

1 **A decrease in transcription capacity limits growth rate upon**
2 **translation inhibition**

3 Qing Zhang^{1,##a}, Elisa Brambilla¹, Rui Li², Hualin Shi^{2,3}, Marco Cosentino Lagomarsino^{4,##b} and
4 Bianca Sclavi^{1,##c*}.

5 1. LBPA, UMR 8113 CNRS, ENS Paris-Saclay, 94235 Cachan, France

6 2. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy
7 of Sciences, Beijing 100190, China

8 3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China

9 4. LCQB, UMR 7238 CNRS, Sorbonne Université, 75005 Paris, France

10

11 Current affiliations:

12 ^{#a} Current Address: CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,
13 Chinese Academy of Sciences, Beijing 100190, China

14 ^{#b} Current Address: Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milano and
15 INFN, Italy, and IFOM, FIRC Institute for Molecular Oncology, Milan, Italy

16 ^{#c} Current Address : LCQB, UMR 7238 CNRS, Sorbonne Université, Paris, France

17

18 * Corresponding author

19 E-mail : bianca.sclavi@sorbonne-universite.fr

20

21

22

23 **Abstract**

24 In bacterial cells, inhibition of ribosomes by sublethal concentrations of antibiotics leads to a
25 decrease in growth rate despite an increase in ribosome content. The limitation of ribosomal
26 activity results in an increase in the level of expression from ribosomal promoters; this can
27 deplete the pool of RNA polymerase (RNAP) that is available for the expression of non-ribosomal
28 genes. However, the magnitude of this effect remains to be quantified. Here, we use the change
29 in the activity of constitutive promoters with different affinities for RNAP to quantify the change
30 in the concentration of free RNAP. The data are consistent with a significant decrease in the
31 amount of RNAP available for transcription of both ribosomal and non ribosomal genes. Results
32 obtained with different reporter genes reveal an mRNA length dependence on the amount of
33 full-length translated protein, consistent with the decrease in ribosome processivity affecting
34 more strongly the translation of longer genes. The genes coding for the β and β' subunits of
35 RNAP are amongst the longest genes in the *E. coli* genome, while the genes coding for ribosomal
36 proteins are among the shortest genes. This can explain the observed decrease in transcription
37 capacity that favors the expression of genes whose promoters have a high affinity for RNAP,
38 such as ribosomal promoters.

39 **Importance**

40 Exposure of bacteria to sublethal concentrations of antibiotics can lead to bacterial adaptation
41 and survival at higher doses of inhibitors, which in turn can lead to the emergence of antibiotic
42 resistance. The presence of sublethal concentrations of antibiotics targeting translation results
43 in an increase in the amount of ribosomes per cell and a decrease in the cells' growth rate. In
44 this work, we have found that inhibition of ribosome activity can result in a decrease in the
45 amount of free RNA polymerase available for transcription, thus limiting the protein expression

46 rate via a different pathway than what was expected. This result can be explained by our
47 observation that long genes, such as those coding for RNA polymerase subunits, have a higher
48 probability of premature translation termination in the presence of ribosome inhibitors, while
49 expression of short ribosomal genes is affected less, consistent with their increased
50 concentration.

51 Introduction

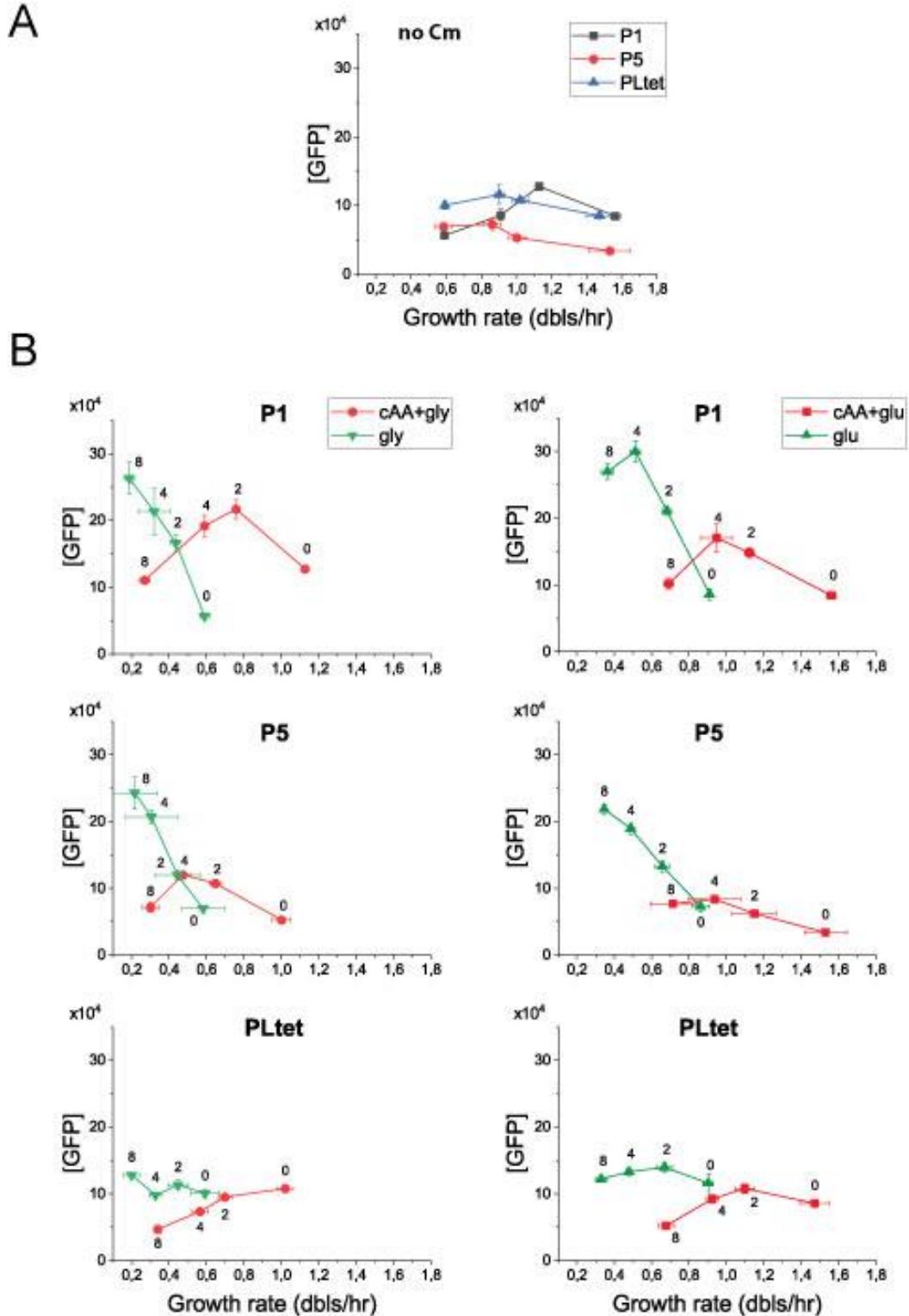
52 Bacteria often encounter sub-lethal levels of antibiotics produced by other microorganisms in
53 their environment. A decrease in growth rate in these conditions can allow a strain to survive
54 long enough until the inhibitor is no longer present or, in some cases, until the bacteria becomes
55 resistant to the antibiotic via the selection of pre-existing mutations or an increase in mutation
56 rates (1–4). However, the mechanistic details of these response pathways often remain to be
57 described. The cellular response to the limitation of translation activity is thought to be related
58 to the pathway involved in the stringent response, the regulatory mechanism that decreases
59 ribosome production in response to a decrease in amino acid availability. This is mediated by
60 the change in concentration of the secondary messenger molecule, (p)ppGpp, that is produced
61 by the RelA enzyme when the pool of amino acids decreases and ribosomes are not loaded with
62 charged tRNAs (5, 6). ppGpp can directly inhibit ribosome assembly (7, 8) and the activity of
63 RNA polymerase (RNAP) at ribosomal promoters, while increasing the activity of the promoters
64 of genes for amino acid biosynthesis (9). The transcription of ribosomal operons can use a large
65 fraction of the free RNA polymerase pool in the cell because of the high affinity of the ribosomal
66 promoters for the enzyme and a high frequency of transcription initiation. Therefore, the
67 regulation of ribosomal promoter activity can be a means by which the pool of free RNA
68 polymerase can be repartitioned between ribosomal operon transcription and non-ribosomal

69 mRNA synthesis. This has been referred to as the “passive control” of transcription regulation
70 (10–14).

