

1 ***Streptococcus pneumoniae* evades host cell phagocytosis and limits host mortality**

2 **through its cell wall anchoring protein PfbA**

3

4 Running title: PfbA inhibits phagocytosis and limits host responses

5

6 Masaya Yamaguchi<sup>a, #</sup>, Yujiro Hirose<sup>a</sup>, Moe Takemura<sup>a, b</sup>, Masayuki Ono<sup>a, c</sup>, Tomoko

7 Sumitomo<sup>a</sup>, Masanobu Nakata<sup>a</sup>, Yutaka Terao<sup>d</sup>, Shigetada Kawabata<sup>a</sup>

8

9 <sup>a</sup>Department of Oral and Molecular Microbiology, Osaka University Graduate School of

10 Dentistry, Osaka, Japan

11 <sup>b</sup>Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of

12 Dentistry, Osaka, Japan

13 <sup>c</sup>Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry,

14 Osaka, Japan.

15 <sup>d</sup>Division of Microbiology and Infectious Diseases, Niigata University Graduate School

16 of Medical and Dental Sciences, Niigata, Japan

17 #Address correspondence to Masaya Yamaguchi, [yamaguchi@dent.osaka-u.ac.jp](mailto:yamaguchi@dent.osaka-u.ac.jp)

18

19 Word count: 5255 words

20 **Abstract**

21 *Streptococcus pneumoniae* is a Gram-positive bacterium belonging to the oral  
22 streptococcus species, mitis group. This pathogen is a leading cause of  
23 community-acquired pneumonia, which often evades host immunity and causes  
24 systemic diseases, such as sepsis and meningitis. Previously, we reported that PfbA is a  
25 β-helical cell surface protein contributing to pneumococcal adhesion to and invasion of  
26 human epithelial cells in addition to its survival in blood. In the present study, we  
27 investigated the role of PfbA in pneumococcal pathogenesis. Phylogenetic analysis  
28 indicated that the *pfbA* gene is specific to *S. pneumoniae* within the mitis group. Our *in*  
29 *vitro* assays showed that PfbA inhibits neutrophil phagocytosis, leading to  
30 pneumococcal survival. We found that PfbA activates NF-κB through TLR2, but not  
31 TLR4. In addition, TLR2/4 inhibitor peptide treatment of neutrophils enhanced the  
32 survival of the *S. pneumoniae*  $\Delta$ *pfbA* strain as compared to a control peptide treatment,  
33 whereas the treatment did not affect survival of a wild-type strain. In a mouse  
34 pneumonia model, the host mortality and level of TNF-α in bronchoalveolar lavage  
35 fluid were comparable between wild-type and  $\Delta$ *pfbA*-infected mice, while deletion of

36 *pfbA* increased the bacterial burden in bronchoalveolar lavage fluid. In a mouse sepsis  
37 model, the  $\Delta pfbA$  strain demonstrated significantly increased host mortality and TNF- $\alpha$   
38 levels in plasma, but showed reduced bacterial burden in lung and liver. These results  
39 indicate that PfbA may contribute to the success of *S. pneumoniae* species by inhibiting  
40 host cell phagocytosis, excess inflammation, and mortality.

41

42 **Importance**

43 *Streptococcus pneumoniae* is often isolated from the nasopharynx of healthy  
44 children, but the bacterium is also a leading cause of pneumonia, meningitis, and sepsis.  
45 In this study, we focused on the role of a cell wall anchoring protein, PfbA, in the  
46 pathogenesis of *S. pneumoniae*-related disease. We found that PfbA is a  
47 pneumococcus-specific anti-phagocytic factor that functions as a TLR2 ligand,  
48 indicating that PfbA may represent a pneumococcal-specific therapeutic target.  
49 However, a mouse pneumonia model revealed that PfbA deficiency reduced the  
50 bacterial burden, but did not decrease host mortality. Furthermore, in a mouse sepsis  
51 model, PfbA deficiency increased host mortality. These results suggest that *S.*

52 *pneumoniae* optimizes reproduction by regulating host mortality through PfbA;  
53 therefore, PfbA inhibition would not be an effective strategy for combatting  
54 pneumococcal infection. Our findings underscore the challenges involved in drug  
55 development for a bacterium harboring both commensal and pathogenic states.

