Simpson
387 index) in both subspecies. *C. hyointestinalis* subsp. *hyointestinalis* has a significantly more diverse accessory
388 genome than *C. hyointestinalis* subsp. *lawsonii*. ($p = 0.00021$, Mann-Whitney U test). C) Principal component
389 analysis using accessory gene patterns showing that both subspecies represent two completely distinct clusters.

390

391 **Figure 3. Functionally distinct accessory genomes in *C. hyointestinalis* subspecies.** A) Principal component
392 analysis showing that *C. hyointestinalis* subspecies form two different clusters ($p = 0.001$, Permanova test) based
393 on the functional analysis of their accessory genes. B) Boxplot showing the contribution of each functional

394 category to the variance explained by the first principal component (PC1). Functional category codes resemble
395 those used by the eggNOG database. The top-ranking category (L: recombination and DNA repair) is
396 highlighted in black.

397

398 **Figure 4. Different repertoires of CRISPR/Cas proteins and R-M systems between subspecies.** A) Boxplot
399 showing the number of R-M system genes found in *C. hyointestinalis* genomes. A statistically significant
400 difference is appreciated in favor of *C. hyointestinalis* subsp. *lawsonii* ($p = 0.00056$, Mann-Whitney U test). B)
401 Boxplot showing the diversity (inverted Simpson index) of R-M system genes found in *C. hyointestinalis*
402 genomes. A statistically significant difference is appreciated in favor of *C. hyointestinalis* subsp. *lawsonii* ($p =$
403 0.006, Mann-Whitney U test). C) Boxplot showing the number of CRISPR/Cas protein genes found in *C.*
404 *hyointestinalis* genomes. A statistically significant difference is appreciated in favor of *C. hyointestinalis* subsp.
405 *hyointestinalis* ($p = 0.00016$, Mann-Whitney U test). D) Boxplot showing the diversity (inverted Simpson index)
406 of CRISPR/Cas protein genes found in *C. hyointestinalis* genomes. A statistically significant difference is
407 appreciated in favor of *C. hyointestinalis* subsp. *hyointestinalis* ($p = 0.00021$, Mann-Whitney U test). In all cases
408 blue boxes correspond to *C. hyointestinalis* subsp. *hyointestinalis* and red boxes to *C. hyointestinalis* subsp.
409 *lawsonii*.

410

411 **Tables**

412

413 **Table 1.** Information of *C. hyointestinalis* genomes analyzed in this work.

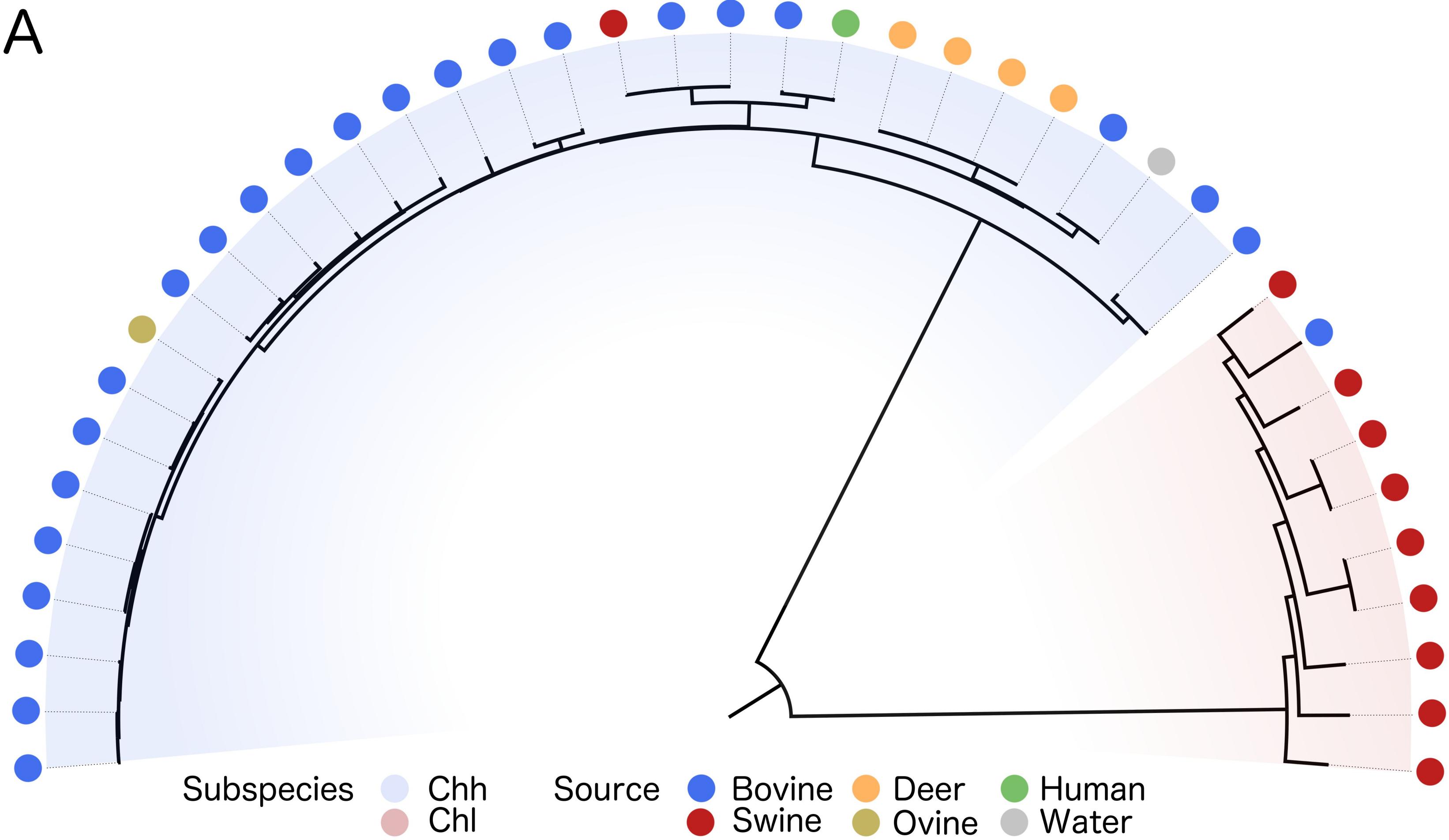
Strain	Subspecies	Country	Date	Host	Material	Reference
006A-0059	Chh	Canada	2006	Cow	Feces	This study
006A-0063	Chh	Canada	2006	Cow	Feces	This study
006A-0073	Chh	Canada	2006	Cow	Feces	This study
006A-0091	Chh	Canada	2007	Cow	Feces	This study
006A-0113	Chh	Canada	2007	Cow	Feces	This study
006A-0161	Chh	Canada	2007	Cow	Feces	This study
006A-0170	Chh	Canada	2007	Cow	Feces	This study
006A-0178	Chh	Canada	2007	Cow	Feces	This study
006A-0180	Chh	Canada	2007	Cow	Feces	This study
006A-0191	Chh	Canada	2007	Cow	Feces	This study

