

1 **Transcriptional analysis defines TCR and cytokine-stimulated MAIT cells as rapid**
2 **polyfunctional effector T cells that can coordinate the immune response**

3 Rajesh Lamichhane¹, Marion Schneider¹, Sara M. de la Harpe², Thomas W. R. Harrop³, Rachel
4 F. Hannaway¹, Peter Dearden³, Joanna R. Kirman¹, Joel D. A. Tyndall², Andrea J. Vernall², and
5 James E. Ussher^{1*}

6 ¹Department of Microbiology and Immunology, University of Otago, Otago, New Zealand

7 ²School of Pharmacy, University of Otago, Otago, New Zealand

8 ³Department of Biochemistry, University of Otago, Otago, New Zealand

9

10 *Corresponding author: Dr. James E. Ussher (james.ussher@otago.ac.nz)

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 **Abstract**

26 MAIT cells are an abundant innate-like T cell population which can be activated via either their
27 T cell receptor (TCR), which recognizes MR1-bound pyrimidine antigens derived from
28 microbial riboflavin biosynthesis, or via cytokines, such as IL-12 and IL-18. *In vivo*, these two
29 modes of activation may act in concert or independently depending upon the nature of the
30 microbial or inflammatory stimuli. It is unknown, however, how the MAIT cell response differs
31 to the different modes of activation. Here, we define the transcriptional and effector responses of
32 human MAIT cells to TCR and cytokine stimulation. We report that MAIT cells rapidly respond
33 to TCR stimulation through the production of multiple effector cytokines and chemokines,
34 alteration of their cytotoxic granule content and transcription factor expression, and upregulation
35 of co-stimulatory proteins CD40L and 4-1BB. In contrast, cytokine-mediated activation is slower
36 and results in more limited production of cytokines, chemokines, and co-stimulatory proteins;
37 differences in granule content and transcription factor expression are also evident. Therefore, we
38 propose that in infections by riboflavin-synthesizing bacteria, MAIT cells play a key early role in
39 effecting and coordinating the immune response, while in the absence of TCR stimulation (e.g.
40 viral infection) their role is likely to differ.

41

42 **Keywords**

43 Mucosal associated invariant T cells, T cell receptor, interleukin-12, interleukin-18, activation,
44 effector functions, transcriptome, transcription factors

45

46

47

48

49

50

51

52 **Introduction**

53 Mucosal associated invariant T (MAIT) cells are innate-like T cells, which are abundant in
54 blood, mucosal surfaces, and liver in humans (Martin et al., 2009). MAIT cells express a semi-
55 invariant T cell receptor (TCR) consisting of $V\alpha 7.2$ - $J\alpha 12/20/33$ combined with limited $V\beta$
56 diversity (Gherardin et al., 2016). MAIT cells were originally discovered as $CD4^-CD8\beta^-$ T
57 cells (Tilloy et al., 1999), and are mostly $CD8\alpha^+$, expressing an effector memory phenotype
58 (Leeansyah, Loh, Nixon, & Sandberg, 2014). They also share some features of natural killer
59 (NK) cells, notably high expression of the C-type lectin CD161 (Billerbeck et al., 2010;
60 Dusseaux et al., 2011; Kurioka, Kleinerman, & Willberg, 2018).

61 Unlike conventional T cells, whose TCRs recognize peptides loaded on MHC molecules, the
62 MAIT cell TCR recognizes bacteria-derived vitamin B precursor metabolites, recently identified
63 as pyrimidine derivatives of 5-amino-6-D-ribitylaminouracil (5-A-RU), loaded on the non-
64 polymorphic MHC class Ib related molecule 1 (MR1) (Corbett et al., 2014; S. Huang et al.,
65 2005; Kjer-Nielsen et al., 2012; Treiner et al., 2003). Consistent with this, many riboflavin
66 producing bacteria, but not riboflavin deficient bacteria, have been shown to stimulate MAIT
67 cells in a MR1 dependent fashion (Gold et al., 2010; Le Bourhis et al., 2013). Various studies
68 have reported killing of bacterially infected cells by MAIT cells *in vitro* (Kurioka et al., 2015; Le
69 Bourhis et al., 2013) and their importance in controlling bacterial infection in mice and humans,
70 further establishing MAIT cells as important players in anti-bacterial immunity (Chua et al.,
71 2012; Georgel, Radosavljevic, Macquin, & Bahram, 2011; Grimaldi et al., 2014; Le Bourhis et
72 al., 2010; Meierovics, Yankelevich, & Cowley, 2013; Smith, Hill, Bell, & Reid, 2014; Wang et
73 al., 2018).

74 MAIT cells express high amounts of the interleukin-18 receptor (IL-18R) and IL-12R, and are
75 able to respond to cytokine signals independent of their TCR (Ussher et al., 2014). This was
76 initially shown with the combination of IL-12 and IL-18 (Jo et al., 2014; Ussher et al., 2014). IL-
77 15 can also activate MAIT cells, but IL-15-induced MAIT cell activation is IL-18 dependent
78 (Sattler, Dang-Heine, Reinke, & Babel, 2015). MAIT cells can be activated in a TCR
79 independent manner by antigen presenting cells treated with bacteria (Ussher et al., 2016;
80 Wallington, Williams, Staples, & Wilkinson, 2018) and by virally infected cells (Loh et al.,
81 2016; van Wilgenburg et al., 2016). Additionally, MAIT cells are activated in both acute and

82 chronic viral infections, and in patients with systemic lupus erythematosus (Chiba et al., 2017;
83 van Wilgenburg et al., 2016). Cytokine-mediated activation is important *in vivo*, as demonstrated
84 by a recent study in mice which showed IL-18-dependent MAIT cell accumulation in lungs and
85 MAIT cell-specific protection against challenge with a lethal dose of influenza virus
86 (Wilgenburg et al., 2018). The *in vivo* response to bacteria includes not only a TCR-dependent
87 but also a TCR-independent component driven by cytokines. The synergy between TCR signals
88 and cytokine mediated signals to achieve sustained activation of MAIT cells has also been
89 observed *in vitro* (Slichter et al., 2016; Turtle et al., 2011; Ussher et al., 2014).

90 In recent years, the MAIT cell phenotype has been extensively explored (Dias, Leeansyah, &
91 Sandberg, 2017; Kurioka et al., 2017), however, the full array of effector functions of MAIT
92 cells upon activation is yet to be completely defined. Importantly, it remains unclear whether
93 functions driven through the TCR are distinct from those driven in a TCR-independent manner.
94 In this study, we have explored the full range of effector functions of TCR versus cytokine
95 activated human MAIT cells. Focusing on early events following triggering, we found marked
96 differences in the production of cytokines, chemokines, and cytotoxic granule contents, and the
97 expression of transcription factors in MAIT cells depending upon the mode of activation. These
98 distinct early functional responses may reflect different roles for MAIT cells in response to
99 diverse infectious threats and potentially in response to commensal organisms.

100 **2 Materials and Methods**

101 **2.1 Cells and bacteria**

102 Peripheral blood was collected from healthy donors with approval from the University of Otago
103 Human Ethics Committee; written informed consent was obtained from all donors. PBMCs were
104 elutriated by density gradient centrifugation using LymphoprepTM (Axis-Shield PoC AS, Oslo,
105 Norway) and stored in liquid nitrogen. Each experiment was performed after overnight resting of
106 thawed and washed PBMCs in RPMI 1640 supplemented with L-glutamine (Life Technologies
107 Corporation, Carlsbad, USA), 10% fetal calf serum (Gibco, New Zealand and Sigma-Aldrich, St.
108 Louis, USA), and Penicillin-Streptomycin (Sigma-Aldrich) (now onwards referred to as R10).
109 For some experiments, V α 7.2 $^+$ cells were isolated from PBMCs by labelling with anti-V α 7.2-PE
110 antibody (Clone; 3C10, BioLegend, San Diego, USA) followed by separation with anti-PE

111 magnetic beads using MS columns (both from Miltenyi Biotec, Bergisch Gladbach, Germany).
112 THP1 monocytic cells were maintained in R10.

113 *Escherichia coli* HB101 was cultured overnight in Luria-Bertani (LB) broth, washed with PBS
114 (Oxoid Ltd, Basingstoke, UK) and fixed with 2% formaldehyde for 20 minutes at 4 °C. After
115 washing, fixed bacteria were resuspended in PBS and quantified with 123count eBeads™
116 (eBioscience, San Diego, USA) by flow cytometry using a FACSCanto II (BD biosciences, San
117 Jose, USA).

118 **2.3 MAIT cell activation**

119 Viable PBMCs were counted by a Neubauer hemocytometer excluding dead cells using Trypan
120 Blue (Invitrogen, Carlsbad, USA) and 10^6 PBMCs/200 μ L were seeded in U-bottom 96 well-
121 plates. Formaldehyde-fixed *Escherichia coli*, 5-A-RU (synthesized in School of Pharmacy,
122 University of Otago and stored in single use aliquots at -80 °C, refer to Supplementary Methods
123 for details), or the combination of 50 ng/mL IL-12 (Miltenyi Biotec) and 50 ng/mL IL-18 (R &
124 D Systems, Minneapolis, USA), were added at the start of each experiment. Other than in the
125 time course experiments, PBMCs were treated with 5-A-RU or *E. coli* for 6 or 24 hours or IL-
126 12+IL-18 for 24 hours. Some experiments were performed with 5-A-RU/MG (5-A-RU and
127 methyl glyoxal (MG, from Sigma-Aldrich) mixed at a molar ratio of 1:50 immediately prior to
128 use). For assessing the role of KDM6B, 10^5 CD8 $^+$ T cells were treated overnight with 5 μ M
129 GSK-J4 (Sigma-Aldrich) and co-cultured with 100 bacteria per cell (BpC) *E. coli* fed 10^5 THP1
130 monocytes. MR1 mediated activation of MAIT cells was blocked with 2.5 μ g/mL anti-MR1
131 antibody (clone 26.5, BioLegend, San Diego, USA). When assessing cytokine production and
132 cytotoxic granule content by flow cytometry, brefeldin A (BioLegend) was added at 5 μ g/mL for
133 final 4 hours of culture.

134 **2.4 Flow cytometry**

135 Cells were stained for surface markers, followed by fixing in 2% paraformaldehyde (except in
136 sorting experiments), and treated with permeabilization buffer (BioLegend) for intracellular
137 staining of cytokines and cytotoxic molecules or Foxp3/transcription factor buffer set
138 (eBioscience) for transcription factors. MAIT cells were identified as CD8 $^+$ T-cells expressing
139 semi-invariant TCR V α 7.2 and high levels of CD161 (Dusseaux et al., 2011); the gating strategy

140 is shown in S. Figure 1. In some experiments, double negative and CD4⁺ MAIT cells were also
141 examined. In all flow cytometry experiments, dead cells were excluded by live/dead fixable near
142 IR (Invitrogen) staining. Antibodies used were: anti-CD3 PE-Cy7 (UCHT1, BioLegend), anti-
143 CD3 BV510 (OKT3, BioLegend), anti-CD8 eFluor450 (RPA-18, eBioscience), anti-TCR V α 7.2
144 PE or PE-Cy7 or AF700 (3C10, BioLegend), anti-CD161 APC (191B8, Miltenyi Biotech), anti-
145 CD161 BV605 (HP-3G10, BioLegend), anti-TCR γ δ BV510 (B1, BioLegend), anti-CCR7
146 PerCP-Cy5.5 (G043H7, BioLegend), anti-TNF α FITC (Mab11, BioLegend), anti-IFN γ PerCP-
147 Cy5.5 (4S.B, BioLegend), anti-IL-26 PE (510414, R & D Systems), anti-CD56 APC-Cy7, anti-
148 CD107a PE (H4A3, BioLegend), anti-granzyme A PE (CB9, BioLegend), anti-granzyme B
149 FITC (QA16AO2, BioLegend), anti-perforin PerCP-Cy5.5 (B-D48, BioLegend), anti-FasL PE
150 (NOK-1, BioLegend), anti-CD40L FITC (24-31, BioLegend), anti-4-1BB PE (4B4-1,
151 BioLegend), anti-ROR γ t PE (Q21-559, BD Biosciences, San Jose, CA, USA), anti-PLZF AF647
152 (R17-809, BD Biosciences), anti-T-bet PE Cy7 (4B10, BioLegend), anti-EOMES eFluor660
153 (WD1928, eBiosciences) and anti-Blimp1 PE CF594 (6D3, BD Biosciences). Samples were
154 acquired on a FACS CantoII, LSR Fortessa, or in sorting experiments a FACS AriaTM II (all BD
155 Biosciences), and analyzed by FlowJoTM V10 (TreeStar, Ashland, USA).

156 **2.5 Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR)**

157 A total of 10⁷ human PBMCs were treated with formaldehyde-fixed *E. coli* (10 BpC) or 5-A-RU
158 (5 μ M) or IL-12+IL-18 (50 ng/mL each) for different durations or were left untreated. Cells were
159 stained with fluorescently-labelled antibodies and MAIT cells (CD3⁺CD8⁺TCR γ δ CCR7⁻
160 CD161⁺⁺V α 7.2⁺ cells) were isolated by fluorescence activated cell sorting on a FACS AriaTM II.
161 RNA from sorted MAIT cells was isolated using the Nucleospin RNA isolation kit (Macherey-
162 Nagel, Düren, Germany) as per the manufacturer's instructions and stored at -80 °C. cDNA was
163 synthesized using the Superscript IV system (Invitrogen) using oligo-dT primers. Real time PCR
164 for gene expression was performed using the KAPA SYBR FAST mastermix on a ViiA7 or QS6
165 Real-Time system (Applied Biosystems, Foster City, USA). Previously published primers were
166 used: TNF α (forward, AGCCTCTTCTCCTCCTGATCGTG; reverse,
167 GGCTGATTAGAGAGAGGGTCCCTGG) (Giribaldi et al., 2010); IFN γ (forward,
168 TGACCAGAGCATCCAAAAGA; reverse, CTCTTCGACCTCGAACACAGC) (Munk et al.,
169 2011); IL-17A (forward, AACCGATCCACCTCACCTT; reverse,

170 GGCACTTGCCTCCCAGAT) (Guenova et al., 2015); IL-22 (forward,
171 GCAGGCTTGACAAGTCCAAC; reverse, GCCTCCTTAGCCAGCATGAA) (Guenova et al.,
172 2015); GAPDH (forward, CAACAGCGACACCCACTCCT; reverse,
173 CACCCTGTTGCTGTAGCCAAA) (Maess, Sendelbach, & Lorkowski, 2010).

174 **2.6 RNA Sequencing**

175 A total of 10^7 human PBMCs per donor (n=7) were treated with formaldehyde-fixed *E. coli* (10
176 BpC) or 5-A-RU (5 μ M) for 6 hours or IL-12+IL-18 (50 ng/mL each) for 24 hours and MAIT
177 cells were isolated by fluorescence activated cell sorting RNA was sent to the Molecular
178 Genetics Facility at the Liggins Institute, Auckland, New Zealand for library preparation and
179 sequencing. Libraries were prepared with the Ion AmpliSeq™ Transcriptome Human Gene
180 Expression Kit and were sequenced on an Ion Proton. Read count data files were generated with
181 Torrent Suite™ software. Downstream analysis for differentially expressed genes (DEG) were
182 performed using DESeq2 package in R-Bioconductor (Love, Huber, & Anders, 2014). Log₂ fold
183 change and adjusted p-value (Padj) were arbitrarily set at 1 (fold change 2) and 0.05 respectively
184 as cut-offs during DEG analysis. Principal component analysis (PCA) plot was generated in
185 DESeq2. Venn-diagrams were created from DEGs in an online tool developed by Bioinformatics
186 & Evolutionary genomics, VIB/UGent (<http://bioinformatics.psb.ugent.be/webtools/Venn/>).
187 Normalized gene expression values of total and custom lists of DEGs against all stimuli were
188 used to generate heat-maps on Heatmapper (Babicki et al., 2016)
189 (<http://www.heatmapper.ca/expression/>) employing the average linkage clustering and Spearman
190 rank correlation distance measurement methods. Gene set enrichment analysis was performed on
191 GSEA software version 3.0 (Mootha et al., 2003; Subramanian et al., 2005) using normalized
192 gene expression values of all genes from 28 samples as the expression database and compared
193 either with the curated gene set databases; KEGG or Reactome, provided in the software/website
194 or the tissue repair gene dataset obtained from the publication by Linehan et al (Linehan et al.,
195 2018).

196 **2.7 LEGENDplex immunoassays**

197 A total of 10^5 column purified V α 7.2 $^+$ MAIT cells per donor were co-cultured with 10^5 THP1
198 monocytes and stimulated with either formaldehyde-fixed *E. coli* (100 BpC) or 5-A-RU (5 μ M)
199 \pm anti-MR1 antibody for 6 hours; for controls, THP1 monocytes were treated with *E. coli* or 5-A-

200 RU or were co-cultured with V α 7.2 $^{+}$ cells without any treatment. For cytokine stimulation, 10 5
201 V α 7.2 $^{+}$ MAIT cells were treated with IL-12+IL-18 for 24 hours; untreated V α 7.2 $^{+}$ cells were
202 used as a control. Cytokines, chemokines, and cytotoxic molecules in the supernatant were
203 quantified by LEGENDplex bead-based immunoassay (BioLegend) following the
204 manufacturer's instructions using three multiplex panels: Human Proinflammatory Chemokine
205 (mix and match 7-plex subpanel for CCL3, CCL4, CCL20, IL-8, CXCL9, CXCL10, and
206 CXCL11), Human CD8/NK (mix and match 11-plex subpanel for IL-2, IL-6, IL-10, IL-17A,
207 TNF α , IFN γ , sFasL, granzyme A, granzyme B, perforin, and granulysin), and Human custom
208 panel (IL-1 α , IL-1 β , IL-17F, IL-21, IL-22, IL-23, and CD40L).

