

1 **Modulating dream experience: Noninvasive brain stimulation over the**
2 **sensorimotor cortex reduces dream movement**

3

4

5 Valdas Noreika^{a,b}¹, Jennifer M. Windt^c, Markus Kern^d, Katja Valli^{b,e}, Tiina Salonen^b, Riitta
6 Parkkola^f, Antti Revonsuo^{b,e}, Ahmed A. Karim^{g,h}, Tonio Ball^d², Bigna Lenggenhagerⁱ²

7

8

9

10 ^a Department of Psychology, University of Cambridge, Cambridge, United Kingdom

11 ^b Department of Psychology and Speech-Language Pathology, University of Turku, Turku,
12 Finland

13 ^c Department of Philosophy, Monash University, Melbourne, Australia

14 ^d Translational Neurotechnology Lab, University of Freiburg, Germany

15 ^e Department of Cognitive Neuroscience and Philosophy, University of Skövde, Skövde,
16 Sweden

17 ^f Department of Radiology, University and University Hospital of Turku, Turku, Finland

18 ^g Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany

19 ^h Department of Psychology and Neuroscience, Jacobs University, Bremen, Germany

20 ⁱ Department of Psychology, University of Zurich, Zurich, Switzerland

21

22

23 ¹ Corresponding Author and Lead Contact. Email: vn261@cam.ac.uk

24 ² Senior author.

25

26 **Abstract**

27

28 Recently, cortical correlates of specific dream contents have been reported, such as the
29 activation of the sensorimotor cortex during dreamed hand clenching. Yet, the causal
30 mechanisms underlying specific dream content remain largely elusive. Here, we investigated
31 how alterations in the excitability of sensorimotor areas through transcranial direct current
32 stimulation (tDCS) might alter dream content. Following bihemispheric tDCS or sham
33 stimulation, participants who were awakened from REM sleep filled out a questionnaire on
34 bodily sensations in dreams. tDCS, compared to sham stimulation, significantly decreased
35 reports of dream movement, especially repetitive actions. Contrary to this, other types of
36 bodily experiences, such as tactile or vestibular sensations, were not affected by tDCS,
37 confirming the specificity of stimulation effects. In addition, tDCS reduced interhemispheric
38 coherence in parietal areas and altered the phasic electromyography correlation between the
39 two arms. These findings reveal that a complex reorganization of the motor network co-
40 occurred with the reduction of dream movement, confirming spatial specificity of the
41 stimulation site. We conclude that tDCS over the sensorimotor cortex causally interferes with
42 dream movement during REM sleep.

43

44 **Keywords**

45 Dreaming; motor processing; sensorimotor cortex; REM sleep; transcranial direct current
46 stimulation.

47

48 **Introduction**

49 Dreams are vivid, often emotionally intense and narratively complex experiences occurring in
50 sleep. In our dreams, we feel immersed in alternative worlds and have the experience of
51 interacting with other persons and objects. Often this involves the subjective experience of
52 moving through the dream world, and movement is among the most frequently reported
53 dream experiences, second only to visual imagery. Yet these rich subjective experiences
54 stand in stark contrast to the outward unresponsiveness and lack of observable behaviour
55 during sleep. This study aimed to investigate the causal mechanisms underlying dream
56 movement and bodily experience in dreams by using tDCS over sensorimotor areas. While
57 most existing studies of the neural underpinnings of bodily experience in dreams and dream
58 movement are correlational, our approach allowed us to manipulate dream content and draw
59 conclusions about its underlying causes.

60 Specifically, our goal was to characterize the role of sensorimotor cortex in the generation of
61 bodily sensations in dreams. We aimed to experimentally inhibit motor and other bodily
62 experiences as an important aspect of self-simulation in dreams through bihemispheric
63 transcranial direct current stimulation (tDCS) during REM sleep. After awakening from REM
64 sleep, subjective dream experience was examined through the collection of dream reports and
65 a questionnaire specifically designed to investigate bodily experiences in dreams; neural
66 measures were obtained through electrophysiological sleep data.

67 This experimental protocol was guided by theoretical and empirical considerations. Our focus
68 on bodily experience was motivated by the centrality of self-experience and subjective
69 presence to dreaming (Strauch and Meier 1996; Occhionero et al. 2005; Speth et al. 2013).
70 The immersive structure of dreaming is foregrounded in simulation theories (Revonsuo et al.
71 2015), in which dreams are described as mental simulations characterized by the experience

72 of a virtual world. Typically, this virtual world is centered on a virtual self and experienced
73 from an internal first-person perspective. The dream self is typically described as actively
74 engaged in dream events, and movement is reported in 75% of dreams (Strauch and Meier
75 1996; Cicogna and Bosinelli 2001). This immersive *here and now* quality is regarded as a
76 defining characteristic of dreaming. It is also striking that with few exceptions, both the
77 virtual world and the virtual self in dreams are experienced as real. Simulation views
78 advocate the idea that “being-in-a-dream” feels the same as “being-in-the-world” during
79 wakefulness. Moreover, bodily experience and movement sensations appear to be central to
80 the feeling of subjective presence both during the waking and dream state, and sensorimotor
81 interaction modulates subjective presence both in real and virtual environments (Sanchez-
82 Vives and Slater 2005).

83 Our focus on bodily experience was further guided by findings suggesting high-level activity
84 of the motor cortex during REM sleep (Hobson 1988; Maquet et al. 2000; Dang-Vu et al.
85 2005). Generally, REM sleep dreaming has been associated with relative deactivation of
86 executive networks and frontal areas, and with high levels of activity in sensory, motor, and
87 emotional networks as compared to wakefulness (Schwartz and Maquet 2002; Nir and
88 Tononi 2010; Cipolli et al. 2017). Studies focusing on the neural correlates of specific types
89 of bodily dream experiences have shown the sensorimotor cortex to be activated during hand
90 clenching in dreams (Dresler et al. 2011), and the right superior temporal sulcus, a region
91 involved in the biological motion perception, to be activated in dreams with a sense of
92 movement (Siclari et al. 2017). Furthermore, smooth pursuit eye movements during tracking
93 of a visual target are highly similar during waking perception and lucid REM sleep dreaming
94 (LaBerge et al. 2018). Taken together, these studies suggest a remarkable isomorphism of the
95 neural mechanisms underlying motor control in wakefulness and dreaming. However, the

96 correlative nature of these studies limits their potential to uncover the causal contribution of
97 specific brain regions to dream content.

98 Older studies attempted to experimentally induce different kinds of dream experience via
99 peripheral and bodily stimulation during sleep. Causal manipulations that have been shown to
100 have an effect on dream content include vestibular stimulation in rotating chairs (Hoff 1929;
101 Hoff and Pötzl 1937) or hammocks (Leslie and Ogilvie 1996); light flashes or sprays of water
102 applied to the skin (Dement and Wolpert 1958); thermal stimulation (Baldridge et al. 1965;
103 Baldridge 1966); tactile stimulation via a blood pressure cuff inflated on the leg (Nielsen
104 1993; Sauvageau et al. 1998); and olfactory stimulation (Schredl et al. 2009). The frequency
105 of stimulus incorporation in dreams is variable and dependent both on the kind of stimulus
106 and the sensory modality. Particularly high incorporation rates were achieved in studies using
107 blood pressure cuff stimulation (40-80%) (Nielsen 1993; Sauvageau et al. 1998). This method
108 of causally manipulating dream content is promising. However, because the processing of
109 external and peripheral stimuli is attenuated in REM sleep, the precise effect of sensory
110 stimulation on dream content is often nonspecific and unpredictable.

111 As a more direct method for manipulating dream content that avoids the possibly distorting
112 effect of reduced sensory processing during REM sleep, we previously suggested using tDCS
113 (Noreika et al. 2010). We argued that this method might complement previous attempts to
114 manipulate dream content through sensory and bodily stimulation in sleep. Unihemispheric
115 tDCS has been shown to facilitate motor imagery during REM sleep (Speth and Speth 2016)
116 and to modulate visual imagery during Stage 2 NREM sleep (Jakobson, Fitzgerald, et al.
117 2012a), but not during slow wave sleep (Jakobson, Fitzgerald, et al. 2012b) or REM sleep
118 (Jakobson, Conduit, et al. 2012). Furthermore, frontal tDCS increases lucidity in experienced
119 lucid dreamers (Stumbrys et al. 2013); and frontal transcranial alternating current stimulation
120 (tACS) increases dissociation, insight and control in novice lucid dreamers (Voss et al. 2014).

121 tDCS has also been reported to modulate mind wandering in wakefulness (Axelrod et al.
122 2015). This is promising, as dreaming has been proposed to be an intensified form of mind
123 wandering, based on phenomenological and neurophysiological similarities (Fox et al. 2013).

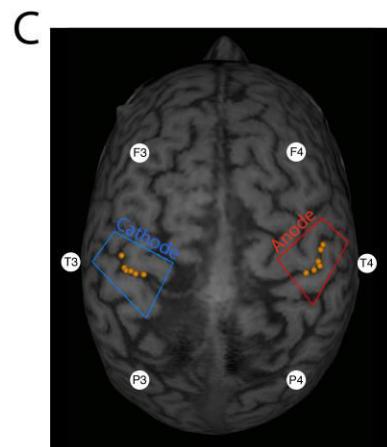
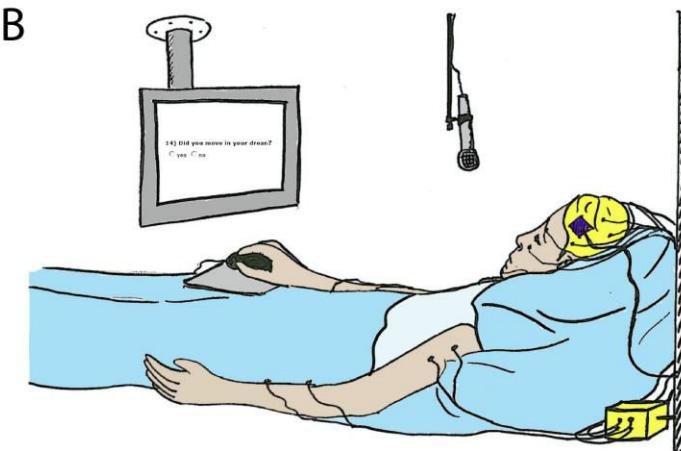
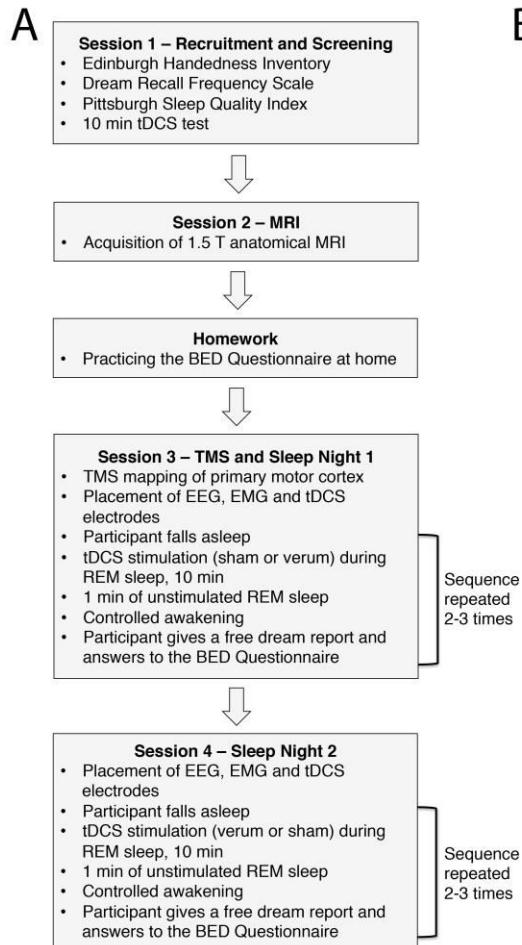
124 Here, we applied tDCS over the sensorimotor cortex, aiming to understand its causal role in
125 dream content generation. Since tDCS modulates neural processes associated with motor
126 imagery during wakefulness (Quartarone et al. 2004; Matsumoto et al. 2010; Feurra, M. et al.
127 2011), we expected a similar effect during REM sleep. However, instead of planned
128 facilitation of movement sensations in dreams with unilateral anodal tDCS (Speth and Speth
129 2016), our stimulation protocol was designed to interfere with motor processing during sleep,
130 enabling a more focused analysis of the electrophysiological mechanisms underlying dream
131 movement. Given that unilateral cathodal tDCS does not disrupt motor imagery during REM
132 sleep (Speth and Speth 2016), we adopted a bihemispheric tDCS protocol, which is known to
133 interfere with cortical and cerebellar motor networks more effectively than unilateral tDCS,
134 particularly when applied during the resting state (Lindenberg et al. 2013, 2016).

135 To investigate possible effects of bihemispheric tDCS on outward muscular activity, we
136 obtained electromyographic (EMG) measures from the arms. REM sleep is typically
137 characterized by near-complete muscle atonia (Pompeiano 1967) and a partial blockade of
138 sensory input (Hobson 1988; Wu 1993). At the same time, subtle muscular activity in the
139 form of twitching is frequent in REM sleep and may play a role in the development and
140 maintenance of motor behaviour (Blumberg 2015). A relation to dreaming seems plausible,
141 but remains incompletely understood (Windt 2018).

