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Abstract.	
  
	
  
Introduction.	
   While	
   the	
   prevalence	
   of	
   neurodegenerative	
   diseases	
   associated	
   with	
  
dementia	
  such	
  as	
  Alzheimer’s	
  disease	
  (AD)	
  increases,	
  our	
  knowledge	
  on	
  the	
  underlying	
  
mechanisms,	
   outcome	
   predictors,	
   or	
   therapeutic	
   targets	
   is	
   limited.	
   In	
   this	
   work,	
   we	
  
demonstrate	
   how	
   computational	
   multi-­‐scale	
   brain	
   modelling	
   links	
   phenomena	
   of	
  
different	
  scales	
  and	
  therefore	
  identifies	
  potential	
  disease	
  mechanisms	
  leading	
  the	
  way	
  to	
  
improved	
   diagnostics	
   and	
   treatment.	
   Methods.	
   The	
   Virtual	
   Brain	
   (TVB;	
  
thevirtualbrain.org)	
   neuroinformatics	
   platform	
   allows	
   standardized	
   large-­‐scale	
  
structural	
  connectivity-­‐based	
  simulations	
  of	
  whole	
  brain	
  dynamics.	
  We	
  provide	
  proof	
  of	
  
concept	
   for	
   a	
   novel	
   approach	
   that	
   quantitatively	
   links	
   the	
   effects	
   of	
   altered	
  molecular	
  
pathways	
   onto	
   neuronal	
   population	
   dynamics.	
   As	
   a	
   novelty,	
   we	
   connect	
   chemical	
  
compounds	
  measured	
  with	
  positron	
  emission	
  tomography	
  (PET)	
  with	
  neural	
  function	
  in	
  
TVB	
   addressing	
   the	
   phenomenon	
   of	
   hyperexcitability	
   in	
   AD	
   related	
   to	
   the	
   protein	
  
amyloid	
  beta	
  (Abeta).	
  We	
  construct	
  personalized	
  virtual	
  brains	
  based	
  on	
  individual	
  PET	
  
derived	
   distributions	
   of	
   Abeta	
   in	
   patients	
  with	
  mild	
   cognitive	
   impairment	
   (MCI,	
   N=8)	
  
and	
   Alzheimer’s	
   Disease	
   (AD,	
   N=10)	
   and	
   in	
   age-­‐matched	
   healthy	
   controls	
   (HC,	
   N=15)	
  
using	
  data	
   from	
  ADNI-­‐3	
  data	
  base	
   (http://adni.lni.usc.edu).	
   In	
   the	
  personalized	
  virtual	
  
brains,	
   individual	
  Abeta	
  burden	
  modulates	
   regional	
   inhibition,	
   leading	
   to	
  disinhibition	
  
and	
   hyperexcitation	
   with	
   high	
   Abeta	
   loads.	
   We	
   analyze	
   simulated	
   regional	
   neural	
  
activity	
  and	
  electroencephalograms	
  (EEG).	
  Results.	
  Known	
  empirical	
  alterations	
  of	
  EEG	
  
in	
  patients	
  with	
  AD	
  compared	
   to	
  HCs	
  were	
  reproduced	
  by	
  simulations.	
  The	
  virtual	
  AD	
  
group	
  showed	
  slower	
  frequencies	
  in	
  simulated	
  local	
  field	
  potentials	
  and	
  EEG	
  compared	
  
to	
  MCI	
  and	
  HC	
  groups.	
  The	
  heterogeneity	
  of	
  the	
  Abeta	
  load	
  is	
  crucial	
  for	
  the	
  virtual	
  EEG	
  
slowing	
   which	
   is	
   absent	
   for	
   control	
   models	
   with	
   homogeneous	
   Abeta	
   distributions.	
  
Slowing	
   phenomena	
   primarily	
   affect	
   the	
   network	
   hubs,	
   independent	
   of	
   the	
   spatial	
  
distribution	
  of	
  Abeta.	
  Modeling	
  the	
  N-­‐methyl-­‐D-­‐aspartate	
  (NMDA)	
  receptor	
  antagonism	
  
of	
  memantine	
  in	
  local	
  population	
  models,	
  reveals	
  potential	
  functional	
  reversibility	
  of	
  the	
  
observed	
   large-­‐scale	
   alterations	
   (reflected	
   by	
   EEG	
   slowing)	
   in	
   virtual	
   AD	
   brains.	
  
Discussion.	
  We	
  demonstrate	
  how	
  TVB	
  enables	
  the	
  simulation	
  of	
  systems	
  effects	
  caused	
  
by	
  pathogenetic	
  molecular	
  candidate	
  mechanisms	
  in	
  human	
  virtual	
  brains.	
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1.	
  Introduction	
  
	
  
Neurodegenerative	
  diseases	
   (NDD)	
  gain	
   increasing	
  socioeconomic	
   relevance	
  due	
   to	
  an	
  
ageing	
   society	
   (1-­‐4).	
   The	
   Alzheimer’s	
   Association’s	
   latest	
   report	
   estimates	
   the	
   yearly	
  
cost	
  of	
  Alzheimer’s	
  disease	
  (AD)	
  treatment	
   in	
  the	
  U.S.	
  at	
  $277	
  billion	
  (5).	
  By	
  2050	
  this	
  
number	
   is	
   expected	
   to	
   rise	
   as	
   high	
   as	
   $1.1	
   trillion.	
   According	
   to	
   the	
   report,	
   early	
  
diagnosis	
  could	
  save	
  up	
  to	
  $7.9	
  trillion	
  in	
  cumulated	
  medical	
  and	
  care	
  costs	
  by	
  the	
  year	
  
2050.	
  While	
  the	
  prevalence	
  of	
  AD	
  -­‐	
   the	
  most	
  common	
  cause	
  of	
  dementia	
  and	
  the	
  most	
  
common	
  NDD	
  in	
  general	
  -­‐	
  increases,	
  its	
  cause	
  is	
  still	
  not	
  understood,	
  nor	
  is	
  there	
  a	
  cure.	
  
Our	
   understanding	
   of	
   their	
   pathogenesis	
   and	
   classification	
   remain	
   insufficient.	
  
Therefore,	
  we	
  aim	
  to	
  integrate	
  clinical	
  data	
  from	
  molecular	
  biology	
  and	
  neurology,	
  using	
  
nonlinear	
  systems	
  theory.	
  Our	
  aim	
  is	
  to	
  build	
  predictive	
  models	
  for	
  health-­‐outcome	
  and	
  
cognitive	
  function	
  by	
  individual	
  virtual	
  brain	
  simulations	
  using	
  The	
  Virtual	
  Brain	
  (TVB;	
  
thevirtualbrain.org)	
   platform	
   (6,	
   7).	
   TVB	
   integrates	
   various	
   empirical	
   data	
   in	
  
computational	
  models	
   of	
   the	
   brain	
   that	
   allow	
   for	
   the	
   identification	
   of	
   neurobiological	
  
processes	
   that	
   are	
   more	
   directly	
   linked	
   to	
   the	
   causal	
   disease	
   mechanisms	
   than	
   the	
  
measured	
  empirical	
  data.	
  Biomedical	
  sciences	
  are	
  currently	
  lacking	
  a	
  mapping	
  between	
  
the	
   degree	
   and	
   facets	
   of	
   cognitive	
   impairments,	
   biomarkers	
   from	
   high-­‐throughput	
  
technologies,	
  and	
  the	
  underlying	
  causal	
  origins	
  of	
  NDD	
  like	
  AD.	
  The	
  imperative	
  for	
  the	
  
field	
  is	
  to	
  identify	
  the	
  features	
  of	
  brain	
  network	
  function	
  in	
  NDD	
  that	
  predict	
  whether	
  a	
  
person	
  will	
   develop	
  dementia.	
   The	
  heterogeneity	
   of	
  NDD	
  makes	
   it	
   difficult	
   to	
   develop	
  
robust	
   predictions	
   of	
   cognitive	
   decline.	
   This	
   can	
   be	
   addressed	
   by	
   large	
   prospective	
  
studies	
  where	
  there	
  is	
  potential	
  for	
  participants	
  to	
  develop	
  NDD.	
  It	
  is	
  difficult	
  in	
  general	
  
to	
  predict	
   individual	
  disease	
  progression	
  and	
   this	
   is	
   a	
  particular	
   challenge	
   in	
   complex	
  
nonlinear	
  systems,	
  like	
  the	
  brain,	
  where	
  emergent	
  features	
  at	
  one	
  level	
  of	
  organization	
  
(e.g.,	
  cognitive	
  function)	
  can	
  come	
  about	
  through	
  the	
  complex	
  interaction	
  of	
  subordinate	
  
features	
   (e.g.,	
   network	
   dynamics,	
   molecular	
   pathways,	
   gene	
   expression).	
   The	
   Virtual	
  
Brain	
  takes	
  into	
  account	
  the	
  principles	
  of	
  complex	
  adaptive	
  systems	
  and	
  hence	
  poses	
  a	
  
promising	
   tool	
   for	
   identifying	
  mechanistic	
   predictive	
   biomarkers	
   for	
  NDD.	
   Due	
   to	
   the	
  
high	
   dimensionality	
   of	
   brain	
   models	
   and	
   the	
   even	
   greater	
   complexity	
   of	
   the	
   to-­‐be-­‐
simulated	
   brain	
   states,	
   selecting	
   the	
   used	
   modeling	
   approach	
   carefully	
   for	
   a	
   specific	
  
question	
  of	
  interest	
  is	
  essential.	
  	
  
	
  
The	
  candidate	
  biological	
  mechanism	
  under	
  investigation	
  in	
  the	
  present	
  study	
  is	
  related	
  
to	
   amyloid	
   beta	
   (Abeta),	
   a	
   protein	
   that	
   is	
   an	
   oligomeric	
   cleavage	
   product	
   of	
   the	
  
physiological	
   amyloid	
  precursor	
  protein	
   (APP)	
   (8,	
  9).	
   	
  The	
   soluble	
  oligomers	
  have	
   the	
  
tendency	
   for	
  polymerization	
   (9,	
  10).	
  Due	
   to	
   their	
  non-­‐physiological	
   configuration	
   they	
  
aggregate	
   and	
   accumulates	
   in	
   brain	
   tissue	
   -­‐	
   a	
   process	
   that	
   starts	
   already	
   in	
   early	
  
preclinical	
  stages	
  of	
  AD,	
  i.e.	
  many	
  years	
  before	
  the	
  onset	
  of	
  symptoms	
  -­‐	
  typically	
  in	
  the	
  
fifth	
  decade	
  of	
   life	
  (11)	
   -­‐	
  as	
  shown	
  in	
  rodent	
  models	
  (12)	
  and	
  human	
  studies	
  (13,	
  14).	
  
Aggregated	
   Abeta	
   and	
   its	
   intermediates,	
   soluble	
   Abeta	
   oligomers,	
   can	
   act	
   directly	
  
neurotoxic	
   (9,	
  15,	
  16)	
  and	
  have	
  been	
   found	
   intra-­‐	
  or	
  extracellularly	
   (9,	
  15,	
  17).	
  Those	
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findings	
   led	
   to	
   the	
  hypothesis	
   that	
   the	
  deposition	
  of	
  Abeta	
  poses	
   an	
   initial	
   step	
   in	
   the	
  
pathology	
  of	
  AD	
  while	
  Abeta	
  has	
  been	
  suggested	
  as	
  a	
  key	
  feature	
  in	
  the	
  pathogenesis	
  of	
  
AD	
  leading	
  to	
  major	
  changes	
  in	
  the	
  functionality	
  and	
  structure	
  of	
  the	
  brain	
  (13,	
  14,	
  18).	
  
The	
   goal	
   of	
   the	
   present	
   study	
   is	
   to	
   incorporate	
   the	
   hypothesized	
   qualitative	
   and	
  
quantitative	
  effects	
  of	
  Abeta	
  on	
  neuronal	
  population	
  dynamics	
   into	
  our	
  brain	
  network	
  
models,	
   i.e.	
   adding	
   mathematical	
   models	
   that	
   describe	
   how	
   molecular	
   changes	
   alter	
  
population	
   activity	
   –	
   so	
   called	
   cause-­‐and-­‐effect	
   models.	
   We	
   will	
   focus	
   here	
   on	
   the	
  
disrupted	
  inhibitory	
  function	
  of	
   interneurons	
  and	
  consecutive	
  hyperexcitability	
  caused	
  
by	
   Abeta	
   –	
   while	
   we	
   are	
   aware	
   of	
   various	
   other	
   factors	
   with	
   potential	
   roles	
   for	
   AD	
  
aetiology,	
   such	
  as	
   vascular	
   changes	
   (19-­‐21),	
  neuroinflammation	
   (22-­‐25),	
   genetics	
   (26-­‐
28),	
  	
  environmental	
  factors	
  (29,	
  30)	
  and	
  concomitant	
  proteinopathies	
  others	
  than	
  Abeta	
  
pathology	
  (31,	
  32).	
  Beside	
  Abeta	
  there	
   is	
  a	
  second	
  molecular	
  hallmark	
  associated	
  with	
  
the	
  pathogenesis	
  of	
  AD:	
  the	
  phosphorylated	
  Tau	
  ‘tubulin-­‐associated	
  unit’	
  protein	
  (8,	
  33,	
  
34)	
   which	
   contributes	
   to	
   microtubule	
   stability	
   in	
   the	
   neural	
   cytoskeleton	
   (34).	
   One	
  
major	
   argument	
   in	
   favor	
   of	
   the	
   more	
   prominent	
   involvement	
   of	
   Abeta	
   in	
   the	
  
pathogenesis	
  of	
  AD,	
  in	
  contrast	
  to	
  Tau,	
  is	
  its	
  higher	
  specificity	
  to	
  AD	
  and	
  its	
  appearance	
  
in	
  the	
  early	
  familial	
  variants	
  of	
  AD,	
  where	
  the	
  molecular	
  pathway	
  is	
  better	
  understood	
  
(14,	
   18,	
   35).	
   Therefore,	
   most	
   therapeutic	
   strategies	
   in	
   the	
   past	
   targeted	
   Abeta.	
   Yet	
  
recently	
  three	
  clinical	
  trials	
  with	
  antibodies	
  against	
  Abeta	
  had	
  to	
  be	
  terminated	
  in	
  phase	
  
III:	
  aducanumab	
  (36,	
  37),	
  crenezumab	
  (38,	
  39)	
  and	
  solanezumab	
  (40,	
  41)	
  did	
  not	
  meet	
  
the	
   expectations	
   to	
   act	
   in	
   a	
   disease-­‐modifying	
   manner	
   slowing	
   down	
   the	
   cognitive	
  
decline	
   (9).	
   Nevertheless,	
   there	
   are	
   still	
   studies	
   ongoing,	
   e.g.	
   with	
   BAN-­‐2401	
   (42).	
   A	
  
relevant	
   percentage	
   of	
   clinically	
   diagnosed	
   AD	
   patients	
   show	
   additional	
   brain	
  
pathologies	
   beside	
   Abeta	
   and	
   Tau	
   in	
   autopsy	
   (32).	
   	
   Even	
   in	
   the	
   cases	
   of	
  
neuropathological	
  AD	
  diagnosis	
  (i.e.	
  secured	
  Abeta	
  and	
  Tau	
  pathology	
  in	
  histology),	
  55%	
  
of	
   cases	
   also	
   exhibited	
   a	
   pathology	
   of	
   alpha	
   synuclein	
   (which	
   we	
   would	
   expect	
   in	
  
synucleinopathies	
  like	
  Parkinson’s	
  disease)	
  and	
  40%	
  showed	
  transactive	
  response	
  DNA	
  
binding	
   protein	
   43kDa	
   (TDP-­‐43),	
   a	
   protein	
  which	
  we	
  would	
   expect	
   in	
   frontotemporal	
  
dementia	
  or	
  amyotrophic	
  lateral	
  sclerosis	
  (31).	
  Brain	
  tissue	
  of	
  people	
  who	
  did	
  not	
  had	
  
relevant	
   neurodegenerative	
   brain	
   changes	
   in	
   histological	
   exams	
   after	
   death	
   were	
  
showing	
   Abeta	
   in	
   50%	
   and	
   Tau	
   pathology	
   in	
   93%	
   of	
   the	
   cases	
   when	
   using	
   sensitive	
  
immunohistochemistry	
  methods	
   (31).	
  Although	
  Abeta	
  and	
  Tau	
  are	
  widely	
  accepted	
  as	
  
involved	
   parts	
   in	
   the	
   pathogenesis	
   of	
   AD	
   and	
   also	
   define	
   the	
   disease	
   entity	
   (43),	
   it	
  
remains	
  unclear	
  if	
  they	
  might	
  be	
  only	
  epiphenomena	
  of	
  other	
  contributing	
  factors.	
  This	
  
study	
  hypothesizes	
  a	
  mechanistic	
  role	
  of	
  Abeta	
  in	
  the	
  disease	
  process	
  and	
  builds	
  a	
  link	
  
between	
   the	
   molecular	
   pathway	
   alteration	
   that	
   leads	
   to	
   Abeta	
   phenomenon	
   of	
  
disinhibition	
  and	
  neural	
  slowing	
  in	
  EEG	
  (Figure	
  1).	
  Our	
  mechanistic	
  modeling	
  approach	
  
can	
  help	
  to	
  understand	
  the	
  complex	
  inter-­‐dependencies	
  between	
  the	
  involved	
  factors	
  in	
  
AD	
  and	
  will	
  improve	
  through	
  iterative	
  refinement.	
  
	
  
Near	
   Abeta	
   plaques,	
   a	
   shift	
   in	
   neural	
   activity	
   has	
   been	
   observed	
   (44).	
   In	
   AD	
   mouse	
  
models	
   with	
   overexpression	
   of	
   APP	
   and	
   Presenilin-­‐1,	
   the	
   number	
   of	
   hyperactive	
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neurons	
   was	
   increased	
   near	
   Abeta	
   plaques.	
   This	
   shift	
   in	
   the	
   neuronal	
   activity	
   was	
  
associated	
  with	
  decreased	
  performances	
  in	
  memory	
  tests.	
  Neuronal	
  hyperactivity	
  could	
  
be	
   reduced	
   by	
   GABA	
   agonists,	
   suggesting	
   pathology	
   due	
   to	
   impaired	
   inhibition.	
   In	
  
neocortical	
   and	
   dentate	
   gyri,	
   pyramidal	
   cells	
   have	
   been	
   found	
   to	
   increase	
   network	
  
excitability	
   in	
   vivo	
   in	
   an	
   AD	
   mouse	
   model	
   with	
   overexpression	
   of	
   Abeta,	
   that	
   led	
   to	
  
membrane	
   depolarization	
   and	
   increased	
   firing	
   rates.	
   A	
   study	
   by	
   Hazra	
   et	
   al.	
   (45)	
  
investigated	
   an	
   AD	
  mouse	
   model	
   by	
   stimulation	
   of	
   the	
   perforant	
   pathway.	
   	
   AD	
   mice	
  
showed	
   increased	
   amplitude	
   and	
   larger	
   spatial	
   distribution	
   of	
   response	
   after	
  
stimulation.	
   The	
   reason	
   for	
   this	
   increased	
   network	
   excitability	
   was	
   due	
   to	
   impaired	
  
inhibitory	
   neuron	
   function,	
   i.e.	
   the	
   inhibitory	
   neurons	
   of	
   the	
   molecular	
   layer	
   of	
   the	
  
dentate	
  gyrus	
  in	
  hippocampus	
  were	
  in	
  part	
  unable	
  to	
  produce	
  action	
  potentials,	
  which	
  
resulted	
   in	
   a	
   slower	
   postsynaptic	
   firing	
   rate.	
   Ulrich	
   (46)	
   added	
   Abeta	
   to	
   layer	
   V	
  
pyramidal	
   cells	
   of	
   rats.	
   In	
   their	
   experiments	
   they	
   could	
   show	
   a	
   decline	
   in	
   inhibitory	
  
postsynaptic	
   currents	
   (IPSCs),	
   attributed	
   to	
   postsynaptic	
   GABAA	
   receptor	
   endocytosis	
  
after	
  Abeta	
  application.	
  In	
  a	
  recent	
  study	
  by	
  Ren	
  et	
  al.	
  (47)	
  Abeta	
  was	
  found	
  to	
  increase	
  
excitability	
  of	
  pyramidal	
  cells	
  in	
  the	
  anterior	
  cingulate	
  cortex	
  of	
  mouse	
  brain.	
  The	
  reason	
  
for	
   hyperexcitability	
   was	
   again	
   due	
   to	
   disturbed	
   inhibitory	
   input.	
   Abeta	
   seems	
   to	
  
interact	
  with	
   the	
   dopaminergic	
   D1	
   receptor	
   system.	
   The	
   D1	
   receptor	
   regulates	
   GABA	
  
release	
  in	
  fast-­‐spiking	
  (FS)	
  inhibitory	
  interneurons.	
  By	
  adding	
  a	
  D1	
  receptor	
  antagonist	
  
to	
  the	
  cells	
  they	
  could	
  reverse	
  the	
  effect	
  of	
  Abeta,	
  increase	
  IPSCs	
  and	
  decrease	
  pyramidal	
  
excitability	
  whereas	
  D1	
  agonists	
  had	
   similar	
   effects	
   as	
  Abeta.	
  The	
  underlying	
  working	
  
model	
   is	
   that	
  Abeta	
   leads	
   to	
  dopamine	
  release	
   in	
  dopaminergic	
  neurons	
   that	
  activates	
  
D1	
   receptors	
   at	
   FS	
   inhibitory	
   interneurons	
   and	
   thus	
   inhibits	
   GABA	
   release.	
   As	
   a	
  
consequence,	
   the	
   amplitude,	
   frequency	
   and	
   total	
   number	
   of	
   IPSPs	
   is	
   decreased.	
   The	
  
instantaneous	
  decrement	
  of	
   postsynaptic	
   amplitude	
   and	
   frequency	
   is	
   also	
   known	
  as	
   a	
  
toxic	
  effect	
  of	
  Abeta	
   in	
   the	
  glutamatergic	
  system	
  (48).	
  Hence	
   for	
   the	
  present	
  modeling	
  
approach	
  we	
  decided	
  to	
  implement	
  this	
  Abeta	
  dependent	
  impaired	
  inhibitory	
  function.	
  
