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Abstract

With the advent of advanced MRI techniques it has become possible to study axonal
white matter non-invasively and in great detail. Measuring the various parameters of
the long-range connections of the brain opens up the possibility to build and refine
detailed models of large-scale neuronal activity. One particular challenge is to find a
mathematical description of action potential propagation that is sufficiently simple, yet
still biologically plausible to model signal transmission across entire axonal fibre
bundles. We develop a mathematical framework in which we replace the
Hodgkin-Huxley dynamics by a spike-diffuse-spike model with passive sub-threshold
dynamics and explicit, threshold-activated ion channel currents. This allows us to study
in detail the influence of the various model parameters on the action potential velocity
and on the entrainment of action potentials between ephaptically coupled fibres without
having to recur to numerical simulations. Specifically, we recover known results
regarding the influence of axon diameter, node of Ranvier length and internode length
on the velocity of action potentials. Additionally, we find that the velocity depends
more strongly on the thickness of the myelin sheath than was suggested by previous
theoretical studies. We further explain the slowing down and synchronisation of action
potentials in ephaptically coupled fibres by their dynamic interaction. In summary, this
study presents a solution to incorporate detailed axonal parameters into a whole-brain
modelling framework.

Author summary

With more and more data becoming available on white-matter tracts, the need arises to
develop modelling frameworks that incorporate these data at the whole-brain level. This
requires the development of efficient mathematical schemes to study parameter
dependencies that can then be matched with data, in particular the speed of action
potentials that cause delays between brain regions. Here, we develop a method that
describes the formation of action potentials by threshold activated currents, often
referred to as spike-diffuse-spike modelling. A particular focus of our study is the
dependence of the speed of action potentials on structural parameters. We find that the
diameter of axons and the thickness of the myelin sheath have a strong influence on the
speed, whereas the length of myelinated segments and node of Ranvier length have a
lesser effect. In addition to examining single axons, we demonstrate that action
potentials between nearby axons can synchronise and slow down their propagation
speed.
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Introduction 1

Neurons communicate via chemical and electrical signals, and an integral part of this 2

communication is the transmission of action potentials along their axons. The velocity 3

of action potentials is crucial for the right timing in information processing and depends 4

on the dynamics of ion channels studding the axon, but also on its geometrical 5

properties. For instance, the velocity increases approximately linearly with the diameter 6

of myelinated axons [1]. Myelin sheaths around axons are an evolutionary trait in most 7

vertebrates and some invertebrates, which developed independently in several taxa [2]. 8

The presence of a myelin sheath increases the velocity of action potentials by enabling 9

saltatory conduction [3]. Long-term, activity-dependent changes in the myelination 10

status of axons are related to learning [4]. The functional role of differentiated 11

myelination is to regulate and synchronise signal transmission across different axonal 12

fibres to enable cognitive function, sensory integration and motor skills [5]. 13

White-matter architecture has also been found to affect the peak frequency of the alpha 14

rhythm [6]. Axons and their supporting cells make up the white matter, which has, for 15

a long time, only been accessible to histological studies [7, 8]. With the advent of 16

advanced MRI techniques, some of the geometric parameters of axonal fibre bundles 17

have become accessible to non-invasive methods. Techniques have been proposed to 18

determine the orientation of fibre bundles in the white matter [9] as well as to estimate 19

the distribution of axonal diameters [10], the packing density of axons in a fibre 20

bundle [11,12], and the ratio of the diameters of the axon and the myelin sheath 21

(g-ratio) [13]. 22

First quantitative studies were done by Hursh [14] who established the 23

(approximately) linear relationship between action potential velocity and axonal radius 24

in myelinated axons, and Tasaki [3] who first described saltatory conduction in 25

myelinated axons. Seminal work on ion channel dynamics was later done by Hodgkin 26

and Huxley, establishing the voltage-dependence of ion channel currents [15]. The 27

general result of voltage-dependent gating has been confirmed in vertebrates [16], yet a 28

recent result for mammals suggests that the gating dynamics of sodium channels is 29

faster than described by the original Hodgkin-Huxley model, thereby enabling faster 30

generation and transmission of action potentials [17]. In general, parameters 31

determining channel dynamics differ widely across neuron types [18]. 32

Seminal studies into signal propagation in myelinated axons using computational 33

techniques were done by FitzHugh [19] and Goldman and Albus [20]. Goldman and 34

Albus gave the first computational evidence for the linear increase of the conduction 35

velocity with the radius of the axon, provided that the length of myelinated segments 36

also increases linearly with the axonal radius. The linear relationship is supported by 37

experimental evidence [21], although other studies suggest a slightly nonlinear 38

relationship [22]. More recently, computational studies have investigated the role of the 39

myelin sheath and the relationship between models of different complexity with 40

experimental results [23]. One of the key findings here was that only a myelin sheath 41

with finite capacitance and resistance reproduced experimental results for axonal 42

conduction velocity. Other studies investigated the role of the width of the nodes of 43

Ranvier on signal propagation [24,25], or the effect of ephaptic coupling on signal 44

propagation [26–33]. 45

Most computational studies employ numerical schemes, i.e. they discretise the 46

mathematical problem in space and time and use numerical integration methods to 47

investigate the propagation of action potentials. One problem that arises here is that 48

the spatial discretisation must be relatively coarse to ensure numerical stability, which 49

can be remedied to some extent by advanced numerical methods and computational 50

effort [34]. The other problem, however, cannot be remedied that easily: it is the lack of 51

insight into how the model parameters influence the results, since there is a large 52
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number of parameters involved. A way to illustrate parameter dependencies in an 53

efficient manner is to use analytical techniques all the while simplifying the model 54

equations and extracting essential features. Studies that use analytical methods are few 55

and far between [35–38]; yet it is also worth noting that from a mathematical 56

perspective, myelinated axons are similar to spine-studded dendrites, in the sense that 57

active units are coupled by passive leaky cables. An idea that we pick up from the latter 58

is to simplify the ionic currents crossing the membrane [39, 40], there at dendritic spines 59

mediated by neurotransmitters, here at nodes of Ranvier mediated by voltage-gated 60

dynamics. 61

The goal of this article is to use analytical methods to study the influence of 62

parameters controlling action potential generation, and geometric and 63

electrophysiological parameters of the myelinated axon, on the speed of action potentials. 64

The main focus here is on parameters determining the axonal structure. This will be 65

achieved by replacing the Hodgkin-Huxley dynamics with a spike-diffuse-spike model for 66

action potential generation, i.e. ion currents are released at nodes of Ranvier when the 67

membrane potential reaches a certain threshold. These ion channel currents are 68

considered voltage-independent, but we investigate different forms of currents, ranging 69

from instantaneous currents to currents that incorporate time delays. We also 70

investigate ion currents that closely resemble sodium currents measured experimentally. 71

Our aim is to derive closed-form solutions for the membrane potential along an axon, 72

which yields the relationship of action potential velocity with model parameters. 73

The specific questions we seek to answer here are the following. First, we query how 74

physiological parameters can be incorporated into our mathematical framework, 75

especially parameters that control the dynamics of the ionic currents. We test if 76

parameters from the literature yield physiologically plausible results for the shape and 77

amplitude of action potentials, and test how the ionic currents from multiple nearby 78

nodes of Ranvier contribute to the formation of action potentials. Secondly, we ask how 79

geometric parameters of an axon affect the transmission speed in a single axon, and how 80

sensitive the transmission speed is to changes in these parameters. We seek to 81

reproduce known results from the literature, such as the dependence of the velocity on 82

axon diameter. We also explore other dependencies, such as on the g-ratio, and other 83

microscopic structural parameters resulting from myelination. We compare the results of 84

our spike-diffuse-spike model with the results from a detailed biophysical model recently 85

used to study the effect of node and internode length on action potential velocity [24]. 86

Thirdly, we investigate how ephaptic coupling affects the transmission speed of action 87

potentials, and what the conditions are for action potentials to synchronise. In 88

particular, we examine how restricted extra-axonal space leads to coupling between two 89

identical axons, and how action potentials travelling through the coupled axons interact. 90

Results 91

For the mathematical treatment of action potential propagation along myelinated axons, 92

we consider active elements periodically placed on an infinitely long cable. The latter 93

represents the myelinated axon and is appropriately described as leaky cable, whereas 94

the active elements represent the nodes of Ranvier. In mathematical terms, the 95

governing equation is an inhomogeneous cable equation, which describes the membrane 96

potential V (x, t) of a leaky cable in space x (scalar, longitudinal to the cable) and time 97

t in response to input currents: 98

Cm
∂V

∂t
=

1

Rc

∂2V

∂x2
− V

Rm
+ Ichan(V, t). (1)
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Here, Cm and Rm are the (radial) capacitance and resistance of a myelinated fibre, and 99

Rc is its axial resistance. The term Ichan represents the ion channel currents triggered 100

at nodes of Ranvier. The cable equation (1) can be reformulated into 101

τ
∂V

∂t
= λ2 ∂

2V

∂x2
− V +RmIchan(t), (2)

by multiplying both sides of (1) with Rm. The time constant τ and the cable constant 102