142 We hypothesized that if the sensorimotor cortex has a causal role in generating sensorimotor
143 dream content, bihemispheric tDCS over the sensorimotor cortex during REM sleep should
144 attenuate movement and other bodily experiences in dreams reported immediately after timed

145 awakenings in the laboratory. To test this hypothesis, we developed an empirically informed
146 questionnaire focused specifically on bodily sensations in dreams. This allowed us to probe
147 bodily experiences more systematically than the more common methods of content analysis
148 or quantitative linguistic analysis of dream reports (Speth and Speth 2016). Furthermore, we
149 hypothesized that bihemispheric tDCS during REM sleep would interfere with
150 interhemispheric motor networks as well as with spontaneous peripheral muscle activity,
151 which are possible neural pathways to the reduction of dream movement.

152




153 **Methods and Materials**

154

155 **Methods outline.**

156 The study protocol consisted of a recruitment and screening session, an MRI session, and two
157 sleep sessions on non-consecutive nights (see Figure 1A). In addition, a TMS assessment of
158 motor cortical excitability took place on the evening of the first sleep session. Ten
159 participants were awakened from REM sleep two or three times per night and asked to give
160 free dream reports and to answer to the Bodily Experiences in Dreams (BED) Questionnaire,
161 which targeted the dream immediately preceding awakening (see Figure 1B). Participants
162 received sham-stimulation during REM sleep on one night and bihemispheric tDCS on the
163 other night. Bihemispheric tDCS montage included a cathode placed over the left
164 sensorimotor cortex and an anode placed over the right sensorimotor cortex (see Figure 1C).
165 In addition to standard polysomnography, central and peripheral electrophysiological data
166 were recorded using 16 EEG channels and 4 EMG channels measuring flexor and deltoid
167 muscles in both arms.

168

169

170 **Figure 1 | Experimental design.** (A) Time course of the study. (B) Experimental setup
171 during sleep sessions. (C) Primary sensorimotor hand areas of a representative participant.
172 Orange dots indicate stimulation sites where TMS pulses induced a subjectively experienced
173 hand movement and/or muscle twitch (located approximately at the central sulcus between
174 the somatosensory and somatomotor cortices). The blue box drawing over the left hemisphere
175 represents the cathode tDCS electrode placement site, and the red box drawing over the right
176 hemisphere represents the anode electrode placement site. White circles depict the
177 approximate location of 6 electrodes used for the EEG inter-hemispheric coherence analysis.

178

179 **Participants.**

180 Aiming to recruit 10 right-handed individuals with high dream recall frequency and good
181 sleep quality, potential participants were screened with the Edinburgh Handedness Inventory

182 (Oldfield 1971) and the Dream Recall Frequency (DRF) scale (Schredl 2002), which assesses
183 the frequency with which people are able to remember dreams at home. The DRF scale
184 consists of a single question “How often do you remember your dreams?” and 7 possible
185 answers: 0=never, 1=less than once a month, 2=about once a month, 3=twice or three times a
186 month, 4=about once a week, 5=several times a week, and 6=almost every morning.
187 Furthermore, potential participants filled in the Pittsburgh Sleep Quality Index (PSQI)
188 (Buysse et al. 1989). We aimed to recruit individuals whose global PSQI score did not exceed
189 4 (with 0 indicating no sleep difficulty and 21 indicating severe difficulties in sleep) and
190 whose sleep latency score indicated they typically needed less than 30 minutes to fall asleep.
191 Given that the application of tDCS may occasionally induce itching, tickling, heat sensations
192 under the electrodes, or even a temporary headache (Priori 2003), we introduced potential
193 participants to the tDCS technique before they made their final commitment to take part in
194 the study. After screening for MRI and tDCS contraindications, they were given the
195 opportunity to familiarize themselves with the tDCS procedure before spending their first
196 night in the laboratory. Participants were stimulated for 10 min with tDCS of 1 mA current
197 over the C3 and C4 electrode sites according to the 10-20 EEG system (approximately over
198 the sensorimotor cortex), which helped them decide whether they wanted to participate in the
199 actual experiment. This also helped minimize the risk that tDCS during REM sleep would
200 lead to awakening.

201 After screening 16 potential participants, we were able to recruit 10 healthy right-handed
202 university students (4 men and 6 women, mean age 26.8, range 4.4 years). The mean
203 handedness index was 0.9 (SD=0.11; range 0.73 to 1). The mean DRF score was 5.4
204 (SD=0.79, Min=4, Max=6), indicating high spontaneous dream recall. While this might
205 introduce bias towards high recallers’ dreams, it is arguably the most feasible recruitment
206 strategy for a costly and time-consuming sleep laboratory study. All participants gave their

207 written informed consent according to the Declaration of Helsinki, and the protocol of the
208 study was approved by the Ethics Committee of the Hospital District of Southwest Finland.
209 Participants were financially compensated with 40 euros per night and 10 euros per hour for
210 daytime testing.

211

212 **MRI-TMS mapping of the primary sensorimotor hand area.**

213 ECoG measurement of the electric field induced by tDCS in a human patient as well as
214 computational modelling of tDCS effects in healthy participants suggest that the spatial
215 focality of tDCS decreases if stimulation electrodes are misplaced by >1cm (Opitz et al.
216 2018). Thus, aiming to constrain between-participant variance of the stimulation focus below
217 1cm, the location of the hand area in the primary sensorimotor cortex in both hemispheres
218 was determined individually for each participant with the help of magnetic resonance
219 imaging (MRI) and transcranial magnetic stimulation (TMS). Anatomical brain images were
220 acquired with a 1.5 T MRI scanner Philips Intera at the Turku PET Centre. 3D models of the
221 brain were created using 3D T1-weighted MR sequence. A hospital radiologist confirmed
222 that the brain MRI was normal in all cases. Afterwards, the approximate location of primary
223 sensorimotor hand representations was visually determined from anatomical brain images
224 based on macro-anatomical landmarks (Yousry et al. 1997).

225 Based on this analysis, the location of the primary sensorimotor hand area was determined for
226 each participant in a separate TMS session, which was carried out on the evening of the first
227 experimental night at the Department of Psychology at the University of Turku. TMS pulses
228 were delivered using eXimia™ TMS stimulator with NBS navigation system (Nexstim Ltd.,
229 Helsinki, Finland), which allowed us to navigate within individual anatomical MRI with an
230 approximately 6-mm spatial resolution containing all sources of errors (Ruohonen and Karhu

231 2010). Participants sat on a reclining chair with their eyes closed and both arms supported by
232 a pillow to ensure that their arm muscles were relaxed. TMS was carried out in a single pulse
233 mode using a figure-of-eight-shaped coil that was held tangentially against the participant's
234 head. The current direction of the second phase of the biphasic pulse was oriented
235 perpendicularly to the post-central gyrus in the posterior to the anterior direction at the bank
236 between pre-central and post-central sulci (Richter et al. 2013) (see Figure 1B).

237 First, a rough location of the hand area was estimated by asking participants to report whether
238 they experienced any hand movement following a TMS pulse over the motor cortex in the
239 contralateral hemisphere. Once a reliable hotspot was found, an individual motor threshold,
240 i.e. the minimum TMS intensity required to induce the subjective experience of a hand
241 movement, was determined with the maximum likelihood threshold hunting (MLTH)
242 procedure (Awiszus, 2003). In this process, 20 pulses were delivered to the hand area with
243 different stimulus intensities, starting at 60% of maximal TMS intensity. The mean motor
244 threshold was 56.1% (SD=12.4, Min=28, Max=76.7) of maximal TMS intensity for the left
245 hemisphere, and 59.2% (SD=16.5, Min=24.8, Max=77.12) for the right hemisphere. While
246 motor thresholds did not differ systematically between the hemispheres (paired samples t test:
247 $t(9)=1.02$, $p=0.34$, Bf in favor of the null=2.2), there was a strong inter-hemispheric
248 correlation of motor thresholds (Pearson correlation: $r=0.82$, $p=0.004$).

249 Following estimation of individual motor thresholds, the most ventral and caudal points of
250 the hand representation in the primary motor cortex were estimated by delivering TMS pulses
251 with the intensity of 10% above the level of the individual motor threshold. This procedure
252 was consecutively performed for both hemispheres, yielding bilateral hand representation
253 maps that were later used to place tDCS electrodes (see Figure 2B).

254

255 **tDCS over the primary sensorimotor cortex during REM sleep.**

256 tDCS and sham-stimulation sessions were conducted in the Sleep Laboratory of the Centre
257 for Cognitive Neuroscience at the University of Turku over two non-consecutive nights with
258 each participant. Microprocessor-controlled programmable 1-channel Eldith DC-Stimulator
259 PLUS (Electro-Diagnostic & Therapeutic Systems GmbH, Ilmenau, Germany) was used as a
260 stimulation device.

261 tDCS was applied bilaterally to the hand area in order to modulate the excitability level of the
262 primary sensorimotor cortex during REM sleep. Participants were asked to avoid caffeine for
263 6 hours and alcohol and other CNS-affecting drugs for 24 hours prior to the experiment. To
264 ensure these requirements were met, participants filled out the custom-made Pre-Sleep
265 Questionnaire before each session. For each participant, the two stimulation sessions were
266 separated by at least one week in order to avoid interference effects.

267 Two 35 cm² sized sponge-covered rubber electrodes were soaked with water, and Ten20
268 electrode paste (Weaver and Company) was applied on both sides of the sponge. The
269 electrodes were placed bilaterally along the central sulcus posterior to the primary motor
270 hand areas, which was determined with the help of MRI-guided TMS (see Figure 1B). They
271 were supported with a comfortable bandage throughout the night. tDCS was carried out on
272 one experimental night and sham-stimulation took place on another night. Participants were
273 blind to the experimental conditions, i.e. whether the tDCS session was followed by the sham
274 session (N=5) or vice versa. An equal number of participants was assigned randomly to each
275 condition.

276

277 During the tDCS night, 1mA electric current was delivered to participants' scalp two or three
278 times per night for 10 min during REM sleep, starting with the second sleep cycle. It has been

279 reported that changes in current direction may result in qualitatively different motor effects,
280 with cathodal stimulation being more effective and largely inhibitory and anodal stimulation
281 being less effective and largely facilitatory (Nitsche et al. 2008). Furthermore, tDCS induced
282 neuroplasticity may accumulate over time (Nitsche and Paulus 2000). In order to keep the
283 stimulation effects consistent throughout the night, the electrode over the right sensorimotor
284 area was always the anode, and the electrode over the left sensorimotor area was always the
285 cathode. This procedure ensured that the asymmetric stimulation during one sleep cycle
286 would not interfere with or cancel stimulation effects during another cycle. We chose to place
287 the cathode over the dominant left hemisphere with the aim to disrupt dream movements.

288

289 During the sham-stimulation night, stimulation was conducted by switching on the DC device
290 and stimulating only for 10 sec each at the beginning and end of a 10 min period during REM
291 sleep. Stimulation that lasts only a few seconds has been shown to produce a minimal effect
292 on the brain, if any (Hummel et al. 2005). The aim of sham stimulation was to mimic the skin
293 sensation that is occasionally experienced during the onset and offset of tDCS. This
294 procedure is thought to make the two conditions subjectively indistinguishable (Gandiga et
295 al. 2006). The same procedure was repeated two or three times starting with the second sleep
296 cycle.

297

298

299 **Electrophysiological recordings.**

300 To record EEG activity, 16 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, T4, T5, P3, Pz, P4,
301 T6, O1, O2) were placed on the scalp following the standard 10-20 system (Jasper 1958). C3,
302 Cz and C4 electrode locations were left empty for the placement of tDCS electrodes. To
303 record eye blinks and vertical saccades, two electrooculography (EOG) electrodes were

304 placed below and above the left eye, while two other electrodes placed adjacent to the lateral
305 canthi of each eye were used to measure horizontal saccades. An electromyography (EMG)
306 electrode placed on the chin was used to record muscle tone, which was used for the scoring
307 of sleep stages. The reference for all these electrodes was placed on the right ear mastoid and
308 the ground electrode was placed on the temple. In addition, two bipolar EMG channels were
309 used to record muscle activity in the right and the left arm flexor digitorum profundus, which
310 were later used to analyze peripheral motor activity. Another two EMG channels recorded
311 activity of the deltoid muscles in both arms. Electrophysiological recordings were
312 continuously monitored on a computer screen and all electrodes were regularly checked
313 throughout the night to ensure that the impedance remained under 5 k Ω . All data were
314 recorded at 500 Hz sampling rate with Ag/AgCl electrodes using NeuroScan amplifier
315 SynAmps Model 5083. Given that tDCS onset induces a slow frequency artifact in the EEG
316 that may preclude online polysomnographic scoring, a 1-Hz high-pass filter was applied
317 during recording for online monitoring of sleep stages (Marshall 2004). As expected, tDCS
318 onset- and offset-induced artifacts always faded away after 5-10 sec.

319

320 **Collection of dream reports.**

321 One minute after the termination of tDCS or sham-stimulation, participants were awakened
322 from REM sleep with a standard awakening tone. They were then asked to give a verbal
323 dream report of “everything that was going through their minds before awakening”, aiming to
324 facilitate dream recall. Afterwards, participants were asked if they remembered anything else
325 about their dream. To avoid a possible bias between stimulation conditions, these questions
326 were played from a pre-recorded computer audio file. Following the free dream report,
327 participants were asked to fill in the Bodily Experiences in Dreams (BED) Questionnaire.

