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Abstract

Streptococcus pneumoniae is a Gram-positive bacterium belonging to the oral

streptococcus species, mitis group. This pathogen is a leading cause of

community-acquired pneumonia, which often evades host immunity and causes

systemic diseases, such as sepsis and meningitis. Previously, we reported that PfbA is a

B-helical cell surface protein contributing to pneumococcal adhesion to and invasion of

human epithelial cells in addition to its survival in blood. In the present study, we

investigated the role of PfbA in pneumococcal pathogenesis. Phylogenetic analysis

indicated that the pfbA gene is specific to S. pneumoniae within the mitis group. Our in

vitro assays showed that PfbA inhibits neutrophil phagocytosis, leading to

pneumococcal survival. We found that PfbA activates NF-kB through TLR2, but not

TLR4. In addition, TLR2/4 inhibitor peptide treatment of neutrophils enhanced the

survival of the S. pneumoniae ApfbA strain as compared to a control peptide treatment,

whereas the treatment did not affect survival of a wild-type strain. In a mouse

pneumonia model, the host mortality and level of TNF-a in bronchoalveolar lavage

fluid were comparable between wild-type and ApfbA-infected mice, while deletion of
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pfbA increased the bacterial burden in bronchoalveolar lavage fluid. In a mouse sepsis

model, the ApfbA strain demonstrated significantly increased host mortality and TNF-a

levels in plasma, but showed reduced bacterial burden in lung and liver. These results

indicate that PfbA may contribute to the success of S. pneumoniae species by inhibiting

host cell phagocytosis, excess inflammation, and mortality.

Importance

Streptococcus pneumoniae 1is often isolated from the nasopharynx of healthy

children, but the bacterium is also a leading cause of pneumonia, meningitis, and sepsis.

In this study, we focused on the role of a cell wall anchoring protein, PfbA, in the

pathogenesis of S. pneumoniae-related disease. We found that PfbA is a

pneumococcus-specific anti-phagocytic factor that functions as a TLR2 ligand,

indicating that PfbA may represent a pneumococcal-specific therapeutic target.

However, a mouse pneumonia model revealed that PfbA deficiency reduced the

bacterial burden, but did not decrease host mortality. Furthermore, in a mouse sepsis

model, PfbA deficiency increased host mortality. These results suggest that S.
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52 pneumoniae optimizes reproduction by regulating host mortality through PfbA;

53  therefore, PfbA inhibition would not be an effective strategy for combatting

54  pneumococcal infection. Our findings underscore the challenges involved in drug

55 development for a bacterium harboring both commensal and pathogenic states.

56

57  Introduction

58 Streptococcus pneumoniae is Gram-positive bacteria belonging to the mitis group

59  that colonizes the human nasopharynx in approximately 20% of children without

60  causing clinical symptoms (1-3). On the other hand, S. pneumoniae is also a leading

61  cause of bacterial pneumonia, meningitis, and sepsis worldwide. The pathogen is

62  estimated to be responsible for the deaths of approximately 1,190,000 people annually

63  from lower respiratory infection (4). Following the introduction of pneumococcal

64  conjugate vaccines, S. pneumoniae is still responsible for two thirds of all cases of

65  meningitis (5). In addition, antibiotic selective pressure causes resistant pneumococcal

66  clones to emerge and expand all over the world and the World Health Organization

67  listed S. pneumoniae as one of antibiotic-resistant "priority pathogens" (6). Centers for
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Disease Control and Prevention data from active bacterial core surveillance for 2009 to

2013 indicated that pneumococcal conjugate vaccines work as a useful tool against

antibiotic resistance (7). However, these vaccines also generate selective pressure, and

non-vaccine serotypes of S. pneumoniae are increasing worldwide (8, 9).

During the process of invasive infection, S. pneumoniae needs to evade host

immunity and replicate in the host after colonization. In these steps, pneumococcal cell

surface proteins work as adhesins and/or anti-phagocytic factors. There are two types of

motifs for pneumococcal cell surface localization, a cell wall anchoring motif, LPXTG

(10), and choline-binding repeats interacting with pneumococcal phosphorylcholine

(11). Choline-binding proteins (CBPs) localize on the pneumococcal cell wall via the

phosphorylcholine moiety of teichoic acids, while LPXTG-anchored proteins are

covalently attached to the cell wall. Several LPXTG-anchored proteins and CBPs

contribute to the adhesion to host epithelial cells through the interaction with host

factors (10-13). Some pneumococcal cell surface proteins also contribute to bacterial

survival by limiting complement deposition or inhibiting phagocytosis (11, 14-17). On

the other hand, the host recognizes S. pneumoniae and regulates immune responses
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84  using pattern recognition receptors, including the Toll-like receptors (TLRs), nucleotide

85  oligomerization domain-like receptors, and retinoic acid-inducible gene-I-like receptors

86  (18). In addition, extracellular bacteria are recognized by TLR2 and TLR4 located on

87  the host cell surface. TLR2 recognizes pneumococcal cell wall components and

88  lipoproteins, while TLR4 senses a pore-forming toxin, pneumolysin (18, 19). Generally,

89  both TLR2 and TLR4 agonists induce neutrophil activation and inhibit the apoptosis

90  (20). However, in mouse influenza A virus and S. pneumoniae co-infection model, a

91 TLR2 agonist decreased inflammation and reduced bacterial shedding and transmission

92  (21). TLRs play important, but redundant, roles in the host defense and regulating

93  inflammatory responses against pneumococcal infection. Appropriate immune

94  responses contribute to pneumococcal clearance, while excessive inflammation can lead

95  to serious tissue damage.

