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Abstract

With the advent of advanced MRI techniques it has become possible to study axonal
white matter non-invasively and in great detail. Measuring the various parameters of
the long-range connections of the brain opens up the possibility to build and refine
detailed models of large-scale neuronal activity. One particular challenge is to find a
mathematical description of action potential propagation that is sufficiently simple, yet
still biologically plausible to model signal transmission across entire axonal fibre
bundles. We develop a mathematical framework in which we replace the
Hodgkin-Huxley dynamics by a spike-diffuse-spike model with passive sub-threshold
dynamics and explicit, threshold-activated ion channel currents. This allows us to study
in detail the influence of the various model parameters on the action potential velocity
and on the entrainment of action potentials between ephaptically coupled fibres without
having to recur to numerical simulations. Specifically, we recover known results
regarding the influence of axon diameter, node of Ranvier length and internode length
on the velocity of action potentials. Additionally, we find that the velocity depends
more strongly on the thickness of the myelin sheath than was suggested by previous
theoretical studies. We further explain the slowing down and synchronisation of action
potentials in ephaptically coupled fibres by their dynamic interaction. In summary, this
study presents a solution to incorporate detailed axonal parameters into a whole-brain
modelling framework.

Author summary

With more and more data becoming available on white-matter tracts, the need arises to
develop modelling frameworks that incorporate these data at the whole-brain level. This
requires the development of efficient mathematical schemes to study parameter
dependencies that can then be matched with data, in particular the speed of action
potentials that cause delays between brain regions. Here, we develop a method that
describes the formation of action potentials by threshold activated currents, often
referred to as spike-diffuse-spike modelling. A particular focus of our study is the
dependence of the speed of action potentials on structural parameters. We find that the
diameter of axons and the thickness of the myelin sheath have a strong influence on the
speed, whereas the length of myelinated segments and node of Ranvier length have a
lesser effect. In addition to examining single axons, we demonstrate that action
potentials between nearby axons can synchronise and slow down their propagation
speed.
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Introduction

Neurons communicate via chemical and electrical signals, and an integral part of this
communication is the transmission of action potentials along their axons. The velocity
of action potentials is crucial for the right timing in information processing and depends
on the dynamics of ion channels studding the axon, but also on its geometrical
properties. For instance, the velocity increases approximately linearly with the diameter
of myelinated axons [1]. Myelin sheaths around axons are an evolutionary trait in most
vertebrates and some invertebrates, which developed independently in several taxa [2].
The presence of a myelin sheath increases the velocity of action potentials by enabling
saltatory conduction [3]. Long-term, activity-dependent changes in the myelination
status of axons are related to learning [4]. The functional role of differentiated
myelination is to regulate and synchronise signal transmission across different axonal
fibres to enable cognitive function, sensory integration and motor skills [5].
White-matter architecture has also been found to affect the peak frequency of the alpha
rhythm [6]. Axons and their supporting cells make up the white matter, which has, for
a long time, only been accessible to histological studies [7,/8]. With the advent of
advanced MRI techniques, some of the geometric parameters of axonal fibre bundles
have become accessible to non-invasive methods. Techniques have been proposed to
determine the orientation of fibre bundles in the white matter [9] as well as to estimate
the distribution of axonal diameters [10], the packing density of axons in a fibre
bundle |11}]12], and the ratio of the diameters of the axon and the myelin sheath
(g-ratio) |13].

First quantitative studies were done by Hursh [14] who established the
(approximately) linear relationship between action potential velocity and axonal radius
in myelinated axons, and Tasaki [3] who first described saltatory conduction in
myelinated axons. Seminal work on ion channel dynamics was later done by Hodgkin
and Huxley, establishing the voltage-dependence of ion channel currents [15]. The
general result of voltage-dependent gating has been confirmed in vertebrates [16], yet a
recent result for mammals suggests that the gating dynamics of sodium channels is
faster than described by the original Hodgkin-Huxley model, thereby enabling faster
generation and transmission of action potentials [17]. In general, parameters
determining channel dynamics differ widely across neuron types [18].

Seminal studies into signal propagation in myelinated axons using computational
techniques were done by FitzHugh [19] and Goldman and Albus [20]. Goldman and
Albus gave the first computational evidence for the linear increase of the conduction
velocity with the radius of the axon, provided that the length of myelinated segments
also increases linearly with the axonal radius. The linear relationship is supported by
experimental evidence [21], although other studies suggest a slightly nonlinear
relationship [22]. More recently, computational studies have investigated the role of the
myelin sheath and the relationship between models of different complexity with
experimental results [23]. One of the key findings here was that only a myelin sheath
with finite capacitance and resistance reproduced experimental results for axonal
conduction velocity. Other studies investigated the role of the width of the nodes of
Ranvier on signal propagation [24L25], or the effect of ephaptic coupling on signal
propagation [26H33].

Most computational studies employ numerical schemes, i.e. they discretise the
mathematical problem in space and time and use numerical integration methods to
investigate the propagation of action potentials. One problem that arises here is that
the spatial discretisation must be relatively coarse to ensure numerical stability, which
can be remedied to some extent by advanced numerical methods and computational
effort [34]. The other problem, however, cannot be remedied that easily: it is the lack of
insight into how the model parameters influence the results, since there is a large
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number of parameters involved. A way to illustrate parameter dependencies in an
efficient manner is to use analytical techniques all the while simplifying the model
equations and extracting essential features. Studies that use analytical methods are few
and far between [35-38|; yet it is also worth noting that from a mathematical
perspective, myelinated axons are similar to spine-studded dendrites, in the sense that
active units are coupled by passive leaky cables. An idea that we pick up from the latter
is to simplify the ionic currents crossing the membrane [39}|40], there at dendritic spines
mediated by neurotransmitters, here at nodes of Ranvier mediated by voltage-gated
dynamics.

The goal of this article is to use analytical methods to study the influence of
parameters controlling action potential generation, and geometric and

electrophysiological parameters of the myelinated axon, on the speed of action potentials.

The main focus here is on parameters determining the axonal structure. This will be
achieved by replacing the Hodgkin-Huxley dynamics with a spike-diffuse-spike model for
action potential generation, i.e. ion currents are released at nodes of Ranvier when the
membrane potential reaches a certain threshold. These ion channel currents are
considered voltage-independent, but we investigate different forms of currents, ranging
from instantaneous currents to currents that incorporate time delays. We also
investigate ion currents that closely resemble sodium currents measured experimentally.
Our aim is to derive closed-form solutions for the membrane potential along an axon,
which yields the relationship of action potential velocity with model parameters.

The specific questions we seek to answer here are the following. First, we query how
physiological parameters can be incorporated into our mathematical framework,
especially parameters that control the dynamics of the ionic currents. We test if
parameters from the literature yield physiologically plausible results for the shape and
amplitude of action potentials, and test how the ionic currents from multiple nearby
nodes of Ranvier contribute to the formation of action potentials. Secondly, we ask how
geometric parameters of an axon affect the transmission speed in a single axon, and how
sensitive the transmission speed is to changes in these parameters. We seek to
reproduce known results from the literature, such as the dependence of the velocity on
axon diameter. We also explore other dependencies, such as on the g-ratio, and other
microscopic structural parameters resulting from myelination. We compare the results of
our spike-diffuse-spike model with the results from a detailed biophysical model recently
used to study the effect of node and internode length on action potential velocity [24].
Thirdly, we investigate how ephaptic coupling affects the transmission speed of action
potentials, and what the conditions are for action potentials to synchronise. In
particular, we examine how restricted extra-axonal space leads to coupling between two

identical axons, and how action potentials travelling through the coupled axons interact.