56

## 57 **Introduction**

58 *Streptococcus pneumoniae* is Gram-positive bacteria belonging to the mitis group  
59 that colonizes the human nasopharynx in approximately 20% of children without  
60 causing clinical symptoms (1-3). On the other hand, *S. pneumoniae* is also a leading  
61 cause of bacterial pneumonia, meningitis, and sepsis worldwide. The pathogen is  
62 estimated to be responsible for the deaths of approximately 1,190,000 people annually  
63 from lower respiratory infection (4). Following the introduction of pneumococcal  
64 conjugate vaccines, *S. pneumoniae* is still responsible for two thirds of all cases of  
65 meningitis (5). In addition, antibiotic selective pressure causes resistant pneumococcal  
66 clones to emerge and expand all over the world and the World Health Organization  
67 listed *S. pneumoniae* as one of antibiotic-resistant "priority pathogens" (6). Centers for

68 Disease Control and Prevention data from active bacterial core surveillance for 2009 to  
69 2013 indicated that pneumococcal conjugate vaccines work as a useful tool against  
70 antibiotic resistance (7). However, these vaccines also generate selective pressure, and  
71 non-vaccine serotypes of *S. pneumoniae* are increasing worldwide (8, 9).

72 During the process of invasive infection, *S. pneumoniae* needs to evade host  
73 immunity and replicate in the host after colonization. In these steps, pneumococcal cell  
74 surface proteins work as adhesins and/or anti-phagocytic factors. There are two types of  
75 motifs for pneumococcal cell surface localization, a cell wall anchoring motif, LPXTG  
76 (10), and choline-binding repeats interacting with pneumococcal phosphorylcholine  
77 (11). Choline-binding proteins (CBPs) localize on the pneumococcal cell wall via the  
78 phosphorylcholine moiety of teichoic acids, while LPXTG-anchored proteins are  
79 covalently attached to the cell wall. Several LPXTG-anchored proteins and CBPs  
80 contribute to the adhesion to host epithelial cells through the interaction with host  
81 factors (10-13). Some pneumococcal cell surface proteins also contribute to bacterial  
82 survival by limiting complement deposition or inhibiting phagocytosis (11, 14-17). On  
83 the other hand, the host recognizes *S. pneumoniae* and regulates immune responses

84 using pattern recognition receptors, including the Toll-like receptors (TLRs), nucleotide  
85 oligomerization domain-like receptors, and retinoic acid-inducible gene-I-like receptors  
86 (18). In addition, extracellular bacteria are recognized by TLR2 and TLR4 located on  
87 the host cell surface. TLR2 recognizes pneumococcal cell wall components and  
88 lipoproteins, while TLR4 senses a pore-forming toxin, pneumolysin (18, 19). Generally,  
89 both TLR2 and TLR4 agonists induce neutrophil activation and inhibit the apoptosis  
90 (20). However, in mouse influenza A virus and *S. pneumoniae* co-infection model, a  
91 TLR2 agonist decreased inflammation and reduced bacterial shedding and transmission  
92 (21). TLRs play important, but redundant, roles in the host defense and regulating  
93 inflammatory responses against pneumococcal infection. Appropriate immune  
94 responses contribute to pneumococcal clearance, while excessive inflammation can lead  
95 to serious tissue damage.

96 We previously reported that plasmin- and fibronectin-binding protein A (PfbA)  
97 plays a role in fibronectin-dependent adhesion to and invasion of epithelial cells, and  
98 that an *S. pneumoniae* PfbA-deficient mutant strain exhibited decreased survival in  
99 human blood (22, 23). PfbA is an LPXTG-anchored protein that features a right-handed

100 parallel  $\beta$ -helix with a groove or cleft, formed by three parallel  $\beta$ -sheets and connecting  
101 loops (24, 25). Since the distribution and structural arrangement of the groove residues  
102 in the  $\beta$ -helix make it favorable for binding to carbohydrates, PfbA binds to D-galactose,  
103 D-mannose, D-glucosamine, D-galactosamine, *N*-acetylneuraminic acid, D-sucrose, and  
104 D-raffinose (26). PfbA also binds to human erythrocytes by interacting with  
105 *N*-acetylneuraminic acids on the cells (27).