96 We previously reported that plasmin- and fibronectin-binding protein A (PtbA)

97  plays a role in fibronectin-dependent adhesion to and invasion of epithelial cells, and

98  that an S. pneumoniae PfbA-deficient mutant strain exhibited decreased survival in

99  human blood (22, 23). PfbA is an LPXTG-anchored protein that features a right-handed
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100 parallel B-helix with a groove or cleft, formed by three parallel B-sheets and connecting

101  loops (24, 25). Since the distribution and structural arrangement of the groove residues

102 in the B-helix make it favorable for binding to carbohydrates, PfbA binds to D-galactose,

103 D-mannose, D-glucosamine, D-galactosamine, N-acetylneuraminic acid, D-sucrose, and

104  D-raffinose (26). PfbA also binds to human erythrocytes by interacting with

105  N-acetylneuraminic acids on the cells (27).

106 In this study, we investigated the role of PfbA in pneumococcal pathogenesis.

107 Phylogenetic analysis indicated that pfbA is specific to S. pneumoniae among the mitis

108  group Streptococcus. Our in vitro analysis revealed that PfbA works as an

109  anti-phagocytic factor and that the protein causes NF-kB activation via TLR2. In

110 addition, Toll-interleukin 1 receptor adaptor protein (TIRAP) inhibition increased the

111  survival rate of the pfb4 mutant strain after incubation with neutrophils, while the

112 wild-type (WT) strain was not affected. Mouse infection assays suggested that PfbA

113 contributes to pneumococcal survival in at least some organs. However, in a mouse

114 sepsis model, pfbA mutant strain-infected mice showed significantly higher mortality
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115  and TNF-a levels in blood. Our findings indicate that PfbA is a pneumococcus-specific

116  anti-phagocytic factor and suppresses host excess inflammation.

117
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Materials and Methods

Bacterial strains and construction of mutant strain

Streptococcus pneumoniae strains were cultured in Todd-Hewitt broth (BD

Biosciences, San Jose, CA, USA) supplemented with 0.2% yeast extract THY medium,

BD Biosciences) at 37°C. For selection and maintenance of mutants, spectinomycin

(Fujifilm Wako Pure Chemical Corporation, Osaka, Japan) was added to the medium at

120 pg/mL. The Escherichia coli strain XL10-Gold (Agilent, Santa Clara, CA, USA)

was used as a host for derivatives of plasmid pQE-30. All E. coli strains were cultured

in Luria-Bertani (LB) broth supplemented with 100 ng/mL carbenicillin (Nacalai

Tesque, Kyoto, Japan) at 37°C with agitation.

S. pneumoniae TIGR4 isogenic pfbA mutant strains were generated as previously

described with minor modifications (22, 28, 29). Briefly, the upstream region of pfbA,

an aad9 cassette, the downstream region of pfbA4, and pGEM-T Easy vector (Promega,

Madison, WI, USA) were amplified by PrimeSTAR® MAX DNA Polymerase (TaKaRa

Bio, Shiga, Japan) using the specific primers listed in Supplementary Table 1. The DNA

fragments were assembled using a GeneArt® Seamless Cloning and Assembly Kit

(Thermo Fisher Scientific, Waltham, MA, USA). The constructed plasmid was then

10


https://doi.org/10.1101/599001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/599001; this version posted April 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

under aCC-BY 4.0 International license.

transformed into E. coli XL-10 Gold, and the inserted DNA region was amplified by

PCR. The products were used to construct mutant strains by double-crossover

recombination with the synthesized competence-stimulating peptide-2. The mutation

was confirmed by PCR amplification of genomic DNA isolated from the mutant strain.

Cell culture

Human promyelocytic leukemia cells (HL-60, RCB0041) were purchased from

RIKEN Cell Bank (Ibaraki, Japan). HL-60 cells were maintained in RPMI 1640

medium (Thermo Fisher Scientific) supplemented with 10% FBS, and were incubated at

37°C in 5% CO.. HL-60 cells were differentiated into neutrophil-like cells for 5 days in

culture media containing 1.2% DMSO (30, 31). Cell differentiation was confirmed by

nitro blue tetrazolium reduction assay (30).

Human TLR2/NF-kB/SEAP stably transfected HEK293 cells and human

TLR4/MD-2/CD14/NF-kB/SEAP stably transfected HEK293 cells (Novus Biologicals,

Centennial, CO, USA, currently sold by InvivoGen, San Diego, CA, USA) were

maintained in DMEM with 4.5 g/L glucose, 10% FBS, 4 mM L-glutamine, | mM

11
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sodium pyruvate, 100 units/mL penicillin, 100 pg/mL streptomycin, 10 pg/mL

blasticidin, and 500 ng/mL G418 and DMEM with 4.5 g/L glucose, 10% FBS, 4 mM

L-glutamine, | mM sodium pyruvate, 100 units/mL penicillin, 100 pg/mL streptomycin,

10 pg/mL blasticidin, 2 pg/mL puromycin, 200 pg/mL zeocin, and 500 ng/mL G418,

respectively. A secreted alkaline phosphatase reporter assay was performed according to

the manufacturer’s instructions (Novus Biologicals).

