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Abstract.

Introduction. While the prevalence of neurodegenerative diseases associated with
dementia such as Alzheimer’s disease (AD) increases, our knowledge on the underlying
mechanisms, outcome predictors, or therapeutic targets is limited. In this work, we
demonstrate how computational multi-scale brain modelling links phenomena of
different scales and therefore identifies potential disease mechanisms leading the way to
improved diagnostics and treatment. Methods. The Virtual Brain (TVB;
thevirtualbrain.org) neuroinformatics platform allows standardized large-scale
structural connectivity-based simulations of whole brain dynamics. We provide proof of
concept for a novel approach that quantitatively links the effects of altered molecular
pathways onto neuronal population dynamics. As a novelty, we connect chemical
compounds measured with positron emission tomography (PET) with neural function in
TVB addressing the phenomenon of hyperexcitability in AD related to the protein
amyloid beta (Abeta). We construct personalized virtual brains based on individual PET
derived distributions of Abeta in patients with mild cognitive impairment (MCI, N=8)
and Alzheimer’s Disease (AD, N=10) and in age-matched healthy controls (HC, N=15)
using data from ADNI-3 data base (http://adni.lni.usc.edu). In the personalized virtual
brains, individual Abeta burden modulates regional inhibition, leading to disinhibition
and hyperexcitation with high Abeta loads. We analyze simulated regional neural
activity and electroencephalograms (EEG). Results. Known empirical alterations of EEG
in patients with AD compared to HCs were reproduced by simulations. The virtual AD
group showed slower frequencies in simulated local field potentials and EEG compared
to MCI and HC groups. The heterogeneity of the Abeta load is crucial for the virtual EEG
slowing which is absent for control models with homogeneous Abeta distributions.
Slowing phenomena primarily affect the network hubs, independent of the spatial
distribution of Abeta. Modeling the N-methyl-D-aspartate (NMDA) receptor antagonism
of memantine in local population models, reveals potential functional reversibility of the
observed large-scale alterations (reflected by EEG slowing) in virtual AD brains.
Discussion. We demonstrate how TVB enables the simulation of systems effects caused
by pathogenetic molecular candidate mechanisms in human virtual brains.

Key words: Alzheimer’s disease, neurodegenerative disease, The Virtual Brain, PET,
beta amyloid, EEG, MRI, excitotoxicity, NMDA, memantine, disease mechanisms, drug
targets, personalized medicine
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1. Introduction

Neurodegenerative diseases (NDD) gain increasing socioeconomic relevance due to an
ageing society (1-4). The Alzheimer’s Association’s latest report estimates the yearly
cost of Alzheimer’s disease (AD) treatment in the U.S. at $277 billion (5). By 2050 this
number is expected to rise as high as $1.1 trillion. According to the report, early
diagnosis could save up to $7.9 trillion in cumulated medical and care costs by the year
2050. While the prevalence of AD - the most common cause of dementia and the most
common NDD in general - increases, its cause is still not understood, nor is there a cure.
Our understanding of their pathogenesis and classification remain insufficient.
Therefore, we aim to integrate clinical data from molecular biology and neurology, using
nonlinear systems theory. Our aim is to build predictive models for health-outcome and
cognitive function by individual virtual brain simulations using The Virtual Brain (TVB;
thevirtualbrain.org) platform (6, 7). TVB integrates various empirical data in
computational models of the brain that allow for the identification of neurobiological
processes that are more directly linked to the causal disease mechanisms than the
measured empirical data. Biomedical sciences are currently lacking a mapping between
the degree and facets of cognitive impairments, biomarkers from high-throughput
technologies, and the underlying causal origins of NDD like AD. The imperative for the
field is to identify the features of brain network function in NDD that predict whether a
person will develop dementia. The heterogeneity of NDD makes it difficult to develop
robust predictions of cognitive decline. This can be addressed by large prospective
studies where there is potential for participants to develop NDD. It is difficult in general
to predict individual disease progression and this is a particular challenge in complex
nonlinear systems, like the brain, where emergent features at one level of organization
(e.g., cognitive function) can come about through the complex interaction of subordinate
features (e.g., network dynamics, molecular pathways, gene expression). The Virtual
Brain takes into account the principles of complex adaptive systems and hence poses a
promising tool for identifying mechanistic predictive biomarkers for NDD. Due to the
high dimensionality of brain models and the even greater complexity of the to-be-
simulated brain states, selecting the used modeling approach carefully for a specific
question of interest is essential.

The candidate biological mechanism under investigation in the present study is related
to amyloid beta (Abeta), a protein that is an oligomeric cleavage product of the
physiological amyloid precursor protein (APP) (8, 9). The soluble oligomers have the
tendency for polymerization (9, 10). Due to their non-physiological configuration they
aggregate and accumulates in brain tissue - a process that starts already in early
preclinical stages of AD, i.e. many years before the onset of symptoms - typically in the
fifth decade of life (11) - as shown in rodent models (12) and human studies (13, 14).
Aggregated Abeta and its intermediates, soluble Abeta oligomers, can act directly
neurotoxic (9, 15, 16) and have been found intra- or extracellularly (9, 15, 17). Those
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findings led to the hypothesis that the deposition of Abeta poses an initial step in the
pathology of AD while Abeta has been suggested as a key feature in the pathogenesis of
AD leading to major changes in the functionality and structure of the brain (13, 14, 18).
The goal of the present study is to incorporate the hypothesized qualitative and
quantitative effects of Abeta on neuronal population dynamics into our brain network
models, i.e. adding mathematical models that describe how molecular changes alter
population activity - so called cause-and-effect models. We will focus here on the
disrupted inhibitory function of interneurons and consecutive hyperexcitability caused
by Abeta - while we are aware of various other factors with potential roles for AD
aetiology, such as vascular changes (19-21), neuroinflammation (22-25), genetics (26-
28), environmental factors (29, 30) and concomitant proteinopathies others than Abeta
pathology (31, 32). Beside Abeta there is a second molecular hallmark associated with
the pathogenesis of AD: the phosphorylated Tau ‘tubulin-associated unit’ protein (8, 33,
34) which contributes to microtubule stability in the neural cytoskeleton (34). One
major argument in favor of the more prominent involvement of Abeta in the
pathogenesis of AD, in contrast to Tau, is its higher specificity to AD and its appearance
in the early familial variants of AD, where the molecular pathway is better understood
(14, 18, 35). Therefore, most therapeutic strategies in the past targeted Abeta. Yet
recently three clinical trials with antibodies against Abeta had to be terminated in phase
[II: aducanumab (36, 37), crenezumab (38, 39) and solanezumab (40, 41) did not meet
the expectations to act in a disease-modifying manner slowing down the cognitive
decline (9). Nevertheless, there are still studies ongoing, e.g. with BAN-2401 (42). A
relevant percentage of clinically diagnosed AD patients show additional brain
pathologies beside Abeta and Tau in autopsy (32). Even in the cases of
neuropathological AD diagnosis (i.e. secured Abeta and Tau pathology in histology), 55%
of cases also exhibited a pathology of alpha synuclein (which we would expect in
synucleinopathies like Parkinson’s disease) and 40% showed transactive response DNA
binding protein 43kDa (TDP-43), a protein which we would expect in frontotemporal
dementia or amyotrophic lateral sclerosis (31). Brain tissue of people who did not had
relevant neurodegenerative brain changes in histological exams after death were
showing Abeta in 50% and Tau pathology in 93% of the cases when using sensitive
immunohistochemistry methods (31). Although Abeta and Tau are widely accepted as
involved parts in the pathogenesis of AD and also define the disease entity (43), it
remains unclear if they might be only epiphenomena of other contributing factors. This
study hypothesizes a mechanistic role of Abeta in the disease process and builds a link
between the molecular pathway alteration that leads to Abeta phenomenon of
disinhibition and neural slowing in EEG (Figure 1). Our mechanistic modeling approach
can help to understand the complex inter-dependencies between the involved factors in
AD and will improve through iterative refinement.