006A-0193	Chh	Canada	2007	Cow	Feces	This study
006A-0196	Chh	Canada	2007	Cow	Feces	This study
007A-0283	Chh	Canada	2005	-	Freshwater	This study
S1563d	Chh	New Zealand	2016	Cow	Feces	Wilkinson et al. (2018)
S1564d	Chh	New Zealand	2016	Cow	Feces	Wilkinson et al. (2018)
S1509d	Chh	New Zealand	2016	Cow	Feces	Wilkinson et al. (2018)
S1501d	Chh	New Zealand	2016	Cow	Feces	Wilkinson et al. (2018)
S1597b	Chh	New Zealand	2016	Sheep	Feces	Wilkinson et al. (2018)
S1603d	Chh	New Zealand	2016	Cow	Feces	Wilkinson et al. (2018)
S1559c	Chh	New Zealand	2016	Cow	Feces	Wilkinson et al. (2018)
S1599c	Chh	New Zealand	2016	Cow	Feces	Wilkinson et al. (2018)
VP28b	Chh	New Zealand	2010	Deer	Feces	Wilkinson et al. (2018)
VP26b	Chh	New Zealand	2008	Deer	Feces	Wilkinson et al. (2018)
VP28	Chh	New Zealand	2009	Deer	Feces	Wilkinson et al. (2018)
VP30b	Chh	New Zealand	2011	Deer	Feces	Wilkinson et al. (2018)
S1499c	Chh	New Zealand	2016	Cow	Feces	Wilkinson et al. (2018)
S1614a	Chh	New Zealand	2016	Cow	Feces	Wilkinson et al. (2018)
S1592a	Chh	New Zealand	2016	Cow	Feces	Wilkinson et al. (2018)
S1547c	Chh	New Zealand	2016	Sheep	Feces	Wilkinson et al. (2018)
LMG-9260	Chh	Belgium	1986	Human	Feces	Miller et al. (2016)
DSM 19053	Chh	United States	1985	Pig	Intestine	NCBI
ATCC 35217	Chh	United States	1985	Pig	Intestine	JGI
RM10074	Chl	United States	2009	Pig	NA	Bian et al. (2018)
RM9767	Chl	United States	2009	Pig	NA	Bian et al. (2018)
RM9004	Chl	United States	2009	Pig	NA	Bian et al. (2018)