Results

For the mathematical treatment of action potential propagation along myelinated axons,
we consider active elements periodically placed on an infinitely long cable. The latter
represents the myelinated axon and is appropriately described as leaky cable, whereas
the active elements represent the nodes of Ranvier. In mathematical terms, the
governing equation is an inhomogeneous cable equation, which describes the membrane
potential V(z,t) of a leaky cable in space x (scalar, longitudinal to the cable) and time
t in response to input currents:

oV 1 0%V 1%
ma—ﬁc@—aﬁ‘hhun(v’ﬂ- (1)
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Here, C,,, and R,, are the (radial) capacitance and resistance of a myelinated fibre, and
R, is its axial resistance. The term I.pq, represents the ion channel currents triggered
at nodes of Ranvier. The cable equation can be reformulated into

2

T% = )\2?97‘2/ -V+ RmIchan(t)v (2)
by multiplying both sides of with R,,. The time constant 7 and the cable constant
A are parameters determined by the electrophysiological properties of myelin. We
choose these parameters in accordance with experimental results and keep them fixed
throughout our analysis, see the Methods section for details.

The input currents generated by the ion channel dynamics at the nodes of Ranvier is
commonly described by a Hodgkin-Huxley framework. However, the Hodgkin-Huxley
equations are a challenge to solve analytically, and in order to proceed with our
mathematical treatment we opt for a simplified description using threshold-activated
currents with standardised current profiles. We analyse different current profiles,
ranging from delta-spikes to combinations of exponentials which give a good
approximation of the ion currents observed experimentally. We solve the cable equation
for these currents analytically which yields the dynamics of the membrane potential
describing the resulting depolarisation / hyperpolarisation along the axon. The linearity
of the cable equation in V' allows us to describe the response to multiple input currents
by the superposition of solutions for single currents. A sketch of the framework is shown

in Fig.[1}

Ion channel dynamics

The classical Hodgkin-Huxley model is described by a set of nonlinear equations which
need to be solved numerically. Over the years, it has seen several modifications and
improvements such as the one by Frankenhaeuser and Huxley [16], or the incorporation
of additional ion currents [41] given the multitude of ion channel types [42,43]. Also,
attempts were made to provide better fits by modifying the exponents of the gating
variables [44]. In essence, it is difficult to determine what is the ‘right’ Hodgkin-Huxley
model for specific neuron types. For this reason, it seems prudent to go into the
opposite direction and to try to simplify the description of the ion channel dynamics.

Two important contributions into this direction are the one by Fitzhugh [45}/46] and
Nagumo [47], and the one by Morris and Lecar [48|. They provide a framework in which
the slow and the fast variables are lumped and thus yield a two-dimensional reduction
of the Hodgkin-Huxley model. The ion currents here are still voltage-dependent.

A crucial simplification towards analytically treatable models is the separation of
sub-threshold dynamics and spike generation in integrate-and-fire models [49,50]. For
instance, in the leaky integrate-and-fire model and the quadratic integrate-and-fire
model, the time-to-spike can be computed analytically, given initial conditions and a
threshold value for the membrane potential. The ion currents are then often modelled
as delta-spikes since the ion dynamics is fast in comparison to the (dendritic and
somatic) membrane dynamics. The spatial extension of the leaky integrate-and-fire
model is the spike-diffuse-spike model, in which activity spreads via passive cables.

Here, we consider four forms of channel current models. All of these have in common
that the ion current is initiated after the membrane potential has crossed a threshold
Vihr, and has a predetermined profile. We denote the four scenarios by the letters A, B,
C, and D. In scenario A, the ion channel current is released immediately and
instantaneously, i.e.

Ichan(t) = 105@ - tO)‘ (3)
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Vthr

N

direction of propagation

sp

t
Fig 1. Action potential propagation in a myelinated axon. A: The axon is

made of myelinated segments (internodes), with the nodes of Ranvier forming periodic
gaps in the myelin sheath. B: The nodes of Ranvier constitute active sites at which
threshold-triggered ion channel currents are released. C: The currents entering nearby
nodes of Ranvier determine the membrane potential at each node, thus forming an
action potential. D The velocity of an action potential is determined by the distance L
between two consecutive nodes, and the time difference ¢,, it takes to reach a given
threshold value.
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instantaneous current B delayed instantaneous current
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exponential current D combination of exponentials
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Fig 2. Sketch of ion channel currents considered here, with representative profiles of membrane potential in
nearby nodes. After the membrane potential V' reaches the threshold value Vip,., the current I is released. A: The
instantaneous current is described by a delta-peak at ty, when the threshold value is reached. B: The simplest way to

accommodate delays or refractoriness is to introduce a refractory period A, after which the instantaneous current is released.

C: Exponential current with characteristic time scale 7,,. D: A combination of exponential currents describes a realistic
current profile.

Here, Iy denotes the overall ion current, 5 denotes the time when the membrane
potential crosses the threshold, and §(-) is the delta-distribution, or Dirac’s delta. In
scenario B, the ion current is also released instantaneously, but with a delay A:

Ichan(t) = IO(S(t —to— A)v (4)
In scenario C, the ionic current is exponential:
Ienan(t) = Ipe= 10/ me@(t — tg). (5)

Here, 75 is the decay time, and ©(-) is the Heaviside step function. With scenario D we
alm to approximate the ion currents as measured in mammals such as the rabbit [51]
and in the rat [52], which can be described by a superposition of exponential currents:

N
Ichan(t) =1Io Z A, exp(—(t - tO)/Tn)@(t - t0)> (6)

A sketch of all these scenarios is shown in Figure [2] alongside typical depolarisation
curves of the membrane potential.

Current influx and separation

According to Kirchhoff’s first law, the channel current that flows into the axon, ITopqn (t)
is counter-balanced by currents flowing axially both ways along the axon, I.qpe(t), and
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Fig 3. Channel currents divide into a current entering the axon and a current flowing back across the node
of Ranvier. A: Sketch of currents entering and leaving a node of Ranvier. B: Plot of currents as function of node length.
Since we assume constant channel density, the channel current increases linearly with the node length.

a radial current that flows back out across the membrane of the node, I,,,4¢, see Fig.
for a graphical representation. The ratio of currents that pass along the cable and back
across the nodal membrane is determined by the respective resistances:

I,h n
Icable = 070}3)\7 (7)

1 + 2Rnode

with Ry = R,,/A. Throughout the manuscript, the ratio between I.qpe and Iepan iS
expressed by 3:
1

_1+2RR/\ .

node

B (8)
Based on experimental findings, we assume that the channel density is constant [52],
which implies that the total channel current increases linearly with the node length.
This is counterbalanced by the fact that the inverse of the resistance of a node, Rr_wlde’
also increases linearly with its length. At large node lengths, the current that enters the
axon saturates, see Fig. 3B. We will examine further below how the node length

influences the propagation speed.

Influence of nearby nodes

During the propagation of an action potential, ion channel currents are released at
multiple nearby nodes that affect the shape and amplitude of the action potential.
Because of the linear nature of the cable equation, the effect of multiple input currents
can be described by linear superposition:

N
Vizg,t)= > Uz —n(L+ /At - nty), (9)

n=—N

where U describes the depolarisation due to the current at a single node with index n.
The internode length L, node length [, cable constant A and cable constant at a node A,
determine the electrotonic distance between nodes. Node indices n are chosen such that
the node with n = 0 is centred at £ = 0. Nodes with negative n are the ones the action
potential has travelled past, and nodes with positive n are the ones the action potential
will travel into. Although we consider infinitely long axons, we cut off the sum at

n = —N and n = N for computational feasibility, with N = 103. The action potential is
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Fig 4. Contribution of ion currents from nearby nodes to action potential
profile. A: Sodium currents contributing to action potential, and B: same for
potassium. Depolarising effect is color-coded by node index, larger indices are lumped.
Total effect is indicated by black line. C: Action potential composed of both currents.
D: Contribution of sodium currents to reaching threshold value. Standard parameters
are used here (Table 1 in Methods).

t/ ms

not only shaped by the currents from preceding nodes, but also by currents from
subsequent nodes that travel back along the axon. Due to the periodic nature of
saltatory conduction, the time difference between any two consecutive nodes is assumed
to be the same unknown parameter t,.