328 The questionnaire was designed as an internet survey programmed on www.webropol.com
329 and was projected on a screen above the bed in the sleep laboratory. Participants navigated
330 and responded to the BED Questionnaire by controlling a mouse while lying in bed.

331 Participants were stimulated and awakened two or three times per night, depending on how
332 many REM sleep periods they had. The number of awakenings was balanced across the first
333 and the second night and across the two stimulation conditions (see Table S3). White dream
334 reports (i.e. cases when a person reports the occurrence of dream experiences but cannot
335 recall any specific details) as well as sleep mentation reports (i.e. when a person reports non-
336 perceptual subjective experiences, such as thinking) were excluded from the analysis. A total
337 of 50 dreams reported during a total of 20 nights were available for analyses.

338

339 **Bodily Experiences in Dreams (BED) Questionnaire.**

340 The 41-item BED Questionnaire was designed to gather detailed information about
341 kinaesthetic and other bodily experiences in dreams (see Appendix 1). The BED
342 Questionnaire consists of 5 general questions with respective sub-scales (see Table 1). Each
343 of the general questions targets a particular category of body-related experience: vestibular
344 sensations, tactile and somatosensory experiences, movement, movement alterations, and
345 body schema alterations. Each general question, if answered positively, is followed by sub-
346 scales targeting more specific instances of this category of experience. For example, if a
347 participant indicated that they had experienced movement sensations, they would then be
348 asked about the occurrence of specific types of movement sensations, such as single,
349 repetitive, and passive movements. In addition, participants were asked whether the reported
350 sensation concerned the whole body, the right or left hand, the right or left side of the face, or
351 another body part (see Appendix 1). If they answered negatively, they would skip to the next

352 general category. Depending on whether a sub-scale asked about the intensity or the duration
353 of experience, 9 point Likert-scales for answering ranged either from “1=Low intensity” to
354 “9=High intensity” or from “1=Never” to “9=Throughout”.

355

356

357 **Table 1.** The BED Questionnaire: General questions and exemplary sub-scales

Five general questions (Yes/No)

5. Did you experience any tactile or somatosensory sensations in your dream?

11. Did you experience any vestibular or balance sensations in your dream?

14. Did you move in your dream (including active as well as passive movements (for instance in a vehicle) of the whole body or body parts)?

18. Were your movements (either of the whole body or of certain body parts) altered or impaired compared to wakefulness?

26. Was your dream body or were certain body parts altered compared to wakefulness?

Movement sub-scales (from 1=Never to 9=Throughout)

15. How frequently did you move in your dream (including active as well as passive movements (for instance in a vehicle) of the whole body or body parts)?

16. How frequently did you perform the following types of movements in your dream?

16.1 – single actions (e.g. placing a book on the table)

16.2 – repetitive actions (e.g. running)

16.3 – passive movements (e.g. going by car)

358

359

360

361 **Word count of verbal dream reports.**

362 The length of dream reports was assessed by two blind judges (authors JW and KV), who
363 independently calculated the meaningful word count of each dream report. Murmurs,
364 repetitions of words, and any secondary reflections or comments about the dream were not
365 included in the word count. The judges initially agreed on the word count of 47 out of 50
366 dream reports (94% agreement). The judges discussed the reasons for the mismatch in the
367 remaining 3 cases and reached an agreement.

368

369 **Content analysis of movement sensations in verbal dream reports.**

370 Following the findings from the BED Questionnaire, we carried out content analysis of verbal
371 dream reports, focusing on the specific types of movement (single actions, repetitive actions,
372 passive movement) performed by the dream self. To compare the type and frequency of
373 movements reported in the BED Questionnaire to those explicitly mentioned in dream
374 reports, two blind judges (authors VN and BL) carried out a content analysis of verbal
375 reports. First, the judges scored whether each dream report contained at least one movement
376 produced by the dream self, excluding facial movements such as talking, drinking, and
377 blinking, as we reasoned that individuals do not typically consider facial musculature when
378 asked to report their movements. Movements attributed to the first-person plural "we" were
379 treated as involving movements of the dream self. Second, the judges identified individual
380 movements produced by the dream self in each dream that, in the first step, was judged to
381 contain movement. Third, they scored the type of the identified movements (single action,
382 repetitive action, passive movement). All three stages of the content analysis were first
383 carried out individually and the obtained results were then compared between the judges. In
384 the case of disagreement, the judges discussed it until an agreement was achieved.

385 Regarding the presence or absence of movement in a given report, the judges initially agreed
386 on 45 out of 50 dream reports (90% agreement). After discussion, the judges agreed that the
387 remaining 4 dreams contained references to movements produced by the dream self, while
388 one report had no explicit references to such movement. Regarding individual movements,
389 judges initially agreed on the identification of 33 movements, and disagreed on 19
390 movements (63.5% agreement). The disagreement was caused by one judge either missing a
391 movement or treating it as part of a longer sequence of movements, e.g. treating walking
392 from A to B and from B to C as a single movement. After discussion, the judges agreed that
393 the dream reports contained a total of 48 individual movements executed by the dream self.
394 Regarding specific types of movements (single action, repetitive action, passive movement),
395 the judges initially agreed on 44 out of 48 movements (91.7% agreement). After discussion,
396 the judges agreed that the remaining 4 movements should be scored as follows: “diving” -
397 single action, “riding a bike downhill” - passive movement, “writing something” - repetitive
398 action, “made some coffee” - single action.

399

400 **EEG analysis: coherence and spectral power.**

401 To assess the electrophysiological effects of tDCS on brain functioning, we analyzed the full
402 period of 1 min of EEG signal recorded between the termination of tDCS or sham-stimulation
403 and controlled awakening. tDCS artifacts did not contaminate this EEG interval whilst sleep
404 scoring ensured that REM sleep continued up to the point of awakening. On one occasion, a
405 spontaneous awakening took place before the planned controlled awakening, and only 7 sec
406 of stimulation-free sleep EEG were available for analysis. On another occasion, a
407 spontaneous awakening took place immediately after the termination of stimulation; this
408 recording was excluded, leaving 49 EEG recordings available for analysis.

409 Continuous recordings were first high-pass (0.5 Hz) and then low-pass (45 Hz) filtered using
410 a FIR filter as implemented in EEGLab toolbox (Delorme and Makeig 2004). The data were
411 then common average referenced, and excessively noisy periods of recording were manually
412 deleted (an average of 743 ms per single recording). Detached or excessively noisy channels
413 were deselected (an average of 0.2 channels per dataset), and an independent component
414 analysis (ICA) was carried out on the remaining channels, using EEGLab toolbox (Delorme
415 and Makeig 2004). Independent components reflecting eye movements and other sources of
416 noise were manually deleted (an average of 3.3 ICs per recording), following which dropped
417 noisy EEG channels were interpolated using spherical spline interpolation. Continuous EEG
418 recordings were epoched into 2-sec segments with a 50% overlap between adjacent segments.
419 Several epochs that still contained visible artifacts were manually deleted (an average of 0.5
420 epochs per recording). Individual epochs were demeaned across the whole 2 sec interval.

421 We analyzed EEG inter-hemispheric coherence in the beta oscillation range (15-30 Hz) at the
422 electrodes adjacent to the stimulation site (F3, F4, T3, T4, P3, P4). Magnitude-squared
423 coherence was computed in the range from 2 Hz to 44 Hz with a maximum frequency
424 resolution of 2 Hz between pairs of EEG channels adjacent to the stimulation site from the
425 frontal (F3-F4), temporal (T3-T4) and parietal (P3-P4) side, using Brainstorm toolbox (Tadel
426 et al. 2011). Coherence values obtained at a single 2 sec segment level were averaged across
427 beta frequency range (15.6-29.3 Hz). Next, coherence values were averaged across each 1-
428 min pre-awakening recordings. Afterwards, individual means were averaged over several
429 awakenings for each participant according to the experimental condition, yielding 10 tDCS
430 and 10 sham-stimulation values for each electrode pair.

431 In the case of a significant difference between tDCS and sham-stimulation conditions across
432 the 1-min pre-awakening periods, coherence was computed at four separate 15 sec sub-
433 intervals preceding controlled awakening: -60 to -46 sec, -45 sec to -31 sec, -30 to -16 sec,

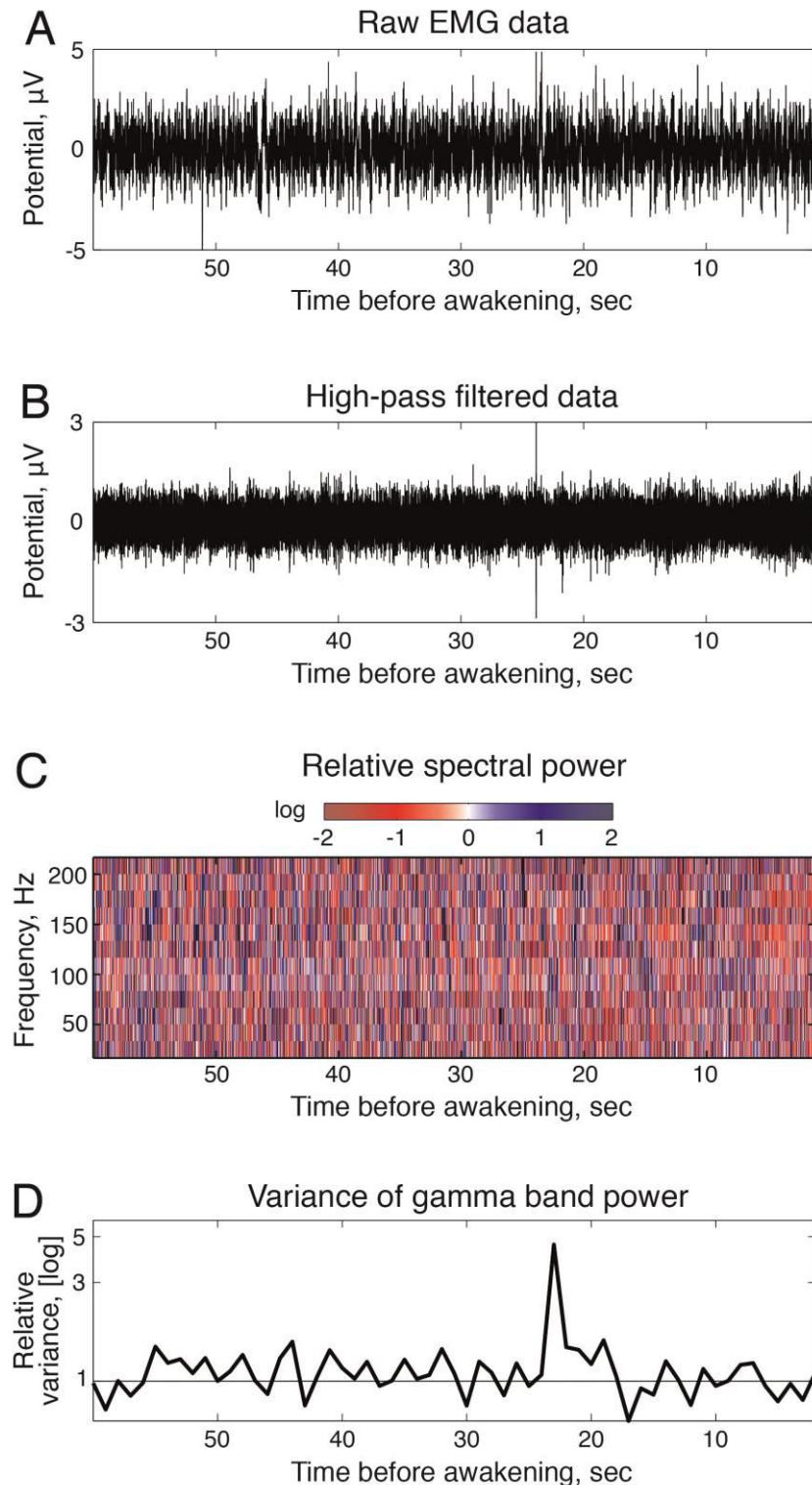
434 and -15 to -1 sec. A significant difference between tDCS and sham conditions observed
435 immediately after the termination of stimulation (-60 to -46 sec) was expected to reflect a
436 tDCS-driven modulation of EEG activity, as an effect size of neurophysiological changes
437 following motor tDCS decreases with increasing time (Nitsche and Paulus 2000). Contrary to
438 this, a significant difference between tDCS and sham-stimulation conditions at the interval
439 preceding awakening (-15 to -1 sec) with no difference at the -60 to -46 sec interval was
440 expected to reflect an unspecific modulation of EEG activity, e.g. micro-arousals caused by
441 tingling sensations could eventually trigger body movements in bed.

442 To control for a possible confound of EEG spectral power on coherence computation
443 (Bowyer, 2016), we carried out a control analysis of EEG beta power. Spectral power was
444 computed across 2 sec epochs using Hilbert transform, set from 1 Hz to 44 Hz in steps of 1
445 Hz, for the same set of 6 electrodes adjacent to the stimulation site. Power values obtained at
446 a single 2 sec segment level were averaged across beta frequency range (15-30 Hz), with
447 subsequent data averaging steps repeating coherence analysis.