Phylogenetic analysis

Phylogenetic analysis was performed as described previously (17, 32, 33), with

minor modifications. Briefly, homologues and orthologues of the pfb4 gene were

searched using tBLASTn (34). The sequences were aligned using Phylogears2 (35, 36)

and MAFFT v.7.221 with an L-INS-i strategy (37), and ambiguously aligned regions

were removed using Jalview (38, 39). The best-fitting codon evolutionary models for

phylogenetic analyses were determined using Kakusan4 (40). Bayesian Markov chain

Monte Carlo analyses were performed with MrBayes v.3.2.5 (41), and 4 x 10°

generations were sampled after confirming that the standard deviation of split

12
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frequencies was < 0.01. To validate phylogenetic inferences, maximum likelihood

phylogenetic analyses were performed with RAXML v.8.1.20 (42). Phylogenetic trees

were generated using FigTree v.1.4.2 (43) based on the calculated data.

Human neutrophil and monocyte preparation

Human blood was obtained via venipuncture from healthy donors after obtaining

informed consent. The protocol was approved by the institutional review boards of

Osaka University Graduate School of Dentistry (H26-E43). Human neutrophils and

monocytes were prepared using Polymorphprep (Alere Technologies AS, Oslo,

Norway), according to the manufacturer's instructions. Human blood was carefully

layered on the Polymorphprep solution in centrifugation tubes, which were then

centrifuged at 450 x g for 30 min in a swing-out rotor at 20°C. Monocyte and neutrophil

fractions were transferred into tubes containing ACK buffer (0.15 M NH4Cl, 0.01 M

KHCO3, 0.1 mM EDTA), then centrifuged, washed in phosphate-buffered saline, and

resuspended in RPMI 1640 medium.

13
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Neutrophil bactericidal assays

The pneumococcal cells grown to the mid-log phase were resuspended in PBS.

TIGR4 strains (3-11 x 10° CFUs/well) with or without rPfbA (0, 10, or 100 nM) were

combined with human neutrophils or neutrophil like-differentiated HL-60 cells (2 x 103

cells/well), and R6 strains (1.4-2.0 x 10> CFUs/well) were combined with human

neutrophils (1 x 10° cells/well). The mixture was incubated at 37°C in 5% CO> for 1, 2,

and 3 h. Viable cell counts were determined by plating diluted samples onto TS blood

agar. The growth index was calculated as the number of CFUs at the specified time

point/number of CFUs in the initial inoculum. Bacterial phagocytosis was blocked by

addition of cytochalasin D (20 pM), and pneumococcal killing was blocked by protease

inhibitor cocktail set V (Merck, Darmstat, Germany; 500 uM AEBSF, 150 nM

Aprotinin, 1 uM E-64, and 1 uM leupeptin hemisulfate, EDTA-free) at 1 h before

incubation. To determine whether TLR2 and TLR4 signaling affect pneumococcal

survival, 100 uM TIRAP (TLR2 and TLR4) inhibitor peptide or control peptide (Novus

Biologicals) were added to neutrophils at 1 h before incubation.

14
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199  Time-lapse microscopic analysis

200 For time-lapse observations, isolated neutrophils were resuspended in RPMI 1640

201 at 1 x 10° cells/mL. Next, 10 uL of S. pneumoniae R6 wild type or ApfbA strains (1 x

202 10° CFUs) was added to 2 mL of the cells, and the mixture was incubated and observed

203  at 37°C. Time-lapse images were captured using an Axio Observer Z1 microscope

204 system (Carl Zeiss, Oberkochen, Germany).

205

206  Flow cytometric analysis of phagocytes

207 Recombinant PfbA (rPfbA) or BSA was coated onto 0.5-pm-diameter fluorescent

208  beads (FluoroSphere, Thermo Fisher Scientific), according to the manufacturer's

209  instructions. rPfbA was purified as previously described (22). Isolated neutrophils or

210  monocytes were then resuspended in RPMI 1640 at 1.0 x 107 cells/mL, after which 900

211 pL of RPMI 1640 containing 1 uL of rPfbA-, BSA-, or non-coated fluorescent beads

212 was added to 100 pL of cells, and then the mixtures were rotated at 37°C for 1 h. The

213 cells were washed twice and fixed with 2% glutaraldehyde-RPMI 1640 at 37°C for 1 h,

214 then washed again three times and analyzed with a CyFlow flow cytometer (Sysmex,

15
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Hyogo, Japan) using FlowJo software ver. 8.3.2 (BD Biosciences, Franklin Lakes, NJ,

USA).