The effect of distant nodes is dampened by the fact that in addition to passing along
myelinated segments, currents from distant sources also pass by unmyelinated nodes,
and therefore further lose amplitude. If nodes are relatively short, the current outflux
can be regarded as instantaneous across the node as compared to changes in the current,
and the total electrotonic distance between two consecutive nodes (measured in units of
A) is then given by L 4+ IA/)\,, which is already included in Eq. @[) Here, A\, denotes
the cable constant at a node. Eq. @ describes the temporal evolution of an action
potential in a specific location z. In Fig. [l we dissect an action potential using scenario
D for the ion channel model, by colour-coding the depolarisation due to individual
nodes. It is apparent that the action potential propagation is a collective process with
each node regenerating the action potential by a small fraction.
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Velocity of action potentials 104
We now consider the node at x = 0 (n = 0) to reach the firing threshold Vi, at t = 0. 105
The relationship between the firing threshold Vi, and the time-to-spike ¢, is then 196
given by 197
N
Vine = 3 U((L + I\, /), ntsp), (10)
n=1
where we have changed the sign of the summation index, i.e. —n — n. The choice of 108
x =0 and ¢t = 0 is without loss of generality. Eq. is an implicit equation for ¢, 199
which we solve here numerically using Newton’s method. The velocity of an action 200
potential is then given by the physical distance between two consecutive nodes, L +1, 2
and tsp: 202
v EFL (11)
tsp

Here we still assume that the activation process at a node is uniform across its entire 203
length. Since a node represents a short section of unmyelinated axon, we estimate the 20

action potential velocity within a node by the action potential velocity in an 205
unmyelinated axon, v, (see Methods section). The resulting velocity then reads 206
L+1

V= 12

L/v+1/v, (12)
We use Eq. throughout the manuscript. 207
Analytical solutions 208

In mathematical terms, the depolarisation U resulting from the ion channel current at a 200
single site, is a convolution of the current entering the cable with the Green’s function 210

of the homogeneous cable equation G(t), which describes the propagation of o
depolarisation along the myelinated segment: 212
¢
Uz, t) = Rm/ Teapie(t — $)G(z, s)ds. (13)
0

Here, x denotes the distance between the site where the current is injected and the site 213
where the membrane potential is recorded. In the following we present the analytical 21

solutions for all the current types. 215
Scenario A - fast current 216
Since the fast current is described by a delta function, the convolution integral turns 217
into the Green’s function up to a prefactor: 218

TR 2r
Uz, t) = \Qrﬁo exp ( - i) . (14)

Here, Iy = 6.6pA/um? is the amplitude of the input current, Ry = R,,/A, and 3 is the 21
ratio between the current entering the cable and the channel current, as given by Eq . 2

N}
S

Iy is chosen such that the amplitude of an action potential is approximately 100mV, »1
with all the other parameters chosen as for scenario D with standard parameters, see 2
Methods section. 23
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Inserting Eq. into Eq. @]), we obtain the spatio-temporal evolution of an action
potential for this scenario:

Z

Nty

ANt — ntyy)

fR;ﬂIo ( (z =n(L+ /N1 -
— /A (t Sp

T

) Ot — ntgp),

(15)

with © being the Heaviside step function to ensure causality. The threshold condition

then reads

‘/thr

Z VTR exp <_

47mt5p

n(L + I\ /)27

ntsy

a2,

)

(16)

Although this is the 51mp1est scenario, it is not obvious how to invert the r.h.s. of
Eq. to obtain an explicit expression for ¢5,. In the Methods section we present a
linearisation approach, but it is convenient to solve Eq. numerically using Newton’s

method.

Scenario B - delayed fast current

The membrane dynamics in scenario B is exactly the same as in scenario A, except for
an additional offset A:

U(zx,t) =

2 —
Mexp — LT _t A ot — A).
422 T

4m(t — A)

(t-4)

The spatio-temporal evolution of an action potential is now given by

Vix,t) =

N
n=—N

VTRABIo

(xfn(LJrl)\n/)\))%' _t=

A (t—ntsp—A) p ( AN2(t—ntsp—A)

and the threshold condition reads

Vthr = §
n=1

dm(ntsp, — A)

T

N VFR\BI o (P /AT
P\ T (nt,, — A)

T

(17)

msfﬂ) O(t — nty, — A), (18)

Mhsp — A) O(nt,y — A). (19)

Because multiple nodes contribute to the depolarisation, it is possible to find 5, < A.

Scenario C - exponential current

Here we have to solve the convolution integral of the cable equation with an exponential
function, which yields

Ul(z,t) =

with 7 = (7

-1

RyBI T
o t/Te /\520 TT c\\g lexp (Z
-

ié) (erf < i

— 77571, S representing the imaginary part of the argument, and erf

JF

£

being the error function. In the Methods section we show how to obtain this solution.

Eq. (20)) thus represents solutions for ion currents with instantaneous onset and
exponential decay. Hence, the spatio-temporal evolution of an action potential is

expressed by

V(z,t) =

N

n=—N

2T

x—n(L+Ix /)\))\f

of

AT — sy

— nigp

7

AWFE

)

ot —

3 etmnt/r BASTVTE [exp (Z (@ —n(L+ lAn/)\))ﬁ>

ntSP)a

(21)
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and the threshold condition to determine ¢, is 246
N
Ry\BIgVTT L l)\n A
Viry = 3 ntentre BBV [exp ( i+ D/ M)
—~ 27

n(L+ I\ /AT .
<erf< WP +1 > 1 ] (22)

Scenario D - combination of exponentials 247

The linearity of the cable equation allows us to recur to the solution for scenario C to 2

describe the response to currents described by multiple exponentials. Denoting the 249
solution for one exponential input current with time constant 75 by 250
Ry\BI x T t

oz, t;7s) = e_t/“ﬂ\/T% S [exp (z \Fi) erf VT —H‘\/T —-1]], (23)
2T MW7 22Vt T
we express the solution to M superimposed exponential currents by 251
M
=3 Ao, t;7.). (24)
s=1
We use this formulation to describe both sodium currents and potassium currents with 25
rising and falling phase. The sodium current is expressed as follows: 253
Ichan,Na = IO,NaC]:Illl;y (]- - exp(_t/’rm))’Y eXp(_t/Th)’ (25)
For simplicity, we focus on the case v = 1, i.e. the biexponential case. Increasing ~y 254
would result in increased initial delays, and therefore lower propagation velocities. The s
parameter 7 also affects the normalisation constant C'ng -, which ensures that the 256
maximum of Icnan,Na 1S fo,Ne. The potassium current is modeled as 257
Ichan,K = IO,KCV]_(1 (1 - exp(it/’rn))4 exp(it/’]—k% (26)
throughout the manuscript. In the Methods section we describe how to compute the 258
normalisation constants Cyq,, and Ck, and how to convert Eq and Eq intoa 2
sum of exponentials. Hence, the spatio-temporal evolution of an action potential is 260
expressed by 261

N

M et/ BABIgVT? — (L + D /AT
t):CZASn;Ne (t—ntsp)/Ts /\23 c\}[ Xp((x n( /\ﬁ/)) )

(z =n(L+ /AT . [t—nlg
((ptans o) )

O(t — nty), (27)

with 7 = (771 — 77171 and C is the problem-specific normalisation constant. The 262

threshold condition to determine t, is 263

M N
_ RABIoVTT (,n(L+lAn/A)ﬁ>
Vinr =C E Ay E e hep/Te ZAZOY T (K exp (
" s=1 n=1 27 ’ )\\/77-

n(L+ I\ /AT . [ntgy,
(erf ( W +1 = ) — 1) ] . (28)
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Fig 5. Propagation velocity as function of fibre diameter and axon
diameter. A: In myelinated axons, the relationship between velocity and fibre
diameter is nearly linear, with a slightly supralinear relationship at small diameters.
Here we compare the different scenarios with experimental results (grey-shaded area).
B: In unmyelinated axons, the propagation speed increases approximately with the
square root of the axon diameter. Here, p indicates the relative ion channel density
compared with a node of Ranvier. Decreasing the ion channel density results in slower
action potential propagation.

Anticipating results from the next subsection, we found that scenarios A and C yield
velocities that are too fast compared with experimental results. Scenario B allows to
adjust the propagation speed by tuning the parameter A, yet the shape of the action
potential is only determined by the parameters from the cable equation, and thus
cannot be adjusted to match experimental results. As it is the most realistic and most
flexible model for ion channel currents, we decided to select scenario D to study the
sensitivity of the propagation speed to structural parameters.