448

449 **Phasic EMG analysis.**

450 We investigated the effects of tDCS on peripheral muscle tone by analyzing EMG activity
451 from the left/right arm flexor and deltoideus muscles during the 1 min interval between the
452 termination of tDCS or sham-stimulation and the controlled awakening of participants. We
453 were specifically interested whether EMG traces following tDCS and sham-stimulation
454 showed increased phasic muscle activity compared to the pre-stimulation baseline window,
455 and whether bihemispheric tDCS modulated interaction between the left/right arm EMG.
456 Since phasic EMG activity manifests during REM sleep as short-lasting muscle bursts
457 recorded by surface electrodes (Fairley et al. 2012), we split the 1-min epochs into 60 non-


458 overlapping 1-sec segments and carried out a binary assessment whether each segment
459 contained phasic EMG activity. Segments with phasic EMG activity were then assigned a
460 value of one, segments without phasic EMG activity a value of zero. The mean overall 60
461 binary values were then used to define the ratio of phasic EMG activity within the respective
462 epoch.

463 More specifically, since phasic EMG activity is reflected in broadband spectral power
464 changes, we used the variance of gamma band (50-250 Hz) power for the detection of short-
465 lasting bursts of muscle activity. In a first step we high-pass filtered the raw data with a 3rd
466 order butterworth filter with a cutoff-frequency at 50Hz (Suppl. Fig. 1 a-b). For the
467 subsequent time-frequency analysis, we used a single-tapered spectral analysis method
468 (Percival and Walden 2000) with a time window of 50 ms and 10-ms time steps. The relative
469 power changes were then calculated by dividing the time-resolved amplitude for each
470 frequency bin by the frequency-specific average of the whole 1 min epoch (Suppl. Fig. 1 c).
471 After splitting the epochs in 1-s segments, the variance of relative power was calculated for
472 each segment and every frequency. The variance of gamma band power was then defined as
473 the mean over all frequencies between 50 Hz and 250 Hz.

474 To assess a relative shift towards more phasic/tonic activity in response to stimulation, the
475 variance of gamma band power was calculated both for the 60 sec epochs after the
476 termination of tDCS or sham-stimulation and for a 30 sec baseline time window before tDCS
477 or sham-stimulation. The relative variance of gamma band power was then calculated by
478 dividing the variance by the averaged variance in the baseline time window (Suppl. Fig. 1 d).
479 This way, post-stimulation segments with the variance of gamma band power higher than the
480 corresponding average (median) in the stimulation-free 30 sec baseline time window received
481 a relative variance value greater than one and were defined as segments shifting towards
482 phasic EMG, while segments with a relative variance between zero and one were defined as

483 segments shifting towards tonic EMG. Finally, a proportion of phasic segments was
484 calculated across the whole 60 sec post-stimulation epoch, yielding values ranging from 0,
485 indicating a complete shift towards tonic EMG, to 1, indicating a complete shift towards
486 phasic EMG.

487

488

489 **Figure S1 | Analysis of peripheral EMG activity.** **a)** Exemplary 60 sec EMG recording of
490 the right hand flexoris muscle between termination of tDCS and the awakening. **b)** The same
491 EMG recording after a high-pass filter with a 50 Hz cutoff-frequency. **c)** Relative spectral
492 power of the high-pass filtered EMG recording. **d)** Relative variance of gamma band power,
493 i.e., divided by the average variance of gamma band power in the baseline time window.

494 Values greater than one (above the grey solid line) depict 1 sec segments with a shift towards
495 phasic EMG, values equal or smaller than one depict segments with a shift towards tonic
496 EMG.

497

498 **Statistical analysis.**

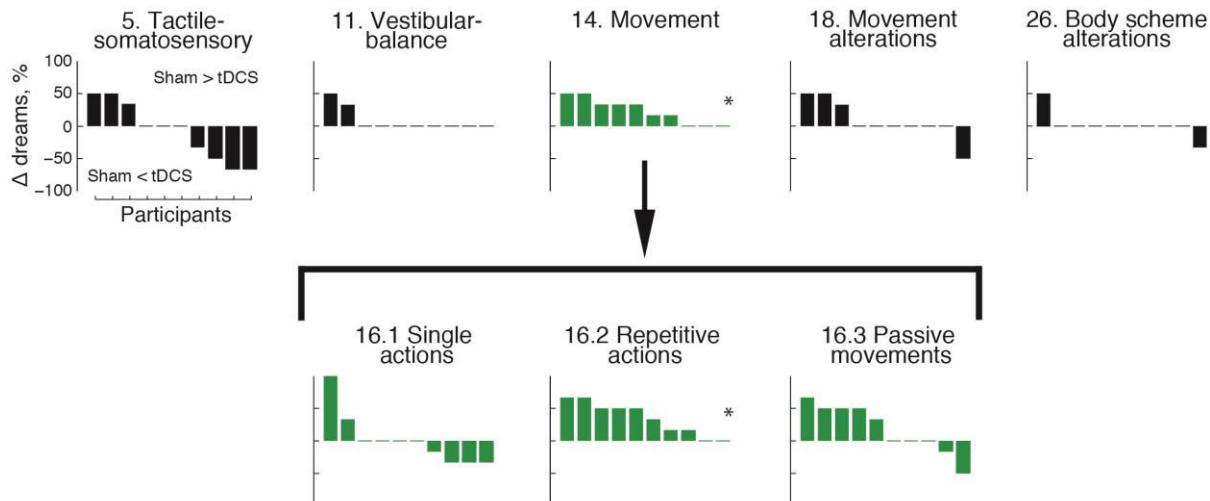
499 All dependent measures were averaged per individual participant separately for the sham-
500 stimulation and tDCS conditions. A Shapiro-Wilk test was used to assess the distribution
501 normality of dependent variables. Paired-samples t test and Pearson correlation were carried
502 out when distribution of given variables (or their difference in a case of t test) was normal,
503 and Wilcoxon signed-rank test (Z statistic) and Spearman rank order correlation were used in
504 the cases of non-normal distribution of one or both variables. For the paired-samples t-test,
505 Cohen's d was calculated as an effect size estimate using pooled variance. For the Wilcoxon
506 signed-rank test, $r=Z/\sqrt{N}$ was calculated as an effect size estimate. All statistical tests
507 were two-tailed. To control for multiple comparisons, Bonferroni correction was applied by
508 multiplying the obtained p value by the number of comparisons with a given set of tests.
509 Bonferroni corrected p values are denoted as p_{B-N} where N indicates the number of multiple
510 comparisons. For all control analyses, we report uncorrected p values. For the control t tests
511 where we expected null findings, we additionally report Bayes factor in favor of the null.
512 Statistical analyses were carried out with SPSS 22 and JASP 0.8.2.

513

514

515

516 **Results**


517

518 **tDCS modulates dream movement.**

519 The first research question addressed whether the sensorimotor cortex is involved in the
520 generation of bodily experiences in dreams. To answer this, we compared the percentage of
521 dreams with different types of bodily experiences reported in the BED Questionnaire between
522 the tDCS and sham stimulation. Among the general dimensions of bodily experience in
523 dreams (tactile/somatosensory, vestibular/balance, movement, movement alterations, body
524 scheme alterations), we found a significant difference only for movement (see Fig 2 and
525 Table 2). Specifically, the proportion of dreams with movement was significantly lower in
526 the tDCS ($M=63.1\%$, $SEM=10.2\%$) compared to the sham-stimulation ($M=86.6\%$,
527 $SEM=7\%$) condition (paired samples t test: $t(9)=3.77$, $p_{B,5}=0.022$, $d=0.85$). That is,
528 participants were less likely to answer YES to the question “Did you move in your dream?”
529 when they were awakened 1 min after termination of bihemispheric tDCS. At the individual
530 level, 7 out of 10 participants showed this effect, whereas the remaining 3 participants had
531 equal proportions of dreams with movements between the two conditions (see Fig. 2).

532

533

535 **Figure 2 | tDCS effects on reported dream experiences.** Changes between sham-
536 stimulation and tDCS conditions across the five general categories of dream content (A-E)
537 and for particular kinds of movement (F-H) per participant. Positive and negative values
538 indicate a higher proportion of dreams with a specific experience in the sham-stimulation and
539 tDCS condition, respectively. Individual participants are sorted in descending order
540 beginning with the participant with the highest proportion of dreams with a specific
541 experience in the sham-stimulation condition, compared to the tDCS condition. Participants
542 are sorted separately for each dimension of experience. * $p_B < 0.05$.

543

544

545

546

547

548

549

550

551

552

553 **Table 2.** The BED Questionnaire: Percentage of dream reports containing specific bodily
554 experiences following sham-stimulation and tDCS during REM sleep

<i>Bodily experiences</i>	<i>Sham</i>	<i>tDCS</i>	<i>Statistical test</i>	
	<i>M (SEM)</i>	<i>M (SEM)</i>	<i>t/Z</i>	<i>p_B</i>
<i>Five general dimensions</i>				
5. Tactile- somatosensory	34.9 (12.3)	43.2 (12)	$t(9) = 0.59$	1
11. Vestibular- balance	8.3 (5.7)	0 (0)	$Z = 1.34$	0.9
14. Movement	86.6 (7)	63.1 (10.2)	$t(9) = 3.77$	0.022*
18. Movement alterations	13.3 (6.9)	5 (5)	$Z = 0.76$	1
26. Body scheme alterations	5 (5)	3.3 (3.3)	$Z = 0.45$	1
<i>Movement sub-scales</i>				
16.1 Single actions	53.3 (13.3)	51.7 (13.3)	$Z = 0.22$	1
16.2 Repetitive actions	65 (9.8)	30 (8.5)	$t(9) = 4.36$	0.006*
16.3 Passive movements	30 (8.5)	11.7 (7.9)	$t(9) = 1.56$	0.45

555 *Note.* t: paired samples t test; Z: Wilcoxon signed-rank test; * $p_B < 0.05$

556

557

558 To investigate whether specific types of movement were inhibited by tDCS, we compared the
559 proportion of dreams with single actions (i.e. movements that are not repeated immediately
560 after their execution, such as placing a book on the table), repetitive actions (i.e. the same
561 movements repeated several times in a continuous sequence, such as running), and passive
562 movements (i.e. movements determined by external forces, such as traveling by car) between
563 tDCS and sham-stimulation conditions (see Table S1 for examples of movement descriptions
564 in the verbal dream reports). There were significantly less dreams with repetitive actions in
565 the tDCS condition ($M=30\%$, $SEM=8.5\%$) compared to the sham condition ($M=65\%$,
566 $SEM=9.8\%$) (paired samples t test: $t(9)=4.36$, $d=1.21$, $p_{B,3}=0.006$) (see Fig. 2). There were no
567 significant tDCS effects on the frequency of dreams containing single actions or passive
568 movements (see Table 2).

569 Interestingly, we found no difference in movement frequency between the stimulation
570 conditions in verbal dream reports that were content analysed by external judges (see Table
571 S2). This could be due to a considerably smaller proportion of explicitly expressed
572 movements in free reports compared to the BED Questionnaire answers. It is possible that
573 participants tended to omit movements from the spontaneous verbal reports that were given
574 before answering to explicit motor questions of the BED Questionnaire (see Supplementary
575 Results).

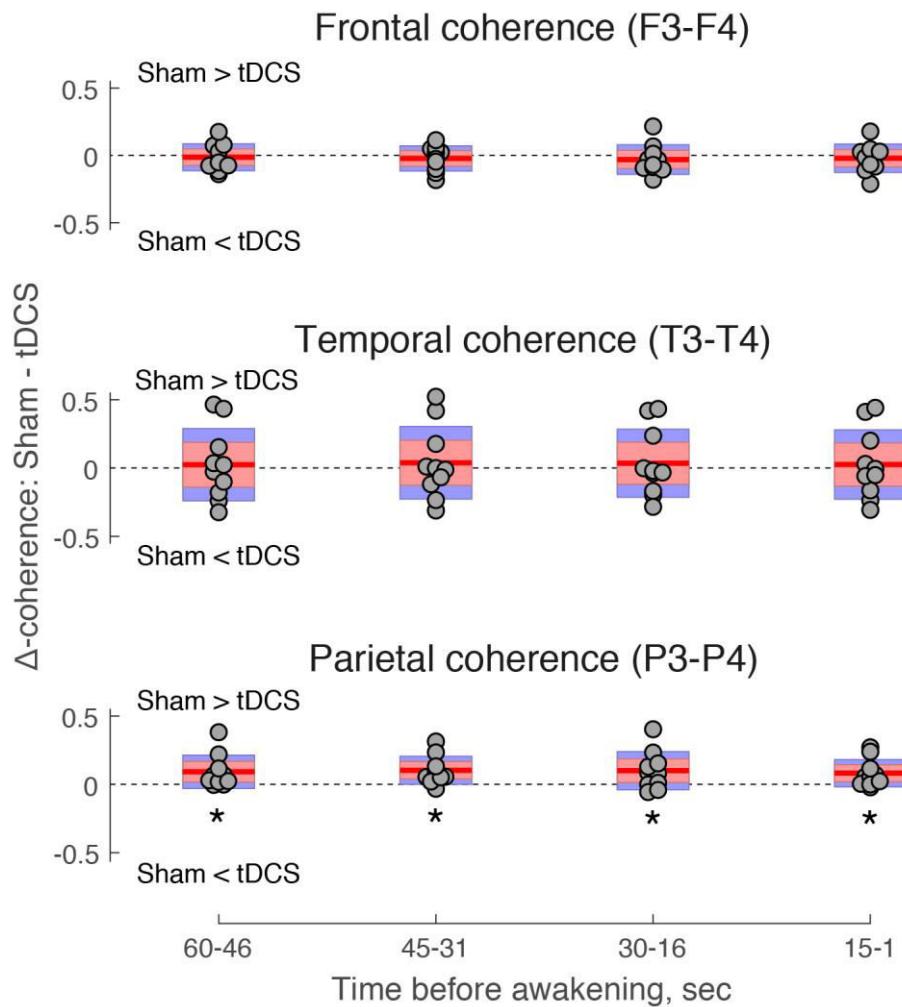
576 According to our questionnaire data, a majority of dream movements involved the whole
577 body ($M=75.5\%$, $SEM=7.62\%$) and more rarely the right hand ($M=25\%$, $SEM=8.23\%$) or
578 both hands ($M=15.83\%$, $SEM=7.02\%$); another unspecified body part was mentioned in only
579 one report. Repetitive actions typically involved the whole body ($M=89.8\%$, $SEM=6.8\%$),
580 with only 5.6% of repetitive movements performed by the right hand (Wilcoxon signed-rank
581 test: $Z=2.71$, $p=0.007$, effect size $r=0.64$). Contrary to this, the proportion of single actions
582 was comparable for the whole body ($M=43.8\%$, $SEM=12.3\%$) and right hand movements

583 (M=34.4%, SEM=11.5%, Wilcoxon signed-rank test: Z=0.43, p=0.67, effect size $r=0.11$). No
584 systematic body part or laterality differences were observed between the sham-stimulation
585 and tDCS conditions.