Near Abeta plaques, a shift in neural activity has been observed (44). In AD mouse
models with overexpression of APP and Presenilin-1, the number of hyperactive
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neurons was increased near Abeta plaques. This shift in the neuronal activity was
associated with decreased performances in memory tests. Neuronal hyperactivity could
be reduced by GABA agonists, suggesting pathology due to impaired inhibition. In
neocortical and dentate gyri, pyramidal cells have been found to increase network
excitability in vivo in an AD mouse model with overexpression of Abeta, that led to
membrane depolarization and increased firing rates. A study by Hazra et al. (45)
investigated an AD mouse model by stimulation of the perforant pathway. AD mice
showed increased amplitude and larger spatial distribution of response after
stimulation. The reason for this increased network excitability was due to impaired
inhibitory neuron function, i.e. the inhibitory neurons of the molecular layer of the
dentate gyrus in hippocampus were in part unable to produce action potentials, which
resulted in a slower postsynaptic firing rate. Ulrich (46) added Abeta to layer V
pyramidal cells of rats. In their experiments they could show a decline in inhibitory
postsynaptic currents (IPSCs), attributed to postsynaptic GABAa receptor endocytosis
after Abeta application. In a recent study by Ren et al. (47) Abeta was found to increase
excitability of pyramidal cells in the anterior cingulate cortex of mouse brain. The reason
for hyperexcitability was again due to disturbed inhibitory input. Abeta seems to
interact with the dopaminergic D1 receptor system. The D1 receptor regulates GABA
release in fast-spiking (FS) inhibitory interneurons. By adding a D1 receptor antagonist
to the cells they could reverse the effect of Abeta, increase IPSCs and decrease pyramidal
excitability whereas D1 agonists had similar effects as Abeta. The underlying working
model is that Abeta leads to dopamine release in dopaminergic neurons that activates
D1 receptors at FS inhibitory interneurons and thus inhibits GABA release. As a
consequence, the amplitude, frequency and total number of IPSPs is decreased. The
instantaneous decrement of postsynaptic amplitude and frequency is also known as a
toxic effect of Abeta in the glutamatergic system (48). Hence for the present modeling
approach we decided to implement this Abeta dependent impaired inhibitory function.
From the literature above, potential models for this disinhibiton could be either a lower
[PSP amplitude or a lower firing rate or a combination thereof.

One already established drug that assesses the pathology of hyperexcitation is
memantine, an N-methyl-D-aspartate (NMDA) antagonist. Memantine is recommended
for the symptomatic treatment of severe AD as a mono- and combination therapy with
cholinesterase inhibitors and should be also considered as possible treatment in
moderate AD in the current version of the UK National Institute for Health and Care
Excellence (NICE) guidelines of dementia management (49). However, normally it is
considered as an alternative or addition to cholinesterase inhibitors (49). In contrast,
memantine has shown in a current meta-analysis its efficacy to improve cognitive
function and reduce behavioural disturbances in AD patients compared to placebo (50).
The effect was particularly caused by the moderate-to-severe AD patients (50, 51) and
was also observable in combination therapies with acetyl cholinesterase inhibitors, with
a significant superiority for the combination of memantine and donepezil compared to
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any cholinesterase monotherapies (50). It therefore is also recommended as possible
first-line therapy in AD (50). In our study, we will evaluate ‘virtual memantine’
interacting with the Abeta-derived hyperexcitation.

Changes in electroencephalography (EEG) are described in AD as a general and
progressive slowing of brain oscillations. In AD, cognitive decline and 18F-
fluorodeoxyglucose (FDG) PET signal decreases are linked with increased left temporal
power in the delta and the theta frequency bands, whereas temporo-parieto-occipital
alpha band coherence decreases and delta coherence increases (52-54). Moreover, the
spatial appearance of slow rhythms and hypometabolism in FDG PET have been linked
(55, 56). A recent study produced similar findings in magnetoencephalography (MEG): A
global increase of theta and a frontal increase of delta were correlated with entorhinal
atrophy and glucose hypometabolism (57). In summary, a global slowing has been
reported for AD, in particular a shift from alpha to theta and delta activity (52-57).

As a consequence of these findings, we will focus in our modeling approach on three
main aspects of AD:

1. Spatial heterogeneous Abeta distribution in the brain
2. Hyperexcitation caused by impaired inhibitory function
3. Slowing of neural frequencies

For Abeta, we propose a change in local neuronal excitability. Therefore, we construct a
model of a healthy ‘standard brain” with an averaged structural connectivity (SC) with
inferred micro-scale characteristics of excitation in those areas where a deposition of
Abeta is found. We will infer this information about the local distribution of Abeta from
individual AV-45 (florbetapir) positron emission tomography (PET) images. AV-45 is a
PET tracer which binds to Abeta (58-61). We investigate three clinical diagnostic groups
of age- and gender-matched healthy controls (HC), individuals with mild cognitive
impairment (MCI) and AD patients (see method section 2.1 and Table 1). For the
simulated EEG and the underlying local neural activity frequency we expect a slowing in
rhythms and particular a shift from alpha to theta activity with disease progression.
Finally, we will simulate the effect of an anti-excitotoxic drug, the NMDA antagonist
memantine for which we expect a reversal of the observed EEG slowing.

We will in the following provide an overview of the fundamentals of the here employed
brain simulation technique. The particular strength of computational connectomics (7,
62, 63) or brain network modeling (BNM) is to unite various kinds of information in a
single biophysically plausible framework (64). BNM are typically structurally informed
(or constrained) by (a) geometric information of the brain, e.g. via T1 magnetic
resonance imaging (MRI), and (b) the structural connectivity (SC) derived from the
tractography of diffusion MRI that is supposed to represent the white matter fiber tracts
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(65, 66). The static three-dimensional scaffold of the brain is brought to life through the
implementation of mathematical models, which generate activity at each brain region or
node of the network, the so-called neural masses or population models (67-69).
Population models are reduced descriptions of microscopically detailed neuronal
networks (68, 70-75) - inferred for example with methods of mean field theory (76-78).
They describe the so called meso-scale of the brain (79, 80), i.e. population activity as
captured with imaging methods like EEG, MEG and fMRI. Some neural mass models
(NMM) are linked to (and still reflect to a certain degree) neurophysiological processes
at the microscopic scale while others mathematically describe the observed lumped
biological behaviour not differentiating between underlying neurophysiological
processes (phenomenological models). Time delays in the interaction between nodes
(66, 68, 69, 81) are critical for the spatiotemporal organization of the evolving activity
patterns in the brain (82, 83). Measured functional brain data such as EEG, MEG or
functional MRI (fMRI) are used to tune the mathematical models - i.e. to fit selected free
parameters of the model - to faithfully reproduce selected empirical features (7, 68, 76,
84-88). By performing a systematic model parameter exploration, using e.g. brute force
exhaustive parameter space searches, Monte-Carlo methods or weighted optimization
algorithms, we can identify the optimal parameter configuration to portray the empirical
functional phenomena. Thereby, we obtain indices of the brains individual function in
relation to the explored parameters. This approach opens various possibilities to not
only describe dependencies (i.e., correlations), but to make statements about potential
underlying causal processes, i.e. mechanisms.

In this study we used TVB, an open source neuroinformatics platform (6, 7, 68, 89)
(www.thevirtualbrain.org) for large-scale BNM simulations. We have already
established the software TVB, and applied it to normative datasets, stroke, epilepsy,
brain tumors and neurodegenerative disease. For example, in stroke recovery, TVB
models of patients were built using the patient’s structural neuroimaging data, and the
dynamics of local populations were tuned to fit the patient’s functional neuroimaging
data (90, 91). The obtained parameters for excitatory/inhibitory (EI) balance of local
neuronal populations predicted the patient’s response to rehabilitation up to one year
after therapy. Our work on epilepsy was able to infer seizure propagation with a model
based on the patient’s own diffusion weighted MRI and stereotaxic EEG (92, 93).
Moreover, positive surgical outcome was strongly associated with the epileptogenic
zone that was excised as predicted by the patient’s TVB model. Previous work with AD
patients (n = 16), controls (n = 73) and persons with amnestic MCI (n = 35), all from the
Sydney Memory and Aging Study, confirms the benefit of using the model parameters to
characterize cognitive status (94).

TVB provides several types of NMMs. In the present study, we selected a NMM that can
simulate EEG and enables us to implement disinhibition. The wiring pattern of cortical
circuitry is characterized by recurrent excitatory and inhibitory loops, and by
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bidirectional sparse excitatory connections at the large-scale (95). Several NMMs
therefore feature projection neurons aka pyramidal cells with long axons projecting to
distant cortical regions and local excitatory and inhibitory feedbacks (74, 96, 97). The
NMM by Jansen-Rit comprises an elementary circuit of three interconnected NMMs
(Figure 2) describing a cortical area (or column). It has been used to explain both
epilepsy-like brain activity (98, 99) and various narrow band oscillations ranging from
the delta to the gamma frequency bands (100) including intracranial EEG (69). The
Jansen-Rit model has been explored extensively on a single population level (99-101)
and in BNMs (85, 102, 103). The Jansen-Rit model has a rich dynamic repertoire, which
was extensively described before (104).

Specifically we chose the Jansen-Rit model for the present study due to the following
considerations:

1) The Jansen-Rit model comprises three interacting neural masses (representing
different cellular populations) in each local circuitry: pyramidal cells, inhibitory and
excitatory interneurons (Figure 2B). This is unique and opens the possibility to
simultaneously model disinhibition, i.e. an impairment of the inhibitory neuronal
subpopulation in one neural mass, and an anti-NMDAergic effect, i.e. a downscaled
transmission from excitatory interneurons to pyramidal cells, at the same time.