λ are parameters determined by the electrophysiological properties of myelin. We 103

choose these parameters in accordance with experimental results and keep them fixed 104

throughout our analysis, see the Methods section for details. 105

The input currents generated by the ion channel dynamics at the nodes of Ranvier is 106

commonly described by a Hodgkin-Huxley framework. However, the Hodgkin-Huxley 107

equations are a challenge to solve analytically, and in order to proceed with our 108

mathematical treatment we opt for a simplified description using threshold-activated 109

currents with standardised current profiles. We analyse different current profiles, 110

ranging from delta-spikes to combinations of exponentials which give a good 111

approximation of the ion currents observed experimentally. We solve the cable equation 112

for these currents analytically which yields the dynamics of the membrane potential 113

describing the resulting depolarisation / hyperpolarisation along the axon. The linearity 114

of the cable equation in V allows us to describe the response to multiple input currents 115

by the superposition of solutions for single currents. A sketch of the framework is shown 116

in Fig. 1. 117

Ion channel dynamics 118

The classical Hodgkin-Huxley model is described by a set of nonlinear equations which 119

need to be solved numerically. Over the years, it has seen several modifications and 120

improvements such as the one by Frankenhaeuser and Huxley [16], or the incorporation 121

of additional ion currents [41] given the multitude of ion channel types [42,43]. Also, 122

attempts were made to provide better fits by modifying the exponents of the gating 123

variables [44]. In essence, it is difficult to determine what is the ‘right’ Hodgkin-Huxley 124

model for specific neuron types. For this reason, it seems prudent to go into the 125

opposite direction and to try to simplify the description of the ion channel dynamics. 126

Two important contributions into this direction are the one by Fitzhugh [45, 46] and 127

Nagumo [47], and the one by Morris and Lecar [48]. They provide a framework in which 128

the slow and the fast variables are lumped and thus yield a two-dimensional reduction 129

of the Hodgkin-Huxley model. The ion currents here are still voltage-dependent. 130

A crucial simplification towards analytically treatable models is the separation of 131

sub-threshold dynamics and spike generation in integrate-and-fire models [49,50]. For 132

instance, in the leaky integrate-and-fire model and the quadratic integrate-and-fire 133

model, the time-to-spike can be computed analytically, given initial conditions and a 134

threshold value for the membrane potential. The ion currents are then often modelled 135

as delta-spikes since the ion dynamics is fast in comparison to the (dendritic and 136

somatic) membrane dynamics. The spatial extension of the leaky integrate-and-fire 137

model is the spike-diffuse-spike model, in which activity spreads via passive cables. 138

Here, we consider four forms of channel current models. All of these have in common 139

that the ion current is initiated after the membrane potential has crossed a threshold 140

Vthr, and has a predetermined profile. We denote the four scenarios by the letters A, B, 141

C, and D. In scenario A, the ion channel current is released immediately and 142

instantaneously, i.e. 143

Ichan(t) = I0δ(t− t0). (3)
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Fig 1. Action potential propagation in a myelinated axon. A: The axon is
made of myelinated segments (internodes), with the nodes of Ranvier forming periodic
gaps in the myelin sheath. B: The nodes of Ranvier constitute active sites at which
threshold-triggered ion channel currents are released. C: The currents entering nearby
nodes of Ranvier determine the membrane potential at each node, thus forming an
action potential. D The velocity of an action potential is determined by the distance L
between two consecutive nodes, and the time difference tsp it takes to reach a given
threshold value.
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Fig 2. Sketch of ion channel currents considered here, with representative profiles of membrane potential in
nearby nodes. After the membrane potential V reaches the threshold value Vthr, the current I is released. A: The
instantaneous current is described by a delta-peak at t0, when the threshold value is reached. B: The simplest way to
accommodate delays or refractoriness is to introduce a refractory period ∆, after which the instantaneous current is released.
C: Exponential current with characteristic time scale τsp. D: A combination of exponential currents describes a realistic
current profile.

Here, I0 denotes the overall ion current, t0 denotes the time when the membrane 144

potential crosses the threshold, and δ(·) is the delta-distribution, or Dirac’s delta. In 145

scenario B, the ion current is also released instantaneously, but with a delay ∆: 146

Ichan(t) = I0δ(t− t0 −∆), (4)

In scenario C, the ionic current is exponential: 147

Ichan(t) = I0e−(t−t0)/τspΘ(t− t0). (5)

Here, τsp is the decay time, and Θ(·) is the Heaviside step function. With scenario D we 148

aim to approximate the ion currents as measured in mammals such as the rabbit [51] 149

and in the rat [52], which can be described by a superposition of exponential currents: 150

Ichan(t) = I0

N∑
n=1

An exp(−(t− t0)/τn)Θ(t− t0), (6)

A sketch of all these scenarios is shown in Figure 2, alongside typical depolarisation 151

curves of the membrane potential. 152

Current influx and separation 153

According to Kirchhoff’s first law, the channel current that flows into the axon, Ichan(t) 154

is counter-balanced by currents flowing axially both ways along the axon, Icable(t), and 155
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Fig 3. Channel currents divide into a current entering the axon and a current flowing back across the node
of Ranvier. A: Sketch of currents entering and leaving a node of Ranvier. B: Plot of currents as function of node length.
Since we assume constant channel density, the channel current increases linearly with the node length.

a radial current that flows back out across the membrane of the node, Inode, see Fig. 3A 156

for a graphical representation. The ratio of currents that pass along the cable and back 157

across the nodal membrane is determined by the respective resistances: 158

Icable =
Ichan

1 + Rλ
2Rnode

, (7)

with Rλ = Rm/λ. Throughout the manuscript, the ratio between Icable and Ichan is 159

expressed by β: 160

β =
1

1 + Rλ
2Rnode

. (8)

Based on experimental findings, we assume that the channel density is constant [52], 161

which implies that the total channel current increases linearly with the node length. 162

This is counterbalanced by the fact that the inverse of the resistance of a node, R−1
node, 163

also increases linearly with its length. At large node lengths, the current that enters the 164

axon saturates, see Fig. 3B. We will examine further below how the node length 165

influences the propagation speed. 166

Influence of nearby nodes 167

During the propagation of an action potential, ion channel currents are released at 168

multiple nearby nodes that affect the shape and amplitude of the action potential. 169

Because of the linear nature of the cable equation, the effect of multiple input currents 170

can be described by linear superposition: 171

V (x, t) =
N∑

n=−N
U(|x− n(L+ lλn/λ)|, t− ntsp), (9)

where U describes the depolarisation due to the current at a single node with index n. 172

The internode length L, node length l, cable constant λ and cable constant at a node λn 173

determine the electrotonic distance between nodes. Node indices n are chosen such that 174

the node with n = 0 is centred at x = 0. Nodes with negative n are the ones the action 175

potential has travelled past, and nodes with positive n are the ones the action potential 176

will travel into. Although we consider infinitely long axons, we cut off the sum at 177

n = −N and n = N for computational feasibility, with N = 103. The action potential is 178
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Fig 4. Contribution of ion currents from nearby nodes to action potential
profile. A: Sodium currents contributing to action potential, and B: same for
potassium. Depolarising effect is color-coded by node index, larger indices are lumped.
Total effect is indicated by black line. C: Action potential composed of both currents.
D: Contribution of sodium currents to reaching threshold value. Standard parameters
are used here (Table 1 in Methods).

not only shaped by the currents from preceding nodes, but also by currents from 179

subsequent nodes that travel back along the axon. Due to the periodic nature of 180

saltatory conduction, the time difference between any two consecutive nodes is assumed 181

to be the same unknown parameter tsp. 182

The effect of distant nodes is dampened by the fact that in addition to passing along 183

myelinated segments, currents from distant sources also pass by unmyelinated nodes, 184

and therefore further lose amplitude. If nodes are relatively short, the current outflux 185

can be regarded as instantaneous across the node as compared to changes in the current, 186

and the total electrotonic distance between two consecutive nodes (measured in units of 187

λ) is then given by L+ lλ/λn, which is already included in Eq. (9). Here, λn denotes 188

the cable constant at a node. Eq. (9) describes the temporal evolution of an action 189

potential in a specific location x. In Fig. 4 we dissect an action potential using scenario 190

D for the ion channel model, by colour-coding the depolarisation due to individual 191

nodes. It is apparent that the action potential propagation is a collective process with 192

each node regenerating the action potential by a small fraction. 193
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Velocity of action potentials 194

We now consider the node at x = 0 (n = 0) to reach the firing threshold Vthr at t = 0. 195

The relationship between the firing threshold Vthr and the time-to-spike tsp is then 196

given by 197

Vthr =
N∑
n=1

U(n(L+ lλn/λ), ntsp), (10)

where we have changed the sign of the summation index, i.e. −n→ n. The choice of 198

x = 0 and t = 0 is without loss of generality. Eq. (10) is an implicit equation for tsp, 199

which we solve here numerically using Newton’s method. The velocity of an action 200

potential is then given by the physical distance between two consecutive nodes, L+ l, 201

and tsp: 202

v =
L+ l

tsp
. (11)