209 **2.8 Neutrophil migration assay**

210 Neutrophils were freshly isolated from peripheral blood by a two-step method of dextran
211 (Thermofischer Scientific) sedimentation of erythrocytes followed by LymphoprepTM gradient
212 centrifugation and removal of low-density PBMCs (Kuhns, Long Priel, Chu, & Zaremba, 2015).
213 Residual erythrocytes from the high-density neutrophil fraction were removed by lysis with
214 water. 3x10 5 neutrophils in 200 μ L R10 were added into the upper compartment of a transwell
215 system incorporating polycarbonate membrane insert (5 μ m pore size, Corning), with 500 μ L
216 diluted supernatant (1:2.5 in R10) of TCR- or cytokine-stimulated MAIT cells (obtained as
217 mentioned in LEGENDplex immunoassays) in the lower compartment; 5 ng/mL IL-8 (BD
218 Biosciences) was used as positive control for neutrophil migration. After incubation at 37 °C for
219 1 hour, the transwell insert was carefully removed and the number of neutrophils in the lower
220 compartment were counted using a hemocytometer.

221 **2.9 Statistical analysis**

222 Data were analyzed using GraphPad Prism V7.03. Statistical significance was assessed with a
223 one-way repeated measures ANOVA with Sidak's multiple comparison tests for multiple groups
224 and paired two tailed t-tests for two groups. Data were normalized, or log transformed in some
225 cases when not normally distributed. Mean \pm standard error of mean (S.E.M) are shown
226 throughout.

227 **3. Results**

228 **3.1 Timing of maximal activation and cytokine profile of MAIT cells differ between TCR
229 and cytokine stimulation**

230 First, we treated human PBMCs with *E. coli* or IL-12+IL-18 and confirmed robust MAIT cell
231 activation via TCR-dependent and -independent mechanisms (Figure 1A and B). The response to
232 *E. coli* at 6 hours was completely MR1-dependent while at 24 hours it was only partially MR1-
233 dependent (Figure 1A). The time course of the responses to both stimuli was then assessed at
234 both the protein and the mRNA levels (Figure 1C-D and F-G). MAIT cells rapidly responded to
235 *E. coli* with the transcription of multiple inflammatory cytokines (tumor necrosis factor α
236 (TNF α), interferon γ (IFN γ), IL-17A and IL-22) compared to the untreated control; the
237 maximum response was observed at 4-6 hours (Figure 1C). Consistently, production of TNF α
238 and IFN γ peaked at \sim 6 hours (Figure 1D). While MAIT cells were also robustly activated with
239 IL-12+IL-18, the response was dominated by the production of IFN γ at both mRNA and protein
240 levels and peaked at 24 and 20 hours respectively (Figure 1E and F). Therefore, MAIT cells
241 respond rapidly to TCR stimulation and are polyfunctional, producing multiple pro-inflammatory
242 cytokines, whereas cytokine driven activation is slower and is dominated by IFN γ production.

243 Since bacteria provide signals in addition to the MAIT cell activating ligand (Ussher et al.,
244 2016), we assessed the response to the MR1 precursor ligand, 5-A-RU, as a pure TCR signal.
245 MAIT cell activation with 5-A-RU at both 6 and 24 hours was predominantly TCR mediated
246 (Figure 1G). Interestingly, MAIT cells stimulated with *E. coli* or 5-A-RU for 6 hours showed
247 similar cytokine profiles, which were markedly different from those obtained by IL-12+IL-18
248 stimulation for 24 hours; with TCR activation, TNF α mono-producers and TNF α /IFN γ double-
249 producers dominated while very few IFN γ mono-producing cells were observed, whereas with
250 cytokine stimulation IFN γ mono-producers dominated with very few TNF α /IFN γ double-
251 producers seen (Figure 1H and I). These similar cytokine profiles of *E. coli* and 5-A-RU
252 activated MAIT cells and the complete dependence of IFN γ production on MR1-TCR interaction
253 during early *E. coli* treatment (Figure 1A) strongly suggests that the early bacterial activation of
254 MAIT cells is purely TCR dependent. In contrast, *E. coli* treatment for 24 hours, which involved
255 both TCR-dependent and-independent mechanisms (Figure 1A), elicited a cytokine profile
256 similar to that induced by IL-12+IL-18 stimulation, although TNF α mono-producers were only
257 seen with *E. coli* (Figure 1H and I). These results suggest that the two MAIT cell activating

258 pathways not only differ in the timing of activation, but also the resulting cytokine production
259 profiles.

260 **3.2 Unique transcriptional profiles of TCR- and cytokine-stimulated MAIT cells**

261 To further investigate the differences observed with the two modes of activation, transcriptomic
262 profiles of MAIT cells activated via TCR with either *E. coli* or 5-A-RU for 6 hours or via
263 cytokine receptors with IL-12+IL-18 for 24 hours were generated by RNA sequencing; untreated
264 MAIT cells were included for comparison. First, we compared the response of MAIT cells to
265 different treatments by principal component analysis. We observed good separation of activated
266 MAIT cells from non-activated MAIT cells across the first two principal components that
267 together accounted for 62% of total variability in the dataset (Figure 2A). MAIT cells activated
268 by *E. coli* or 5-A-RU formed overlapping clusters that were separated from cytokine treated
269 MAIT cells; this difference was largely driven by principal component 1 (PC1). We also
270 observed some similarity between IL-12+IL-18 and *E. coli* treatments in PC2.

271 Next, differentially expressed genes (DEGs) in activated MAIT cells with respect to rested
272 MAIT cells were analyzed. Substantial transcriptional changes in MAIT cells were observed
273 with the treatments; DEGs were more abundant with either *E. coli* (775) or 5-A-RU (685)
274 treatment than with IL-12+IL-18 (116). Interestingly, more than a quarter of DEGs were
275 downregulated with both *E. coli* and 5-A-RU but very few (8) with IL-12+IL-18 (Figure 2B). A
276 significant number of DEGs (53; which was 45% of total DEGs with cytokine stimulation) were
277 shared in all three treatments, suggesting a core response of activated MAIT cells regardless of
278 the mode of activation. This was evident with GSEA pathway analysis with pathways such as
279 NK cell mediated cytotoxicity (S. Figure 2A), cytokine-cytokine receptor interaction, T cell
280 receptor signaling pathway, apoptosis, NOD-like receptor signaling, and JAK/STAT signaling
281 enriched with *E. coli*, 5-A-RU, and IL-12+IL-18. Of note, IL-12+IL-18 stimulated MAIT cells
282 shared more DEGs (84; 72% of total) with *E. coli* treated MAIT cells but less (61; 52% of total)
283 with 5-A-RU, suggesting bacteria and innate cytokines activate a similar response which cannot
284 be triggered by the MR1 ligand alone. GSEA confirmed that many innate signaling pathways
285 that were enriched with *E. coli* when compared to 5-A-RU were also enriched with IL-12+IL-18
286 (S. Table 1, S. Figure 2B). Transcriptomic signatures associated with TCR triggering could also
287 be identified. A novel tissue repair signature proposed to be associated with TCR triggering of

288 MAIT cells (Leng et al., 2018) was enriched in MAIT cells following *E. coli* or 5-A-RU
289 stimulation but not with IL-12+IL-18 (S. Figure 2C).

290 A heat-map illustrating the normalized expressions of total DEGs with all stimuli also showed
291 marked differences in the response of MAIT cells at transcriptomic level; activation with *E. coli*
292 or 5-A-RU had more pronounced effects on gene expression and were clustered separately from
293 the cluster of untreated and cytokine treated MAIT cells (Figure 2C). DEGs with each treatment
294 are listed in Supplementary Data. Taken together, our data suggest MAIT cells are differentially
295 regulated by TCR and cytokine stimuli and possess a unique transcriptomic profile from that of
296 resting MAIT cells.

297 **3.3 MAIT cells activated via TCR produce more inflammatory cytokines than IL-12+IL-
298 18-stimulated MAIT cells.**

299 We next investigated the effect of *E. coli*, 5-A-RU, or IL-12+IL-18 on the production of
300 inflammatory cytokines by MAIT cells. With all stimuli, increased expression of TNF α and IFN γ
301 genes was seen; nevertheless, higher TNF α expression was achieved with TCR stimuli and
302 maximum IFN γ expression with IL-12+IL-18 (Figure 3A). Consistent with this, more TNF α was
303 detected in the culture supernatant following stimulation with *E. coli* than with IL-12+IL-18;
304 more TNF α was produced in response to *E. coli* than to 5-A-RU (>10-fold) (Figure 3B). In
305 contrast, more than 10-fold higher concentration of IFN γ was detected upon IL-12+IL-18
306 stimulation for 24 hours compared to stimulation with *E. coli* for 6 hours; ~100-fold more IFN γ
307 was produced in response to *E. coli* than to 5-A-RU (Figure 3B). MR1 blocking significantly
308 inhibited TNF α and IFN γ production by both *E. coli* and 5-A-RU treated MAIT cells (Figure
309 3B). TCR stimulation also triggered significant upregulation of expression of several other
310 inflammatory genes, notably IL1- α , IL-1 β , IL-2, IL-6, IL-10, IL-17A/F, IL-21, IL-22, and GM-
311 CSF, while with IL-12+IL-18 stimulation significant upregulation of IL-10 and IL-17A/F was
312 seen, but to a much lesser degree than with TCR mediated activation (Figure 3A, 3C and S.
313 Figure 4). Of the cytokines assayed in the supernatant, we detected MR1-dependent production
314 of IL-1 β , IL-2, IL-6, and IL-10 in response to *E. coli* but not 5-A-RU, however, only IL-1 β and
315 IL-2 were significant (Figure 3D). Low level production of IL-1 β , IL-6, and IL-10 was detected
316 in response to IL-12+IL-18 (Figure 3D). Therefore, MAIT cells produce more pro-inflammatory

317 cytokines in response to TCR stimulation than in response to IL-12+IL-18; the response to *E.*
318 *coli* is stronger than to 5-A-RU.

319 Interestingly, cytokine stimulation, and to a lesser degree TCR stimulation, triggered significant
320 upregulation of IL-26 gene expression, a proinflammatory cytokine of the IL-10 superfamily (S.
321 Figure 5A). Likewise, cytokine activated MAIT cells expressed IL-26 at protein level, the
322 highest amongst CD8⁺ T cells (S. Figure 5B and C), but early TCR stimulation failed to induce
323 detectable IL-26 production (S. Figure 5D and E). However, IL-26 production was detectable
324 upon late TCR activation by *E. coli* and 5-A-RU/MG and was significantly inhibited by MR1
325 blocking (S. Figure 5D and E). At 24 hours, both *E. coli* and 5-A-RU/MG treated MAIT cells
326 produced a small amount of IL-26 in an MR1-independent fashion (S. Figure 5D and E). IL-26
327 production was also observed in NK cells (identified as CD3⁺CD161⁺V α 7.2⁻ cells, ~80% of
328 which were CD56⁺) following stimulation with IL-12+IL-18 or treatment with *E. coli* for 24
329 hours; the response to *E. coli* was independent of MR1 (S. Figure 5F-H). Overall, this suggests
330 that MAIT cells are the main source of IL-26 among CD8⁺ T cells in response to IL-12+IL-18
331 and that they also produce it in response to TCR stimulation, but production is delayed.

332 **3.4 Cytotoxic profile of MAIT cells is different between the two modes of activation**

333 MAIT cells can kill bacterially infected cells (Le Bourhis et al., 2013), which is mostly
334 degranulation dependent (Kurioka et al., 2015). We asked whether degranulation and the
335 cytotoxic granule content of MAIT cell differs with the mode of activation. First, we assessed
336 MAIT cell degranulation by assessing surface expression of CD107a. CD107a surface
337 expression rapidly increased with both TCR stimuli and with IL-12+IL-18, suggesting both
338 modes of activation are equally potent at triggering degranulation in MAIT cells (Figure 4A).
339 Consistent with this, *E. coli*-mediated CD107a expression at 6 hours was significantly reduced
340 with MR1 blocking, whereas only partial inhibition was observed at 24 hours, confirming the
341 previous finding of both TCR-dependent and -independent late degranulation in MAIT cells
342 (Figure 4A) (Kurioka et al., 2015).

343 Next, we compared cytotoxic granule content of MAIT cells upon activation. Activated MAIT
344 cells upregulated both granzyme B and perforin gene expression irrespective of the mode of
345 activation (Figure 4B). Likewise, the frequency of MAIT cells expressing granzyme B
346 significantly increased upon both early TCR and cytokine stimulation (Figure 4C). While the

347 frequency of MAIT cells expressing perforin increased with *E. coli* and cytokines, it did not with
348 5-A-RU (Figure 4D). Nevertheless, 5-A-RU treatment for 24 hours induced significant granzyme
349 B and perforin expression which was completely TCR mediated (S. Figure 6A and B). MR1
350 blockade abolished *E. coli*-induced granzyme B production completely at 6 hours and partially at
351 24 hours but had no effect on perforin production at 6 hours and minimal effect at 24 hours
352 (Figure 4C and D). Interestingly, *E. coli* or 5-A-RU treatment triggered granzyme A gene
353 downregulation in MAIT cells but IL-12+IL-18 treatment resulted in upregulation (Figure 4B).
354 This difference in granzyme A expression was also evident at protein level; both early and late
355 TCR-mediated activation reduced granzyme A whereas IL-12+IL-18 significantly increased
356 expression (Figure 4E). *E. coli*-mediated granzyme A downregulation was reversed completely
357 with MR1 blocking at 6 hours and partially at 24 hours (Figure 4E). Granzyme A, granzyme B,
358 and perforin were detected in the culture supernatant of both TCR and cytokine stimulated MAIT
359 cells; however, more granzyme A was detected in the supernatant of cytokine treated MAIT cells
360 (Figure 4F). Differences were also evident in gene expression of other granzymes; granzymes K
361 and M followed a similar trend to granzyme A while granzyme H followed that of granzyme B
362 except it was highest with IL-12+IL-18 stimulation (S. Figure 6C). Overall, these data suggest
363 that MAIT cells rapidly degranulate upon activation, however, granule content differs by the
364 mode and timing of activation.

365 Cytotoxic T cells can also kill target cells through expression of FasL. Both TCR and cytokine
366 activated MAIT cells rapidly upregulated FasL gene expression (S. Figure 6D). Although, FasL
367 could not be detected on the surface of early activated MAIT cells, soluble FasL was detected in
368 the culture supernatant of early TCR activated MAIT cells in a MR1-dependent fashion (S.
369 Figure 6E and F). Late *E. coli* activation significantly increased FasL expression on the surface
370 and was only partially reduced upon MR1 blocking (S. Figure 6E). IL-12+IL-18 activation
371 enhanced both FasL surface expression and sFasL release into the media (S. Figure 6E and F)
372 suggesting both activation pathways contribute to FasL/sFasL expression.

373 **3.5 TCR and cytokine activated MAIT cells express different profiles of transcription
374 factors**

375 MAIT cells are characterized by high expression of the transcription factors RAR-related orphan
376 receptor γ t (ROR γ t), promyelocytic leukemia zinc finger protein (PLZF) and eomesodermin

377 (EOMES), which make them unique from other CD4⁺ and CD8⁺ T cells (Figure 5A) (Dias et al.,
378 2017; Leeansyah et al., 2015). Expression of these transcription factors also varies among
379 different MAIT cell subsets based on CD4 or CD8 co-receptor expression, resulting in
380 heterogeneity in phenotype and function (S. Figure 7A) (Kurioka et al., 2017). Therefore, we
381 assessed the expression of various transcription factors in MAIT cells to investigate whether the
382 transcription factor profile changes with the mode of activation. Interestingly, compared to
383 resting MAIT cells, the expression of ROR γ t and PLZF significantly increased with TCR
384 activation but not with IL-12+IL-18 (Figure 5B and C). We observed corresponding changes in
385 ROR γ t expression at the protein level but little change in PLZF expression were observed
386 (Figure 5A-C). Upon activation, MAIT cells expressed high T-bet regardless of the stimuli, both
387 at RNA and protein levels (Figure 5A, C and D). Interestingly, with TCR stimulation an increase
388 in MAIT cells expressing both ROR γ t and T-bet or ROR γ t alone were seen, whereas following
389 IL-12+IL-18 treatment an increase in MAIT cells expressing T-bet alone was observed (Figure
390 5G). Expression of the Blimp1 gene went up with both TCR stimuli and with cytokines,
391 however, an increase at the protein level was only seen with *E. coli* and cytokines (Figure 5E).
392 EOMES expression, both at the mRNA and protein levels, was significantly reduced by both
393 TCR signals but was unchanged with cytokines (Figure 5F). Similar changes in the transcription
394 factors in response to TCR signals and IL-12+IL-18 were evident in double negative and CD4⁺
395 MAIT cell subsets (S. Figure 7B-F). Taken together, the profile of transcription factor expression
396 in MAIT cells markedly changes upon activation and is different in TCR and cytokine stimulated
397 MAIT cells.

398 **3.6 TCR stimulation of MAIT cells results in chemokine production**

399 Production of chemokines by MAIT cells upon activation has previously been shown (Lepore et
400 al., 2014; Slichter et al., 2016; Turtle et al., 2011). Next, we examined the expression of various
401 chemokines by MAIT cells in response to different stimuli. Significant expression of CCL3
402 (ligand for CCR1, CCR4 and CCR5), CCL4 (ligand for CCR5), and CCL20 (ligand for CCR6)
403 was seen with all treatments but was significantly higher in MAIT cells activated with *E. coli*
404 and 5-A-RU than with IL-12+IL-18 (Figure 6A). Consistent with this, CCL3, CCL4, and CCL20
405 production was detected in culture supernatant with *E. coli* or 5-A-RU treatment and was
406 reduced by approximately 10-fold upon MR1 blocking, confirming production was MAIT cell

407 specific (Figure 6B). Cytokine stimulation also triggered significant CCL3 and CCL4
408 production, albeit at lower levels (Figure 6B). We also observed enhanced CXCL9, CXCL10,
409 and CXCL11 gene expression, all ligands for CXCR3, with 5-A-RU and IL-12+IL-18 treatment,
410 whereas *E. coli* treatment resulted in a lesser, non-significant enhancement (Figure 6C). In
411 contrast, at the protein level, *E. coli* stimulated maximum CXCL9, CXCL10, and CXCL11
412 production by MAIT cells, followed by treatment with 5-A-RU and IL-12+IL-18 (Figure 6D);
413 MR1 blocking completely abolished production of CXCL9, CXCL10, and CXCL11 by *E. coli*
414 and 5-A-RU treated MAIT cells (Figure 6D).