Sensitivity to parameters
Axon diameter

There is a wide consensus that the propagation velocity in myelinated axons is
proportional to the axon diameter. This is mostly due to the fact that both the

internode length as well as the electrotonic length constant increase with the diameter.

One quantity that does not scale linearly with the axonal diameter is the node length,
which determines the amount of current that flows into the axon, as well as setting a
correction term for the physical and electrotonic distance between two nodes. We find
that the latter introduces a slight nonlinearity at small diameters, although at larger
diameters the linear relationship is well preserved, see Fig. [FA.

In Fig. [JA we compare the four ion channel scenarios with experimental results
obtained by Boyd and Kalu [53]. Scenario A (instantaneous ion channel current) yields
velocities that are about one order of magnitude larger than the experimental results.
This suggests that the main bottleneck for faster action potential propagation is indeed
ion channel dynamics and their associated delays. Introducing a hard delay with
scenario B, we find that we can reproduce the experimentally observed range of
velocities. With scenarios C and D we introduce temporally distributed ion channel
dynamics. The instantaneous onset and exponential decay of scenario C yields velocities
that are slightly faster than experimental results.

In scenario D we explore two sets of parameters. The first set of parameters is
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obtained by using electrophysiological parameters found in the literature. As it is not
obvious how to choose the time constants governing the temporal profile of the ion
channel currents, we decided to choose them such that the shape of action potentials of
our spike-diffuse-spike model match the shape of action potentials of the biophysical
model used by Arancibia-Carcamo et al. [24]. The velocities obtained with this set of
parameters fall within the range of experimental results. The second set of parameters
is obtained by fitting the model parameters to data generated by the same biophysical
model (see Methods). The latter yields velocities slightly below the experimental range,
but it matches well the results from the biophysical model.

The present framework also enables us to study unmyelinated axons, in which case
the current influx must be adapted, in addition to the physical and electrotonic distance
between two neighbouring nodes, which is I and /A, respectively. Since \,, is
proportional to v/d, the resulting velocity is also to be expected to scale with v/d, see
Fig. BB. Making the assumption that the membrane conductivity scales linearly with
the ion channel density p (p is measured relative to the ion channel density of a node),
the time constant of the unmyelinated axon scales with 7 = 7,,/p, and the cable
constant scales with A = A, /,/p. We study different ion channel densities, beginning
with the same density as in nodes in the myelinated axon, and then reducing the density
to 10% and 2% of the original density. We find that reducing the ion channel density
also decreases the propagation velocity. For p = 1 we find that the propagation velocity
is considerably faster than in myelinated axons at small diameters.

Node and internode length

Two geometric parameters that are not readily accessible to non-invasive MR-techniques
are the length of the nodes of Ranvier, and the length of internodes. Here we examine
the effect of the node and internode length on the speed of action potentials. We
assume that the channel density in a node is constant, which is in agreement with
experimental results [52]. The channel current that enters the node is proportional to
its length, yet the increase of the node length also means that more of this current flows
back across the node rather than entering the internodes. Another effect of the node
length is the additional drop-off of the amplitude of axonal currents. Node lengths are
known to vary between 1pum and 3um [24).

The length of internodes is known to increase with the fibre diameter [21,22]. This
increase can be understood in light of the fact that the cable constant A is proportional
to the fibre diameter, and therefore increasing the internode length ensures that the
ratio L/ remains at a suitable point for signal transmission.

We restrict the analysis to the activation by sodium currents, since potassium
currents are slow and only play a minor role in the initial depolarisation to threshold
value. The results are shown graphically for scenario D with standard parameters in
Fig.[(]A, and for parameters fitted to the biophysical model by Arancibia-Carcamo et
al. [24] in Fig. [fB. Changing the threshold value did have a small effect on the
maximum velocity, but did not change the relative dependence on the other parameters.

We find that the propagation velocity varies relatively little with changes in the
nodal and internodal length. For scenario D with standard parameters, we find that
velocities across the investigated range of parameters are above 70% of the maximum,
and for the parameters fitted to the biophysical model the sensitivity is even less.
Interestingly, we find that decreasing node length and internode length simultaneously,
the velocity increases steadily.

In Fig. [(IC and D we show cross-sections of Fig. [(B, and compare these results with
the numerical results from the the cortex model used in [24]. There is a good agreement
between our model and the biophysical model, with the biggest discrepancies occuring at
short node and internode lengths. We assume that these discrepancies arise due to the
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Fig 6. Velocity dependence on node length and internode length. A:
Propagation velocity plotted against node length and internode length. Contours
indicate percentages of maximum velocity. (Scenario D with standard parameters.) B:
Same as A, with fitted parameters. C: Propagation velocity as function of internode
length (scenario D with fitted parameters), and comparison with numerical results from
biophysical model. D: Propagation velocity as function of node length, and comparison
with the model by Arancibia-Carcamo et al. .
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Fig 7. Relative propagation velocity as function of g-ratio. A: Result of our
spike-diffuse-spike model, and v = k(In(1/g))“ fitted to this result (first with & = 0.5
fixed, and then with x and « fitted). B: Fitted a changes with the ratio of internode
length to node length in the spike-diffuse spike model (lines), and in the
Arancibia-Carcamo model (dots). Parameters: fitted parameters (see Table 1 in
Methods section).

fact that the biophysical model only uses 50 nodes, whereas we consider N = 1000 nodes
to determine the velocity. In the Methods section, we show that reducing the number of
nodes significantly alters the results at short node and internode lengths (Fig. .

Myelin thickness

The relative thickness of the myelin layer is given by the g-ratio, which is defined as the
ratio of inner to outer radius. Hence, a smaller g-ratio indicates a relatively thicker layer
of myelin around the axon. In humans, the g-ratio is typically 0.6 — 0.7, although it is
also known to correlate with the axon diameter [54]. In our mathematical framework,
the g-ratio affects the electrotonic length constant A of the internodes, which scales with
VIn(1/g). A classical assumption is that the propagation velocity scales in the same
manner [1]. Our results suggest (see Fig. ElA) that the velocity depends more strongly
on the g-ratio. We therefore generalised this relationship to v = x(ln(1/g))%, and find
(fitting both k and «) our results best match o = 0.68 (scenario D with fitted
parameters). However, the fitted coefficient « also depends on the ratio of internode
length and node length, L/I. We find that « increases monotonically with this ratio (see
Fig. , and approaches zero when L/l approaches zero. The latter represents the case
of an unmyelinated axon.

In Fig. |8 we present two-parameter plots of the velocity as function of the g-ratio and
axon diameter (Fig. [§A), and g-ratio and fibre diameter (Fig. [§B). If the axon diameter
is held constant, the velocity increases monotonously with decreasing g-ratio. However,
if the fibre diameter is held constant, then the velocity saturates at around g = 0.5,
because decreasing g at constant fibre diameter means decreasing the axon diameter.

Ephaptic coupling and entrainment

We demonstrate here that it is possible to study the effects of ephaptic coupling on
action potential propagation within our framework. We choose two axonal fibres as a
simple test case, but more complicated scenarios could also be considered using our
analytical approach. Ephaptic coupling occurs due to the resistance and finite size of
the extra-cellular space. We follow Reutskiy et al. [31] in considering the axonal fibres
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Fig 8. Effect of diameter and g-ratio on propagation ve10c1ty. A: Velocity
plotted against g-ratio and axon diameter. B: Velocity plotted against g-ratio and fibre
diameter.
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Fig 9. Ephaptic coupling reduces AP speed and leads to AP synchronisation. A: Depolarisation curves for a pair
of action potentials with initial offset of 0.02ms converge, reducing the time difference between action potentials. B:
Depolarisation of a synchronous pair of action potentials is slower than for a single action potential. C: An action potential
induces initial hyperpolarisation and subsequent depolarisation in an inactive neighbouring axon.

being embedded in a finite sized extra-cellular medium (the space between the axons

within an axonal fibre bundle). The resulting cable equation for the n'* axon reads

OV —Ve) 1 0%V, (Ve —Ve)
ot o Ram,n 8$2 Rm

Cm + 1), (29)
with V. being the potential of the extra-cellular medium. In the Methods section we
describe how to obtain solutions to this set of equations.