Here we still assume that the activation process at a node is uniform across its entire 203

length. Since a node represents a short section of unmyelinated axon, we estimate the 204

action potential velocity within a node by the action potential velocity in an 205

unmyelinated axon, vn (see Methods section). The resulting velocity then reads 206

v =
L+ l

L/v + l/vn
. (12)

We use Eq. (12) throughout the manuscript. 207

Analytical solutions 208

In mathematical terms, the depolarisation U resulting from the ion channel current at a 209

single site, is a convolution of the current entering the cable with the Green’s function 210

of the homogeneous cable equation G(t), which describes the propagation of 211

depolarisation along the myelinated segment: 212

U(x, t) = Rm

∫ t

0

Icable(t− s)G(x, s)ds. (13)

Here, x denotes the distance between the site where the current is injected and the site 213

where the membrane potential is recorded. In the following we present the analytical 214

solutions for all the current types. 215

Scenario A - fast current 216

Since the fast current is described by a delta function, the convolution integral turns 217

into the Green’s function up to a prefactor: 218

U(x, t) =

√
τRλβI0√

4πt
exp

(
− x

2τ

4λ2t
− t

τ

)
. (14)

Here, I0 = 6.6pA/µm2 is the amplitude of the input current, Rλ = Rm/λ, and β is the 219

ratio between the current entering the cable and the channel current, as given by Eq (8). 220

I0 is chosen such that the amplitude of an action potential is approximately 100mV , 221

with all the other parameters chosen as for scenario D with standard parameters, see 222

Methods section. 223
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Inserting Eq. (14) into Eq. (9), we obtain the spatio-temporal evolution of an action 224

potential for this scenario: 225

V (x, t) =
N∑

n=−N

√
τRλβI0√

4π(t− ntsp)
exp

(
− (x− n(L+ lλn/λ))2τ

4λ2(t− ntsp)
− t− ntsp

τ

)
Θ(t− ntsp),

(15)
with Θ being the Heaviside step function to ensure causality. The threshold condition 226

then reads 227

Vthr =
N∑
n=1

√
τRλβI0√
4πntsp

exp

(
−n(L+ lλn/λ)2τ

4λ2tsp
− ntsp

τ

)
. (16)

Although this is the simplest scenario, it is not obvious how to invert the r.h.s. of 228

Eq. (16) to obtain an explicit expression for tsp. In the Methods section we present a 229

linearisation approach, but it is convenient to solve Eq. (16) numerically using Newton’s 230

method. 231

Scenario B - delayed fast current 232

The membrane dynamics in scenario B is exactly the same as in scenario A, except for 233

an additional offset ∆: 234

U(x, t) =

√
τRλβI0√

4π(t−∆)
exp

(
− x2τ

4λ2(t−∆)
− t−∆

τ

)
Θ(t−∆). (17)

The spatio-temporal evolution of an action potential is now given by 235

V (x, t) =
N∑

n=−N

√
τRλβI0√

4π(t−ntsp−∆)
exp

(
− (x−n(L+lλn/λ))2τ

4λ2(t−ntsp−∆) −
t−ntsp−∆

τ

)
Θ(t− ntsp −∆), (18)

and the threshold condition reads 236

Vthr =
N∑
n=1

√
τRλβI0√

4π(ntsp −∆)
exp

(
−n

2(L+ lλn/λ)2τ

4λ2(ntsp −∆)
− ntsp −∆

τ

)
Θ(ntsp −∆). (19)

Because multiple nodes contribute to the depolarisation, it is possible to find tsp < ∆. 237

Scenario C - exponential current 238

Here we have to solve the convolution integral of the cable equation with an exponential 239

function, which yields 240

U(x, t) = e−t/τc
RλβI0

√
τ τ̂

2τ
=
[

exp

(
i
x
√
τ

λ
√
τ̂

)(
erf

(
x
√
τ

2λ
√
t

+ i

√
t

τ̂

)
− 1

)]
, (20)

with τ̂ = (τ−1 − τ−1
c )−1, = representing the imaginary part of the argument, and erf 241

being the error function. In the Methods section we show how to obtain this solution. 242

Eq. (20) thus represents solutions for ion currents with instantaneous onset and 243

exponential decay. Hence, the spatio-temporal evolution of an action potential is 244

expressed by 245

V (x, t) =
N∑

n=−N
e−(t−ntsp)/τc

RλβI0
√
τ τ̂

2τ
=
[

exp

(
i
(x− n(L+ lλn/λ))

√
τ

λ
√
τ̂

)
(

erf

(
(x− n(L+ lλn/λ))

√
τ

2λ
√
t− ntsp

+ i

√
t− ntsp

τ̂

)
− 1

)]
Θ(t− ntsp), (21)
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and the threshold condition to determine tsp is 246

Vthr =
N∑
n=1

e−ntsp/τc
RλβI0

√
τ τ̂

2τ
=
[

exp

(
i
n(L+ lλn/λ)

√
τ

λ
√
τ̂

)
(

erf

(
n(L+ lλn/λ)

√
τ

2λ
√
ntsp

+ i

√
ntsp
τ̂

)
− 1

)]
. (22)

Scenario D - combination of exponentials 247

The linearity of the cable equation allows us to recur to the solution for scenario C to 248

describe the response to currents described by multiple exponentials. Denoting the 249

solution for one exponential input current with time constant τs by 250

φ(x, t; τs) = e−t/τs
RλβI0

2τ

√
τ τ̂ =

[
exp

(
i
x
√
τ

λ
√
τ̂

)(
erf

(
x
√
τ

2λ
√
t

+ i

√
t

τ̂

)
− 1

)]
, (23)

we express the solution to M superimposed exponential currents by 251

U(x, t) =
M∑
s=1

Asφ(x, t; τs). (24)

We use this formulation to describe both sodium currents and potassium currents with 252

rising and falling phase. The sodium current is expressed as follows: 253

Ichan,Na = I0,NaC
−1
Na,γ (1− exp(−t/τm))

γ
exp(−t/τh). (25)

For simplicity, we focus on the case γ = 1, i.e. the biexponential case. Increasing γ 254

would result in increased initial delays, and therefore lower propagation velocities. The 255

parameter γ also affects the normalisation constant CNa,γ , which ensures that the 256

maximum of Ichan,Na is I0,Na. The potassium current is modeled as 257

Ichan,K = I0,KC
−1
K (1− exp(−t/τn))

4
exp(−t/τk), (26)

throughout the manuscript. In the Methods section we describe how to compute the 258

normalisation constants CNa,γ and CK , and how to convert Eq (25) and Eq (26) into a 259

sum of exponentials. Hence, the spatio-temporal evolution of an action potential is 260

expressed by 261

V (x, t) = C
M∑
s=1

As

N∑
n=−N

e−(t−ntsp)/τs
RλβI0

√
τ τ̂

2τ
=
[

exp

(
i
(x− n(L+ lλn/λ))

√
τ

λ
√
τ̂

)
(

erf

(
(x− n(L+ lλn/λ))

√
τ

2λ
√
t− ntsp

+ i

√
t− ntsp

τ̂

)
− 1

)]
Θ(t− ntsp), (27)

with τ̂ = (τ−1 − τ−1
s )−1, and C is the problem-specific normalisation constant. The 262

threshold condition to determine tsp is 263

Vthr = C
M∑
s=1

As

N∑
n=1

e−ntsp/τs
RλβI0

√
τ τ̂

2τ
=
[

exp

(
i
n(L+ lλn/λ)

√
τ

λ
√
τ̂

)
(

erf

(
n(L+ lλn/λ)

√
τ

2λ
√
ntsp

+ i

√
ntsp
τ̂

)
− 1

)]
. (28)
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Fig 5. Propagation velocity as function of fibre diameter and axon
diameter. A: In myelinated axons, the relationship between velocity and fibre
diameter is nearly linear, with a slightly supralinear relationship at small diameters.
Here we compare the different scenarios with experimental results (grey-shaded area).
B: In unmyelinated axons, the propagation speed increases approximately with the
square root of the axon diameter. Here, ρ indicates the relative ion channel density
compared with a node of Ranvier. Decreasing the ion channel density results in slower
action potential propagation.