From	
  the	
  literature	
  above,	
  potential	
  models	
  for	
  this	
  disinhibiton	
  could	
  be	
  either	
  a	
  lower	
  
IPSP	
  amplitude	
  or	
  a	
  lower	
  firing	
  rate	
  or	
  a	
  combination	
  thereof.	
  
	
  
One	
   already	
   established	
   drug	
   that	
   assesses	
   the	
   pathology	
   of	
   hyperexcitation	
   is	
  
memantine,	
   an	
  N-­‐methyl-­‐D-­‐aspartate	
   (NMDA)	
  antagonist.	
  Memantine	
   is	
   recommended	
  
for	
  the	
  symptomatic	
  treatment	
  of	
  severe	
  AD	
  as	
  a	
  mono-­‐	
  and	
  combination	
  therapy	
  with	
  
cholinesterase	
   inhibitors	
   and	
   should	
   be	
   also	
   considered	
   as	
   possible	
   treatment	
   in	
  
moderate	
   AD	
   in	
   the	
   current	
   version	
   of	
   the	
   UK	
   National	
   Institute	
   for	
   Health	
   and	
   Care	
  
Excellence	
   (NICE)	
   guidelines	
   of	
   dementia	
   management	
   (49).	
   However,	
   normally	
   it	
   is	
  
considered	
   as	
   an	
   alternative	
   or	
   addition	
   to	
   cholinesterase	
   inhibitors	
   (49).	
   In	
   contrast,	
  
memantine	
   has	
   shown	
   in	
   a	
   current	
   meta-­‐analysis	
   its	
   efficacy	
   to	
   improve	
   cognitive	
  
function	
  and	
  reduce	
  behavioural	
  disturbances	
  in	
  AD	
  patients	
  compared	
  to	
  placebo	
  (50).	
  
The	
  effect	
  was	
  particularly	
  caused	
  by	
  the	
  moderate-­‐to-­‐severe	
  AD	
  patients	
  (50,	
  51)	
  and	
  
was	
  also	
  observable	
  in	
  combination	
  therapies	
  with	
  acetyl	
  cholinesterase	
  inhibitors,	
  with	
  
a	
  significant	
  superiority	
  for	
  the	
  combination	
  of	
  memantine	
  and	
  donepezil	
  compared	
  to	
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any	
   cholinesterase	
  monotherapies	
   (50).	
   It	
   therefore	
   is	
   also	
   recommended	
   as	
   possible	
  
first-­‐line	
   therapy	
   in	
   AD	
   (50).	
   	
   In	
   our	
   study,	
   we	
   will	
   evaluate	
   ‘virtual	
   memantine’	
  
interacting	
  with	
  the	
  Abeta-­‐derived	
  hyperexcitation.	
  
	
  
Changes	
  in	
  electroencephalography	
  (EEG)	
  are	
  described	
  in	
  AD	
  as	
  a	
  general	
  and	
  
progressive	
  slowing	
  of	
  brain	
  oscillations.	
  In	
  AD,	
  cognitive	
  decline	
  and	
  18F-­‐
fluorodeoxyglucose	
  (FDG)	
  PET	
  signal	
  decreases	
  are	
  linked	
  with	
  increased	
  left	
  temporal	
  
power	
  in	
  the	
  delta	
  and	
  the	
  theta	
  frequency	
  bands,	
  whereas	
  temporo-­‐parieto-­‐occipital	
  
alpha	
  band	
  coherence	
  decreases	
  and	
  delta	
  coherence	
  increases	
  (52-­‐54).	
  Moreover,	
  the	
  
spatial	
  appearance	
  of	
  slow	
  rhythms	
  and	
  hypometabolism	
  in	
  FDG	
  PET	
  have	
  been	
  linked	
  
(55,	
  56).	
  A	
  recent	
  study	
  produced	
  similar	
  findings	
  in	
  magnetoencephalography	
  (MEG):	
  A	
  
global	
  increase	
  of	
  theta	
  and	
  a	
  frontal	
  increase	
  of	
  delta	
  were	
  correlated	
  with	
  entorhinal	
  
atrophy	
  and	
  glucose	
  hypometabolism	
  (57).	
  In	
  summary,	
  a	
  global	
  slowing	
  has	
  been	
  
reported	
  for	
  AD,	
  in	
  particular	
  a	
  shift	
  from	
  alpha	
  to	
  theta	
  and	
  delta	
  activity	
  (52-­‐57).	
  	
  
	
  
As	
   a	
   consequence	
   of	
   these	
   findings,	
  we	
  will	
   focus	
   in	
   our	
  modeling	
   approach	
   on	
   three	
  
main	
  aspects	
  of	
  AD:	
  
	
  

1. Spatial	
  heterogeneous	
  Abeta	
  distribution	
  in	
  the	
  brain	
  
2. Hyperexcitation	
  caused	
  by	
  impaired	
  inhibitory	
  function	
  
3. Slowing	
  of	
  neural	
  frequencies	
  

	
  
For	
  Abeta,	
  we	
  propose	
  a	
  change	
  in	
  local	
  neuronal	
  excitability.	
  Therefore,	
  we	
  construct	
  a	
  
model	
  of	
  a	
  healthy	
   ‘standard	
  brain’	
  with	
  an	
  averaged	
  structural	
  connectivity	
  (SC)	
  with	
  
inferred	
  micro-­‐scale	
   characteristics	
   of	
   excitation	
   in	
   those	
   areas	
  where	
   a	
   deposition	
   of	
  
Abeta	
  is	
  found.	
  We	
  will	
  infer	
  this	
  information	
  about	
  the	
  local	
  distribution	
  of	
  Abeta	
  from	
  
individual	
  AV-­‐45	
  (florbetapir)	
  positron	
  emission	
  tomography	
  (PET)	
   images.	
  AV-­‐45	
  is	
  a	
  
PET	
  tracer	
  which	
  binds	
  to	
  Abeta	
  (58-­‐61).	
  	
  We	
  investigate	
  three	
  clinical	
  diagnostic	
  groups	
  
of	
   age-­‐	
   and	
   gender-­‐matched	
   healthy	
   controls	
   (HC),	
   individuals	
   with	
   mild	
   cognitive	
  
impairment	
   (MCI)	
   and	
   AD	
   patients	
   (see	
   method	
   section	
   2.1	
   and	
   Table	
   1).	
   For	
   the	
  
simulated	
  EEG	
  and	
  the	
  underlying	
  local	
  neural	
  activity	
  frequency	
  we	
  expect	
  a	
  slowing	
  in	
  
rhythms	
   and	
   particular	
   a	
   shift	
   from	
   alpha	
   to	
   theta	
   activity	
   with	
   disease	
   progression.	
  
Finally,	
   we	
   will	
   simulate	
   the	
   effect	
   of	
   an	
   anti-­‐excitotoxic	
   drug,	
   the	
   NMDA	
   antagonist	
  
memantine	
  for	
  which	
  we	
  expect	
  a	
  reversal	
  of	
  the	
  observed	
  EEG	
  slowing.	
  
	
  
We	
  will	
  in	
  the	
  following	
  provide	
  an	
  overview	
  of	
  the	
  fundamentals	
  of	
  the	
  here	
  employed	
  
brain	
  simulation	
   technique.	
  The	
  particular	
  strength	
  of	
   computational	
   connectomics	
   (7,	
  
62,	
  63)	
  or	
  brain	
  network	
  modeling	
  (BNM)	
  is	
  to	
  unite	
  various	
  kinds	
  of	
   information	
  in	
  a	
  
single	
  biophysically	
  plausible	
  framework	
  (64).	
  BNM	
  are	
  typically	
  structurally	
   informed	
  
(or	
   constrained)	
   by	
   (a)	
   geometric	
   information	
   of	
   the	
   brain,	
   e.g.	
   via	
   T1	
   magnetic	
  
resonance	
   imaging	
   (MRI),	
   and	
   (b)	
   the	
   structural	
   connectivity	
   (SC)	
   derived	
   from	
   the	
  
tractography	
  of	
  diffusion	
  MRI	
  that	
  is	
  supposed	
  to	
  represent	
  the	
  white	
  matter	
  fiber	
  tracts	
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(65,	
  66).	
  The	
  static	
  three-­‐dimensional	
  scaffold	
  of	
  the	
  brain	
  is	
  brought	
  to	
  life	
  through	
  the	
  
implementation	
  of	
  mathematical	
  models,	
  which	
  generate	
  activity	
  at	
  each	
  brain	
  region	
  or	
  
node	
   of	
   the	
   network,	
   the	
   so-­‐called	
   neural	
   masses	
   or	
   population	
   models	
   (67-­‐69).	
  
Population	
   models	
   are	
   reduced	
   descriptions	
   of	
   microscopically	
   detailed	
   neuronal	
  
networks	
  (68,	
  70-­‐75)	
  -­‐	
  inferred	
  for	
  example	
  with	
  methods	
  of	
  mean	
  field	
  theory	
  (76-­‐78).	
  
They	
  describe	
   the	
  so	
  called	
  meso-­‐scale	
  of	
   the	
  brain	
   (79,	
  80),	
   i.e.	
  population	
  activity	
  as	
  
captured	
   with	
   imaging	
   methods	
   like	
   EEG,	
   MEG	
   and	
   fMRI.	
   Some	
   neural	
   mass	
   models	
  
(NMM)	
  are	
  linked	
  to	
  (and	
  still	
  reflect	
  to	
  a	
  certain	
  degree)	
  neurophysiological	
  processes	
  
at	
   the	
   microscopic	
   scale	
   while	
   others	
   mathematically	
   describe	
   the	
   observed	
   lumped	
  
biological	
   behaviour	
   not	
   differentiating	
   between	
   underlying	
   neurophysiological	
  
processes	
   (phenomenological	
   models).	
   Time	
   delays	
   in	
   the	
   interaction	
   between	
   nodes	
  
(66,	
  68,	
  69,	
  81)	
  are	
  critical	
   for	
  the	
  spatiotemporal	
  organization	
  of	
  the	
  evolving	
  activity	
  
patterns	
   in	
   the	
   brain	
   (82,	
   83).	
   Measured	
   functional	
   brain	
   data	
   such	
   as	
   EEG,	
   MEG	
   or	
  
functional	
  MRI	
  (fMRI)	
  are	
  used	
  to	
  tune	
  the	
  mathematical	
  models	
  –	
  i.e.	
  to	
  fit	
  selected	
  free	
  
parameters	
  of	
  the	
  model	
  –	
  to	
  faithfully	
  reproduce	
  selected	
  empirical	
  features	
  (7,	
  68,	
  76,	
  
84-­‐88).	
  By	
  performing	
  a	
  systematic	
  model	
  parameter	
  exploration,	
  using	
  e.g.	
  brute	
  force	
  
exhaustive	
   parameter	
   space	
   searches,	
  Monte-­‐Carlo	
  methods	
   or	
  weighted	
   optimization	
  
algorithms,	
  we	
  can	
  identify	
  the	
  optimal	
  parameter	
  configuration	
  to	
  portray	
  the	
  empirical	
  
functional	
  phenomena.	
  Thereby,	
  we	
  obtain	
   indices	
  of	
   the	
  brains	
   individual	
   function	
   in	
  
relation	
   to	
   the	
   explored	
   parameters.	
   This	
   approach	
   opens	
   various	
   possibilities	
   to	
   not	
  
only	
  describe	
  dependencies	
  (i.e.,	
   correlations),	
  but	
   to	
  make	
  statements	
  about	
  potential	
  
underlying	
  causal	
  processes,	
  i.e.	
  mechanisms.	
  	
  
	
  
In	
   this	
   study	
   we	
   used	
   TVB,	
   an	
   open	
   source	
   neuroinformatics	
   platform	
   (6,	
   7,	
   68,	
   89)	
  
(www.thevirtualbrain.org)	
   for	
   large-­‐scale	
   BNM	
   simulations.	
   We	
   have	
   already	
  
established	
   the	
   software	
   TVB,	
   and	
   applied	
   it	
   to	
   normative	
   datasets,	
   stroke,	
   epilepsy,	
  
brain	
   tumors	
   and	
   neurodegenerative	
   disease.	
   For	
   example,	
   in	
   stroke	
   recovery,	
   TVB	
  
models	
  of	
  patients	
  were	
  built	
  using	
  the	
  patient’s	
  structural	
  neuroimaging	
  data,	
  and	
  the	
  
dynamics	
   of	
   local	
   populations	
  were	
   tuned	
   to	
   fit	
   the	
   patient’s	
   functional	
   neuroimaging	
  
data	
   (90,	
   91).	
   The	
   obtained	
   parameters	
   for	
   excitatory/inhibitory	
   (EI)	
   balance	
   of	
   local	
  
neuronal	
  populations	
  predicted	
   the	
  patient’s	
   response	
   to	
  rehabilitation	
  up	
   to	
  one	
  year	
  
after	
  therapy.	
  Our	
  work	
  on	
  epilepsy	
  was	
  able	
  to	
  infer	
  seizure	
  propagation	
  with	
  a	
  model	
  
based	
   on	
   the	
   patient’s	
   own	
   diffusion	
   weighted	
   MRI	
   and	
   stereotaxic	
   EEG	
   (92,	
   93).	
  
Moreover,	
   positive	
   surgical	
   outcome	
   was	
   strongly	
   associated	
   with	
   the	
   epileptogenic	
  
zone	
  that	
  was	
  excised	
  as	
  predicted	
  by	
  the	
  patient’s	
  TVB	
  model.	
  Previous	
  work	
  with	
  AD	
  
patients	
  (n	
  =	
  16),	
  controls	
  (n	
  =	
  73)	
  and	
  persons	
  with	
  amnestic	
  MCI	
  (n	
  =	
  35),	
  all	
  from	
  the	
  
Sydney	
  Memory	
  and	
  Aging	
  Study,	
  confirms	
  the	
  benefit	
  of	
  using	
  the	
  model	
  parameters	
  to	
  
characterize	
  cognitive	
  status	
  (94).	
  
	
  
TVB	
  provides	
  several	
  types	
  of	
  NMMs.	
  In	
  the	
  present	
  study,	
  we	
  selected	
  a	
  NMM	
  that	
  can	
  
simulate	
  EEG	
  and	
  enables	
  us	
  to	
  implement	
  disinhibition.	
  The	
  wiring	
  pattern	
  of	
  cortical	
  
circuitry	
   is	
   characterized	
   by	
   recurrent	
   excitatory	
   and	
   inhibitory	
   loops,	
   and	
   by	
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bidirectional	
   sparse	
   excitatory	
   connections	
   at	
   the	
   large-­‐scale	
   (95).	
   Several	
   NMMs	
  
therefore	
  feature	
  projection	
  neurons	
  aka	
  pyramidal	
  cells	
  with	
   long	
  axons	
  projecting	
  to	
  
distant	
   cortical	
   regions	
  and	
   local	
  excitatory	
  and	
   inhibitory	
   feedbacks	
   (74,	
  96,	
  97).	
  The	
  
NMM	
   by	
   Jansen-­‐Rit	
   comprises	
   an	
   elementary	
   circuit	
   of	
   three	
   interconnected	
   NMMs	
  
(Figure	
   2)	
   describing	
   a	
   cortical	
   area	
   (or	
   column).	
   It	
   has	
   been	
   used	
   to	
   explain	
   both	
  
epilepsy-­‐like	
  brain	
  activity	
  (98,	
  99)	
  and	
  various	
  narrow	
  band	
  oscillations	
  ranging	
  from	
  
the	
   delta	
   to	
   the	
   gamma	
   frequency	
   bands	
   (100)	
   including	
   intracranial	
   EEG	
   (69).	
   The	
  
Jansen-­‐Rit	
  model	
   has	
   been	
   explored	
   extensively	
   on	
   a	
   single	
   population	
   level	
   (99-­‐101)	
  
and	
  in	
  	
  BNMs	
  (85,	
  102,	
  103).	
  The	
  Jansen-­‐Rit	
  model	
  has	
  a	
  rich	
  dynamic	
  repertoire,	
  which	
  
was	
  extensively	
  described	
  before	
  (104).	
  	
  
	
  
Specifically	
  we	
   chose	
   the	
   Jansen-­‐Rit	
  model	
   for	
   the	
   present	
   study	
   due	
   to	
   the	
   following	
  
considerations:	
  
1)	
   The	
   Jansen-­‐Rit	
   model	
   comprises	
   three	
   interacting	
   neural	
   masses	
   (representing	
  
different	
   cellular	
   populations)	
   in	
   each	
   local	
   circuitry:	
   pyramidal	
   cells,	
   inhibitory	
   and	
  
excitatory	
   interneurons	
   (Figure	
   2B).	
   This	
   is	
   unique	
   and	
   opens	
   the	
   possibility	
   to	
  
simultaneously	
   model	
   disinhibition,	
   i.e.	
   an	
   impairment	
   of	
   the	
   inhibitory	
   neuronal	
  
subpopulation	
   in	
   one	
   neural	
   mass,	
   and	
   an	
   anti-­‐NMDAergic	
   effect,	
   i.e.	
   a	
   downscaled	
  
transmission	
  from	
  excitatory	
  interneurons	
  to	
  pyramidal	
  cells,	
  at	
  the	
  same	
  time.	
  
2)	
  The	
  ratio	
  of	
  excitatory	
  and	
  inhibitory	
  time	
  constants	
  τe	
  /	
  τi	
  in	
  the	
  Jansen-­‐Rit	
  model	
  is	
  
suitable	
   to	
  model	
   the	
   effect	
   of	
   Abeta	
   on	
   the	
   inhibitory	
   interneurons	
   (by	
   affecting	
   the	
  
transmission	
  from	
  inhibitory	
  interneurons	
  to	
  pyramidal	
  cells,	
  Figure	
  2B-­‐C)	
  and	
  is	
  also	
  
known	
  to	
  have	
  an	
  effect	
  on	
  the	
  simulated	
  neural	
  frequency	
  (104,	
  105).	
  
3)	
   Jansen-­‐Rit	
   can	
   simulate	
   physiological	
   rhythms	
   observable	
   in	
   local	
   field	
   potentials,	
  
(intracranially)	
  stereo-­‐EEG	
  (sEEG),	
  scalp	
  EEG	
  and	
  MEG	
  (68,	
  74,	
  104).	
  
	
  
Our	
  hypothesized	
  effect	
  of	
  local	
  Abeta	
  deposition	
  as	
  inferred	
  from	
  subject-­‐specific	
  AV-­‐45	
  
PET	
  is	
  a	
  decrease	
  of	
  local	
  inhibition	
  (44,	
  45,	
  47,	
  48,	
  106-­‐108),	
  which	
  leads	
  to	
  a	
  relatively	
  
stronger	
  local	
  excitation.	
  This	
  theory	
  allows	
  us	
  translation	
  of	
  the	
  Abeta	
  distribution	
  into	
  
the	
   altered	
   dynamics	
   of	
   a	
   population	
   model	
   (equation	
   6	
   and	
   Figure	
   3).	
   The	
  
hypothesized	
  microscale	
  (synaptic),	
  spatially	
  distributed	
  effect	
  is	
  assumed	
  to	
  develop	
  an	
  
effect	
  at	
  the	
  population	
  (mesoscale)	
  level	
  and	
  to	
  eventually	
  propagate	
  to	
  the	
  large-­‐scale	
  
of	
  the	
  whole	
  brain.	
  A	
  schematic	
  illustration	
  of	
  this	
  concept	
  is	
  provided	
  in	
  Figures	
  1	
  and	
  
2.	
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2.	
  Methods	
  
	
  
2.1.	
  Alzheimer’s	
  disease	
  Neuroimaging	
  Initiative	
  (ADNI)	
  database	
  

Empirical	
   data	
   were	
   obtained	
   from	
   the	
   Alzheimer’s	
   Disease	
   Neuroimaging	
   Initiative	
  
(ADNI)	
  database	
  (adni.loni.usc.edu).	
  The	
  ADNI	
  was	
  launched	
  in	
  2003	
  as	
  a	
  public-­‐private	
  
partnership,	
  led	
  by	
  Principal	
  Investigator	
  Michael	
  W.	
  Weiner.	
  The	
  primary	
  goal	
  of	
  ADNI	
  
has	
   been	
   to	
   test	
   whether	
   serial	
   MRI,	
   PET,	
   other	
   biological	
   markers,	
   and	
   clinical	
   and	
  
neuropsychological	
  assessment	
  can	
  be	
  combined	
  to	
  measure	
  the	
  progression	
  of	
  MCI	
  and	
  
early	
  AD.	
  For	
  up-­‐to-­‐date	
  information,	
  see	
  www.adni-­‐info.org.	
  	