71 The ppGpp dependent feedback loop also plays a role in the regulation of ribosome content as
72 a function of growth rate (15–17). Growth rate dependent regulation of gene expression
73 determines the allocation of cellular resources between the production of ribosomes and that
74 of other proteins and results in a linear increase in ribosome content with increasing growth
75 rate (15, 18–20). In richer growth media, when the amount of amino acids is higher, ppGpp
76 levels are lower, favoring ribosome production and a higher fraction of active ribosomes (16).
77 In poorer media it is the inverse, accumulation of ppGpp slows down the production of new
78 ribosomes and a smaller fraction of the ribosome pool is in an active form (19).

79 When ribosome activity is inhibited by sublethal concentrations of antibiotics, amino acids are
80 used more slowly and their concentration increases, which can result in a decrease in the
81 intracellular ppGpp pool (5). The cellular response, as predicted by the ppGpp feedback loop, is
82 to produce a higher amount of ribosomes and an increased translation rate, however, despite
83 this increase, the cell's growth rate is reduced (18, 19). This has been proposed to result from a
84 decrease in the resources available for the production of non-ribosomal proteins that become
85 limiting for cellular metabolism (18). More recent results point to a decrease in the fraction of
86 active ribosomes to explain the decrease in the total protein production rate (19).

87 To measure the effect that the inhibition of ribosome activity can have on gene expression
88 resulting from a possible repartition of RNAP, we have compared the activity of a ribosomal
89 promoter to that of constitutive promoters with different affinities for RNAP. This approach
90 stems from a well-established protocol developed by Hans Bremer and coworkers of using


91 quantitative measurements of changes in constitutive and ribosomal promoter activity as
92 reporters of changes in the amount of free RNAP and of ppGpp (21–24).

93 In parallel, we analyzed transcriptomics and proteomics data from the literature on the direct
94 and indirect effects of changing ppGpp concentration and translation limitation on gene
95 expression (25, 26). The results from this analysis are consistent with a linear decrease with
96 decreasing growth rate in the concentration of free RNAP available for promoter binding and
97 transcription. We propose a model that can explain this decrease in transcriptional activity
98 based on the observation that gene length is an important parameter on the change in protein
99 expression in the presence of sublethal levels of chloramphenicol and that RNAP contains two
100 of the longest gene products in the *E. coli* genome.

101 Results

102 ***Transcription regulation by ppGpp does not suffice to explain gene expression changes with***
103 ***increasing translation inhibition by chloramphenicol.*** In order to measure the effect of
104 increasing ribosome inhibition on RNAP repartition between ribosomal and non-ribosomal
105 promoters we have chosen three reporter cassettes. The first contains a shortened version of
106 the well-characterized ribosomal RNA operon promoter *rrnBP1*, here called P1, that terminates
107 at -69 from the transcription start site (27). The binding sites for Fis and the higher affinity H-NS
108 binding site are thus omitted from this construct. This promoter has a GC-rich discriminator
109 region at the transcription initiation site that makes the open complex sensitive to changes in
110 negative supercoiling and to inhibition by ppGpp (Table S1) (23, 28, 29). The second promoter
111 used here is a constitutive promoter, P5, that has consensus -10 and -35 sequences and no
112 discriminator region. The third is PLtet, also a strong constitutive promoter with no
113 discriminator region but with a lower affinity for RNA polymerase due to a non-consensus -10

114 sequence (30). Bremer and coworkers have shown that the activity of the *rrnBP1* promoter is
115 proportional to the concentration of ppGpp *in vivo* (23), and that the activity of constitutive
116 promoters can be used to estimate the amount of free RNA polymerase in the cell (21, 23). Each
117 of these promoters was placed upstream of the *gfpmut2* gene and this cassette was inserted in
118 the chromosome together with a kanamycin resistance gene expressed divergently from the
119 chosen promoter (Fig. S1). Growth of these strains in a 96-well plate allowed us to measure the
120 changes in growth rate, the GFP concentration and the resulting GFP production rate (Gpr) as a
121 function of chloramphenicol concentration (Figs. 1 and S2). We compared four different growth
122 media, M9 with glucose, M9 with glycerol and these two media supplemented with casamino
123 acids (cAA). This results in four different growth rates. Furthermore, it has been already shown
124 that cells growing in a growth medium containing amino acids have a lower concentration of
125 ppGpp (16, 23), allowing us to compare the effects due to changing concentrations of this key
126 metabolite without the use of mutant strains that can result in secondary effects on cell
127 metabolism due to the multiple targets of ppGpp (8, 31).

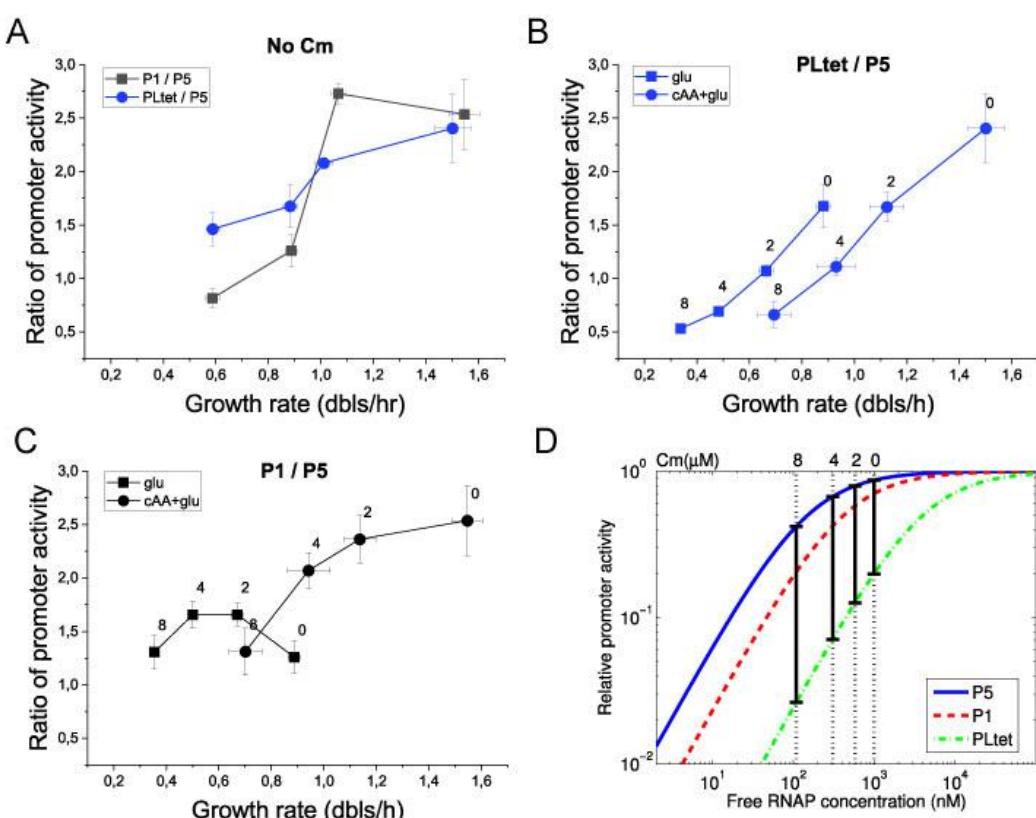
128 **Figure 1. Promoters with different affinities for RNAP and different regulation by ppGpp react differently to**
129 **translation limitation. A.** Change in GFP concentration (RFU GFP/OD₆₀₀) as a function of growth rate. Four growth
130 media were used, from the slowest to the fastest: M9-glycerol, M9-glucose, M9-glycerol+casaminoacids, M9-
131 glucose+casaminoacids. P5 and PLtet are both constitutive promoters with different affinities for RNAP while P1 is
132 a shortened version of the rrnBP1 ribosomal RNA promoter with a RNAP affinity similar to P5 but regulated by
133 ppGpp. **B.** Change in GFP concentration as a function of increasing concentration of chloramphenicol in the four
134 growth media. The growth media with casamino acids are in red the ones without casamino acids are in green. The

135 four points correspond to 0, 2, 4 and 8 μ M final chloramphenicol concentration as noted next to the data points.
136 The error bars represent the SEM from 3 independent experiments. The error bars smaller than the size of the
137 symbols are not shown. The corresponding changes in GFP production rate are shown in Fig. S2. Comparison of the
138 panels shows that ppGpp regulation at the transcriptional level alone cannot account for the change in GFP
139 expression in response to translation limitation.