TLR2/4 SEAPorter assay

HEK cells expressing TLR2 or TLR4 were stimulated with S. pneumoniae and/or

rPfbA for 16 h, according to the manufacturer’s instructions (Novus Biologicals). To

avoid the effect of bacterial replication on this assay, S. pneumoniae were pasteurized

by incubation at 56°C for 30 min. To perform the assay under the same condition, rPfbA

was also incubated at 56°C for 30 min. Lipopolysaccharides from Escherichia coli

O111:B4 (Sigma-Aldrich Japan Inc., Tokyo, Japan) for the TLR-4 cell line and

Pam3CSK4 and Zymozan (Novus Biologicals) for the TLR-2 cell line were used as

positive controls under the same conditions. Secreted alkaline phosphatase (SEAP) was

analyzed using the SEAPorter Assay (Novus Biologicals) according to the

manufacturer’s instructions. Quantitative data (ng/mL) were obtained using a standard

curve for the SEAP protein.
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RNA extraction and miRNA array

We performed microRNA array analysis using neutrophil like-differentiated HL60

cells incubated with S. pneumoniae strains and/or 100 nM rPfbA for 1 h. We compared

rPfbA-treated and non-treated cells, wild type and ApfbA-infected cells, and ApfbA with

and without rPfbA-infected cells. In each cell sample, six replicates were pooled and

total RNA including microRNA was isolated from the pooled cells by miRNeasy Mini

Kit (Qiagen, Hilden, Germany). Approximately 1000 ng RNA was used for microarray

analysis using Affymetrix GeneChip miRNA 4.0 arrays (Affymetrix, Santa Clara, CA,

USA) through Filgen Inc. (Nagoya, Japan). Briefly, the quality of total RNA was

assessed using a Bioanalyzer 2100 (Agilent). Hybridization was performed using a

FlashTag Biotin HSR RNA Labeling Kit, GeneChip Hybridization Oven 645, and

GeneChip Fluidics Station 450. The arrays were scanned by Affymetrix GeneChip

Scanner 3000 7G. The GeneChip miRNA 4.0 arrays contain 30,424 total mature

miRNA probe sets including 2,578 mature human miRNAs, 2,025 pre-miRNA human

probes, and 1,196 Human snoRNA and scaRNA probe sets.
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Mouse infection assays

Mouse infection assays were performed as previously described (17, 33, 44, 45).

For the lung infection model, CD-1 mice (Slc:ICR, 8 weeks, female) were infected

intratracheally with 4.3-6.7 x 10% CFUs of S. pneumoniae. For intratracheal infection,

the vocal cords were visualized using an operating otoscope (Welch Allyn, NY, USA),

and 40 puL of bacteria was placed onto the trachea using a plastic gel loading pipette tip.

Mouse survival was monitored twice daily for 14 days. At 24 h after intratracheal

infection, bronchoalveolar lavage fluid (BALF) was collected following perfusion with

PBS.

For the sepsis model, CD-1 mice (Slc:ICR, 8 weeks, female) were infected

intravenously with 3.3-6.5 x 10° CFUs of S. pneumoniae via the tail vein. Mouse

survival was monitored twice daily for 14 days. At 24 and 48 h after infection, blood

aliquots were collected from mice following induction of general euthanasia. Brain,

lung, and liver samples were collected following perfusion with PBS. Brain and lung

whole tissues as well as the anterior segment of the liver were resected. Bacterial counts

in the blood as well as organ homogenates were determined by separately plating serial

18
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dilutions, with organ counts corrected for differences in organ weight. Detection limits

were 50 CFUs/organ and 50 CFUs/mL in blood.

The concentrations of TNF-a in BALF and plasma were determined using a

Duoset® ELISA Kit (R&D Systems, Minneapolis, MN, USA). Mice plasma was

obtained by centrifuging the heparinized blood. All mouse experiments were conducted

in accordance with animal protocols approved by the Animal Care and Use Committees

at Osaka University Graduate School of Dentistry (28-002-0).

Statistical analysis

Statistical analysis of in vitro and in vivo experiments was performed using a

nonparametric analysis, Mann-Whitney U test, or Kruskal-Wallis test with Dunn’s

multiple comparisons test. Mouse survival curves were compared using a log-rank test.

p < 0.05 was considered to indicate a significant difference. The tests were carried out

with Graph Pad Prism version 6.0h (GraphPad Software, Inc., San Diego, CA, USA).
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Results

The pfbA gene is specific to S. pneumoniae among mitis group Streptococcus

We searched pfbA-homologues by tBLASTn and performed phylogenetic analysis

(Fig. 1 and Supplementary Fig. 1). The pfb4 gene homologues were identified in S.

pneumoniae, Streptococcus pseudopneumoniae, and Streptococcus merionis. Although

16S rRNA sequences cannot distinguish mitis group species, the 16S rRNA of

Streptococcus sp. strain W10853 showed 99.387% identity to that of S.

pseudopneumoniae. Interestingly, S. pneumoniae-related species such as Streptococcus

mitis and Streptococcus oralis did not contain the homologues, whereas S. merionis had

a gene of which the query cover and identity were over 50%. S. merionis strain

NCTC13788 (also known as WUE3771, DSM 19192, and CCUG 54871), isolated from

the oropharynges of Mongolian jirds (Meriones unguiculatus), contained 16S rRNA that

belongs in a cluster distinct from the mitis group (46). This result indicates that the pfbA4

gene is specific to S. pneumoniae and S. pseudopneumoniae in the mitis group.