We explore solutions to Eq. in a number of ways, which are graphically
represented in Fig.[0] We focus on sodium currents as described by scenario D with
standard parameters. First, we study how the coupling could lead to entrainment, i.e.
synchronisation of action potentials. To this end, we compare the time courses of V;(t)
and V,(t) in a pair of axons, where an action potential is emitted in the first axon at
t =0, and in the second axon at t = At. We then compare the ¢, in the neighbouring
nodes, and find that for any low threshold values Vi, the difference between the ¢, is
less than At, meaning the two action potentials are re-synchronising, see Fig [JJA. Next,
we asked how the coupling affects the speed of two entrained action potentials. Now we
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set At =0, in which case Vi (t) = Va(t). We compare the depolarisation curves of the
simultanously active axons with when only one axon is active, and find that the
voltages rise more slowly if two action potentials are present, thus increasing ¢, and
decreasing the speed of the two action potentials, see Fig [OB. Thirdly, we considered the
case when there is an action potential only in one axon, and computed the voltage in
the second, passive axon. We find that the neighbouring axon undergoes a brief spell of
hyperpolarisation, with a half-width shorter than that of the action potential. This
hyperpolarisation explains why synchronous or near-synchronous pairs of action
potentials travel at considerably smaller velocities than single action potentials. The
hyperpolarisation is followed by weaker depolarisation.

Discussion

We have developed an analytic framework for the investigation of action potential
propagation based on simplified ion currents. Instead of modelling the detailed dynamics
of the ion channels and its resulting transmembrane currents, we have adopted a simpler

notion by which a threshold value defines the critical voltage for the ion current release.

Below that threshold value the membrane dynamics is passive, and once the threshold
value is reached the ion current is released in a prescribed fashion regardless of the exact
time-dependence of the voltage before or after. We studied four different scenarios, of
which the simplest was described by a delta-function representing immediate and
instantaneous current release. The three other scenario incorporated delays in different
ways, from a shift of the delta function to exponential currents and, lastly, combinations
thereof. The latter seemed most appropriate considering experimental results.

The simplified description of the ion currents permitted the use of analytical
methods to derive an implicit relationship between model parameters and the time the
ion current would depolarise a neighbouring node up to threshold value. This involved
the solution of the convolution integral of the ion current with the Green’s function of
the passive cable equation. From the length of nodes and internodes and the time to
threshold value between two consecutive nodes (ts,) resulted the velocity of the action
potential.

We only obtained an implicit relationship between the threshold value V;;, and the
parameter ¢, which needed to be solved for t,, using root-finding procedures.
However, in comparison to full numerical simulations, our scheme still confers a
computational advantage, as the computation time is about three orders of magnitude
faster than in the biophysical model by Arancibia-Carcamo et al. [24]. In the Methods
section we have shown that one can achieve a good approximation by linearising the
rising phase of the depolarisation curve. We did not explore this linearisation further,
but in future work it might serve as a simple return-map scheme for action potential
propagation, in which parameter heterogeneities along the axon could be explored.

We used our scheme to study the shape of action potentials, and we found that the
ion currents released at multiple nearby nodes contribute to the shape and amplitude of
an action potential. This demonstrates that action potential propagation is a collective
process, during which individual nodes replenish the current amplitude without being
critical to the success or failure of action potential propagation. Specifically, the rising
phase of an action potential is mostly determined by input currents released at
backward nodes, whereas the falling phase is determined more prominently by forward
nodes (cf. Fig. ).

Our scheme allowed us to perform a detailed analysis of the parameter dependence of
the propagation velocity. We recovered previous results for the velocity dependence on
the axon diameter, which were an approximately linear relationship with the diameter in
myelinated axons, and a square root relationship in unmyelinated axons. Although the
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node and internode length are not accessible to non-invasive imaging methods, we found
it pertinent since a previous study [24] looked into this using numerical simulations.
Our scheme confirms their results qualitatively and quantitatively, and by performing a
more detailed screening of the node length and the internode length revealed that for a
wide range the propagation velocity is relatively insensitive to parameter variations.

We also studied the effect of the g-ratio on the propagation velocity, which was
stronger than previously reported, as we find that the velocity is proportional to
(In(—g))* with « & 0.7, whereas the classical assumption was o = 0.5 |1]. Furthermore,
we found that o« depends on the ratio between node length and internode length, which
to the best of our knowledge has not been reported before. Intuitively, changing the
thickness of the myelin sheath of relatively short internodes has a smaller effect than
changing the myelin thickness around long internodes (relative to the node length).

The main results of our spike-diffuse-spike model were compared with the
biophysically detailed model recently presented by Arancibia-Carcamo et al. |24]. The
latter uses the Hodgkin-Huxley framework and models the myelin sheath in detail,
including periaxonal space and individual myelin layers. To enable the comparison
between the two models, we fitted parameters of our spike-diffuse-spike model to output
of the the biophysical model. In spite of the differences in the model setup, we find that
the results of the two models agree well.

The framework developed here also allowed us to study the effect of ephaptic
coupling between axons on action potential propagation. We found that the coupling
leads to the convergence between sufficiently close action potentials, also known as
entrainment. It has been hypothesised that the functional role of entrainment is to
re-synchronise spikes of source neurons. We also found that ephaptic coupling leads to a
decrease in the wave speed of two synchronous action potentials. Since the likelihood of
two or more action potentials to synchronise in a fibre bundle increases with the firing
rate, we hypothesise that a potential effect could be that delays between neuronal
populations increase with their firing rate, and thereby enable them to actively
modulate delays. In addition, we examined the temporal voltage profile in a passive
axon coupled to an axon transmitting an action potential, which led to a brief spell of
hyperpolarisation in the passive axon, and subsequent depolarisation. This prompts the
question whether this may modulate delays in tightly packed axon bundles without
necessarily synchronising action potentials. The three phenomena we report here were
all observed by Katz and Schmitt [55] in pairs of unmyelinated axons. Our results
predict that the same phenomena occur in pairs (or bundles) of myelinated axons.

There are certain limitations to the framework presented here. First of all, we
calibrated the ion currents with data found in the literature. This ignores detailed ion
channel dynamics, and it is an open problem how to best match ion currents produced
by voltage-gated dynamics with the phenomenological ion currents used in this study.
Secondly, we assumed that the axon is periodically myelinated, with constant g-ratio
and diameter along the entire axon. The periodicity ensured that the velocity of an
action potential can be readily inferred from the time lag between two consecutive
nodes. In an aperiodic medium, the threshold times need to be determined for each
node separately, resulting in a framework that is computationally more involved. Here it
might prove suitable to exploit the linearised expressions for the membrane potential to
achieve a good trade-off between accuracy and computational effort. Heterogeneities in
the g-ratio or the axon diameter would be harder to resolve, as the corresponding cable
equation and its Green’s function would contain space-dependent parameters. If
individual internodes are homogeneous, then one could probably resort to methods used
in [36] to deal with (partially) demyelinated internodes. Thirdly, we studied ephaptic
coupling between two identical fibres as a test case. Our framework is capable of dealing
with axons of different size too, as well as large numbers of axons. In larger axon
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bundles, however, it might be necessary to compute the ephaptic coupling from the
local field potentials, as the lateral distance between axons may no longer allow for the
distance-independent coupling we used here. Nevertheless, it would be interesting to
extent our framework to realistic axon bundle morphologies, and test if the predictions
we make here, i.e. synchronisation of action potentials and concurrent increase in axonal
delay, still hold. If yes, then there may also be the possibility that delays are modulated
by the firing rates of neuronal populations.

Methods

The cable equation

To model action potential propagation along myelinated axons, we consider a hybrid
system of active elements coupled by an infinitely long passive cable. The latter
represents the myelinated axon and is appropriately described by the cable equation,
whereas the active elements represent the nodes of Ranvier whose dynamics are
governed by parametrically reduced, phenomenological dynamics.