586 Importantly, the observed reduction of dream movement following tDCS was not related to
587 the overall length of dream reports, which could have been a confounding factor. To test
588 whether the reduction in dream movement was related to shorter dream reports following
589 tDCS, we compared the subjectively reported duration of dreams during the tDCS and sham-
590 stimulation conditions (BED Questionnaire - Q41, see Appendix 1). There was no difference
591 in the subjectively reported duration of dream reports between tDCS (Median=9.17 min,
592 range from 1.5 min to 97.5 min) and sham-stimulation (Median=9.67 min, range from 0.83
593 min to 40 min) conditions (Wilcoxon signed-rank test: Z=0.36, p=0.72, $r=0.11$). Furthermore,
594 we compared the word count of dream reports. Once again, there was no significant
595 difference between tDCS (M=76.1, SEM=16.31) and sham-stimulation (M=124.2,
596 SEM=34.68) conditions (paired samples t test: $t(9)=1.69$, $p=0.124$, $d=0.56$, Bf in favor of the
597 null=1.11). On four occasions, participants remembered and reported additional details of a
598 dream after completing the original dream report and questionnaire, while they were trying to
599 fall asleep again. When these secondary reports were included in the word count analysis,
600 there was still no significant difference in word count between tDCS (M=89, SEM=19.83)
601 and sham-stimulation (M=124.98, SEM=34.55) conditions (paired samples t test: $t(9)=1.15$,
602 $p=0.281$, $d=0.4$, Bf in favor of the null=1.91). We thus conclude that differences in the length
603 of dream reports (and in the subjectively estimated duration of dreams) were not related to
604 the observed reduction of dream movement following tDCS.

605

606


607 **tDCS modulation of EEG activity.**

608 Given the opposing direction of bihemispheric tDCS in the current study, i.e. a cathodal
609 inhibitory effect over the left motor cortex and anodal excitatory effect over the right motor
610 cortex, we hypothesized that a reduction of repetitive whole-body actions in response to
611 tDCS was due to a decreased inter-hemispheric coordination of motor processing. To
612 investigate this hypothesis, we restricted EEG analysis to the beta frequency band, because
613 (1) transient and tonic changes in EEG beta oscillatory activity underlie cortical processing of
614 both real (Gerloff et al. 1998; Jenkinson and Brown 2011; Zaepffel et al. 2013) and imagined
615 (Neuper et al. 2005; Nam et al. 2011) movements, (2) preparation and execution of
616 movement involves inter-hemispheric functional coupling in the beta frequency range
617 (Leocani et al. 1997; Mima et al. 2000), and (3) motor impairment and successful
618 rehabilitation involve changes in the inter-hemispheric interaction in the beta frequency range
619 (Pellegrino et al. 2012; Fortuna et al. 2013). We thus expected bihemispheric tDCS to
620 destabilize motor processing by reducing inter-hemispheric coherence in the beta frequency
621 range.

622 As predicted, we observed a significant decrease in coherence between parietal electrodes P3-
623 P4 following tDCS compared to sham-stimulation during a 1-minute stimulation-free period
624 before awakening (Wilcoxon signed-rank test: $Z=2.5$, $p_{B-3}=0.039$, effect size $r=0.79$). No
625 inter-hemispheric tDCS effects were observed between frontal (paired samples t test:
626 $t(9)=0.72$, $p_{B-3}=1$, $d=0.244$) or temporal electrodes ($t(9)=0.38$, $p_{B-3}=1$, $d=0.114$). To control
627 for temporal specificity of the decrease of parietal coherence, we repeated the same analysis
628 in four separate time intervals following termination of stimulation: -60 to -46 sec, -45 to -31
629 sec, -30 to -16 sec, and -15 sec to -1 sec prior to awakening. A significant effect observed
630 only in the time window before awakening (i.e. -30 to -16 sec, and/or -15 sec to -1 sec) would
631 indicate a non-specific effect of experimental stimulation. Compared to sham-stimulation, a

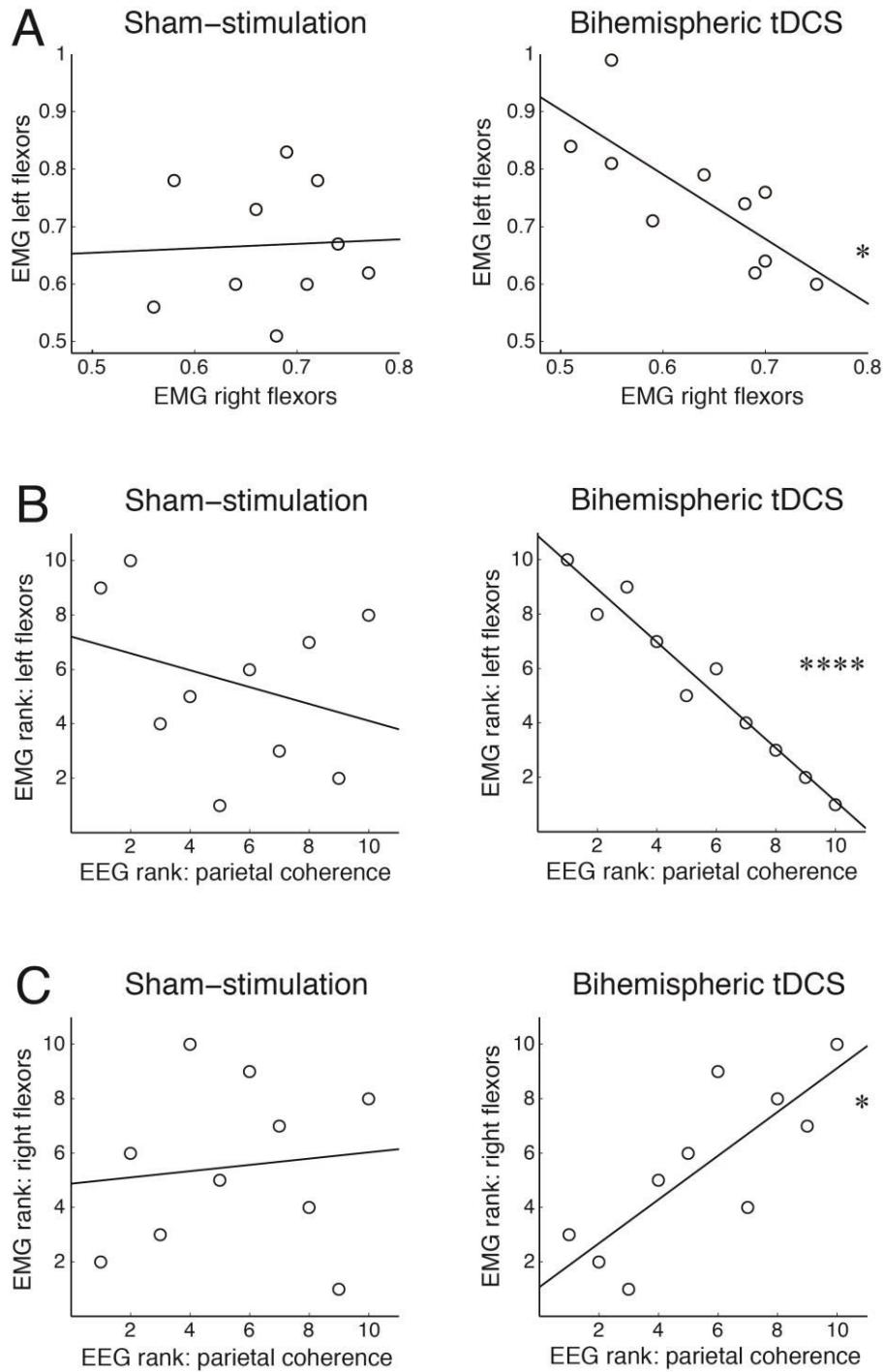
632 significant decrease of parietal coherence took place in the tDCS condition throughout all
633 four sub-intervals between the offset of stimulation and the onset of awakening, confirming a
634 direct and relatively long-lasting tDCS effect on parietal coherence in the beta-frequency
635 range (see Fig 3).

636

637

638 **Figure 3 | EEG coherence following tDCS during REM sleep.** Inter-hemispheric EEG
639 coherence between frontal (top), temporal (middle), and parietal (bottom) electrodes
640 surrounding the tDCS site, expressed as a difference between sham-stimulation and tDCS
641 conditions (Δ -coherence). Jittered circles represent individual participants. Red lines depict
642 the mean of Δ -coherence, pink bars represent 1 standard deviation (SD), and blue bars
643 represent 95% confidence intervals for the mean. Positive values indicate higher coherence in
644 the sham-stimulation condition, whereas negative values indicate higher coherence in the
645 tDCS condition. Δ -coherence is plotted separately in four stimulation-free time intervals

646 preceding controlled awakenings from REM sleep. In the parietal region, coherence was
647 reduced by tDCS compared to sham stimulation in -60- to 46 sec ($Z=2.5$, $p=0.013$, $r=0.79$), -
648 45 to -31 sec ($t(9)=3.17$, $p=0.011$, $d=0.97$), -30 to -16 sec ($t(9)=2.27$, $p=0.05$, $d=0.88$) and -15
649 to -1 sec ($t(9)=2.57$, $p=0.03$, $d=0.74$) time intervals. * $p < 0.05$.


650
651 Given that EEG coherence can be affected by spectral power differences between conditions
652 (Fein et al. 1988), we carried out a control analysis to compare beta power in the electrodes
653 adjacent to the stimulation site across a 1 min stimulation-free pre-awakening period. There
654 was a significant decrease of beta power at the left parietal site (P3) in the tDCS compared to
655 the sham-stimulation condition (paired samples t test: $t(9)=2.29$, $p=0.048$, $d=0.37$, Bf in favor
656 of the null=0.64), whereas tDCS did not modulate beta power in the right parietal site (P4)
657 ($t(9)=0.73$, $p=0.48$, $d=0.088$, Bf in favor of the null=2.93). The observed trend was
658 investigated further across four 15 sec sub-intervals. No tDCS effects were observed
659 regarding beta power in P3 electrode during time intervals immediately following motor
660 cortex stimulation, i.e. -60 to -46 sec (paired samples t test: $t(9)=1.159$, $p=0.276$, $d=0.25$, Bf
661 in favor of the null=1.89) and -45 to -31 sec ($t(9)=1.172$, $p=0.271$, $d=0.3$, Bf in favor of the
662 null=1.87). Contrary to this, beta power decreased during time intervals preceding
663 awakenings: -30 to -16 sec (paired samples t test: $t(9)=2.433$, $p=0.038$, $d=0.433$, Bf in favor
664 of the null=0.46) and -15 to -1 sec ($t(9)=2.829$, $p=0.02$, $d=0.379$, Bf in favor of the
665 null=0.28). Given that EEG beta coherence was modulated by tDCS across all four time
666 intervals, we conclude that its decrease was not due to the temporally constricted changes in
667 beta spectral power.

668
669
670
671

672 **tDCS modulation of EMG activity.**

673 We observed a significant association in the proportion of phasic EMG activity in the flexors
674 between the left and right arms during the 1-min period of REM sleep from the offset of
675 tDCS to the controlled awakening (Pearson correlation: forearm flexors: $r=-0.769$, $p_{B-4}=0.037$;
676 deltoids: $r=-0.738$, $p_{B-4}=0.06$). The negative correlation between the arms likely reflects the
677 asymmetrical modality of stimulation with the cathode placed over the right sensorimotor
678 cortex and the anode over the left sensorimotor cortex. Contrary to this, there was no
679 association in the proportion of phasic EMG between forearms following sham stimulation
680 (Pearson correlation: forearm flexors: $r=0.095$, $p_{B-4}=1$; deltoids: $r=0.308$, $p_{B-4}=1$), indicating
681 that muscle activity varied independently (see Fig 4A). Regarding absolute EMG values,
682 there was no difference between phasic activity in the left as compared to the right arm in
683 either the sham-stimulation condition (paired samples t test: forearm flexors: $t(9)=0.12$, $p_{B-4}=1$, $d=0.08$;
684 deltoids: $t(9)=1.52$, $p_{B-4}=0.66$, $d=0.57$) or following tDCS (forearm flexors:
685 $t(9)=1.88$, $p_{B-4}=0.37$, $d=1.13$; deltoids: $t(9)=1.96$, $p_{B-4}=0.33$, $d=1.08$).