PfbA contributes to evasion of neutrophil killing
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293 To investigate whether PfbA contributes to evasion of neutrophil killing, we

294 determined pneumococcal survival rates after incubation with human neutrophils. After

295 3 hincubation, the TIGR4 ApfbA strain showed a significantly decreased bacterial

296  survival rate. In addition, to clarify whether the observed effects were attributed to PfbA,

297  we also performed the assay with rPfbA. In the presence of 100 nM rPfbA, TIGR4

298  ApfbA strain demonstrated a recovered survival rate nearly equal to that of the wild-type

299  strain (Fig. 2A). In pneumococcal survival assays with neutrophil-like differentiated

300  HL60 cells, TIGR4 strains showed similar results (Fig. 2B). We also performed the

301  assay using the non-encapsulated strain R6 and human neutrophils. The R6 ApfbA strain

302  showed significantly decreased survival rates as compared to the wild-type strain after

303  incubation for 1, 2, and 3 h (Fig. 2C). As the R6 strain showed this phenotype at earlier

304  time points than the TIGR4 strain, we performed pneumococcal survival assays using

305  R6 strains with inhibitors (Fig. 2D). Neutrophil phagocytic killing of S. preumoniae

306  requires the serine proteases (47). Thus, we used a protein inhibitor cocktail as a

307  positive control of a neutrophil killing inhibitor. While the R6 ApfbA strain showed

308  significantly decreased survival rates at 1 h after incubation with human fresh

21


https://doi.org/10.1101/599001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/599001; this version posted April 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

under aCC-BY 4.0 International license.

neutrophils in the absence of inhibitors, treatment with an actin polymerization inhibitor,

cytochalasin D, reduced the differences among the wild-type and ApfbA strains as well

as the protein inhibitor cocktail. These results indicate that PfbA contributes to

pneumococcal evasion of neutrophil phagocytosis.

PfbA inhibits neutrophil phagocytosis directly

We confirmed the anti-phagocytic activity of PfbA using flow cytometry and

PfbA-coated fluorescent beads (Fig. 3A). The fluorescence intensity of neutrophils and

monocytes incubated with PfbA-coated beads was substantially lower as compared with

cells incubated with non- or BSA-coated beads. These results indicated that neutrophils

and monocytes phagocytosed the non- and BSA-coated fluorescent beads, whereas the

PfbA-coated fluorescent beads escaped phagocytosis by neutrophils and monocytes.

We performed real-time observations for time-lapse analysis of the interaction

between S. pneumoniae and neutrophils (Fig. 3B). S. pneumoniae strain R6 wild-type

and ApfbA strains were separately incubated with fresh human neutrophils in RPMI

1640 medium. After coming into contact with neutrophils, the ApfbA strain was
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phagocytosed within 1 min, whereas the wild-type strain was not phagocytosed after

more than 5 min. Time-lapse analysis also showed the ApfbA strain engulfed by

neutrophil phagosomes. These results suggest that PfbA can directly inhibit

phagocytosis.

PfbA works as a TLR2 ligand and may inhibit phagocytosis through TLR2

Some lectins of pathogens work as ligand for TLR2 and TLR4 (48). We previously

reported that PfbA can interact with glycolipid and glycoprotein fractions of red blood

cells, several monosaccharides, D-sucrose, and D-raffinose (26, 27). Hence, to determine

whether PfbA works as a TLR ligand, we performed a SEAP assay using HEK-293 cells

stably transfected with either TLR2 or TLR4, NF-«kB, and SEAP (Fig. 4A). Pam3CSK4

and Zymozan were used as positive controls for the TLR2 ligand, while LPS was used

for TLR4. The SEAP assay indicated that pasteurized S. pneumoniae TIGR4 wild-type

cells activated NF-kB via TLR2, whereas ApfbA cells did not stimulate cells expressing

either TLR2 or TLR4. Pasteurized rPfbA also activated NF-kB dose-dependently

through TLR2, but not TLR4. In addition, in the presence of pasteurized rPftbA, ApfbA
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cells activated the cells expressing TLR2. Thus, PfbA is responsible for pneumococcal

NF-kB activation through TLR2.

Next, to determine whether TLR signaling suppresses survival of pneumococci

incubated with neutrophils, we performed a neutrophil survival assay using a TIRAP

inhibitor peptide (Fig. 4B). Data are presented as the ratio calculated by dividing CFUs

in the presence of inhibitor peptide by CFUs in the presence of control peptide. TIRAP

is an adaptor protein involved in MyD88-dependent TLR2 and TLR4 signaling

pathways. Since the TIRAP inhibitor peptide blocks the interaction between TIRAP and

TLRs, the peptide works as a TLR2 and TLR4 inhibitor. The inhibitor peptide treatment

increased survival rates of the ApfbA strain, but did not affect wild-type survival rates.

These results indicate that PfbA contributes to the evasion of neutrophil phagocytosis,

and TIRAP inhibitor treatment did not change survival rates of pneumococci incubated

with neutrophils. On the other hand, the S. pneumoniae ApfbA strain is more easily

phagocytosed by neutrophils as compared to the wild-type strain, and this phenotype is

abolished by TIRAP inhibitor.
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Stimulation of the human monocytic cell line THP1 by a TLR ligand, LPS, induces

miR-146a/b expression in an NF-kB-dependent fashion, and this induction inhibits

innate immune responses (49). In addition, pneumococcal infection of human

macrophages induces expression of several microRNAs, including miR-146a, in a

TLR-2-dependent manner, which prevents excessive inflammation (50). We performed

microRNA array analysis using neutrophil like-differentiated HL60 cells, S.

pneumoniae strains and rPfbA (Supplementary Fig. 2, Accession number: GSE128341).