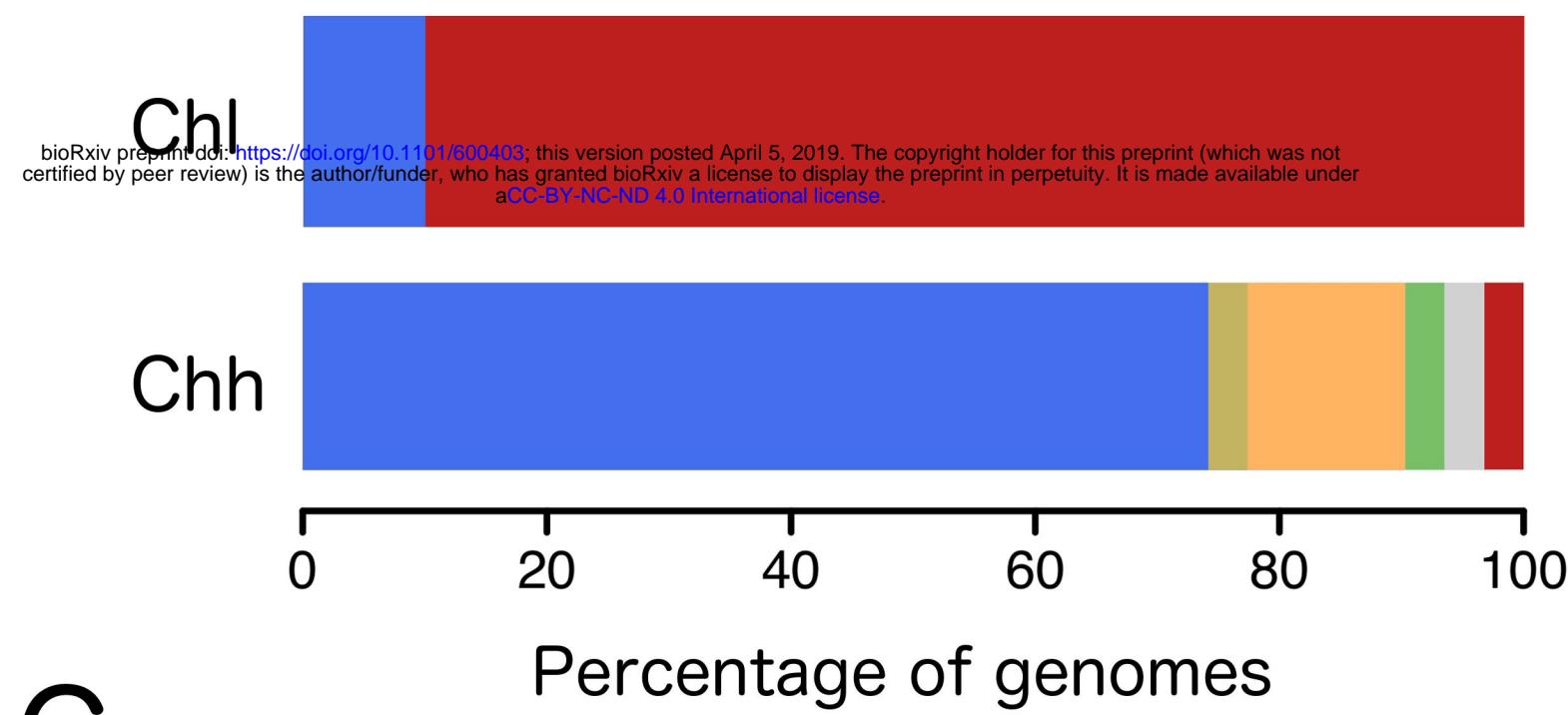
RM10071	Chl	United States	2009	Pig	NA	Bian et al. (2018)
RM9752	Chl	United States	2009	Pig	NA	Bian et al. (2018)
RM9426	Chl	United States	2009	Pig	NA	Bian et al. (2018)
RM10075	Chl	United States	2009	Pig	NA	Bian et al. (2018)
RM14416	Chl	NA	1988	Cow	Feces	Bian et al. (2018)
CHY5	Chl	United Kingdom	NA	Pig	Stomach	Bian et al. (2018)
CCUG-27631	Chl	Sweden	1990	Pig	Stomach	Miller et al. (2016)