140

141 In the absence of translation inhibition, the change in promoter activity measured as a function
142 of growth rate is consistent with previous measurements on constitutive promoters and *rrnBP1*
143 derived promoters (11, 27, 32) (Fig. 1A). The concentration of GFP from the constitutive
144 promoters tends to decrease at the faster growth rates due to their lack of specific growth rate
145 dependent regulation and the increased dilution rate (33), while the concentration of GFP
146 expressed from the *rrnBP1* promoter increases with growth rate until the last point, where Fis
147 activation, absent in this construct, has been shown to be required for continued increased
148 expression (27). The PLtet promoter has a lower affinity for RNAP than P5 does (see below),
149 however when RNAP binds at the PLtet promoter it initiates transcription with a higher
150 frequency than at P5 (30), resulting in a higher promoter activity (Fig. S2) and consequently a
151 higher GFP concentration (Fig. 1A).

152 Previous work has shown that as the concentration of chloramphenicol is increased, the total
153 RNA content relative to the total protein mass increases -reflecting the increase in ribosomal
154 RNA- and the concentration of a reporter protein expressed from a constitutive promoter
155 decreases (18). Therefore, the expected result here is that the GFP concentration from a
156 ribosomal RNA promoter (P1) should increase while the concentration from a constitutive
157 promoter (P5 or PLtet) should decrease, with the lower affinity constitutive promoter (PLtet)
158 decreasing at a faster rate if increasing amounts of RNAP are being used for transcription of
159 ribosomal operons. The comparison of P1 and PLtet agrees with this prediction. Unexpectedly,
160 however, the patterns of the change in GFP production rate and GFP concentration for the P1


161 and P5 promoters are very similar (Figs 1 and S2). The pattern of the change of expression for
162 these two promoter constructs depends strongly on whether the growth medium contains
163 casamino acids, independently of the carbon source. In the absence of cAA the increase in GFP
164 concentration as a function of Cm is significantly greater than in their presence (Fig. 1 and Fig
165 S2). Increased expression from the P1 promoter in the growth media lacking cAA would be
166 expected from a decrease in ppGpp as a result of increased amino acid pools due to ribosome
167 inhibition; the P5 promoter on the other hand does not contain the GC-rich discriminator region
168 and is not expected to show increased activity upon a decrease in ppGpp. The similar increase
169 in GFP concentration of these two different promoters thus points to a stronger effect of ppGpp
170 on GFP expression at the post-transcriptional level.

171 ***Decrease in free RNAP concentration with increasing translation inhibition by***
172 ***chloramphenicol.*** Since the translation rate of GFP is shared by the three promoter constructs,
173 it is possible to obtain an estimate of the magnitude of the promoter-specific effect of ppGpp,
174 and of changes in free RNAP, on the transcription rate by measuring the ratios of GFP production
175 rates. This operation “cancels out” the translation component of gene expression and isolates
176 the transcription-specific effect (see SI text and legend to Fig. 2). Fig. 2A shows the change in
177 the ratios of GFP production rates as a function of growth rate in the absence of
178 chloramphenicol. The ratio of P1 to P5 rates increases rapidly between M9-glu and M9-cAA-gly,
179 consistent with a lower level of ppGpp in the cells growing in the presence of cAA (23) increasing
180 the probability of transcription initiation specifically from P1.

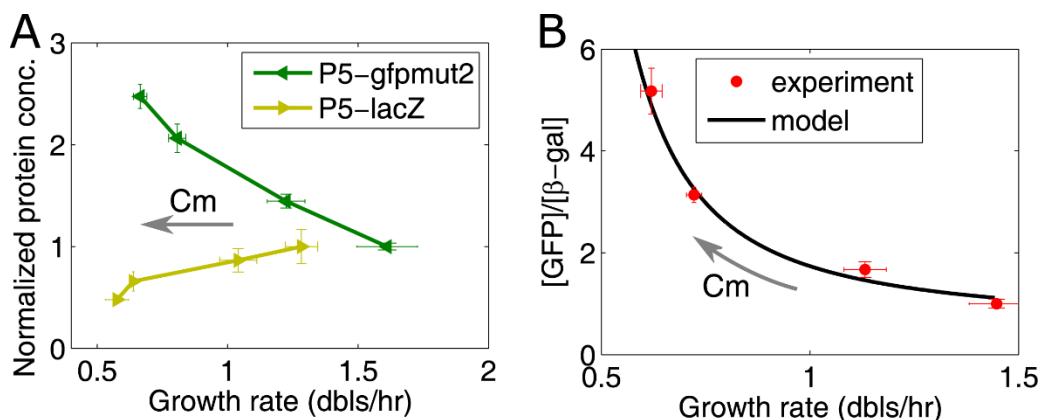
181 In the presence of Cm, the fold increase of gene expression from P1 is greater than the one of
182 P5 in the cells that are grown without cAA, consistent with a decrease in ppGpp levels by the
183 addition of the antibiotic (Fig. 2C). As the Cm concentration is increased further, the difference

184 between the two promoters decreases again to the initial level. On the other hand, in the
185 growth media with cAA, and thus lower levels of ppGpp, the P1 to P5 ratio decreases, indicating
186 that the change in GFP production rate from P1 is lower than that of P5 as a function of
187 increasing Cm. A similar result is also observed for the PLtet to P5 ratio, independently of the
188 growth medium (Fig. 2B).

189 The comparison of two promoters with differing affinities for RNAP can be used to estimate the
190 change in the amount of free RNAP that is available for transcription (23, 34). In the absence of
191 Cm, the ratio of PLtet to P5 GFP production rate increases linearly with increasing growth rate
192 (Fig. 2A), in agreement with previous estimates of the change in free RNAP as a function of
193 doubling time (22, 33).

194 **Figure 2. Ratios of GFP production rate for the different promoters can be used to estimate the changes in the**
195 **concentration of free RNAP. A. Ratio of PLtet to P5 and P1 to P5 as a function of growth rate. B.**
196 **Ratio of PLtet to P5 with increasing chloramphenicol concentration. C. Ratio of P1 to P5 with increasing chloramphenicol**
197 **concentration. D. Estimated decrease in the concentration of free RNAP from the change in the ratios of promoter**

198 binding as a function of chloramphenicol concentration. To obtain this estimate, the relative activity of the
199 promoters as a function of free RNAP concentration (c_f) was obtained from the respective RNAP binding constants,
200 $K_i \in \{K_1, K_5, K_{Ltet}\}$ using $c_f/(K_i + c_f)$. The constant K_5 is known, K_1 and K_{Ltet} were derived by the formula
201 $K_5 \exp(\Delta E)$, where ΔE is the difference between the binding energies of RNAP with P1 (or PLtet) and P5 (see
202 Supporting Information). The black vertical bars indicate the concentrations of RNAP that give the measured GFP
203 production rate ratios shown in (B) for different Cm concentrations, shown above the plot. The ratio of PLtet and
204 P5 activities for example is given by: $Gpr(PLtet)/Gpr(P5) = a(K_5 + c_f)/(K_{Ltet} + c_f)$, where a is a scaling factor.
205 K_5 and a were fixed by fitting the data in absence of Cm from our experiments and the literature. Data from the
206 cells growing in cAA-glu was used so that ppGpp-dependent regulation of P1 is small and can be ignored. Fig. S3 in
207 Supplementary Materials shows the estimation of RNAP concentration for the four growth media used. Fig. S4
208 shows an estimation of the change in ppGpp as a function of chloramphenicol concentration. See details of the
209 analysis in the Supporting Information.


210

211 From the values of the RNAP affinities for these two promoters, PLtet and P5, and the
212 relative changes in GFP production rate it is possible to estimate the change in the amount of
213 free RNAP in the cells as a function of increasing translation limitation (see SI text). Fig. 2D and
214 Fig. S3 illustrate this point. The RNAP binding affinity for each promoter was estimated based
215 on a statistical-mechanical selection model developed by Berg and von Hippel (35) (see SI text).
216 Fig. 2D shows the estimated binding curves for RNAP to each promoter; the vertical bars
217 indicate the ratio of promoter activity corresponding to changes in the ratio measured
218 experimentally, which were used to estimate the RNAP concentration. The values of the Cm
219 concentration for each of these ratios is shown on the top axis. The decrease in free RNAP with
220 increasing chloramphenicol has a stronger effect on PLtet first, then on P1 and finally on P5.
221 This simple model of RNAP-dependent capacity can explain the data in Fig. 2B on the change in
222 the PLtet to P5 ratio, while the P1 to P5 ratio is also influenced by changes in ppGpp
223 concentration. Thus, using the P1 to P5 GFP production rate ratio it is possible to estimate the
224 change in ppGpp as a function of growth rate and as a function of Cm (Fig. S4), in a similar
225 fashion to the approach validated by Bremer and colleagues (23).