415 Additionally, *E. coli* but not 5-A-RU or IL-12+IL-18, resulted in upregulation of IL-8 (CXCL8)
416 gene expression (Figure 6C). Consistent with this, IL-8 production was highest in supernatant
417 from *E. coli* treated MAIT cells and was significantly blocked by anti-MR1 antibody (Figure
418 6D). 5-A-RU and IL-12+IL-18 stimulation also caused low level but significant IL-8 production
419 (Figure 6D). The finding of IL-8 production suggested that MAIT cells may be one of the first
420 responders to bacterial infection and may assist in recruiting other immune cells, including
421 neutrophils (Ribeiro, Flores, Cunha, & Ferreira, 1991). To investigate whether activated MAIT
422 cells are able to induce neutrophil migration; supernatants from *E. coli* or 5-A-RU or IL-12+IL-
423 18 stimulated MAIT cells were tested in a transwell migration system. Enhanced neutrophil
424 migration was only observed in response to supernatant of 5-A-RU stimulated MAIT cells
425 (Figure 6E-F). Blocking MR1 signaling completely abrogated the induced migration confirming
426 that it was mediated by TCR signaling of MAIT cells (Figure 6E). CCL2 and XCL2, which both
427 have the potential to trigger migration of neutrophils by binding to CCR2 and XCR1 respectively
428 (Fox et al., 2015; H. Huang, Li, Cairns, Gordon, & Xiang, 2001; Talbot et al., 2015), were also
429 upregulated with 5-A-RU stimulation compared to other treatments and may explain the
430 increased neutrophil migration with supernatant from 5-A-RU treated MAIT cells (S. Figure 4).
431 Overall, MAIT cells produce multiple chemokines upon activation by both TCR-dependent and -
432 independent mechanisms, however, chemokine profiles differ according to the mode of
433 activation.

434 **3.7 Activated MAIT cells rapidly upregulate co-stimulatory molecules**

435 Recently, MAIT cells were associated with maturation of monocyte-derived and primary
436 dendritic cells in a CD40L dependent manner (Salio et al., 2017). We next investigated how

437 CD40L is controlled in MAIT cells upon activation. Both TCR and cytokine stimulated MAIT
438 cells rapidly upregulated CD40L gene expression (Figure 7A). Unstimulated MAIT cells did not
439 express CD40L on the surface but treatment with *E. coli* for 6 hours led to significant CD40L
440 surface expression; in contrast little upregulation was seen with 5-A-RU (Figure 7B). MR1
441 blocking reduced *E. coli* mediated CD40L surface expression completely at both 6 hours and at
442 24 hours (Figure 7B). Significant CD40L was also seen on the surface of MAIT cells following
443 IL-12+IL-18 stimulation (Figure 7B). Soluble CD40L could not be detected in the culture media
444 with any treatments (data not shown).

445 We also observed increased expression of 4-1BB (TNFRSF9 or CD137), a co-stimulatory
446 molecule on activated T cells that can trigger maturation, activation and migration of cells
447 expressing 4-1BBL, such as dendritic cells (Lippert et al., 2008), by both TCR and cytokine
448 activated MAIT cells, with the highest expression seen with TCR stimuli (Figure 7C). Consistent
449 with this, high surface expression of 4-1BB was seen following early TCR activation which was
450 completely MR1 mediated (Figure 7D). A small percentage of MAIT cells also expressed 4-1BB
451 upon stimulation by IL-12+IL-18, suggesting cytokines alone can induce 4-1BB on MAIT cells
452 (Figure 7D). Late TCR activation by *E. coli* resulted in high expression of 4-1BB that was only
453 partially blocked with anti-MR1 antibody (Figure 7D). Therefore, TCR stimulation induces
454 robust 4-1BB surface expression on MAIT cells, however cytokines alone can induce its
455 expression, albeit to a lesser extent.

456 **3.6 TCR stimulation of MAIT cells enhances expression of lysine demethylase 6B**

457 Finally, expression of lysine demethylase 6B, KDM6B, also known as Jumonji domain
458 containing protein 3 (JMJD3), was specifically enriched upon TCR activation (S. Figure 3A).
459 Inhibition of KDM6B by GSK-J4 demonstrated it was important for the upregulation of CD69
460 and 4-1BB following stimulation with *E. coli*, but not for TNF α and IFN γ production in MAIT
461 cells (S. Figure 3B-F).

462 **4. Discussion**

463 MAIT cells are abundant unconventional T cells that can be activated either via their TCR or by
464 innate cytokines. Here, we have characterized their responses to these two modes of activation.
465 TCR activation of MAIT cells resulted in rapid activation with production of multiple

466 proinflammatory cytokines; in contrast cytokine-mediated activation was slower and less
467 polyfunctional. Substantial differences in the cytotoxic granule content upon TCR and cytokine
468 stimulation were also noted. These differences in effector functions by mode of activation were
469 underpinned by changes in transcription factors expression. Production of chemokines and
470 upregulation of co-stimulatory molecules with activation was also demonstrated and suggests a
471 role for MAIT cells in coordinating the recruitment and activation of other immune cells.

472 Early TCR activation with 5-A-RU or with *E. coli* triggers higher TNF α production by MAIT
473 cells than IL-12+IL-18. Upon stimulation with IL-12+IL-18, MAIT cells cytokine production
474 shifts to IFN γ . This is consistent with an earlier study where human PBMCs were activated with
475 either anti-CD3/CD28 beads or a combination of IL-12/15/18 (Slichter et al., 2016). A similar
476 response has been reported when hepatic MAIT cells were stimulated with anti-CD3/CD28
477 beads (Jo et al., 2014). Predominance of IFN γ production with little TNF α production was seen
478 when hepatic MAIT cells were treated overnight with *Pseudomonas aeruginosa*, a riboflavin
479 synthesizing bacteria (Jo et al., 2014); this is consistent with the response we observed from
480 blood MAIT cells following treatment with *E. coli* for 24 hours. This highlights that the early
481 MAIT cell response to riboflavin-synthesizing bacteria differs to the late response and is
482 consistent between blood and hepatic MAIT cells. With the observation that production of IFN γ ,
483 IL-17A and IL-22 accompany TNF α in early TCR activation, we propose that a TCR signal is
484 critical for TNF α production and polyfunctionality of MAIT cells.

485 While MAIT cells stimulated via their TCR with either *E. coli* or 5-A-RU showed considerable
486 overlap in their transcriptional and functional profiles, there were substantial differences in
487 DEGs, which was evident in principal component 2 of the PCA analysis. Of note, cytokine
488 stimulated MAIT cells shared more DEGs with *E. coli* than 5-A-RU, suggesting a role for innate
489 signaling. It has now been established that bacteria furnish co-stimulatory signals, TLR agonists
490 being most commonly studied, that result in APC activation and enhancement of MAIT cell
491 activation (Chen et al., 2017; Ussher et al., 2016). Consistent with this, pathway analysis
492 demonstrated similarities between *E. coli* and IL-12+IL-18 activated MAIT cells, with
493 enrichment of innate signaling pathways including type I IFNs, pattern recognition receptors, and
494 MYD88/TRIF. However, these signals must work in concert with TCR signaling to modulate

495 MAIT cell activation as MR1 blockade almost completely inhibited the early MAIT cell
496 response (IFN γ , granzyme B and chemokines) to *E. coli*.

497 The hypothesis that TCR triggering leads to early polyfunctionality in MAIT cells was
498 confirmed by RNA sequencing. In addition to TNF α , IFN γ , IL-17A, and IL-22, the expression of
499 many pro-inflammatory cytokine genes, including IL-1 β , IL-6, IL-21, and GM-CSF was
500 upregulated with TCR stimulation. However, significant production of only TNF α , IFN γ , and IL-
501 1 β could be detected in the culture supernatant of *E. coli* activated MAIT cells; GM-CSF was not
502 assayed. These differences between gene expression and protein production could be due to the
503 different culture systems used (PBMCs vs a co-culture of THP1 cells and V α 7.2 $^+$ cells) and the
504 presence or absence of necessary additional signals, for example IL-7 which enhances IL-17A
505 production (Tang et al., 2013). Arguing against this, however, another study (Bennett, Trivedi,
506 Iyer, Hale, & Leung, 2017) reported significant detection of IL-2, IL-6, IL-10, IL-17A/F, IL-21,
507 and IL-22 in the culture supernatant following overnight stimulation with *E. coli* using the same
508 co-culture system as ours. In that study, TCR signaling was only partially responsible for the
509 production of IL-6, IL-10, and IL-21. This may be due to the different times post-stimulation at
510 which cytokine production was assessed. Of note, the major pro-inflammatory mediators TNF α ,
511 IL-6, and IL-1 β are highly expressed at both mRNA and protein levels with *E. coli* but not with
512 5-A-RU or IL-12+IL-18 stimulation, suggesting that TCR activation by riboflavin synthesizing
513 bacteria is required for some pro-inflammatory responses by MAIT cells.

514 A striking difference was observed in the cytotoxic granule content of MAIT cells with the two
515 modes of activation. Perforin, granzyme A, and granzyme B were all substantially induced by
516 IL-12+IL-18, whereas early TCR activation triggered a smaller increase in granzyme B and a
517 decrease in granzyme A. By 24 hours, activation by *E. coli* triggered substantial granzyme B and
518 perforin production which was partially TCR-dependent and partially -independent. Activation
519 with the 5-A-RU for 24 hours induced significantly more granzyme B and perforin compared to
520 activation for 6 hours; this suggests that changes in the cytotoxic granule content of MAIT cells
521 is a time dependent process and for a strong response, either prolonged activation via the TCR,
522 cytokines, or a combination of both is required. We and others have demonstrated granzyme A
523 downregulation in MAIT cells with TCR signals which was an intriguing finding and demands
524 further investigation (Kurioka et al., 2015). Conversely, granzyme A upregulation with cytokines

525 could be of importance in the control of viral and bacterial infections as unlike granzyme B,
526 granzyme A can potently mediate cytolysis in the presence of caspase inhibitors (Blasche et al.,
527 2013; Zhang, Beresford, Greenberg, & Lieberman, 2001) or alternatively, may aid in the
528 inflammatory response as discussed previously (Kurioka et al., 2015). Additionally, both modes
529 of activation result in the upregulation of FasL on the surface of MAIT cells; FasL is involved in
530 death receptor-mediated killing of infected cells (Varanasi, Khan, & Chervonsky, 2014).

531 MAIT cells may also exercise direct killing of extracellular bacteria through the release of
532 antibacterial peptides such as IL-26 (Meller et al., 2015) and antimicrobial chemokines such as
533 CXCL9 and CXCL10 (Margulieux, Fox, Nakamoto, & Hughes, 2016; Reid-Yu, Tuinema, Small,
534 Xing, & Coombes, 2015). This makes MAIT cells one of many cell populations contributing to
535 the pool of antimicrobial peptides at the site of infection/inflammation. Indirectly, MAIT cells
536 can assist in bacterial killing by recruiting neutrophils to the site of infection, as suggested in our
537 study, and by augmenting neutrophil survival via release of TNF α , IFN γ , and GM-CSF (Davey
538 et al., 2014). In a positive feedback mechanism, MAIT cells could also promote DCs to produce
539 type I interferons in an IL-26 dependent manner, which augments IFN γ release by MAIT cells in
540 response to other cytokines (Meller et al., 2015; van Wilgenburg et al., 2016). IFN γ production
541 in MAIT cells was recently shown to be critical for protection against *Legionella longbeachae*
542 and influenza virus infection in mice (Wang et al., 2018; Wilgenburg et al., 2018).

543 Transcription factor profiling in activated MAIT cells was consistent with the observed acquired
544 effector functions in previous studies on MAIT cells. Elevated ROR γ t expression was seen with
545 TCR activation and is consistent with increased IL-17A expression (Wang et al., 2018). Both
546 TCR and cytokine activation resulted in increased expression of T-bet, which is consistent with
547 the substantial IFN γ production. Increased Blimp1 expression with *E. coli* and cytokines was
548 consistent with more granzyme B production than with 5-A-RU, whereas reduced EOMES
549 expression following early TCR stimulation was consistent with overall lower cytotoxic response
550 of early TCR activated MAIT cells compared to IL-12+IL-18 activation (Kurioka et al., 2017;
551 Kurioka et al., 2015). Transcription factor profiles were also assessed in other MAIT cell
552 populations. At rest, CD4 $^+$ CD8 $^-$ double negative (DN) MAIT cells expressed a similar
553 transcription factor profile as CD8 $^+$ MAIT cells, consistent with the recent report where DN
554 MAIT cells were shown to be functionally similar to CD8 $^+$ MAIT cells (Kurioka et al., 2017).

555 On the other hand, CD4⁺ MAIT cells (<5% of the MAIT cell population) expressed lower levels
556 of PLZF and EOMES, consistent with Kurioka et al, who demonstrated that they also possess
557 lower cytotoxic potential than CD8⁺ and DN MAIT cells (Kurioka et al., 2017). Although not all
558 changes reached statistical significance, the trends in changes of transcription factor expression
559 upon activation were similar in all subsets, suggesting that all MAIT cells undergo similar
560 functional changes during activation, although this was not formally assessed in this study.

561 KDM6B is one of the two histone demethylases (the other being KDM6A or UTX) that removes
562 the methyl mark from H3K27, relieving the suppression of transcription and inducing an
563 inflammatory response (Falvo, Jasenosky, Kruidenier, & Goldfeld, 2013). Murine studies have
564 confirmed demethylated H3K27 is heavily enriched at *IL17a/IL17f* locus in Th17 cells and also
565 controls ROR γ t expression (Mukasa et al., 2010). Our data suggest that upon TCR stimulation,
566 MAIT cells upregulate KDM6B (>13 and >10-fold change with *E. coli* and 5-A-RU
567 respectively), which could lead to the subsequent upregulation of ROR γ t and IL-17A expression.
568 We also demonstrated that H3K27me3 is an important epigenetic modification during activation
569 of MAIT cells. Conversely, IL-12 treatment of Th17 cells was previously reported to lead to a
570 substantial increase in H3K27me3 at the *IL17a/IL17f* locus and H3K4me accumulation at the
571 *IFNg* locus, leading to reduction of IL-17 and increased IFN γ production, consistent with our
572 data (Mukasa et al., 2010). Thus, the mode of activation modulates the fate of MAIT cells by
573 epigenetic remodeling.

574 We found that MAIT cells produce multiple chemokines upon activation which may aid in
575 recruiting various immune subsets to the site of infection and promoting local inflammation.
576 TCR signals induced stronger production of chemokines by MAIT cells. Previous studies have
577 also reported substantial chemokine production by MAIT cells upon TCR activation via
578 CD3/CD28 (Slichter et al., 2016; Turtle et al., 2011) or in a co-culture with bacteria-fed
579 monocytes (Lepore et al., 2014; Wakao et al., 2013). However, these studies were performed
580 with longer activation periods (16-24 hours or overnight). Here, we confirmed that MAIT cells
581 possess this immune cell recruiting capacity as early as 6 hours after activation. We also showed
582 that IL-12+IL-18 alone can stimulate modest chemokine production, particularly CCL3, CCL4,
583 and CXCL10. These chemokines are involved in lymphocyte trafficking, and therefore could
584 contribute to recruiting lymphocytes during infections with viruses or non-riboflavin-

585 synthesizing bacteria. Moreover, a combination of cytokines and TCR signal, can work in
586 synergy to trigger robust chemokine production by MAIT cells (Havenith et al., 2012).

587 In addition to this direct chemokine response, soluble mediators in the supernatant from
588 stimulated MAIT cells have been shown to trigger the production of various chemokines, such as
589 CCL2, IL-8, and CXCL10, by peritoneal epithelial and fibroblast cells (Liuzzi et al., 2016).
590 MAIT cells and $\gamma\delta$ T cells were shown to migrate to infected peritoneal tissues in response to
591 locally elevated levels of CCL2, CCL3, CCL4, and CCL20 (Liuzzi et al., 2016). High production
592 of CCL3, CCL4, and CCL20, along with moderate production of CXCL9 and CXCL10 by both
593 TCR and cytokine stimulated MAIT cells were observed in our study; combined with high
594 expression of CCR5, CCR6 and CXCR3 on MAIT cells (Dias et al., 2017; Kurioka et al., 2017),
595 this suggests that MAIT cells, both in the presence of riboflavin-synthesizing bacteria and other
596 inflammatory stimuli, may directly recruit other MAIT cells and/or $\gamma\delta$ T cells (Figure 8).
597 Furthermore, significant production and release of TNF α and IL-1 β observed with bacterial
598 stimulation can further facilitate this process by upregulating E-selectins, I-CAM and V-CAM on
599 endothelial cells (Kim et al., 2017). Therefore, activated tissue resident MAIT cells could recruit
600 peripheral MAIT cells, along with other proinflammatory leukocytes, to the site of infection.