  

In	
  the	
  presently	
  ongoing	
  trial,	
  ADNI-­‐3,	
  the	
  measurements	
  contain	
  T1,	
  T2,	
  DTI,	
  fMRI,	
  Tau	
  
PET,	
  Abeta	
  PET	
  and	
  FDG	
  PET	
   for	
   the	
  participants.	
  The	
   total	
  population	
  of	
  ADNI-­‐3	
  will	
  
contain	
   data	
   of	
   about	
   2000	
   participants	
   (comprising	
   AD,	
   MCI	
   and	
   HC,	
   see	
  
http://adni.loni.usc.edu/adni-­‐3/).	
   As	
   inclusion	
   criterion	
   for	
   AD	
   patients	
   the	
   diagnosis	
  
criteria	
  of	
  NINCDS-­‐ADRDA	
  from	
  1984	
  were	
  used,	
  which	
  contains	
  only	
  clinical	
   features	
  
(109).	
   Inclusion	
   criteria	
   for	
   both	
   HC	
   and	
   MCI	
   were	
   a	
   Mini	
   Mental	
   State	
   Examination	
  
(MMSE)	
  score	
  between	
  24	
  and	
  30	
  as	
  well	
  as	
  age	
  between	
  55	
  and	
  90	
  years.	
  For	
  MCI	
   in	
  
addition,	
   the	
   participant	
   must	
   have	
   a	
   subjective	
   memory	
   complaint	
   and	
   abnormal	
  
results	
   in	
   another	
   neuropsychological	
   memory	
   test.	
   To	
   fulfil	
   the	
   criteria	
   for	
   AD,	
   the	
  
MMSE	
  score	
  had	
  to	
  be	
  below	
  24	
  and	
  the	
  NINCDS-­‐ADRDA	
  criteria	
  for	
  probable	
  AD	
  had	
  to	
  
be	
  fulfilled	
  (109).	
  Imaging	
  and	
  biomarkers	
  were	
  not	
  used	
  for	
  the	
  diagnosis.	
  For	
  the	
  full	
  
inclusion	
   criteria	
   of	
   ADNI-­‐3	
   see	
   the	
   study	
   protocol	
   (page	
   11f	
   in	
  
http://adni.loni.usc.edu/wp-­‐content/themes/freshnews-­‐dev-­‐
v2/documents/clinical/ADNI3_Protocol.pdf).	
   An	
   overview	
   of	
   the	
   epidemiological	
  
characteristics	
  of	
  the	
  participants	
  included	
  in	
  this	
  study	
  can	
  be	
  found	
  in	
  Table	
  1.	
  
	
  
Table	
  1.	
  Basic	
  epidemiological	
  information	
  of	
  the	
  study	
  population.	
  It	
  is	
  a	
  subset	
  of	
  the	
  
suitable	
  ADNI-­‐3	
  participants,	
  that	
  had	
  3T	
  imaging	
  and	
  all	
  necessary	
  image	
  modalities.	
  
Only	
  data	
  from	
  Siemens	
  scanners	
  was	
  used	
  (because	
  this	
  was	
  the	
  biggest	
  subset	
  of	
  
scanners).	
  	
  

Diagnosis	
   n	
  
(female)	
  

Mean	
  
age	
  

σ	
   Min.	
  
age	
  

Max.	
  
age	
  

Mean	
  
MMSE	
  

σ	
   Min.	
  
MMSE	
  

Max.	
  
MMSE	
  

AD	
   10	
  (5)	
   72.0	
   9.6	
   55.9	
   86.1	
   21.3	
   6.8	
   9	
   30	
  
HC	
   15	
  (9)	
   70.6	
   4.7	
   63.1	
   78.0	
   29.3	
   0.8	
   28	
   30	
  
MCI	
   8	
  (3)	
   68.2	
   6.4	
   57.8	
   76.6	
   27.1	
   1.6	
   25	
   30	
  

	
  
2.2.	
  Data	
  acquisition	
  and	
  processing	
  
	
  
All	
  images	
  used	
  in	
  this	
  study	
  were	
  taken	
  from	
  ADNI-­‐3.	
  To	
  reach	
  comparable	
  datasets,	
  we	
  
used	
   only	
   data	
   from	
   Siemens	
   scanners	
  with	
   a	
  magnetic	
   field	
   strength	
   of	
   3T	
   (models:	
  
TrioTim,	
  Prisma,	
  Skyra,	
  Verio).	
  However,	
  some	
  acquisition	
  parameters	
  differed	
  slightly.	
  	
  
See	
  supplementary	
  material	
  with	
  tables	
  S1-­‐S6	
  for	
  the	
  metadata.	
  The	
  following	
  imaging	
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modalities	
  were	
  included:	
  T1	
  MPRAGE.	
  TE	
  =	
  2.95	
  -­‐	
  2.98	
  ms,	
  TR	
  =	
  2.3s,	
  matrix	
  and	
  voxel	
  
size	
  differ	
   slightly.	
   FLAIR.	
  TE	
  differs	
   slightly,	
  TR	
  =	
  4.8s,	
  matrix	
   size	
  =	
  160	
   ·	
  256	
   ·	
  256,	
  
voxel	
  size	
  differs	
  slightly.	
  DWI	
  (only	
  for	
  15	
  HC	
  participants	
  to	
  create	
  an	
  average	
  healthy	
  
SC).	
  TE	
  =	
  56	
  -­‐71	
  ms,	
  TR	
  =	
  3.4	
  -­‐	
  7.2s,	
  matrix	
  size	
  =	
  116	
  ·	
  116	
  ·	
  80,	
  voxel	
  size	
  =	
  2	
  ·	
  2	
  ·	
  2,	
  
bvals	
  =	
  [0,	
  1000]	
  or	
  [0,	
  500,	
  1000,	
  2000],	
  bvecs	
  =	
  49	
  or	
  115.	
   Siemens	
  Fieldmaps	
  and	
  
PET	
   Data	
   (AV-­‐45	
   for	
  Abeta).	
  The	
  preprocessing	
  of	
   imaging	
  data	
   can	
  be	
   subdivided	
   in	
  
that	
  of	
  structural	
  images,	
  DWI	
  and	
  PET.	
  
	
  
Structural	
   MRI.	
   We	
   calculated	
   an	
   individual	
   brain	
   parcellation	
   for	
   each	
   included	
  
participant	
   of	
   ADNI-­‐3.	
  We	
   followed	
   the	
   minimal	
   preprocessing	
   pipeline	
   (110)	
   of	
   the	
  
Human	
   Connectome	
   Project	
   (HCP)	
   for	
   our	
   structural	
   data	
   using	
   Freesurfer	
   (111)	
  
(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation),	
   FSL	
   (112-­‐
114)	
   and	
   connectome	
   workbench	
  
(https://www.humanconnectome.org/software/connectome-­‐workbench).	
   Therefore,	
  
we	
  used	
  T1	
  MPRAGE,	
  FLAIR	
  and	
  filedmaps	
  for	
  the	
  anatomical	
  parcellation	
  and	
  DWI	
  for	
  
tractography.	
   This	
   consists	
   of	
   a	
   Prefreesurfer,	
   Freesurfer	
   and	
   Postfreesurfer	
   part.	
  We	
  
skipped	
   the	
   step	
   of	
   gradient	
   non-­‐linearity	
   correction,	
   since	
   images	
   provided	
   by	
   ADNI	
  
already	
   are	
   corrected	
   for	
   this	
   artefact.	
   Also,	
   the	
   MNI	
   templates	
   were	
   used	
   at	
   1mm	
  
resolution	
   instead	
   of	
   0.7mm.	
   	
  In	
   the	
   Freesurfer	
   pipeline	
   we	
   skipped	
   the	
   step	
   of	
  
downsampling	
  our	
  data	
  from	
  0.7mm3	
  to	
  1mm3,	
  and	
  all	
  recon-­‐all	
  and	
  intermediate	
  steps	
  
were	
   performed	
   with	
   the	
   original	
   image	
   resolution.	
   We	
   then	
   registered	
   the	
   subject	
  
cortical	
   surfaces	
   (32	
   000	
   vertices)	
   to	
   the	
   cortical	
   parcellation	
   of	
   Glasser	
   et	
   al.	
   (115)	
  
using	
   the	
  multimodal	
   surface	
  matching	
   (MSM,	
   see	
   (116))	
   tool.	
   For	
   the	
   registration	
  we	
  
used	
   cortical	
   thickness,	
  MyelinMaps,	
   cortical	
   curvature	
   and	
   sulc	
   from	
   the	
   subject	
   and	
  
template	
  surface.	
  	
  We	
  mapped	
  the	
  parcellation	
  on	
  the	
  surface	
  back	
  into	
  the	
  grey	
  matter	
  
volume	
  with	
   connectome	
  workbench.	
  This	
  volume	
  parcellation	
   surfed	
  as	
   the	
  mask	
   for	
  
the	
  connectome	
  and	
  PET	
  intensity	
  extraction.	
  	
  
	
  
PET	
   images.	
   We	
   used	
   the	
   preprocessed	
   version	
   of	
   AV-­‐45	
   PET.	
   These	
   images	
   had	
  
following	
  preprocessing	
  already	
  performed	
  by	
  ADNI:	
  Images	
  acquired	
  30	
  -­‐	
  50	
  min	
  post	
  
tracer	
  injections:	
  four	
  5-­‐minute	
  frames	
  (i.e.	
  30	
  -­‐	
  35min,	
  35	
  -­‐	
  40min,	
  ...).	
  These	
  frames	
  are	
  
co-­‐registered	
   to	
   the	
   first	
   and	
   then	
   averaged.	
  The	
   averaged	
   image	
  was	
   linearly	
   aligned	
  
such	
   that	
   the	
   anterior-­‐posterior	
   axis	
   of	
   the	
   subject	
   is	
   parallel	
   to	
   the	
   AC-­‐PC	
   line.	
   This	
  
standard	
  image	
  has	
  a	
  resolution	
  of	
  1.5	
  mm	
  cubic	
  voxels	
  and	
  matrix	
  size	
  of	
  160	
  ·	
  160	
  ·	
  96.	
  
Voxel	
  intensities	
  were	
  normalized	
  so	
  that	
  the	
  average	
  voxel	
  intensity	
  was	
  1.	
  Finally,	
  the	
  
images	
  were	
  smoothed	
  using	
  a	
  scanner-­‐specific	
  filter	
  function.	
  The	
  filter	
  functions	
  were	
  
determined	
   in	
   the	
   certification	
   process	
   of	
   ADNI	
   from	
   a	
   PET	
   phantom.	
   We	
   used	
   the	
  
resulting	
   image	
   and	
   applied	
   the	
   following	
   steps:	
   Rigid	
   aligning	
   the	
   PET	
   image	
   to	
  
participants	
  T1	
  image	
  (after	
  being	
  processed	
  in	
  the	
  HCP	
  structural	
  pipeline).	
  The	
  linear	
  
registration	
   was	
   done	
   with	
   FLIRT	
   (FSL).	
   The	
   PET	
   image	
   was	
   than	
   masked	
   with	
   the	
  
subject	
  specific	
  brainmask	
  derived	
  from	
  the	
  structural	
  preprocessing	
  pipeline	
  (HCP).	
  To	
  
obtain	
  the	
  local	
  burden	
  of	
  Abeta,	
  we	
  calculated	
  the	
  	
  relative	
  intensity	
  to	
  the	
  cerebellum	
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as	
  a	
  common	
  method	
   in	
   the	
   interpretation	
  of	
  AV-­‐45-­‐PET,	
  because	
   it	
   is	
  known	
  that	
   the	
  
cerebellum	
   does	
   not	
   show	
   relevant	
   AV-­‐45	
   PET	
   signals	
   and	
   can	
   therefore	
   act	
   as	
   a	
  
reference	
   region	
   for	
   inter-­‐individual	
   comparability	
   between	
   patients	
   (58,	
   117).	
   The	
  
intensity	
  of	
  gamma	
  radiation,	
  which	
  is	
  caused	
  by	
  a	
  neutralization	
  reaction	
  between	
  local	
  
electrons	
  and	
  the	
  emitted	
  positrons	
  of	
  the	
  nuclear	
  tracer	
  is	
  measured	
  for	
  each	
  voxel	
  in	
  
the	
  PET	
  image	
  and	
  divided	
  to	
  the	
  cerebellar	
  reference	
  volume:	
  the	
  standardized	
  uptake	
  
value	
  ratio	
  (SUVR).	
  We	
  therefore	
  receive	
  in	
  each	
  voxel	
  a	
  relative	
  Abeta	
  burden	
  β	
  which	
  is	
  
aggregated	
  according	
  to	
  the	
  parcellation	
  used	
  for	
  our	
  present	
  modelling	
  approach	
  (see	
  
below).	
   Thus,	
   we	
   obtain	
   a	
   value	
   βa	
   for	
   the	
   Abeta	
   burden	
   in	
   each	
   brain	
   region	
   a.	
  The	
  
cerebellar	
   white	
   matter	
   mask	
   was	
   taken	
   from	
   the	
   Freesurfer	
   segmentation	
   (HCP	
  
structural	
   preprocessing).	
   The	
   image	
   was	
   then	
   partial	
   volume	
   corrected	
   using	
   the	
  
Müller-­‐Gärtner	
  method	
  from	
  the	
  PETPVC	
  toolbox	
  (118).	
  	
  For	
  this	
  step	
  the	
  gray	
  (GM)	
  and	
  
white	
   matter	
   segmentation	
   from	
   Freesurfer	
   (HCP	
   structural	
   preprocessing)	
   was	
  
used.	
  	
  	
  Subcortical	
  region	
  PET	
  loads	
  were	
  defined	
  as	
  the	
  average	
  SUVR	
  in	
  subcortical	
  GM.	
  	
  
Cortical	
   GM	
   PET	
   intensities	
   were	
   mapped	
   onto	
   the	
   individual	
   cortical	
   surfaces	
   using	
  
connectome	
   workbench	
   tool	
   with	
   the	
   pial	
   and	
   white	
   matter	
   surfaces	
   as	
   ribbon	
  
constraints.	
   Using	
   the	
   multimodal	
   parcellation	
   from	
   Glasser	
   et	
   al.	
   (115)	
   we	
   derived	
  
average	
  regional	
  PET	
  loads.	
  
	
  
DWI.	
  We	
  calculated	
  individual	
  tractography	
  only	
  for	
  included	
  HC	
  participants	
  of	
  ADNI-­‐3	
  
to	
   average	
   them	
   to	
   a	
   standard	
   brain	
   template	
   (see	
   2.3	
   below).	
   Preprocessing	
   of	
   the	
  
diffusion	
  weighted	
  images	
  was	
  mainly	
  done	
  with	
  the	
  programs	
  and	
  scripts	
  provided	
  by	
  
the	
  MRtrix3	
  software	
  package	
  (http://www.mrtrix.org).	
  
The	
  following	
  steps	
  were	
  performed:	
  	
  
Dwidenoise.	
  Denoising	
  the	
  DWI	
  data	
  using	
  the	
  method	
  described	
  in	
  Veraart	
  et	
  al.	
  (119).	
  	
  
Dwipreproc.	
  Motion	
  and	
  eddy	
  current	
  correction	
  using	
  the	
  dwipreproc	
  wrapper	
  script	
  for	
  
FSL	
  (https://mrtrix.readthedocs.io/en/latest/dwi_preprocessing/dwipreproc.html)	
  
Dwibiascorrect.	
  B1	
  field	
  inhomogeneity	
  correction	
  using	
  ANTS	
  N4	
  algorithm	
  
Diw2mask.	
  brainmask	
  estimation	
  from	
  the	
  DWI	
  images.	
  
Dwiintensitynorm.	
  	
  DWI	
  intensity	
  normalization	
  for	
  the	
  group	
  of	
  participants.	
  
Dwi2response.	
   The	
   normalized	
   DWI	
   image	
   was	
   used	
   to	
   generate	
   a	
   WM	
   response	
  
function.	
  We	
  used	
  the	
  algorithm	
  described	
  by	
  Tournier	
  et	
  al.	
  (120)	
  in	
  this	
  step.	
  
Average_response.	
  An	
  average	
  response	
  function	
  was	
  created	
  from	
  all	
  participants.	
  
Dwi2fod.	
  Using	
   the	
  spherical	
  deconvolution	
  method	
  described	
  by	
  Tournier	
  et	
  al.	
   (121)	
  
we	
  estimated	
  the	
  fibre	
  orientation	
  distribution	
  using	
  the	
  subject	
  normalized	
  DWI	
  image	
  
and	
  the	
  average	
  response	
  function.	
  	
  From	
  the	
  DWI	
  data	
  a	
  mean-­‐b0	
  image	
  was	
  extracted	
  
and	
  linear	
  registered	
  to	
  the	
  T1	
  image.	
  The	
  inverse	
  of	
  the	
  transform	
  was	
  used	
  to	
  bring	
  the	
  
T1	
  brain	
  masked	
  and	
  aparc+aseg	
   image	
  (from	
  HCP	
  structural	
  preprocessing)	
   into	
  DWI	
  
space.	
  The	
  transformed	
  aparc+aseg	
  image	
  was	
  used	
  to	
  generate	
  a	
  five	
  tissue	
  type	
  image.	
  
Tckgen.	
   Anatomical	
   constrained	
   tractography	
   (122)	
   was	
   performed	
   using	
   the	
   iFOD2	
  
algorithm	
   (123).	
   Tracks	
   in	
   the	
   resulting	
   image	
   were	
   weighted	
   using	
   SIFT2	
   algorithm	
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(124).	
  We	
  mapped	
   the	
   registered	
  parcellation	
   from	
  Glasser	
  back	
   into	
   the	
  volume.	
  The	
  
cortical	
  and	
  subcortical	
  regions	
  than	
  were	
  used	
  to	
  merge	
  the	
  tracks	
  into	
  a	
  connectome.	
  
	
  
EEG	
  Forward	
  solution	
  in	
  TVB.	
  After	
  structural	
  preprocessing	
  with	
  the	
  HCP	
  pipeline	
  we	
  
used	
   the	
   individual	
   cortical	
   surfaces	
   and	
   T1	
   images	
   to	
   compute	
   the	
   person	
   specific	
  
Boundary	
   Element	
   Models	
   in	
   Brainstorm	
   (125).	
   Scalp,	
   outer	
   and	
   inner	
   skull	
   were	
  
modelled	
   with	
   1922	
   vertices	
   per	
   layer.	
   Using	
   the	
   default	
   ‘BrainProducts	
   EasyCap	
   65’	
  
EEG	
   cap	
  as	
   locations	
   for	
   the	
   signal	
   space	
   and	
   the	
   cortical	
   surface	
   vertices	
   as	
   source	
  
space.	
  The	
  leadfield	
  matrix	
  was	
  estimated	
  using	
  the	
  adjoint	
  method	
  in	
  OpenMEEG	
  with	
  
the	
   default	
   conductivities	
   1,	
   0.0125	
   and	
   1	
   for	
   scalp,	
   skull	
   and	
   brain	
   respectively.	
  	
  
Because	
   we	
   are	
   performing	
   region-­‐based	
   simulations	
   only	
   (i.e.	
   no	
   vertex-­‐wise	
  
modelling),	
   the	
   leadfield	
  matrix	
  was	
  simplified	
  by	
  summing	
  the	
  coefficients	
  of	
  vertices	
  
that	
  belong	
  to	
  the	
  same	
  region.	
  EEG	
  signal	
  was	
  generated	
  by	
  matrix	
  multiplication	
  of	
  the	
  
neural	
  time	
  series	
  with	
  the	
  lead	
  field	
  matrix.	
  	
  
	
  
2.3. 	
  Virtual	
  human	
  standard	
  brain	
  template	
  out	
  of	
  averaged	
  healthy	
  brains	
  
	
  
We	
  use	
  the	
  SCs	
  of	
  all	
  ADNI-­‐3	
  participants	
  of	
   the	
  group	
  HC,	
  derived	
  from	
  the	
  diffusion-­‐
weighted	
  and	
  structural	
  MRI,	
  to	
  average	
  them	
  to	
  one	
  connectome	
  matrix.	
  Two	
  of	
  the	
  HC	
  
participants	
  included	
  in	
  the	
  average	
  template	
  were	
  excluded	
  for	
  simulations	
  because	
  it	
  
was	
   impossible	
   to	
   compute	
   their	
   leadfield	
  matrices	
   for	
  EEG	
  calculation.	
  Therefore,	
  we	
  
use	
   an	
   arithmetic	
   mean	
   Cµ	
   =	
   (∑n

i	
   =	
   1	
   Ci)/n	
   =	
   (C1	
   +	
   C2	
   +	
   …	
   +	
   Cn)/n,	
   wherein	
   Cµ	
   is	
   the	
  
averaged	
   SC	
   matrix,	
   n	
   is	
   the	
   number	
   of	
   HC	
   participants	
   and	
   Ci	
   ist	
   the	
   individual	
   SC	
  
matrix.	
  The	
  SC	
  matrix	
  and	
  the	
  organization	
  of	
  the	
  corresponding	
  graph	
  can	
  be	
  found	
  in	
  
Figure	
  4.	
  As	
  it	
  can	
  be	
  seen	
  in	
  Figure	
  4B,	
  general	
  characteristics	
  of	
  physiological	
  SCs	
  as	
  
symmetry,	
   laterality,	
   homology	
   and	
   subcortical	
   hubs	
   are	
   maintained	
   in	
   the	
   averaged	
  
connectome.	
   By	
   choosing	
   an	
   averaged	
   SC	
   instead	
   of	
   individual	
   SCs,	
   it	
  was	
   possible	
   to	
  
control	
  all	
  factors	
  except	
  of	
  the	
  individual	
  Abeta	
  distribution	
  supporting	
  our	
  intention	
  to	
  
compare	
  the	
  simulated	
  activity	
  that	
  resulted	
  from	
  a	
  ‘pathogenic’	
  modification	
  by	
  Abeta.	
  	