Anticipating results from the next subsection, we found that scenarios A and C yield 264

velocities that are too fast compared with experimental results. Scenario B allows to 265

adjust the propagation speed by tuning the parameter ∆, yet the shape of the action 266

potential is only determined by the parameters from the cable equation, and thus 267

cannot be adjusted to match experimental results. As it is the most realistic and most 268

flexible model for ion channel currents, we decided to select scenario D to study the 269

sensitivity of the propagation speed to structural parameters. 270

Sensitivity to parameters 271

Axon diameter 272

There is a wide consensus that the propagation velocity in myelinated axons is 273

proportional to the axon diameter. This is mostly due to the fact that both the 274

internode length as well as the electrotonic length constant increase with the diameter. 275

One quantity that does not scale linearly with the axonal diameter is the node length, 276

which determines the amount of current that flows into the axon, as well as setting a 277

correction term for the physical and electrotonic distance between two nodes. We find 278

that the latter introduces a slight nonlinearity at small diameters, although at larger 279

diameters the linear relationship is well preserved, see Fig. 5A. 280

In Fig. 5A we compare the four ion channel scenarios with experimental results 281

obtained by Boyd and Kalu [53]. Scenario A (instantaneous ion channel current) yields 282

velocities that are about one order of magnitude larger than the experimental results. 283

This suggests that the main bottleneck for faster action potential propagation is indeed 284

ion channel dynamics and their associated delays. Introducing a hard delay with 285

scenario B, we find that we can reproduce the experimentally observed range of 286

velocities. With scenarios C and D we introduce temporally distributed ion channel 287

dynamics. The instantaneous onset and exponential decay of scenario C yields velocities 288

that are slightly faster than experimental results. 289

In scenario D we explore two sets of parameters. The first set of parameters is 290
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obtained by using electrophysiological parameters found in the literature. As it is not 291

obvious how to choose the time constants governing the temporal profile of the ion 292

channel currents, we decided to choose them such that the shape of action potentials of 293

our spike-diffuse-spike model match the shape of action potentials of the biophysical 294

model used by Arancibia-Carcamo et al. [24]. The velocities obtained with this set of 295

parameters fall within the range of experimental results. The second set of parameters 296

is obtained by fitting the model parameters to data generated by the same biophysical 297

model (see Methods). The latter yields velocities slightly below the experimental range, 298

but it matches well the results from the biophysical model. 299

The present framework also enables us to study unmyelinated axons, in which case 300

the current influx must be adapted, in addition to the physical and electrotonic distance 301

between two neighbouring nodes, which is l and l/λn, respectively. Since λn is 302

proportional to
√
d, the resulting velocity is also to be expected to scale with

√
d, see 303

Fig. 5B. Making the assumption that the membrane conductivity scales linearly with 304

the ion channel density ρ (ρ is measured relative to the ion channel density of a node), 305

the time constant of the unmyelinated axon scales with τ = τn/ρ, and the cable 306

constant scales with λ = λn/
√
ρ. We study different ion channel densities, beginning 307

with the same density as in nodes in the myelinated axon, and then reducing the density 308

to 10% and 2% of the original density. We find that reducing the ion channel density 309

also decreases the propagation velocity. For ρ = 1 we find that the propagation velocity 310

is considerably faster than in myelinated axons at small diameters. 311

Node and internode length 312

Two geometric parameters that are not readily accessible to non-invasive MR-techniques 313

are the length of the nodes of Ranvier, and the length of internodes. Here we examine 314

the effect of the node and internode length on the speed of action potentials. We 315

assume that the channel density in a node is constant, which is in agreement with 316

experimental results [52]. The channel current that enters the node is proportional to 317

its length, yet the increase of the node length also means that more of this current flows 318

back across the node rather than entering the internodes. Another effect of the node 319

length is the additional drop-off of the amplitude of axonal currents. Node lengths are 320

known to vary between 1µm and 3µm [24]. 321

The length of internodes is known to increase with the fibre diameter [21,22]. This 322

increase can be understood in light of the fact that the cable constant λ is proportional 323

to the fibre diameter, and therefore increasing the internode length ensures that the 324

ratio L/λ remains at a suitable point for signal transmission. 325

We restrict the analysis to the activation by sodium currents, since potassium 326

currents are slow and only play a minor role in the initial depolarisation to threshold 327

value. The results are shown graphically for scenario D with standard parameters in 328

Fig. 6A, and for parameters fitted to the biophysical model by Arancibia-Carcamo et 329

al. [24] in Fig. 6B. Changing the threshold value did have a small effect on the 330

maximum velocity, but did not change the relative dependence on the other parameters. 331

We find that the propagation velocity varies relatively little with changes in the 332

nodal and internodal length. For scenario D with standard parameters, we find that 333

velocities across the investigated range of parameters are above 70% of the maximum, 334

and for the parameters fitted to the biophysical model the sensitivity is even less. 335

Interestingly, we find that decreasing node length and internode length simultaneously, 336

the velocity increases steadily. 337

In Fig. 6C and D we show cross-sections of Fig. 6B, and compare these results with 338

the numerical results from the the cortex model used in [24]. There is a good agreement 339

between our model and the biophysical model, with the biggest discrepancies occuring at 340

short node and internode lengths. We assume that these discrepancies arise due to the 341
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Fig 6. Velocity dependence on node length and internode length. A:
Propagation velocity plotted against node length and internode length. Contours
indicate percentages of maximum velocity. (Scenario D with standard parameters.) B:
Same as A, with fitted parameters. C: Propagation velocity as function of internode
length (scenario D with fitted parameters), and comparison with numerical results from
biophysical model. D: Propagation velocity as function of node length, and comparison
with the model by Arancibia-Carcamo et al. [24].
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Fig 7. Relative propagation velocity as function of g-ratio. A: Result of our
spike-diffuse-spike model, and v = κ(ln(1/g))α fitted to this result (first with α = 0.5
fixed, and then with κ and α fitted). B: Fitted α changes with the ratio of internode
length to node length in the spike-diffuse spike model (lines), and in the
Arancibia-Carcamo model (dots). Parameters: fitted parameters (see Table 1 in
Methods section).

fact that the biophysical model only uses 50 nodes, whereas we consider N = 1000 nodes 342

to determine the velocity. In the Methods section, we show that reducing the number of 343

nodes significantly alters the results at short node and internode lengths (Fig. 13). 344

Myelin thickness 345

The relative thickness of the myelin layer is given by the g-ratio, which is defined as the 346

ratio of inner to outer radius. Hence, a smaller g-ratio indicates a relatively thicker layer 347

of myelin around the axon. In humans, the g-ratio is typically 0.6− 0.7, although it is 348

also known to correlate with the axon diameter [54]. In our mathematical framework, 349

the g-ratio affects the electrotonic length constant λ of the internodes, which scales with 350√
ln(1/g). A classical assumption is that the propagation velocity scales in the same 351

manner [1]. Our results suggest (see Fig. 7A) that the velocity depends more strongly 352

on the g-ratio. We therefore generalised this relationship to v = κ(ln(1/g))α, and find 353

(fitting both κ and α) our results best match α = 0.68 (scenario D with fitted 354

parameters). However, the fitted coefficient α also depends on the ratio of internode 355

length and node length, L/l. We find that α increases monotonically with this ratio (see 356

Fig. 7), and approaches zero when L/l approaches zero. The latter represents the case 357

of an unmyelinated axon. 358

In Fig. 8 we present two-parameter plots of the velocity as function of the g-ratio and 359

axon diameter (Fig. 8A), and g-ratio and fibre diameter (Fig. 8B). If the axon diameter 360

is held constant, the velocity increases monotonously with decreasing g-ratio. However, 361

if the fibre diameter is held constant, then the velocity saturates at around g = 0.5, 362

because decreasing g at constant fibre diameter means decreasing the axon diameter. 363

Ephaptic coupling and entrainment 364

We demonstrate here that it is possible to study the effects of ephaptic coupling on 365

action potential propagation within our framework. We choose two axonal fibres as a 366

simple test case, but more complicated scenarios could also be considered using our 367

analytical approach. Ephaptic coupling occurs due to the resistance and finite size of 368

the extra-cellular space. We follow Reutskiy et al. [31] in considering the axonal fibres 369
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being embedded in a finite sized extra-cellular medium (the space between the axons 370

within an axonal fibre bundle). The resulting cable equation for the nth axon reads 371

Cm
∂(Vn − Ve)

∂t
=

1

Rax,n

∂2Vn
∂x2

− (Vn − Ve)
Rm

+ Ichann (t), (29)

with Ve being the potential of the extra-cellular medium. In the Methods section we 372

describe how to obtain solutions to this set of equations. 373

We explore solutions to Eq. (29) in a number of ways, which are graphically 374

represented in Fig. 9. We focus on sodium currents as described by scenario D with 375

standard parameters. First, we study how the coupling could lead to entrainment, i.e. 376

synchronisation of action potentials. To this end, we compare the time courses of V1(t) 377

and V2(t) in a pair of axons, where an action potential is emitted in the first axon at 378

t = 0, and in the second axon at t = ∆t. We then compare the tsp in the neighbouring 379

nodes, and find that for any low threshold values Vthr the difference between the tsp is 380

less than ∆t, meaning the two action potentials are re-synchronising, see Fig 9A. Next, 381

we asked how the coupling affects the speed of two entrained action potentials. Now we 382
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set ∆t = 0, in which case V1(t) = V2(t). We compare the depolarisation curves of the 383

simultanously active axons with when only one axon is active, and find that the 384

voltages rise more slowly if two action potentials are present, thus increasing tsp and 385

decreasing the speed of the two action potentials, see Fig 9B. Thirdly, we considered the 386

case when there is an action potential only in one axon, and computed the voltage in 387

the second, passive axon. We find that the neighbouring axon undergoes a brief spell of 388

hyperpolarisation, with a half-width shorter than that of the action potential. This 389

hyperpolarisation explains why synchronous or near-synchronous pairs of action 390

potentials travel at considerably smaller velocities than single action potentials. The 391

hyperpolarisation is followed by weaker depolarisation. 392

Discussion 393

We have developed an analytic framework for the investigation of action potential 394

propagation based on simplified ion currents. Instead of modelling the detailed dynamics 395

of the ion channels and its resulting transmembrane currents, we have adopted a simpler 396

notion by which a threshold value defines the critical voltage for the ion current release. 397