601 Recent studies have demonstrated that MAIT cells do not just provide defense against invading
602 pathogens but may have a broader role in the regulation of the immune response through the
603 maturation of primary DCs and providing B cell help (Bennett et al., 2017; Salio et al., 2017).
604 Both TCR and innate signals were found to upregulate helper molecules on MAIT cells.
605 Additionally, MAIT cells were recently shown to induce local tissue remodeling (Liuzzi et al.,
606 2016). Here, we observed specific upregulation of genes associated with tissue repair and wound
607 healing which was recently described to be a feature of commensal responsive skin resident
608 CD8 $^+$ populations in non-human primates and mice (Linehan et al., 2018). This response was
609 more prominent with TCR activation compared to cytokine activation. Our finding was
610 consistent with those of Leng et al., who demonstrated a similar enrichment of genes involved in
611 tissue repair functions in TCR and TCR+cytokine but not cytokine triggered peripheral human
612 MAIT cells (Leng et al., 2018), and Hinks et al., who reported enrichment of the tissue repair
613 pathway in 5-OP-RU-stimulated human MAIT cells and MAIT cells from mice acutely infected
614 with *L. longbeachae* (Hinks et al., 2018); this confirms that the tissue repair function is a unique

615 signature of TCR activated MAIT cells. Therefore, it is now becoming clear that MAIT cells are
616 not just inflammatory and cytolytic T cells but are also helper cells involved in tissue repair and
617 maintaining homeostasis at the mucosal barrier and in the liver.

618 In this paper, we explored the response of TCR- and cytokine-stimulated MAIT cells from
619 peripheral blood. Future investigations will shed light on whether effector function profiles of
620 MAIT cells from different tissues also differ with the mode of activation and will enable us to
621 understand the role of MAIT cells as a friend, foe, or merely a bystander in disease progression.
622 The limited number of cytokines assessed in the time course studies gave us a snapshot of the
623 timing of MAIT cell activation; other effector functions induced by a pure TCR signal should be
624 assessed by a detailed transcriptomic analysis at later timepoints to better define the induction
625 and persistence of particular effector functions following TCR stimulation.

626 In summary, our findings show that TCR and cytokines are both potent modes of triggering
627 MAIT cell activation. MAIT cells activated via IL-12+IL-18 upregulate T-bet, perforin,
628 granzyme B, and IFN γ and are less pro-inflammatory, consistent with a Tc1 like phenotype,
629 while TCR-activated MAIT cells robustly and rapidly upregulate ROR γ t, IL-17A, TNF α , and
630 many other pro-inflammatory cytokines and chemokines, consistent with a Tc17 phenotype
631 (Figure 8A). This plasticity in MAIT cell phenotype and function with the mode of activation is
632 explained by changes at transcriptomic and epigenetic levels. During bacterial infection, both
633 modes of activation cooperate to make MAIT cells potent early responders, combining direct
634 antimicrobial activity with the recruitment of and provision of help to other proinflammatory
635 immune cells (Figure 8B).

636 **Acknowledgements**

637 This study was funded by a grant by Health Research Council (JEU), and a University of Otago
638 Research Grant (JDAT, AJV, JEU). We would like to thank Michelle Wilson, Flow cytometry
639 Unit, University of Otago, for assistance with fluorescence activated cell sorting experiments,
640 and Professor Paul Klenerman, University of Oxford, for his comments on the manuscript.

641

642 **Author contributions**

643 RL, MS, SMdlH, and RFH performed the experiments. RL, MS, and TWRH analysed the data.
644 RL, MS, SMdlH, JDAT, AJV, PD, JRK, and JEU designed the experiments. JEU managed the
645 study. RL and JEU conceived the work and wrote the manuscript. All authors revised and
646 approved the manuscript.

647

648 **Conflicts of interest**

649 The authors have no conflicts of interest to declare.

650

651 **Figure Legends**

652 **Figure 1: T cell receptor and cytokine-activated MAIT cells differ in timing of maximal**
653 **activation and cytokine profile. (A, B and G)** PBMCs were treated with either (A) 10 BpC *E.*
654 *coli* \pm anti-MR1 antibody for 6 and 24 hours or (B) 50 ng/mL each of IL-12+IL-18 for 24 hours
655 or (G) 10 nM 5-A-RU/MG \pm anti-MR1 antibody for 6 and 24 hours and IFN γ production by
656 MAIT cells was measured by flow cytometry. Each biological replicate and mean \pm S.E.M are
657 shown and are pooled from two independent experiments (n=9 for A and B, n=8 for G).
658 Repetitive measures one-way ANOVA with Sidak multiple comparison (A and G) and two tailed
659 paired t-test (B) were used for assessing statistical significance. *p<0.05, **p<0.01, ***p<0.001,
660 ****p<0.0001, ns = non-significant. **(C-F)** PBMCs were stimulated for different durations by
661 either *E. coli* (10 BpC for C and 2 BpC for D) or by IL-12+IL-18 (50 ng/mL each) (E and F) and
662 expression of TNF α , IFN γ , IL-17A and IL-22 in flow-sorted MAIT cells were measured by real-
663 time RT-PCR (n=3 for C and n=4 for E) or the percentage of MAIT cells producing TNF α or
664 IFN γ were determined by flow cytometry (D and F; n=6). Data are presented as mean \pm S.E.M
665 and are pooled from two independent experiments. **(H and I)** Proportion of MAIT cells
666 producing TNF α or IFN γ or both were assessed following treatment of PBMCs with either 10
667 BpC *E. coli* or 5 μ M 5-A-RU for 6 hours or 50 ng/mL each of IL-12+IL-18 for 24 hours; (E)
668 representative FACS plots and (F) pie chart to show proportion of TNF α and IFN γ producing
669 MAIT cells among the activated MAIT cell population against each stimulus (n=9-11). Data are
670 pooled from two independent experiments.

671 **Figure 2: T cell receptor and cytokine-activated MAIT cells have distinct transcriptional**
672 **profiles.** **(A)** Principal component analysis of MAIT cell transcriptome following stimulation
673 with different stimuli; PBMCs were treated with 10 BpC *E. coli* or 5 μ M 5-A-RU for 6 hours or
674 50 ng/mL IL-12+IL-18 for 24 hours, then MAIT cells were flow-sorted for RNA-sequencing.
675 Principle components (PC) 1 and 2 are shown; each dot represents a sample and are color coded
676 for ease of visualization. **(B)** Venn-diagram showing shared and unique DEGs (fold change >2
677 and Padj <0.05) in TCR- and cytokine-stimulated MAIT cells; total, upregulated and
678 downregulated DEGs with each treatment compared to untreated control were separately
679 analyzed. **(C)** Heat map and dendrogram of the normalized expression of total DEGs (1063) with
680 all treatments compared to untreated control.

681 **Figure 3: TCR stimulation results in production of more inflammatory cytokines than IL-
682 12+IL-18 stimulation. (A and C)** Log₂ transformed gene counts of TNF α , IFN γ , IL-17A, IL-22,
683 IL-1 β , IL-2, IL-6, and IL-10 in response to different stimuli; PBMCs were treated with 10 BpC
684 *E. coli* or 5 μ M 5-A-RU for 6 hours or 50 ng/mL IL-12+IL-18 for 24 hours, then MAIT cells
685 were flow-sorted for RNA sequencing. Data are presented as mean \pm S.E.M (n=7). Repetitive
686 measures one-way ANOVA with Sidak multiple comparison tests were used for assessing
687 statistical significance. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. **(B and D)** Cytokines
688 (TNF α , IFN γ , IL-17A, IL-22, IL-1 β , IL-2, IL-6, and IL-10) were quantified by LEGENDplex™
689 in either culture supernatant from co-cultures of purified V α 7.2 $^{+}$ cells and THP1 monocytes (1:1
690 ratio) stimulated with 100 BpC *E. coli* or 5 μ M 5-A-RU for 6 hours \pm anti-MR1, or culture
691 supernatant of purified V α 7.2 $^{+}$ cells alone or after IL-12+IL-18 treatment for 24 hours. Data are
692 presented as mean \pm S.E.M and are pooled from two independent experiments (n=5). Paired t-
693 test were performed on log-transformed data for assessing statistical significance. *p<0.05,
694 **p<0.01, ***p<0.001, ****p<0.0001.

695 **Figure 4: Cytotoxic granule content of MAIT cells differs with the mode of activation. (A,
696 C-E)** PBMCs were stimulated with either 10 BpC *E. coli* or 5 μ M 5-A-RU for 6 hours or 50
697 ng/mL IL-12+IL-18 or 10 BpC *E. coli* for 24 hours and the percentage of CD107a (A), granzyme
698 B (C), perforin (D), and granzyme A (E) expressing MAIT cells were measured by flow
699 cytometry; with *E. coli* stimulation, the effect of anti-MR1 was assessed. Each biological
700 replicate and mean \pm S.E.M are shown and are pooled from two independent experiments (n=7).
701 Repetitive measures one-way ANOVA with Sidak multiple comparison and two tailed paired t-
702 tests were used for statistical analysis. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns =
703 non-significant. **(B)** Comparison of log₂ transformed gene counts of granzyme B, perforin and
704 granzyme A in response to different stimuli; PBMCs were treated with 10 BpC *E. coli* or 5 μ M
705 5-A-RU for 6 hours or 50 ng/mL IL-12+IL-18 for 24 hours, then MAIT cells were flow-sorted
706 for RNA sequencing. Data are presented as mean \pm S.E.M (n=7). Repetitive measures one-way
707 ANOVA with Sidak multiple comparison tests were used for assessing statistical significance.
708 *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. **(F)** Cytotoxic molecules were quantified by
709 LEGENDplex™ in either culture supernatant from co-cultures of purified V α 7.2 $^{+}$ cells and
710 THP1 monocytes (1:1 ratio) stimulated with 100 BpC *E. coli* or 5 μ M 5-A-RU for 6 hours \pm anti-
711 MR1, or culture supernatant of purified V α 7.2 $^{+}$ cells alone or after IL-12+IL-18 treatment for 24

712 hours. Data are represented as mean \pm S.E.M and are pooled from two independent experiments
713 (n=5). Paired t-test were performed on log transformed data for assessing statistical significance.
714 *p<0.05, **p<0.01.

715 **Figure 5: MAIT cells express a unique transcription factor profile which changes upon**
716 **activation.** (A) Expression of different transcription factors were compared among MAIT cells
717 and other non-MAIT CD8⁺ T cells from PBMCs; representative histograms and the gating
718 strategy for MAIT and non-MAIT cells is shown. An FMO (fluorescent minus one) control for
719 each transcription factor was included. (B-F) Human PBMCs were treated with 10 BpC *E. coli*
720 or 5 μ M 5-A-RU for 6 hours or IL-12+IL-18 (50 ng/mL each) for 24 hours and expression of
721 different transcription factors were compared, both at RNA level (log₂ transformed gene counts)
722 on isolated MAIT cells, and at protein level directly in PBMCs by measuring MFI on MAIT
723 cells; (B) ROR γ t, (C) PLZF, (D) T-bet, (E) Blimp1, and (F) EOMES. Each biological replicate
724 and mean \pm S.E.M are shown and are pooled from two independent experiments (n=7 for RNA
725 and n=8 for protein). Repetitive measures one-way ANOVA with Sidak multiple comparison
726 were performed for statistical analysis. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns =
727 non-significant. (G) Upregulation of ROR γ t alone or T-bet alone or both on MAIT cells upon
728 TCR- or cytokine-activation were compared; representative plots are shown.

729 **Figure 6: Robust chemokine production in MAIT cells following TCR activation. (A and C)**
730 Comparison of log₂ transformed gene counts of CCL3, CCL4, CCL20, CXCL9, CXCL10,
731 CCL20, and IL-8 in response to different stimuli; PBMCs were treated with 10 BpC *E. coli* or 5
732 μ M 5-A-RU for 6 hours or 50 ng/mL IL-12+IL-18 for 24 hours, then MAIT cells were flow-
733 sorted for RNA sequencing. Data are presented as mean \pm S.E.M (n=7). Repetitive measures
734 one-way ANOVA with Sidak multiple comparison tests were used for assessing statistical
735 significance. **p<0.01, ***p<0.001, ****p<0.0001. (B and D) Chemokines (CCL3, CCL4,
736 CCL20, CXCL9, CXCL10, CCL20, and IL-8) were quantified by LEGENDplexTM in either
737 culture supernatant from co-cultures of purified V α 7.2⁺ cells and THP1 monocytes (1:1 ratio)
738 stimulated with 100 BpC *E. coli* or 5 μ M 5-A-RU for 6 hours \pm anti-MR1, or culture supernatant
739 of purified V α 7.2⁺ cells alone or after IL-12+IL-18 treatment for 24 hours. Data are presented as
740 mean \pm S.E.M and are pooled from two independent experiments (n=5). Paired t-test were
741 performed on log-transformed data for assessing statistical significance. *p<0.05, **p<0.01,

742 ***p<0.001, ****p<0.0001. **(E and F)** Migrated neutrophils in the bottom well of a transwell
743 plate in response to supernatant of TCR- (E) or cytokine- (F) activated MAIT cells were
744 normalized to that of the positive control (IL-8); supernatant from unactivated MAIT cells or
745 following MR1 blockade with anti-MR1 were included as controls. Each biological replicate and
746 mean \pm S.E.M are shown; independent experiments were performed with each donor (n=6 for E
747 and n=5 for F). Repetitive measures one-way ANOVA with Sidak multiple comparison (E) and
748 two-tailed paired t-test (F) were used. **p<0.01, ns = non-significant.

749 **Figure 7: TCR and cytokine activation leads to increased expression of co-stimulatory
750 molecules on MAIT cells. (A, C)** Comparison of CD40L (A) and 4-1BB (C) \log_2 transformed
751 gene counts in response to different stimuli; PBMCs were treated with 10 BpC *E. coli* or 5 μ M 5-
752 A-RU for 6 hours or 50 ng/mL IL-12+IL-18 for 24 hours, then MAIT cells were flow-sorted for
753 RNA sequencing. Data are presented as mean \pm S.E.M (n=7). Repetitive measures one-way
754 ANOVA with Sidak multiple comparison tests were used for assessing statistical significance.
755 **p<0.01, ***p<0.001, ****p<0.0001. **(B, D)** Percentage of MAITs expressing CD40L (B) or 4-
756 1BB (D) following treatment of PBMCs with either 10 BpC *E. coli* or 5 μ M 5-A-RU for 6 hours
757 or IL-12+IL-18 or 10 BpC *E. coli* for 24 hours; in *E. coli* treatment MR1 blockade with anti-MR1
758 was included at 6 hours and 24 hours. Each biological replicate and mean \pm S.E.M are shown
759 and are pooled from two independent experiments (n=7 for A and C, n=6-7 for B, and n=7-8 for
760 D). Repetitive measures one-way ANOVA with Sidak multiple comparison and two-tailed paired
761 t-test were used for statistical analysis. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns =
762 non-significant.

763 **Figure 8: Summary of differences in TCR-and cytokine-stimulated MAIT cells (A) and role
764 of MAIT cells in the immune response when activated via both modes during infection with
765 riboflavin synthesizing bacteria (B).**

766 **S. Figure1: Flow cytometric gating strategy for phenotypic and functional analysis as well
767 as isolation of MAIT cells.** MAIT cells were identified as CD3 $^+$ CD8 $^+$ CD161 $^{++}$ V α 7.2 $^+$ cells for
768 assessing effector functions by flow cytometry; for sorting experiments for real-time RT-PCR
769 and RNA sequencing two additional markers ($\gamma\delta$ -TCR and CCR7) were used to exclude $\gamma\delta$ T
770 cells and central memory CD8 $^+$ T cells respectively and MAIT cells were sorted as

771 CD3⁺CD8⁺TCR $\gamma\delta$ ⁻CCR7⁻CD161⁺⁺ V α 7.2⁺ cells. Number represents percentage of parent for
772 respective population.

773 **S. Figure 2: Gene set enrichment analysis (GSEA) revealed shared and unique features in**
774 **MAIT cells activated with *E. coli*, 5-A-RU or IL-12+IL-18.** Summary enrichment plots from
775 GSEA analysis for (A) NK cell-mediated cytotoxicity (KEGG), (B) RIG-I like receptor signaling
776 pathway (KEGG), and (C) tissue repair when log₂ normalized total gene expression of *E. coli*
777 (EC), 5-A-RU (5A), or IL-12+IL-18 (CY) stimulated MAIT cells were compared to that of
778 untreated (UT) MAIT cells. Enrichment scores and nominal p-values are included for each
779 analysis.

780 **S. Figure 3: Histone demethylase KDM6B is important for *E. coli* mediated MAIT cell**
781 **activation.** (A) Comparison of log₂ transformed gene counts of KDM6A and KDM6B in
782 untreated MAIT cells (UT) and in response to different stimuli; PBMCs were treated with 10
783 BpC *E. coli* or 5 μ M 5-A-RU for 6 hours or 50 ng/mL IL-12+IL-18 for 24 hours, then MAIT
784 cells were flow-sorted for RNA-sequencing. Data are presented as mean \pm S.E.M (n=7).
785 Repetitive measures one-way ANOVA with Sidak multiple comparison tests was used for
786 assessing statistical significance. **p<0.01, ****p<0.0001. (B-F) Column purified CD8⁺ T cells
787 were treated overnight with KDM6B inhibitor GSK-J4 or vehicle control (DMSO) and co-
788 cultured with THP1 monocytes. Expression of (B) CD69 and percentage of (C) 4-1BB, (D)
789 viable, and (E) TNF α and (F) IFN γ producing MAIT cells were assessed following stimulation
790 with 100 BpC *E. coli* for 6 hours. Each biological replicate and mean \pm S.E.M are shown and are
791 pooled from two independent experiments (n=7). Repetitive measures one-way ANOVA with
792 Sidak multiple comparison was used for statistical analysis. **p<0.01, ****p<0.0001, ns = non-
793 significant.

794 **S. Figure 4: T cell receptor and cytokine-activated MAIT cells have distinct inflammatory**
795 **profiles.** Normalized expression of a custom list of genes in MAIT cells in response to different
796 stimuli and unstimulated MAIT cells was used to generate the heat map with dendrogram using
797 the Heatmapper online tool (Babicki et al., 2016).