In general, a myelinated axon can be described by the following cable equation:

oV 1 0%V \%
Cph—=————+1 V,t), 30
o "R a2 Ry | lehan(V2) (30)
where V is the trans-membrane potential, I.pqn(V,t) represents the ionic currents due
to the opening of ion channels, and x represents the spatial coordinate longitudinal to
the cable. C,, and R,, are the capacitance and resistance of myelinated segments of the
cable. Multiplying both sides of with R,, yields

2% o*v

_— = )\2 - V R’ITLIC an t b 31

"ot = gaz Y Fmlenan(t) (31)

where 7 = Cp,R,, and A = \/R,,,/ R are the time constant and cable constant
pertaining to the internodes. All model parameters are listed in Table

Cable parameters

The capacitance of a cylindrical capacitor (such as a myelin sheath, or the insulating
part of a coaxial cable) can be found by considering the following relationship,
2me
Cp = ———, 32
"~ (1/g) 2

with g being the g-ratio, i.e. the ratio between axon diameter and fibre diameter. The
parameter € denotes the permittivity of the medium. The radial resistance of the
cylinder is given by:

1
R, = ﬁlnf.

=5l (33)

The parameter p describes the resistivity of the cylindrical medium.
Experimental values for the capacitance and radial resistance of a myelinated axon
are reported in Goldman and Albus [20],

1 1
Cm:klln’lg, Rm:kzlng, (34)

with (taking values from [56] and assuming g = 0.8 in the frog)
ky =3.6pFem™,  ky = 130MQcm. (35)
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Table 1. List of model parameters used in this manuscript.

Parameter | standard values fitted values (AC model)
Cm 3.6/In(1/g)pFem™1 | N.A.
R, 130M QemIn(1/g) 130M Qem In(1/g)
R, 140Qcm/d? N.A.
T 0.47ms 1.45ms
Tn 33us 20us
A 9.65 x 102d\/Ing—1 | 12 x 102d\/In g~
An 38.9\/d/um um 48.1\/d/um pm
d 1pum 0.73pum
g 0.6 0.81
l lum 1um
L 100d 100d
Tm 20ps T0ps
Th 40us 160us
Tn 150us 150ps
Tk 300us 300us
Iy 50pA/pum? 200p A/ um?
Vinr 15mV amV

Unless explicitly stated, we use the parameters presented in this list. For most figures
we use the standard parameters, and where stated we use parameters fitted to the
Arancibia-Carcamo cortex model. The fitting procedure is described in the subsection
‘Fitting parameters to biophysical model’.

The values for k1 and ko correspond to the following values for permittivity and
resistivity:
e=57x10""sQ 'm™,  p=8.16 x 10°Qm. (36)

Finally, the axial resistance per unit length along the inner medium of the cylinder is
given by
_ 4pax
- omd?’
where p,, = 110Qem [20] is the resistivity of the inner-axonal medium, and wd?/4 its
cross-sectional area.

With these constants at hand, we can now define the parameters of equation :

R,

(37)

A~ 9.65 x 102dy/Ing=!, T =0.47ms. (38)
We treat the axonal diameter d and the g-ratio g as free parameters, and pg,,, k1 and ko
are treated as constants.
Analytical solution

The inhomogenenous cable equation can be written in compact form:
V=NV -V +1, (39)

with V indicating the time derivative of V, and V" indicating the second spatial
derivative of V. Fourier transformation in z yields an ordinary differential equation of
the form,

TV = —(\R 4 1)V + 1T, (40)
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Fig 10. Green’s function of the cable equation A: Green’s function for various
distances x. B: Green’s function for = lmm, showing the slow (dotted) and fast
(dash-dotted) approximation.

where ~indicates the Fourier transformed quantity. The homogeneous part of Eq.
has the solution R
V = Cexp(—(N\2E% + 1)t/7). (41)

The inhomogeneous solution in ¢ can be found by the method of variation of the
constant, which yields the following convolution integral in ¢:

v L exp(— (82 + 1) — 5) /)Ty 5)ds. (42)
0 T

The inverse Fourier transform of Eq. then yields the following double convolution
integral in x and t:

(x —y)?r t—s

x’t)_d%/()t/zmexP(4A2(t—s) - )I(y,s)dyds. (43)

Since we assume the nodes of Ranvier to be discrete sites described by delta functions in
x, this integral becomes ultimately a convolution integral in time only.
Thus, we can identify the Green’s function of the cable equation as

Cla t) — 1 3T t m
(a:,)—\/ﬁexp et 1) ( )

This is Green’s function representing the time evolution of the voltage in a cable due to
an instantaneous, normalised input current at distance z at time ¢t = 0. A graphical
representation of G(z,t) is given in Fig. for various values of z.

We note here that the Green’s function contains two time scales. The first is the
characteristic time scale of the cable, 7, which indicates the voltage decay across the
myelin sheeth. The second time constant is 227 /4\2, which is the time it takes
exp(—z27/4\%t) to reach 1/e ~ 0.37. This time depends on all cable parameters, and if
/X < 1 it is significantly faster than 7. Hence, if ¢ < 7, the cable equation can be
approximated by

V(

G(z,t) = (45)

1 2T
= exp| -
v47r)\27'te P a2t )’

or, conversely, in the limit £ > 7, it can be approximated by

Gla,t) = ﬁ exp (-j) . (46)

See Fig[I0B for a comparison.
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Nodal properties

Like the myelinated parts of the axon, the Ranvier nodes are characterised by their
electrophysiological properties through the membrane resistance and membrane
capacitance, denoted by R,, and C,,, which result in a characteristic length scale \,, and
a characteristic time scale 7,,. We use the following values for R,, [20] and C,, [57]:

R, = 33Qcm? C, = 1uFcm ™2, (47)

where R,, = gzl, i.e. the inverse leak conductance. With 7,, = C,, R,, we obtain a
characteristic time of 7,, = 33us. This value is striking, since typical time constants for
neurons at dendrites and the soma range from 10ms to 100ms. This can be explained by
the higher density of sodium channels at the nodes of Ranvier than at the soma. As
reported in [58], there are approximately 1200 channels per um? at nodal segments, and
only about 2.6 channels per um? at the soma. Thus, the ratio of ion channel densities
between node and soma is nearly 500. We assume here that the conductance scales
linearly with the channel density, which is supported by the fact that the membrane
resistance is approximately 10k{2cm? at the soma.

Current influx and separation

The channel current that flows into the axon, I.pqn,(t) is counter-balanced by currents
flowing axially both ways along the axon, I.qpe(t), and a radial current that flows back
out across the membrane of the node, I,,,4.:

Ichan(t) = Inode (t) + Icable(t)- (48)

The ratio of currents that pass along the cable and back across the nodal membrane is
determined by the respective resistances:
R

RnodeInode = ?Icable; (49)

where R) is the longitudinal resistance of the axon, defined by Ry = R,,/\. This
relationship yields

Ichan
Icable = LRA (50)

LRy o
Hence, with the maximum amplitude of the channel current being I, the maximum
amplitude of current entering the cable is 51y, where we abbreviate
1
f=
2Rnude

(51)

Approximations and analytical solutions

It is, in general, not possible to find closed-form solutions to the Hodgkin-Huxley model
due to the nonlinear dependence of the gating variables on the voltage. We therefore
focus here on idealisations of the currents generated by the ion channel dynamics, which
is described by a function I.pan(t).

In mathematical terms, the depolarisation of the neighbouring node is a convolution
of the current entering the cable with the solution of the homogeneous cable equation
G(z,t), which describes the propagation of depolarisation along the myelinated segment:

t
Veabie(z,t) = Rm/ Teapie(t — $)G(z, s)ds. (52)
0

In the following we present the mathematical treatment for the scenarios introduced
in the Results section, and we focus here on an input current at a single site.
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Scenario A - fast current

The (in mathematical terms) simplest scenario is the one in which the ion current is
described by the Dirac delta function:

Lenan(t) = Io8(t — to). (53)

Without loss of generality we set the time of the current, tg, to zero. The depolarisation
along the cable, and specifically at the neighbouring node at distance x is then given by
the Green’s function of the cable equation itself:

RABH ;
V() = %) exp (_ - i) . (54)

If only one current is injected into the cable, the time ¢, when the threshold value Vi,
is reached is given implicitly by

VTRABI 27 tsp
Vingp = ———— — - — . 55
h int, P\ D%, T (55)

Equation [55| yields an implicit relation for t,, and the model parameters. There is
no obvious way of solving [55| for ¢,, explicitly. One can solve it using Newton’s method,
and test various parameter dependencies by arc-length continuation. However, we
explore the possibility to derive an approximate solution for ¢5,, and consequently for
the axonal propagation speed v, by linearisation of .