686

687

688

689 **Figure 4 | Bihemispheric tDCS during REM sleep modulates phasic activity of the**
690 **forearm muscles. (A)** Correlation of EMG shift towards phasic activity between the left and
691 right forearm flexor muscles in the sham-stimulation and tDCS conditions. **(B-C)** Correlation
692 between EMG shift towards phasic activity and EEG parietal coherence in the beta frequency
693 band, plotted separately for the left and right forearm recordings, in the sham-stimulation and
694 tDCS conditions. Ranked data are plotted in (B) and (C) as Spearman's rank order

695 correlations were carried between EMG and EEG measures. In all plots, the least-squares
696 lines are plotted to visualize associations between variables. * $p_B < 0.05$, **** $p_B < 0.00005$.

697

698 Next, we investigated whether peripheral EMG activity is associated with EEG parietal
699 coherence in the beta frequency band, which decreased in response to tDCS during REM
700 sleep (see Fig 4B-C). In the tDCS condition, EEG coherence was significantly associated
701 with the proportion of phasic activity in the left flexor muscles (Spearman rank order
702 correlation: $\rho = -0.976$, $p_{B-8} = 0.00001$), and the right flexor muscles ($\rho = 0.806$, $p_{B-8} = 0.039$).
703 Interestingly, higher parietal coherence was associated with a larger proportion of phasic
704 activity in the right forearm muscles and a lower proportion of phasic activity in the left
705 forearm muscles, once again likely reflecting differential effects of anodal vs. cathodal
706 stimulation. No association was observed between parietal EEG coherence and the proportion
707 of phasic activity in flexor muscles in the sham stimulation condition (lowest $p_{B-8} = 1$).
708 Likewise, there was no association between parietal EEG coherence and deltoid EMG,
709 neither during sham-stimulation (lowest $p_{B-8} = 1$) nor tDCS conditions (lowest $p_{B-8} = 0.72$),
710 indicating a site specific interaction between EEG and EMG measures.

711

712 **Discussion**

713

714 The foremost aim of our study was to investigate the role of the sensorimotor cortex in
715 generating bodily sensations in REM sleep dreams by modulating the excitability of the
716 sensorimotor cortex with tDCS. We found that compared to sham stimulation, bihemispheric
717 tDCS over the sensorimotor cortex reduced the frequency specifically of repetitive actions of
718 the dream self in preceding REM sleep dreams, providing causal evidence that the
719 sensorimotor cortex is involved in the generation of dream movement. Furthermore, tDCS

720 interfered with inter-hemispheric EEG coherence and peripheral EMG activity, pointing to a
721 change in both the central and peripheral motor systems in response to bihemispheric tDCS
722 during REM sleep.

723

724 **Frequency of bodily sensations and movement in dreams.**

725 To systematically assess and directly interfere with bodily sensations in dreams, we
726 developed a questionnaire designed to capture various dimensions of bodily experiences in
727 dreams (see Table 2 and Appendix 1 for the complete questionnaire). Interestingly,
728 independently of tDCS, our data suggest that while dream movements were very common,
729 other bodily sensations such as somatosensory sensations, vestibular sensations or body
730 schema alterations were rather rare. This overall pattern of frequent dream movement
731 coupled with rare reports of other bodily sensations has been found in previous studies
732 (Hobson 1988; Schwartz 2000; Windt 2018). Our study extends the previous work based on
733 spontaneous dream reports by showing that when different types of bodily experiences are
734 specifically investigated through use of a questionnaire, movements and tactile sensations
735 remain the predominant dimensions of bodily experience in dreams. Thus, content analysis-
736 and questionnaire-based studies provide converging evidence for the important role of
737 sensorimotor phenomena in dreams.

738 The predominance of dream movement in our data also seems to be in line with a recent
739 suggestion that kinesthesia is central to the generation of dream experience, at least during
740 sleep onset (Nielsen 2017). At the same time, in our study, 36.9 % of dream reports following
741 tDCS contained no movements. It therefore seems that specifically self-movements are not
742 strictly necessary to sustain REM sleep dreaming. Moreover, the decrease of dream

743 movement did not reduce the length of dream reports in our sample. Whether these dreams
744 still involved e.g. observed movement is an open question.

745 **Electrophysiological effects of bihemispheric tDCS.**

746 Bihemispheric tDCS over the sensorimotor cortex, as compared to sham stimulation,
747 specifically altered repetitive actions in dreams. Repetitive actions are typically dependent on
748 implicit memory of learnt motor sequences (e.g., walking), the automatic processing of which
749 does not require explicit awareness and monitoring of movements. Such learnt, automatic
750 movements, as compared to more controlled and deliberate movements, are also associated
751 with a smaller increase of activity in brain areas related to motor processing (Wu and Hallett
752 2005). Thus, arguably, a relatively modest tDCS interference with cortical processing might
753 have down-regulated motor cortex activity involved in the processing of automatic
754 movements, reducing it to the baseline resting level and simultaneously inhibiting the
755 occurrence of repetitive actions in dreams. Contrary to this, the relatively stronger cortical
756 activation underlying single controlled actions might not have been reduced sufficiently by
757 tDCS interference to significantly alter dream content. This would explain why our results
758 showed a specific decrease in repetitive actions, while the frequency of single actions in
759 dreams remained relatively high during tDCS and did not significantly differ from sham
760 stimulation. Alternatively, bihemispheric stimulation might have interfered with the temporal
761 coordination of dream movement, prohibiting long sequences of repetitive actions, but
762 sparing temporally restricted single actions. Indeed, dream imagery is notoriously unstable
763 and prone to change in discontinuous jumps (Revonsuo and Salmivalli 1995). Such
764 possibilities should be more directly assessed in future studies, e.g. using motor imagery tasks
765 during wakefulness that would allow for a more stringent control of movement complexity.

766 We found that bihemispheric tDCS interfered with neural processing in the beta frequency
767 band, classically linked to motor processing (Leocani et al. 1997; Gerloff et al. 1998; Mima et
768 al. 2000; Neuper et al. 2005; Jenkinson and Brown 2011; Nam et al. 2011; Pellegrino et al.
769 2012; Fortuna et al. 2013; Zaepffel et al. 2013; Khanna and Carmena 2015). In our setup,
770 bihemispheric tDCS reduced inter-hemispheric coherence of parietal beta oscillations.
771 Arguably, the differential montage of tDCS electrodes, i.e. the excitatory anode over the right
772 sensorimotor cortex and the inhibitory cathode over the left sensorimotor cortex, disrupted
773 inter-hemispheric coordination of motor commands, reducing the rate of repetitive actions
774 associated with whole body movements in dreams. A differential effect of bihemispheric
775 tDCS was also observed in the phasic EMG activity of the arm muscles. While phasic EMG
776 varied independently between the arms during sham stimulation, a strong negative correlation
777 was observed following tDCS, i.e. it suppressed phasic muscle activity in one arm while
778 increasing it in the other arm.

779 We expected that such destabilizing and hemisphere-specific effects of tDCS would also
780 cause unilateral distortions of bodily sensations in dreams, i.e. stronger effects on one side of
781 the dream body. However, the observed reduction of dream movement in dreams was
782 independent of the laterality of stimulation. That is, the decrease of inter-hemispheric EEG
783 coherence and the emergence of phasic EMG anticorrelation between arms did not translate
784 into unilateral effects on the dream body. We can only speculate on the rather surprising lack
785 of side-specific effects, and further studies will be important to understand underlying
786 mechanisms. To detect effects on other modalities (e.g. body image distortion, vestibular
787 sensations), a larger group of participants might be necessary. Moreover, the absence of
788 modulatory effects of tDCS on somatosensory experiences, which were reported quite
789 frequently by our participants, could be related to the placement of the tDCS electrodes that
790 was specifically determined by the location of the hand area in the primary motor cortex.

791

792 **Implications for consciousness studies.**

793 Our study suggests a methodology for identifying, via causal manipulation, the neural
794 correlates of specific types of dream experience. Thus, beyond dream and sleep research, our
795 findings also have more general implications for consciousness research. First, they add
796 another piece of evidence that the neural correlates of specific dream content match the
797 neural correlates of corresponding cognitive and behavioural functions during wakefulness
798 (Siclari et al. 2017). Going beyond mere correlation, our results provide *causal* evidence that
799 the motor cortex is involved in the generation of movement sensations in dreams.

800 Our results also shed light on the phenomenological profile of self-representation in dreams.
801 In simulation theories, the subjective sense of presence, or the experience of a self in a world,
802 is central to dreaming. While this highlights the importance of self-simulation, the precise
803 pattern of self-experience in dreams, as compared to wakefulness, raises questions (Windt
804 2015). One possibility is that bodily experience in dreams replicates waking experience;
805 another is that dreams are characterized by a comparative overrepresentation of movement
806 and an underrepresentation of other types of bodily experience (e.g. tactile, thermal, or pain
807 sensations). Our finding that tDCS selectively altered dream movement, taken together with
808 the comparatively low frequency of other types of bodily experience in dreams, is consistent
809 with the second possibility. Future studies could aim to further investigate this question by
810 gathering reports of bodily experience in both dreams and wakefulness, enabling a more
811 direct comparison.

812 A related question concerns the relation between bodily experiences in dreams and the
813 sleeping physical body. It is commonly thought that dream experience, including bodily
814 experience, is completely independent of outward muscular activity and stimulation of the

815 physical body. However, there are empirical and theoretical reasons for thinking that varying
816 degrees of concordance between dream experience and the physical body exist, on both the
817 levels of sensory input and motor output (Windt et al. 2016; Windt 2018). Lesion studies in
818 cats have shown that pontine lesions, which eliminate REM-sleep related muscular atonia,
819 induce organized motor behavior, such as searching and attacking, during REM sleep
820 (Henley and Morrison 1974; Sastre and Jouvet 1979), possibly indicating dream behaviours.
821 Further examples include (illusory) own-body perception, such as when stimulation to the
822 sleeping body is incorporated in dreams (Nielsen 1993; Sauvageau et al. 1998), and dream
823 enactment behaviors in humans, in which outward muscular activity corresponds to
824 movement sensations in dreams. REM sleep behavior disorder, in which seemingly goal-
825 directed behaviors during REM sleep (such as attacking one's sleeping partner, attempting to
826 run, etc.) match subjective dream reports, is an extreme example (Schenck et al. 1986; Valli
827 et al. 2012; Howell and Schenck. 2015). But REM sleep is also accompanied by subtler
828 muscular activity in the form of twitching (Blumberg and Plumeau 2016). Its concordance
829 with dream experience seems plausible but has not been systematically investigated.

830 In our study, bihemispheric tDCS during REM sleep modulated not only dream movement
831 but also outward muscular activity in the arms. Due to the absence of movement reports in
832 several participants, we could not reliably relate individual variance in subjective movement
833 reports to electrophysiological measures. However, our findings are consistent with the
834 possibility that changes in dream movement are related to changes in outward muscular
835 activity during REM sleep. A promising avenue for future research could be to investigate the
836 relevance of bihemispheric tDCS for several movement-related sleep disorders. REM sleep
837 behaviour disorder would be a good place to start because of the match between dream
838 movements and outward physical activity. Other disorders that could benefit from the

839 inhibition of motor activity include sleep walking and restless leg syndrome. Here, however,
840 the association with dream experience is less clear and should be investigated more directly.

841

842 **Limitations and outlook.**

843 Despite these promising results, the current study has several limitations. First, the effects of
844 tDCS on mental states have been repetitively challenged by replicability difficulties
845 (Tremblay et al. 2014; Horvath et al. 2015a, 2015b) and should thus be treated with caution.
846 Nevertheless, given that motor cortex tDCS during wakefulness provides the most reliable
847 effects (Horvath et al. 2015b; Buch et al. 2017), we expect the same to hold during REM
848 sleep. Second, due to the very complicated and time-intensive protocol of the study, we could
849 only recruit a rather small number of participants. Thus, larger samples and replication
850 studies will be needed in future (Minarik et al. 2016). Furthermore, and again due to the
851 complexity of the setup, we did not include a control stimulation site nor did we switch the
852 side of the bihemispheric stimulation (to left anodal, right cathodal stimulation), which would
853 be especially interesting to disentangle hemisphere-specific effects. Future studies with a
854 larger sample of participants should also explore whether bihemispheric tDCS during REM
855 sleep interferes with a wider range of EEG frequencies involved in motor processing,
856 including alpha and gamma bands as well as broadband responses (Ball et al. 2008; Babiloni
857 et al. 2016).

858

859 **Conclusions.**

860 To conclude, this study provided, in a controlled setup, evidence that stimulation over the
861 sensorimotor cortex modulates dream content in healthy participants during REM sleep. This
862 has important implications for various research fields, including consciousness research, and

863 sleep and dream research. Future studies will have to pinpoint more specifically which neural
864 mechanisms underlie the inhibition of repetitive movements of the dream self and whether
865 the observed subjective and neurophysiological effects are sufficiently long-lasting to warrant
866 clinical studies in, for example, parasomnia patients.

867

868 **Acknowledgements**

869 The study was funded by the Volkswagen Foundation (Project No. I/82 897). Individually,
870 VN was supported by the Signe and Ane Gyllenberg Foundation. JW is the recipient of an
871 Australian Research Council Discovery Early Career Researcher Award. BL is supported by
872 the Swiss National Science Foundation. We thank Jasmine Ho for the language corrections
873 and comments.