106 In this study, we investigated the role of PfbA in pneumococcal pathogenesis.  
107 Phylogenetic analysis indicated that *pfbA* is specific to *S. pneumoniae* among the mitis  
108 group *Streptococcus*. Our *in vitro* analysis revealed that PfbA works as an  
109 anti-phagocytic factor and that the protein causes NF- $\kappa$ B activation via TLR2. In  
110 addition, Toll-interleukin 1 receptor adaptor protein (TIRAP) inhibition increased the  
111 survival rate of the *pfbA* mutant strain after incubation with neutrophils, while the  
112 wild-type (WT) strain was not affected. Mouse infection assays suggested that PfbA  
113 contributes to pneumococcal survival in at least some organs. However, in a mouse  
114 sepsis model, *pfbA* mutant strain-infected mice showed significantly higher mortality

115 and TNF- $\alpha$  levels in blood. Our findings indicate that PfbA is a pneumococcus-specific

116 anti-phagocytic factor and suppresses host excess inflammation.

117

118 **Materials and Methods**

119 **Bacterial strains and construction of mutant strain**

120 *Streptococcus pneumoniae* strains were cultured in Todd-Hewitt broth (BD

121 Biosciences, San Jose, CA, USA) supplemented with 0.2% yeast extract THY medium,

122 BD Biosciences) at 37°C. For selection and maintenance of mutants, spectinomycin

123 (Fujifilm Wako Pure Chemical Corporation, Osaka, Japan) was added to the medium at

124 120 µg/mL. The *Escherichia coli* strain XL10-Gold (Agilent, Santa Clara, CA, USA)

125 was used as a host for derivatives of plasmid pQE-30. All *E. coli* strains were cultured

126 in Luria-Bertani (LB) broth supplemented with 100 µg/mL carbenicillin (Nacalai

127 Tesque, Kyoto, Japan) at 37°C with agitation.

128 *S. pneumoniae* TIGR4 isogenic *pfbA* mutant strains were generated as previously

129 described with minor modifications (22, 28, 29). Briefly, the upstream region of *pfbA*,

130 an *aad9* cassette, the downstream region of *pfbA*, and pGEM-T Easy vector (Promega,

131 Madison, WI, USA) were amplified by PrimeSTAR® MAX DNA Polymerase (TaKaRa

132 Bio, Shiga, Japan) using the specific primers listed in Supplementary Table 1. The DNA

133 fragments were assembled using a GeneArt® Seamless Cloning and Assembly Kit

134 (Thermo Fisher Scientific, Waltham, MA, USA). The constructed plasmid was then

135 transformed into *E. coli* XL-10 Gold, and the inserted DNA region was amplified by  
136 PCR. The products were used to construct mutant strains by double-crossover  
137 recombination with the synthesized competence-stimulating peptide-2. The mutation  
138 was confirmed by PCR amplification of genomic DNA isolated from the mutant strain.

139

140 **Cell culture**

141 Human promyelocytic leukemia cells (HL-60, RCB0041) were purchased from  
142 RIKEN Cell Bank (Ibaraki, Japan). HL-60 cells were maintained in RPMI 1640  
143 medium (Thermo Fisher Scientific) supplemented with 10% FBS, and were incubated at  
144 37°C in 5% CO<sub>2</sub>. HL-60 cells were differentiated into neutrophil-like cells for 5 days in  
145 culture media containing 1.2% DMSO (30, 31). Cell differentiation was confirmed by  
146 nitro blue tetrazolium reduction assay (30).