2) The ratio of excitatory and inhibitory time constants 7. / 7; in the Jansen-Rit model is
suitable to model the effect of Abeta on the inhibitory interneurons (by affecting the
transmission from inhibitory interneurons to pyramidal cells, Figure 2B-C) and is also
known to have an effect on the simulated neural frequency (104, 105).

3) Jansen-Rit can simulate physiological rhythms observable in local field potentials,
(intracranially) stereo-EEG (sEEG), scalp EEG and MEG (68, 74, 104).

Our hypothesized effect of local Abeta deposition as inferred from subject-specific AV-45
PET is a decrease of local inhibition (44, 45, 47, 48, 106-108), which leads to a relatively
stronger local excitation. This theory allows us translation of the Abeta distribution into
the altered dynamics of a population model (equation 6 and Figure 3). The
hypothesized microscale (synaptic), spatially distributed effect is assumed to develop an
effect at the population (mesoscale) level and to eventually propagate to the large-scale
of the whole brain. A schematic illustration of this concept is provided in Figures 1 and
2.
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2. Methods

2.1. Alzheimer’s disease Neuroimaging Initiative (ADNI) database

Empirical data were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner. The primary goal of ADNI
has been to test whether serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of MCI and
early AD. For up-to-date information, see www.adni-info.org.

In the presently ongoing trial, ADNI-3, the measurements contain T1, T2, DTI, fMRI, Tau
PET, Abeta PET and FDG PET for the participants. The total population of ADNI-3 will
contain data of about 2000 participants (comprising AD, MCI and HC, see
http://adni.loni.usc.edu/adni-3/). As inclusion criterion for AD patients the diagnosis
criteria of NINCDS-ADRDA from 1984 were used, which contains only clinical features
(109). Inclusion criteria for both HC and MCI were a Mini Mental State Examination
(MMSE) score between 24 and 30 as well as age between 55 and 90 years. For MCI in
addition, the participant must have a subjective memory complaint and abnormal
results in another neuropsychological memory test. To fulfil the criteria for AD, the
MMSE score had to be below 24 and the NINCDS-ADRDA criteria for probable AD had to
be fulfilled (109). Imaging and biomarkers were not used for the diagnosis. For the full
inclusion criteria of ADNI-3 see the study protocol (page 11f in
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-

v2/documents/clinical/ADNI3 Protocol.pdf). An overview of the epidemiological

characteristics of the participants included in this study can be found in Table 1.

Table 1. Basic epidemiological information of the study population. It is a subset of the
suitable ADNI-3 participants, that had 3T imaging and all necessary image modalities.
Only data from Siemens scanners was used (because this was the biggest subset of

scanners).
Diagnosis n Mean o Min. | Max. Mean o Min. Max.
(female) | age age age MMSE MMSE MMSE
AD 10 (5) 72.0 9.6 559 | 86.1 213 6.8 9 30
HC 15(9) 70.6 4.7 63.1 | 78.0 293 0.8 28 30
MCI 8(3) 68.2 6.4 | 57.8 | 76.6 27.1 1.6 25 30

2.2. Data acquisition and processing

All images used in this study were taken from ADNI-3. To reach comparable datasets, we
used only data from Siemens scanners with a magnetic field strength of 3T (models:
TrioTim, Prisma, Skyra, Verio). However, some acquisition parameters differed slightly.
See supplementary material with tables S1-S6 for the metadata. The following imaging
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modalities were included: T1 MPRAGE. TE = 2.95 - 2.98 ms, TR = 2.3s, matrix and voxel
size differ slightly. FLAIR. TE differs slightly, TR = 4.8s, matrix size = 160 - 256 - 256,
voxel size differs slightly. DWI (only for 15 HC participants to create an average healthy
SC). TE = 56 -71 ms, TR = 3.4 - 7.2s, matrix size = 116 - 116 - 80, voxel size =2 - 2 - 2,
bvals = [0, 1000] or [0, 500, 1000, 2000], bvecs = 49 or 115. Siemens Fieldmaps and
PET Data (AV-45 for Abeta). The preprocessing of imaging data can be subdivided in
that of structural images, DWI and PET.

Structural MRI. We calculated an individual brain parcellation for each included
participant of ADNI-3. We followed the minimal preprocessing pipeline (110) of the
Human Connectome Project (HCP) for our structural data using Freesurfer (111)
(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation), FSL (112-
114) and connectome workbench
(https://www.humanconnectome.org/software/connectome-workbench).  Therefore,
we used T1 MPRAGE, FLAIR and filedmaps for the anatomical parcellation and DWI for
tractography. This consists of a Prefreesurfer, Freesurfer and Postfreesurfer part. We
skipped the step of gradient non-linearity correction, since images provided by ADNI
already are corrected for this artefact. Also, the MNI templates were used at 1mm
resolution instead of 0.7mm. In the Freesurfer pipeline we skipped the step of
downsampling our data from 0.7mm3 to 1mm?3, and all recon-all and intermediate steps
were performed with the original image resolution. We then registered the subject
cortical surfaces (32 000 vertices) to the cortical parcellation of Glasser et al. (115)
using the multimodal surface matching (MSM, see (116)) tool. For the registration we
used cortical thickness, MyelinMaps, cortical curvature and sulc from the subject and
template surface. We mapped the parcellation on the surface back into the grey matter
volume with connectome workbench. This volume parcellation surfed as the mask for
the connectome and PET intensity extraction.

PET images. We used the preprocessed version of AV-45 PET. These images had
following preprocessing already performed by ADNI: Images acquired 30 - 50 min post
tracer injections: four 5-minute frames (i.e. 30 - 35min, 35 - 40min, ...). These frames are
co-registered to the first and then averaged. The averaged image was linearly aligned
such that the anterior-posterior axis of the subject is parallel to the AC-PC line. This
standard image has a resolution of 1.5 mm cubic voxels and matrix size of 160 - 160 - 96.
Voxel intensities were normalized so that the average voxel intensity was 1. Finally, the
images were smoothed using a scanner-specific filter function. The filter functions were
determined in the certification process of ADNI from a PET phantom. We used the
resulting image and applied the following steps: Rigid aligning the PET image to
participants T1 image (after being processed in the HCP structural pipeline). The linear
registration was done with FLIRT (FSL). The PET image was than masked with the
subject specific brainmask derived from the structural preprocessing pipeline (HCP). To
obtain the local burden of Abeta, we calculated the relative intensity to the cerebellum
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as a common method in the interpretation of AV-45-PET, because it is known that the
cerebellum does not show relevant AV-45 PET signals and can therefore act as a
reference region for inter-individual comparability between patients (58, 117). The
intensity of gamma radiation, which is caused by a neutralization reaction between local
electrons and the emitted positrons of the nuclear tracer is measured for each voxel in
the PET image and divided to the cerebellar reference volume: the standardized uptake
value ratio (SUVR). We therefore receive in each voxel a relative Abeta burden  which is
aggregated according to the parcellation used for our present modelling approach (see
below). Thus, we obtain a value S, for the Abeta burden in each brain region a. The
cerebellar white matter mask was taken from the Freesurfer segmentation (HCP
structural preprocessing). The image was then partial volume corrected using the
Miiller-Gartner method from the PETPVC toolbox (118). For this step the gray (GM) and
white matter segmentation from Freesurfer (HCP structural preprocessing) was
used. Subcortical region PET loads were defined as the average SUVR in subcortical GM.
Cortical GM PET intensities were mapped onto the individual cortical surfaces using
connectome workbench tool with the pial and white matter surfaces as ribbon
constraints. Using the multimodal parcellation from Glasser et al. (115) we derived
average regional PET loads.

DWI. We calculated individual tractography only for included HC participants of ADNI-3
to average them to a standard brain template (see 2.3 below). Preprocessing of the
diffusion weighted images was mainly done with the programs and scripts provided by
the MRtrix3 software package (http://www.mrtrix.org).

The following steps were performed:

Dwidenoise. Denoising the DWI data using the method described in Veraart et al. (119).
Dwipreproc. Motion and eddy current correction using the dwipreproc wrapper script for
FSL (https://mrtrix.readthedocs.io/en/latest/dwi_preprocessing/dwipreproc.html)
Dwibiascorrect. B1 field inhomogeneity correction using ANTS N4 algorithm

DiwZmask. brainmask estimation from the DWI images.

Dwiintensitynorm. DWI intensity normalization for the group of participants.
DwiZresponse. The normalized DWI image was used to generate a WM response
function. We used the algorithm described by Tournier et al. (120) in this step.
Average_response. An average response function was created from all participants.
DwiZfod. Using the spherical deconvolution method described by Tournier et al. (121)
we estimated the fibre orientation distribution using the subject normalized DWI image
and the average response function. From the DWI data a mean-b0 image was extracted
and linear registered to the T1 image. The inverse of the transform was used to bring the
T1 brain masked and aparc+aseg image (from HCP structural preprocessing) into DWI
space. The transformed aparc+aseg image was used to generate a five tissue type image.
Tckgen. Anatomical constrained tractography (122) was performed using the iFOD2
algorithm (123). Tracks in the resulting image were weighted using SIFT2 algorithm
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(124). We mapped the registered parcellation from Glasser back into the volume. The
cortical and subcortical regions than were used to merge the tracks into a connectome.