798 **S. Figure 5: Late activation leads to increased expression of IL-26 on MAIT cells regardless**
799 **of the mode of activation.** (A) Log₂ transformed IL-26 count was compared in MAIT cells
800 activated with different stimuli; PBMCs were treated with 10 BpC *E. coli* or 5 μ M 5-A-RU for 6

801 hours or 50 ng/mL IL-12+IL-18 for 24 hours, then MAIT cells were FACS sorted for RNA-
802 sequencing (n=7). Repetitive measures one-way ANOVA with Sidak multiple comparison tests
803 was used for assessing statistical significance. **p<0.01, ****p<0.0001. **(B and C)** IL-26
804 production by MAIT cells and other non-MAIT CD8⁺ T cells was measured by intracellular
805 staining after PBMCs were treated with 50 ng/mL IL-12+IL-18 for 24 hours. Data are presented
806 as mean \pm S.E.M and are pooled from two independent experiments (n=9). Paired t-tests were
807 used for statistical analysis. *p<0.05, ***p<0.001. **(D and E)** PBMCs were treated with (D) 10
808 BpC *E. coli* or (E) 10 nM 5-A-RU/MG for 6 and 24 hours and IL-26 production by MAIT cells
809 was assessed; anti-MR1 antibody was also added for 6 hours or 24 hours. Each biological
810 replicate and mean \pm S.E.M are shown and are pooled from two independent experiments (n=9).
811 Repetitive measures one-way ANOVA with Sidak multiple comparison tests were used for
812 assessing statistical significance. **p<0.01, ***p<0.001, ns = non-significant. **(F)** CD3⁻CD161⁺
813 cells under live lymphocytes are mainly CD56⁺ NK cells. **(G-H)** PBMCs were treated with (G)
814 *E. coli* for 6 and 24 hours or (H) IL-12+IL-18 for 24 hours and IL-26 production by CD3⁻
815 CD161⁺ cells was assessed; anti-MR1 antibody was also added during *E. coli* treatments at 6
816 hours or 24 hours. Each biological replicate and mean \pm S.E.M are shown and are pooled from
817 two independent experiments (n=9). Repetitive measures one-way ANOVA with Sidak multiple
818 comparison and paired t tests were performed. **p<0.01, ns = non-significant.

819 **S. Figure 6. Expression of cytotoxic molecules and FasL/sFasL by TCR and cytokine**
820 **activated MAIT cells. (A and B)** Human PBMCs were treated with 5 μ M 5-A-RU \pm anti-MR1
821 antibody for 24 hours and percentage of MAIT cells expressing granzyme B (A) and perforin (B)
822 were measured by flow cytometry. Each biological replicate and mean \pm S.E.M are shown and
823 are pooled from two independent experiments (n=6). Repeated measures one-way ANOVA with
824 Sidak multiple comparison tests were used for statistical analysis. *p<0.05, ****p<0.0001, ns =
825 non-significant. **(C and D)** Gene counts (log₂ transformed) of (C) granzyme H, K, and M and (D)
826 FasL with different stimuli; PBMCs were treated with 10 BpC *E. coli* or 5 μ M 5-A-RU for 6
827 hours or 50 ng/mL IL-12+IL-18 for 24 hours, then MAIT cells were flow-sorted for RNA
828 sequencing. Data are presented as mean \pm S.E.M (n=7); for FasL, each biological replicate is
829 shown. Repetitive measures one-way ANOVA with Sidak multiple comparison tests were used
830 for assessing statistical significance. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 **(E)**
831 Percentage of FasL expressing MAIT cells after PBMCs were treated with 10 BpC *E. coli* or 5

832 μ M 5-A-RU for 6 hours or IL-12+IL-18 (50 ng/mL each) for 24 hours; MR1 was blocked in *E.*
833 *coli* stimulation for 24 hours. Each biological replicate and mean \pm S.E.M are shown and are
834 pooled from two independent experiments (n=6-7). Repetitive measures one-way ANOVA with
835 Sidak multiple comparison and paired t tests were performed. **p<0.01, ns = non-significant. (F)
836 Soluble FasL was quantified by LEGENDplexTM in either culture supernatant from co-cultures
837 of purified V α 7.2 $^{+}$ cells and THP1 monocytes (1:1 ratio) stimulated with 100 BpC *E. coli* or 5
838 μ M 5-A-RU for 6 hours \pm anti-MR1, or culture supernatant of purified V α 7.2 $^{+}$ cells alone or
839 after IL-12+IL-18 treatment for 24 hours. Data are presented as mean \pm S.E.M (n=5). Paired t-
840 test were performed on log transformed data for assessing statistical significance. **p<0.01,
841 ***p<0.001.

842 **S. Figure 7: Similar shift in transcription factor expression in other MAIT cell subsets**
843 **during activation.** (A) MAIT cells were identified as CD3 $^{+}$ CD161 $^{++}$ V α 7.2 $^{+}$ T cells in human
844 PBMCs and expression of different transcription factors were compared in double negative (DN;
845 CD8 $^{-}$ CD4 $^{-}$), CD4 $^{+}$, and double positive (DP; CD4 $^{+}$ CD8 $^{+}$) MAIT cell subsets; representative
846 histograms and the gating strategy for the different MAIT cell subsets are shown. An FMO
847 (fluorescent minus one) control for each transcription factor was included. (B-F) Human PBMCs
848 were treated with 10 BpC *E. coli* or 5 μ M 5-A-RU for 6 hours or IL-12+IL-18 (50 ng/mL each)
849 for 24 hours and expression of different transcription factors in different MAIT cell subsets was
850 assessed by flow cytometry; (B) ROR γ t, (C) PLZF, (D) T-bet, (E) Blimp1, and (F) EOMES.
851 Each biological replicate and mean \pm S.E.M are shown and are pooled from two independent
852 experiments (n=8). Repetitive measures one-way ANOVA with Sidak multiple comparison was
853 performed for statistical analysis. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns = non-
854 significant.

855

856 **References**

857 Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J. R., Maciejewski, A., & Wishart, D. S. (2016).
858 Heatmapper: web-enabled heat mapping for all. *Nucleic Acids Res*, 44(W1), W147-153.
859 doi:10.1093/nar/gkw419

860 Bennett, M. S., Trivedi, S., Iyer, A. S., Hale, J. S., & Leung, D. T. (2017). Human mucosal-associated
861 invariant T (MAIT) cells possess capacity for B cell help. *J Leukoc Biol*, 102(5), 1261-1269.
862 doi:10.1189/jlb.4A0317-116R

863 Billerbeck, E., Kang, Y. H., Walker, L., Lockstone, H., Grafmueller, S., Fleming, V., . . . Klenerman, P.
864 (2010). Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset
865 with tissue-homing properties. *Proc Natl Acad Sci U S A*, 107(7), 3006-3011.
866 doi:10.1073/pnas.0914839107

867 Blasche, S., Mortl, M., Steuber, H., Siszler, G., Nisa, S., Schwarz, F., . . . Kogl, M. (2013). The *E. coli*
868 effector protein NleF is a caspase inhibitor. *PLoS One*, 8(3), e58937.
869 doi:10.1371/journal.pone.0058937

870 Chen, Z., Wang, H., D'Souza, C., Sun, S., Kostenko, L., Eckle, S. B., . . . Corbett, A. J. (2017). Mucosal-
871 associated invariant T-cell activation and accumulation after in vivo infection depends on
872 microbial riboflavin synthesis and co-stimulatory signals. *Mucosal Immunol*, 10(1), 58-68.
873 doi:10.1038/mi.2016.39

874 Chiba, A., Tamura, N., Yoshikiyo, K., Murayama, G., Kitagaichi, M., Yamaji, K., . . . Miyake, S. (2017).
875 Activation status of mucosal-associated invariant T cells reflects disease activity and pathology
876 of systemic lupus erythematosus. *Arthritis Res Ther*, 19(1), 58. doi:10.1186/s13075-017-1257-5

877 Chua, W. J., Truscott, S. M., Eickhoff, C. S., Blazevic, A., Hoft, D. F., & Hansen, T. H. (2012). Polyclonal
878 mucosa-associated invariant T cells have unique innate functions in bacterial infection. *Infect*
879 *Immun*, 80(9), 3256-3267. doi:10.1128/iai.00279-12

880 Corbett, A. J., Eckle, S. B., Birkinshaw, R. W., Liu, L., Patel, O., Mahony, J., . . . McCluskey, J. (2014). T-cell
881 activation by transitory neo-antigens derived from distinct microbial pathways. *Nature*,
882 509(7500), 361-365. doi:10.1038/nature13160

883 Davey, M. S., Morgan, M. P., Liuzzi, A. R., Tyler, C. J., Khan, M. W. A., Szakmany, T., . . . Eberl, M. (2014).
884 Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen
885 cross-presenting cells. *J Immunol*, 193(7), 3704-3716. doi:10.4049/jimmunol.1401018

886 Dias, J., Leeansyah, E., & Sandberg, J. K. (2017). Multiple layers of heterogeneity and subset diversity in
887 human MAIT cell responses to distinct microorganisms and to innate cytokines. *Proc Natl Acad*
888 *Sci U S A*, 114(27), E5434-e5443. doi:10.1073/pnas.1705759114

889 Dusseaux, M., Martin, E., Serriari, N., Peguillet, I., Premel, V., Louis, D., . . . Lantz, O. (2011). Human MAIT
890 cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. *Blood*, 117(4),
891 1250-1259. doi:10.1182/blood-2010-08-303339

892 Falvo, J. V., Jasenosky, L. D., Kruidenier, L., & Goldfeld, A. E. (2013). Epigenetic control of cytokine gene
893 expression: regulation of the TNF/LT locus and T helper cell differentiation. *Adv Immunol*, 118,
894 37-128. doi:10.1016/b978-0-12-407708-9.00002-9

895 Fox, J. C., Nakayama, T., Tyler, R. C., Sander, T. L., Yoshie, O., & Volkman, B. F. (2015). Structural and
896 agonist properties of XCL2, the other member of the C-chemokine subfamily. *Cytokine*, 71(2),
897 302-311. doi:10.1016/j.cyto.2014.11.010

898 Georgel, P., Radosavljevic, M., Macquin, C., & Bahram, S. (2011). The non-conventional MHC class I MR1
899 molecule controls infection by *Klebsiella pneumoniae* in mice. *Mol Immunol*, 48(5), 769-775.
900 doi:10.1016/j.molimm.2010.12.002

901 Gherardin, N. A., Keller, A. N., Woolley, R. E., Le Nours, J., Ritchie, D. S., Neeson, P. J., . . . Rossjohn, J.
902 (2016). Diversity of T Cells Restricted by the MHC Class I-Related Molecule MR1 Facilitates
903 Differential Antigen Recognition. *Immunity*, 44(1), 32-45. doi:10.1016/j.jimmuni.2015.12.005

904 Giribaldi, G., Prato, M., Ulliers, D., Gallo, V., Schwarzer, E., Akide-Ndunge, O. B., . . . Arese, P. (2010).
905 Involvement of inflammatory chemokines in survival of human monocytes fed with malarial
906 pigment. *Infect Immun*, 78(11), 4912-4921. doi:10.1128/iai.00455-10

907 Gold, M. C., Cerri, S., Smyk-Pearson, S., Cansler, M. E., Vogt, T. M., Delepine, J., . . . Lewinsohn, D. M.
908 (2010). Human mucosal associated invariant T cells detect bacterially infected cells. *PLoS Biol*,
909 8(6), e1000407. doi:10.1371/journal.pbio.1000407

910 Grimaldi, D., Le Bourhis, L., Sauneuf, B., Dechartres, A., Rousseau, C., Ouaaz, F., . . . Pene, F. (2014).
911 Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe
912 infections. *Intensive Care Med*, 40(2), 192-201. doi:10.1007/s00134-013-3163-x

913 Guenova, E., Skabytska, Y., Hoetzenegger, W., Weindl, G., Sauer, K., Tham, M., . . . Biedermann, T.
914 (2015). IL-4 abrogates T(H)17 cell-mediated inflammation by selective silencing of IL-23 in
915 antigen-presenting cells. *Proc Natl Acad Sci U S A*, 112(7), 2163-2168.
916 doi:10.1073/pnas.1416922112

917 Havenith, S. H., Yong, S. L., Henson, S. M., Piet, B., Idu, M. M., Koch, S. D., . . . ten Berge, I. J. (2012).
918 Analysis of stem-cell-like properties of human CD161++IL-18Ralpha+ memory CD8+ T cells. *Int
919 Immunol*, 24(10), 625-636. doi:10.1093/intimm/dxs069

920 Hinks, T. S. C., Marchi, E., Jabeen, M., Olshansky, M., Kurioka, A., Pediongco, T. J., . . . McCluskey, J.
921 (2018). Activation and in vivo evolution of the MAIT cell transcriptome in mice and humans
922 reveals diverse functionality. *bioRxiv*, 490649. doi:10.1101/490649.

923 Huang, H., Li, F., Cairns, C. M., Gordon, J. R., & Xiang, J. (2001). Neutrophils and B cells express XCR1
924 receptor and chemotactically respond to lymphotactin. *Biochem Biophys Res Commun*, 281(2),
925 378-382. doi:10.1006/bbrc.2001.4363

926 Huang, S., Gilfillan, S., Cella, M., Miley, M. J., Lantz, O., Lybarger, L., . . . Hansen, T. H. (2005). Evidence
927 for MR1 antigen presentation to mucosal-associated invariant T cells. *J Biol Chem*, 280(22),
928 21183-21193. doi:10.1074/jbc.M501087200

929 Jo, J., Tan, A. T., Ussher, J. E., Sandalova, E., Tang, X. Z., Tan-Garcia, A., . . . Bertoletti, A. (2014). Toll-like
930 receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver.
931 *PLoS Pathog*, 10(6), e1004210. doi:10.1371/journal.ppat.1004210

932 Kim, M., Yoo, S. J., Kang, S. W., Kwon, J., Choi, I., & Lee, C. H. (2017). TNFalpha and IL-1beta in the
933 synovial fluid facilitate mucosal-associated invariant T (MAIT) cell migration. *Cytokine*, 99, 91-98.
934 doi:10.1016/j.cyto.2017.07.007

935 Kjer-Nielsen, L., Patel, O., Corbett, A. J., Le Nours, J., Meehan, B., Liu, L., . . . McCluskey, J. (2012). MR1
936 presents microbial vitamin B metabolites to MAIT cells. *Nature*, 491(7426), 717-723.
937 doi:10.1038/nature11605

938 Kuhns, D. B., Long Priel, D. A., Chu, J., & Zaremba, K. A. (2015). Isolation and Functional Analysis of
939 Human Neutrophils. *Curr Protoc Immunol*, 111, 7.23.21-16.
940 doi:10.1002/0471142735.im0723s111

941 Kurioka, A., Jahun, A. S., Hannaway, R. F., Walker, L. J., Fergusson, J. R., Sverremark-Ekstrom, E., . . .
942 Klenerman, P. (2017). Shared and Distinct Phenotypes and Functions of Human CD161++
943 Valpha7.2+ T Cell Subsets. *Front Immunol*, 8, 1031. doi:10.3389/fimmu.2017.01031

944 Kurioka, A., Klenerman, P., & Willberg, C. B. (2018). Innate-like CD8+ T-cells and NK cells: converging
945 functions and phenotypes. *Immunology*. doi:10.1111/imm.12925

946 Kurioka, A., Ussher, J. E., Cosgrove, C., Clough, C., Fergusson, J. R., Smith, K., . . . Klenerman, P. (2015).
947 MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. *Mucosal
948 Immunol*, 8(2), 429-440. doi:10.1038/mi.2014.81

949 Le Bourhis, L., Dusseaux, M., Bohineust, A., Bessoles, S., Martin, E., Premel, V., . . . Lantz, O. (2013). MAIT
950 cells detect and efficiently lyse bacterially-infected epithelial cells. *PLoS Pathog*, 9(10),
951 e1003681. doi:10.1371/journal.ppat.1003681

952 Le Bourhis, L., Martin, E., Peguillet, I., Guihot, A., Froux, N., Core, M., . . . Lantz, O. (2010). Antimicrobial
953 activity of mucosal-associated invariant T cells. *Nat Immunol*, 11(8), 701-708.
954 doi:10.1038/ni.1890

955 Leeansyah, E., Loh, L., Nixon, D. F., & Sandberg, J. K. (2014). Acquisition of innate-like microbial reactivity
956 in mucosal tissues during human fetal MAIT-cell development. *Nat Commun*, 5, 3143.
957 doi:10.1038/ncomms4143

958 Leeansyah, E., Svard, J., Dias, J., Buggert, M., Nystrom, J., Quigley, M. F., . . . Sandberg, J. K. (2015).
959 Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1
960 Infection. *PLoS Pathog*, 11(8), e1005072. doi:10.1371/journal.ppat.1005072

961 Leng, T., King, T., Friedrich, M., Christoforidou, Z., McCuaig, S., Neyazi, M., . . . Kleberman, P. (2018). TCR
962 and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector
963 functions. *bioRxiv*, 475913. doi:10.1101/475913

964 Lepore, M., Kalinichenko, A., Colone, A., Paleja, B., Singhal, A., Tschumi, A., . . . Mori, L. (2014). Parallel T-
965 cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRbeta
966 repertoire. *Nat Commun*, 5, 3866. doi:10.1038/ncomms4866

967 Linehan, J. L., Harrison, O. J., Han, S. J., Byrd, A. L., Vujkovic-Cvijin, I., Villarino, A. V., . . . Belkaid, Y.
968 (2018). Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair.
969 *Cell*, 172(4), 784-796.e718. doi:10.1016/j.cell.2017.12.033

970 Lippert, U., Zachmann, K., Ferrari, D. M., Schwarz, H., Brunner, E., Mahbub-UI Latif, A. H., . . . Soruri, A.
971 (2008). CD137 ligand reverse signaling has multiple functions in human dendritic cells during an
972 adaptive immune response. *Eur J Immunol*, 38(4), 1024-1032. doi:10.1002/eji.200737800