414

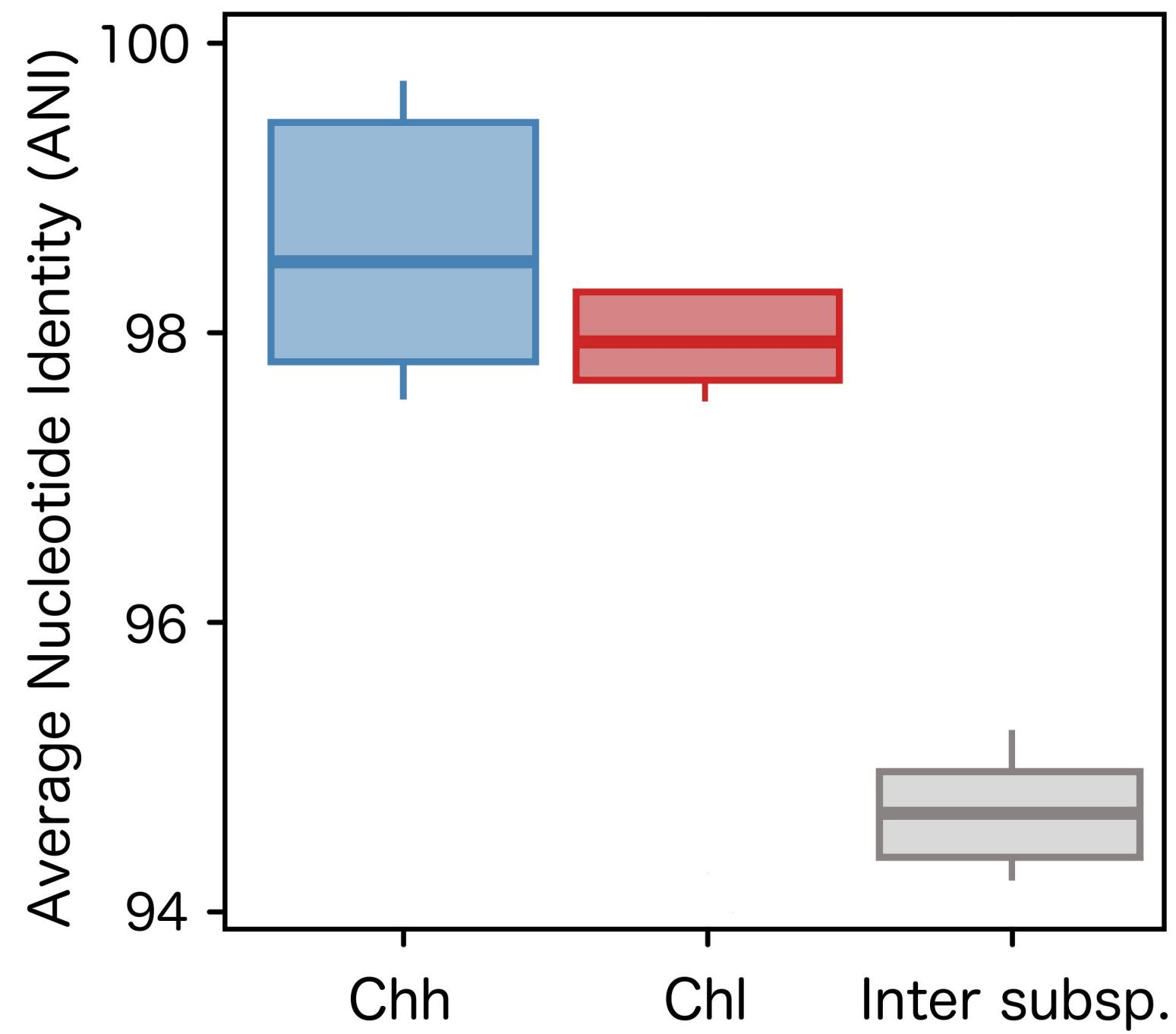
415

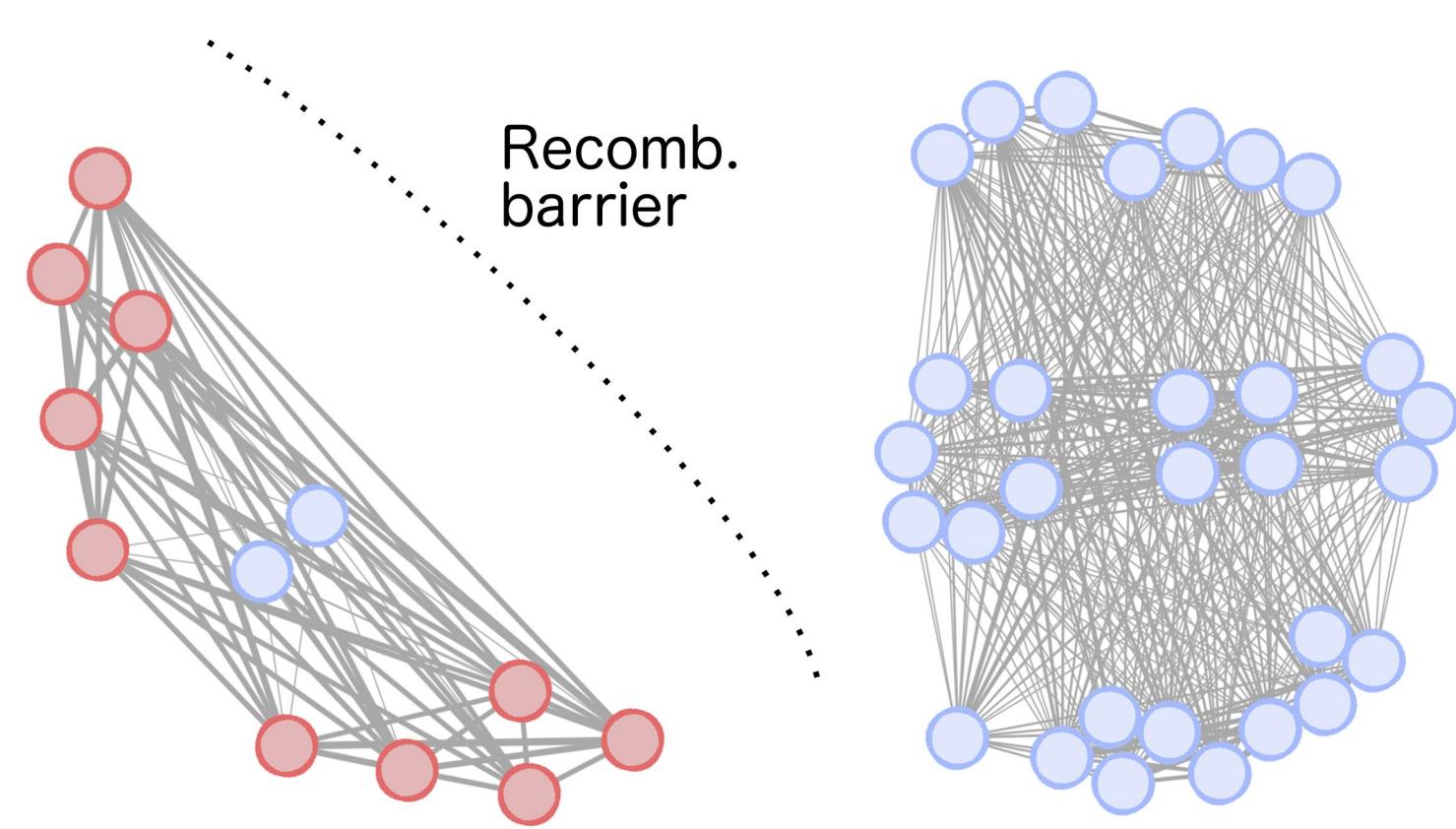