147 Human TLR2/NF-κB/SEAP stably transfected HEK293 cells and human  
148 TLR4/MD-2/CD14/NF-κB/SEAP stably transfected HEK293 cells (Novus Biologicals,  
149 Centennial, CO, USA, currently sold by InvivoGen, San Diego, CA, USA) were  
150 maintained in DMEM with 4.5 g/L glucose, 10% FBS, 4 mM L-glutamine, 1 mM

151     sodium pyruvate, 100 units/mL penicillin, 100 µg/mL streptomycin, 10 µg/mL  
152     blasticidin, and 500 µg/mL G418 and DMEM with 4.5 g/L glucose, 10% FBS, 4 mM  
153     L-glutamine, 1 mM sodium pyruvate, 100 units/mL penicillin, 100 µg/mL streptomycin,  
154     10 µg/mL blasticidin, 2 µg/mL puromycin, 200 µg/mL zeocin, and 500 µg/mL G418,  
155     respectively. A secreted alkaline phosphatase reporter assay was performed according to  
156     the manufacturer's instructions (Novus Biologicals).

157

### 158     **Phylogenetic analysis**

159     Phylogenetic analysis was performed as described previously (17, 32, 33), with  
160     minor modifications. Briefly, homologues and orthologues of the *pfbA* gene were  
161     searched using tBLASTn (34). The sequences were aligned using Phylogears2 (35, 36)  
162     and MAFFT v.7.221 with an L-INS-i strategy (37), and ambiguously aligned regions  
163     were removed using Jalview (38, 39). The best-fitting codon evolutionary models for  
164     phylogenetic analyses were determined using Kakusan4 (40). Bayesian Markov chain  
165     Monte Carlo analyses were performed with MrBayes v.3.2.5 (41), and  $4 \times 10^6$   
166     generations were sampled after confirming that the standard deviation of split

167 frequencies was < 0.01. To validate phylogenetic inferences, maximum likelihood  
168 phylogenetic analyses were performed with RAxML v.8.1.20 (42). Phylogenetic trees  
169 were generated using FigTree v.1.4.2 (43) based on the calculated data.

170

171 **Human neutrophil and monocyte preparation**

172 Human blood was obtained via venipuncture from healthy donors after obtaining  
173 informed consent. The protocol was approved by the institutional review boards of  
174 Osaka University Graduate School of Dentistry (H26-E43). Human neutrophils and  
175 monocytes were prepared using Polymorphprep (Alere Technologies AS, Oslo,  
176 Norway), according to the manufacturer's instructions. Human blood was carefully  
177 layered on the Polymorphprep solution in centrifugation tubes, which were then  
178 centrifuged at  $450 \times g$  for 30 min in a swing-out rotor at 20°C. Monocyte and neutrophil  
179 fractions were transferred into tubes containing ACK buffer (0.15 M NH<sub>4</sub>Cl, 0.01 M  
180 KHCO<sub>3</sub>, 0.1 mM EDTA), then centrifuged, washed in phosphate-buffered saline, and  
181 resuspended in RPMI 1640 medium.

182

183 **Neutrophil bactericidal assays**

184 The pneumococcal cells grown to the mid-log phase were resuspended in PBS.

185 TIGR4 strains ( $3-11 \times 10^3$  CFUs/well) with or without rPfbA (0, 10, or 100 nM) were

186 combined with human neutrophils or neutrophil like-differentiated HL-60 cells ( $2 \times 10^5$

187 cells/well), and R6 strains ( $1.4-2.0 \times 10^2$  CFUs/well) were combined with human

188 neutrophils ( $1 \times 10^5$  cells/well). The mixture was incubated at  $37^\circ\text{C}$  in 5%  $\text{CO}_2$  for 1, 2,

189 and 3 h. Viable cell counts were determined by plating diluted samples onto TS blood

190 agar. The growth index was calculated as the number of CFUs at the specified time

191 point/number of CFUs in the initial inoculum. Bacterial phagocytosis was blocked by

192 addition of cytochalasin D (20  $\mu\text{M}$ ), and pneumococcal killing was blocked by protease

193 inhibitor cocktail set V (Merck, Darmstat, Germany; 500  $\mu\text{M}$  AEBSF, 150 nM