973 Liuzzi, A. R., Kift-Morgan, A., Lopez-Anton, M., Friberg, I. M., Zhang, J., Brook, A. C., . . . Eberl, M. (2016).
974 Unconventional Human T Cells Accumulate at the Site of Infection in Response to Microbial
975 Ligands and Induce Local Tissue Remodeling. *J Immunol*, 197(6), 2195-2207.
976 doi:10.4049/jimmunol.1600990

977 Loh, L., Wang, Z., Sant, S., Koutsakos, M., Jegaskanda, S., Corbett, A. J., . . . Kedzierska, K. (2016). Human
978 mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-
979 dependent activation. *Proc Natl Acad Sci U S A*, 113(36), 10133-10138.
980 doi:10.1073/pnas.1610750113

981 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for
982 RNA-seq data with DESeq2. *Genome Biol*, 15(12), 550. doi:10.1186/s13059-014-0550-8

983 Maess, M. B., Sendelbach, S., & Lorkowski, S. (2010). Selection of reliable reference genes during THP-1
984 monocyte differentiation into macrophages. *BMC Mol Biol*, 11, 90. doi:10.1186/1471-2199-11-
985 90

986 Margulieux, K. R., Fox, J. W., Nakamoto, R. K., & Hughes, M. A. (2016). CXCL10 Acts as a Bifunctional
987 Antimicrobial Molecule against *Bacillus anthracis*. *MBio*, 7(3). doi:10.1128/mBio.00334-16

988 Martin, E., Treiner, E., Duban, L., Guerri, L., Laude, H., Toly, C., . . . Lantz, O. (2009). Stepwise
989 development of MAIT cells in mouse and human. *PLoS Biol*, 7(3), e54.
990 doi:10.1371/journal.pbio.1000054

991 Meierovics, A., Yankelevich, W. J., & Cowley, S. C. (2013). MAIT cells are critical for optimal mucosal
992 immune responses during in vivo pulmonary bacterial infection. *Proc Natl Acad Sci U S A*,
993 110(33), E3119-3128. doi:10.1073/pnas.1302799110

994 Meller, S., Di Domizio, J., Voo, K. S., Friedrich, H. C., Chamilos, G., Ganguly, D., . . . Gilliet, M. (2015).
995 T(H)17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. *Nat
996 Immunol*, 16(9), 970-979. doi:10.1038/ni.3211

997 Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., . . . Groop, L. C.
998 (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately
999 downregulated in human diabetes. *Nat Genet*, 34(3), 267-273. doi:10.1038/ng1180

1000 Mukasa, R., Balasubramani, A., Lee, Y. K., Whitley, S. K., Weaver, B. T., Shibata, Y., . . . Weaver, C. T.
1001 (2010). Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of
1002 the T helper 17 cell lineage. *Immunity*, 32(5), 616-627. doi:10.1016/j.jimmuni.2010.04.016

1003 Munk, R. B., Sugiyama, K., Ghosh, P., Sasaki, C. Y., Rezanka, L., Banerjee, K., . . . Longo, D. L. (2011).
1004 Antigen-independent IFN-gamma production by human naive CD4 T cells activated by IL-12 plus
1005 IL-18. *PLoS One*, 6(5), e18553. doi:10.1371/journal.pone.0018553

1006 Reid-Yu, S. A., Tuinema, B. R., Small, C. N., Xing, L., & Coombes, B. K. (2015). CXCL9 contributes to
1007 antimicrobial protection of the gut during citrobacter rodentium infection independent of
1008 chemokine-receptor signaling. *PLoS Pathog*, 11(2), e1004648. doi:10.1371/journal.ppat.1004648

1009 Ribeiro, R. A., Flores, C. A., Cunha, F. Q., & Ferreira, S. H. (1991). IL-8 causes in vivo neutrophil migration
1010 by a cell-dependent mechanism. *Immunology*, 73(4), 472-477.

1011 Salio, M., Gasser, O., Gonzalez-Lopez, C., Martens, A., Veerapen, N., Gileadi, U., . . . Cerundolo, V. (2017).
1012 Activation of Human Mucosal-Associated Invariant T Cells Induces CD40L-Dependent Maturation
1013 of Monocyte-Derived and Primary Dendritic Cells. *J Immunol*, 199(8), 2631-2638.
1014 doi:10.4049/jimmunol.1700615

1015 Sattler, A., Dang-Heine, C., Reinke, P., & Babel, N. (2015). IL-15 dependent induction of IL-18 secretion as
1016 a feedback mechanism controlling human MAIT-cell effector functions. *Eur J Immunol*, 45(8),
1017 2286-2298. doi:10.1002/eji.201445313

1018 Slichter, C. K., McDavid, A., Miller, H. W., Finak, G., Seymour, B. J., McNevin, J. P., . . . Prlic, M. (2016).
1019 Distinct activation thresholds of human conventional and innate-like memory T cells. *JCI Insight*,
1020 1(8). doi:10.1172/jci.insight.86292

1021 Smith, D. J., Hill, G. R., Bell, S. C., & Reid, D. W. (2014). Reduced mucosal associated invariant T-cells are
1022 associated with increased disease severity and *Pseudomonas aeruginosa* infection in cystic
1023 fibrosis. *PLoS One*, 9(10), e109891. doi:10.1371/journal.pone.0109891

1024 Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., . . . Mesirov, J. P.
1025 (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-
1026 wide expression profiles. *Proc Natl Acad Sci U S A*, 102(43), 15545-15550.
1027 doi:10.1073/pnas.0506580102

1028 Talbot, J., Bianchini, F. J., Nascimento, D. C., Oliveira, R. D., Souto, F. O., Pinto, L. G., . . . Alves-Filho, J. C.
1029 (2015). CCR2 Expression in Neutrophils Plays a Critical Role in Their Migration Into the Joints in
1030 Rheumatoid Arthritis. *Arthritis Rheumatol*, 67(7), 1751-1759. doi:10.1002/art.39117

1031 Tang, X. Z., Jo, J., Tan, A. T., Sandalova, E., Chia, A., Tan, K. C., . . . Bertoletti, A. (2013). IL-7 licenses
1032 activation of human liver intrasinusoidal mucosal-associated invariant T cells. *J Immunol*, 190(7),
1033 3142-3152. doi:10.4049/jimmunol.1203218

1034 Tilloy, F., Treiner, E., Park, S. H., Garcia, C., Lemonnier, F., de la Salle, H., . . . Lantz, O. (1999). An invariant
1035 T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex
1036 class Ib-restricted alpha/beta T cell subpopulation in mammals. *J Exp Med*, 189(12), 1907-1921.

1037 Treiner, E., Duban, L., Bahram, S., Radosavljevic, M., Wanner, V., Tilloy, F., . . . Lantz, O. (2003). Selection
1038 of evolutionarily conserved mucosal-associated invariant T cells by MR1. *Nature*, 422(6928),
1039 164-169. doi:10.1038/nature01433

1040 Turtle, C. J., Delrow, J., Joslyn, R. C., Swanson, H. M., Basom, R., Tabellini, L., . . . Riddell, S. R. (2011).
1041 Innate signals overcome acquired TCR signaling pathway regulation and govern the fate of
1042 human CD161(hi) CD8alpha(+) semi-invariant T cells. *Blood*, 118(10), 2752-2762.
1043 doi:10.1182/blood-2011-02-334698

1044 Ussher, J. E., Bilton, M., Attwod, E., Shadwell, J., Richardson, R., de Lara, C., . . . Willberg, C. B. (2014).
1045 CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in
1046 a TCR-independent manner. *Eur J Immunol*, 44(1), 195-203. doi:10.1002/eji.201343509

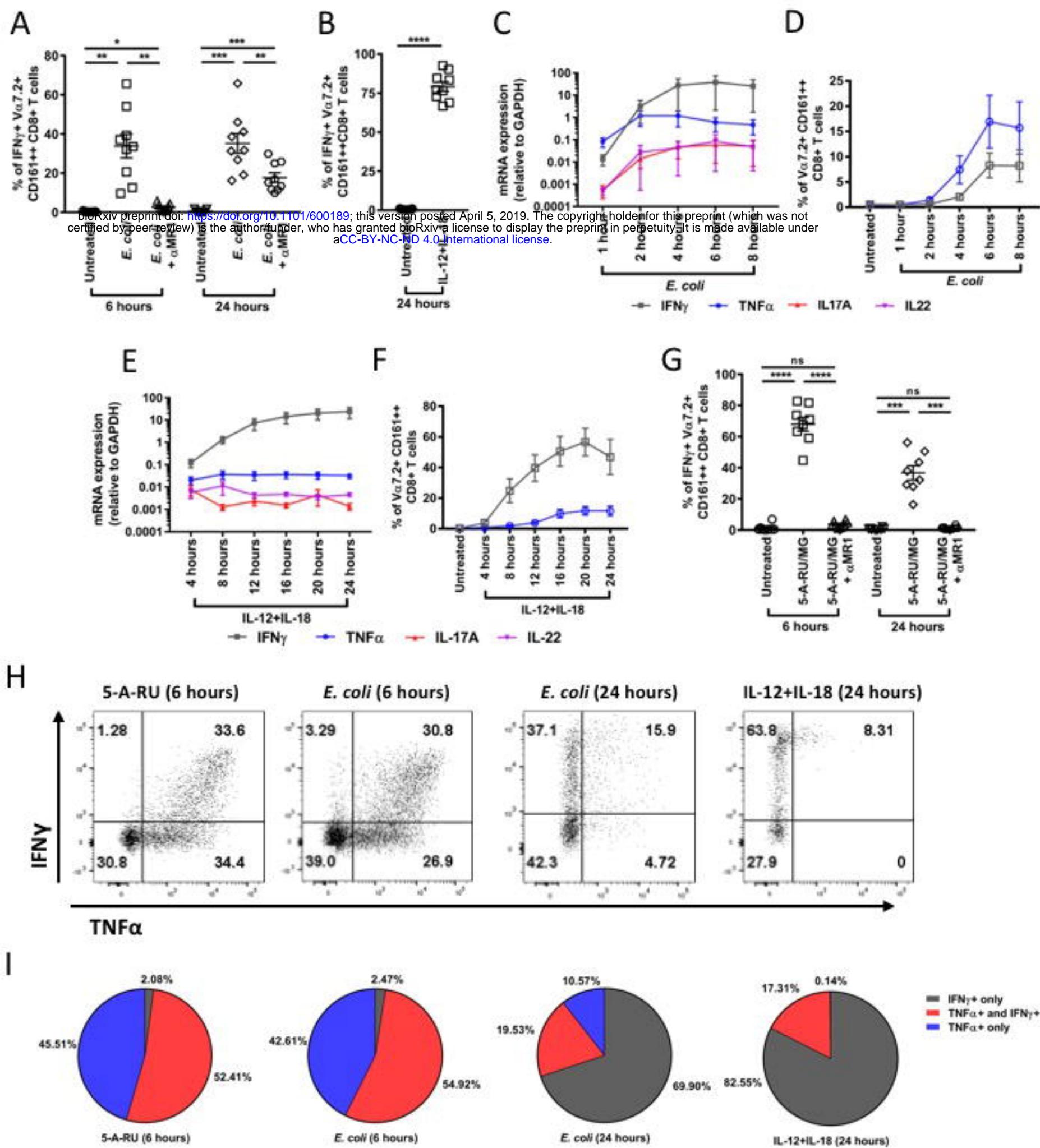
1047 Ussher, J. E., van Wilgenburg, B., Hannaway, R. F., Ruustal, K., Phalora, P., Kurioka, A., . . . Klenerman, P.
1048 (2016). TLR signaling in human antigen-presenting cells regulates MR1-dependent activation of
1049 MAIT cells. *Eur J Immunol*, 46(7), 1600-1614. doi:10.1002/eji.201545969

1050 van Wilgenburg, B., Scherwitzl, I., Hutchinson, E. C., Leng, T., Kurioka, A., Kulicke, C., . . . Klenerman, P.
1051 (2016). MAIT cells are activated during human viral infections. *Nat Commun*, 7, 11653.
1052 doi:10.1038/ncomms11653

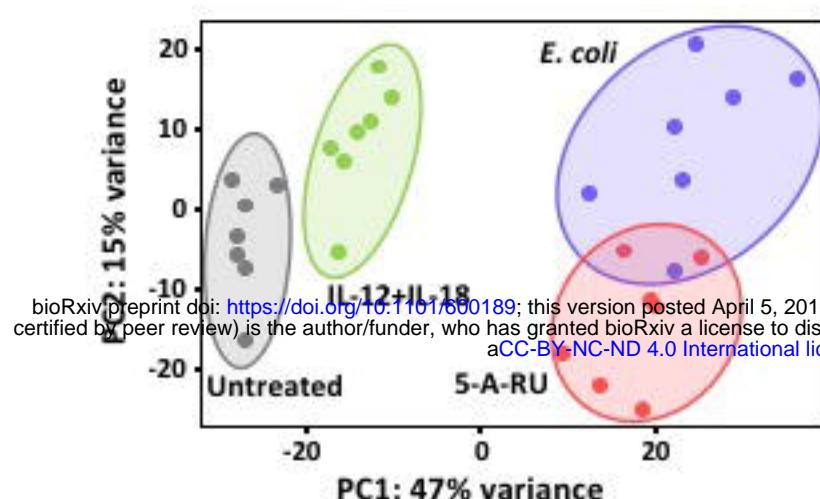
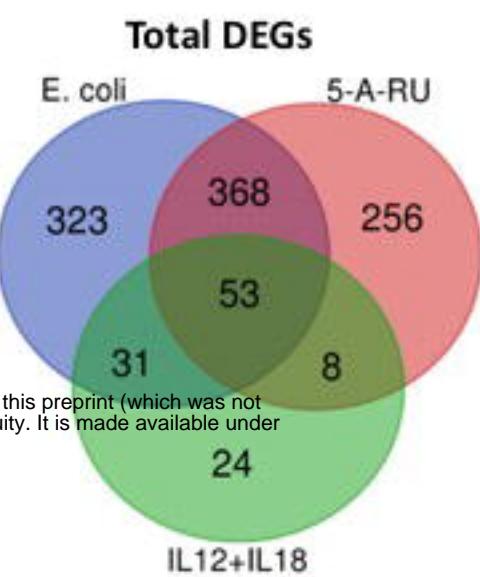
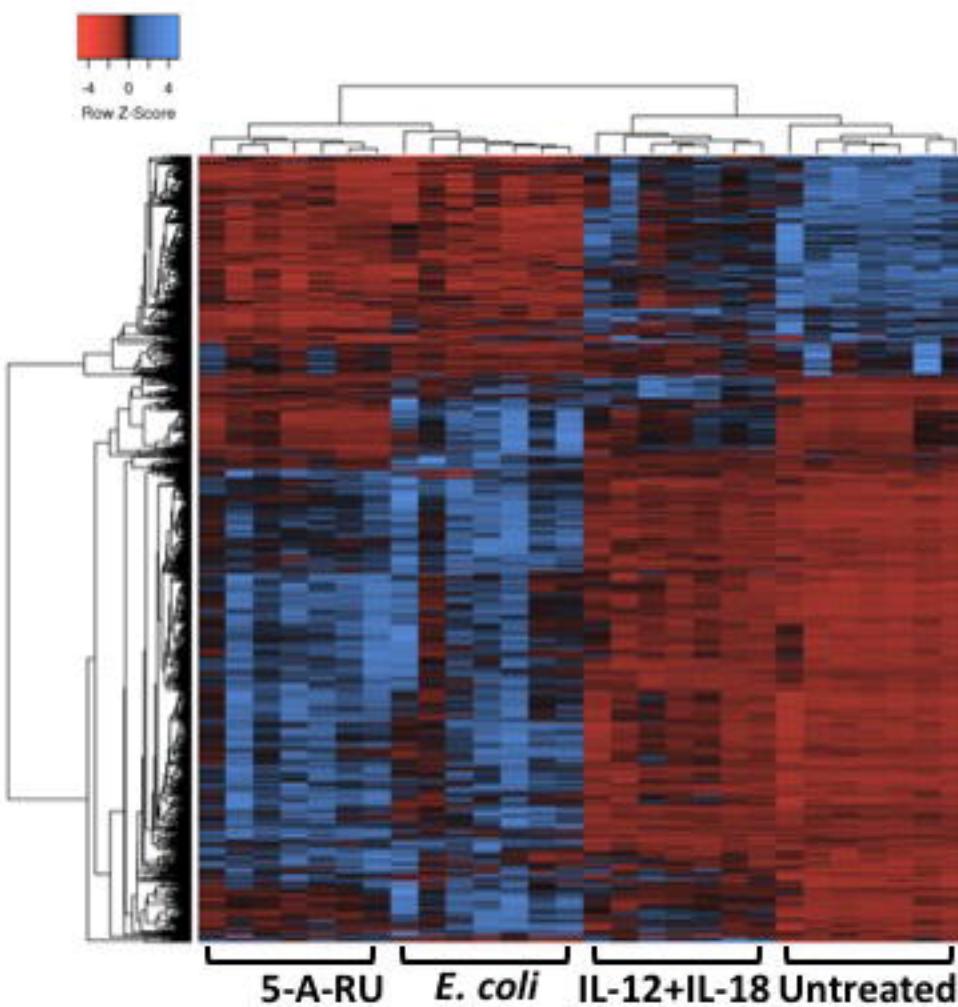
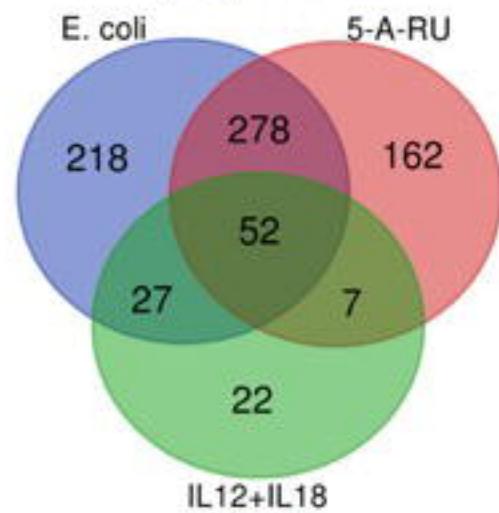
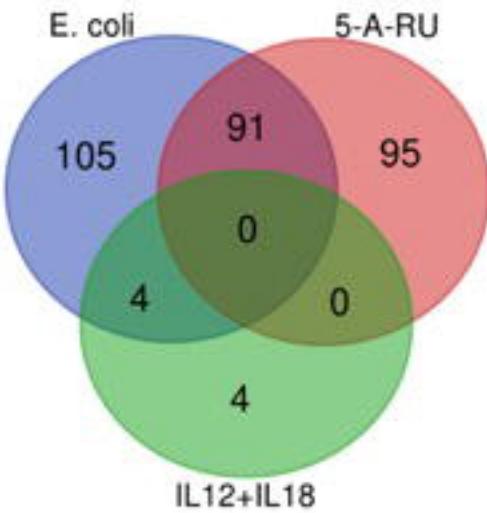
1053 Varanasi, V., Khan, A. A., & Chervonsky, A. V. (2014). Loss of the death receptor CD95 (Fas) expression by
1054 dendritic cells protects from a chronic viral infection. *Proc Natl Acad Sci U S A*, 111(23), 8559-
1055 8564. doi:10.1073/pnas.1401750111