We compared rPfbA-treated and non-treated cells, wild type and ApfbA-infected cells,

and ApfbA with and without rPfbA-infected cells. The analysis revealed only one

microRNA, hsa-miR-1281, that was commonly downregulated by 2-fold or greater in

the presence of PfbA as compared to in its absence (Supplementary Fig. 2, magenta

circle). On the other hand, there were no commonly upregulated miRNAs, including

miR-146a/b. In addition, the expression of eight microRNAs was commonly changed in

wild-type infection and ApfbA infection with rPfbA as compared to infection with

ApfbA only. Five micro RNAs (hsa-miR-4674, hsa-miR-3613-3p, hsa-miR-4668-5p,

hsa-miR-3197, and hsa-miR-6802-5p) were upregulated, while three (hsa-miR-3935,

25


https://doi.org/10.1101/599001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/599001; this version posted April 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

under aCC-BY 4.0 International license.

hsa-miR-1281, and hsa-miR-3613-5p) were downregulated. However, the role of these

miRNAs in infectious process remains unclear.

PfbA deficiency reduces pneumococcal burden in BALF but does not alter host

survival rate in a mouse pneumonia model

To investigate the role of PfbA in pneumococcal pathogenesis, we infected mice

with S. pneumoniae strains intratracheally and compared bacterial CFUs and TNF-a

levels in BALF from mice 24 h after infection. There were no differences observed in

survival time between mice infected with wild type and ApfbA strains (Fig. 5A).

However, recovered CFUs of wild-type bacteria were significantly greater than those of

ApfbA strains in mouse BALF. In addition, the level of TNF-a in BALF was almost the

same in wild type and ApfbA infection (Fig. 5B).

PfbA deficiency increases pneumococcal pathogenicity in a mouse sepsis model

We also investigated the role of PfbA in mice following intravenous infection as a

model of sepsis. In the infection model, the ApfbA strain showed significantly higher
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levels of virulence as compared to the wild-type strain (Fig. 6A). Furthermore, we

compared the TNF-a levels in plasma and examined the bacterial burden in blood, brain,

lung, and liver samples obtained at 24 and 48 h after intravenous infection (Fig. 6B, 6C

and Supplementary Fig. 3). At 24 h after infection, TNF-a. ELISA findings showed a

significantly greater level in the plasma of pfbA mutant strain-infected mice as

compared to the wild-type strain-infected mice. The numbers of CFUs of both the

wild-type and pfbA mutant strains in the blood and brain samples were comparable. On

the other hand, in the lung and liver samples, the pfbA mutant strain-infected mice

showed slightly but significantly reduced numbers of CFUs as compared with the

wild-type strain-infected mice. At 48 h after infection, there were no significant

differences in TNF-a level and bacterial burden in each organ between the wild-type-

and pfbA mutant strain-infected mice (Supplementary Fig. 3). Bacteria were not

detected in the blood of two of the wild-type strain-infected mice and five of the pfbA

mutant strain-infected mice. Meanwhile, three of the wild-type strain-infected mice

yielded more than 10° CFUs/mL, while seven of the wild-type strain-infected mice did.
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403  The pfbA mutant strain infection caused a polarized bacterial burden in the host at 48 h

404  after infection as compared to wild type infection.
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405  Discussion

406 In the present study, we found that pfbA4 is a pneumococcal-specific gene that

407  contributes to evasion of neutrophil phagocytosis. We determined that PfbA can activate

408  NF-«B through TLR2. TIRAP inhibition increased the survival rate of ApfbA strain

409  incubated with neutrophils, while this inhibition did not affect a wild-type strain

410  survival. In a mouse model with lung infection, the bacterial burden of the ApfbA strain

411  was significantly reduced as compared with that of wild-type strain, but the TNF-a. level

412  was comparable between the strains. Overall, there was no significant difference in the

413  survival rates of mice infected with the wild-type S. pneumoniae strain- and those

414  infected with the ApfbA strain. Furthermore, in a mouse model with blood infection, the

415  ApfbA strain showed a significantly higher TNF-a level than the wild-type strain. These

416  results suggest that PfbA may suppress the host innate immune response by acting as an

417  anti-phagocytic factor interacting with TLR2.

418 Prior studies have shown that S. pneumoniae under selective pressure can adapt to

419  the environment by importing genes from other related streptococci, such as those in the

420  mitis group (51-54). Although S. mitis and S. oralis are oral commensal bacteria, these
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species contain various pneumococcal virulence factor homologues. Some mitis group

strains harbor several choline-binding proteins including autolysins, pneumolysin,

sialidases, and others (11, 55, 56). In this study, we found that pfbA homologues were

absent among mitis group strains without S. pneumoniae for which whole genome

sequences were available, whereas the pfbA gene is highly conserved among

pneumococcal strains. Interestingly, a streptococcal species with clear evolutionary

separation from the mitis group, S. merionis, contained a pfbA orthologue. This result

indicates that pfbA is a pneumococcal-specific gene and that ancestral S. pneumoniae

likely obtained the gene by horizontal gene transfer from non-mitis group streptococcal

species.