Below that threshold value the membrane dynamics is passive, and once the threshold 398

value is reached the ion current is released in a prescribed fashion regardless of the exact 399

time-dependence of the voltage before or after. We studied four different scenarios, of 400

which the simplest was described by a delta-function representing immediate and 401

instantaneous current release. The three other scenario incorporated delays in different 402

ways, from a shift of the delta function to exponential currents and, lastly, combinations 403

thereof. The latter seemed most appropriate considering experimental results. 404

The simplified description of the ion currents permitted the use of analytical 405

methods to derive an implicit relationship between model parameters and the time the 406

ion current would depolarise a neighbouring node up to threshold value. This involved 407

the solution of the convolution integral of the ion current with the Green’s function of 408

the passive cable equation. From the length of nodes and internodes and the time to 409

threshold value between two consecutive nodes (tsp) resulted the velocity of the action 410

potential. 411

We only obtained an implicit relationship between the threshold value Vthr and the 412

parameter tsp, which needed to be solved for tsp using root-finding procedures. 413

However, in comparison to full numerical simulations, our scheme still confers a 414

computational advantage, as the computation time is about three orders of magnitude 415

faster than in the biophysical model by Arancibia-Carcamo et al. [24]. In the Methods 416

section we have shown that one can achieve a good approximation by linearising the 417

rising phase of the depolarisation curve. We did not explore this linearisation further, 418

but in future work it might serve as a simple return-map scheme for action potential 419

propagation, in which parameter heterogeneities along the axon could be explored. 420

We used our scheme to study the shape of action potentials, and we found that the 421

ion currents released at multiple nearby nodes contribute to the shape and amplitude of 422

an action potential. This demonstrates that action potential propagation is a collective 423

process, during which individual nodes replenish the current amplitude without being 424

critical to the success or failure of action potential propagation. Specifically, the rising 425

phase of an action potential is mostly determined by input currents released at 426

backward nodes, whereas the falling phase is determined more prominently by forward 427

nodes (cf. Fig. 4). 428

Our scheme allowed us to perform a detailed analysis of the parameter dependence of 429

the propagation velocity. We recovered previous results for the velocity dependence on 430

the axon diameter, which were an approximately linear relationship with the diameter in 431

myelinated axons, and a square root relationship in unmyelinated axons. Although the 432
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node and internode length are not accessible to non-invasive imaging methods, we found 433

it pertinent since a previous study [24] looked into this using numerical simulations. 434

Our scheme confirms their results qualitatively and quantitatively, and by performing a 435

more detailed screening of the node length and the internode length revealed that for a 436

wide range the propagation velocity is relatively insensitive to parameter variations. 437

We also studied the effect of the g-ratio on the propagation velocity, which was 438

stronger than previously reported, as we find that the velocity is proportional to 439

(ln(−g))α with α ≈ 0.7, whereas the classical assumption was α = 0.5 [1]. Furthermore, 440

we found that α depends on the ratio between node length and internode length, which 441

to the best of our knowledge has not been reported before. Intuitively, changing the 442

thickness of the myelin sheath of relatively short internodes has a smaller effect than 443

changing the myelin thickness around long internodes (relative to the node length). 444

The main results of our spike-diffuse-spike model were compared with the 445

biophysically detailed model recently presented by Arancibia-Carcamo et al. [24]. The 446

latter uses the Hodgkin-Huxley framework and models the myelin sheath in detail, 447

including periaxonal space and individual myelin layers. To enable the comparison 448

between the two models, we fitted parameters of our spike-diffuse-spike model to output 449

of the the biophysical model. In spite of the differences in the model setup, we find that 450

the results of the two models agree well. 451

The framework developed here also allowed us to study the effect of ephaptic 452

coupling between axons on action potential propagation. We found that the coupling 453

leads to the convergence between sufficiently close action potentials, also known as 454

entrainment. It has been hypothesised that the functional role of entrainment is to 455

re-synchronise spikes of source neurons. We also found that ephaptic coupling leads to a 456

decrease in the wave speed of two synchronous action potentials. Since the likelihood of 457

two or more action potentials to synchronise in a fibre bundle increases with the firing 458

rate, we hypothesise that a potential effect could be that delays between neuronal 459

populations increase with their firing rate, and thereby enable them to actively 460

modulate delays. In addition, we examined the temporal voltage profile in a passive 461

axon coupled to an axon transmitting an action potential, which led to a brief spell of 462

hyperpolarisation in the passive axon, and subsequent depolarisation. This prompts the 463

question whether this may modulate delays in tightly packed axon bundles without 464

necessarily synchronising action potentials. The three phenomena we report here were 465

all observed by Katz and Schmitt [55] in pairs of unmyelinated axons. Our results 466

predict that the same phenomena occur in pairs (or bundles) of myelinated axons. 467

There are certain limitations to the framework presented here. First of all, we 468

calibrated the ion currents with data found in the literature. This ignores detailed ion 469

channel dynamics, and it is an open problem how to best match ion currents produced 470

by voltage-gated dynamics with the phenomenological ion currents used in this study. 471

Secondly, we assumed that the axon is periodically myelinated, with constant g-ratio 472

and diameter along the entire axon. The periodicity ensured that the velocity of an 473

action potential can be readily inferred from the time lag between two consecutive 474

nodes. In an aperiodic medium, the threshold times need to be determined for each 475

node separately, resulting in a framework that is computationally more involved. Here it 476

might prove suitable to exploit the linearised expressions for the membrane potential to 477

achieve a good trade-off between accuracy and computational effort. Heterogeneities in 478

the g-ratio or the axon diameter would be harder to resolve, as the corresponding cable 479

equation and its Green’s function would contain space-dependent parameters. If 480

individual internodes are homogeneous, then one could probably resort to methods used 481

in [36] to deal with (partially) demyelinated internodes. Thirdly, we studied ephaptic 482

coupling between two identical fibres as a test case. Our framework is capable of dealing 483

with axons of different size too, as well as large numbers of axons. In larger axon 484
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bundles, however, it might be necessary to compute the ephaptic coupling from the 485

local field potentials, as the lateral distance between axons may no longer allow for the 486

distance-independent coupling we used here. Nevertheless, it would be interesting to 487

extent our framework to realistic axon bundle morphologies, and test if the predictions 488

we make here, i.e. synchronisation of action potentials and concurrent increase in axonal 489

delay, still hold. If yes, then there may also be the possibility that delays are modulated 490

by the firing rates of neuronal populations. 491

Methods 492

The cable equation 493

To model action potential propagation along myelinated axons, we consider a hybrid 494

system of active elements coupled by an infinitely long passive cable. The latter 495

represents the myelinated axon and is appropriately described by the cable equation, 496

whereas the active elements represent the nodes of Ranvier whose dynamics are 497

governed by parametrically reduced, phenomenological dynamics. 498

In general, a myelinated axon can be described by the following cable equation: 499

Cm
∂V

∂t
=

1

Rc

∂2V

∂x2
− V

Rm
+ Ichan(V, t), (30)

where V is the trans-membrane potential, Ichan(V, t) represents the ionic currents due 500

to the opening of ion channels, and x represents the spatial coordinate longitudinal to 501

the cable. Cm and Rm are the capacitance and resistance of myelinated segments of the 502

cable. Multiplying both sides of (30) with Rm yields 503

τ
∂V

∂t
= λ2 ∂

2V

∂x2
− V +RmIchan(t), (31)

where τ = CmRm and λ =
√
Rm/Rc are the time constant and cable constant 504

pertaining to the internodes. All model parameters are listed in Table 1. 505

Cable parameters 506

The capacitance of a cylindrical capacitor (such as a myelin sheath, or the insulating 507

part of a coaxial cable) can be found by considering the following relationship, 508

Cm =
2πε

ln(1/g)
, (32)

with g being the g-ratio, i.e. the ratio between axon diameter and fibre diameter. The 509

parameter ε denotes the permittivity of the medium. The radial resistance of the 510

cylinder is given by: 511

Rm =
ρ

2π
ln

1

g
. (33)

The parameter ρ describes the resistivity of the cylindrical medium. 512

Experimental values for the capacitance and radial resistance of a myelinated axon 513

are reported in Goldman and Albus [20], 514

Cm = k1 ln−1 1

g
, Rm = k2 ln

1

g
, (34)

with (taking values from [56] and assuming g = 0.8 in the frog) 515

k1 = 3.6pFcm−1, k2 = 130MΩcm. (35)
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Table 1. List of model parameters used in this manuscript.

Parameter standard values fitted values (AC model)

Cm 3.6/ ln(1/g)pFcm−1 N.A.
Rm 130MΩcm ln(1/g) 130MΩcm ln(1/g)
Rc 140Ωcm/d2 N.A.
τ 0.47ms 1.45ms
τn 33µs 20µs

λ 9.65× 102d
√

ln g−1 12× 102d
√

ln g−1

λn 38.9
√
d/µm µm 48.1

√
d/µm µm

d 1µm 0.73µm
g 0.6 0.81
l 1µm 1µm
L 100d 100d
τm 20µs 70µs
τh 40µs 160µs
τn 150µs 150µs
τk 300µs 300µs
I0 50pA/µm2 200pA/µm2

Vthr 15mV 4mV

Unless explicitly stated, we use the parameters presented in this list. For most figures
we use the standard parameters, and where stated we use parameters fitted to the
Arancibia-Carcamo cortex model. The fitting procedure is described in the subsection
‘Fitting parameters to biophysical model’.