226 In summary, the transcriptional changes measured by the decrease in the PLtet to P5 and P1 to
227 P5 ratios, which are in line with a decrease in free RNAP concentration, must be independent
228 of a ppGpp-mediated repartition between ribosomal and non-ribosomal promoters, since they
229 can also be observed in the growth media with cAA, where ppGpp levels have been previously
230 shown to be very low (16).

231 ***The decrease in ribosome processivity by chloramphenicol reduces the expression of longer***
232 ***genes more than shorter ones.*** In addition to the effect of RNAP availability, we hypothesized
233 that the results observed might be dependent on the reporter gene used -*gfpmut2*, 714 bp long,
234 or *lacZ*, 3072 bp long, coding for the β -galactosidase enzyme - since translation of longer genes
235 would have a higher probability to end prematurely in the presence of ribosome inhibitors such
236 as chloramphenicol acting during elongation.

237

238 **Figure 3. Gene length can influence gene expression under translation limitation. A.** Change in GFP (238 aa) and
239 β -galactosidase (1024 aa) expressed from the P5 promoter as a function of increasing chloramphenicol
240 concentrations. The bacteria were grown in M9 glu+CAA with chloramphenicol (Cm) at concentrations of 0, 2 μ M,
241 4 μ M, or 6 μ M in flasks. The concentrations were normalized by dividing the data by the point without Cm. **B.** Fit
242 of the model to the ratio of GFP to β -galactosidase concentrations from the data in (A). The growth rate at each
243 chloramphenicol concentration is the average over the two strains. The error bars correspond to the SEM from
244 three independent experiments.

245 In order to produce an expectation, we reasoned as follows. The processivity of translation has
246 been shown to decrease exponentially with increasing gene length (36). If, in addition, ribosome

247 processivity were decreased by an inhibitor, then the probability to finish the translation of a
248 long gene would be lower compared to a shorter gene, decreasing the rate of expression of the
249 longer gene to a greater extent. To test this hypothesis, we compared the changes in gene
250 expression from the same constitutive promoter, P5, of two different genes, *gfpmut2*, and *lacZ*,
251 in the presence of increasing chloramphenicol concentrations (Fig. 3A). The results show that
252 while the concentration of GFP increases as a function of Cm concentration, β -galactosidase
253 concentration decreases (Fig. 3A). Fig. 3B shows the change in the ratio of the shorter to the
254 longer protein as a function of Cm concentration. The black line shows the fit obtained to a
255 model of ribosome processivity. In the model, we derived the expression ratio of a short gene
256 to a long gene based on the scenario where chloramphenicol hits a translating ribosome,
257 causing the stalling of this and the following ribosomes and leading to the nonsymmetric
258 degradation of mRNA (as depicted by Dai et al. (19), see details in SI text). It is possible to
259 estimate the probability that a ribosome will be inhibited by the antibiotic before it reaches the
260 end of the mRNA, P_{hit} (19). The equation can be extended to describe the dependence of P_{hit}
261 on protein length, i.e.

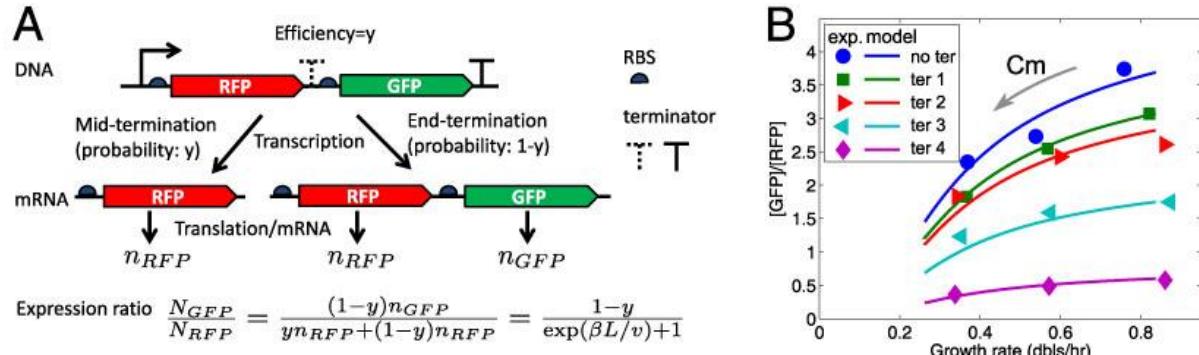
262
$$P_{hit} = 1 - \exp(-k_{on}[Cm]L/v) \quad (1)$$

263 where k_{on} denotes the binding constant of Cm with ribosome ($k_{on} = 0.034(\mu M \cdot min)^{-1}$
264 (37)), L indicates protein length, and v is the translation elongation rate dependent on the
265 RNA/protein mass ratio (see SI text). Using equation 1, at 8 μM Cm (the highest concentration
266 used here) P_{hit} is 23% for LacZ (1024 aa), while for GFP it is 6% (238 aa). These results therefore
267 indicate that a gene's length, in addition to its promoter's affinity for RNAP, can influence how
268 its expression levels change in the presence of sub-lethal concentrations of ribosome inhibitors.

269 A possible cause for the decrease in the pool of free RNAP independently of the changes in
270 ppGpp is a decrease in the total amount of RNAP per cell. The RNA polymerase holoenzyme is
271 composed of 5 subunits: β , β' , ω , 2 subunits of α , and a σ factor. β , β' are among the longest
272 genes in *E. coli* with a length of 4029 bp and 4224 bp respectively (the average gene length in *E.*
273 *coli* is about 900 bp) and they could be subject to the length effect we found in our reporters.

274 ***A decrease in translation processivity can result in decreased expression of late operon genes.***
275 Transcription and translation are coupled via a physical interaction between RNA polymerase
276 and the first ribosome translating the mRNA, which can be mediated by NusG or RfaH (38–41).
277 Therefore, an additional factor that could decrease the expression of longer genes, and of late
278 genes within an operon, in the presence of translation inhibitors is the loss of this RNAP-
279 ribosome interaction exposing the mRNA for degradation and/or decreasing RNAP speed and
280 processivity (42).

281 Previous work has shown that inhibiting ribosome activity with a higher concentration of
282 antibiotics than was used here can result in decoupling of transcription and translation (42). To
283 test whether these sublethal concentrations of Cm could have a similar effect on the RNAP-
284 ribosome interaction, constructs were made where two genes of equal length coding for a red
285 and a green fluorescent protein are placed one after the other within the same operon (Fig. 4A).
286 In this case, there is an equal probability that a ribosome will stall during translation of either
287 gene. However, if the first ribosome translating the upstream gene is inhibited, the one in
288 contact with RNAP, it will also decrease the probability that the downstream gene will be
289 transcribed by affecting the stability of the mRNA and of the transcription complex. Indeed, in
290 these constructs we observe a decrease in the GFP to RFP ratio with increasing Cm. This could
291 be either due to a decrease in transcription processivity from the loss of the RNAP-ribosome


292 interaction or to an increase in the probability that the operon mRNA is degraded before RNAP
293 finishes GFP transcription due to early termination of RFP translation, or a combination of both.

294 The formation of a terminator hairpin in the transcribed mRNA can be used to detect the
295 presence of a ribosome-RNAP interaction (43). If a ribosome is bound on the mRNA as it is being
296 extruded from RNAP, the terminator hairpin structure cannot fold. If inhibition of ribosome
297 activity decouples translation from the ongoing transcription, then the RNA will be allowed to
298 fold and transcription will stop. Transcription terminators of different strength have been
299 inserted between the two genes (43). The efficiency of these terminators is determined by the
300 distance between the stop codon of the upstream gene and the hairpin loop forming sequence.

301 Termination will be less efficient when this distance is shorter. If transcription and translation
302 are decoupled, the RNAP to ribosome distance will increase and we expect that the efficiency
303 of the weaker terminators will increase with increasing Cm. However, we observe the same
304 fractional decrease in GFP/RFP in all the constructs, independently of the distance from the stop
305 codon, or of the presence of the terminator (Fig. 4 and S8). Therefore, it seems that at these
306 low Cm concentrations, the probability of decoupling of transcription and translation is not
307 significant enough to allow for the folding of the hairpin loop. The stalling of a ribosome
308 however, independently of its interaction with RNAP, can result in an increased probability of
309 mRNA degradation. In this case, the stalling of non-leading ribosomes, which are in greater
310 number than the one interacting with RNAP and thus a more probable target, can decrease the
311 lifetime of the operon's mRNA, decreasing the probability that translation will be completed at
312 the *gfp* gene. These results can be reproduced by a model using the parameters values for the
313 probability of translation termination obtained from the comparison in GFP vs LacZ translation

314 (Fig. 3) and the terminator strengths measured in the previous study (43) (Fig. 4B) (see SI for the
 315 details of the model).