416

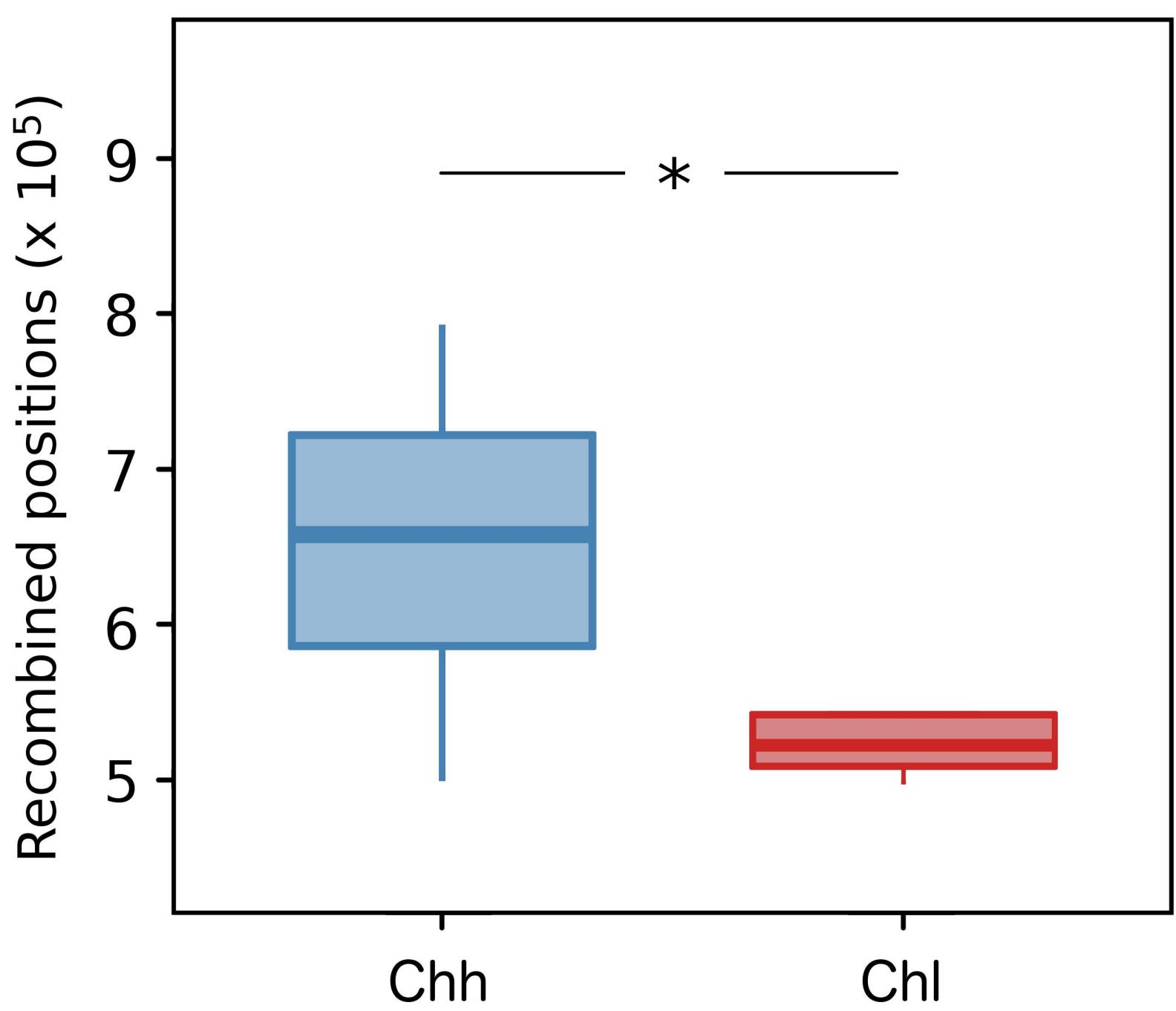
417

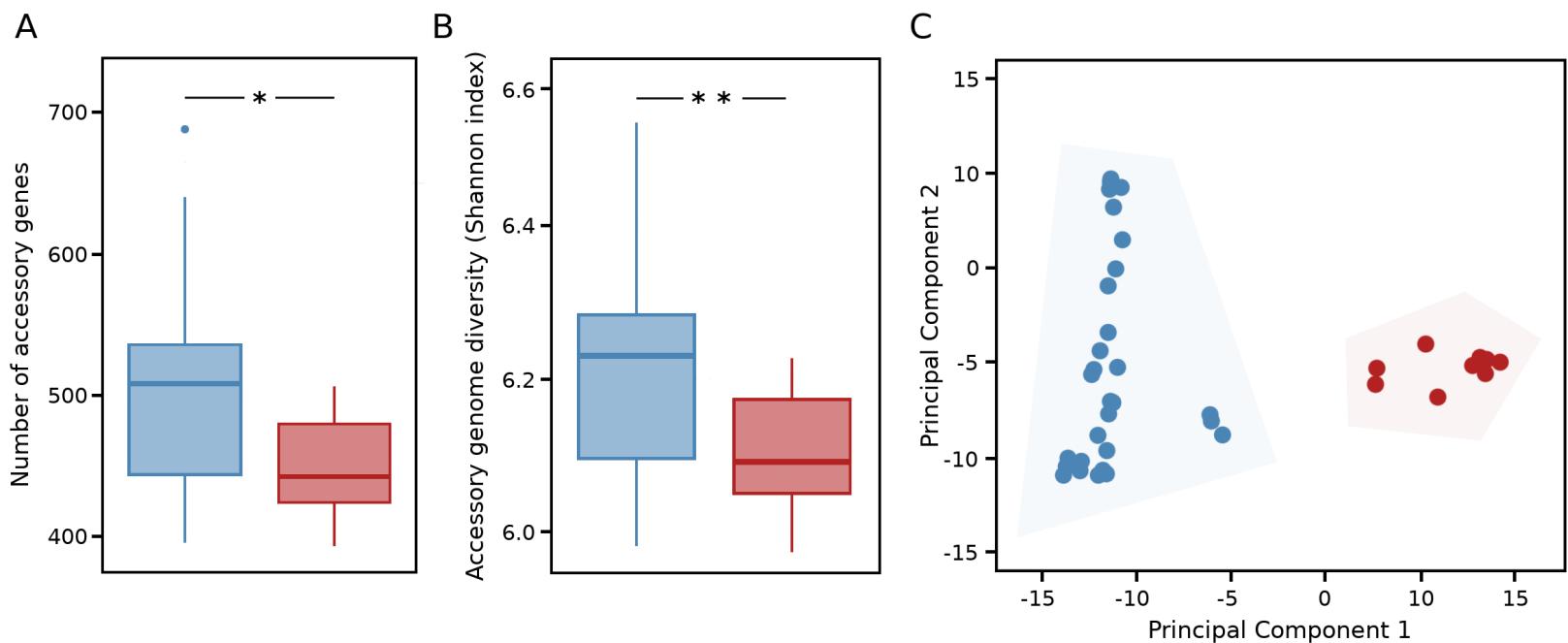