The values for k1 and k2 correspond to the following values for permittivity and 516

resistivity: 517

ε = 5.7× 10−11sΩ−1m−1, ρ = 8.16× 106Ωm. (36)

Finally, the axial resistance per unit length along the inner medium of the cylinder is 518

given by 519

Rc =
4ρax
πd2

, (37)

where ρax = 110Ωcm [20] is the resistivity of the inner-axonal medium, and πd2/4 its 520

cross-sectional area. 521

With these constants at hand, we can now define the parameters of equation (31): 522

λ ≈ 9.65× 102d
√

ln g−1, τ = 0.47ms. (38)

We treat the axonal diameter d and the g-ratio g as free parameters, and ρax, k1 and k2 523

are treated as constants. 524

Analytical solution 525

The inhomogenenous cable equation can be written in compact form: 526

τ V̇ = λ2V ′′ − V + I, (39)

with V̇ indicating the time derivative of V , and V ′′ indicating the second spatial 527

derivative of V . Fourier transformation in x yields an ordinary differential equation of 528

the form, 529

τ ˙̃V = −(λ2k2 + 1)Ṽ + Ĩ , (40)
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Fig 10. Green’s function of the cable equation A: Green’s function for various
distances x. B: Green’s function for x = 1mm, showing the slow (dotted) and fast
(dash-dotted) approximation.

where˜indicates the Fourier transformed quantity. The homogeneous part of Eq. (40) 530

has the solution 531

Ṽ = C exp(−(λ2k2 + 1)t/τ). (41)

The inhomogeneous solution in t can be found by the method of variation of the 532

constant, which yields the following convolution integral in t: 533

Ṽ =

∫ t

0

1

τ
exp(−(λ2k2 + 1)(t− s)/τ)Ĩ(k, s)ds. (42)

The inverse Fourier transform of Eq. (42) then yields the following double convolution 534

integral in x and t: 535

V (x, t) =
1√
2πτ

∫ t

0

∫ ∞
−∞

1√
2λ2(t− s)

exp

(
− (x− y)2τ

4λ2(t− s)
− t− s

τ

)
I(y, s)dyds. (43)

Since we assume the nodes of Ranvier to be discrete sites described by delta functions in 536

x, this integral becomes ultimately a convolution integral in time only. 537

Thus, we can identify the Green’s function of the cable equation (1) as 538

G(x, t) =
1√

4πλ2τt
exp

(
− x

2τ

4λ2t
− t

τ

)
. (44)

This is Green’s function representing the time evolution of the voltage in a cable due to 539

an instantaneous, normalised input current at distance x at time t = 0. A graphical 540

representation of G(x, t) is given in Fig. 10A for various values of x. 541

We note here that the Green’s function contains two time scales. The first is the 542

characteristic time scale of the cable, τ , which indicates the voltage decay across the 543

myelin sheeth. The second time constant is x2τ/4λ2, which is the time it takes 544

exp(−x2τ/4λ2t) to reach 1/e ≈ 0.37. This time depends on all cable parameters, and if 545

x/λ < 1 it is significantly faster than τ . Hence, if t� τ , the cable equation can be 546

approximated by 547

G(x, t) =
1√

4πλ2τt
exp

(
− x

2τ

4λ2t

)
, (45)

or, conversely, in the limit t� τ , it can be approximated by 548

G(x, t) =
1√

4πλ2τt
exp

(
− t
τ

)
. (46)

See Fig 10B for a comparison. 549
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Nodal properties 550

Like the myelinated parts of the axon, the Ranvier nodes are characterised by their 551

electrophysiological properties through the membrane resistance and membrane 552

capacitance, denoted by Rn and Cn, which result in a characteristic length scale λn and 553

a characteristic time scale τn. We use the following values for Rn [20] and Cn [57]: 554

Rn = 33Ωcm2, Cn = 1µFcm−2, (47)

where Rn = g−1
L , i.e. the inverse leak conductance. With τn = CnRn we obtain a 555

characteristic time of τn = 33µs. This value is striking, since typical time constants for 556

neurons at dendrites and the soma range from 10ms to 100ms. This can be explained by 557

the higher density of sodium channels at the nodes of Ranvier than at the soma. As 558

reported in [58], there are approximately 1200 channels per µm2 at nodal segments, and 559

only about 2.6 channels per µm2 at the soma. Thus, the ratio of ion channel densities 560

between node and soma is nearly 500. We assume here that the conductance scales 561

linearly with the channel density, which is supported by the fact that the membrane 562

resistance is approximately 10kΩcm2 at the soma. 563

Current influx and separation 564

The channel current that flows into the axon, Ichan(t) is counter-balanced by currents 565

flowing axially both ways along the axon, Icable(t), and a radial current that flows back 566

out across the membrane of the node, Inode: 567

Ichan(t) = Inode(t) + Icable(t). (48)

The ratio of currents that pass along the cable and back across the nodal membrane is 568

determined by the respective resistances: 569

RnodeInode =
Rλ
2
Icable, (49)

where Rλ is the longitudinal resistance of the axon, defined by Rλ = Rm/λ. This 570

relationship yields 571

Icable =
Ichan

1 + Rλ
2Rnode

. (50)

Hence, with the maximum amplitude of the channel current being I0, the maximum 572

amplitude of current entering the cable is βI0, where we abbreviate 573

β =
1

1 + Rλ
2Rnode

. (51)

Approximations and analytical solutions 574

It is, in general, not possible to find closed-form solutions to the Hodgkin-Huxley model 575

due to the nonlinear dependence of the gating variables on the voltage. We therefore 576

focus here on idealisations of the currents generated by the ion channel dynamics, which 577

is described by a function Ichan(t). 578

In mathematical terms, the depolarisation of the neighbouring node is a convolution 579

of the current entering the cable with the solution of the homogeneous cable equation 580

G(x, t), which describes the propagation of depolarisation along the myelinated segment: 581

Vcable(x, t) = Rm

∫ t

0

Icable(t− s)G(x, s)ds. (52)

In the following we present the mathematical treatment for the scenarios introduced 582

in the Results section, and we focus here on an input current at a single site. 583
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Scenario A - fast current 584

The (in mathematical terms) simplest scenario is the one in which the ion current is 585

described by the Dirac delta function: 586

Ichan(t) = I0δ(t− t0). (53)

Without loss of generality we set the time of the current, t0, to zero. The depolarisation 587

along the cable, and specifically at the neighbouring node at distance x is then given by 588

the Green’s function of the cable equation itself: 589

V (x, t) =

√
τRλβI0√

4πt
exp

(
− x

2τ

4λ2t
− t

τ

)
. (54)

If only one current is injected into the cable, the time tsp when the threshold value Vthr 590

is reached is given implicitly by 591

Vthr =

√
τRλβI0√

4πtsp
exp

(
− x2τ

4λ2tsp
− tsp

τ

)
. (55)

Equation 55 yields an implicit relation for tsp and the model parameters. There is 592

no obvious way of solving 55 for tsp explicitly. One can solve it using Newton’s method, 593

and test various parameter dependencies by arc-length continuation. However, we 594

explore the possibility to derive an approximate solution for tsp, and consequently for 595

the axonal propagation speed v, by linearisation of (55). 596

A suitable pivot for the linearisation is the inflection point on the rising branch, i.e. 597

V̈ = 0 and V̇ > 0. This ensures that the linearisation around this point is accurate up 598

to order O(t2), and error terms are of order O(t3) and higher. It also provides an 599

unambiguous pivot for the linearisation. Differentiating (54) twice yields 600

V̈ =

(
x4τ2

16λ4t4
− 3x2τ

4λ2t3
+

3− 2x2/λ2

4t2
+

1

τt
+

1

τ2

)
V. (56)

We multiply all terms by t4 such that the lowest order term in t is of order zero. Since τ 601

is much larger than the rise time of the depolarisation, we disregard terms of order 602

O(t3) and higher. The resulting quadratic equation for the inflection point, ti, yields 603

two positive roots, the smaller of which is 604

ti =
3x2τ

2λ2(3− 2x2/λ2)

(
1−

√
1− 1

9 (3− 2x2/λ2)

)
. (57)

In the limit of x/λ� 1 we can further simplify this expression to give 605

ti = ζ
x2τ

λ2
, (58)

with ζ = 1/2− 1/
√

6. The linear equation for the time-to-spike and the firing threshold 606

is then given by 607

tsp = ti +
Vthr − V (ti)

V̇ (ti)
. (59)

The quantities V (ti) and V̇ (ti) can be approximated to be 608

V (ti) ≈
RλβI0√

4πζ

λ

x
exp

(
− 1

4ζ

)
, (60)

and 609

V̇ (ti) ≈
2√
6
λ2

4ζ2x2τ
V (ti). (61)

A comparison of the full nonlinear solution with the linear approximation is shown in 610

Fig. 11A. 611
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Fig 11. Depolarisation curves and their linear approximation. A:
Depolarisation curve for instantaneous input current (scenario A). B: Depolarisation
curve for exponential input current (τs = 100µs).