1056 Wakao, H., Yoshiyuki, K., Koshimizu, U., Furukawa, T., Enomoto, K., Matsunaga, T., . . . Fujita, H. (2013).
1057 Expansion of functional human mucosal-associated invariant T cells via reprogramming to
1058 pluripotency and redifferentiation. *Cell Stem Cell*, 12(5), 546-558.
1059 doi:10.1016/j.stem.2013.03.001

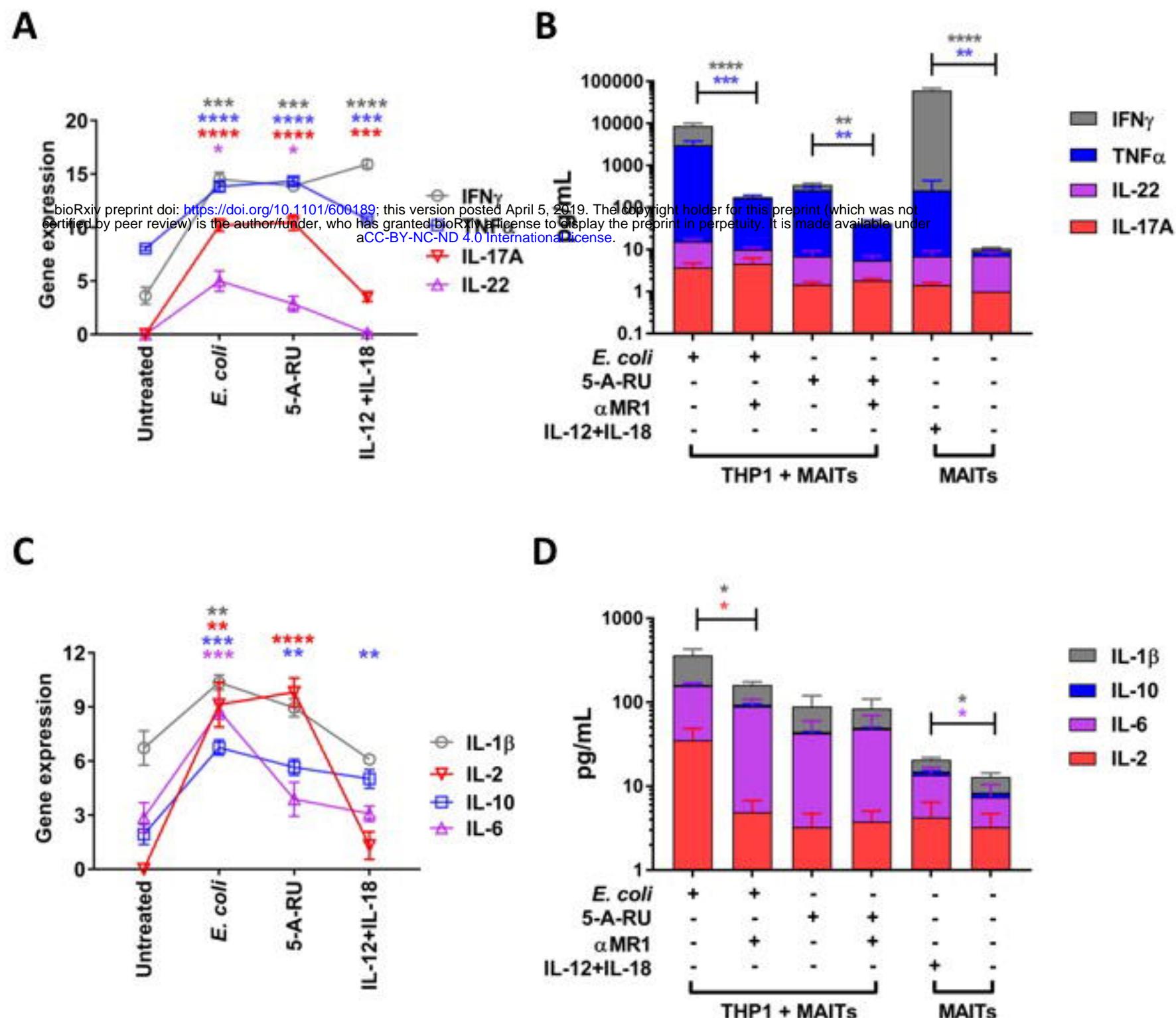
1060 Wallington, J. C., Williams, A. P., Staples, K. J., & Wilkinson, T. M. A. (2018). IL-12 and IL-7 synergize to
1061 control mucosal-associated invariant T-cell cytotoxic responses to bacterial infection. *J Allergy*
1062 *Clin Immunol*, 141(6), 2182-2195.e2186. doi:10.1016/j.jaci.2017.08.009

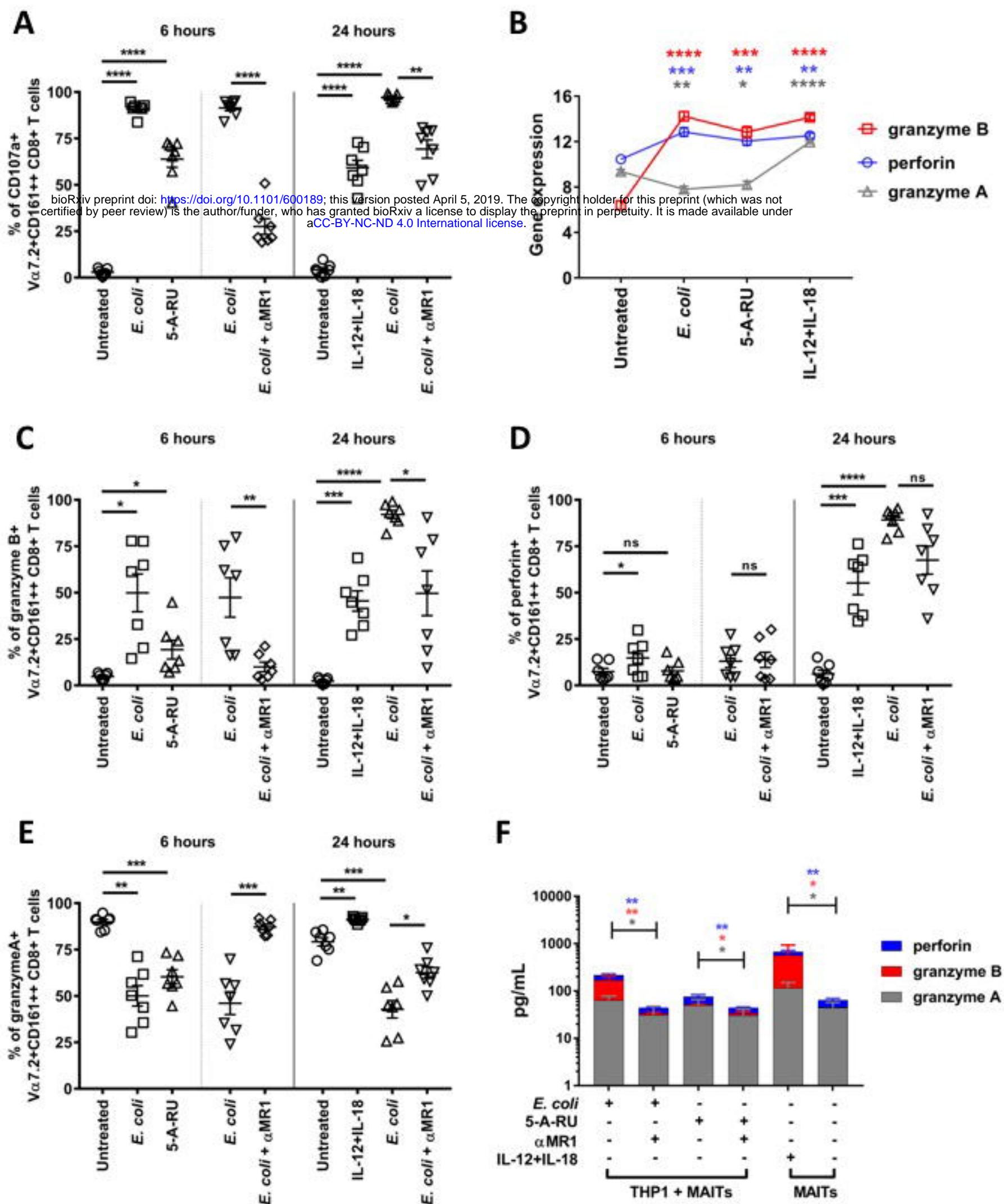

1063 Wang, H., D'Souza, C., Lim, X. Y., Kostenko, L., Pediongco, T. J., Eckle, S. B. G., . . . Chen, Z. (2018). MAIT
1064 cells protect against pulmonary *Legionella longbeachae* infection. *Nat Commun*, 9(1), 3350.
1065 doi:10.1038/s41467-018-05202-8

1066 Wilgenburg, B. V., Loh, L., Chen, Z., Pediongco, T. J., Wang, H., Shi, M., . . . Hinks, T. S. C. (2018). MAIT
1067 cells contribute to protection against lethal influenza infection in vivo. *Nat Commun*, 9(1), 4706.
1068 doi:10.1038/s41467-018-07207-9






1069 Zhang, D., Beresford, P. J., Greenberg, A. H., & Lieberman, J. (2001). Granzymes A and B directly cleave
1070 lamins and disrupt the nuclear lamina during granule-mediated cytolysis. *Proc Natl Acad Sci U S*
1071 A, 98(10), 5746-5751. doi:10.1073/pnas.101329598

1072


Figure 1


Figure 2

A**B****C****Upregulated****Downregulated**

Figure 3

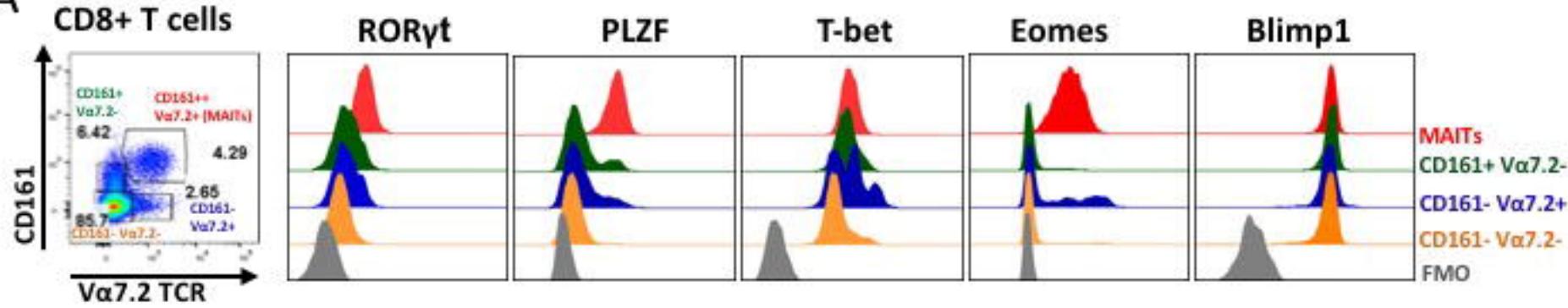


Figure 4

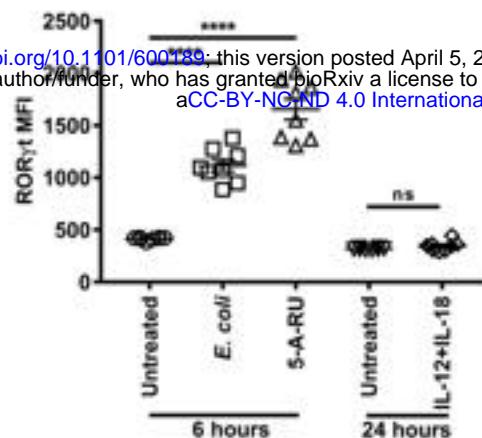
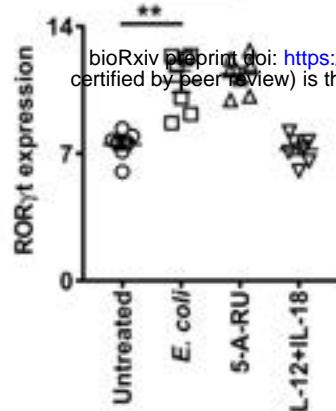
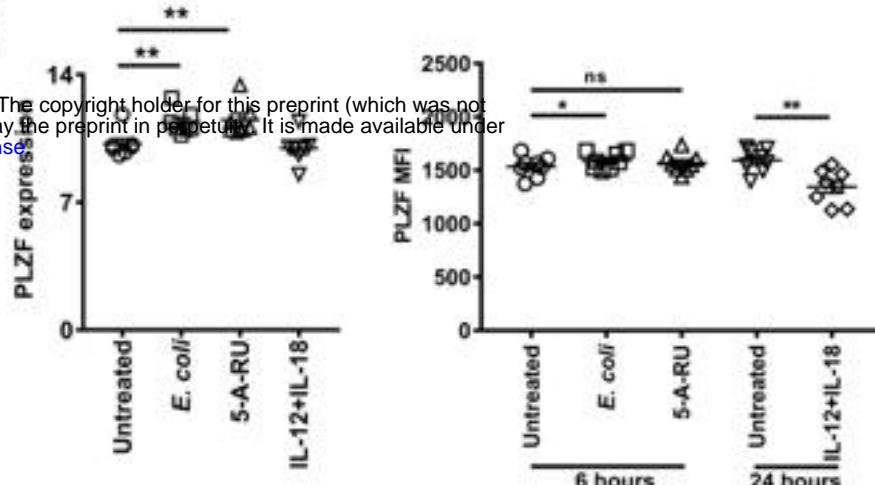
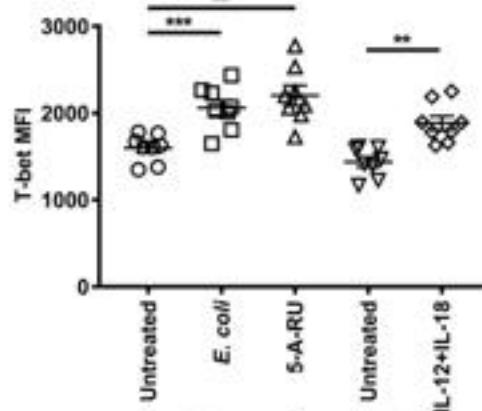
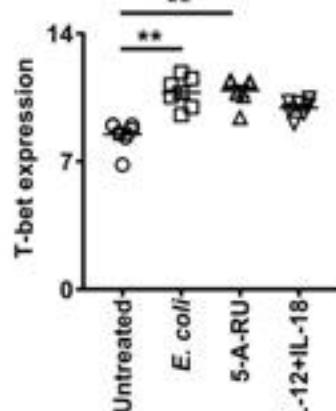
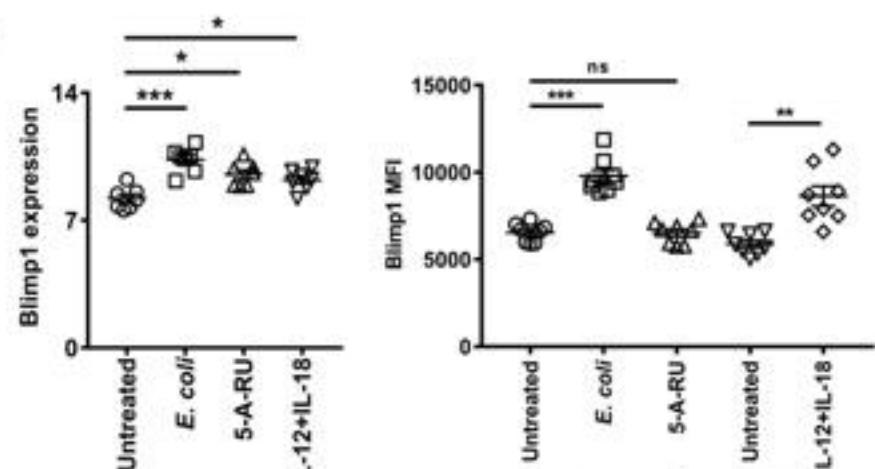
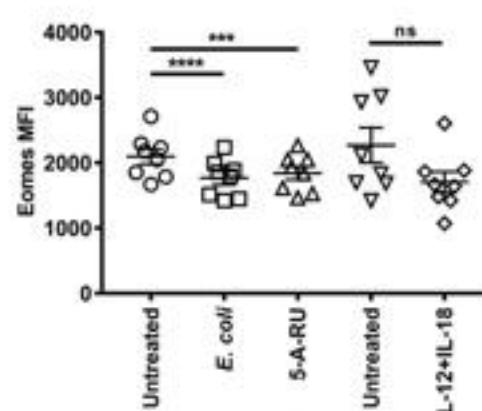
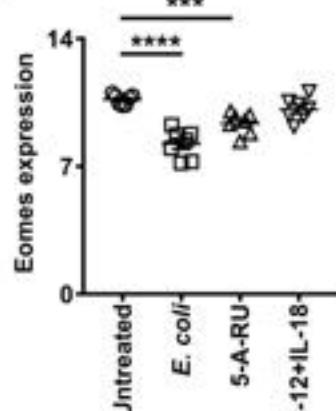