418

419


A

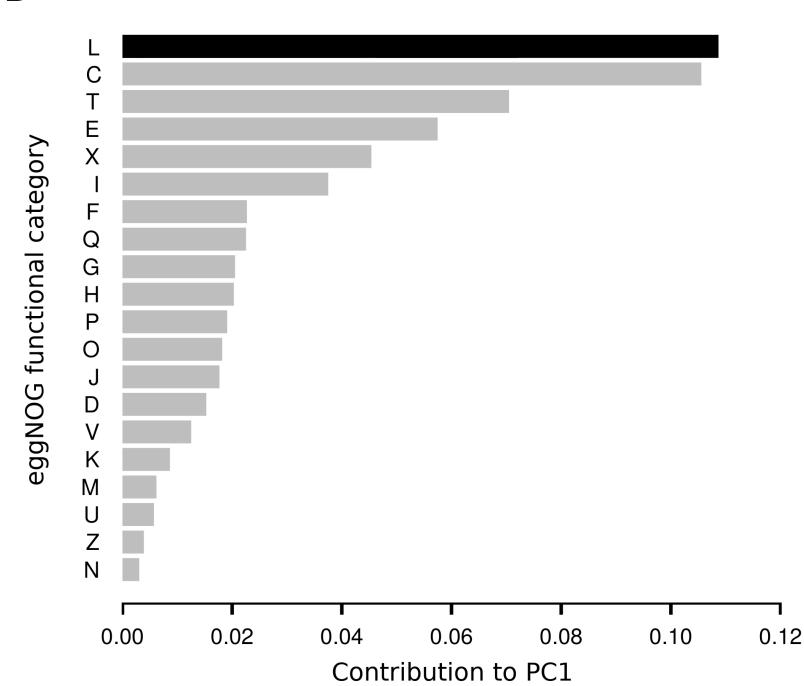

B