Scenario B - delayed fast current 612

Again we consider a fast current, but one which is emitted with a delay ∆ after the 613

membrane potential has reached the threshold value. If we denote by t0 the time of the 614

threshold crossing, then the ionic current is given by 615

Ichan(t) = I0δ(t− t0 −∆). (62)

However, by simple linear transformation we may also use t0 to denote the time of the 616

spike. In this case, a spike will be generated after tsp + ∆ in the adjacent node, where 617

tsp is the time to the threshold crossing in the same node, given by equation (55). The 618

speed of a propagating action potential is then given by 619

v =
L+ l

tsp + ∆
, (63)

neglecting finite transmission speeds at nodes. In the limit of tsp → 0 we obtain the 620

result 621

v =
L+ l

∆
, (64)

which implies that action potentials can never travel faster than (L+ l)/∆. However, if 622

multiple neighbours are taken into account, the velocity can be faster than this estimate. 623

For example, in Fig. 5A we show results for this scenario with ∆ = 30µs. For an axon 624

diameter of d = 1µm (which corresponds to D ≈ 1.67µm with g = 0.6), we obtain a 625

velocity of about 6m/s, whereas (L+ l)/∆ is approximately 3.3m/s (with L = 100µm). 626

Scenario C - exponential current 627

At this point, we make the assumption that the channel current rises infinitely fast, and 628

drops off exponentially. In mathematical terms, the currents generated by an action 629

potential at a particular node have the following form: 630

Ichan(t) = I0 exp(−(t− t0)/τc)Θ(t− t0), (65)

where I0 denotes the amount of current generated by the channel dynamics, and t0 631

denotes the time the spike is generated. The Heaviside step function Θ ensures that 632

Ichan(t) = 0 for t < t0. Without loss of generality we set t0 = 0. 633
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The propagated depolarisation is now given by the convolution of the exponential 634

function with the Green’s function of the cable equation: 635

V (x, t) = e−t/τcRλβI0

∫ t

0

1√
4πτs

exp

(
− x2τ

4λ2s
+
s

τ̂

)
ds. (66)

Here we use τ̂−1 = −τ−1 + τ−1
c . We now briefly sketch how to solve this integral. 636

Disregarding prefactors, the integral to be solved here is of the form 637

I =

∫ t

0

1√
s

exp
(
−a
s

+
s

b

)
ds. (67)

Using the transform r =
√
s yields 638

I = 2

∫ √t
0

exp

(
− a

r2
+
r2

b

)
dr. (68)

In addition, we define a second integral of the form 639

I2 = 2

∫ √t
0

1

r2
exp

(
− a

r2
+
r2

b

)
dr. (69)

Next, we apply the transform w± =
√
ar ± ir/

√
b to these two integrals, which yields 640

I = 2

∫ √
a√
t
±i

√
t√
b

∞

r2

−
√
a± ir2/

√
b

exp

(
±2i

√
a

b

)
exp

(
−w2
±
)

dw±, (70)

and 641

I2 = 2

∫ √
a√
t
±i

√
t√
b

∞

1

−
√
a± ir2/

√
b

exp

(
±2i

√
a

b

)
exp

(
−w2
±
)

dw±. (71)

The two integrals can be combined as follows: 642

± i√
b
I −
√
aI2 = 2

∫ √
a√
t
±i

√
t√
b

∞
exp

(
±2i

√
a

b

)
exp

(
−w2
±
)

dw±. (72)

The integral on the right is straightforward to evaluate: 643

± i√
b
I −
√
aI2 =

√
π exp

(
±2i

√
a

b

)[
erf

(√
a√
t
± i

√
t√
b

)
− 1

]
. (73)

Eliminating I2 then yields 644

I =
√
πb =

[
exp

(
2i

√
a

b

)(
erf

(√
a√
t

+ i

√
t√
b

)
− 1

)]
. (74)

Using the appropriate prefactor and the expressions for a and b, we finally obtain 645

V (x, t) = e−t/τc
RλβI0

√
τ̂

2
√
τ
=
[

exp

(
i
x
√
τ

λ
√
τ̂

)(
erf

(
x
√
τ

2λ
√
t

+ i

√
t

τ̂

)
− 1

)]
. (75)

Here, = represents the imaginary part of the argument. The complex argument of the 646

error function arises due to τc < τ , but this equation also holds if τc > τ provided that 647

τ̂ is redefined as τ̂−1 = τ−1 − τ−1
c . 648
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Once more, we aim to linearise this implicit solution around the inflection point, 649

which in this scenario is identified as V̈ (ti) = 0. Differentiating V (t) twice yields 650

V̈ =
1

τ2
c

V − e−t/τc
RλβI0

√
τ̂

2
√
τ
=
P exp

(
i
x
√
τ

λ
√
τ̂

)
exp

( x
√
τ

2λ
√
t

+ i

√
t

τ̂

)2
 , (76)

with 651

P =
x4τ2

16λ4t4
− x2τ

2λ2t3
+

x2τ

2λ2τ̂ t2
− x2τ

2λ2τct2
+

1

τ̂2
− 1

τcτ̂
. (77)

Since the inflection point occurs at small t, the terms in P (t) dominate the curvature of 652

the rising phase of V (t). Multiplying P with t4 and carrying on terms up to quadratic 653

order then yields the following equation for ti: 654

x2τ

4λ2
− 2ti + 2

(
1

τ̂
− 1

τc

)
t2i = 0. (78)

For τc < τ , this then leads to 655

ti =
1

2(τ−1 − 2τ−1
c )

(
1−

√
1− 2x2τ

λ2

(
1

τ
− 2

τc

))
. (79)

In the limit of τc � τ , this expression reduces to 656

ti =
τc
4

√1 +
4x2τ

λ2τc
− 1

 . (80)

Conversely, if τc > τ , we find 657

ti =
τ

2

(√
1 +

2x2

λ2
− 1

)
. (81)

A comparison of the linear approximation with the full nonlinear problem is shown in 658

Fig. 11B. 659

Scenario D - combination of exponentials 660

Scenario C involved a single exponential function to describe the time course of the 661

channel currents. We now explore more complex time-profiles of channel currents, which 662

can be realised by the sum over M exponential time courses with different amplitudes 663

As and time constants τs: 664

Ichan(t) = I0

M∑
s=1

As exp(−(t− t0)/τs). (82)

In particular, we consider current profiles of the form 665

Ichan(t) = I0C
−1 (1− exp(−t/τ1))

γ
exp(−t/τ2), (83)

The normalising factor C ensures that the maximum value of Ichan(t) is I0, which can 666

be determined experimentally. For the sodium current, we use the current density 667

iNa = 50pA/µm2, multiplied by the surface area of the node, throughout the 668

manuscript. This current density yields an amplitude of approximately 100mV for 669

action potentials with standard parameters, although it is twice as high as reported in 670

August 8, 2019 26/35

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2019. ; https://doi.org/10.1101/599746doi: bioRxiv preprint 

https://doi.org/10.1101/599746
http://creativecommons.org/licenses/by/4.0/


an experimental study [52]. The reason for the experimental values to be lower might be 671

that for the electrophysiological recordings the axons are severed [59], and ion channels 672

are likely to reorganise and redistribute under such conditions. 673

Eq. 83 can be recast in the form 674

Ichan(t) = I0C
−1

γ∑
s=0

(
γ

s

)
(−1)s exp

(
−
(
s

τ1
+

1

τ2

)
t

)
, (84)

The maximum current is reached at 675

tmax = τ1 ln

(
γ
τ2
τ1

+ 1

)
, (85)

and has the amplitude 676

Ichan(tmax) = I0C
−1 = I0

(
γ τ2τ1

γ τ2τ1 + 1

)γ (
1

γ τ2τ1 + 1

) τ1
τ2

. (86)

To construct realistic action potentials, we include both sodium and (fast) potassium 677

channels. The sodium gating dynamics of the original Hodgkin Huxley model are 678

governed by a term m3h, where m is the activating gating variable, and h is the 679

inactivating gating variable. Schwarz et al. [60] assume that the dynamics of the 680

resulting ion channel currents can be approximated by 681

Ichan,Na = I0,NaC
−1
Na,3 (1− exp(−t/τm))

3
exp(−t/τh), (87)

with CNa,3 being the normalisation constant. Baranauskas and Martina [17] presented 682

data that best fit the Hodgkin-Huxley model with mh, i.e. a linear relationship with the 683

activating gating variable m. In this case, the activation current in our framework reads 684

Ichan,Na = I0,NaC
−1
Na,1 (1− exp(−t/τm)) exp(−t/τh), (88)

with CNa,1 being the normalisation constant for γ = 1. The parameters τm and τh 685

represent the time scales of the activation and inactivation of the sodium ion channels. 686

Throughout this article we use Eq. (88) to describe the sodium channel dynamics. The 687

time constants are chosen such that the resulting action potential fits best the numerical 688

results for the cortex model in [24], see Fig. 12 for a graphical comparison. 689