EEG Forward solution in TVB. After structural preprocessing with the HCP pipeline we
used the individual cortical surfaces and T1 images to compute the person specific
Boundary Element Models in Brainstorm (125). Scalp, outer and inner skull were
modelled with 1922 vertices per layer. Using the default ‘BrainProducts EasyCap 65’
EEG cap as locations for the signal space and the cortical surface vertices as source
space. The leadfield matrix was estimated using the adjoint method in OpenMEEG with
the default conductivities 1, 0.0125 and 1 for scalp, skull and brain respectively.
Because we are performing region-based simulations only (i.e. no vertex-wise
modelling), the leadfield matrix was simplified by summing the coefficients of vertices
that belong to the same region. EEG signal was generated by matrix multiplication of the
neural time series with the lead field matrix.

2.3. Virtual human standard brain template out of averaged healthy brains

We use the SCs of all ADNI-3 participants of the group HC, derived from the diffusion-
weighted and structural MR], to average them to one connectome matrix. Two of the HC
participants included in the average template were excluded for simulations because it
was impossible to compute their leadfield matrices for EEG calculation. Therefore, we
use an arithmetic mean C, = (37_, C)/n = (C1 + C2 + ... + Ca)/n, wherein C is the

averaged SC matrix, n is the number of HC participants and C; ist the individual SC
matrix. The SC matrix and the organization of the corresponding graph can be found in
Figure 4. As it can be seen in Figure 4B, general characteristics of physiological SCs as
symmetry, laterality, homology and subcortical hubs are maintained in the averaged
connectome. By choosing an averaged SC instead of individual SCs, it was possible to
control all factors except of the individual Abeta distribution supporting our intention to
compare the simulated activity that resulted from a ‘pathogenic’ modification by Abeta.

2.4. Cause-and-effect model of Abeta in the Jansen-Rit model

The dynamics of the Jansen-Rit model show a rich parameter dependent behavior (104).
A bifurcation analysis of the single population Jansen-Rit model (in contrast to network
embedded interacting populations) catalogues and summarizes the repertoire of the
model. Bifurcation here refers to a qualitative change in the system behavior with
respect to parameter changes. Qualitative changes can be for instance the shift from
waxing and waning alpha rhythm as observed in resting human brains to spike wave
discharges as observed during epileptic seizures. Bifurcation diagrams explore the
qualitatively different states (divided by bifurcations, see Supplementary Figure 1,
from (104)). The bifurcation analysis revealed an important feature of the Jansen-Rit
model, which is bistability, that is, the coexistence of two stable states for a certain
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parameter range (i.e., regime). The bistable regime allows the coexistence of two self-
sustained oscillatory states for the standard parameter configuration (74) and Table 2
of which one state generates rhythmic activity in the alpha band and the other one
produces slower big spike-wave complexes in theta rhythm. Changes in the kinetics of
excitatory and inhibitory PSPs (i.e., changes of time constants) change the model
behavior in a way which makes it suitable to scale, that is, to speed up or to slow down
dynamics (104). The results of the systematic parameter exploration of the excitatory
and inhibitory time constants is summarized in Supplementary Figure 2. For our
study, to achieve this dynamic behavior of two limit cycles, we used first a very low
input on the pyramidal cells (firing rate 0.1085/ms) and no input on the inhibitory
interneurons to not overlay the Abeta effects we introduce here. Here the system
operates near the subcritical Andronov-Hopf and the saddle-saddle bifurcations
(leftmost region in Supplementary Figure 1). For the time constants, we used the area
of alpha rhythm (blue area in Supplementary Figure 2) as control condition without
any effect of Abeta. The detailed parameter settings can be found in Table 2.

Table 2. Used parameters for each Jansen-Rit element in the large-scale brain network

(74).

Variable |Description Value Unit

He Maximum amplitude of EPSP. Also called average 3.25 1mV
synaptic gain.

Hi Maximum amplitude of IPSP. Also called average 22.0 1mV
synaptic gain.

Te Excitatory dendritic time constant 10 1ms

Ti(Ba) Inhibitory dendritic time constant as a function of [14.29,50) |1 ms
Abeta load

Vo Is the mean PSP threshold for 50% of maximum 6 1 mV

firing rate

eo The firing rate for v =vo The maximum firing rateis | 2.5 1mV
2eo.

rv Steepness of the sigmoid transfer function. 0.56 1/mV

31 Average number of synaptic contacts from inhibitory| 108 1

to pyramidal cells
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13 Average number of synaptic contacts from 135 1
pyramidal to inhibitory cells

32 Average number of synaptic contacts from excitatory| 33.75 1
to pyramidal cells

23 Average number of synaptic contacts from 33.75 1
pyramidal to excitatory cells

mO3 Input firing rate at the pyramidal cells. 0.1085 1/ms
G Global structural connectivity scaling factor [0, 600] 1
Smax,t Maximum value of the inhibitory rate (reciprocal of | 0.07 1/ms

inhibitory time constant)

So,r Minimum value of the inhibitory rate (reciprocal of | 0.02 1/ms
inhibitory time constant)

Prmax 95th percentile value for the Abeta burden A as the | 2.65 1
PET SUVR for all regions and all participants

Pofe Cut-off-value for the Abeta burden Af as the PET 1.4 1
SUVR, from which one a pathological meaning is

suspected

The information about the local Abeta burden is derived from the individual AV-45 PET.
As there exists no established clinical standard for SUVR cut-off thresholds
differentiating normal form pathological Abeta loads. To scale the possible neurotoxic
effect in a realistic way, we need to approximate at what point Abeta toxicity occurs.
Following the literature, a 96% correlation to autopsy after Abeta PET was achieved via
visual assessment of PET images. The corresponding SUVR cut-off was 1.2 (58). Another
study showed a higher cut-off point at SUVR = 1.4 for a 90% sensitivity of clinically
diagnosed AD patients with an abnormal Abeta PET scan (126). We use here the higher
cut-off threshold of SUVR 21.4. Consequently, we propose a cause-and-effect model for
Abeta that is mapping molecular changes to computational brain network models:
The inhibitory time constant 7; in each point is a function of .. The higher Abeta SUVR,
the higher is the synaptic delay and therefore 7. We decided for this implementation via
a synaptic delay because of several reasons:
1. We are focusing on disease linked alterations of EEG frequencies. Hence, we
intended to assess a model feature that is already known to be frequency-
effective, i.e. it can vary resulting simulated EEG frequencies. From former
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explorations of the Jansen-Rit-model we know that the neural frequencies are
influenced by the ratio of excitatory and inhibitory time constants (104).

2. Cellular studies are supporting the hypothesis of altered inhibition, such as
decreased IPSP frequency in AD (45, 47, 48) - hence we decide for mapping
Abeta on the inhibitory time constant enabling for IPSP frequency modulation.

3. By using a time-effective feature, we intended to differentiate the micro-scale
neurotoxic effect of Abeta on synaptic level (46-48) from connectivity-effective
phenomena on a larger scale, which could e.g. be modeled by an alteration of
connection strength.

We develop a transform function to implement the PET SUVR in parameters of the brain
network model. Specifically, we postulate a sigmoidal decrease function that modifies
the default value for inhibitory time constant 7; (equation 6 and Figure 3). We assume
the healthy brain without super-threshold Abeta burden operates in a region of the
parameter space, which is close to a network criticality. A criticality describes an area in
the parameter space, where subtle changes of one variable can have a critical impact on
others (127) (in this case bifurcations, see Supplementary Figure 1. The thresholding
‘cut-off’ value fofr — differentiating normal form pathological Abeta burden - was chosen
according to the literature, stating that only after a certain level of tracer uptake a region
is considered pathological (foff = 1.4, see above). The maximum possible Abeta burden
value fmax was chosen to be the 95% percentile of the Abeta regional SUVR distribution
across all participants. The midpoint of the sigmoid was chosen such that it was half the
way between Loff and Smax. The steepness was chosen such that the function converges to
a linear function between Soff and Pmax.

2.5. Brain Network Model construction and simulation

For the reasons stated in the above introduction, for our simulation approach we
selected the Jansen-Rit model (68, 72, 74, 85, 98, 100, 101, 104, 128). The differential
equations are presented in Equations 1 - 6 (74). The employed parameter values can be
found in Table 2.