Although lipoproteins are major TLR2 ligands as well as peptidoglycans in S.

pneumoniae (19), we found that rPfbA can activate NF-«kB solely in HEK293 cells

expressing TLR2, but not those expressing TLR4. Since E. coli does not have the

capacity to glycosylate proteins (57), rPfbA-mediated TLR2 activation would be

independent of pneumococcal glycosylation. Plant and pathogen lectins can induce

NF-kB activation through binding to TLR2 N-glycans, while a classical ligand such as
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437  Pam3CSK4 can activate NF-kB glycan-independently (48). TLR2 has four N-glycans

438  whose structures still remain unknown, and the N-glycans are critical for the lectins to

439  induce TLR2-mediated activation (48). PfbA binds to various carbohydrates via the

440  groove residues in the B-helix (26, 27). There is a possibility that PfbA induces TLR2

441  signaling by binding to TLR2 N-glycans.

442 Human macrophages challenged with S. pneumoniae induce a negative feedback

443 loop, preventing excessive inflammation via miR-146a and potentially other miRNAs

444 on the TLR2-MyD8S8 axis (50). On the other hand, pneumococcal endopeptidase O

445  enhances macrophage phagocytosis in a TLR2- and miR-155-dependent manner (58).

446  Furthermore, miR-9 is induced by TLR agonists and functions in feedback control of

447  the NF-kB-dependent responses in human monocytes and neutrophils (59). These

448  studies indicate that host phagocytes are regulated by a complex combination of pattern

449  recognition receptor signaling and miRNA induction. We predicted that PfbA

450  suppresses phagocytosis via the induction of miRNAs in a TLR2 dependent fashion.

451  However, an miRNA array showed that the levels of the involved miRNAs were not

452 changed over 2-fold in the presence or absence of PfbA. One possible hypothesis is that
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PfbA induces different miRNA responses from classical TLR ligands via

glycan-dependent recognition. Although PfbA can downregulate miR-1281 in

differentiated HL-60 cells, the role of miR-1281 in phagocytes remains unclear. Further

comprehensive studies are required to investigate the role of miRNAs in host innate

immunity.

Unexpectedly, our mouse pneumonia and sepsis models indicated that pfbA

deficiency reduces pneumococcal survival in the host, but does not decrease or

increases host mortality. We previously reported that PfbA works as an adhesin and

invasin of host epithelial cells (22). The reduction of bacterial burden in host organs can

be explained by the synergy of adhesive and anti-phagocytic abilities. On the other hand,

the S. pneumoniae ApfbA strain showed equivalent or greater induction of inflammatory

cytokines as compared with the wild-type strain. Generally, a deficiency of TLR ligands

would suppress inflammatory responses. However, a deficiency of PfbA would cause

more efficient bacterial uptake by phagocytes and promote inflammatory responses. In

addition, there is a possibility that the negative feedback loop induced by PfbA is lost

and causes excess inflammation. High mortality does not mean bacterial success, as
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469  host death leads to the limitation of bacterial reproduction. PfbA may be beneficial for

470  pneumococcal species by increasing the bacterial reproductive number through

471  suppression of host cell phagocytosis and host mortality. PfbA showed high specificity

472  for and conservation in S. pneumoniae species. The assumed negative feedback loop

473  may not be as significant in non-pathogenic mitis group Streptococcus.

474 In single toxin-induced infectious diseases such as diphtheria and tetanus, highly

475  safe and protective vaccines are established. On the other hand, in multiple

476  factor-induced diseases such as those caused by S. pneumoniae, S. pyogenes, and so on,

477  there are either no approved vaccines or existing vaccines still need optimization. Our

478  study indicates that PfbA is a pneumococcal specific cell surface protein, which

479  contributes to evasion from phagocytosis. Therefore, PfbA would not be suitable as a

480  vaccine antigen, since the protein suppresses pneumococcal virulence in a mouse sepsis

481  model. Further investigation of the intricate balance between host immunity and

482  pathogenesis is required to establish the basis for drug and vaccine design.

483
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Figure Legends

Figure 1. Bayesian phylogenetic analysis of the pfbA4 gene.

The codon-based Bayesian phylogenetic relationship was calculated using the MrBayes

program. Strains with identical sequences are listed on the same branch. The percentage

of posterior probabilities is shown near the nodes. The scale bar indicates nucleotide

substitutions per site.

Figure 2. PfbA contributes to pneumococcal survival after incubation with

neutrophils. A. Growth of TIGR4 strains incubated with human fresh neutrophils. B.

Growth of TIGR4 strains incubated with neutrophil-like differentiated HL-60 cells.

Bacterial cells were incubated with human neutrophils or differentiated HL-60 cells in

the presence or absence of rPfbA for 1, 2, and 3 h at 37°C in a 5% CO, atmosphere.

Next, the mixture was serially diluted and plated on TS blood agar. Following

incubation, the number of CFUs was determined. Growth index was calculated by

dividing CFUs after incubation by CFUs of the original inoculum. C. Growth of R6

strains incubated with human fresh neutrophils. S. pneumoniae strains were added to
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708  human neutrophils without serum and gently mixed for 1, 2, or 3 h at 37°C. Next, the

709  mixtures were serially diluted and plated on TS blood agar. After incubation, the

710  number of CFUs was determined. D. Growth of R6 strains incubated with human fresh

711  neutrophils in the presence of inhibitors. S. pneumoniae strains were added to human

712 neutrophils with or without cytochalasin D, or protease inhibitor cocktail in the absence

713 of serum, then gently mixed for 1 h at 37°C. The percent bacterial survival was

714  calculated based on viable counts relative to the wild-type strain. These data are

715  presented as the mean values of six samples, with S.E. values represented by vertical

716  lines. Differences between several groups were analyzed using a Kruskal-Wallis test

717  followed by Dunn's multiple comparisons test (A, B). The Mann-Whitney’s U test was

718 used to compare differences between two independent groups (C, D). Three

719 experiments were performed, with data from a representative experiment is shown.