316

317

318 **Figure 4. Operon position can influence gene expression under translation limitation.** (A) Sketch for GFP and RFP
 319 fused in an operon with an intergenic terminator of efficiency y (see the details of the construction in (43)) and the
 320 formula of the expression ratio of GFP to RFP. When the efficiency y is zero, it corresponds to the case without
 321 intergenic terminator (see no ter in (B)). (B) The expression ratio between downstream GFP and upstream RFP (in
 322 the units of RFU(GFP)/RFU(RFP)), as a function of growth rate decreases with increasing C_m concentration. The
 323 experimental ratios (symbols) are fit with the model (lines) on Rb-stalling-induced mRNA degradation (See
 324 Supplementary Materials). 'No ter' and 'ter 1-4' correspond to terminator sequences of increasing efficiency ('I21'
 325 (no terminator), 'R9', 'R17', 'W13' and 'R32' respectively in (43)). The cells were grown in M9 minimal medium
 326 containing glucose. C_m was added to a final concentration of 0, 2, or 4 μ M.

327

328 Finally, in light of these results we have analyzed data from previously published transcriptomics
 329 and proteomics studies as a function of the presence of ppGpp and at increasing sublethal
 330 chloramphenicol concentration respectively (25, 31) and we have found that the effect of
 331 promoter affinity, gene length and operon position observed here on this set of promoters and
 332 reporter proteins can help explain the global changes in gene expression in the presence of
 333 sublethal levels of chloramphenicol (SI text and SI Figs S10 - S14).

334

335 Discussion

336 ***A linear decrease in transcription capacity with increased translation limitation.*** While the
337 amount of free RNAP decreases with decreasing growth rate as a function of nutrient content
338 (Fig. 2A), the decrease in the presence of increasing translation limitation, within the same
339 growth medium, has a steeper, linear, slope (Fig. 2B and Fig. S3). The evidence provided here
340 points to a possible cellular adaptation mechanism leading to a reduction in transcription
341 capacity when ribosome activity is compromised. This adaptation decreases the cost of
342 transcription of untranslated mRNAs (44) and allows for more resources to be available for the
343 synthesis of increased amounts of ribosomes to respond to the presence of translation
344 inhibitors. Importantly, we can quantify the contribution of the change in free RNAP to changes
345 in transcription capacity: the comparison of two different constitutive promoters with differing
346 RNAP affinity, PLtet and P5, shows a striking difference in the change in GFP production rate
347 and the resulting GFP concentration with increasing ribosome inhibition (Fig. 1). The decrease
348 in the amount of free RNAP estimated by measuring the ratio of GFP production rates from
349 these two promoters (PLtet/P5) is about 10-fold, independently of the presence of amino acids
350 in the growth medium (Fig. 2 and Fig. S3) and therefore of the change in ppGpp concentration
351 (see below).

352 We found that, as the sublethal concentration of ribosome inhibitor is increased, the growth
353 rate decreases linearly with the decrease in the concentration of free RNA polymerase, pointing
354 to a possible growth-limiting role for this enzyme in these conditions (Fig. 2B). The decrease in
355 free RNAP could be due to different factors affecting the nonspecific interactions of the enzyme
356 with the genome (22), however, the results obtained here from the comparison of the
357 expression of two proteins of different lengths, β -gal and GFP (Fig. 3) suggest that a decrease in

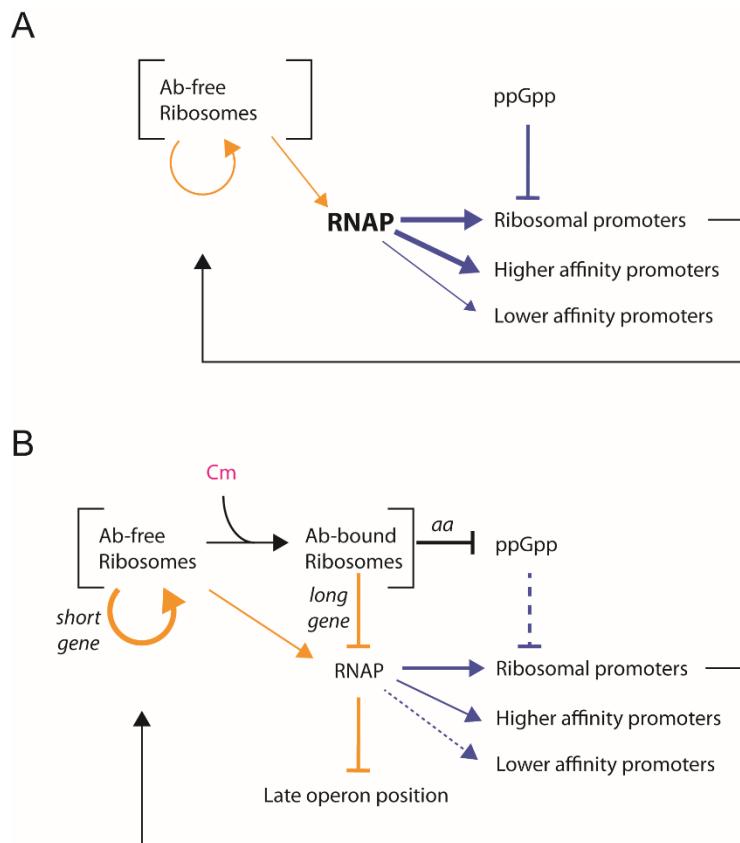
358 the amounts of the full length protein may have a significant contribution to this effect. The
359 RNA polymerase core contains two of the longest proteins in *E. coli*, the β and β' subunits (Fig.
360 S12), increasing the probability that a ribosome will stall before reaching the end of the mRNA.
361 This interpretation is further supported by the proteomics analysis of Hui *et al.* (25). They
362 measured the change in protein fraction of over 1000 proteins in the presence of increasing
363 concentrations of Cm by quantitative mass spectrometry. Their results show that the β and β'
364 subunits of RNAP remain a constant fraction of the proteome with increasing Cm and decreasing
365 growth rate. Since decreasing growth rate is associated with decreased protein production rate,
366 and in these conditions ribosomes are in excess, these results are in line with RNAP playing a
367 limiting role in determining the total rate of protein production and the cell's growth rate.
368 Moreover, these results can shed light on a recent study by Dai *et al* (19) where it was proposed
369 that in the presence of sublethal concentrations of Cm, despite an increase in the translation
370 elongation rate due to a higher concentration of ternary complexes, the reduction in the total
371 protein production rate results from a decrease in the active ribosome fraction, or the fraction
372 of ribosomes that can reach the end of a mRNA in the presence of the inhibitor (19). Here we
373 identify RNAP as one of the genes that is likely to be most affected by the decrease in ribosome
374 processivity due to the length of its β and β' subunits, while shorter genes are affected to a
375 lesser extent.

376 ***Is the extreme length of RNA polymerase genes a feature conserved for the coupling of***
377 ***translation and transcription rates?*** The extreme length of the β and β' subunits of RNAP is
378 conserved throughout bacteria (45). In the case of *Helicobacteraceae* and *Wolbachia* the two
379 genes are even fused together (45, 46). The gene length of β and β' subunits can vary in different
380 strains since they are composed of independent structural modules separated by spacers of

381 differing length (45). In *E. coli* the spacer sequences, that account for more than 25% of the total
382 sequence, can be deleted without causing a significant decrease in transcription activity. In
383 archaea and chloroplasts some of the conserved protein modules are found in separate genes
384 and in *E. coli* they can be split from each other to produce an active enzyme (47), suggesting
385 that the length of these genes is not imposed by functional constraints. The reason why the
386 RNAP and ribosomal proteins find themselves at opposite ends of the spectrum of gene lengths
387 in bacteria is likely linked to the assembly process, structural flexibility and stability of the final
388 multi-protein complex (48, 49); however, these results suggest that it could also play an
389 important role for the cell's survival in the presence of antibiotics that decrease translation
390 processivity.