  
	
  
2.4.	
  Cause-­‐and-­‐effect	
  model	
  of	
  Abeta	
  in	
  the	
  Jansen-­‐Rit	
  model	
  
	
  
The	
  dynamics	
  of	
  the	
  Jansen-­‐Rit	
  model	
  show	
  a	
  rich	
  parameter	
  dependent	
  behavior	
  (104).	
  	
  
A	
  bifurcation	
  analysis	
  of	
  the	
  single	
  population	
  Jansen-­‐Rit	
  model	
  (in	
  contrast	
  to	
  network	
  
embedded	
   interacting	
   populations)	
   catalogues	
   and	
   summarizes	
   the	
   repertoire	
   of	
   the	
  
model.	
   Bifurcation	
   here	
   refers	
   to	
   a	
   qualitative	
   change	
   in	
   the	
   system	
   behavior	
   with	
  
respect	
   to	
   parameter	
   changes.	
   Qualitative	
   changes	
   can	
   be	
   for	
   instance	
   the	
   shift	
   from	
  
waxing	
   and	
  waning	
   alpha	
   rhythm	
  as	
   observed	
   in	
   resting	
   human	
  brains	
   to	
   spike	
  wave	
  
discharges	
   as	
   observed	
   during	
   epileptic	
   seizures.	
   Bifurcation	
   diagrams	
   explore	
   the	
  
qualitatively	
   different	
   states	
   (divided	
   by	
   bifurcations,	
   see	
   Supplementary	
   Figure	
   1,	
  
from	
   (104)).	
   The	
   bifurcation	
   analysis	
   revealed	
   an	
   important	
   feature	
   of	
   the	
   Jansen-­‐Rit	
  
model,	
   which	
   is	
   bistability,	
   that	
   is,	
   the	
   coexistence	
   of	
   two	
   stable	
   states	
   for	
   a	
   certain	
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parameter	
   range	
   (i.e.,	
   regime).	
  The	
  bistable	
   regime	
  allows	
   the	
   coexistence	
  of	
   two	
  self-­‐
sustained	
  oscillatory	
  states	
  for	
  the	
  standard	
  parameter	
  configuration	
  (74)	
  and	
  Table	
  2	
  
of	
   which	
   one	
   state	
   generates	
   rhythmic	
   activity	
   in	
   the	
   alpha	
   band	
   and	
   the	
   other	
   one	
  
produces	
  slower	
  big	
  spike-­‐wave	
  complexes	
   in	
  theta	
  rhythm.	
  Changes	
   in	
  the	
  kinetics	
  of	
  
excitatory	
   and	
   inhibitory	
   PSPs	
   (i.e.,	
   changes	
   of	
   time	
   constants)	
   change	
   the	
   model	
  
behavior	
  in	
  a	
  way	
  which	
  makes	
  it	
  suitable	
  to	
  scale,	
  that	
  is,	
  to	
  speed	
  up	
  or	
  to	
  slow	
  down	
  
dynamics	
   (104).	
  The	
   results	
  of	
   the	
   systematic	
  parameter	
   exploration	
  of	
   the	
   excitatory	
  
and	
   inhibitory	
   time	
   constants	
   is	
   summarized	
   in	
   Supplementary	
   Figure	
   2.	
   For	
   our	
  
study,	
   to	
   achieve	
   this	
   dynamic	
   behavior	
   of	
   two	
   limit	
   cycles,	
   we	
   used	
   first	
   a	
   very	
   low	
  
input	
   on	
   the	
   pyramidal	
   cells	
   (firing	
   rate	
   0.1085/ms)	
   and	
   no	
   input	
   on	
   the	
   inhibitory	
  
interneurons	
   to	
   not	
   overlay	
   the	
   Abeta	
   effects	
   we	
   introduce	
   here.	
   Here	
   the	
   system	
  
operates	
   near	
   the	
   subcritical	
   Andronov-­‐Hopf	
   and	
   the	
   saddle-­‐saddle	
   bifurcations	
  
(leftmost	
  region	
  in	
  Supplementary	
  Figure	
  1).	
  For	
  the	
  time	
  constants,	
  we	
  used	
  the	
  area	
  
of	
  alpha	
  rhythm	
  (blue	
  area	
   in	
  Supplementary	
   Figure	
   2)	
  as	
  control	
  condition	
  without	
  
any	
  effect	
  of	
  Abeta.	
  The	
  detailed	
  parameter	
  settings	
  can	
  be	
  found	
  in	
  Table	
  2.	
  
	
  
Table	
  2.	
  Used	
  parameters	
  for	
  each	
  Jansen-­‐Rit	
  element	
  in	
  the	
  large-­‐scale	
  brain	
  network	
  
(74).	
  	
  

Variable	
   Description	
   Value	
   Unit	
  

He	
  	
  

	
  

Maximum	
  amplitude	
  of	
  EPSP.	
  Also	
  called	
  average	
  
synaptic	
  gain.	
  

3.25	
   1	
  mV	
  

Hi	
  	
   Maximum	
  amplitude	
  of	
  IPSP.	
  Also	
  called	
  average	
  
synaptic	
  gain.	
  

22.0	
   1	
  mV	
  

τe	
   Excitatory	
  dendritic	
  time	
  constant	
  	
  
	
  

10	
   1	
  ms	
  

τi(βa)	
   Inhibitory	
  dendritic	
  time	
  constant	
  as	
  a	
  function	
  of	
  
Abeta	
  load	
  
	
  

[14.29,	
  50)	
   1	
  ms	
  

v0	
   Is	
  the	
  mean	
  PSP	
  threshold	
  for	
  50%	
  of	
  maximum	
  
firing	
  rate	
  

6	
   1	
  mV	
  

e0	
  	
   The	
  firing	
  rate	
  for	
  v	
  =	
  v0	
  	
  The	
  maximum	
  firing	
  rate	
  is	
  
2e0.	
  

2.5	
   1	
  mV	
  

rv	
   Steepness	
  of	
  the	
  sigmoid	
  transfer	
  function.	
   0.56	
   1/mV	
  

c31	
   Average	
  number	
  of	
  synaptic	
  contacts	
  from	
  inhibitory	
  
to	
  pyramidal	
  cells	
  

108	
   1	
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c13	
   Average	
  number	
  of	
  synaptic	
  contacts	
  from	
  
pyramidal	
  to	
  inhibitory	
  cells	
  

135	
   1	
  

c32	
   Average	
  number	
  of	
  synaptic	
  contacts	
  from	
  excitatory	
  
to	
  pyramidal	
  cells	
  

33.75	
   1	
  

c23	
   Average	
  number	
  of	
  synaptic	
  contacts	
  from	
  
pyramidal	
  to	
  excitatory	
  cells	
  

33.75	
   1	
  

m03T	
   Input	
  firing	
  rate	
  at	
  the	
  pyramidal	
  cells.	
   0.1085	
   1/ms	
  

G	
   Global	
  structural	
  connectivity	
  scaling	
  factor	
  	
   [0,	
  600]	
   1	
  

Smax,τ	
   Maximum	
  value	
  of	
  the	
  inhibitory	
  rate	
  (reciprocal	
  of	
  
inhibitory	
  time	
  constant)	
  

0.07	
   1/ms	
  

S0,τ	
   Minimum	
  value	
  of	
  the	
  inhibitory	
  rate	
  (reciprocal	
  of	
  
inhibitory	
  time	
  constant)	
  

0.02	
   1/ms	
  

βmax	
   95th	
  percentile	
  value	
  for	
  the	
  Abeta	
  burden	
  Aβ	
  as	
  the	
  
PET	
  SUVR	
  for	
  all	
  regions	
  and	
  all	
  participants	
  	
  	
  

2.65	
   1	
  

βoff	
   Cut-­‐off-­‐value	
  for	
  the	
  Abeta	
  burden	
  Aβ	
  as	
  the	
  PET	
  
SUVR,	
  from	
  which	
  one	
  a	
  pathological	
  meaning	
  is	
  
suspected	
  

1.4	
   1	
  

	
  
	
  
The	
  information	
  about	
  the	
  local	
  Abeta	
  burden	
  is	
  derived	
  from	
  the	
  individual	
  AV-­‐45	
  PET.	
  
As	
   there	
   exists	
   no	
   established	
   clinical	
   standard	
   for	
   SUVR	
   cut-­‐off	
   thresholds	
  
differentiating	
  normal	
   form	
  pathological	
  Abeta	
   loads.	
  To	
   scale	
   the	
  possible	
  neurotoxic	
  
effect	
   in	
   a	
   realistic	
  way,	
  we	
   need	
   to	
   approximate	
   at	
  what	
   point	
   Abeta	
   toxicity	
   occurs.	
  
Following	
  the	
  literature,	
  a	
  96%	
  correlation	
  to	
  autopsy	
  after	
  Abeta	
  PET	
  was	
  achieved	
  via	
  
visual	
  assessment	
  of	
  PET	
  images.	
  The	
  corresponding	
  SUVR	
  cut-­‐off	
  was	
  1.2	
  (58).	
  Another	
  
study	
   showed	
   a	
   higher	
   cut-­‐off	
   point	
   at	
   SUVR	
   ≥	
   1.4	
   for	
   a	
   90%	
   sensitivity	
   of	
   clinically	
  
diagnosed	
  AD	
  patients	
  with	
  an	
  abnormal	
  Abeta	
  PET	
  scan	
  (126).	
  We	
  use	
  here	
  the	
  higher	
  
cut-­‐off	
  threshold	
  of	
  SUVR	
  ≥1.4.	
  Consequently,	
  we	
  propose	
  a	
  cause-­‐and-­‐effect	
  model	
  for	
  
Abeta	
  that	
  is	
  mapping	
  molecular	
  changes	
  to	
  computational	
  brain	
  network	
  models:	
  
The	
  inhibitory	
  time	
  constant	
  τi	
  in	
  each	
  point	
  is	
  a	
  function	
  of	
  βa.	
  The	
  higher	
  Abeta	
  SUVR,	
  
the	
  higher	
  is	
  the	
  synaptic	
  delay	
  and	
  therefore	
  τi.	
  We	
  decided	
  for	
  this	
  implementation	
  via	
  
a	
  synaptic	
  delay	
  because	
  of	
  several	
  reasons:	
  

1. We	
   are	
   focusing	
   on	
   disease	
   linked	
   alterations	
   of	
   EEG	
   frequencies.	
   Hence,	
   we	
  
intended	
   to	
   assess	
   a	
   model	
   feature	
   that	
   is	
   already	
   known	
   to	
   be	
   frequency-­‐
effective,	
   i.e.	
   it	
   can	
   vary	
   resulting	
   simulated	
   EEG	
   frequencies.	
   From	
   former	
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explorations	
   of	
   the	
   Jansen-­‐Rit-­‐model	
   we	
   know	
   that	
   the	
   neural	
   frequencies	
   are	
  
influenced	
  by	
  the	
  ratio	
  of	
  excitatory	
  and	
  inhibitory	
  time	
  constants	
  (104).	
  

2. Cellular	
   studies	
   are	
   supporting	
   the	
   hypothesis	
   of	
   altered	
   inhibition,	
   such	
   as	
  
decreased	
   IPSP	
   frequency	
   in	
   AD	
   (45,	
   47,	
   48)	
   –	
   hence	
   we	
   decide	
   for	
   mapping	
  
Abeta	
  on	
  the	
  inhibitory	
  time	
  constant	
  enabling	
  for	
  IPSP	
  frequency	
  modulation.	
  

3. By	
   using	
   a	
   time-­‐effective	
   feature,	
   we	
   intended	
   to	
   differentiate	
   the	
   micro-­‐scale	
  
neurotoxic	
   effect	
   of	
  Abeta	
   on	
   synaptic	
   level	
   (46-­‐48)	
   from	
   connectivity-­‐effective	
  
phenomena	
   on	
   a	
   larger	
   scale,	
   which	
   could	
   e.g.	
   be	
  modeled	
   by	
   an	
   alteration	
   of	
  
connection	
  strength.	
  	
  
	
  

We	
  develop	
  a	
  transform	
  function	
  to	
  implement	
  the	
  PET	
  SUVR	
  in	
  parameters	
  of	
  the	
  brain	
  
network	
  model.	
   Specifically,	
  we	
   postulate	
   a	
   sigmoidal	
   decrease	
   function	
   that	
  modifies	
  
the	
  default	
  value	
  for	
  inhibitory	
  time	
  constant	
  τi	
  	
  (equation	
  6	
  and	
  Figure	
  3).	
  We	
  assume	
  
the	
   healthy	
   brain	
   without	
   super-­‐threshold	
   Abeta	
   burden	
   operates	
   in	
   a	
   region	
   of	
   the	
  
parameter	
  space,	
  which	
  is	
  close	
  to	
  a	
  network	
  criticality.	
  A	
  criticality	
  describes	
  an	
  area	
  in	
  
the	
  parameter	
  space,	
  where	
  subtle	
  changes	
  of	
  one	
  variable	
  can	
  have	
  a	
  critical	
  impact	
  on	
  
others	
  (127)	
  (in	
  this	
  case	
  bifurcations,	
  see	
  Supplementary	
  Figure	
  1.	
  The	
  thresholding	
  
‘cut-­‐off’	
  value	
  βoff	
  –	
  differentiating	
  normal	
  form	
  pathological	
  Abeta	
  burden	
  -­‐	
  was	
  chosen	
  
according	
  to	
  the	
  literature,	
  stating	
  that	
  only	
  after	
  a	
  certain	
  level	
  of	
  tracer	
  uptake	
  a	
  region	
  
is	
  considered	
  pathological	
  (βoff	
  =	
  1.4,	
  see	
  above).	
  The	
  maximum	
  possible	
  Abeta	
  burden	
  
value	
  βmax	
  was	
  chosen	
  to	
  be	
  the	
  95%	
  percentile	
  of	
  the	
  Abeta	
  regional	
  SUVR	
  distribution	
  
across	
  all	
  participants.	
  The	
  midpoint	
  of	
  the	
  sigmoid	
  was	
  chosen	
  such	
  that	
  it	
  was	
  half	
  the	
  
way	
  between	
  βoff	
  and	
  βmax.	
  The	
  steepness	
  was	
  chosen	
  such	
  that	
  the	
  function	
  converges	
  to	
  
a	
  linear	
  function	
  between	
  βoff	
  and	
  βmax.	
  
	
  
2.5. 	
  Brain	
  Network	
  Model	
  	
  construction	
  and	
  simulation	
  
	
  
For	
   the	
   reasons	
   stated	
   in	
   the	
   above	
   introduction,	
   for	
   our	
   simulation	
   approach	
   we	
  
selected	
  the	
  Jansen-­‐Rit	
  model	
  (68,	
  72,	
  74,	
  85,	
  98,	
  100,	
  101,	
  104,	
  128).	
   	
  The	
  differential	
  
equations	
  are	
  presented	
  in	
  Equations	
  1	
  -­‐	
  6	
  (74).	
  The	
  employed	
  parameter	
  values	
  can	
  be	
  
found	
  in	
  Table	
  2.	
  
	
  
Excitatory	
  projections	
  onto	
  pyramidal	
  cells	
  at	
  location	
  a	
  in	
  discretized	
  space	
  (a	
  =	
  1,	
  2,	
  
…,	
  N:	
  N	
  =	
  379	
  regions):	
  
	
  
dυ1,a(t)	
  /	
  dt	
  =	
  υ4,a(t)	
   Eq.1	
  
dυ4,a(t)	
  /	
  dt	
  =	
  He	
  (m3T,a(t)	
  	
  +c31	
  S(c13	
  υ3,a(t)))	
  /	
  τe	
  	
  –2υ4,a(t)	
  /	
  τe	
  	
  –υ1,a(t)	
  /	
  τ2e	
  	
  

	
  
Inhibitory	
  projections	
  onto	
  pyramidal	
  cells	
  at	
  location	
  u	
  in	
  space:	
  
	
  
dυ2,a(t)	
  /	
  dt	
  =	
  υ5,a(t)	
   Eq.2	
  
dυ5,a(t)	
  /	
  dt	
  =	
  c32	
  Hi	
  S(c23	
  υ3,a(t))	
  /	
  τi(βa)	
  	
  –2υ5,a(t)	
  /	
  τi(βa)	
  	
  –υ2,a(t)	
  /	
  τ2i	
  (βa)	
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Projections	
  of	
  pyramidal	
  cells	
  u	
  in	
  space:	
  
	
  
dυ3,a(t)	
  /	
  dt	
  =	
  υ6,a(t)	
  	
   Eq.3	
  
dυ6,a(t)	
  /	
  dt	
  =	
  S(υ30,a	
  )(t)	
  /	
  τe	
  	
  –2υ6,a(t)	
  /	
  τe	
  	
  –υ3,a(t)	
  /	
  τ2e	
  	
  

	
  
with	
  the	
  mean	
  postsynaptic	
  potential	
  of	
  the	
  pyramidal	
  cells	
  	
  
	
  
υ30,a(t)	
  =	
  υ1,a(t)	
  	
  –υ2,a(t)	
   Eq.4	
  
	
  
and	
  the	
  nonlinear	
  potential-­‐to-­‐firing-­‐rate	
  transfer	
  function	
  
	
  	
  
S	
  (λ)	
  =	
  (Smax	
  –Smin)	
  /	
  (1	
  +exp(rλ	
  (λ0	
  	
  –λ)))	
  	
  +Smin	
  :	
  0	
  <	
  Smin	
  <	
  Smax,	
   Eq.5	
   	
  
	
  
with,	
  λ	
  =	
  υ,	
  Sυ,max	
  =	
  2e0	
  and	
  Sυ,min	
  =	
  0.	
  Incoming	
  mean	
  firing	
  rates	
  m3T,a(t)	
  at	
  the	
  pyramidal	
  
cells	
  at	
  location	
  a	
  from	
  other	
  brain	
  regions	
  b	
  =	
  1,	
  2,	
  …,	
  N,	
  where	
  N	
  is	
  the	
  number	
  of	
  379	
  
regions	
   are	
   given	
   by	
  m3T,a(t)	
   =	
  m3T,0	
  +	
   G	
   ∑b	
  wa,b	
  S(υ30,b	
  )(t),	
   where	
  m3T,0	
  is	
   baseline	
  
input	
  m3T,0	
  =	
   const.	
   for	
  ∀t	
  and	
   all	
   locations	
  ∀a.	
   The	
   global	
   coupling	
   factor	
  G	
   scales	
   the	
  
connections	
  wa,b	
  incoming	
  at	
  location	
  a	
  from	
  all	
  b	
  provided	
  by	
  the	
  SC.	
  In	
  all	
  populations,	
  
the	
  state	
  variable	
  [υ1,	
  υ2,	
  υ3]a(t)	
  are	
  the	
  mean	
  membrane	
  potentials	
  and	
  the	
  derivatives	
  
thereof	
  with	
  respect	
  to	
  time	
  t,	
  namely	
  [υ4,	
  υ5,	
  υ6]a(t)	
  represent	
  the	
  mean	
  currents.	
  	
  
	
  
To	
  model	
  how	
  the	
  local	
  Abeta	
  load	
  βa,	
  measured	
  by	
  the	
  Abeta	
  PET	
  SUVR	
  is	
  affecting	
  the	
  
inhibitory	
  time	
  constant	
  we	
  introduce	
  the	
  following	
  transfer	
  function	
  (Figure	
  3):	
  
	
  
τi(βa)	
  =	
  S–1(βa),	
   Eq.6	
   	
  
with	
  rβa	
  =	
  2ln(Smax	
  ·	
  1000	
  ms	
  	
  –	
  1)	
  /	
  (βa,off	
  –βa,max)	
  and	
  β0	
  =	
  (βa,off	
  +βa,max)	
  /2.	
  Note	
  that	
  the	
  

inverse	
   of	
   the	
   time	
   constant	
   τi	
   is	
   the	
   rate.	
   The	
   Abeta	
   load	
   affects	
   the	
   inhibitory	
   rate	
  
following	
  a	
  sigmoid	
  curve.	
  The	
  rate	
  ranges	
  between	
  Smin	
  and	
  Smax	
  and	
  the	
  time	
  constant	
  
ranges	
  consequently	
  between	
  1/Smax	
  and	
  1/Smin.	
  