A suitable pivot for the linearisation is the inflection point on the rising branch, i.e.
V =0and V > 0. This ensures that the linearisation around this point is accurate up
to order O(t?), and error terms are of order O(t3) and higher. It also provides an
unambiguous pivot for the linearisation. Differentiating twice yields

. 472 32 3—222/X% 1 1
:<x7 ity z°/ . )V.

— - — 4+ — 56
16044 4)2¢43 4¢2 Tt + T2 (56)

We multiply all terms by #* such that the lowest order term in ¢ is of order zero. Since T
is much larger than the rise time of the depolarisation, we disregard terms of order
O(#3) and higher. The resulting quadratic equation for the inflection point, t;, yields
two positive roots, the smaller of which is

ti:m (1—\/1—;)(3—2:52/A2)). (57)

In the limit of /A <« 1 we can further simplify this expression to give

.%'2’7'

t; = Cv,

with ( =1/2 -1/ V6. The linear equation for the time-to-spike and the firing threshold
is then given by

(58)

Vvthr - V(tz)
tsp =t + —————. 59
p V) (59)
The quantities V (¢;) and V(t;) can be approximated to be
RBIo A 1
V(t) ~ Yexp(—— ), 60
=z () e
and
oz
V(ti) ~ 4sz27,v(ti)' (61)

A comparison of the full nonlinear solution with the linear approximation is shown in

Fig. [[TA.
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0 1 ‘ 2 (/ps 3 0 10 20 30 ;/ps 40
Fig 11. Depolarisation curves and their linear approximation. A:

Depolarisation curve for instantaneous input current (scenario A). B: Depolarisation
curve for exponential input current (7, = 100us).

Scenario B - delayed fast current

Again we consider a fast current, but one which is emitted with a delay A after the
membrane potential has reached the threshold value. If we denote by t¢ the time of the
threshold crossing, then the ionic current is given by

Tenan(t) = Lod(t — tg — A). (62)

However, by simple linear transformation we may also use tg to denote the time of the
spike. In this case, a spike will be generated after ¢y, + A in the adjacent node, where
tsp is the time to the threshold crossing in the same node, given by equation . The
speed of a propagating action potential is then given by

L+1
V= — 63
R (63)
neglecting finite transmission speeds at nodes. In the limit of t;, — 0 we obtain the

result
L+1
V= ——0

A b

which implies that action potentials can never travel faster than (L + [)/A. However, if

(64)

multiple neighbours are taken into account, the velocity can be faster than this estimate.

For example, in Fig. we show results for this scenario with A = 30us. For an axon
diameter of d = 1pum (which corresponds to D &~ 1.67um with g = 0.6), we obtain a

velocity of about 6m/s, whereas (L +1)/A is approximately 3.3m/s (with L = 100pm).

Scenario C - exponential current

At this point, we make the assumption that the channel current rises infinitely fast, and
drops off exponentially. In mathematical terms, the currents generated by an action
potential at a particular node have the following form:

Ichan(t) = Ipexp(—(t —t0)/7.)O(t — to), (65)

where I denotes the amount of current generated by the channel dynamics, and %,
denotes the time the spike is generated. The Heaviside step function © ensures that
Tehan(t) = 0 for t < tg. Without loss of generality we set to = 0.
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The propagated depolarisation is now given by the convolution of the exponential
function with the Green’s function of the cable equation:

1 IQT
d 66
4mTs P < 4)\2s ) 5 (66)

Here we use 77! = —77! + 771, We now briefly sketch how to solve this integral.
Disregarding prefactors, the integral to be solved here is of the form

_ /0 t % exp (44 %) as (67)

Using the transform r = /s yields

t
V(x, t) = e_t/TCR)\ﬁlo/
0

Vit a r2
I= 2/0 exp (_1"2 + b) dr. (68)
In addition, we define a second integral of the form
Vi a 1

Next, we apply the transform wy = y/ar £ir/ Vb to these two integrals, which yields

- 2/@“ M exp <i2i\/§> exp (—w?) dws, (70)

and

s
e
s

I, =2 /oo M exp (im\/;) exp (—wi) dws. (71)

The two integrals can be combined as follows:

i GEG
+—1—+valy =2 ' bex +2i ex w2) dwy. 72
e van =2 [T o (e [4) ep (-l dws. (72

The integral on the right is straightforward to evaluate:

£l -Vl = Ve (ﬂ\[)[ (Ve f) -1]. (73)

Eliminating I then yields

s (D) )] oo

Using the appropriate prefactor and the expressions for a and b, we finally obtain

_—t/7e R)\BIO\/; Cx "L‘\/F l’f
V(z,t)=e? o ) lexp (z)\\/;> <erf<2)\\[ \/>> - 1)] . (75)

Here, & represents the imaginary part of the argument. The complex argument of the

error function arises due to 7. < 7, but this equation also holds if 7. > 7 provided that

7 is redefined as 7~ =771 — T, 1.
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Once more, we aim to linearise this implicit solution around the inflection point,
which in this scenario is identified as V' (t;) = 0. Differentiating V' (¢) twice yields

2
.. 1 IoV' T
V — 7v_e—t/7cw % Pexp <zx\ﬁ) exp <-’If\/7i + \/?) ) (76)
T

72 PG MWF VAR

with .
x4 x2T 2T 3T 1 1

= - - - - —. 7

1644 22243 + 2N272 202712 + 72 7.7 (77)
Since the inflection point occurs at small ¢, the terms in P(¢) dominate the curvature of
the rising phase of V (t). Multiplying P with ¢t* and carrying on terms up to quadratic

order then yields the following equation for ;:

2T 1 1
i +2(-——= )2 =0. 78
4)2 + (f' TC) v (78)

For 7. < 7, this then leads to

nm e (-5 (2 2)). ()

In the limit of 7. < 7, this expression reduces to

s Te 1+ 4x2T
YT A2,

Conversely, if 7. > 7, we find

T 222

A comparison of the linear approximation with the full nonlinear problem is shown in

Fig. [TIB.

Scenario D - combination of exponentials

Scenario C involved a single exponential function to describe the time course of the
channel currents. We now explore more complex time-profiles of channel currents, which
can be realised by the sum over M exponential time courses with different amplitudes
A and time constants 7,:

M
Lonan(t) = To Y Agexp(—(t — to)/7s). (82)
s=1

In particular, we consider current profiles of the form
Tehan(t) = ToC™1 (1 — exp(—t/11))" exp(—t/72), (83)

The normalising factor C' ensures that the maximum value of I pqn(t) is Iy, which can
be determined experimentally. For the sodium current, we use the current density

ina = H50pA/um?, multiplied by the surface area of the node, throughout the
manuscript. This current density yields an amplitude of approximately 100mV for
action potentials with standard parameters, although it is twice as high as reported in
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an experimental study [52]. The reason for the experimental values to be lower might be
that for the electrophysiological recordings the axons are severed [59], and ion channels
are likely to reorganise and redistribute under such conditions.

Eq. B3] can be recast in the form

Lopan(t) = I(]C’_lg% (Z) (—1)° exp (— (f + 1) t) : (84)

1 T2

The maximum current is reached at
tmaz = T1 In (77-2 + 1) ) (85)
T1

and has the amplitude

71

T v To
Ichan(tma:c) = IOCH1 = IO ’Yﬁ L 2 . (86)
T2 +1 T +1

To construct realistic action potentials, we include both sodium and (fast) potassium
channels. The sodium gating dynamics of the original Hodgkin Huxley model are
governed by a term m3h, where m is the activating gating variable, and & is the
inactivating gating variable. Schwarz et al. [60] assume that the dynamics of the
resulting ion channel currents can be approximated by

Ichan,Na = 107]\/@0]?[(11,3 (1 - exp(_t/Tm))S eXP(—t/Th), (87)

with Cg,3 being the normalisation constant. Baranauskas and Martina [17] presented
data that best fit the Hodgkin-Huxley model with mh, i.e. a linear relationship with the
activating gating variable m. In this case, the activation current in our framework reads

IchamNa = IO,NaC];;l (1 - exp(_t/Tm)) eXp(_t/Th)v (88)

with Cng,1 being the normalisation constant for v+ = 1. The parameters 7, and 7,
represent the time scales of the activation and inactivation of the sodium ion channels.
Throughout this article we use Eq. to describe the sodium channel dynamics. The
time constants are chosen such that the resulting action potential fits best the numerical
results for the cortex model in [24], see Fig. [12|for a graphical comparison.