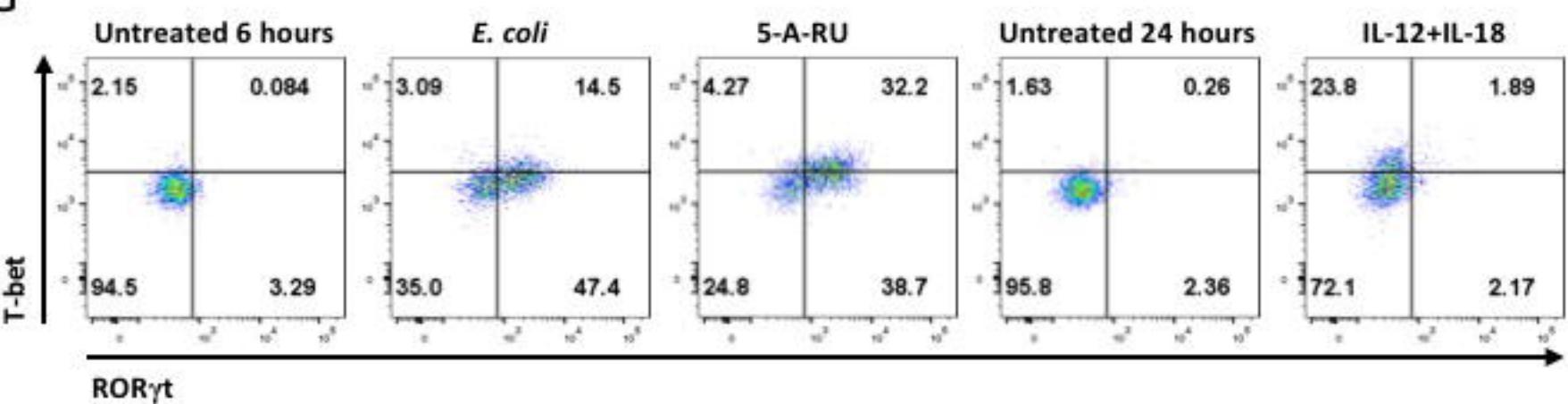
Figure 5

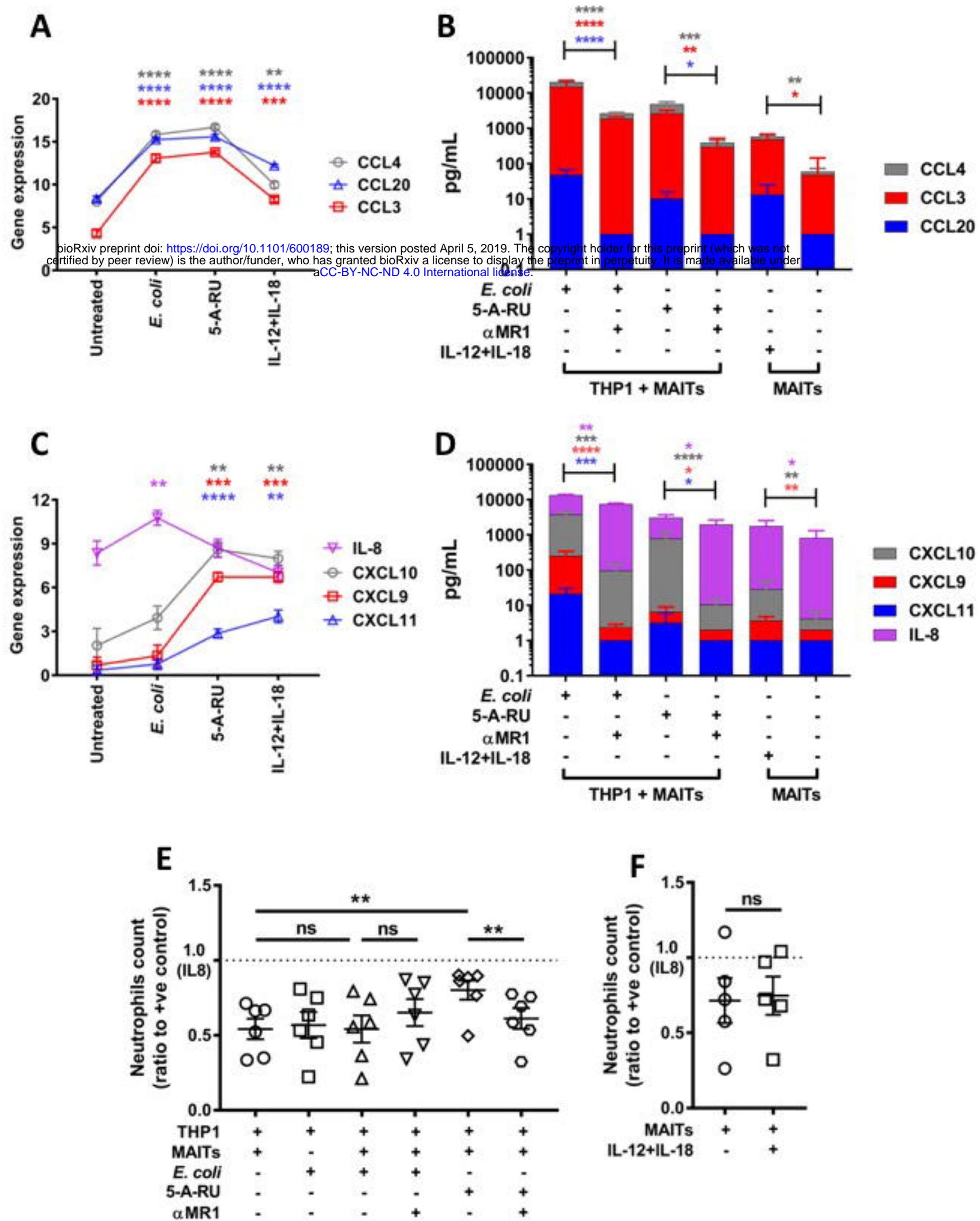

A Gated on live CD8+ T cells



B


C



D


E


F

G

Figure 6

Figure 7

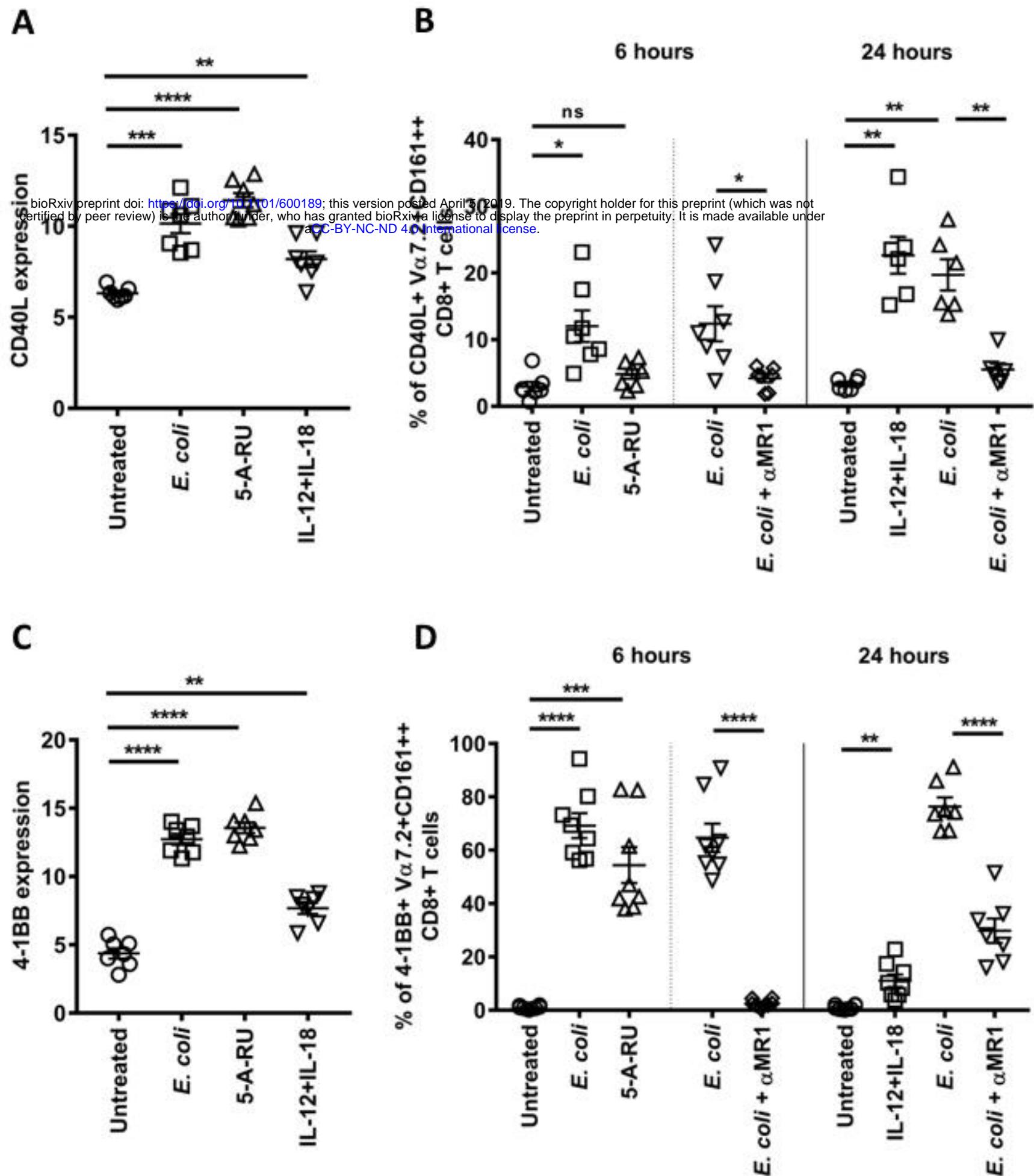
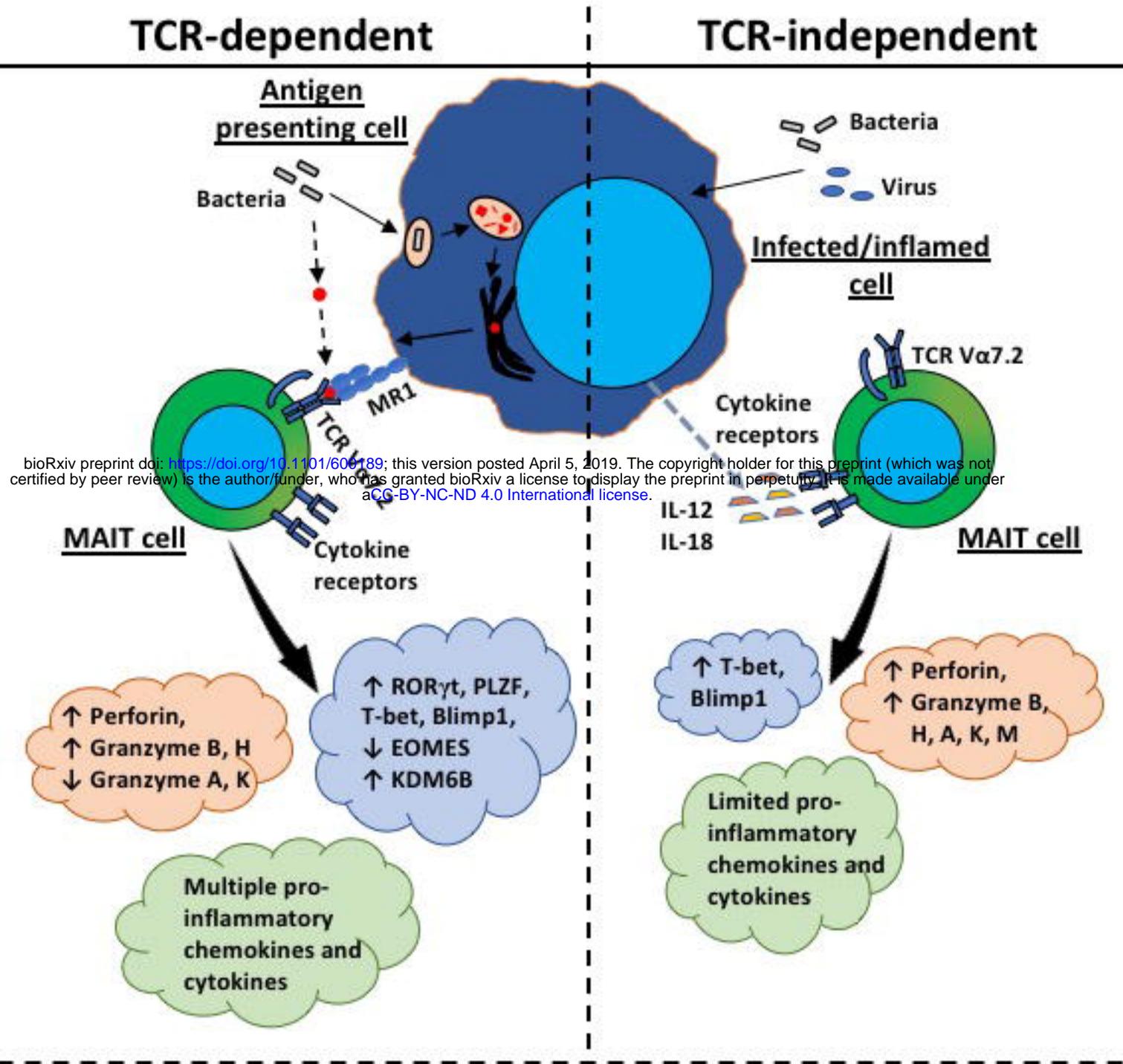
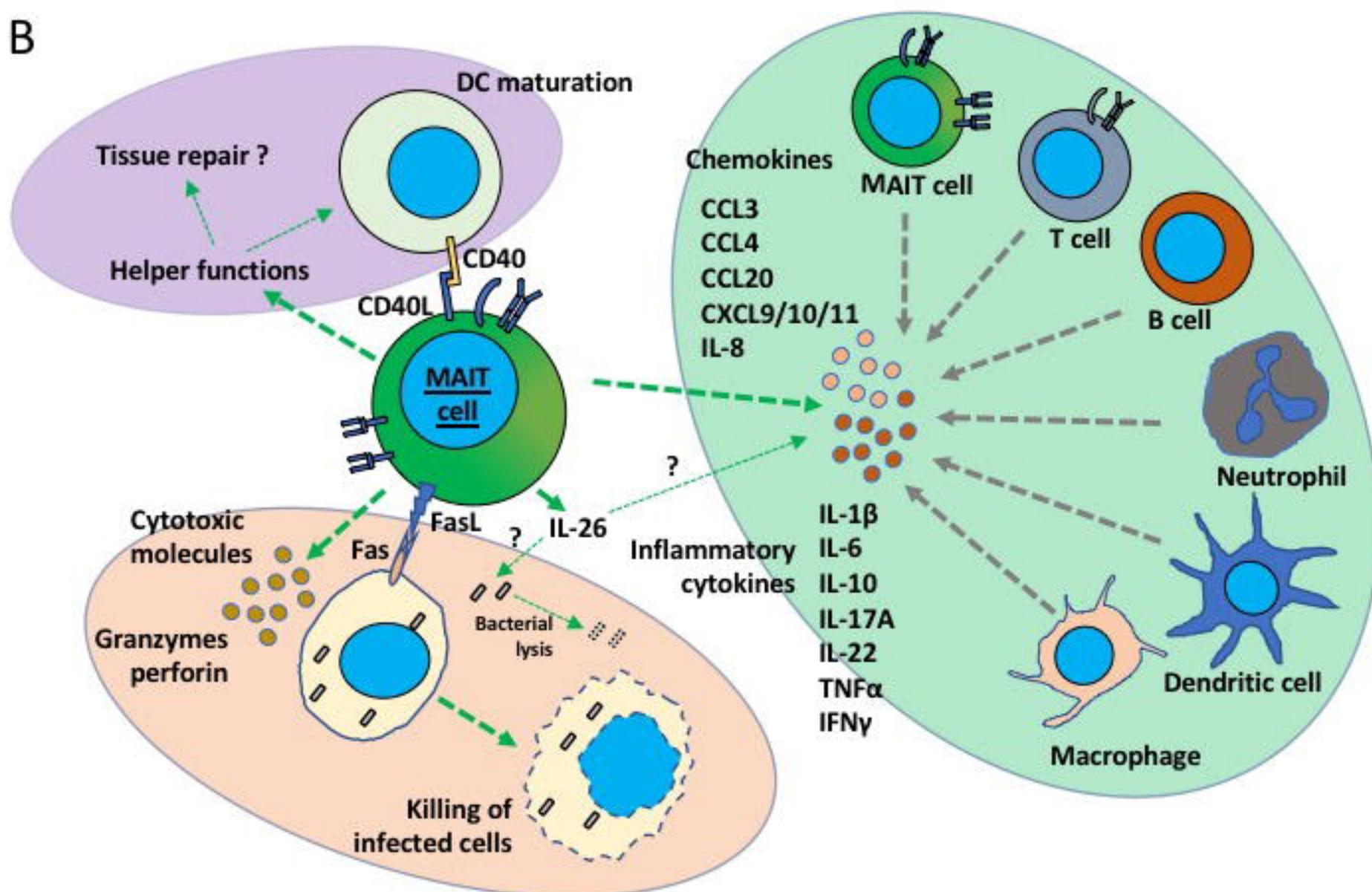




Figure 8

A

B