	
  
To	
  simulate	
  the	
  model	
  using	
  TVB,	
  physical	
  space	
  and	
  time	
  are	
  discretized.	
  The	
  system	
  of	
  
difference	
  equations	
  is	
  then	
  solved	
  using	
  deterministic	
  Heun’s	
  method	
  with	
  a	
  time	
  step	
  
of	
   5	
   ms.	
   We	
   used	
   a	
   deterministic	
   method	
   to	
   avoid	
   stochastical	
   influences	
   since	
   the	
  
simulation	
  was	
  performed	
  in	
  the	
  absence	
  of	
  noise.	
  
The	
  system	
  was	
  integrated	
  for	
  2	
  minutes	
  and	
  the	
  last	
  1	
  minute	
  was	
  analyzed	
  in	
  order	
  to	
  
obtain	
   the	
  systems’	
  steady	
  state	
  and	
  diminish	
   transient	
  components	
   in	
   the	
   time	
  series	
  
due	
  to	
  the	
  initialization.	
  
	
  
We	
   explore	
   a	
   range	
   of	
   0	
   ≤	
   G	
   ≤	
   600	
   which	
   provides	
   an	
   overview	
   about	
   the	
   possible	
  
population	
  level	
  behaviors	
  at	
  different	
  states	
  of	
  network	
  coupling.	
  Because	
  the	
  coupling	
  
factor	
  G	
  has	
  a	
  crucial	
   influence	
  on	
  the	
  external	
   input	
  on	
  the	
  neuronal	
  populations,	
   this	
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allows	
  different	
  regions	
  to	
  operate	
   in	
  different	
  dynamical	
  regimes,	
  as	
   it	
  can	
  be	
  seen	
   in	
  
the	
  bifurcation	
  diagrams	
  of	
  Supplementary	
  Figure	
  1.	
  Global	
  coupling	
  factor	
  G	
  that	
  was	
  
sampled	
  between	
  G	
  =	
  0	
  (i.e.,	
  isolated	
  regions)	
  and	
  G	
  =	
  600	
  with	
  a	
  step	
  size	
  of	
  ΔG	
  =	
  3.	
  The	
  
initial	
  values	
  were	
  taken	
  from	
  4000	
  random	
  time	
  points	
  for	
  each	
  state	
  variable	
  in	
  each	
  
region.	
  The	
  length	
  of	
  2	
  minutes	
  for	
  the	
  simulations	
  was	
  chosen	
  with	
  the	
  aim	
  to	
  diminish	
  
possible	
   transient	
   components	
   due	
   to	
   the	
   initialization	
   of	
   state	
   variables	
   at	
  t	
  =	
   0.	
   For	
  
analysis	
  we	
  used	
  only	
   the	
   second	
  minute	
  of	
   the	
   simulated	
   signals.	
  No	
   time	
  delays	
   are	
  
implemented	
  in	
  the	
  large-­‐scale	
  network	
  interactions	
  since	
  they	
  are	
  not	
  required	
  for	
  the	
  
emergence	
   of	
   the	
   here	
   evaluated	
   features	
   and	
   setting	
   them	
   to	
   zero	
   increases	
   reduces	
  
required	
  computation	
  resources.	
  	
  
	
  
2.6.	
  Spectral	
  properties	
  of	
  the	
  simulated	
  EEG	
  
	
  
In	
  TVB,	
  we	
  simulate	
  EEG	
  as	
  a	
  projection	
  of	
   the	
  oscillating	
  membrane	
  potentials	
   inside	
  
the	
   brain	
   via	
   its	
   electromagnetic	
   fields	
   to	
   the	
   skin	
   surface	
   of	
   the	
   head	
   (68)	
   using	
   the	
  
individual	
  lead	
  field	
  matrices	
  which	
  take	
  into	
  account	
  the	
  different	
  impedances	
  of	
  white	
  
matter,	
   grey	
  matter,	
   external	
   liquor	
   space,	
   pia	
   and	
  dura	
  mater,	
   the	
   skull	
   and	
   the	
   skin.	
  
Our	
   lead-­‐field	
   matrices	
   considered	
   the	
   impedances	
   of	
   three	
   compartment	
   borders:	
  
brain-­‐skull,	
   skull-­‐scalp	
   and	
   scalp-­‐air	
   (7,	
   66,	
   129,	
   130).	
   The	
   postsynaptic	
   membrane	
  
potential	
   (PSP)	
  considered	
   for	
   the	
  projection	
   is	
   the	
  one	
  of	
   the	
  pyramidal	
  cells,	
  as	
   they	
  
contribute	
   the	
  mayor	
  part	
   to	
  potential	
   changes	
   in	
  EEG	
  (131).	
  The	
  PSP	
   is	
  calculated	
  by	
  
summing	
   the	
   synaptic	
   input	
   from	
   excitatory	
   and	
   inhibitory	
   subpopulations	
   to	
   the	
  
pyramidal	
   cells.	
   The	
  baseline	
  PSP	
  was	
  derived	
   as	
   the	
  mean	
  PSP	
   across	
   time	
   for	
   every	
  
region.	
  For	
  the	
  LFP	
  or	
  EEG	
  peak	
  frequency,	
  we	
  computed	
  the	
  power	
  spectrum	
  using	
  the	
  
‘periodogram’	
   function	
   of	
   the	
   Scipy	
   python	
   toolbox	
   (132).	
   From	
   the	
   spectrogram	
   the	
  
‘dominant	
  rhythm’	
  was	
  identified	
  as	
  the	
  frequency	
  with	
  the	
  highest	
  power.	
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3.	
  Results	
  
3.1.	
  Abeta-­‐inferred	
  dynamics	
  lead	
  to	
  individual	
  spectral	
  patterns	
  
We	
  analysed	
   the	
  dominant	
   frequency	
   in	
   the	
   simulated	
  EEG	
  and	
   regional	
  neural	
   signal	
  
(referred	
  to	
  as	
  local	
  field	
  potential	
  (LFP)	
  (Figure	
  5G	
  –	
  5J).	
  	
  
	
  
We	
  observed	
  a	
  physiologically	
  looking	
  irregular	
  behavior	
  with	
  two	
  frequency	
  clusters	
  in	
  
the	
  alpha	
  and	
  in	
  the	
  theta	
  spectrum	
  (Figure	
  5G).	
  This	
  behavior	
  is	
  expressed	
  in	
  the	
  area	
  
of	
  lower	
  global	
  coupling	
  G	
  for	
  all	
  10	
  AD	
  participants	
  and	
  in	
  3	
  out	
  of	
  8	
  MCI	
  and	
  4	
  out	
  of	
  15	
  
HC	
  participants.	
  The	
   irregular	
   time	
  series	
  and	
  the	
  broad	
  continuous	
   frequency	
  spectra	
  
(Figure	
   5B)	
   of	
   network	
   regime	
   in	
   0	
   <	
  G	
   <	
   150	
   are	
   indicative	
   for	
   deterministic	
   chaos.	
  
Such	
  chaotic	
  network	
  regimes	
  in	
  a	
  BNM	
  have	
  already	
  been	
  reported	
  using	
  the	
  same	
  local	
  
dynamic	
   model	
   (Figure	
   2	
   in	
   	
   (85)).	
   Beside	
   this	
   emerging	
   chaotic	
   behavior	
   in	
   our	
  
simulations	
   other	
  phenomena	
  occurred	
   in	
   the	
  parameter	
   space	
   exploration:	
   a	
   state	
   of	
  
hypersynchronization	
  between	
  regions	
  (Figure	
  5H,	
  5J)	
  and	
  a	
  state	
  of	
  a	
  ‘zero-­‐line’	
  with	
  
no	
  oscillations	
  that	
  clearly	
  does	
  not	
  reflect	
  a	
  physiological	
  brain	
  state	
  (Figure	
  5I,	
  5J).	
  
	
  
In	
   order	
   to	
   locate	
   the	
   individual	
   simulations	
   in	
   the	
   spectrum	
   of	
   possible	
   dynamics,	
  
meaning	
   in	
   the	
   range	
   of	
   possible	
   Abeta	
   load,	
   we	
   examined	
   extreme	
   values	
   of	
   Abeta	
  
distribution.	
  The	
  virtual	
  brains	
  with	
  a	
  mean	
  Abeta	
  load	
  of	
  zero	
  (Supplementary	
  Figure	
  
3A)	
  and	
  with	
  the	
  maximum	
  Abeta	
  load	
  at	
  all	
  regions	
  (Supplementary	
  Figure	
  3B),	
  we	
  
see	
  as	
  expected	
  for	
  the	
  Abeta-­‐free	
  system	
  a	
  behavior	
  similar	
  to	
  the	
  low-­‐Abeta-­‐containing	
  
HC	
  participants.	
  This	
  is	
  not	
  surprising,	
  because	
  when	
  the	
  HC	
  subjects	
  do	
  not	
  have	
  a	
  high	
  
Abeta	
  signal,	
  the	
  dynamics	
  will	
  converge	
  to	
  those	
  with	
  zero	
  Abeta,	
  which	
  is	
  in	
  fact	
  then	
  
only	
  determined	
  by	
  the	
  underlying	
  standard	
  SC	
  and	
  therefore	
  remains	
  the	
  same	
  for	
  all	
  
participants.	
   However,	
   the	
   homogeneous	
   application	
   of	
  maximum	
   Abeta	
   burden	
   does	
  
not	
  lead	
  to	
  an	
  AD-­‐like	
  pattern	
  but	
  shows	
  a	
  zero-­‐line	
  at	
  the	
  whole	
  spectrum.	
  
	
  
To	
  give	
  a	
  mathematical	
  explanation	
  of	
   those	
  phenomena,	
  we	
  related	
  each	
  participants	
  
Abeta-­‐burden	
  to	
  the	
  corresponding	
  inhibitory	
  time	
  constant	
  τi	
  and	
  used	
  former	
  analyses	
  
of	
  the	
  uncoupled	
  local	
  Jansen-­‐Rit	
  model	
  (104)	
  to	
  estimate	
  the	
  bifurcation	
  diagrams	
  for	
  
the	
   coupled	
   system	
   in	
   this	
   study	
   (Figure	
   6).	
   	
   Shown	
   diagrams	
   allow	
   to	
   predict	
   and	
  
explain	
   the	
   occurrence	
   of	
   alpha	
   and	
   theta	
   rhythms	
   or	
   zero-­‐lines	
   depending	
   on	
   the	
  
underlying	
   Abeta	
   burdens.	
   The	
   variation	
   of	
   τi	
   by	
   local	
   Abeta	
   burden	
   fundamentally	
  
influences	
  the	
  systems	
  bifurcations	
  by	
  shifting	
  the	
  bifurcation	
  point	
  along	
  the	
  range	
  of	
  
external	
  input	
  to	
  the	
  pyramidal	
  cells.	
  As	
  a	
  consequence,	
  different	
  values	
  of	
  Abeta	
  lead	
  to	
  
a	
  variable	
  occurrence	
  of	
  two	
  limit	
  cycles	
  and	
  a	
  stable	
  focus.	
  Therefore,	
  for	
  a	
  single	
  region	
  
with	
  constant	
  external	
  input	
  on	
  pyramidal	
  cells,	
  depending	
  on	
  Abeta	
  the	
  region	
  might	
  be	
  
in	
  an	
  alpha	
  limit	
  cycle,	
  in	
  a	
  theta	
  limit	
  cycle,	
  in	
  a	
  bistable	
  condition	
  where	
  both	
  cycles	
  are	
  
possible	
  or	
  in	
  a	
  stable	
  focus.	
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3.2	
  Simulated	
  EEG	
  slowing	
  in	
  AD	
  is	
  caused	
  by	
  heterogeneous	
  Abeta	
  distribution	
  
	
  
Figure	
   7	
   displays	
  how	
   the	
  mean	
  dominant	
   rhythms	
  differ	
  between	
   the	
  groups.	
   In	
   the	
  
range	
  below	
  G	
  =	
  100	
  we	
  find	
  a	
  slowing	
  in	
  the	
  AD	
  group.	
  Since	
  in	
  the	
  range	
  of	
  lower	
  G	
  all	
  
three	
  groups	
  exhibit	
  realistic	
  frequency	
  spectra	
  and	
  no	
  zero-­‐lines	
  we	
  consider	
  this	
  range	
  
of	
  G	
  as	
  ‘physiological’.	
  	
  Significant	
  differences	
  appear	
  between	
  AD	
  and	
  non-­‐AD	
  for	
  ranges	
  
of	
   high	
   and	
   low	
   G	
   and	
   also	
   for	
   high	
   alpha	
   and	
   low	
   theta	
   rhythms	
   (figure	
   7).	
   The	
  
heterogeneous	
   distribution	
   of	
   Abeta	
   (in	
   contrast	
   to	
   an	
   averaged	
   homogeneous	
  
distribution)	
  plays	
  a	
  crucial	
  role	
  in	
  the	
  development	
  of	
  this	
  AD-­‐specific	
  slowing.	
  This	
  is	
  
indicated	
  by	
  simulations	
  with	
  the	
  mean	
  averaged	
  Abeta	
  of	
  each	
  participant	
  mapped	
  on	
  
all	
   regions.	
   The	
   simulations	
   revealed	
   a	
   regionally	
   more	
   homogenous	
   behavior	
   in	
   all	
  
groups	
   (Supplementary	
   material,	
   Supplementary	
   Figure	
   4).	
   Moreover,	
   with	
  
homogeneous	
  distribution	
  of	
  Abeta	
  the	
  slowing	
  in	
  AD	
  participants	
  does	
  not	
  appear:	
  we	
  
don’t	
  see	
  a	
  significant	
  change	
  in	
  the	
  theta	
  band	
  (Figure	
  7B).	
  This	
  is	
  a	
  strong	
  indicator	
  for	
  
the	
   importance	
   of	
   the	
   individual	
   Abeta	
   distribution	
   and	
   a	
   proof	
   for	
   the	
   necessity	
   of	
  
heterogeneous	
  excitotoxic	
  effects	
  for	
  the	
  creation	
  of	
  neural	
  slowing.	
  	
  
	
  
3.3	
   Intra-­‐individual	
   ratio	
   of	
   high	
   versus	
   low	
   Abeta	
   burden	
   across	
   all	
   regions	
  
determines	
  simulated	
  EEG	
  frequency	
  spectrum	
  –	
  distinct	
  spatial	
  configurations	
  of	
  
Abeta	
  do	
  not	
  matter	
  for	
  slowing	
  
	
  
We	
   next	
   examined	
   how	
   LFP/EEG	
   slowing	
   is	
   related	
   to	
   the	
   underlying	
   Abeta	
   burden	
  
(Figure	
   8).	
  We	
   revealed	
   significant	
   linear	
  dependencies	
   for	
   all	
   groups	
  between	
  Abeta	
  
burden	
  and	
  frequency.	
  We	
  found	
  a	
  strong	
  inverse	
  dependency	
  for	
  AD	
  (R2	
  =	
  0.625),	
  i.e.	
  an	
  
Abeta-­‐dependent	
   EEG	
   slowing.	
   In	
   contrast,	
   for	
   non-­‐AD	
   participants	
   the	
   relation	
   was	
  
revers,	
  i.e.	
  higher	
  values	
  of	
  Abeta	
  caused	
  EEG	
  acceleration.	
  	
  
	
  
To	
   test	
   if	
   specific	
  regions	
  are	
  more	
   important	
   for	
   the	
  observed	
  phenomena,	
  we	
  had	
  to	
  
overcome	
  the	
  bias	
  that	
  only	
  specific	
  regions	
  were	
  strongly	
  affected	
  by	
  Abeta.	
  I.e.,	
  for	
  the	
  
empirical	
  Abeta	
  distribution	
  we	
  cannot	
  say	
  e.g.	
  for	
  a	
  region	
  with	
  high	
  Abeta	
  if	
  it	
  shows	
  
EEG/LFP	
  slowing	
  only	
  because	
  of	
   its	
  high	
  Abeta	
  value	
  or	
  because	
  of	
   its	
  specific	
  spatial	
  
and	
  graph	
  theoretical	
  position	
  in	
  the	
  network.	
  	
  Therefore,	
  we	
  next	
  performed	
  simulation	
  
with	
  10	
  random	
  spatial	
  distributions	
  of	
   the	
   individual	
  Abeta	
  PET	
  SUVRs	
  for	
  the	
  10	
  AD	
  
participants.	
  In	
  these	
  simulations,	
  the	
  neural	
  slowing	
  appeared	
  similarly	
  to	
  the	
  empirical	
  
spatial	
  distributions	
  of	
  Abeta	
  (Supplementary	
  Figure	
  5),	
  which	
  indicates	
  a	
  minor	
  role	
  
of	
   the	
  distinct	
   spatial	
  patterns	
  of	
  Abeta.	
   Instead,	
   the	
   ratio	
  of	
   regions	
   corresponding	
   to	
  
the	
   three	
   different	
   dynamical	
   regimes	
   (alpha,	
   theta	
   and	
   bistable)	
   determined	
   the	
  
simulated	
   frequency	
   spectrum	
   (Supplementary	
   Figure	
   6).	
   For	
   an	
   optimal	
   value	
   of	
   G	
  
with	
   100	
   <	
   G	
   <	
   150,	
   the	
   ratio	
   of	
   regions	
   with	
   an	
   Abeta	
   value	
   in	
   theta	
   regime	
   best	
  
corresponded	
  to	
  the	
  ratio	
  of	
  regions	
  with	
  theta	
  frequency	
  in	
  LFP.	
  Moreover,	
  the	
  number	
  
of	
   regions	
   in	
   different	
   regimes	
   enables	
   to	
   predict	
   the	
   individual	
   spectral	
   behaviour	
  
across	
  G.	
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The	
   results	
   of	
   random	
   spatial	
   distribution	
   of	
   Abeta	
   PET	
   SUVRs	
   were	
   also	
   used	
   for	
   a	
  
parameter	
  space	
  exploration	
  (Figure	
  9).	
  The	
  analysis	
  reveals	
  that	
  (1)	
  alpha	
  rhythms	
  are	
  
only	
  apparent	
  for	
  low	
  time	
  constants	
  with	
  τi	
  <	
  30ms,	
  but	
  for	
  the	
  full	
  spectrum	
  of	
  G,	
  more	
  
probable	
  for	
  lower	
  G	
  values;	
  (2)	
  relevant	
  amounts	
  of	
  bistable	
  rhythms	
  are	
  only	
  apparent	
  
for	
  17ms	
  <	
  τi	
  <	
  39ms	
  and	
  G	
  >	
  120;	
  (3)	
  theta	
  rhythms	
  are	
  present	
  across	
  almost	
  the	
  full	
  
spectra	
  of	
  G	
  and	
  τi,	
  with	
  an	
  equal	
  appearance	
  across	
  G,	
  but	
  with	
  a	
  local	
  minimum	
  at	
  τi	
  ≈	
  
18ms,	
  where	
  the	
  system	
  is	
  dominated	
  by	
  alpha	
  and	
  bistable	
  rhythms.	
  This	
  exploration	
  
demonstrates	
   two	
   major	
   insights.	
   First,	
   it	
   confirms	
   the	
   crucial	
   role	
   of	
   τi	
   for	
   the	
  
appearance	
   of	
   alpha	
   or	
   theta	
   rhythms	
   as	
   we	
   expect	
   it	
   out	
   of	
   the	
   (non-­‐coupled)	
  
bifurcation	
   diagrams	
   of	
   Figure	
   6.	
   Network	
   effects	
   are	
   present	
   (e.g.	
   there	
   are	
   theta	
  
rhythms	
  for	
  low	
  values	
  of	
  τi),	
  but	
  play	
  a	
  minor	
  role	
  here.	
  Second,	
  the	
  value	
  of	
  G	
  does	
  not	
  
significantly	
  affect	
  the	
  probability	
  of	
  theta	
  rhythm,	
  except	
  of	
  an	
  alpha-­‐theta	
  shift	
  for	
  low	
  
τi	
  <	
  20ms	
  and	
  higher	
  G	
  >	
  160.	
  This	
  is	
  caused	
  by	
  the	
  coexistence	
  of	
  stable	
  focus	
  in	
  alpha	
  
regime	
  and	
   theta	
   limit	
  cycle	
   in	
   theta	
  regime	
   for	
  high	
  pyramidal	
   input	
  (Figure	
   6A	
   and	
  
6I).	
  
	
  
3.4.	
  Neural	
   slowing	
  propagates	
   to	
  central	
  parts	
  of	
   the	
  network	
   independently	
  of	
  
the	
  spatial	
  Abeta	
  distribution	
  
	
  
In	
  the	
  analysis	
  of	
  spatial	
  distribution	
  in	
  relation	
  to	
  the	
  organization	
  of	
  the	
  underlying	
  SC	
  
network	
  (Figure	
  10),	
  it	
  can	
  be	
  seen	
  that	
  unless	
  Abeta	
  is	
  distributed	
  more	
  peripherally,	
  
the	
  Abeta-­‐dependent	
  effect	
  of	
  neural	
  slowing	
  is	
  focused	
  to	
  central	
  parts	
  of	
  the	
  network.	
  