Likewise, we can define the potassium current as follows:

Ichan,K = IO,KCV]_(1 (1 - exp(ft/Tn))4 eXp(it/Tk% (89)

with

n

47-716 4 1 T
Ok = a1 ) \azy1) o (90)

Here, 7,, represents the time scale of the activation of the potassium ion channels.
Although there is no inactivating current for potassium in the Hodgkin-Huxley model,
we define 73, as characteristic time with which the potassium current decays. The time
constants are voltage-dependent [60], but for simplicity we assume here that they remain
constant throughout the formation of the action potential. The peak current density
ix = 3.75pA/um? is 7.5% of iy, a ratio we derive from the sodium and potassium

conductances used for myelinated axons in [61] (§n, = 1.2S/cm? and gx = 0.09S/cm?).

Finally, denoting the solution to an exponential input current with time constant 7
by

oz, t;75) = e*t/TsR’\TBIO\/T? R [exp (ng) (erf (;){/Ti Jr@\/Z) — 1)] ,(91)
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SDS model
AC model

V/mV

Fig 12. Comparison of action potentials in spike-diffuse-spike model and
biophysical model. We chose the time scales 7,,, = 20us and 7, = 40us such that the
profile, and in particular the rising phase of the action potential in the
spike-diffuse-spike model matches well the action potential of the cortical axon model by
Arancibia-Carcamo et al. [24].

allows us to express the solution as combinations of exponential currents by

Vi, t) =Y Az, t;7), (92)
s=0

AS:C<DCJY,732(;—+é>4. (93)

Once more we seek to identify the inflection point, i.e. where V = 0. The different
time scales 75 make it difficult to find a closed-form solution, as the ones we found for
the previous scenarios. However, we find that a suitable approximation for the inflection
point is

with

t; = ti,cab + ti,chun; (94)

where t; cqp is the inflection point of the Green’s function of the cable equation in the

limit of /A > 1, and t; cpan is the inflection point of the rising phase of the ion current.

ti.cab can be derived from Eq.

V2T

ti,cab = Tv (95)
and t; chan is found to be
v 2y 2 4 (o 1
PR (24 4)
tichan = —T1 In % 1— [1- =2 = : 2 ) (96)
o4 1 ¥ 2y 2
2(2+2) (F+3m+3)

with v, 71, and 7 as in Eq.
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Influence of distant nodes

Action potentials are driven by the ionic currents generated at multiple nodes along the
axon. Due to the linear nature of the cable equation, the effect of multiple input
currents can be described by linear superposition:

N

V(,t)= Y Ullz—nL|,t —nty), (97)
n=—N

where U is the r.h.s. of the respective scenario considered, i.e. U(x,t) describes the
depolarisation due to the current at a nearby node. To keep with our previous
definition, time is defined by setting ¢ = 0 when the neighbouring node depolarises. The
relationship between the firing threshold Vi, and the time-to-spike 5, is therefore
given by

N
Vinr = »_ U(nL,ntgp). (98)
n=1

The effect of distant nodes is dampened by the fact that in addition to passing along
myelinated segments, currents from distant sources also pass by unmyelinated nodes,
and thereby further lose amplitude. Because the distance between two points on the
cable is given by L/\ in the cable equation, the added distance due to a node with
finite length is I/\,. Therefore, the physical distance between two consecutive nodes is
L + 1, and their electrotonic distance is L + (A/A,)l in units of A. This leads to the
updated equation for the membrane potential, Eq @[) in the Results section.

As we have shown in Fig. 4] the formation of an action potential is a collective
process that incorporates ion channel currents from multiple nearby nodes. Throughout
the manuscript we set N = 10 to ensure all currents are incorporated, although for the
standard parameters N = 20 would produce very similar results. However, as we show
in Fig. reducing N can lead to a considerable reduction of the propagation velocity
at short internode lengths.

This framework allows us to describe unmyelinated axons as well. Since the
internode length is zero in this case, the node length [ is now an arbitrary discretisation
of the axon. The membrane potential is now described by

V(z,t) = Z U(lz — nl|, t — ntsp), (99)

where the length constant A\ in U needs to be replaced by a length constant A that
characterises the electrotonic length of the unmyelinated axon. We introduce a
parameter p that describes the channel density of the unmyelinated axon relative to the
channel density of a node of Ranvier. We assume that the conductivity of the axonal
membrane scales linearly with the channel density, which implies that the electrotonic
length constant of an unmyelinated axon is A=\, /+/p, and its time constant is

7 = 7,/p. The velocity of an action potential is now defined as v = [/¢.

In addition to the correction terms introduced in Eq (@, we also investigate delays
that occur at the nodes due to finite transmission speeds. We assume that action
potentials travel with velocities v determined by Eq @ along myelinated segments, and
with velocities v, inferred from Eq at nodes. The corrected velocity is then given
by Eq in the Results section.

Ephaptic coupling and entrainment

Here we explain how to solve Eq with non-zero extra-cellular potential. The
potential between intra-cellular medium and extra-cellular medium is P, = V,, — V%,
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Fig 13. Effect of number of nearest nodes on velocity. We demonstrate here that considering only a small number of
nodes can lead to considerable discrepancies in the computed velocity at small node and internode lengths.

which determines the channel dynamics. It follows from the electric decoupling of the
fibre bundle from the external medium that the sum of longitudinal currents within the

fibre bundle is zero :

0%V, 0%V,
R_l e —1 n
exr axr,m ax2

=0. (100)

R, denotes the axial resistance of the extra-cellular medium, which depends inversely
on its cross-sectional area. As a result, we obtain the cable equation in terms of P,:

. 0*P,
TP, + P, — A2 53 L () 4 a2 ZRM a =0, (101)
where « is the coupling parameter:
1
(102)

R+, Razm

This is a general result, but in the following we focus on two fibres.
Since these equations are linear, they can be decoupled (using orthogonalisation) into

OP1o <y 0?Pio - siom
T 5t :/\%’2 22 —Pia+ 1% (t), (103)

with Py = Py + c12Ps, Ii% = T + ¢1 515", and A1 p = M (R, + 1) + c12M3R,,)
where

ax,l’

/\Q(R‘ 1+ 1) - MR .+ 1)

_ 104
o 2)‘2Raz 1 ( )
MR +1) = MR, +1
1( azx,l ) ( ax,2 ) +1. (105)
2)\2RaI 1

In the case of identical axons, this expression simplifies to ¢; 2 = +1. These equations
can be solved as above, and the solutions of the coupled equations can be recovered
using Pg = (Pl — PQ)/(Cl — Cg) and P1 = —(CgPl — cng)/(cl — (22).
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Fitting parameters to biophysical model

In order to compare the spike-diffuse-spike model with the biophysical model presented
in [24], we generate data points using the biophysical model for the parameters reported
therein for the cortex model, and fit our model parameters to these data points. We
define a grid of 3 x 3 data points in L — Il-space for L = 27um, L = 82um and

L =152pm, and | = 0.5pum, [ = 1.5pum and [ = 3.5um. On this grid we determine the
action potential velocity of the biophysical model, which is treated as data for the
fitting procedure. Next, we use the least squares curve fit as implemented in MATLAB
to fit the following eight parameters of the spike-diffuse-spike model to the data: A, 7,
Ans Tns Tms Th, 1o, and Vip,.. The reason why we use this fitting procedure is that there
is no direct correspondence between our model and the biophysical model. The latter
implements a Hodgkin-Huxley formalism, as well as a detailed model of the myelin
sheath that models each membrane individually and includes periaxonal space. We used
the code made available on github by the authors of [24].
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