Excitatory projections onto pyramidal cells at location a in discretized space (a =1, 2,
.., N: N = 379 regions):

dvi,e(t) / dt = vau(t) Eq.1
dvau(t) / dt = He (m3r,a(t) +c31 S(€13V3,a(t))) / Te —2V44(t) / Te -V1,a(t) / ‘L'i

Inhibitory projections onto pyramidal cells at location u in space:

dvz,q(t) / dt = vsu(t) Eq.2
dusa(t) / dt = c32 Hi S(c23v34(t)) / Ti(Ba) ~205,0(8) / Ti(Ba) ~v2a(t) / 77 (Ba)
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Projections of pyramidal cells u in space:

duze(t) / dt = ve(t) Eq.3
dvea(t) / dt = S(v304)(t) / Te —2V6a(t) / Te ~V34(t) / T2

with the mean postsynaptic potential of the pyramidal cells
U30,4(t) = V1,a(t) -v2,4(t) Eq.4
and the nonlinear potential-to-firing-rate transfer function
S (A) = (Smax —Smin) / (1 +exp(ra (Ao -A))) +Smin : 0 < Smin < Smax, Eq.5

with, A = v, Sy,max = 2e0 and Symin = 0. Incoming mean firing rates msrq(t) at the pyramidal
cells at location a from other brain regions b = 1, 2, ..., N, where N is the number of 379
regions are given by mzrqe(t) =mato+ G Y.p Wap S(v30p)(t), where msrois baseline
input mato = const. for Vtand all locations Va. The global coupling factor G scales the
connections wg incoming at location a from all b provided by the SC. In all populations,
the state variable [v1, U2, U3]a(t) are the mean membrane potentials and the derivatives
thereof with respect to time ¢, namely [v4, Us, Us]q(t) represent the mean currents.

To model how the local Abeta load f,, measured by the Abeta PET SUVR is affecting the
inhibitory time constant we introduce the following transfer function (Figure 3):

Ti(Ba) = S (Ba), Eq.6
with rg = 2In(Smax - 1000 ms - 1) / (Baott ~Bamax) and Bo = (Ba,off +Bamax) /2. Note that the
inverse of the time constant 7; is the rate. The Abeta load affects the inhibitory rate
following a sigmoid curve. The rate ranges between Smin and Smax and the time constant
ranges consequently between 1/Smax and 1/Smin.

To simulate the model using TVB, physical space and time are discretized. The system of
difference equations is then solved using deterministic Heun’'s method with a time step
of 5 ms. We used a deterministic method to avoid stochastical influences since the
simulation was performed in the absence of noise.

The system was integrated for 2 minutes and the last 1 minute was analyzed in order to
obtain the systems’ steady state and diminish transient components in the time series
due to the initialization.

We explore a range of 0 < G < 600 which provides an overview about the possible
population level behaviors at different states of network coupling. Because the coupling
factor G has a crucial influence on the external input on the neuronal populations, this
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allows different regions to operate in different dynamical regimes, as it can be seen in
the bifurcation diagrams of Supplementary Figure 1. Global coupling factor G that was
sampled between G = 0 (i.e., isolated regions) and G = 600 with a step size of AG = 3. The
initial values were taken from 4000 random time points for each state variable in each
region. The length of 2 minutes for the simulations was chosen with the aim to diminish
possible transient components due to the initialization of state variables att= 0. For
analysis we used only the second minute of the simulated signals. No time delays are
implemented in the large-scale network interactions since they are not required for the
emergence of the here evaluated features and setting them to zero increases reduces
required computation resources.

2.6. Spectral properties of the simulated EEG

In TVB, we simulate EEG as a projection of the oscillating membrane potentials inside
the brain via its electromagnetic fields to the skin surface of the head (68) using the
individual lead field matrices which take into account the different impedances of white
matter, grey matter, external liquor space, pia and dura mater, the skull and the skin.
Our lead-field matrices considered the impedances of three compartment borders:
brain-skull, skull-scalp and scalp-air (7, 66, 129, 130). The postsynaptic membrane
potential (PSP) considered for the projection is the one of the pyramidal cells, as they
contribute the mayor part to potential changes in EEG (131). The PSP is calculated by
summing the synaptic input from excitatory and inhibitory subpopulations to the
pyramidal cells. The baseline PSP was derived as the mean PSP across time for every
region. For the LFP or EEG peak frequency, we computed the power spectrum using the
‘periodogram’ function of the Scipy python toolbox (132). From the spectrogram the
‘dominant rhythm’ was identified as the frequency with the highest power.
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3. Results

3.1. Abeta-inferred dynamics lead to individual spectral patterns

We analysed the dominant frequency in the simulated EEG and regional neural signal
(referred to as local field potential (LFP) (Figure 5G - 5]).

We observed a physiologically looking irregular behavior with two frequency clusters in
the alpha and in the theta spectrum (Figure 5G). This behavior is expressed in the area
of lower global coupling G for all 10 AD participants and in 3 out of 8 MCI and 4 out of 15
HC participants. The irregular time series and the broad continuous frequency spectra
(Figure 5B) of network regime in 0 < G < 150 are indicative for deterministic chaos.
Such chaotic network regimes in a BNM have already been reported using the same local
dynamic model (Figure 2 in (85)). Beside this emerging chaotic behavior in our
simulations other phenomena occurred in the parameter space exploration: a state of
hypersynchronization between regions (Figure 5H, 5]) and a state of a ‘zero-line’ with
no oscillations that clearly does not reflect a physiological brain state (Figure 5I, 5]).

In order to locate the individual simulations in the spectrum of possible dynamics,
meaning in the range of possible Abeta load, we examined extreme values of Abeta
distribution. The virtual brains with a mean Abeta load of zero (Supplementary Figure
3A) and with the maximum Abeta load at all regions (Supplementary Figure 3B), we
see as expected for the Abeta-free system a behavior similar to the low-Abeta-containing
HC participants. This is not surprising, because when the HC subjects do not have a high
Abeta signal, the dynamics will converge to those with zero Abeta, which is in fact then
only determined by the underlying standard SC and therefore remains the same for all
participants. However, the homogeneous application of maximum Abeta burden does
not lead to an AD-like pattern but shows a zero-line at the whole spectrum.

To give a mathematical explanation of those phenomena, we related each participants
Abeta-burden to the corresponding inhibitory time constant t; and used former analyses
of the uncoupled local Jansen-Rit model (104) to estimate the bifurcation diagrams for
the coupled system in this study (Figure 6). Shown diagrams allow to predict and
explain the occurrence of alpha and theta rhythms or zero-lines depending on the
underlying Abeta burdens. The variation of ti by local Abeta burden fundamentally
influences the systems bifurcations by shifting the bifurcation point along the range of
external input to the pyramidal cells. As a consequence, different values of Abeta lead to
a variable occurrence of two limit cycles and a stable focus. Therefore, for a single region
with constant external input on pyramidal cells, depending on Abeta the region might be
in an alpha limit cycle, in a theta limit cycle, in a bistable condition where both cycles are
possible or in a stable focus.
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3.2 Simulated EEG slowing in AD is caused by heterogeneous Abeta distribution

Figure 7 displays how the mean dominant rhythms differ between the groups. In the
range below G = 100 we find a slowing in the AD group. Since in the range of lower G all
three groups exhibit realistic frequency spectra and no zero-lines we consider this range
of G as ‘physiological’. Significant differences appear between AD and non-AD for ranges
of high and low G and also for high alpha and low theta rhythms (figure 7). The
heterogeneous distribution of Abeta (in contrast to an averaged homogeneous
distribution) plays a crucial role in the development of this AD-specific slowing. This is
indicated by simulations with the mean averaged Abeta of each participant mapped on
all regions. The simulations revealed a regionally more homogenous behavior in all
groups (Supplementary material, Supplementary Figure 4). Moreover, with
homogeneous distribution of Abeta the slowing in AD participants does not appear: we
don’t see a significant change in the theta band (Figure 7B). This is a strong indicator for
the importance of the individual Abeta distribution and a proof for the necessity of
heterogeneous excitotoxic effects for the creation of neural slowing.

3.3 Intra-individual ratio of high versus low Abeta burden across all regions
determines simulated EEG frequency spectrum - distinct spatial configurations of
Abeta do not matter for slowing

We next examined how LFP/EEG slowing is related to the underlying Abeta burden
(Figure 8). We revealed significant linear dependencies for all groups between Abeta
burden and frequency. We found a strong inverse dependency for AD (R? = 0.625), i.e. an
Abeta-dependent EEG slowing. In contrast, for non-AD participants the relation was
revers, i.e. higher values of Abeta caused EEG acceleration.