391 ***The passive control model.*** Another factor that can decrease the pool of RNAP available for
392 transcription of non-ribosomal genes is the increase in the transcription from ribosomal
393 promoters resulting from the decrease in ppGpp, the inverse of what takes place during the
394 stringent response and what has been referred to as the “passive control” of transcription
395 regulation (10–14). However, the results presented here show a similar slope of the decrease
396 in the concentration of free RNAP (Fig. 2 and S3), independently of the initial amounts of ppGpp
397 found in the cells growing in the presence or absence of casamino acids (23). Therefore, while
398 changes in ppGpp do affect the activity of ribosomal promoters, the magnitude of this effect is
399 not strong enough to further decrease the activity of non-ribosomal promoters such as PLtet
400 and P5. The main factor that partitions the limited pool of RNAP between ribosomal and non-
401 ribosomal promoters is therefore the affinity of the specific RNAP-promoter complex formed
402 for transcription initiation. These results can also help explain a previous report showing that
403 the induction of persistence and of β -lactam tolerance by chloramphenicol is independent of

404 the presence of the RelA enzyme, that, together with SpoT, is responsible for ppGpp synthesis
405 (50).


406 ***Change in total translation rate in response to translation limiting inhibitors.*** The similarity in
407 the pattern of the change in GFP expression from the rrnBP1 and P5 promoters despite their
408 different regulation by ppGpp indicates that upon translation limitation the main effect of
409 ppGpp on gene expression may be via a change in the translation rate rather than the
410 transcription rate (Fig. 1 and Fig. S15). The translation of short proteins such as GFP is barely
411 affected by the presence of sublethal concentrations of Cm (8 % probability of drop off at the
412 highest concentration used here) and can therefore be used to estimate the changes in total
413 translation activity and to estimate how the translation capacity is affected by chloramphenicol
414 challenges (Fig. S15). As the concentration of ribosome inhibitor is increased, the translation
415 rate of GFP increases and mirrors the change of the effect of ppGpp on the P1 promoter (Fig.
416 S15 and S4A respectively). Several factors can contribute to this increase in translation rate in
417 the presence of Cm: the shorter than average length of ribosomal genes (Fig. S12), whose
418 translation is not affected as strongly by translation inhibition compared to longer genes; the
419 high affinity of RNAP for ribosomal promoters, insuring transcription despite a decrease in the
420 concentration of free RNAP (Fig. S11); the decrease in ppGpp in the growth media lacking
421 casamino acids (Fig. S4), resulting in an increase in both ribosomal promoter activity (Fig. 1) (5,
422 51) and in the fraction of active ribosomes due to the effect of ppGpp on ribosome assembly (7,
423 8, 19), in addition to the increase in translation elongation rate (19). The higher increase in
424 translation rate in the growth media without cAA is consistent with a larger fraction of inactive
425 ribosomes stored in the cells growing at these slower growth rates that can be quickly
426 reactivated by a decrease in ppGpp concentration, not only for rapid adaptation to changes in

427 local nutrient content, but also to respond to the presence of growth inhibitors (19, 52–55). On
428 the other hand, in rich media, when ppGpp levels are low, a decrease in transcription rate when
429 translation is compromised might play a crucial role for the cell's survival, as the potential of the
430 cell to increase its translation capacity to respond to the presence of the inhibitor is limited by
431 the smaller fraction of inactive ribosomes (19, 56). Decoupling of transcription and translation
432 can have several deleterious effects, including mRNA degradation and R-loop accumulation that
433 can interfere with DNA replication, causing genome instability and increased mutation rates
434 (57).

435

436 The decrease in growth rate due to limiting transcription is unexpected, as ribosome activity is
437 usually thought to always be rate-limiting for bacterial growth, however, depending on the
438 growth conditions, transcription has also been seen to become limiting in eukaryotic cells (68),
439 pointing to different strategies of cellular adaptation to changing growth conditions and
440 limitations. Understanding how bacteria modulate their growth rate and resource allocation in
441 response to inhibition of growth has paramount importance in biotechnological and health
442 applications (58–61). The results presented here provide a new cellular mechanism by which
443 bacterial cells can decrease their growth rate in response to antibiotic stress (1, 56, 62). In
444 summary, in the presence of sublethal concentrations of chloramphenicol, it is not translation
445 that becomes limiting for the cell's growth rate, or the ppGpp dependent repartition of RNAP
446 between ribosomal and non-ribosomal promoters, but it is the decrease in total transcription
447 capacity (Fig. 5). It remains to be established whether this is a common response to other
448 translation limiting factors, although a similar pattern of a decrease in growth rate despite a
449 proportional increase in ribosomal RNA content and translation rate has been observed in the

450 past with antibiotics such as tetracycline, erythromycin, and neomycin, and limiting expression
451 of initiator factors 2 and 3 (18, 19).

452

453
454 **Figure 5. Summary.** Orange arrows show translation effects and blue arrows show transcription effects.
455 **A.** In the absence of translation limitation ribosomes translate both ribosomal and non-ribosomal genes
456 with similar rates. The amount of RNAP available is regulated in part by the changes in ppGpp and the
457 ensuing transcription rate of ribosomal promoters. **B.** The decrease in ribosome processivity by inhibitors
458 such as chloramphenicol (Cm) results in translation of longer genes being prematurely terminated more
459 frequently than translation of shorter genes. RNAP subunits β and β' are among the longest genes in *E.*
460 *coli*, while ribosomal proteins are among the shortest. The decrease in free RNAP can be measured by a
461 decreasing ratio of high affinity to low affinity promoter genes expression rate. The decrease in ribosome
462 processivity increases the probability of mRNA degradation, thus penalizing the expression of genes at
463 the end of operons. In nutrient poor media, inhibition of ribosome activity by chloramphenicol increases
464 the pool of amino acids and decreases the levels of ppGpp, increasing both ribosome production and
465 ribosome activity. Ab: antibiotic.

466

467 **Materials and Methods**

468 **Strains, promoters and reporters**

469 GFP and β -galactosidase were used as the reporter proteins to measure the rate of gene
470 expression from a specific promoter. The GFP gene used is *gfpmut2* coding for a fast-folding
471 GFP (63). The β -galactosidase gene is a 5'-end-modified *lacZ* from the pCMVbeta plasmid (64).
472 Comparison with the wild type *lacZ* gene shows that the additional 23 amino acids do not
473 change the results obtained with this version of the reporter gene (data not shown). The
474 promoters include two constitutive promoters (P5, obtained from T5 phage and PLtet, i.e. P_{Ltet0-1} (30) and a shortened version of a rRNA promoter (*rrnBP1* without the upstream Fis and H-NS
475 sites) (Table S1). The constructs of P1-*gfpmut2*, P5-*gfpmut2*, PLtet-*gfpmut2* and P5-*lacZ* with a
476 divergent kanamycin resistance gene were inserted in the chromosome of the BW25113
477 *Escherichia coli* strain. P1-*gfpmut2* and P5-*gfpmut2* (for Fig. 1) were inserted at position 258235
478 between the convergent *crl* and *phoE* genes, PLtet-*gfpmut2* was at position 356850 between
479 *cynR* and *codA*, and P5-*lacZ* and P5-*gfpmut2* (for Fig. 3) were at position 1395689 between *uspE*
480 and *ynaJ*. Genome position did not have an effect on the change in reporter gene expression as
481 a function of Cm. The double fluorescent protein system (RFP-GFP constructs) has been
482 described previously (43). The ribosome binding sites (RBS) i.e. Shine-Dalgarno sequences, used
483 in above constructs are all similar to the consensus UAAGGAGGU (65). The RBS for GFP
485 (*gfpmut2*) and β -gal (*lacZ*) is GAAGGAGAU, for RFP (*mCherry*) it is AGAGGAGAA.

486 **Bacterial growth and fluorescence measurements.**

487 Bacterial growth was carried out in M9 minimal growth medium supplemented with 0.5%
488 glycerol (gly), 0.5% glucose (glu), 0.5% glycerol+0.2% casamino acids (cAA+gly) and 0.5%
489 glucose+0.2% casamino acids (cAA+glu). The pre-culture was obtained from the inoculation of

490 one bacterial colony in LB growth medium. After overnight growth, the seed culture was washed
491 once with PBS and diluted 200 times with the corresponding growth medium containing a
492 specific concentration of chloramphenicol (Cm). This culture was diluted again 200 times once
493 it reached exponential phase. The cultures were grown in flasks, shaking at 37°C and 170 rpm,
494 and optical density and fluorescence were measured with a plate reader (Tecan, Infinite 200Pro)
495 every 30 - 50 min. Alternatively, the cultures were grown in a 96 well plate, with 150 μ L of
496 bacterial culture per well covered by 70 μ L mineral oil. The culture plate was kept at 37°C in the
497 plate reader, shaking and measuring fluorescence and OD₆₀₀ every 5 minutes. The auto-
498 fluorescence measured from the wild type strain Bw25113 was subtracted from the
499 fluorescence of the fluorescent strains at the same OD (dependent on the medium). The
500 experimental procedure of the β -galactosidase assay followed the protocol of Zhang et al.(66)
501 except that the bacterial strains were cultivated in flasks instead of 48-well plates(18, 67, 68).
502 The measurement of RFP-GFP constructs followed the protocol described previously (43).