874

875 **Author Contributions.**

876 V.N., J.M.W., A.A.K., T.B. and B.L. conceived the study and designed the experiments.
877 V.N., T.S. and R.P. conducted experiments. V.N., T.B., B.L. analyzed and interpreted EEG
878 data. M.K. and T.B. analyzed and interpreted EMG data. V.N., J.M.W., K.V. and B.L.
879 analyzed and interpreted dream data. V.N., J.M.W., M.K., K.V., T.S., R.P., A.R., T.B., and
880 B.L. prepared the manuscript.

881

882 **Declaration of Interests**

883 The authors declare no competing interests.

884

885

886 **References**

887 Axelrod V, Rees G, Lavidor M, Bar M. 2015. Increasing propensity to mind-wander with
888 transcranial direct current stimulation. *Proc Natl Acad Sci.* 112:3314–3319.

889 Babiloni C, Del Percio C, Vecchio F, Sebastiano F, Di Gennaro G, Quarato PP, Morace R,
890 Pavone L, Soricelli A, Noce G, Esposito V, Rossini PM, Gallese V, Mirabella G. 2016.
891 Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor,
892 premotor and prefrontal cortical areas differ in movement execution and observation in
893 humans. *Clin Neurophysiol.* 127:641–654.

894 Baldridge BJ. 1966. Physical concomitants of dreaming and the effect of stimulation on
895 dreamsitle. *Ohio State Med J.* 62:1272–1275.

896 Baldridge BJ, Whitman R, Kramer M. 1965. The concurrence of fine muscle activity and
897 rapid eye movements during sleep. *Psychosom Med.* 27:19–26.

898 Ball T, Demandt E, Mutschler I, Neitzel E, Mehring C, Vogt K, Aertsen A, Schulze-Bonhage
899 A. 2008. Movement related activity in the high gamma range of the human EEG.
900 *Neuroimage.* 41:302–310.

901 Blumberg MS. 2015. Developing Sensorimotor Systems in Our Sleep. *Curr Dir Psychol Sci.*
902 24:32–37.

903 Blumberg MS, Plumeau AM. 2016. A new view of “dream enactment” in REM sleep
904 behavior disorder. *Sleep Med Rev.* 30:34–42.

905 Buch ER, Santarnechchi E, Antal A, Born J, Celnik PA, Classen J, Gerloff C, Hallett M,
906 Hummel FC, Nitsche MA, Pascual-Leone A, Paulus WJ, Reis J, Robertson EM,
907 Rothwell JC, Sandrini M, Schambra HM, Wassermann EM, Ziemann U, Cohen LG.
908 2017. Effects of tDCS on motor learning and memory formation: A consensus and
909 critical position paper. *Clin Neurophysiol.* 128:589–603.

910 Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. 1989. The Pittsburgh sleep
911 quality index: A new instrument for psychiatric practice and research. *Psychiatry Res.*
912 28:193–213.

913 Cicogna P, Bosinelli M. 2001. Consciousness during dreams. *Conscious Cogn.* 10:26–41.

914 Cipolli C, Ferrara M, De Gennaro L, Plazzi G. 2017. Beyond the neuropsychology of
915 dreaming: Insights into the neural basis of dreaming with new techniques of sleep
916 recording and analysis. *Sleep Med Rev.* 35:8–20.

917 Dang-Vu TT, Desseilles M, Albouy G, Darsaud A, Gais S, Rauchs G, Schabus M, Sterpenich
918 V, Vandewalle G, Schwartz S, Maquet P. 2005. Dreaming: A neuroimaging view.
919 *Schweizer Arch fur Neurol und Psychiatr.* 156:415–425.

920 Delorme A, Makeig S. 2004. EEGLAB: An open source toolbox for analysis of single-trial
921 EEG dynamics including independent component analysis. *J Neurosci Methods.* 134:9–
922 21.

923 Dement W, Wolpert EA. 1958. The relation of eye movements, body motility, and external
924 stimuli to dream content. *J Exp Psychol.* 55:543–553.

925 Dresler M, Koch SP, Wehrle R, Spoormaker VI, Holsboer F, Steiger A, Sämann PG, Obrig
926 H, Czisch M. 2011. Dreamed movement elicits activation in the sensorimotor cortex.
927 *Curr Biol.* 21:1833–1837.

928 Fairley JA, Georgoulas G, Mehta NA, Gray AG, Bliwise DL. 2012. Computer detection
929 approaches for the identification of phasic electromyographic (EMG) activity during
930 human sleep. *Biomed Signal Process Control.* 7:606–615.

931 Fein G, Raz J, Brown FF, Merrin EL. 1988. Common reference coherence data are
932 confounded by power and phase effects. *Electroencephalogr Clin Neurophysiol.* 69:581–
933 584.

934 Feurra, M., Bianco G, Polizzotto NR, Innocenti I, Rossi A, Rossi S. 2011. Cortico-cortical
935 connectivity between right parietal and bilateral primary motor cortices during imagined
936 and observed actions: A combined TMS/tDCS study. *Front Neural Circuits*. 5:10.

937 Fortuna M, Teixeira S, Machado S, Velasques B, Bittencourt J, Peressutti C, Budde H, Cagy
938 M, Nardi AE, Piedade R, Ribeiro P, Arias-Carrión O. 2013. Cortical reorganization after
939 hand immobilization: The beta qEEG spectral coherence evidences. *PLoS One*.
940 8:e79912.

941 Fox KCR, Nijeboer S, Solomonova E, Domhoff GW, Christoff K. 2013. Dreaming as mind
942 wandering: evidence from functional neuroimaging and first-person content reports.
943 *Front Hum Neurosci*. 7:412.

944 Gandiga PC, Hummel FC, Cohen LG. 2006. Transcranial DC stimulation (tDCS): A tool for
945 double-blind sham-controlled clinical studies in brain stimulation. *Clin Neurophysiol*.
946 117:845–850.

947 Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M. 1998. Functional
948 coupling and regional activation of human cortical motor areas during simple, internally
949 paced and externally paced finger movements. *Brain*. 121:1513–1531.

950 Henley K, Morrison AR. 1974. A reevaluation of the effects of lesions of the pontine
951 tegmentum and locus coeruleus on phenomena of paradoxical sleep in the cat. *Acta
952 Neurobiol Exp (Wars)*. 34:215–232.

953 Hobson JA. 1988. *The dreaming brain*. New York: Basic Books.

954 Hoff H. 1929. Zusammenhang von Vestibulärfunktion, Schlafstellung und Traumleben. *Eur
955 Neurol*. 71:366–372.

956 Hoff H, Pötzl O. 1937. Über die labyrinthären Beziehungen von Flugsensationen und
957 Flugträumen. *Eur Neurol*. 97:193–211.

958 Horvath JC, Forte JD, Carter O. 2015a. Quantitative review finds no evidence of cognitive
959 effects in healthy populations from single-session transcranial direct current stimulation
960 (tDCS). *Brain Stimul.* 8:535–550.

961 Horvath JC, Forte JD, Carter O. 2015b. Evidence that transcranial direct current stimulation
962 (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude
963 modulation in healthy human subjects: A systematic review. *Neuropsychologia*. 66:213–
964 236.

965 Howell MJ, Schenck. CH. 2015. REM sleep behavior disorder. In: Videnovic A., Högl B,
966 editors. *Disorders of Sleep and Circadian Rhythms in Parkinson's Disease*. Vienna:
967 Springer. p. 131–144.

968 Hummel F, Celnik P, Giroux P, Floel A, Wu WH, Gerloff C, Cohen LG. 2005. Effects of
969 non-invasive cortical stimulation on skilled motor function in chronic stroke. *Brain*.
970 128:490–499.

971 Jakobson AJ, Conduit RD, Fitzgerald PB. 2012. Investigation of visual dream reports after
972 transcranial direct current stimulation (tDCS) during REM sleep. *Int J Dream Res.* 5:87–
973 93.

974 Jakobson AJ, Fitzgerald PB, Conduit R. 2012a. Induction of visual dream reports after
975 transcranial direct current stimulation (tDCs) during Stage 2 sleep. *J Sleep Res.* 21:369–
976 379.

977 Jakobson AJ, Fitzgerald PB, Conduit R. 2012b. Investigation of dream reports after
978 transcranial direct current stimulation (tDCs) during slow wave sleep (SWS). *Sleep Biol*
979 *Rhythms*. 10:169–178.

980 Jasper HH. 1958. The ten-twenty electrode system of the International Federation.
981 *Electroencephalogr Clin Neurophysiol*. 10:371–375.

982 Jenkinson N, Brown P. 2011. New insights into the relationship between dopamine, beta
983 oscillations and motor function. *Trends Neurosci.* 34:611–618.

984 Khanna P, Carmena JM. 2015. Neural oscillations: Beta band activity across motor networks.
985 *Curr Opin Neurobiol.* 32:60–67.

986 LaBerge S, Baird B, Zimbardo PG. 2018. Smooth tracking of visual targets distinguishes
987 lucid REM sleep dreaming and waking perception from imagination. *Nat Commun.*
988 9:3298.

989 Leocani L, Toro C, Manganotti P, Zhuang P, Hallett M. 1997. Event-related coherence and
990 event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during
991 self- paced movements. *Electroencephalogr Clin Neurophysiol - Evoked Potentials.*
992 104:199–206.

993 Leslie K, Ogilvie R. 1996. Vestibular dreams: The effect of rocking on dream mentation.
994 *Dreaming.* 6:1–16.

995 Lindenberg R, Nachtigall L, Meinzer M, Sieg MM, Floel A. 2013. Differential Effects of
996 Dual and Unihemispheric Motor Cortex Stimulation in Older Adults. *J Neurosci.*
997 33:9176–9183.

998 Lindenberg R, Sieg MM, Meinzer M, Nachtigall L, Flöel A. 2016. Neural correlates of
999 unihemispheric and bihemispheric motor cortex stimulation in healthy young adults.
1000 *Neuroimage.* 140:141–149.

1001 Maquet P, Laureys S, Peigneux P, Fuchs S, Petiau C, Phillips C, Aerts J, Del Fiore G,
1002 Degueldre C, Meulemans T, Luxen A, Franck G, Van Der Linden M, Smith C,
1003 Cleeremans A. 2000. Experience-dependent changes in changes in cerebral activation
1004 during human REM sleep. *Nat Neurosci.* 3:831–836.

1005 Marshall L. 2004. Transcranial Direct Current Stimulation during Sleep Improves Declarative

1006 Memory. J Neurosci. 24:9985–9992.

1007 Matsumoto J, Fujiwara T, Takahashi O, Liu M, Kimura A, Ushiba J. 2010. Modulation of mu
1008 rhythm desynchronization during motor imagery by transcranial direct current
1009 stimulation. J Neuroeng Rehabil. 7:27.

1010 Mima T, Matsuoka T, Hallett M. 2000. Functional coupling of human right and left cortical
1011 motor areas demonstrated with partial coherence analysis. Neurosci Lett. 287:93–96.

1012 Minarik T, Berger B, Althaus L, Bader V, Biebl B, Brotzeller F, Fusban T, Hegemann J,
1013 Jesteadt L, Kalweit L, Leitner M, Linke F, Nabielska N, Reiter T, Schmitt D, Spratz A,
1014 Sauseng P. 2016. The importance of sample size for reproducibility of tDCS effects.
1015 Front Hum Neurosci. 10:453.

1016 Nam CS, Jeon Y, Kim YJ, Lee I, Park K. 2011. Movement imagery-related lateralization of
1017 event-related (de)synchronization (ERD/ERS): Motor-imagery duration effects. Clin
1018 Neurophysiol. 122:567–577.

1019 Neuper C, Scherer R, Reiner M, Pfurtscheller G. 2005. Imagery of motor actions: Differential
1020 effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cogn Brain
1021 Res. 25:668–677.

1022 Nielsen TA. 1993. Changes in the Kinesthetic Content of Dreams Following Somatosensory
1023 Stimulatipn of Leg Muscles During REM Sleep. Dreaming. 3:99–113.

1024 Nielsen TA. 2017. Microdream neurophenomenology. Neurosci Conscious. 3:nix001.

1025 Nir Y, Tononi G. 2010. Dreaming and the brain: from phenomenology to neurophysiology.
1026 Trends Cogn Sci. 14:88–100.

1027 Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F,
1028 Boggio PS, Fregni F, Pascual-Leone A. 2008. Transcranial direct current stimulation:

1029 State of the art 2008. *Brain Stimul.* 1:206–223.

1030 Nitsche M, Paulus W. 2000. Excitability changes induced in the human motor cortex by weak
1031 transcranial direct current stimulation. *J Physiol.* 527:633–639.

1032 Noreika V, Windt JM, Lenggenhager B, Karim AA. 2010. New perspectives for the study of
1033 lucid dreaming: From brain stimulation to philosophical theories of self-consciousness.
1034 *Int J Dream Res.* 3:36–45.

1035 Occhionero M, Cicogna P, Natale V, Esposito MJ, Bosinelli M. 2005. Representation of self
1036 in SWS and REM dreams. *Sleep Hypn.* 7:77–83.

1037 Oldfield RC. 1971. The assessment and analysis of handedness: The Edinburgh inventory.
1038 *Neuropsychologia.* 9:97–113.