To test if specific regions are more important for the observed phenomena, we had to
overcome the bias that only specific regions were strongly affected by Abeta. Le., for the
empirical Abeta distribution we cannot say e.g. for a region with high Abeta if it shows
EEG/LFP slowing only because of its high Abeta value or because of its specific spatial
and graph theoretical position in the network. Therefore, we next performed simulation
with 10 random spatial distributions of the individual Abeta PET SUVRs for the 10 AD
participants. In these simulations, the neural slowing appeared similarly to the empirical
spatial distributions of Abeta (Supplementary Figure 5), which indicates a minor role
of the distinct spatial patterns of Abeta. Instead, the ratio of regions corresponding to
the three different dynamical regimes (alpha, theta and bistable) determined the
simulated frequency spectrum (Supplementary Figure 6). For an optimal value of G
with 100 < G < 150, the ratio of regions with an Abeta value in theta regime best
corresponded to the ratio of regions with theta frequency in LFP. Moreover, the number
of regions in different regimes enables to predict the individual spectral behaviour
across G.
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The results of random spatial distribution of Abeta PET SUVRs were also used for a
parameter space exploration (Figure 9). The analysis reveals that (1) alpha rhythms are
only apparent for low time constants with ti < 30ms, but for the full spectrum of G, more
probable for lower G values; (2) relevant amounts of bistable rhythms are only apparent
for 17ms < 1i < 39ms and G > 120; (3) theta rhythms are present across almost the full
spectra of G and T, with an equal appearance across G, but with a local minimum at t;
18ms, where the system is dominated by alpha and bistable rhythms. This exploration
demonstrates two major insights. First, it confirms the crucial role of t; for the
appearance of alpha or theta rhythms as we expect it out of the (non-coupled)
bifurcation diagrams of Figure 6. Network effects are present (e.g. there are theta
rhythms for low values of ti), but play a minor role here. Second, the value of G does not
significantly affect the probability of theta rhythm, except of an alpha-theta shift for low
Ti< 20ms and higher G > 160. This is caused by the coexistence of stable focus in alpha
regime and theta limit cycle in theta regime for high pyramidal input (Figure 6A and
61).

3.4. Neural slowing propagates to central parts of the network independently of
the spatial Abeta distribution

In the analysis of spatial distribution in relation to the organization of the underlying SC
network (Figure 10), it can be seen that unless Abeta is distributed more peripherally,
the Abeta-dependent effect of neural slowing is focused to central parts of the network.
Even a random distribution of Abeta SUVRs leads to this effect (Figure 10 E-F),
indicating that this is a network effect. Probably this phenomenon is caused because the
slowing effects are not only affecting the region itself, but also its local circuitry and
neighbored regions. Hubs with a high degree and many close neighbours are therefore
more probable of being affected by slow rhythms propagated by other regions. To relate
this to empirical facts: We know from our data (Figure 10A) that Abeta is not deposited
in hubs, but more in peripheral regions of the networks. This shows, however, how the
consecutive pathologic slowing effect is afterwards focused to central and important
parts of the networks. A weak peripheral affection of the inhibitory system therefore
disturbs the full system seriously.

3.5. Virtual Therapy with the NMDA antagonist memantine

The former analyses have shown that Abeta-mediated simulated hyperexcitation can
lead to realistic changes of simulated brain imaging signals in AD such as EEG slowing
(Figures 5 and 6). We therefore wanted to know if an established way to protect the
brain of the hyperexcitation, which is the NMDA antagonist memantine, can lead to
functional reversibility.
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The idea in our model is now that in theory memantine acts anti-excitotoxic via its
NMDA antagonism and should therefore be able to weaken the hyperexcitation we
introduced to the system by Abeta (Figure 11). As mentioned above, the local coupling
parameter c3> represents the main part of the glutamatergic transmission and can
therefore also be seen as a surrogate of NMDAergic transmission. We homogeneously
increased the default value of c3; stepwise to observe the effects on the system. In
Figure 11A and 11B one can see that it would be not useful to decrease c32 to a lower
level then 0.6, because then the system does not have enough energy to produce
network activity in the area of low coupling. The weakened intrinsic NMDAergic
coupling has to be anticipated by a stronger global coupling. This can also be seen when
the global coupling reaches high values (Figure 11C): the red curves of AD patients with
and without virtual memantine are converging. The virtual memantine leads to a partial
reversibility of the altered dominant frequencies in AD compared to HC/MCI. Virtual
memantine increases the mean dominant EEG frequency. These simulated functional
effects do not imply reversibility of neurodegeneration, but they illustrate how
pharmacological intervention can theoretically counteract those processes. This
observation provides first a potential mechanistic explanation of the pharmacodynamics
of memantine. Second, it shows that TVB in general and the Abeta-hyperexcitation
model of this study in particular are able to test the efficacy of treatment strategies such
as drugs and have therefore the potential to be used for the discovery of new treatment
options. Finally, it supports the concept of this study, where the impaired inhibitory
function is modelled by an increased synaptic delay. The effects of altered delay of GABA
transmission can be reversed by adjusting NMDA transmission at another subset of the
local population model. This illustrates that theoretically an alteration of the inhibitory
transmission dynamics may lead to disinhibition causing hyperexcitation in
downstream populations, which is reversible by reduction of excitatory input.
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4. Discussion

Local Abeta-mediated disinhibition and hyperexcitation are considered candidate
mechanisms of AD pathogenesis. In TVB simulations, the molecular candidate
mechanism has led to macro-scale slowing in EEG and neural signal with a particular
shift form alpha to theta previously observed in AD patients (52-57). These observations
cannot be directly inferred by the hyperexcitation implemented in our model. Because
we standardized all other factors and used a common SC for all simulations, this
approach enables to examine the effects of disinhibition on an individual whole-brain
level but without any other confounding factors.

(1) We showed that the slowing in simulated EEG and LFP is specific for the AD
group (Figures 7 and 8). This offers an explanation, how the shift from alpha to
theta, that is observable in EEG of AD patients (52-57), could be explained on a
synaptic level - namely by an impaired inhibition. This computational modelling
result supports the findings of specific toxicity of Abeta to inhibitory neurons
(46-48).

(2) We demonstrate the computational principles underlying this Abeta dependent
slowing of EEG/LFP (Figure 6 and Supplementary Figure 6). Dependent on the
Abeta burden alpha, theta or bistable regime develop caused by an alteration of
the inhibitory time constant that leads to changes of the systems bifurcation
behavior (Figure 6, Supplementary Figures 1, 2 and 6).

(3) The simulated LFP/EEG slowing in AD patients crucially depends on the spatially
heterogenous Abeta distribution as measured by PET - the slowing disappears
when using a homogenously distributed mean Abeta burden instead for
simulation (Figure 7). To exhibit the slowing effect few regions with high Abeta
burden are required - while the specific location of these regions seems not to be
relevant (Supplementary Figure 5).

(4) Independently of the location of high Abeta burdens in the simulated brain,
slowing emerges at the core, i.e. hubs of the structural connectome (Figure 10).
This indicates that that central parts of the system are impacted functionally by
the Abeta burden. Moreover, it shows that while Abeta is often distributed in
peripheral parts of the structural connectome, its functional consequences affect
the important hubs. This could provide a possible explanation why a peripheral
distribution of Abeta leads to severe disturbances of cognitive function.

(5) We also showed that the drug memantine that is known for improving brain
function in severe AD can be modeled by a decreased transmission between the
excitatory interneurons and the pyramidal cells and is able to achieve a
‘normalized’ brain function in silico, too (Figure 11). This moreover
demonstrates the potential of TVB to test and develop new treatment strategies.

In this study, we present proof of concept for linking molecular changes as detected by
PET to large-scale brain modeling using the simulation framework TVB. This study
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therefore can work as a blueprint for future approaches in computational brain
modeling bridging scales of neural function. For the research on AD pathogenesis, this
study provides a possible mechanistic explanation that links Abeta-related synaptic
disinhibtion at the micro-scale to AD-specific EEG slowing. In general, our study can be
seen as proof of concept that TVB enables research on disease mechanisms at a multi-
scale level and has potential to lead to improved diagnostics and to the discovery of new
treatments.
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Fig. 1. Cause and effect model: Alteration of the molecular Abeta pathway in AD
cause disinhibition in the neural mass model. An altered pathway from soluble Abeta
monomers to oligomers to insoluble plaques leads to potentially neurotoxic Abeta
accumulation (9, 15, 16) that can be quantified by PET. Region specific Abeta burden
leads to disinhibition in the neural mass model (44-48) - thus building a bridge between
molecular pathways and brain network modeling. Parts of the figure are modified from