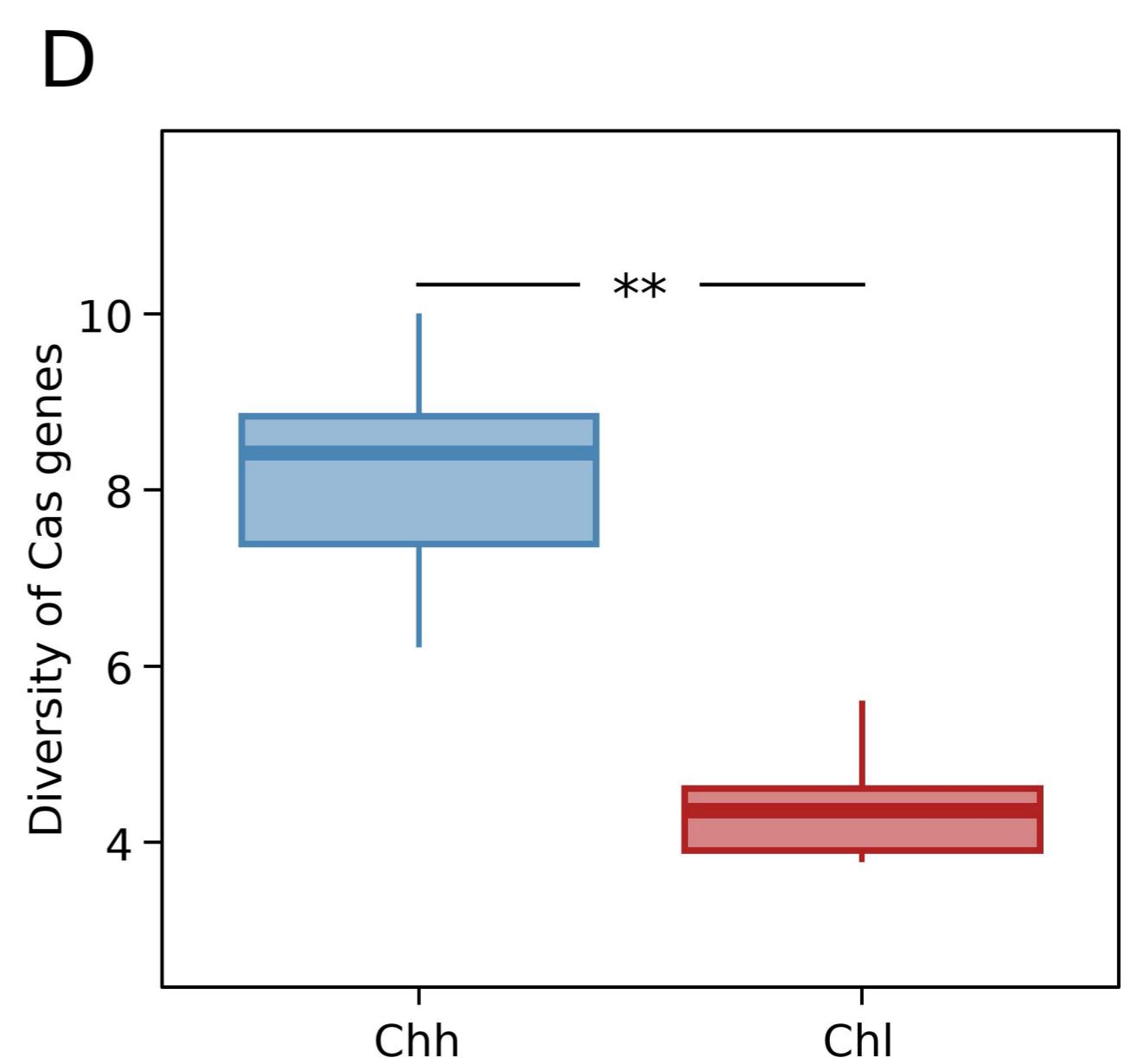
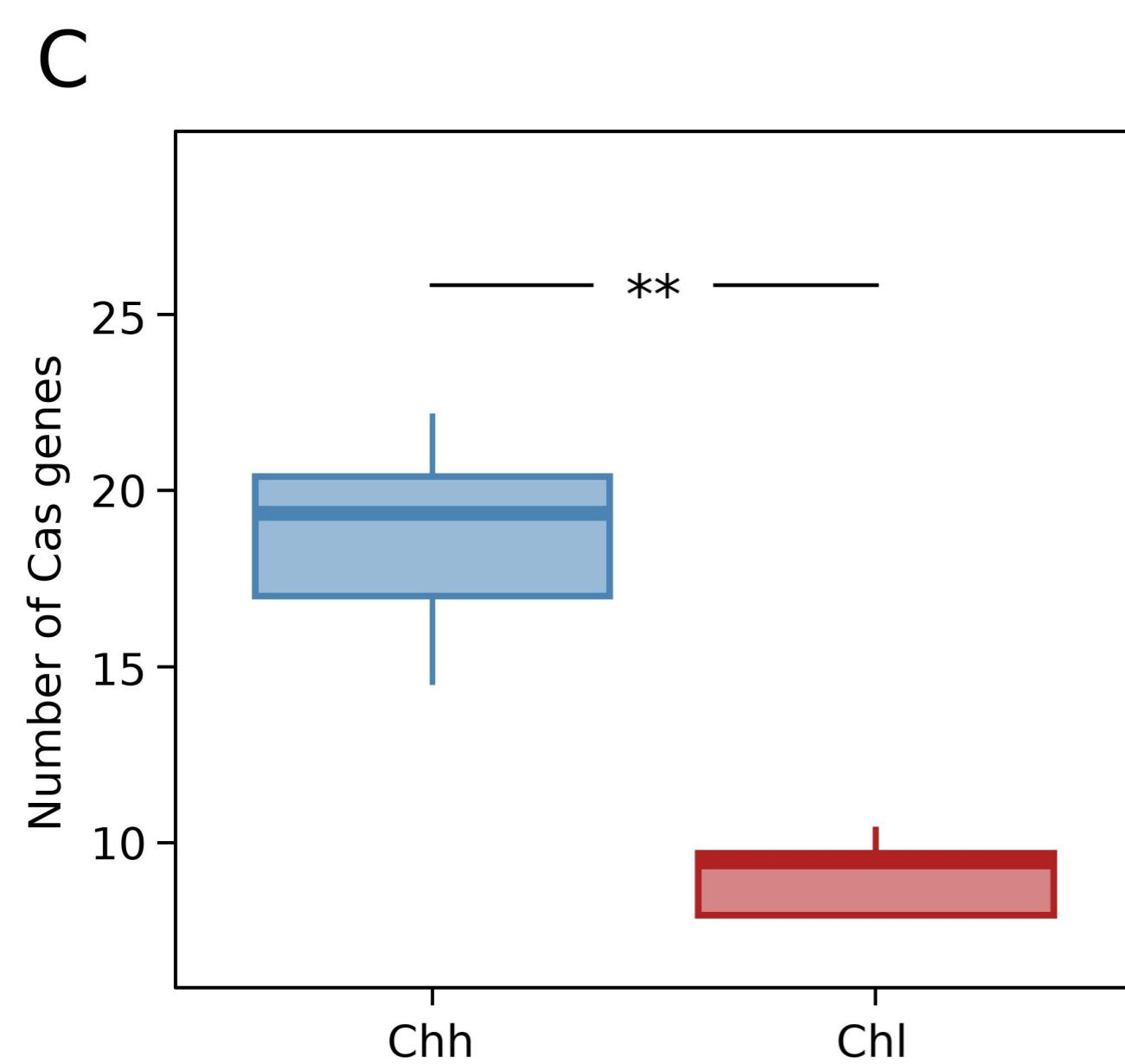