1039 Opitz A, Yeagle E, Thielscher A, Schroeder C, Mehta AD, Milham MP. 2018. On the
1040 importance of precise electrode placement for targeted transcranial electric stimulation.
1041 *Neuroimage.* 181:560–567.

1042 Pellegrino G, Tomasevic L, Tombini M, Assenza G, Bravi M, Sterzi S, Giacobbe V, Zollo L,
1043 Guglielmelli E, Cavallo G, Vernieri F, Tecchio F. 2012. Inter-hemispheric coupling
1044 changes associate with motor improvements after robotic stroke rehabilitation. *Restor
1045 Neurol Neurosci.* 30:497–510.

1046 Percival D, Walden AT. 2000. *Wavelet Methods for Time Series Analysis* (Cambridge Series
1047 in Statistical and Probabilistic Mathematics). Cambridge: Cambridge University Press.

1048 Pompeiano O. 1967. Sensory inhibition during motor activity in sleep. In: Yahr MD,, Purpura
1049 DP, editors. *Neurophysiological basis of normal and abnormal motor activities.* New
1050 York: Raven Press. p. 323–375.

1051 Priori A. 2003. Brain polarization in humans: A reappraisal of an old tool for prolonged non-

1052 invasive modulation of brain excitability. *Clin Neurophysiol.* 114:589–595.

1053 Quartarone A, Morgante F, Bagnato S, Rizzo V, Sant'Angelo A, Aiello E, Reggio E,
1054 Battaglia F, Messina C, Girlanda P. 2004. Long lasting effects of transcranial direct
1055 current stimulation on motor imagery. *Neuroreport.* 15:1287–1291.

1056 Revonsuo A, Salmivalli C. 1995. A content analysis of bizarre elements in dreams.
1057 *Dreaming.* 5:169–187.

1058 Revonsuo A, Tuominen J, Valli K. 2015. The Avatars in the Machine - Dreaming as a
1059 Simulation of Social Reality. In: Metzinger T., Windt JM, editors. *Open MIND.*
1060 Frankfurt am Main: MIND Group. p. 32.

1061 Richter L, Neumann G, Oung S, Schweikard A, Trillenberg P. 2013. Optimal Coil
1062 Orientation for Transcranial Magnetic Stimulation. *PLoS One.* 8:e60358.

1063 Ruohonen J, Karhu J. 2010. Navigated transcranial magnetic stimulation. *Neurophysiol Clin*
1064 *Neurophysiol.* 40:7–17.

1065 Sanchez-Vives M V., Slater M. 2005. From presence to consciousness through virtual reality.
1066 *Nat Rev Neurosci.* 6:332–339.

1067 Sastre JP, Jouvet M. 1979. Oneiric behavior in cats. *Physiol Behav.* 9:293–308.

1068 Sauvageau A, Nielsen TA, Montplaisir J. 1998. Effects of somatosensory stimulation on
1069 dream content in gymnasts and control participants: Evidence of vestibulomotor
1070 adaptation in REM sleep. *Dreaming.* 8:125–134.

1071 Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW. 1986. Chronic behavioral disorders
1072 of human REM sleep: A new category of parasomnias. *Sleep.* 9:293–308.

1073 Schredl M. 2002. Dream recall frequency and openness to experience: A negative finding.

1074 Pers Individ Dif. 33:1285–1289.

1075 Schredl M, Atanasova D, Hörmann K, Maurer JT, Hummel T, Stuck BA. 2009. Information
1076 processing during sleep: The effect of olfactory stimuli on dream content and dream
1077 emotions. J Sleep Res. 18:285–290.

1078 Schwartz S. 2000. A Historical Loop of One Hundred Years: Similarities between 19th
1079 Century and Contemporary Dream Research. Dreaming. 10:55–66.

1080 Schwartz S, Maquet P. 2002. Sleep imaging and the neuropsychological assessment of
1081 dreams. Trends Cogn Sci. 6:23–30.

1082 Siclari F, Baird B, Perogamvros L, Bernardi G, LaRocque JJ, Riedner B, Boly M, Postle BR,
1083 Tononi G. 2017. The neural correlates of dreaming. Nat Neurosci. 20:872–878.

1084 Sikka P, Feilhauer D, Valli KJ, Revonsuo A. 2017. How you measure is what you get:
1085 Differences in self- and external ratings of emotional experiences in home dreams. Am J
1086 Psychol. 130:367–384.

1087 Sikka P, Valli K, Virta T, Revonsuo A. 2014. I know how you felt last night, or do I? Self-
1088 and external ratings of emotions in REM sleep dreams. Conscious Cogn. 25:51–66.

1089 Speth J, Frenzel C, Voss U. 2013. A differentiating empirical linguistic analysis of dreamer
1090 activity in reports of EEG-controlled REM-dreams and hypnagogic hallucinations.
1091 Conscious Cogn. 22:1013–1021.

1092 Speth J, Speth C. 2016. Motor imagery in REM sleep is increased by transcranial direct
1093 current stimulation of the left motor cortex (C3). Neuropsychologia. 86:57–65.

1094 Strauch I, Meier B. 1996. In search of dreams. Results of experimental dream research.
1095 Albany, New York: SUNY Press.

1096 Stumbrys T, Erlacher D, Schredl M. 2013. Testing the involvement of the prefrontal cortex in
1097 lucid dreaming: A tDCS study. *Conscious Cogn.* 22:1214–1222.

1098 Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. 2011. Brainstorm: A user-friendly
1099 application for MEG/EEG analysis. *Comput Intell Neurosci.* 879716:1–13.

1100 Tremblay S, Lepage JF, Latulipe-Loiselle A, Fregni F, Pascual-Leone A, Théoret H. 2014.
1101 The uncertain outcome of prefrontal tDCS. *Brain Stimul.* 7:773–783.

1102 Valli K, Frauscher B, Gschliesser V, Wolf E, Falkenstetter T, Schönwald S V., Ehrmann L,
1103 Zangerl A, Marti I, Boesch SM, Revonsuo A, Poewe W, Högl B. 2012. Can observers
1104 link dream content to behaviours in rapid eye movement sleep behaviour disorder? A
1105 cross-sectional experimental pilot study. *J Sleep Res.* 21:21–29.

1106 Voss U, Holzmann R, Hobson A, Paulus W, Koppehele-Gossel J, Klimke A, Nitsche MA.
1107 2014. Induction of self awareness in dreams through frontal low current stimulation of
1108 gamma activity. *Nat Neurosci.* 17:810–812.

1109 Windt JM. 2015. Dreaming: A conceptual framework for philosophy of mind and empirical
1110 research. Cambridge, MA: MIT Press.

1111 Windt JM. 2018. Predictive brains, dreaming selves, sleeping bodies: how the analysis of
1112 dream movement can inform a theory of self- and world-simulation in dreams. *Synthese.*
1113 195:2577–2625.

1114 Windt JM, Nielsen T, Thompson E. 2016. Does Consciousness Disappear in Dreamless
1115 Sleep? *Trends Cogn Sci.* 20:871–882.

1116 Wu MF. 1993. Sensory processing and sensation during sleep. In: Carskadon MA, editor.
1117 *Encyclopedia of Sleep and Dreaming.* New York: Macmillan. p. 533–535.

1118 Wu T, Hallett M. 2005. A functional MRI study of automatic movements in patients with

1119 Parkinson's disease. *Brain*. 128:2250–2259.

1120 Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P. 1997.

1121 Localization of the motor hand area to a knob on the precentral gyrus. A new landmark.

1122 *Brain*. 120:141–157.

1123 Zaepffel M, Trachel R, Kilavik BE, Brochier T. 2013. Modulations of EEG Beta Power

1124 during Planning and Execution of Grasping Movements. *PLoS One*. 8:e60060.

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139 **SUPPLEMENTARY MATERIALS**

1140

1141 **Content analysis of movement sensations in verbal dream reports: Results.**

1142 Movements were reported in 49.8% (SEM=10) of dreams following sham-stimulation and
1143 54.9% (SEM=10.9) of dreams following tDCS. Repetitive actions were the most common
1144 type of movement, followed by single actions, with passive movements being the least
1145 common (see Tables S1 and S2), replicating the pattern observed in the BED Questionnaire
1146 data. However, there were no significant differences between the sham-stimulation and tDCS
1147 conditions (see Table S2), in contrast to the effects observed in the questionnaire data (see
1148 Table 1). The discrepancy could be due to a considerably smaller proportion of explicitly
1149 expressed movements in free dream reports compared to the BED Questionnaire answers, i.e.
1150 participants tended to omit movements from the spontaneous verbal reports unless asked
1151 about them explicitly.

1152 The difference between questionnaire results and dream report analyses has also been found
1153 for emotions. The frequency of emotions increases 10-fold if participants are asked to report
1154 emotions on a line-by-line basis, as compared to free dream reports (Merritt et al. 1994).
1155 When participants are asked to rate the kinds of emotions experienced in their dreams, they
1156 specifically report more positive emotions than when their dream reports are analyzed by
1157 independent judges (Sikka et al. 2014, 2017). This discrepancy raises important
1158 methodological issues that to date have not been fully resolved, and both methods likely have
1159 weaknesses and suffer from different kinds of bias (Sikka et al. 2017). One reason for the
1160 discrepancy, however, could be that free dream reports lack the focus to allow independent
1161 judges to pick up on specific aspects of dream phenomenology, such as emotions or
1162 movements. By contrast, when participants' focus is directed to these aspects, such as

1163 through use of questionnaires, this leads to more precise reporting. In our data, similar
1164 proportions of different types of movements between external ratings and questionnaire
1165 responses, together with the fact that movements are reported more frequently in the
1166 questionnaire data, makes us lean towards this interpretation. There are also likely differences
1167 in what is reported: in free dream reports, individual movements need to be described in some
1168 detail for them to be rated by external judges. By contrast, in the questionnaire, participants
1169 rate the occurrence and frequency of specific movement types over the entire dream. Again,
1170 this may lead to a more comprehensive picture, but also bears the danger of overgeneralizing.

1171 Nevertheless, the proportion of repetitive actions correlated strongly between the free dream
1172 reports and the BED Questionnaire answers in the sham-stimulation condition (Spearman
1173 rank order correlation: $\rho=0.81$, $p_{B-8}=0.033$), indicating a strong convergence between these
1174 two types of measurement. Interestingly, this association did not hold in the tDCS condition
1175 ($\rho=-0.19$, $p_{B-8}=1$). No other correlations were significant.

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

1191

Supplementary tables

1192

1193 **Table S1.** Examples of different types of movement reported in verbal dream reports

<i>Movement types</i>	<i>Sham</i>	<i>tDCS</i>
Single actions	“I [...] took away the wires” (P4, N2, A2)	“I was diving” (P1, N1, A1)
	“I was putting together some board” (P10, N2, A2)	“I was [...] to take a pose” (P5, N2, A1)
	“We [...] sat down” (P10, N2, A2)	“I painted a sunset and there was a ship” (P6, N2, A3)
	“I hugged her” (P10, N2, A3)	“I jumped there to the movie” (P7, N1, A1)
Repetitive actions	“I remember rubbing quite hard [...] my leg” (P1, N2, A1)	“I was swimming in a pool” (P1, N1, A1)
	“I was walking there” (P3, N2, A2)	“I [...] was writing something” (P3, N1, A1)
	“we are running away from him” (P4, N2, A1)	“we [...] went to the bathroom” (P5, N2, A2)
	“I had been sleepwalking” (P4, N2, A2)	“I was cleaning a table” (P5, N2, A2)

	“I was digging the vegetable garden” (P6, N1, A3)	“I was climbing upstairs” (P7, N2, A2)
	“I was coming out from some room” (P10, N2, A2)	“I was scratching [our cat]” (P8, N2, A3)
Passive movements	“we were coming from Lappeenranta with a train” (P4, N2, A1)	“our father was driving me and my brother [...] with a car” (P6, N2, A1)
	“they somehow forced to put my hand to fist” (P7, N1, A1)	“he took my hand and pulled me to the middle” (P6, N2, A1)

1194 *Note.* P – participant (1-10), N – night (1-2), A – awakening (1-3).

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207 **Table S2.** Dream content analysis: Percentage of dream reports containing movement
1208 sensations following sham-stimulation and tDCS during REM sleep

	<i>Sham</i>	<i>tDCS</i>	<i>Statistical test</i>	
	<i>M (SEM)</i>	<i>M (SEM)</i>	<i>t/Z</i>	<i>p</i>
<i>Movement</i>				
	49.8 (10)	54.9 (10.9)	$t(9) = 0.31$	0.77
<i>Movement sub-scales</i>				
Single actions	21.6 (10.5)	24.9 (8.6)	$t(9) = 0.19$	0.85
Repetitive actions	38.2 (12.7)	43.2 (9.4)	$Z = 0.54$	0.59
Passive movements	16.6 (7)	8.3 (5.7)	$Z = 0.76$	0.45

1209 *Note.* t: paired samples t test; Z: Wilcoxon signed-rank test. Uncorrected p values.

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219 **Table S3.** Balance of awakenings between the first and the second night and between the
1220 sham-stimulation and tDCS conditions

<i>Participant</i>	<i>1st night, N</i>	<i>2nd night, N</i>	<i>Sham, N</i>	<i>tDCS, N</i>
1	2	3	3	2
2	2	3	2	3
3	2	2	2	2
4	3	2	2	3
5	3	2	3	2
6	3	3	3	3
7	3	3	3	3
8	3	3	3	3
9	2	3	3	2
10	3	2	2	3
<i>Total:</i>	25	25	25	25

1221