(62).
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Fig. 2. Postulated Abeta effect and its implementation to the Jansen-Rit model. (A)
The virtual brains are based on averaged healthy connectomes and constrained by the
individual regional burden of Abeta (figure modified from (62)). (B) In our simulation,
increased excitability is caused by a disinhibition of excitatory pyramidal cells, i.e.
decreased input from inhibitory interneurons. In the background a histological
representation of the cortical layers: excitatory pyramidal cells (v3) and excitatory
interneurons (vi1) are (exemplarily) located in layer V (internal pyramidal layer), while
the inhibitory stellate (inter-neurons (vz) are located in layer IV (internal granular
layer). In layer I (molecular layer) we see the dendrites of the pyramidal cells, where the
input from the interneurons happens. The effect to the other neuron populations is
represented by mi.3 (background is a modified version of figure 13 from (133), license:
https://creativecommons.org/licenses/by-nc/4.0/). (C) schematic illustration of the

three interacting neural masses in the Jansen-Rit population model. The reduced
inhibition is mediated by negative influence of the local Abeta burden on the inhibitory
time constant 7; (see main text for more detailed explanation). This is intended to lead to
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an increased activity and higher output of the pyramidal cell population. The excitatory
impulse response function (IRF) is specified as he(t) = tHe exp(-t/ te) / Te-. The inhibitory
IRF is specified as hi(t,5) = tHe exp(-t/ ti(8)) / ti(f). These IRFs can be translated into
second-order ordinary differential equations, see Egs. 1 to 3. For explanation of the used
variables, see table 2 (figure modified from (104)). (D) Virtual EEG as the simulation
output (projection of oscillating membrane potentials to the scalp surface) reveals a
shift from alpha to theta activity in AD participants. Shown is a 5 second period of
exemplary EEG channel at location T7 in participant 21 (HC, above) and 4 (AD, below).
The ordinate is showing the dimensionless correlate for electric potential ®. The
exemplary timeseries shows a typical simulation result in the study: in the alpha mode,
which was the starting point of the Jansen-Rit model without the effect of Abeta, it
produces monomorphic alpha activity with amplitude modulations (above). Mainly
exclusively in the AD virtual brains a much more irregular theta rhythm appears
(below).

Sr(ﬁa) in 1/ms

Shmas,r 0.07 By

0.06

0.05
Po
0.04

0.03

0.02 Pmax S
2 14 2 265 4 6

pain 1 SUVR

0.01
Fig. 3. Graphs of the sigmoid transfer function of Abeta. The abscissa represents the
Abeta burden S, the ordinate represents the reciprocal S:(f.) of the inhibitory time
constant 7 ;. See equation 6.
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Fig. 4. Underlying average HC structural connectome. (A) SC Matrix of the
underlying averaged SC, showing the DWI-derived connections weights. 379 regions are

in following order: 180 left cortical regions, 180 right cortical regions of Glasser
parcellation, (115), 9 left subcortical regions, 9 right subcortical regions, 1 brainstem
region. It gets obvious the difference between interhemispherical commissural fibers
(lower weights, with a slightly pronounced diagonal between homologous regions) and
intrahemispherical association fibers (higher weights). Moreover we can observe the
strong connection pattern of the subcortical areas (above region 360). (B) Graph of the
underlying SC. As a threshold, only the strongest 5% of connections were kept for binary
transformation to the adjacency matrix for the graph. Node positions are derived from
the inner structure of the graph by a ‘force’ method (134), assuming stronger forces and
therefore smaller distances between tightly connected nodes. It can be seen that the
laterality is kept in the graph structure (also for subcortical regions) and the whole
graph is highly symmetric. Node size linearly represents the graph theoretical measure
of structural degree for each node. Most important hubs are subcortical regions. The
shown features of symmetry, laterality, homology and subcortical hubs indicate that the
averaged SC still kept its physiological characteristics.
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Fig. 5. Spectral behavior in individuals of the different groups. (A, B, C, D, E, F) -
selected timeseries and spectrograms. On the left: power spectral density of neural
activity for an exemplary region with different values for G. Abscissa is frequency,
ordinate is an estimate of the spectral power (dimensionless equivalent of amplitude per
1 Hz). Colors are representing the EEG frequency bands from delta to beta, indicated
with greek letters (note that this is regional neural activity, not EEG). Corresponding
time series on the right: neural activity at single regions, each showing 5 seconds.
Abscissa is time, ordinate is a dimension-less equivalent of the electric potential. (A)
shows an irregular, amplitude modulated alpha to beta rhythm, (B) an irregular theta
with some delta and alpha inside. In (C) we can observe a monomorphic spike signal
with a theta/delta frequency of 3 Hz and higher order harmonies. (D) Shows a
monomorphic (high) alpha rhythm, (E) shows the zero-line with a continuous power
spectrum. (F) Time series of 10 regions in a G area of hypersynchrony. We can see here
the synchronized signals in theta rhythm and multiple harmonies of higher order in the
spectrogram. (G, H, 1, J) - four exemplary participants with different types of frequency
behaviors along the range of coupling. Shown are the regional simulated dominant
frequencies (y) along global coupling G (x) for individual exemplary participants 4, 8, 12
and 23. See Supplementary Table 7 in supplementary material for participant IDs.
Color indicates the density of regions with the same coordinates. The sources of the
timeseries on the left (A-F) are marked in the plots. (G) irregular or chaotic rhythm with
two clusters in alpha and theta. AD participant 8. (H) chaotic behavior for lower G, then
harmonic and hypersynchronization. AD participant 4. (I) early zero-line, with
monomorphic alpha activity at very low G. HC participant 23. (J) harmonic to zero-line
rhythm, with a G area of hypersynchrony in alpha and theta, depending on G.
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Fig. 6. Exemplary bifurcation diagrams of the Jansen-Rit model for three different
inhibitory time constants linked to three different local Abeta burdens. The
modulation of the inhibitory time constant t; by Abeta induces shifts in the
corresponding bifurcation diagrams. All bifurcation diagrams (A, E, I) show the
postsynaptic potential of pyramidal cells (y) depending on the pyramidal input (x) for
uncoupled simulations (104). The default input on pyramidal cells starts at a firing rate
of 108.5/s. Because of the potential-to-firing-rate transfer function (equation 5), global
scaling factor G is not only affecting the input currents, but also the firing rates. For
higher values of G, the input on pyramidal cells is expected to increase. First Columns,
panels (A, B, C, D): Bifurcation diagram with the default time constant of 14ms. This
appears in the simulation if the Abeta SUVR is below the clinical cut-off 1.4, because then
the time constant is unaffected according the transfer function in equation 6. In this
situation, there is only one limit cycle existing, which produces a frequency in alpha
range (A). After increasing the input on the pyramidal cells, the alpha cycle collapses and
transforms to a stable focus, where no oscillations appear in the absence of noise. This is
the ‘zero-line’ in our results. (B, D): HC participant 22 shows monomorphic alpha for
lower G (green and blue line) and zero-line for higher G (red line). The distribution of
regions with this dynamical regime is shown in (C): almost all regions of participant 22
are in this ‘alpha regime’ with an inhibitory time constant between 14ms and 20ms (red
columns in (C)) This homogeneity explains the low variance of rhythms shown in the
lower G ranges of (B), because all regions are in the same limit cycle and in the absence
of artificial noise there is no possibility for an amplitude modulating factor.

Second column, panels (E, F, G, H): Bifurcation diagram with a time constant of 22ms,
which corresponds to an intermediate Abeta load and a bistable dynamical regime
which occurs for time constants between 20ms and 28ms. (E) Starting at the blue line
(initial condition in alpha cycle), with an increased input on the pyramidal cells (e.g. by
the network) it gets possible to reach the second limit cycle, which produces a theta
rhythm and coexists with the alpha cycle while the pyramidal input is in a specific range
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(120/s - 170/s). When the input is increased too much (e.g. by many connections of the
network or by increased coupling factor G), the theta cycle disappears and the system
jumps back to the alpha cycle and later on to the stable focus, which shows no
oscillations in the absence of noise. This can explain some of the spectral behaviors we
observed typically in the AD group (F, H): It starts with chaotic rhythms in alpha (blue
line) and theta (red line) and in the shown AD participant 1 then gets synchronized to
either alpha or theta. With higher couplings, the frequency gets more probably
synchronized to alpha (green line), because higher G indicates a higher pyramidal input
and therefore a higher attraction of the alpha cycle. (G) Remarkably for the shown
participant is the fact that the bistable behavior is caused by a very small amount of
regions in bistable regime, which propagate the theta rhythm to most other regions in
the area 200 < G < 300.