503 **Analysis of GFP reporter expression data.**

504 Experimental data obtained from the plate reader were analyzed with Matlab to obtain growth
505 rate, protein concentration and protein expression rate. The pipeline is shown in Fig. S1. The
506 window in the growth curve corresponding to the exponential growth phase was defined as a
507 linear range between an upper and a lower threshold in the growth curve plot of log(OD₆₀₀)
508 versus time (the thresholds determined manually or from an automated method (69) gave
509 similar results). Growth rate was derived from the slope of log(OD₆₀₀) versus time in exponential
510 phase (Fig. S2B and C). GFP concentration was derived as the slope of the plot of GFP versus
511 OD₆₀₀ in the exponential growth phase (Fig. S2B). β -galactosidase concentration in Miller Units
512 was obtained by the following formula (Fig. S2C)

513
$$\beta - \text{gal activity} \triangleq 1000 \cdot A \cdot \frac{1}{0.01} \cdot 20 \cdot \frac{1}{\text{OD}_{600}} = 2 \times 10^6 \times \frac{A}{\text{OD}_{600}} \quad (2)$$

514 where A comes from the fit of OD_{600} as a function of time with the formula $A(1 - e^{-\gamma t})/\gamma$
515 and γ is a decay factor from taking into account that the reaction product o-nitrophenol is
516 volatile(66). The rate of protein expression is defined as the product of protein concentration
517 and growth rate (μ).

518

519 **Acknowledgments**

520 The authors would like to thank Luca Cialdrini and Gilles Fischer for useful comments on the
521 manuscript. This work was supported by HFSP grant RGY0070/2014 (BS, MCL and QZ) and the
522 Strategic Pilot Project of Chinese Academy of Sciences (XDA17010504) (HS and QZ).

523

524 **References**

525 1. Mathieu A, Fleurier S, Frénoy A, Dairou J, Bredeche M-F, Sanchez-Vizuete P, Song X, Matic I. 2016.
526 Discovery and Function of a General Core Hormetic Stress Response in *E. coli* Induced by
527 Sublethal Concentrations of Antibiotics. *Cell Reports* 17:46–57.

528 2. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A Common Mechanism of
529 Cellular Death Induced by Bactericidal Antibiotics. *Cell* 130:797–810.

530 3. Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shores N, Balaban NQ. 2017. Antibiotic tolerance
531 facilitates the evolution of resistance. *Science (New York, NY)* 355:826–830.

532 4. Andersson DI, Hughes D. 2014. Microbiological effects of sublethal levels of antibiotics. *Nature*
533 *Reviews Microbiology* 12:465–478.

534 5. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. 2015. Recent functional insights into
535 the role of (p)ppGpp in bacterial physiology. *Nat Rev Micro* 13:298–309.

536 6. Murray HD, Schneider DA, Gourse RL. 2003. Control of rRNA Expression by Small Molecules Is
537 Dynamic and Nonredundant. *Molecular Cell* 12:125–134.

538 7. Nunes-Alves C. 2016. Bacterial physiology: (p)ppGpp target ribosome assembly. *Nat Rev Micro*
539 14:266–266.

540 8. Zhang Y, Zborníková E, Rejman D, Gerdes K. 2018. Novel (p)ppGpp Binding and Metabolizing
541 Proteins of *Escherichia coli*. *MBio* 9.

542 9. Haugen SP, Ross W, Gourse RL. 2008. Advances in bacterial promoter recognition and its control
543 by factors that do not bind DNA. *Nat Rev Microbiol* 6:507–519.

544 10. Gummesson B, Magnusson LU, Lovmar M, Kvint K, Persson Ö, Ballesteros M, Farewell A, Nyström
545 T. 2009. Increased RNA polymerase availability directs resources towards growth at the expense
546 of maintenance. *The EMBO Journal* 28:2209–2219.

547 11. Klumpp S, Zhang Z, Hwa T. 2009. Growth rate-dependent global effects on gene expression in
548 bacteria. *Cell* 139:1366–75.

549 12. Mauri M, Klumpp S. 2014. A model for sigma factor competition in bacterial cells. *PLoS Comput
550 Biol* 10:e1003845.

551 13. Nyström T. 2004. Growth versus maintenance: a trade-off dictated by RNA polymerase
552 availability and sigma factor competition? *Mol Microbiol* 54:855–862.

553 14. Stacy M, Lesterlin C, Garza de Leon F, Uphoff S, Zawadzki P, Kapanidis AN. 2015. Live-cell
554 superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid.
555 *Proc Natl Acad Sci USA* 112:E4390-4399.

556 15. Paul BJ, Ross W, Gaal T, Gourse RL. 2004. rRNA transcription in *Escherichia coli*. *Annu Rev Genet
557* 38:749–770.

558 16. Zhang X, Liang S-T, Bremer H. 2006. Feedback control of ribosome synthesis in *Escherichia coli* is
559 dependent on eight critical amino acids. *Biochimie* 88:1145–1155.

560 17. Potrykus K, Murphy H, Philippe N, Cashel M. 2011. ppGpp is the major source of growth rate
561 control in *E. coli*. *Environmental Microbiology* 13:563–575.

562 18. Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. 2010. Interdependence of cell growth
563 and gene expression: origins and consequences. *Science* 330:1099–1102.

564 19. Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, Williamson JR, Fredrick K, Wang Y-P,
565 Hwa T. 2016. Reduction of translating ribosomes enables *Escherichia coli* to maintain elongation
566 rates during slow growth. *Nature Microbiology* 2:16231.

567 20. Bremer H, Dennis P. 1996. Modulation of Chemical Composition and Other Parameters of the Cell
568 by Growth Rate, p. 1553–1569. *In* Neidhardt, FC, Ingraham, JL, Low, KB, Magasanik, B,
569 Schaechter, M, Umbarger, HE (eds.), *Escherichia coli and Salmonella typhimurium: cellular and*
570 *Molecular Biology*, 2nd ed. American Society for Microbiology, Washington D.C.

571 21. Bremer H, Dennis P, Ehrenberg M. 2003. Free RNA polymerase and modeling global transcription
572 in *Escherichia coli*. *Biochimie* 85:597–609.

573 22. Patrick M, Dennis PP, Ehrenberg M, Bremer H. 2015. Free RNA polymerase in *Escherichia coli*.
574 *Biochimie* 119:80–91.

575 23. Zhang X, Dennis P, Ehrenberg M, Bremer H. 2002. Kinetic properties of *rrn* promoters in
576 *Escherichia coli*. *Biochimie* 84:981–996.

577 24. Liang S-T, Bipatnath M, Xu Y-C, Chen S-L, Dennis P, Ehrenberg M, Bremer H. 1999. Activities of
578 constitutive promoters in *Escherichia coli*. *Journal of Molecular Biology* 292:19–37.

579 25. Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, Wang J, Hwa T, Williamson JR. 2015.
580 Quantitative proteomic analysis reveals a simple strategy of global resource allocation in
581 bacteria. *Molecular systems biology* 11:784.

582 26. Traxler MF, Summers SM, Nguyen H-T, Zacharia VM, Hightower GA, Smith JT, Conway T. 2008.
583 The global, ppGpp-mediated stringent response to amino acid starvation in *Escherichia coli*.
584 *Molecular microbiology* 68:1128–1148.

585 27. Dennis PP, Ehrenberg M, Bremer H. 2004. Control of rRNA synthesis in *Escherichia coli*: a systems
586 biology approach. *Microbiol Mol Biol Rev* 68:639–668.

587 28. Felth L, Molzahn C, Wang S, Henderson K, Ruff E, Poulos M, Chhabra M, Bieter L, Artsimovitch I,
588 Record MT. 2016. Systematic Studies of Effects of the Discriminator on Stabilization of the Open
589 Complex and Abortive and Productive Initiation. *FASEB J* 30:1055.6-1055.6.

590 29. Pemberton IK, Muskhelishvili G, Travers AA, Buckle M. 2000. The G+C-rich discriminator region of
591 the *tyrT* promoter antagonises the formation of stable preinitiation complexes. *J Mol Biol*
592 299:859–864.

593 30. Lutz R, Bujard H. 1997. Independent and tight regulation of transcriptional units in *Escherichia*
594 *coli* via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. *Nucleic acids research*
595 25:1203–1210.

596 31. Traxler MF, Zacharia VM, Marquardt S, Summers SM, Nguyen H-T, Stark SE, Conway T. 2011.
597 Discretely calibrated regulatory loops controlled by ppGpp partition gene induction across the
598 “feast to famine” gradient in *Escherichia coli*. *Mol Microbiol* 79:830–845.