Even	
   a	
   random	
   distribution	
   of	
   Abeta	
   SUVRs	
   leads	
   to	
   this	
   effect	
   (Figure	
   10	
   E-­‐F),	
  
indicating	
  that	
  this	
  is	
  a	
  network	
  effect.	
  Probably	
  this	
  phenomenon	
  is	
  caused	
  because	
  the	
  
slowing	
   effects	
   are	
   not	
   only	
   affecting	
   the	
   region	
   itself,	
   but	
   also	
   its	
   local	
   circuitry	
   and	
  
neighbored	
  regions.	
  Hubs	
  with	
  a	
  high	
  degree	
  and	
  many	
  close	
  neighbours	
  are	
  therefore	
  
more	
  probable	
  of	
  being	
  affected	
  by	
  slow	
  rhythms	
  propagated	
  by	
  other	
  regions.	
  To	
  relate	
  
this	
  to	
  empirical	
  facts:	
  We	
  know	
  from	
  our	
  data	
  (Figure	
  10A)	
  that	
  Abeta	
  is	
  not	
  deposited	
  
in	
  hubs,	
  but	
  more	
  in	
  peripheral	
  regions	
  of	
  the	
  networks.	
  This	
  shows,	
  however,	
  how	
  the	
  
consecutive	
   pathologic	
   slowing	
   effect	
   is	
   afterwards	
   focused	
   to	
   central	
   and	
   important	
  
parts	
   of	
   the	
   networks.	
   A	
  weak	
   peripheral	
   affection	
   of	
   the	
   inhibitory	
   system	
   therefore	
  
disturbs	
  the	
  full	
  system	
  seriously.	
  
	
  
3.5.	
  Virtual	
  Therapy	
  with	
  the	
  NMDA	
  antagonist	
  memantine	
  
	
  
The	
   former	
   analyses	
   have	
   shown	
   that	
   Abeta-­‐mediated	
   simulated	
   hyperexcitation	
   can	
  
lead	
  to	
  realistic	
  changes	
  of	
  simulated	
  brain	
   imaging	
  signals	
   in	
  AD	
  such	
  as	
  EEG	
  slowing	
  
(Figures	
   5	
   and	
  6).	
  We	
  therefore	
  wanted	
  to	
  know	
  if	
  an	
  established	
  way	
  to	
  protect	
   the	
  
brain	
   of	
   the	
   hyperexcitation,	
   which	
   is	
   the	
   NMDA	
   antagonist	
   memantine,	
   can	
   lead	
   to	
  
functional	
  reversibility.	
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The	
   idea	
   in	
   our	
   model	
   is	
   now	
   that	
   in	
   theory	
   memantine	
   acts	
   anti-­‐excitotoxic	
   via	
   its	
  
NMDA	
   antagonism	
   and	
   should	
   therefore	
   be	
   able	
   to	
   weaken	
   the	
   hyperexcitation	
   we	
  
introduced	
  to	
  the	
  system	
  by	
  Abeta	
  (Figure	
  11).	
  As	
  mentioned	
  above,	
  the	
  local	
  coupling	
  
parameter	
   c32	
   represents	
   the	
   main	
   part	
   of	
   the	
   glutamatergic	
   transmission	
   and	
   can	
  
therefore	
   also	
  be	
   seen	
   as	
   a	
   surrogate	
  of	
  NMDAergic	
   transmission.	
  We	
  homogeneously	
  
increased	
   the	
   default	
   value	
   of	
   c32	
   stepwise	
   to	
   observe	
   the	
   effects	
   on	
   the	
   system.	
   In	
  
Figure	
  11A	
  and	
  11B	
  one	
  can	
  see	
  that	
  it	
  would	
  be	
  not	
  useful	
  to	
  decrease	
  c32	
  to	
  a	
  lower	
  
level	
   then	
   0.6,	
   because	
   then	
   the	
   system	
   does	
   not	
   have	
   enough	
   energy	
   to	
   produce	
  
network	
   activity	
   in	
   the	
   area	
   of	
   low	
   coupling.	
   The	
   weakened	
   intrinsic	
   NMDAergic	
  
coupling	
  has	
  to	
  be	
  anticipated	
  by	
  a	
  stronger	
  global	
  coupling.	
  This	
  can	
  also	
  be	
  seen	
  when	
  
the	
  global	
  coupling	
  reaches	
  high	
  values	
  (Figure	
  11C):	
  the	
  red	
  curves	
  of	
  AD	
  patients	
  with	
  
and	
  without	
  virtual	
  memantine	
  are	
  converging.	
  The	
  virtual	
  memantine	
  leads	
  to	
  a	
  partial	
  
reversibility	
   of	
   the	
   altered	
   dominant	
   frequencies	
   in	
   AD	
   compared	
   to	
   HC/MCI.	
   Virtual	
  
memantine	
   increases	
   the	
   mean	
   dominant	
   EEG	
   frequency.	
   These	
   simulated	
   functional	
  
effects	
   do	
   not	
   imply	
   reversibility	
   of	
   neurodegeneration,	
   but	
   they	
   illustrate	
   how	
  
pharmacological	
   intervention	
   can	
   theoretically	
   counteract	
   those	
   processes.	
   This	
  
observation	
  provides	
  first	
  a	
  potential	
  mechanistic	
  explanation	
  of	
  the	
  pharmacodynamics	
  
of	
   memantine.	
   Second,	
   it	
   shows	
   that	
   TVB	
   in	
   general	
   and	
   the	
   Abeta-­‐hyperexcitation	
  
model	
  of	
  this	
  study	
  in	
  particular	
  are	
  able	
  to	
  test	
  the	
  efficacy	
  of	
  treatment	
  strategies	
  such	
  
as	
  drugs	
  and	
  have	
  therefore	
  the	
  potential	
  to	
  be	
  used	
  for	
  the	
  discovery	
  of	
  new	
  treatment	
  
options.	
   Finally,	
   it	
   supports	
   the	
   concept	
   of	
   this	
   study,	
   where	
   the	
   impaired	
   inhibitory	
  
function	
  is	
  modelled	
  by	
  an	
  increased	
  synaptic	
  delay.	
  The	
  effects	
  of	
  altered	
  delay	
  of	
  GABA	
  
transmission	
  can	
  be	
  reversed	
  by	
  adjusting	
  NMDA	
  transmission	
  at	
  another	
  subset	
  of	
  the	
  
local	
  population	
  model.	
  This	
  illustrates	
  that	
  theoretically	
  an	
  alteration	
  of	
  the	
  inhibitory	
  
transmission	
   dynamics	
   may	
   lead	
   to	
   disinhibition	
   causing	
   hyperexcitation	
   in	
  
downstream	
  populations,	
  which	
  is	
  reversible	
  by	
  reduction	
  of	
  excitatory	
  input.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 15, 2019. ; https://doi.org/10.1101/600205doi: bioRxiv preprint 

https://doi.org/10.1101/600205
http://creativecommons.org/licenses/by/4.0/


 

22	
  

4.	
  Discussion	
  
	
  
Local	
   Abeta-­‐mediated	
   disinhibition	
   and	
   hyperexcitation	
   are	
   considered	
   candidate	
  
mechanisms	
   of	
   AD	
   pathogenesis.	
   	
   In	
   TVB	
   simulations,	
   the	
   molecular	
   candidate	
  
mechanism	
  has	
   led	
   to	
  macro-­‐scale	
   slowing	
   in	
  EEG	
   and	
  neural	
   signal	
  with	
   a	
   particular	
  
shift	
  form	
  alpha	
  to	
  theta	
  previously	
  observed	
  in	
  AD	
  patients	
  (52-­‐57).	
  These	
  observations	
  
cannot	
  be	
  directly	
   inferred	
  by	
  the	
  hyperexcitation	
   implemented	
   in	
  our	
  model.	
  Because	
  
we	
   standardized	
   all	
   other	
   factors	
   and	
   used	
   a	
   common	
   SC	
   for	
   all	
   simulations,	
   this	
  
approach	
   enables	
   to	
   examine	
   the	
   effects	
   of	
   disinhibition	
  on	
   an	
   individual	
  whole-­‐brain	
  
level	
  but	
  without	
  any	
  other	
  confounding	
  factors.	
  

(1) We	
   showed	
   that	
   the	
   slowing	
   in	
   simulated	
   EEG	
   and	
   LFP	
   is	
   specific	
   for	
   the	
   AD	
  
group	
  (Figures	
  7	
  and	
  8).	
  This	
  offers	
  an	
  explanation,	
  how	
  the	
  shift	
  from	
  alpha	
  to	
  
theta,	
   that	
   is	
  observable	
   in	
  EEG	
  of	
  AD	
  patients	
  (52-­‐57),	
  could	
  be	
  explained	
  on	
  a	
  
synaptic	
  level	
  –	
  namely	
  by	
  an	
  impaired	
  inhibition.	
  This	
  computational	
  modelling	
  
result	
   supports	
   the	
   findings	
   of	
   specific	
   toxicity	
   of	
   Abeta	
   to	
   inhibitory	
   neurons	
  
(46-­‐48).	
  	
  

(2) We	
  demonstrate	
   the	
   computational	
  principles	
  underlying	
   this	
  Abeta	
  dependent	
  
slowing	
  of	
  EEG/LFP	
  (Figure	
  6	
  and	
  Supplementary	
  Figure	
  6).	
  Dependent	
  on	
  the	
  
Abeta	
  burden	
  alpha,	
  theta	
  or	
  bistable	
  regime	
  develop	
  caused	
  by	
  an	
  alteration	
  of	
  
the	
   inhibitory	
   time	
   constant	
   that	
   leads	
   to	
   changes	
   of	
   the	
   systems	
   bifurcation	
  
behavior	
  (Figure	
  6,	
  Supplementary	
  Figures	
  1,	
  2	
  and	
  6).	
  	
  

(3) The	
  simulated	
  LFP/EEG	
  slowing	
  in	
  AD	
  patients	
  crucially	
  depends	
  on	
  the	
  spatially	
  
heterogenous	
  Abeta	
  distribution	
   as	
  measured	
  by	
  PET	
  –	
   the	
   slowing	
  disappears	
  
when	
   using	
   a	
   homogenously	
   distributed	
   mean	
   Abeta	
   burden	
   instead	
   for	
  
simulation	
  (Figure	
  7).	
  To	
  exhibit	
  the	
  slowing	
  effect	
  few	
  regions	
  with	
  high	
  Abeta	
  
burden	
  are	
  required	
  –	
  while	
  the	
  specific	
  location	
  of	
  these	
  regions	
  seems	
  not	
  to	
  be	
  
relevant	
  (Supplementary	
  Figure	
  5).	
  	
  

(4) Independently	
   of	
   the	
   location	
   of	
   high	
   Abeta	
   burdens	
   in	
   the	
   simulated	
   brain,	
  
slowing	
  emerges	
  at	
  the	
  core,	
  i.e.	
  hubs	
  of	
  the	
  structural	
  connectome	
  (Figure	
  10).	
  
This	
  indicates	
  that	
  that	
  central	
  parts	
  of	
  the	
  system	
  are	
  impacted	
  functionally	
  by	
  
the	
   Abeta	
   burden.	
   	
  Moreover,	
   it	
   shows	
   that	
  while	
   Abeta	
   is	
   often	
   distributed	
   in	
  
peripheral	
  parts	
  of	
  the	
  structural	
  connectome,	
  its	
  functional	
  consequences	
  affect	
  
the	
  important	
  hubs.	
  This	
  could	
  provide	
  a	
  possible	
  explanation	
  why	
  a	
  peripheral	
  
distribution	
  of	
  Abeta	
  leads	
  to	
  severe	
  disturbances	
  of	
  cognitive	
  function.	
  	
  

(5) We	
   also	
   showed	
   that	
   the	
   drug	
   memantine	
   that	
   is	
   known	
   for	
   improving	
   brain	
  
function	
  in	
  severe	
  AD	
  can	
  be	
  modeled	
  by	
  a	
  decreased	
  transmission	
  between	
  the	
  
excitatory	
   interneurons	
   and	
   the	
   pyramidal	
   cells	
   and	
   is	
   able	
   to	
   achieve	
   a	
  
‘normalized’	
   brain	
   function	
   in	
   silico,	
   too	
   (Figure	
   11).	
   This	
   moreover	
  
demonstrates	
  the	
  potential	
  of	
  TVB	
  to	
  test	
  and	
  develop	
  new	
  treatment	
  strategies.	
  	
  

	
  
In	
  this	
  study,	
  we	
  present	
  proof	
  of	
  concept	
  for	
  linking	
  molecular	
  changes	
  as	
  detected	
  by	
  
PET	
   to	
   large-­‐scale	
   brain	
   modeling	
   using	
   the	
   simulation	
   framework	
   TVB.	
   This	
   study	
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therefore	
   can	
   work	
   as	
   a	
   blueprint	
   for	
   future	
   approaches	
   in	
   computational	
   brain	
  
modeling	
  bridging	
  scales	
  of	
  neural	
   function.	
  For	
   the	
  research	
  on	
  AD	
  pathogenesis,	
   this	
  
study	
   provides	
   a	
   possible	
   mechanistic	
   explanation	
   that	
   links	
   Abeta-­‐related	
   synaptic	
  
disinhibtion	
  at	
  the	
  micro-­‐scale	
  to	
  AD-­‐specific	
  EEG	
  slowing.	
  In	
  general,	
  our	
  study	
  can	
  be	
  
seen	
  as	
  proof	
  of	
  concept	
  that	
  TVB	
  enables	
  research	
  on	
  disease	
  mechanisms	
  at	
  a	
  multi-­‐
scale	
  level	
  and	
  has	
  potential	
  to	
  lead	
  to	
  improved	
  diagnostics	
  and	
  to	
  the	
  discovery	
  of	
  new	
  
treatments.	
  
	
  
Acknowledgements.	
  

Data	
   collection	
   and	
   sharing	
   for	
   this	
   project	
   was	
   funded	
   by	
   the	
   Alzheimer's	
   Disease	
  
Neuroimaging	
  Initiative	
  (ADNI)	
  (National	
  Institutes	
  of	
  Health	
  Grant	
  U01	
  AG024904)	
  and	
  
DOD	
   ADNI	
   (Department	
   of	
   Defense	
   award	
   number	
   W81XWH-­‐12-­‐2-­‐0012).	
   ADNI	
   is	
  
funded	
  by	
  the	
  National	
  Institute	
  on	
  Aging,	
  the	
  National	
  Institute	
  of	
  Biomedical	
  Imaging	
  
and	
   Bioengineering,	
   and	
   through	
   generous	
   contributions	
   from	
   the	
   following:	
   AbbVie,	
  
Alzheimer’s	
   Association;	
   Alzheimer’s	
   Drug	
   Discovery	
   Foundation;	
   Araclon	
   Biotech;	
  
BioClinica,	
   Inc.;	
   Biogen;	
   Bristol-­‐Myers	
   Squibb	
   Company;	
   CereSpir,	
   Inc.;	
   Cogstate;	
   Eisai	
  
Inc.;	
   Elan	
   Pharmaceuticals,	
   Inc.;	
   Eli	
   Lilly	
   and	
   Company;	
   EuroImmun;	
   F.	
   Hoffmann-­‐La	
  
Roche	
   Ltd	
   and	
   its	
   affiliated	
   company	
   Genentech,	
   Inc.;	
   Fujirebio;	
   GE	
   Healthcare;	
   IXICO	
  
Ltd.;	
   Janssen	
   Alzheimer	
   Immunotherapy	
   Research	
   &	
   Development,	
   LLC.;	
   Johnson	
   &	
  
Johnson	
  Pharmaceutical	
  Research	
  &	
  Development	
   LLC.;	
   Lumosity;	
   Lundbeck;	
  Merck	
  &	
  
Co.,	
   Inc.;	
   Meso	
   Scale	
   Diagnostics,	
   LLC.;	
   NeuroRx	
   Research;	
   Neurotrack	
   Technologies;	
  
Novartis	
   Pharmaceuticals	
   Corporation;	
   Pfizer	
   Inc.;	
   Piramal	
   Imaging;	
   Servier;	
   Takeda	
  
Pharmaceutical	
   Company;	
   and	
   Transition	
   Therapeutics.	
   The	
   Canadian	
   Institutes	
   of	
  
Health	
   Research	
   is	
   providing	
   funds	
   to	
   support	
   ADNI	
   clinical	
   sites	
   in	
   Canada.	
   Private	
  
sector	
   contributions	
   are	
   facilitated	
   by	
   the	
   Foundation	
   for	
   the	
   National	
   Institutes	
   of	
  
Health	
  (www.fnih.org).	
  The	
  grantee	
  organization	
  is	
  the	
  Northern	
  California	
  Institute	
  for	
  
Research	
   and	
  Education,	
   and	
   the	
   study	
   is	
   coordinated	
  by	
   the	
  Alzheimer’s	
  Therapeutic	
  
Research	
  Institute	
  at	
  the	
  University	
  of	
  Southern	
  California.	
  ADNI	
  data	
  are	
  disseminated	
  
by	
  the	
  Laboratory	
  for	
  Neuro	
  Imaging	
  at	
  the	
  University	
  of	
  Southern	
  California.	
  	
  

Petra	
   Ritter	
   acknowledges	
   the	
   following	
   funding	
   sources:	
   H2020	
   Research	
   and	
  
Innovation	
  Action	
  grants	
  826421	
  and	
  650003	
  and	
  720270	
  &	
  785907	
  and	
  ERC	
  683049;	
  
German	
   Research	
   Foundation	
   CRC	
   1315	
   &	
   936	
   and	
   RI	
   2073/6-­‐1;	
   Berlin	
   Institute	
   of	
  
Health	
  &	
  Foundation	
  Charité,	
  Johanna	
  Quandt	
  Excellence	
  Initiative.	
  

Further	
   we	
   acknowledge	
   Lea	
   Doppelbauer	
   and	
   Jan	
   Roediger	
   for	
   their	
   helpful	
  
discussions.	
  

Author	
  Contribution	
  Statement.	
  

All	
  authors	
  have	
  made	
  substantial	
  intellectual	
  contributions	
  to	
  this	
  work	
  and	
  approved	
  
it	
  for	
  publication.	
  LS	
  and	
  PR	
  had	
  the	
  idea	
  to	
  this	
  study.	
  LS,	
  PT,	
  ANDS	
  and	
  PR	
  developed	
  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 15, 2019. ; https://doi.org/10.1101/600205doi: bioRxiv preprint 

https://doi.org/10.1101/600205
http://creativecommons.org/licenses/by/4.0/


 

24	
  

the	
   concept	
   and	
   study	
   design.	
   LS	
   wrote	
   the	
   manuscript,	
   conducted	
   the	
   analysis	
   and	
  
interpretation	
   of	
   results	
   and	
   developed	
   the	
   figures.	
   PT	
   performed	
   the	
   MRI	
   and	
   PET	
  
image	
  processing	
  and	
  supercomputer	
  simulations.	
  PT,	
  ANDS,	
  MD,	
  ANAS,	
  VJ,	
  ARM	
  and	
  PR	
  
contributed	
  to	
  the	
   interpretation	
  of	
   the	
  results,	
   figure	
  development	
  and	
   	
  writing	
  of	
   the	
  
manuscript.	
  

Conflict	
  of	
  Interest	
  Statement.	
  

All	
  authors	
  declare	
  that	
  the	
  research	
  was	
  conducted	
  without	
  any	
  conflict	
  of	
  interest.	
  

Figures.	
  
	
  

	
  
Fig.	
  1.	
  Cause	
  and	
  effect	
  model:	
  Alteration	
  of	
  the	
  molecular	
  Abeta	
  pathway	
  in	
  AD	
  
cause	
  disinhibition	
  in	
  the	
  neural	
  mass	
  model.	
  An	
  altered	
  pathway	
  from	
  soluble	
  Abeta	
  
monomers	
  to	
  oligomers	
  to	
  insoluble	
  plaques	
  leads	
  to	
  potentially	
  neurotoxic	
  Abeta	
  
accumulation	
  (9,	
  15,	
  16)	
  that	
  can	
  be	
  quantified	
  by	
  PET.	
  Region	
  specific	
  Abeta	
  burden	
  
leads	
  to	
  disinhibition	
  in	
  the	
  neural	
  mass	
  model	
  (44-­‐48)	
  -­‐	
  thus	
  building	
  a	
  bridge	
  between	
  
molecular	
  pathways	
  and	
  brain	
  network	
  modeling.	
  Parts	
  of	
  the	
  figure	
  are	
  modified	
  from	
  
(62).	
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Fig.	
  2.	
  Postulated	
  Abeta	
  effect	
  and	
  its	
  implementation	
  to	
  the	
  Jansen-­‐Rit	
  model.	
  	