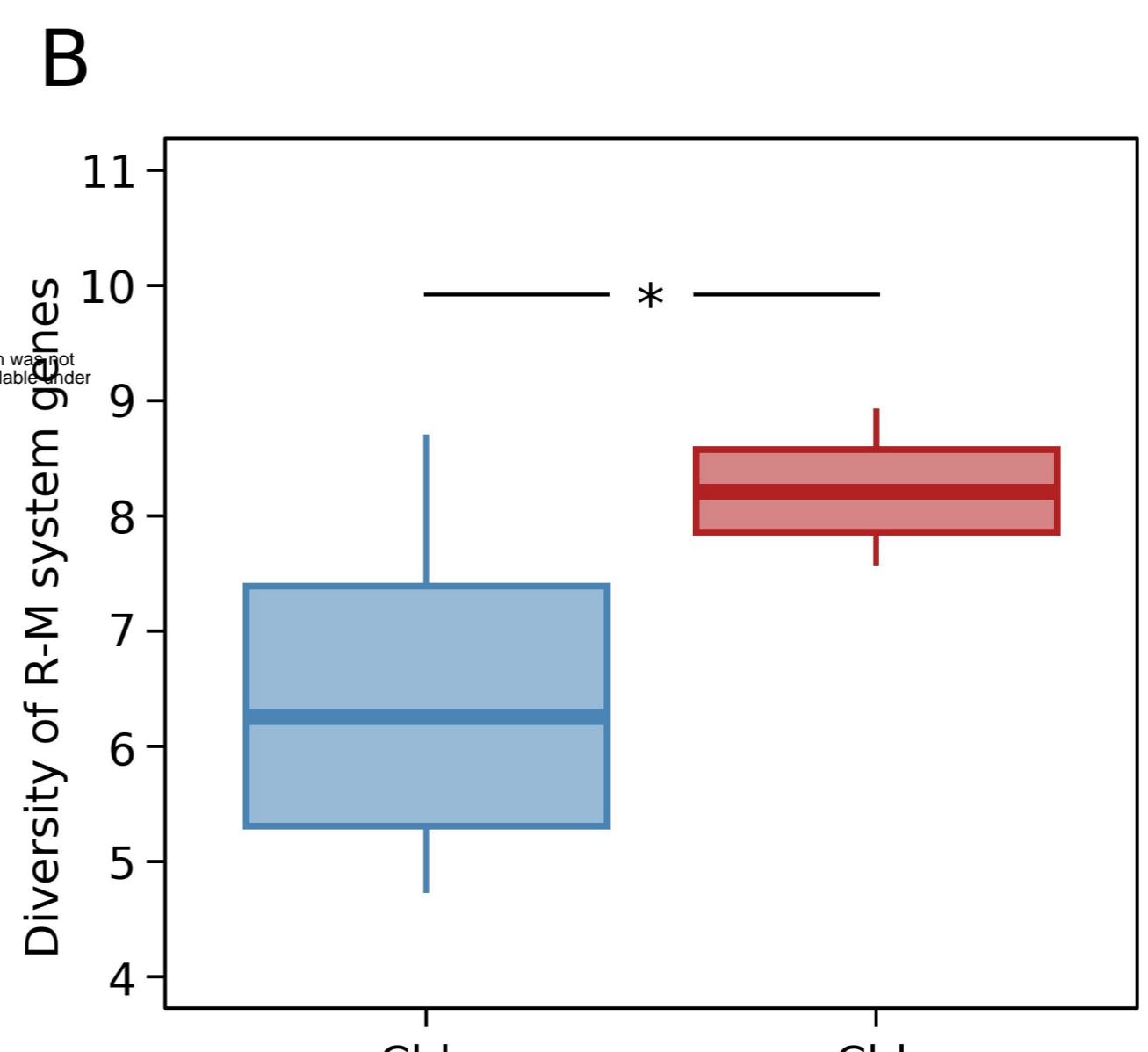
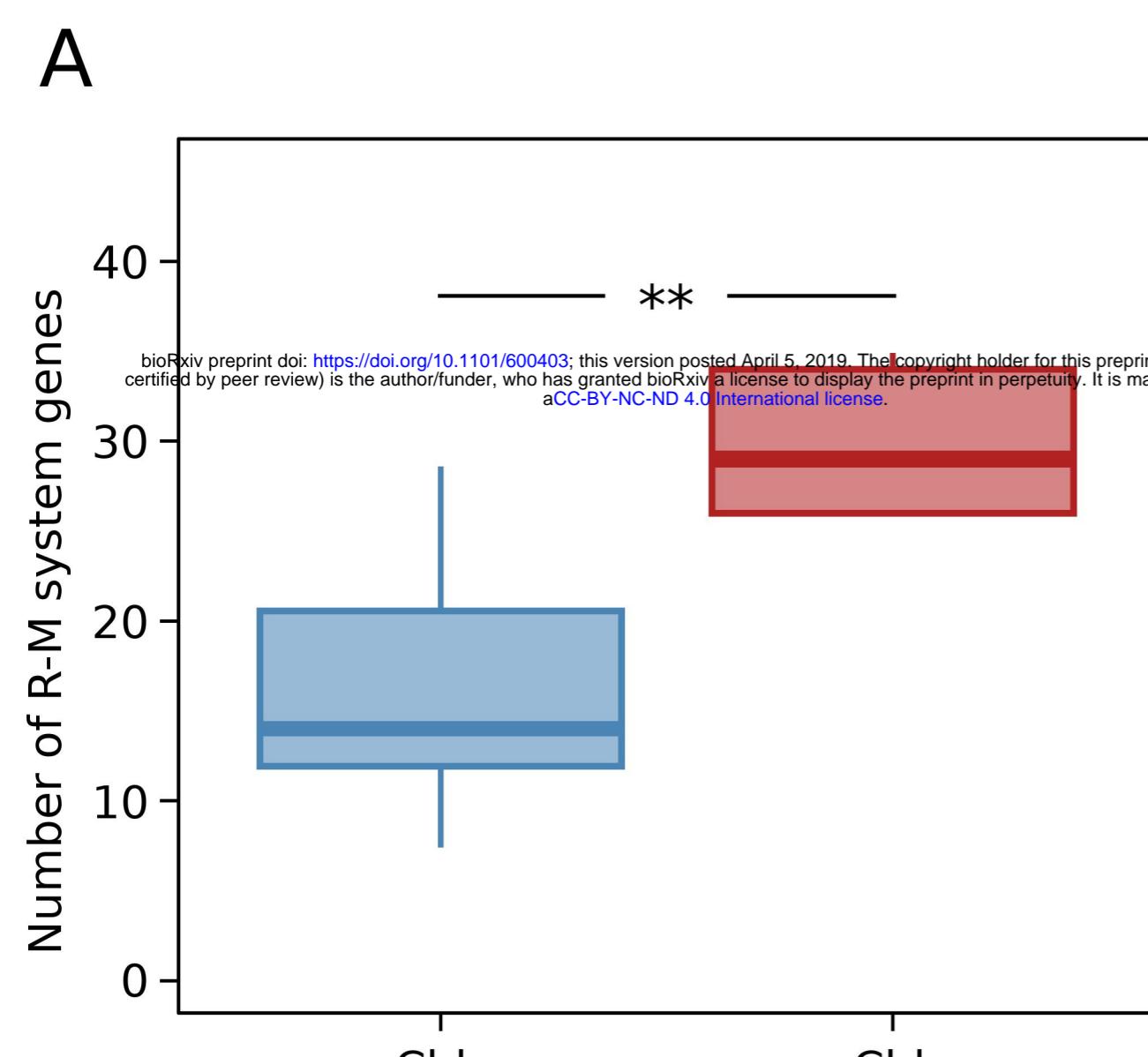

C



D

E



A

B