599 32. Ryals J, Little R, Bremer H. 1982. Control of rRNA and tRNA syntheses in *Escherichia coli* by
600 guanosine tetraphosphate. *J Bacteriol* 151:1261–8.

601 33. Klumpp S, Hwa T. 2008. Growth-rate-dependent partitioning of RNA polymerases in bacteria.
602 *Proc Natl Acad Sci U S A* 105:20245–50.

603 34. Sendy B, Lee DJ, Busby SJW, Bryant JA. 2016. RNA polymerase supply and flux through the lac
604 operon in *Escherichia coli*. *Philos Trans R Soc Lond, B, Biol Sci* 371.

605 35. Berg OG, von Hippel PH. 1987. Selection of DNA binding sites by regulatory proteins. Statistical-
606 mechanical theory and application to operators and promoters. *J Mol Biol* 193:723–750.

607 36. Tsung K, Inouye S, Inouye M. 1989. Factors affecting the efficiency of protein synthesis in
608 Escherichia coli. Production of a polypeptide of more than 6000 amino acid residues. *Journal of*
609 *Biological Chemistry* 264:4428–4433.

610 37. Harvey RJ, Koch AL. 1980. How partially inhibitory concentrations of chloramphenicol affect the
611 growth of Escherichia coli. *Antimicrob Agents Chemother* 18:323–337.

612 38. Artsimovitch I. 2018. Rebuilding the bridge between transcription and translation. *Mol Microbiol*
613 108:467–472.

614 39. Demo G, Rasouly A, Vasilyev N, Svetlov V, Loveland AB, Diaz-Avalos R, Grigorieff N, Nudler E,
615 Korostelev AA. 2017. Structure of RNA polymerase bound to ribosomal 30S subunit. *eLife*
616 *Sciences* 6:e28560.

617 40. Fan H, Conn AB, Williams PB, Diggs S, Hahm J, Gamper HB, Hou Y-M, O’Leary SE, Wang Y, Blaha
618 GM. 2017. Transcription–translation coupling: direct interactions of RNA polymerase with
619 ribosomes and ribosomal subunits. *Nucleic Acids Res* 45:11043–11055.

620 41. Kohler R, Mooney RA, Mills DJ, Landick R, Cramer P. 2017. Architecture of a transcribing-
621 translating expressome. *Science* 356:194–197.

622 42. Proshkin S, Rahmouni AR, Mironov A, Nudler E. 2010. Cooperation Between Translating
623 Ribosomes and RNA Polymerase in Transcription Elongation. *Science* 328:504–508.

624 43. Li R, Zhang Q, Li J, Shi H. 2015. Effects of cooperation between translating ribosome and RNA
625 polymerase on termination efficiency of the Rho-independent terminator. *Nucleic acids research*
626 gkv1285.

627 44. Hausser J, Mayo A, Keren L, Alon U. 2019. Central dogma rates and the trade-off between
628 precision and economy in gene expression. *Nature Communications* 10:68.

629 45. Lane WJ, Darst SA. 2010. Molecular Evolution of Multi-subunit RNA Polymerases: Sequence
630 Analysis. *J Mol Biol* 395:671.

631 46. Zakharova N, Paster BJ, Wesley I, Dewhirst FE, Berg DE, Severinov KV. 1999. Fused and
632 Overlapping *rpoB* and *rpoC* Genes in Helicobacters, Campylobacters, and Related Bacteria.
633 *Journal of Bacteriology* 181:3857.

634 47. Severinov K, Mustaev A, Kukarin A, Muzzin O, Bass I, Darst SA, Goldfarb A. 1996. Structural
635 modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast
636 split sites in the beta and beta' subunits of *Escherichia coli* RNA polymerase. *Journal of Biological
637 Chemistry* 271:27969–74.

638 48. Davis JH, Williamson JR. 2017. Structure and dynamics of bacterial ribosome biogenesis. *Phil
639 Trans R Soc B* 372:20160181.

640 49. Murakami KS, Darst SA. 2003. Bacterial RNA polymerases: the whole story. *Curr Opin Struct Biol*
641 13:31–39.

642 50. Kudrin P, Varik V, Oliveira SRA, Beljantseva J, Santos TDP, Dzhugy I, Rejman D, Cava F, Tenson T,
643 Hauryliuk V. 2017. Subinhibitory Concentrations of Bacteriostatic Antibiotics Induce *relA*-
644 Dependent and *relA*-Independent Tolerance to β -Lactams. *Antimicrobial Agents and
645 Chemotherapy* 61:e02173-16.

646 51. Milon P, Tischenko E, Tomšić J, Caserta E, Folkers G, La Teana A, Rodnina MV, Pon CL, Boelens R,
647 Gualerzi CO. 2006. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a
648 metabolic sensor. *Proceedings of the National Academy of Sciences* 103:13962–13967.

649 52. Bakshi S, Choi H, Weisshaar JC. 2015. The spatial biology of transcription and translation in
650 rapidly growing *Escherichia coli*. *Front Microbiol* 6:636.

651 53. Gausing K. 1982. Regulation of ribosome synthesis in *E. coli*. *Trends in Biochemical Sciences* 7:65–

652 67.

653 54. McGinnis JL, Liu Q, Lavender CA, Devaraj A, McClory SP, Fredrick K, Weeks KM. 2015. In-cell

654 SHAPE reveals that free 30S ribosome subunits are in the inactive state. *PNAS* 112:2425–2430.

655 55. Mori M, Schink S, Erickson DW, Gerland U, Hwa T. 2017. Quantifying the benefit of a proteome

656 reserve in fluctuating environments. *Nat Commun* 8:1225.

657 56. Greulich P, Scott M, Evans MR, Allen RJ. 2015. Growth-dependent bacterial susceptibility to

658 ribosome-targeting antibiotics. *Mol Syst Biol* 11:n/a-n/a.

659 57. Gowrishankar J, Harinarayanan R. 2004. Why is transcription coupled to translation in bacteria?

660 Molecular Microbiology 54:598–603.

661 58. Scott M, Hwa T. 2011. Bacterial growth laws and their applications. *Curr Opin Biotechnol* 22:559–

662 565.

663 59. Davies J, Spiegelman GB, Yim G. 2006. The world of subinhibitory antibiotic concentrations.

664 Current Opinion in Microbiology 9:445–453.

665 60. Deris JB, Kim M, Zhang Z, Okano H, Hermsen R, Groisman A, Hwa T. 2013. The Innate Growth

666 Bistability and Fitness Landscapes of Antibiotic-Resistant Bacteria. *Science* 342:1237435.

667 61. de Jong H, Geiselmann J, Ropers D. 2017. Resource Reallocation in Bacteria by Reengineering the

668 Gene Expression Machinery. *Trends Microbiol* 25:480–493.

669 62. Balaban N. 2011. Persistence: mechanisms for triggering and enhancing phenotypic variability.

670 Current opinion in genetics & development 21:768–75.

671 63. Cormack BP, Valdivia RH, Falkow S. 1996. FACS-optimized mutants of the green fluorescent

672 protein (GFP). *Gene* 173:33–38.

673 64. MacGregor GR, Caskey CT. 1989. Construction of plasmids that express *E. coli* beta-galactosidase
674 in mammalian cells. *Nucleic Acids Res* 17:2365.

675 65. Shine J, Dalgarno L. 1974. The 3'-Terminal Sequence of *Escherichia coli* 16S Ribosomal RNA:
676 Complementarity to Nonsense Triplets and Ribosome Binding Sites. *Proc Natl Acad Sci U S A*
677 71:1342–1346.

678 66. Zhang Q, Li R, Li J, Shi H. 2018. Optimal Allocation of Bacterial Protein Resources under Nonlethal
679 Protein Maturation Stress. *Biophys J* 115:896–910.

680 67. Zhang X, Bremer H. 1995. Control of the *Escherichia coli* *rrnB* P1 promoter strength by ppGpp.
681 *Journal of Biological Chemistry* 270:11181–11189.

682 68. Shetty RP. 2008. Applying engineering principles to the design and construction of transcriptional
683 devices. Massachusetts Institute of Technology.

684 69. Rudge TJ, Brown JR, Federici F, Dalchau N, Phillips A, Ajioka JW, Haseloff J. 2016. Characterization
685 of Intrinsic Properties of Promoters. *ACS Synth Biol* 5:89–98.

686

687 Supporting information

688 The supplementary information file includes:

689 Supplementary text

690 Figs. S1 to S16

691 Table S1

692 References for SI reference citations