  (A)	
  
The	
  virtual	
  brains	
  are	
  based	
  on	
  averaged	
  healthy	
  connectomes	
  and	
  constrained	
  by	
  the	
  
individual	
  regional	
  burden	
  of	
  Abeta	
  (figure	
  modified	
  from	
  (62)).	
  (B)	
   In	
  our	
  simulation,	
  
increased	
   excitability	
   is	
   caused	
   by	
   a	
   disinhibition	
   of	
   excitatory	
   pyramidal	
   cells,	
   i.e.	
  
decreased	
   input	
   from	
   inhibitory	
   interneurons.	
   In	
   the	
   background	
   a	
   histological	
  
representation	
   of	
   the	
   cortical	
   layers:	
   excitatory	
   pyramidal	
   cells	
   (ν3)	
   and	
   excitatory	
  
interneurons	
  	
  (ν1)	
  are	
  (exemplarily)	
  located	
  in	
  layer	
  V	
  (internal	
  pyramidal	
  layer),	
  while	
  
the	
   inhibitory	
   stellate	
   (inter-­‐neurons	
   (ν2)	
   are	
   located	
   in	
   layer	
   IV	
   (internal	
   granular	
  
layer).	
  In	
  layer	
  I	
  (molecular	
  layer)	
  we	
  see	
  the	
  dendrites	
  of	
  the	
  pyramidal	
  cells,	
  where	
  the	
  
input	
   from	
   the	
   interneurons	
   happens.	
   The	
   effect	
   to	
   the	
   other	
   neuron	
   populations	
   is	
  
represented	
  by	
  m1-­‐3	
  (background	
  is	
  a	
  modified	
  version	
  of	
  figure	
  13	
  from	
  (133),	
  license:	
  
https://creativecommons.org/licenses/by-­‐nc/4.0/).	
   (C)	
   schematic	
   illustration	
   of	
   the	
  
three	
   interacting	
   neural	
   masses	
   in	
   the	
   Jansen-­‐Rit	
   population	
   model.	
   The	
   reduced	
  
inhibition	
  is	
  mediated	
  by	
  negative	
  influence	
  of	
  the	
  local	
  Abeta	
  burden	
  on	
  the	
  inhibitory	
  
time	
  constant	
  τi	
  (see	
  main	
  text	
  for	
  more	
  detailed	
  explanation).	
  This	
  is	
  intended	
  to	
  lead	
  to	
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an	
  increased	
  activity	
  and	
  higher	
  output	
  of	
  the	
  pyramidal	
  cell	
  population.	
  The	
  excitatory	
  
impulse	
  response	
  function	
  (IRF)	
  is	
  specified	
  as	
  he(t)	
  =	
  tHe	
  exp(–t/	
  τe)	
  /	
  τe.	
  The	
  inhibitory	
  
IRF	
   is	
   specified	
  as	
  hi(t,β)	
  =	
  tHe	
  exp(–t/	
  τi(β))	
  /	
  τi(β).	
  These	
   IRFs	
  can	
  be	
   translated	
   into	
  
second-­‐order	
  ordinary	
  differential	
  equations,	
  see	
  Eqs.	
  1	
  to	
  3.	
  For	
  explanation	
  of	
  the	
  used	
  
variables,	
   see	
   table	
   2	
   (figure	
  modified	
   from	
   (104)).	
   (D)	
   Virtual	
   EEG	
   as	
   the	
   simulation	
  
output	
   (projection	
   of	
   oscillating	
   membrane	
   potentials	
   to	
   the	
   scalp	
   surface)	
   reveals	
   a	
  
shift	
   from	
   alpha	
   to	
   theta	
   activity	
   in	
   AD	
   participants.	
   Shown	
   is	
   a	
   5	
   second	
   period	
   of	
  
exemplary	
  EEG	
  channel	
  at	
  location	
  T7	
  in	
  participant	
  21	
  (HC,	
  above)	
  and	
  4	
  (AD,	
  below).	
  
The	
   ordinate	
   is	
   showing	
   the	
   dimensionless	
   correlate	
   for	
   electric	
   potential	
   Φ.	
   The	
  
exemplary	
  timeseries	
  shows	
  a	
  typical	
  simulation	
  result	
  in	
  the	
  study:	
  in	
  the	
  alpha	
  mode,	
  
which	
   was	
   the	
   starting	
   point	
   of	
   the	
   Jansen-­‐Rit	
   model	
   without	
   the	
   effect	
   of	
   Abeta,	
   it	
  
produces	
   monomorphic	
   alpha	
   activity	
   with	
   amplitude	
   modulations	
   (above).	
   Mainly	
  
exclusively	
   in	
   the	
   AD	
   virtual	
   brains	
   a	
   much	
   more	
   irregular	
   theta	
   rhythm	
   appears	
  
(below).	
  	
  
	
  

	
  
Fig.	
  3.	
  Graphs	
  of	
  the	
  sigmoid	
  transfer	
  function	
  of	
  Abeta.	
  The	
  abscissa	
  represents	
  the	
  
Abeta	
  burden	
  βa,	
  the	
  ordinate	
  represents	
  the	
  reciprocal	
  Sτ(βa)	
  of	
  the	
  inhibitory	
  time	
  
constant	
  τ	
  i.	
  See	
  equation	
  6.	
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Fig.	
  4.	
  Underlying	
  average	
  HC	
  structural	
  connectome.	
  (A)	
  SC	
  Matrix	
  of	
  the	
  
underlying	
  averaged	
  SC,	
  showing	
  the	
  DWI-­‐derived	
  connections	
  weights.	
  379	
  regions	
  are	
  
in	
  following	
  order:	
  180	
  left	
  cortical	
  regions,	
  180	
  right	
  cortical	
  regions	
  of	
  Glasser	
  
parcellation,	
  (115),	
  9	
  left	
  subcortical	
  regions,	
  9	
  right	
  subcortical	
  regions,	
  1	
  brainstem	
  
region.	
  It	
  gets	
  obvious	
  the	
  difference	
  between	
  interhemispherical	
  commissural	
  fibers	
  
(lower	
  weights,	
  with	
  a	
  slightly	
  pronounced	
  diagonal	
  between	
  homologous	
  regions)	
  and	
  
intrahemispherical	
  association	
  fibers	
  (higher	
  weights).	
  Moreover	
  we	
  can	
  observe	
  the	
  
strong	
  connection	
  pattern	
  of	
  the	
  subcortical	
  areas	
  (above	
  region	
  360).	
  (B)	
  Graph	
  of	
  the	
  
underlying	
  SC.	
  As	
  a	
  threshold,	
  only	
  the	
  strongest	
  5%	
  of	
  connections	
  were	
  kept	
  for	
  binary	
  
transformation	
  to	
  the	
  adjacency	
  matrix	
  for	
  the	
  graph.	
  Node	
  positions	
  are	
  derived	
  from	
  
the	
  inner	
  structure	
  of	
  the	
  graph	
  by	
  a	
  ‘force’	
  method	
  (134),	
  assuming	
  stronger	
  forces	
  and	
  
therefore	
  smaller	
  distances	
  between	
  tightly	
  connected	
  nodes.	
  	
  It	
  can	
  be	
  seen	
  that	
  the	
  
laterality	
  is	
  kept	
  in	
  the	
  graph	
  structure	
  (also	
  for	
  subcortical	
  regions)	
  and	
  the	
  whole	
  
graph	
  is	
  highly	
  symmetric.	
  Node	
  size	
  linearly	
  represents	
  the	
  graph	
  theoretical	
  measure	
  
of	
  structural	
  degree	
  for	
  each	
  node.	
  Most	
  important	
  hubs	
  are	
  subcortical	
  regions.	
  The	
  
shown	
  features	
  of	
  symmetry,	
  laterality,	
  homology	
  and	
  subcortical	
  hubs	
  indicate	
  that	
  the	
  
averaged	
  SC	
  still	
  kept	
  its	
  physiological	
  characteristics.	
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Fig.	
  5.	
  Spectral	
  behavior	
   in	
   individuals	
  of	
   the	
  different	
  groups.	
  (A,	
  B,	
  C,	
  D,	
  E,	
  F)	
  –	
  
selected	
   timeseries	
   and	
   spectrograms.	
   On	
   the	
   left:	
   power	
   spectral	
   density	
   of	
   neural	
  
activity	
   for	
   an	
   exemplary	
   region	
   with	
   different	
   values	
   for	
   G.	
   Abscissa	
   is	
   frequency,	
  
ordinate	
  is	
  an	
  estimate	
  of	
  the	
  spectral	
  power	
  (dimensionless	
  equivalent	
  of	
  amplitude	
  per	
  
1	
  Hz).	
   Colors	
   are	
   representing	
   the	
   EEG	
   frequency	
   bands	
   from	
  delta	
   to	
   beta,	
   indicated	
  
with	
   greek	
   letters	
   (note	
   that	
   this	
   is	
   regional	
   neural	
   activity,	
   not	
   EEG).	
   Corresponding	
  
time	
   series	
   on	
   the	
   right:	
   neural	
   activity	
   at	
   single	
   regions,	
   each	
   showing	
   5	
   seconds.	
  
Abscissa	
   is	
   time,	
   ordinate	
   is	
   a	
   dimension-­‐less	
   equivalent	
   of	
   the	
   electric	
   potential.	
   (A)	
  
shows	
  an	
   irregular,	
   amplitude	
  modulated	
  alpha	
   to	
  beta	
   rhythm,	
  (B)	
   an	
   irregular	
   theta	
  
with	
   some	
  delta	
   and	
   alpha	
   inside.	
   In	
   (C)	
  we	
   can	
  observe	
   a	
  monomorphic	
   spike	
   signal	
  
with	
   a	
   theta/delta	
   frequency	
   of	
   3	
   Hz	
   and	
   higher	
   order	
   harmonies.	
   (D)	
   Shows	
   a	
  
monomorphic	
   (high)	
   alpha	
   rhythm,	
   (E)	
   shows	
   the	
   zero-­‐line	
  with	
   a	
   continuous	
   power	
  
spectrum.	
  (F)	
  Time	
  series	
  of	
  10	
  regions	
  in	
  a	
  G	
  area	
  of	
  hypersynchrony.	
  We	
  can	
  see	
  here	
  
the	
  synchronized	
  signals	
  in	
  theta	
  rhythm	
  and	
  multiple	
  harmonies	
  of	
  higher	
  order	
  in	
  the	
  
spectrogram.	
  	
  (G,	
  H,	
  I,	
  J)	
  –	
  four	
  exemplary	
  participants	
  with	
  different	
  types	
  of	
  frequency	
  
behaviors	
   along	
   the	
   range	
   of	
   coupling.	
   Shown	
   are	
   the	
   regional	
   simulated	
   dominant	
  
frequencies	
  (y)	
  along	
  global	
  coupling	
  G	
  (x)	
  for	
  individual	
  exemplary	
  participants	
  4,	
  8,	
  12	
  
and	
   23.	
   See	
   Supplementary	
   Table	
   7	
   in	
   supplementary	
   material	
   for	
   participant	
   IDs.	
  
Color	
   indicates	
   the	
   density	
   of	
   regions	
   with	
   the	
   same	
   coordinates.	
   The	
   sources	
   of	
   the	
  
timeseries	
  on	
  the	
  left	
  (A-­‐F)	
  are	
  marked	
  in	
  the	
  plots.	
  (G)	
  irregular	
  or	
  chaotic	
  rhythm	
  with	
  
two	
  clusters	
  in	
  alpha	
  and	
  theta.	
  AD	
  participant	
  8.	
  (H)	
  chaotic	
  behavior	
  for	
  lower	
  G,	
  then	
  
harmonic	
   and	
   hypersynchronization.	
   AD	
   participant	
   4.	
   (I)	
   early	
   zero-­‐line,	
   with	
  
monomorphic	
  alpha	
  activity	
  at	
  very	
  low	
  G.	
  HC	
  participant	
  23.	
  (J)	
  harmonic	
  to	
  zero-­‐line	
  
rhythm,	
  with	
  a	
  G	
  area	
  of	
  hypersynchrony	
  in	
  alpha	
  and	
  theta,	
  depending	
  on	
  G.	
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Fig.	
  6.	
  Exemplary	
  bifurcation	
  diagrams	
  of	
  the	
  Jansen-­‐Rit	
  model	
  for	
  three	
  different	
  
inhibitory	
  time	
  constants	
  linked	
  to	
  three	
  different	
  local	
  Abeta	
  burdens.	
  The	
  
modulation	
  of	
  the	
  inhibitory	
  time	
  constant	
  τi	
  by	
  Abeta	
  induces	
  shifts	
  in	
  the	
  
corresponding	
  bifurcation	
  diagrams.	
  All	
  bifurcation	
  diagrams	
  (A,	
  E,	
  I)	
  show	
  the	
  
postsynaptic	
  potential	
  of	
  pyramidal	
  cells	
  (y)	
  depending	
  on	
  the	
  pyramidal	
  input	
  (x)	
  for	
  
uncoupled	
  simulations	
  (104).	
  The	
  default	
  input	
  on	
  pyramidal	
  cells	
  starts	
  at	
  a	
  firing	
  rate	
  
of	
  108.5/s.	
  Because	
  of	
  the	
  potential-­‐to-­‐firing-­‐rate	
  transfer	
  function	
  (equation	
  5),	
  global	
  
scaling	
  factor	
  G	
  is	
  not	
  only	
  affecting	
  the	
  input	
  currents,	
  but	
  also	
  the	
  firing	
  rates.	
  For	
  
higher	
  values	
  of	
  G,	
  the	
  input	
  on	
  pyramidal	
  cells	
  is	
  expected	
  to	
  increase.	
  First	
  Columns,	
  
panels	
  (A,	
  B,	
  C,	
  D):	
  Bifurcation	
  diagram	
  with	
  the	
  default	
  time	
  constant	
  of	
  14ms.	
  This	
  
appears	
  in	
  the	
  simulation	
  if	
  the	
  Abeta	
  SUVR	
  is	
  below	
  the	
  clinical	
  cut-­‐off	
  1.4,	
  because	
  then	
  
the	
  time	
  constant	
  is	
  unaffected	
  according	
  the	
  transfer	
  function	
  in	
  equation	
  6.	
  In	
  this	
  
situation,	
  there	
  is	
  only	
  one	
  limit	
  cycle	
  existing,	
  which	
  produces	
  a	
  frequency	
  in	
  alpha	
  
range	
  (A).	
  After	
  increasing	
  the	
  input	
  on	
  the	
  pyramidal	
  cells,	
  the	
  alpha	
  cycle	
  collapses	
  and	
  
transforms	
  to	
  a	
  stable	
  focus,	
  where	
  no	
  oscillations	
  appear	
  in	
  the	
  absence	
  of	
  noise.	
  This	
  is	
  
the	
  ‘zero-­‐line’	
  in	
  our	
  results.	
  (B,	
  D):	
  HC	
  participant	
  22	
  shows	
  monomorphic	
  alpha	
  for	
  
lower	
  G	
  (green	
  and	
  blue	
  line)	
  and	
  zero-­‐line	
  for	
  higher	
  G	
  (red	
  line).	
  The	
  distribution	
  of	
  
regions	
  with	
  this	
  dynamical	
  regime	
  is	
  shown	
  in	
  (C):	
  almost	
  all	
  regions	
  of	
  participant	
  22	
  
are	
  in	
  this	
  ‘alpha	
  regime’	
  with	
  an	
  inhibitory	
  time	
  constant	
  between	
  14ms	
  and	
  20ms	
  (red	
  
columns	
  in	
  (C))	
  This	
  homogeneity	
  explains	
  the	
  low	
  variance	
  of	
  rhythms	
  shown	
  in	
  the	
  
lower	
  G	
  ranges	
  of	
  (B),	
  because	
  all	
  regions	
  are	
  in	
  the	
  same	
  limit	
  cycle	
  and	
  in	
  the	
  absence	
  
of	
  artificial	
  noise	
  there	
  is	
  no	
  possibility	
  for	
  an	
  amplitude	
  modulating	
  factor.	
  	
  	
  
Second	
  column,	
  panels	
  (E,	
  F,	
  G,	
  H):	
  Bifurcation	
  diagram	
  with	
  a	
  time	
  constant	
  of	
  22ms,	
  
which	
  corresponds	
  to	
  an	
  intermediate	
  Abeta	
  load	
  and	
  a	
  bistable	
  dynamical	
  regime	
  
which	
  occurs	
  for	
  time	
  constants	
  between	
  20ms	
  and	
  28ms.	
  	
  (E)	
  Starting	
  at	
  the	
  blue	
  line	
  
(initial	
  condition	
  in	
  alpha	
  cycle),	
  with	
  an	
  increased	
  input	
  on	
  the	
  pyramidal	
  cells	
  (e.g.	
  by	
  
the	
  network)	
  it	
  gets	
  possible	
  to	
  reach	
  the	
  second	
  limit	
  cycle,	
  which	
  produces	
  a	
  theta	
  
rhythm	
  and	
  coexists	
  with	
  the	
  alpha	
  cycle	
  while	
  the	
  pyramidal	
  input	
  is	
  in	
  a	
  specific	
  range	
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(120/s	
  –	
  170/s).	
  When	
  the	
  input	
  is	
  increased	
  too	
  much	
  (e.g.	
  by	
  many	
  connections	
  of	
  the	
  
network	
  or	
  by	
  increased	
  coupling	
  factor	
  G),	
  the	
  theta	
  cycle	
  disappears	
  and	
  the	
  system	
  
jumps	
  back	
  to	
  the	
  alpha	
  cycle	
  and	
  later	
  on	
  to	
  the	
  stable	
  focus,	
  which	
  shows	
  no	
  
oscillations	
  in	
  the	
  absence	
  of	
  noise.	
  This	
  can	
  explain	
  some	
  of	
  the	
  spectral	
  behaviors	
  we	
  
observed	
  typically	
  in	
  the	
  AD	
  group	
  (F,	
  H):	
  It	
  starts	
  with	
  chaotic	
  rhythms	
  in	
  alpha	
  (blue	
  
line)	
  and	
  theta	
  (red	
  line)	
  and	
  in	
  the	
  shown	
  AD	
  participant	
  1	
  then	
  gets	
  synchronized	
  to	
  
either	
  alpha	
  or	
  theta.	
  With	
  higher	
  couplings,	
  the	
  frequency	
  gets	
  more	
  probably	
  
synchronized	
  to	
  alpha	
  (green	
  line),	
  because	
  higher	
  G	
  indicates	
  a	
  higher	
  pyramidal	
  input	
  
and	
  therefore	
  a	
  higher	
  attraction	
  of	
  the	
  alpha	
  cycle.	
  (G)	
  Remarkably	
  for	
  the	
  shown	
  
participant	
  is	
  the	
  fact	
  that	
  the	
  bistable	
  behavior	
  is	
  caused	
  by	
  a	
  very	
  small	
  amount	
  of	
  
regions	
  in	
  bistable	
  regime,	
  which	
  propagate	
  the	
  theta	
  rhythm	
  to	
  most	
  other	
  regions	
  in	
  
the	
  area	
  200	
  <	
  G	
  <	
  300.	
  	
  
Third	
  column,	
  panels	
  (I,	
  J,	
  K,	
  L):	
  Bifurcation	
  diagram	
  with	
  a	
  time	
  constant	
  of	
  50ms,	
  
which	
  correlates	
  to	
  a	
  95th	
  percentile	
  Abeta	
  load	
  and	
  above.	
  Those	
  high	
  Abeta	
  burdens	
  
lead	
  to	
  a	
  theta	
  dynamical	
  regime,	
  which	
  occurs	
  for	
  time	
  constants	
  between	
  28ms	
  and	
  
50ms.	
  In	
  comparison	
  to	
  (E),	
  the	
  alpha	
  limit	
  cycle	
  disappeared	
  in	
  (I).	
  Therefore,	
  we	
  
expect	
  only	
  theta	
  rhythms	
  or	
  an	
  activity	
  at	
  the	
  stable	
  focus.	
  The	
  theta	
  cycle	
  now	
  begins	
  
shortly	
  above	
  the	
  initial	
  condition	
  of	
  pyramidal	
  input	
  without	
  the	
  alpha	
  cycle	
  in	
  
between.	
  For	
  an	
  initial	
  input	
  of	
  108.5/s	
  the	
  system	
  is	
  in	
  a	
  stable	
  focus.	
  This	
  may	
  explain	
  
why	
  in	
  the	
  simulation	
  with	
  maximum	
  Abeta	
  load	
  at	
  all	
  regions	
  (so	
  each	
  with	
  a	
  time	
  
constant	
  of	
  50ms)	
  we	
  see	
  a	
  zero-­‐line	
  without	
  alpha	
  at	
  lower	
  G	
  values	
  (figure	
  S1	
  in	
  the	
  
supplementary	
  material).	
  	
  (J,	
  L)	
  A	
  state	
  of	
  theta-­‐only	
  rhythm	
  appeared	
  in	
  few	
  AD	
  
participants	
  at	
  higher	
  Gs	
  (blue	
  line).	
  In	
  the	
  spectral	
  behavior	
  of	
  AD	
  participant	
  7,	
  we	
  can	
  
moreover	
  observe	
  a	
  strong	
  bistable	
  pattern	
  with	
  chaotic	
  frequency	
  distributions	
  for	
  G	
  <	
  
300.	
  This	
  is	
  likely	
  caused	
  by	
  the	
  high	
  amount	
  of	
  bistable	
  regions	
  (K),	
  while	
  the	
  
synchronization	
  to	
  theta	
  in	
  higher	
  G	
  is	
  an	
  effect	
  of	
  the	
  high	
  proportion	
  of	
  regions	
  in	
  theta	
  
regime.	
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Fig.	
   7.	
   AD-­‐specific	
   slowing	
   in	
   EEG	
   and	
   PSP	
   and	
   influence	
   of	
   the	
   heterogeneous	
  
pattern	
  of	
  Abeta	
  distribution	
  to	
  the	
  spectral	
  behavior.	
  (A,	
  B):	
  The	
  panels	
  show	
  the	
  
‘spectrograms’,	
   more	
   precise	
   the	
   amount	
   of	
   regions	
   with	
   a	
   dominating	
   frequency	
  
averaged	
  for	
  all	
  G	
  values	
  and	
  the	
  subjects	
  of	
  each	
  group.	
  Below,	
  black	
  bars	
  are	
  indicating	
  
significant	
   differences	
   	
   for	
   all	
   90	
   examined	
   frequencies	
   by	
   a	
   Kruskal-­‐Wallis	
   test	
  
(compared	
  were	
  the	
  means	
  of	
  the	
  amount	
  of	
  regions	
  in	
  each	
  group	
  having	
  this	
  particular	
  
frequency).	
  	