Third column, panels (I, J, K, L): Bifurcation diagram with a time constant of 50ms,
which correlates to a 95t percentile Abeta load and above. Those high Abeta burdens
lead to a theta dynamical regime, which occurs for time constants between 28ms and
50ms. In comparison to (E), the alpha limit cycle disappeared in (I). Therefore, we
expect only theta rhythms or an activity at the stable focus. The theta cycle now begins
shortly above the initial condition of pyramidal input without the alpha cycle in
between. For an initial input of 108.5/s the system is in a stable focus. This may explain
why in the simulation with maximum Abeta load at all regions (so each with a time
constant of 50ms) we see a zero-line without alpha at lower G values (figure S1 in the
supplementary material). (J, L) A state of theta-only rhythm appeared in few AD
participants at higher Gs (blue line). In the spectral behavior of AD participant 7, we can
moreover observe a strong bistable pattern with chaotic frequency distributions for G <
300. This is likely caused by the high amount of bistable regions (K), while the
synchronization to theta in higher G is an effect of the high proportion of regions in theta
regime.
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Fig. 7. AD-specific slowing in EEG and PSP and influence of the heterogeneous
pattern of Abeta distribution to the spectral behavior. (A, B): The panels show the
‘spectrograms’, more precise the amount of regions with a dominating frequency
averaged for all G values and the subjects of each group. Below, black bars are indicating
significant differences for all 90 examined frequencies by a Kruskal-Wallis test
(compared were the means of the amount of regions in each group having this particular
frequency). In (A), for the empirical Abeta distribution pattern, the red dotted line (AD)
diverges from the non-AD participants with a strong presence of dominating theta (peak
at 4 Hz) and the absence of zero-line rhythm (except of very few regions, see arrow).
Significant differences only appear between AD and each HC and MCI, namely for high
alpha / low beta and for theta/delta (black bars). At f = 1.2 Hz (red bar), the significance
level is also achieved when using a strict Bonferroni correction (p < 0.05 / 90). In
contrast, (B) shows the same plot if the spatial distribution was ‘blurred’: There is no
visual difference between the behavior of the three groups, and also no theta rhythm is
existing in the simulations. All groups have a dominating zero-line behavior averaged
across the full G range (see arrow). However, there are some frequencies that
significantly differ between AD and each HC and MCI in alpha / beta range, which could
be also visually related to small peaks at the plots beside. In theta and delta, where we
would expect to see the slowing, there is no significant difference at all. Due to
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readability, for (A) and (B) the y-axis was limited to the amount of 100 regions. In (A),
the zero-line peak of HC and MCI ends at 211, in (B) all zero-line peaks end at 323. The
different spectra lead to different G-dependent mean frequencies for the groups, which
significantly differ in areas of high and low G: (C, D) - comparison of EEG and LFP
between groups. Mean dominant rhythms across all simulated EEG channels (C) and
region-wise simulated LFPs (D) for all analyzed global coupling values. The frequencies
of AD patients are significantly different in EEG as well as in the regional neuronal
population signal. Filled shapes and thin lines represent the quantiles at 0.95 and 0.05
for each group.

(C) for EEG one can see that the 95%-quantile of AD and HC as well as MCI is not
overlapping in the physiological area of lower G, where AD tends to slower frequencies.
In a Kruskal-Wallis test, the difference between the means of all channel frequencies per
subject in the three groups is significant for AD and non-AD at 0 < G < 60 (each AD to HC
and AD to MCI: p < 0.0001). They are also significantly different in the area of higher G,
where AD is faster -at 450 < G < 470 (each AD to HC and AD to MCI: p < 0.0001).

(D) for simulated regional neural signal the slowing effect is less prominent. The
broader range of frequencies for AD is represented by the high and low limit of the 95%-
quantile. This can be related to the two frequency clusters in AD at alpha and theta,
which are not frequently apparent in non-AD (as in Figure 5). In a Kruskal-Wallis test,
the difference between the means of all regional frequencies per subject in the three
groups is only continuously significant for AD against HC at 400 < G < 450 (AD
compared to HC p < 0.0001). For the other comparisons, only isolated G values deliver
significant differences in the area of low G (HC and MCI) and intermediate G (AD and
MCI). Because of the big amount of tests necessary to test all global coupling values,
none of the tested G values achieved Bonferroni corrected significance. However,
because we assume that neither the frequencies at (A) and (B) nor the G values at (C)
and (D) are independent variables (which is also the reason for the ‘grouped’ clusters of
significance at alpha and theta and G = 50 and G = 450), a Bonferroni correction is not
necessary.
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Fig. 8. Abeta-dependent slowing of LFPs is specific for AD participants. Meanwhile
there is a significant linear dependency between Abeta and LFP frequency for all groups,
only for AD a higher burden of Abeta leads to a decrease of frequency. HC and MCI show
inverse correlations. Plotted are density plots showing the dependency between the
local Abeta loads and LFPs. (A) HC group, (B) MCI group and (C) AD group. The matrices
are containing the resulting regional peak frequencies for all examined coupling values G
for all participants. Linear regressions (black lines) revealed highly significant
regression coefficients (p<0.0001). A strong linear dependency between mean Abeta
and LFP, that explains the greater part of the variance, is only apparent in the AD group
(C). 37.5% of the variance yet cannot be explained by this linear dependency. Moreover,
only for AD the dependency leads to slower frequencies for higher Abeta SUVRs,
meanwhile HC and MCI have slightly faster frequencies for higher Abeta SUVRs. Visually
one can see at least four contributing patterns in the AD group (C): (1) the linear
decrement of frequency for higher Abeta, shown by the regression line, (2) the two
frequency clusters (orange spots) at alpha and theta, (3) some regions with the zero-line
behaviour, particular those with low Abeta (thin line at the left, with SUVR of about 1.5),
and (4) a broad variability of frequencies for regions of the same Abeta SUVR (horizontal
distribution). These phenomena cannot be explained completely by a linear dependency
and moreover not by a linear system at all. The criticality that divides the dynamics into
three different frequency modes (zero, alpha and theta) is a phenomenon of the Jansen-
Rit model as a non-linear system (Figure 6 and Supplementary Figure 6) and the
broad frequency distribution is (probably) a network effect.
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Fig. 9. Alpha and bistable rhythms only appear in a specific part of the parameter
space between G and ti. This parameter space exploration was done by coupled
simulations and therefore includes network effects. Frequency (by color) is presented
dependent on global coupling G (x) and inhibitory time constant t; (y). Projections to G
and t; are shown beside the matrix plot, here the frequencies are classified into alpha
rhythm (f > 8 Hz), theta rhythm (f < 5 Hz) and bistable rhythms (5 < f < 8). No relevant
proportion of zero-lines appeared in the simulations. The difference to empirical EEG
classes (with slightly lower borders for theta, meaning more exactly a theta/delta
rhythm) are reasonable here because of the knowledge of only two different limit cycles
in the examined configuration of the Jansen-Rit model (Figure 6). This is also the reason
for the classification of frequencies between 5 and 8 Hz as bistable. The exploration was
non-systematically performed by using all regions of random distributed Abeta SUVR
values of the 10 AD participants, with 10 iterations of randomization per participant.
However, except single values of t;, the full spectrum of ti could be explored. Single
empty columns are filled with neighbor columns for better readability. In principle wee
the an ‘isle’ of alpha for low coupling and low time constant, while the rest of the
dynamics is dominated by theta and delta. A full frequency spectrum (also green and
yellow colors) is only apparent near the borders of the alpha isle in higher coupling.
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Fig. 10. Theta rhythms affect central parts of the network independently of the
spatial distribution of Abeta. (A) Abeta PET SUVR for AD participants: the distribution
is diffuse along the cortex with no strong affection of subcortical hubs. This well
corresponds to the neocortical stage C of Abeta distribution (11, 135, 136). (B) There is
no linear dependency between the Abeta SUVR and the structural degree, as the graph
above already indicates. In contrast to that, (C) shows the distribution of theta rhythm,
computed as the proportion of each regions simulations (201 for different values of G for
10 subjects) with dominant theta rhythm (here simplified as a frequency that is below 8
Hz and not zero, so more precise the theta-delta-band). The patterns are not consistent
with those of (A). This indicates that not the distinct region affected by Abeta is crucial,
but more its local circuitry. Moreover, one can observe that regions with a higher degree
often have a high appearance of theta rhythm (D) and show a linear dependency with R?
= 0.183, in contrast to the distribution of Abeta (B), which hasn’t shown such a
dependency. This phenomenon is stable also for the random spatial distribution of Abeta
SUVRs (E): Here we see even a stronger dependency (R? = 0.29) between structural
degree and theta rhythm (F). This is remarkable because (unless the spatial distribution
is random) the ‘pathologic’ theta is focused on the hubs. This indicates that there must
be network effects which concentrate the appearing theta to those regions with higher
degree.
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Fig. 11. Modeling NMDA antagonism by virtual memantine. We modified the local
dynamics for the AD group by homogeneously decreasing c32, which represents the
coupling from excitatory population to the pyramidal cell and therefore is a surrogate
for NMDA receptor activity. (A) PSP and (B) distribution of regional frequencies along
different global couplings for various values for c32. The plots are similar to those in
Figures 5 and 7. On the right, in red, we see the default value of c32 = 0.8 as in the
simulations before. When scaling the factor down, one can see in (A) that the system
needs higher global coupling to increase energy in the PSPs. When decreasing c32 too
much, this leads to a dying out of activity in the area of lower global coupling, which
begins at a value of c3; = 0.5. We therefore used for memantine the reduction by 0.25%
when changing c32 from 0.8 to 0.6. (C) Mean EEG frequency for the three groups HC
(blue), MCI (green), AD (red, with shadowed area for the range between 5% and 95t
percentile) and AD with memantine (red dotted line). The virtual application of
memantine shifts the AD group to the level of HC and MCI (arrow) and out of the
variance of AD without memantine.
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