720

721  Figure 3. PfbA suppresses host cell phagocytosis. A. Uptake of fluorescent

722 PfbA-coated beads by neutrophils and monocytes. Human neutrophils and monocytes

723  were separately incubated with PfbA-, BSA-, or non-coated fluorescent beads for 1 h at
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724 37°C. Phagocytic activities were analyzed using flow cytometry. Data are presented as

725  histograms. The value shown for the percent of maximum was determined by dividing

726  the number of cells in each bin by the number of cells in the bin that contained the

727  largest number of cells. The bin is shown as a numerical range for the parameter on the

728  X-axis. B. Time-lapse analysis of the interaction between S. pneumoniae and

729  neutrophils. S. pneumoniae wild-type and ApfbA strains were incubated with neutrophils.

730  The elapsed times from contact with neutrophils are shown in the upper part of the

731  figures. Arrows indicate when S. pneumoniae cells contacted neutrophils. Arrowheads

732 indicate S. pneumoniae engulfed by a neutrophil phagosome.

733

734  Figure 4. PfbA activates NF-kB via TLR2, and TLR2/4 inhibitor enhances ApfbA

735  strain survival. A. Secreted alkaline phosphatase (SEAP) porter assay using

736  TLR2/NF-xB/ SEAPorter or TLR4/MD-2/CD14/NF-xB SEAPorter HEK293 cell lines.

737  The cells were plated in 24-well plates at 5 x 10° cells/well. After 24 h, cells were

738  stimulated with various amount of rPfbA, pasteurized S. pneumoniae (~5 x 10° CFU), 1

739  pg/mL Pam3CSK4, 10 ng/mL Zymozan, or 25 ng/mL LPS for 24 h. SEAP was
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analyzed using the SEAPorter Assay Kit. Data are presented as the mean of six wells.

SE values are represented by vertical lines. Differences in pneumococcal infection

group and rPfbA addition group were analyzed using a Kruskal-Wallis test followed by

Dunn's multiple comparisons test, respectively. B. TLR2/4 inhibitor peptide enhances

survival of the TIGR4 ApfbA strain incubated with human neutrophils. S. pneumoniae

TIGR4 wild type strain or ApfbA strain bacteria were incubated with human neutrophils

in the presence of TLR2/4 inhibitor peptide or control peptide. After 1, 2, and 3 h, the

mixture was serially diluted and plated on TS blood agar. Following incubation, the

number of CFUs was determined. The CFU ratio was calculated by dividing CFUs in

the presence of inhibitor peptide by CFUs in the presence of control peptide. Data are

presented as the mean of six wells. S.E. values are represented by vertical lines.

Differences between groups were analyzed using Mann-Whitney's U test.

Figure 5. In a mouse pneumonia model, deficiency of pfbA decreases pneumococcal

burden in the lung but does not affect host mortality. A. CD-1 mice were infected
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intratracheally with the S. pneumoniae TIGR4 wild-type or ApfbA strain (3-18 x 10°

CFUs). Mice survival was recorded for 14 days. The differences between groups were

analyzed using a log-rank test. B. Bacterial CFUs and TNF-a in BALF collected from

CD-1 mice after intratracheal infection with S. pneumoniae. CD-1 mice were infected

intratracheally with the S. pneumoniae TIGR4 wild type or ApfbA strain (4-7 x 10°

CFUs). BALF was collected at 24 h after pneumococcal infection, and bacterial CFUs

and TNF-a levels in the BALF were determined. S.E. values are represented by vertical

lines. Statistical differences between groups were analyzed using Mann-Whitney's U

test. The data obtained from three independent experiments were pooled.

Figure 6. In a mouse sepsis model, the deficiency of pfbA increases the virulence

and TNF-a level in blood but decreases the bacterial burden in the lung and liver.

CD-1 mice were infected intravenously with the S. pneumoniae TIGR4 wild type or

ApfbA strain (3-6 x 10° CFUs). A. Mouse survival was monitored for 14 days.

Statistical differences between groups were analyzed using a log-rank test. B. CD-1

mice were infected intravenously with the S. pneumoniae TIGR4 wild type or ApfbA
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strain (6-9 x 10° CFUs). Plasma samples were collected from these mice at 24 h after

infection. Values are presented as the mean of 16 or 18 samples. Vertical lines represent

the mean + S.E. Statistical differences between groups were analyzed using

Mann-Whitney’s U test. C. The bacterial burden in the blood, brain, lung, and liver

were assessed after 24 h of infection. S.E. values are represented by vertical lines. All

mice were perfused with PBS after blood collection, organ samples were collected.

Statistical differences between groups were analyzed using Mann-Whitney's U test. The

mouse survival data were obtained from three independent experiments, and the TNF-a

level and bacterial burden values obtained from two independent experiments were

pooled.
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