Likewise, we can define the potassium current as follows: 690

Ichan,K = I0,KC
−1
K (1− exp(−t/τn))

4
exp(−t/τk), (89)

with 691

CK =

(
4 τkτn

4 τkτn + 1

)4(
1

4 τkτn + 1

) τn
τk

. (90)

Here, τn represents the time scale of the activation of the potassium ion channels. 692

Although there is no inactivating current for potassium in the Hodgkin-Huxley model, 693

we define τk as characteristic time with which the potassium current decays. The time 694

constants are voltage-dependent [60], but for simplicity we assume here that they remain 695

constant throughout the formation of the action potential. The peak current density 696

iK = 3.75pA/µm2 is 7.5% of iNa, a ratio we derive from the sodium and potassium 697

conductances used for myelinated axons in [61] (ḡNa = 1.2S/cm2 and ḡK = 0.09S/cm2). 698

Finally, denoting the solution to an exponential input current with time constant τs 699

by 700

φ(x, t; τs) = e−t/τs
RλβI0

2

√
τ τ̂ =

[
exp

(
i
x
√
τ

λ
√
τ̂

)(
erf

(
x
√
τ

2λ
√
t

+ i

√
t

τ̂

)
− 1

)]
, (91)
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Fig 12. Comparison of action potentials in spike-diffuse-spike model and
biophysical model. We chose the time scales τm = 20µs and τh = 40µs such that the
profile, and in particular the rising phase of the action potential in the
spike-diffuse-spike model matches well the action potential of the cortical axon model by
Arancibia-Càrcamo et al. [24].

allows us to express the solution as combinations of exponential currents by 701

V (x, t) =

γ∑
s=0

Asφ(x, t; τs), (92)

with 702

As = C

(
γ

s

)
(−1)s, τs =

(
s

τ1
+

1

τ2

)−1

. (93)

Once more we seek to identify the inflection point, i.e. where V̈ = 0. The different 703

time scales τs make it difficult to find a closed-form solution, as the ones we found for 704

the previous scenarios. However, we find that a suitable approximation for the inflection 705

point is 706

ti = ti,cab + ti,chan, (94)

where ti,cab is the inflection point of the Green’s function of the cable equation in the 707

limit of x/λ� 1, and ti,chan is the inflection point of the rising phase of the ion current. 708

ti,cab can be derived from Eq. 57, 709

ti,cab =

√
2xτ

4λ
, (95)

and ti,chan is found to be 710

ti,chan = −τ1 ln

 γ
τ2
1

+ 2γ
τ1τ2

+ 2
τ2
2

2
(
γ
τ1

+ 1
τ2

)2

1−

√√√√√√1−
4
τ2
2

(
γ
τ1

+ 1
τ2

)2

(
γ
τ2
1

+ 2γ
τ1τ2

+ 2
τ2
2

)2


 , (96)

with γ, τ1, and τ2 as in Eq. 83. 711
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Influence of distant nodes 712

Action potentials are driven by the ionic currents generated at multiple nodes along the 713

axon. Due to the linear nature of the cable equation, the effect of multiple input 714

currents can be described by linear superposition: 715

V (x, t) =
N∑

n=−N
U(|x− nL|, t− ntsp), (97)

where U is the r.h.s. of the respective scenario considered, i.e. U(x, t) describes the 716

depolarisation due to the current at a nearby node. To keep with our previous 717

definition, time is defined by setting t = 0 when the neighbouring node depolarises. The 718

relationship between the firing threshold Vthr and the time-to-spike tsp is therefore 719

given by 720

Vthr =
N∑
n=1

U(nL, ntsp). (98)

The effect of distant nodes is dampened by the fact that in addition to passing along 721

myelinated segments, currents from distant sources also pass by unmyelinated nodes, 722

and thereby further lose amplitude. Because the distance between two points on the 723

cable is given by L/λ in the cable equation, the added distance due to a node with 724

finite length is l/λn. Therefore, the physical distance between two consecutive nodes is 725

L+ l, and their electrotonic distance is L+ (λ/λn)l in units of λ. This leads to the 726

updated equation for the membrane potential, Eq (9) in the Results section. 727

As we have shown in Fig. 4, the formation of an action potential is a collective 728

process that incorporates ion channel currents from multiple nearby nodes. Throughout 729

the manuscript we set N = 103 to ensure all currents are incorporated, although for the 730

standard parameters N = 20 would produce very similar results. However, as we show 731

in Fig. 13, reducing N can lead to a considerable reduction of the propagation velocity 732

at short internode lengths. 733

This framework allows us to describe unmyelinated axons as well. Since the 734

internode length is zero in this case, the node length l is now an arbitrary discretisation 735

of the axon. The membrane potential is now described by 736

V (x, t) =
N∑

n=−N
U(|x− nl|, t− ntsp), (99)

where the length constant λ in U needs to be replaced by a length constant λ̃ that 737

characterises the electrotonic length of the unmyelinated axon. We introduce a 738

parameter ρ that describes the channel density of the unmyelinated axon relative to the 739

channel density of a node of Ranvier. We assume that the conductivity of the axonal 740

membrane scales linearly with the channel density, which implies that the electrotonic 741

length constant of an unmyelinated axon is λ̃ = λn/
√
ρ, and its time constant is 742

τ̃ = τn/ρ. The velocity of an action potential is now defined as v = l/tsp. 743

In addition to the correction terms introduced in Eq (9), we also investigate delays 744

that occur at the nodes due to finite transmission speeds. We assume that action 745

potentials travel with velocities v determined by Eq (9) along myelinated segments, and 746

with velocities vn inferred from Eq (99) at nodes. The corrected velocity is then given 747

by Eq (12) in the Results section. 748

Ephaptic coupling and entrainment 749

Here we explain how to solve Eq (29) with non-zero extra-cellular potential. The 750

potential between intra-cellular medium and extra-cellular medium is Pn = Vn − Ve, 751
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Fig 13. Effect of number of nearest nodes on velocity. We demonstrate here that considering only a small number of
nodes can lead to considerable discrepancies in the computed velocity at small node and internode lengths.

which determines the channel dynamics. It follows from the electric decoupling of the 752

fibre bundle from the external medium that the sum of longitudinal currents within the 753

fibre bundle is zero [31]: 754

R−1
ex

∂2Ve
∂x2

+
∑
n

R−1
ax,n

∂2Vn
∂x2

= 0. (100)

Rex denotes the axial resistance of the extra-cellular medium, which depends inversely 755

on its cross-sectional area. As a result, we obtain the cable equation in terms of Pn: 756

τṖn + Pn − λ2
n

∂2Pn
∂x2

+RmI
ion
n (t) + αλ2

n

∑
m

R−1
ax,m

∂2Pm
∂x2

= 0, (101)

where α is the coupling parameter: 757

α =
1

R−1
ex +

∑
mR

−1
ax,m

. (102)

This is a general result, but in the following we focus on two fibres. 758

Since these equations are linear, they can be decoupled (using orthogonalisation) into 759

τ
∂P̃1,2

∂t
= λ̃2

1,2

∂2P̃1,2

∂x2
− P̃1,2 + Ĩion1,2 (t), (103)

with P̃1,2 = P1 + c1,2P2, Ĩion1,2 = Iion1 + c1,2I
ion
2 , and λ̃1,2 = λ2

1(R−1
ax,1 + 1) + c1,2λ

2
2R
−1
ax,1, 760

where 761

c1,2 = −
λ2

1(R−1
ax,1 + 1)− λ2

2(R−1
ax,2 + 1)

2λ2
2R
−1
ax,1

(104)

±

√√√√(λ2
1(R−1

ax,1 + 1)− λ2
2(R−1

ax,2 + 1)

2λ2
2R
−1
ax,1

)
+ 1. (105)

In the case of identical axons, this expression simplifies to c1,2 = ±1. These equations 762

can be solved as above, and the solutions of the coupled equations can be recovered 763

using P2 = (P̃1 − P̃2)/(c1 − c2) and P1 = −(c2P̃1 − c1P̃2)/(c1 − c2). 764
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Fitting parameters to biophysical model 765

In order to compare the spike-diffuse-spike model with the biophysical model presented 766

in [24], we generate data points using the biophysical model for the parameters reported 767

therein for the cortex model, and fit our model parameters to these data points. We 768

define a grid of 3× 3 data points in L− l-space for L = 27µm, L = 82µm and 769

L = 152µm, and l = 0.5µm, l = 1.5µm and l = 3.5µm. On this grid we determine the 770

action potential velocity of the biophysical model, which is treated as data for the 771

fitting procedure. Next, we use the least squares curve fit as implemented in MATLAB 772

to fit the following eight parameters of the spike-diffuse-spike model to the data: λ, τ , 773

λn, τn, τm, τh, I0, and Vthr. The reason why we use this fitting procedure is that there 774

is no direct correspondence between our model and the biophysical model. The latter 775

implements a Hodgkin-Huxley formalism, as well as a detailed model of the myelin 776

sheath that models each membrane individually and includes periaxonal space. We used 777

the code made available on github by the authors of [24]. 778
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