  In	
  (A),	
  for	
  the	
  empirical	
  Abeta	
  distribution	
  pattern,	
  the	
  red	
  dotted	
  line	
  (AD)	
  
diverges	
  from	
  the	
  non-­‐AD	
  participants	
  with	
  a	
  strong	
  presence	
  of	
  dominating	
  theta	
  (peak	
  
at	
  4	
  Hz)	
   and	
   the	
  absence	
  of	
   zero-­‐line	
   rhythm	
  (except	
  of	
   very	
   few	
   regions,	
   see	
  arrow).	
  
Significant	
  differences	
  only	
  appear	
  between	
  AD	
  and	
  each	
  HC	
  and	
  MCI,	
  namely	
   for	
  high	
  
alpha	
  /	
  low	
  beta	
  and	
  for	
  theta/delta	
  (black	
  bars).	
  At	
  f	
  =	
  1.2	
  Hz	
  (red	
  bar),	
  the	
  significance	
  
level	
   is	
   also	
   achieved	
   when	
   using	
   a	
   strict	
   Bonferroni	
   correction	
   (p	
   <	
   0.05	
   /	
   90).	
   In	
  
contrast,	
  (B)	
   shows	
   the	
  same	
  plot	
   if	
   the	
  spatial	
  distribution	
  was	
   ‘blurred’:	
  There	
   is	
  no	
  
visual	
  difference	
  between	
  the	
  behavior	
  of	
  the	
  three	
  groups,	
  and	
  also	
  no	
  theta	
  rhythm	
  is	
  
existing	
   in	
   the	
   simulations.	
   All	
   groups	
   have	
   a	
   dominating	
   zero-­‐line	
   behavior	
   averaged	
  
across	
   the	
   full	
   G	
   range	
   (see	
   arrow).	
   However,	
   there	
   are	
   some	
   frequencies	
   that	
  
significantly	
  differ	
  between	
  AD	
  and	
  each	
  HC	
  and	
  MCI	
  in	
  alpha	
  /	
  beta	
  range,	
  which	
  could	
  
be	
  also	
  visually	
  related	
  to	
  small	
  peaks	
  at	
  the	
  plots	
  beside.	
  In	
  theta	
  and	
  delta,	
  where	
  we	
  
would	
   expect	
   to	
   see	
   the	
   slowing,	
   there	
   is	
   no	
   significant	
   difference	
   at	
   all.	
   Due	
   to	
  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 15, 2019. ; https://doi.org/10.1101/600205doi: bioRxiv preprint 

https://doi.org/10.1101/600205
http://creativecommons.org/licenses/by/4.0/


 

32	
  

readability,	
  for	
  (A)	
  and	
  (B)	
  the	
  y-­‐axis	
  was	
  limited	
  to	
  the	
  amount	
  of	
  100	
  regions.	
  In	
  (A),	
  
the	
  zero-­‐line	
  peak	
  of	
  HC	
  and	
  MCI	
  ends	
  at	
  211,	
  in	
  (B)	
  all	
  zero-­‐line	
  peaks	
  end	
  at	
  323.	
  The	
  
different	
  spectra	
  lead	
  to	
  different	
  G-­‐dependent	
  mean	
  frequencies	
  for	
  the	
  groups,	
  which	
  
significantly	
   differ	
   in	
   areas	
   of	
   high	
   and	
   low	
   G:	
   (C,	
   D)	
   –	
   comparison	
   of	
   EEG	
   and	
   LFP	
  
between	
   groups.	
   Mean	
   dominant	
   rhythms	
   across	
   all	
   simulated	
   EEG	
   channels	
   (C)	
   and	
  
region-­‐wise	
  simulated	
  LFPs	
  (D)	
  for	
  all	
  analyzed	
  global	
  coupling	
  values.	
  The	
  frequencies	
  
of	
   AD	
   patients	
   are	
   significantly	
   different	
   in	
   EEG	
   as	
   well	
   as	
   in	
   the	
   regional	
   neuronal	
  
population	
  signal.	
  Filled	
  shapes	
  and	
  thin	
   lines	
  represent	
  the	
  quantiles	
  at	
  0.95	
  and	
  0.05	
  
for	
  each	
  group.	
  	
  
(C)	
   for	
   EEG	
   one	
   can	
   see	
   that	
   the	
   95%-­‐quantile	
   of	
   AD	
   and	
   HC	
   as	
   well	
   as	
   MCI	
   is	
   not	
  
overlapping	
  in	
  the	
  physiological	
  area	
  of	
  lower	
  G,	
  where	
  AD	
  tends	
  to	
  slower	
  frequencies.	
  
In	
  a	
  Kruskal-­‐Wallis	
  test,	
  the	
  difference	
  between	
  the	
  means	
  of	
  all	
  channel	
  frequencies	
  per	
  
subject	
  in	
  the	
  three	
  groups	
  is	
  significant	
  for	
  AD	
  and	
  non-­‐AD	
  at	
  0	
  <	
  G	
  <	
  60	
  (each	
  AD	
  to	
  HC	
  
and	
  AD	
  to	
  MCI:	
  	
  p	
  <	
  0.0001).	
  They	
  are	
  also	
  significantly	
  different	
  in	
  the	
  area	
  of	
  higher	
  G,	
  
where	
  AD	
  is	
  faster	
  –at	
  450	
  <	
  G	
  <	
  470	
  (each	
  AD	
  to	
  HC	
  and	
  AD	
  to	
  MCI:	
  p	
  <	
  0.0001).	
  	
  	
  
(D)	
   for	
   simulated	
   regional	
   neural	
   signal	
   the	
   slowing	
   effect	
   is	
   less	
   prominent.	
   The	
  
broader	
  range	
  of	
  frequencies	
  for	
  AD	
  is	
  represented	
  by	
  the	
  high	
  and	
  low	
  limit	
  of	
  the	
  95%-­‐
quantile.	
   This	
   can	
   be	
   related	
   to	
   the	
   two	
   frequency	
   clusters	
   in	
   AD	
   at	
   alpha	
   and	
   theta,	
  
which	
  are	
  not	
  frequently	
  apparent	
  in	
  non-­‐AD	
  (as	
  in	
  Figure	
  5).	
  In	
  a	
  Kruskal-­‐Wallis	
  test,	
  
the	
   difference	
   between	
   the	
  means	
   of	
   all	
   regional	
   frequencies	
   per	
   subject	
   in	
   the	
   three	
  
groups	
   is	
   only	
   continuously	
   significant	
   for	
   AD	
   against	
   HC	
   at	
   400	
   <	
   G	
   <	
   450	
   	
   (AD	
  
compared	
  to	
  HC	
  p	
  <	
  0.0001).	
  For	
  the	
  other	
  comparisons,	
  only	
  isolated	
  G	
  values	
  deliver	
  
significant	
  differences	
   in	
   the	
  area	
  of	
   low	
  G	
   (HC	
  and	
  MCI)	
   and	
   intermediate	
  G	
   (AD	
  and	
  
MCI).	
   Because	
   of	
   the	
   big	
   amount	
   of	
   tests	
   necessary	
   to	
   test	
   all	
   global	
   coupling	
   values,	
  
none	
   of	
   the	
   tested	
   G	
   values	
   achieved	
   Bonferroni	
   corrected	
   significance.	
   However,	
  
because	
  we	
  assume	
  that	
  neither	
  the	
  frequencies	
  at	
  (A)	
  and	
  (B)	
  nor	
  the	
  G	
  values	
  at	
  (C)	
  
and	
  (D)	
  are	
  independent	
  variables	
  (which	
  is	
  also	
  the	
  reason	
  for	
  the	
  ‘grouped’	
  clusters	
  of	
  
significance	
  at	
  alpha	
  and	
  theta	
  and	
  G	
  =	
  50	
  and	
  G	
  =	
  450),	
  a	
  Bonferroni	
  correction	
  is	
  not	
  
necessary.	
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Fig.	
  8.	
  Abeta-­‐dependent	
  slowing	
  of	
  LFPs	
  is	
  specific	
  for	
  AD	
  participants.	
  Meanwhile	
  
there	
  is	
  a	
  significant	
  linear	
  dependency	
  between	
  Abeta	
  and	
  LFP	
  frequency	
  for	
  all	
  groups,	
  
only	
  for	
  AD	
  a	
  higher	
  burden	
  of	
  Abeta	
  leads	
  to	
  a	
  decrease	
  of	
  frequency.	
  HC	
  and	
  MCI	
  show	
  
inverse	
   correlations.	
   Plotted	
   are	
   density	
   plots	
   showing	
   the	
   dependency	
   between	
   the	
  
local	
  Abeta	
  loads	
  and	
  LFPs.	
  (A)	
  HC	
  group,	
  (B)	
  MCI	
  group	
  and	
  (C)	
  AD	
  group.	
  The	
  matrices	
  
are	
  containing	
  the	
  resulting	
  regional	
  peak	
  frequencies	
  for	
  all	
  examined	
  coupling	
  values	
  G	
  
for	
   all	
   participants.	
   Linear	
   regressions	
   (black	
   lines)	
   revealed	
   highly	
   significant	
  
regression	
   coefficients	
   (p<0.0001).	
   A	
   strong	
   linear	
   dependency	
   between	
   mean	
   Abeta	
  
and	
  LFP,	
  that	
  explains	
  the	
  greater	
  part	
  of	
  the	
  variance,	
  is	
  only	
  apparent	
  in	
  the	
  AD	
  group	
  
(C).	
  37.5%	
  of	
  the	
  variance	
  yet	
  cannot	
  be	
  explained	
  by	
  this	
  linear	
  dependency.	
  Moreover,	
  
only	
   for	
   AD	
   the	
   dependency	
   leads	
   to	
   slower	
   frequencies	
   for	
   higher	
   Abeta	
   SUVRs,	
  
meanwhile	
  HC	
  and	
  MCI	
  have	
  slightly	
  faster	
  frequencies	
  for	
  higher	
  Abeta	
  SUVRs.	
  Visually	
  
one	
   can	
   see	
   at	
   least	
   four	
   contributing	
   patterns	
   in	
   the	
   AD	
   group	
   (C):	
   (1)	
   the	
   linear	
  
decrement	
   of	
   frequency	
   for	
   higher	
   Abeta,	
   shown	
   by	
   the	
   regression	
   line,	
   (2)	
   the	
   two	
  
frequency	
  clusters	
  (orange	
  spots)	
  at	
  alpha	
  and	
  theta,	
  (3)	
  some	
  regions	
  with	
  the	
  zero-­‐line	
  
behaviour,	
  particular	
  those	
  with	
  low	
  Abeta	
  (thin	
  line	
  at	
  the	
  left,	
  with	
  SUVR	
  of	
  about	
  1.5),	
  
and	
  (4)	
  a	
  broad	
  variability	
  of	
  frequencies	
  for	
  regions	
  of	
  the	
  same	
  Abeta	
  SUVR	
  (horizontal	
  
distribution).	
  These	
  phenomena	
  cannot	
  be	
  explained	
  completely	
  by	
  a	
  linear	
  dependency	
  
and	
  moreover	
  not	
  by	
  a	
  linear	
  system	
  at	
  all.	
  The	
  criticality	
  that	
  divides	
  the	
  dynamics	
  into	
  
three	
  different	
  frequency	
  modes	
  (zero,	
  alpha	
  and	
  theta)	
  is	
  a	
  phenomenon	
  of	
  the	
  Jansen-­‐
Rit	
   model	
   as	
   a	
   non-­‐linear	
   system	
   (Figure	
   6	
   and	
   Supplementary	
   Figure	
   6)	
   and	
   the	
  
broad	
  frequency	
  distribution	
  is	
  (probably)	
  a	
  network	
  effect.	
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Fig.	
  9.	
  Alpha	
  and	
  bistable	
  rhythms	
  only	
  appear	
  in	
  a	
  specific	
  part	
  of	
  the	
  parameter	
  
space	
  between	
  G	
  and	
  τi.	
  This	
  parameter	
  space	
  exploration	
  was	
  done	
  by	
  coupled	
  
simulations	
  and	
  therefore	
  includes	
  network	
  effects.	
  Frequency	
  (by	
  color)	
  is	
  presented	
  
dependent	
  on	
  global	
  coupling	
  G	
  (x)	
  and	
  inhibitory	
  time	
  constant	
  τi	
  (y).	
  Projections	
  to	
  G	
  
and	
  τi	
  	
  are	
  shown	
  beside	
  the	
  matrix	
  plot,	
  here	
  the	
  frequencies	
  are	
  classified	
  into	
  alpha	
  
rhythm	
  (f	
  	
  >	
  8	
  Hz),	
  theta	
  rhythm	
  (f	
  <	
  5	
  Hz)	
  and	
  bistable	
  rhythms	
  (5	
  <	
  f	
  <	
  8).	
  No	
  relevant	
  
proportion	
  of	
  zero-­‐lines	
  appeared	
  in	
  the	
  simulations.	
  The	
  difference	
  to	
  empirical	
  EEG	
  
classes	
  (with	
  slightly	
  lower	
  borders	
  for	
  theta,	
  meaning	
  more	
  exactly	
  a	
  theta/delta	
  
rhythm)	
  are	
  reasonable	
  here	
  because	
  of	
  the	
  knowledge	
  of	
  only	
  two	
  different	
  limit	
  cycles	
  
in	
  the	
  examined	
  configuration	
  of	
  the	
  Jansen-­‐Rit	
  model	
  (Figure	
  6).	
  This	
  is	
  also	
  the	
  reason	
  
for	
  the	
  classification	
  of	
  frequencies	
  between	
  5	
  and	
  8	
  Hz	
  as	
  bistable.	
  The	
  exploration	
  was	
  
non-­‐systematically	
  performed	
  by	
  using	
  all	
  regions	
  of	
  random	
  distributed	
  Abeta	
  SUVR	
  
values	
  of	
  the	
  10	
  AD	
  participants,	
  with	
  10	
  iterations	
  of	
  randomization	
  per	
  participant.	
  
However,	
  except	
  single	
  values	
  of	
  τi,	
  the	
  full	
  spectrum	
  of	
  τi	
  could	
  be	
  explored.	
  Single	
  
empty	
  columns	
  are	
  filled	
  with	
  neighbor	
  columns	
  for	
  better	
  readability.	
  In	
  principle	
  wee	
  
the	
  an	
  ‘isle’	
  of	
  alpha	
  for	
  low	
  coupling	
  and	
  low	
  time	
  constant,	
  while	
  the	
  rest	
  of	
  the	
  
dynamics	
  is	
  dominated	
  by	
  theta	
  and	
  delta.	
  A	
  full	
  frequency	
  spectrum	
  (also	
  green	
  and	
  
yellow	
  colors)	
  is	
  only	
  apparent	
  near	
  the	
  borders	
  of	
  the	
  alpha	
  isle	
  in	
  higher	
  coupling.	
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Fig.	
  10.	
  Theta	
  rhythms	
  affect	
  central	
  parts	
  of	
  the	
  network	
  independently	
  of	
  the	
  
spatial	
  distribution	
  of	
  Abeta.	
  (A)	
  Abeta	
  PET	
  SUVR	
  for	
  AD	
  participants:	
  the	
  distribution	
  
is	
  diffuse	
  along	
  the	
  cortex	
  with	
  no	
  strong	
  affection	
  of	
  subcortical	
  hubs.	
  This	
  well	
  
corresponds	
  to	
  the	
  neocortical	
  stage	
  C	
  of	
  Abeta	
  distribution	
  (11,	
  135,	
  136).	
  	
  (B)	
  There	
  is	
  
no	
  linear	
  dependency	
  between	
  the	
  Abeta	
  SUVR	
  and	
  the	
  structural	
  degree,	
  as	
  the	
  graph	
  
above	
  already	
  indicates.	
  In	
  contrast	
  to	
  that,	
  (C)	
  shows	
  the	
  distribution	
  of	
  theta	
  rhythm,	
  
computed	
  as	
  the	
  proportion	
  of	
  each	
  regions	
  simulations	
  (201	
  for	
  different	
  values	
  of	
  G	
  for	
  
10	
  subjects)	
  with	
  dominant	
  theta	
  rhythm	
  (here	
  simplified	
  as	
  a	
  frequency	
  that	
  is	
  below	
  8	
  
Hz	
  and	
  not	
  zero,	
  so	
  more	
  precise	
  the	
  theta-­‐delta-­‐band).	
  The	
  patterns	
  are	
  not	
  consistent	
  
with	
  those	
  of	
  (A).	
  This	
  indicates	
  that	
  not	
  the	
  distinct	
  region	
  affected	
  by	
  Abeta	
  is	
  crucial,	
  
but	
  more	
  its	
  local	
  circuitry.	
  Moreover,	
  one	
  can	
  observe	
  that	
  regions	
  with	
  a	
  higher	
  degree	
  
often	
  have	
  a	
  high	
  appearance	
  of	
  theta	
  rhythm	
  (D)	
  and	
  show	
  a	
  linear	
  dependency	
  with	
  R2	
  
=	
  0.183,	
  in	
  contrast	
  to	
  the	
  distribution	
  of	
  Abeta	
  (B),	
  which	
  hasn’t	
  shown	
  such	
  a	
  
dependency.	
  This	
  phenomenon	
  is	
  stable	
  also	
  for	
  the	
  random	
  spatial	
  distribution	
  of	
  Abeta	
  
SUVRs	
  (E):	
  Here	
  we	
  see	
  even	
  a	
  stronger	
  dependency	
  (R2	
  =	
  0.29)	
  between	
  structural	
  
degree	
  and	
  theta	
  rhythm	
  (F).	
  This	
  is	
  remarkable	
  because	
  (unless	
  the	
  spatial	
  distribution	
  
is	
  random)	
  the	
  ‘pathologic’	
  theta	
  is	
  focused	
  on	
  the	
  hubs.	
  This	
  indicates	
  that	
  there	
  must	
  
be	
  network	
  effects	
  which	
  concentrate	
  the	
  appearing	
  theta	
  to	
  those	
  regions	
  with	
  higher	
  
degree.	
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Fig.	
   11.	
  Modeling	
  NMDA	
  antagonism	
  by	
   virtual	
  memantine.	
  We	
  modified	
  the	
   local	
  
dynamics	
   for	
   the	
   AD	
   group	
   by	
   homogeneously	
   decreasing	
   c32,	
   which	
   represents	
   the	
  
coupling	
   from	
  excitatory	
  population	
   to	
   the	
  pyramidal	
   cell	
   and	
   therefore	
   is	
  a	
   surrogate	
  
for	
  NMDA	
  receptor	
  activity.	
  (A)	
  PSP	
  and	
  (B)	
  distribution	
  of	
  regional	
   frequencies	
  along	
  
different	
   global	
   couplings	
   for	
   various	
   values	
   for	
   c32.	
   The	
   plots	
   are	
   similar	
   to	
   those	
   in	
  
Figures	
   5	
  and	
  7.	
   On	
   the	
   right,	
   in	
   red,	
  we	
   see	
   the	
   default	
   value	
   of	
   c32	
   =	
   0.8	
   as	
   in	
   the	
  
simulations	
  before.	
  When	
  scaling	
   the	
   factor	
  down,	
  one	
  can	
  see	
   in	
  (A)	
   	
   that	
   the	
  system	
  
needs	
   higher	
   global	
   coupling	
   to	
   increase	
   energy	
   in	
   the	
  PSPs.	
  When	
  decreasing	
   c32	
   too	
  
much,	
   this	
   leads	
   to	
   a	
   dying	
   out	
   of	
   activity	
   in	
   the	
   area	
   of	
   lower	
   global	
   coupling,	
  which	
  
begins	
  at	
  a	
  value	
  of	
  c32	
  =	
  0.5.	
  We	
  therefore	
  used	
  for	
  memantine	
  the	
  reduction	
  by	
  0.25%	
  
when	
   changing	
   c32	
   from	
  0.8	
   to	
   0.6.	
   	
   (C)	
  Mean	
  EEG	
   frequency	
   for	
   the	
   three	
   groups	
  HC	
  
(blue),	
  MCI	
   (green),	
   AD	
   (red,	
  with	
   shadowed	
   area	
   for	
   the	
   range	
   between	
   5th	
   and	
   95th	
  
percentile)	
   and	
   AD	
   with	
   memantine	
   (red	
   dotted	
   line).	
   The	
   virtual	
   application	
   of	
  
memantine	
   shifts	
   the	
   AD	
   group	
   to	
   the	
   level	
   of	
   HC	
   and	
   MCI	
   (arrow)	
   and	
   out	
   of	
   the	
  
variance	
  of	
  AD	
  without	
  memantine.	
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