194 Aprotinin, 1  $\mu\text{M}$  E-64, and 1  $\mu\text{M}$  leupeptin hemisulfate, EDTA-free) at 1 h before

195 incubation. To determine whether TLR2 and TLR4 signaling affect pneumococcal

196 survival, 100  $\mu\text{M}$  TIRAP (TLR2 and TLR4) inhibitor peptide or control peptide (Novus

197 Biologicals) were added to neutrophils at 1 h before incubation.

198

199 **Time-lapse microscopic analysis**

200 For time-lapse observations, isolated neutrophils were resuspended in RPMI 1640  
201 at  $1 \times 10^6$  cells/mL. Next, 10  $\mu$ L of *S. pneumoniae* R6 wild type or  $\Delta pfbA$  strains (1  $\times$   
202  $10^6$  CFUs) was added to 2 mL of the cells, and the mixture was incubated and observed  
203 at 37°C. Time-lapse images were captured using an Axio Observer Z1 microscope  
204 system (Carl Zeiss, Oberkochen, Germany).

205

206 **Flow cytometric analysis of phagocytes**

207 Recombinant PfbA (rPfbA) or BSA was coated onto 0.5- $\mu$ m-diameter fluorescent  
208 beads (FluoroSphere, Thermo Fisher Scientific), according to the manufacturer's  
209 instructions. rPfbA was purified as previously described (22). Isolated neutrophils or  
210 monocytes were then resuspended in RPMI 1640 at  $1.0 \times 10^7$  cells/mL, after which 900  
211  $\mu$ L of RPMI 1640 containing 1  $\mu$ L of rPfbA-, BSA-, or non-coated fluorescent beads  
212 was added to 100  $\mu$ L of cells, and then the mixtures were rotated at 37°C for 1 h. The  
213 cells were washed twice and fixed with 2% glutaraldehyde-RPMI 1640 at 37°C for 1 h,  
214 then washed again three times and analyzed with a CyFlow flow cytometer (Sysmex,

215 Hyogo, Japan) using FlowJo software ver. 8.3.2 (BD Biosciences, Franklin Lakes, NJ,

216 USA).

217

218 **TLR2/4 SEAPorter assay**

219 HEK cells expressing TLR2 or TLR4 were stimulated with *S. pneumoniae* and/or

220 rPfbA for 16 h, according to the manufacturer's instructions (Novus Biologicals). To

221 avoid the effect of bacterial replication on this assay, *S. pneumoniae* were pasteurized

222 by incubation at 56°C for 30 min. To perform the assay under the same condition, rPfbA

223 was also incubated at 56°C for 30 min. Lipopolysaccharides from *Escherichia coli*

224 O111:B4 (Sigma-Aldrich Japan Inc., Tokyo, Japan) for the TLR-4 cell line and

225 Pam3CSK4 and Zymozan (Novus Biologicals) for the TLR-2 cell line were used as

226 positive controls under the same conditions. Secreted alkaline phosphatase (SEAP) was

227 analyzed using the SEAPorter Assay (Novus Biologicals) according to the

228 manufacturer's instructions. Quantitative data (ng/mL) were obtained using a standard

229 curve for the SEAP protein.

230

231 **RNA extraction and miRNA array**

232 We performed microRNA array analysis using neutrophil like-differentiated HL60  
233 cells incubated with *S. pneumoniae* strains and/or 100 nM rPfbA for 1 h. We compared  
234 rPfbA-treated and non-treated cells, wild type and  $\Delta pfbA$ -infected cells, and  $\Delta pfbA$  with  
235 and without rPfbA-infected cells. In each cell sample, six replicates were pooled and  
236 total RNA including microRNA was isolated from the pooled cells by miRNeasy Mini  
237 Kit (Qiagen, Hilden, Germany). Approximately 1000 ng RNA was used for microarray  
238 analysis using Affymetrix GeneChip miRNA 4.0 arrays (Affymetrix, Santa Clara, CA,  
239 USA) through Filgen Inc. (Nagoya, Japan). Briefly, the quality of total RNA was  
240 assessed using a Bioanalyzer 2100 (Agilent). Hybridization was performed using a  
241 FlashTag Biotin HSR RNA Labeling Kit, GeneChip Hybridization Oven 645, and  
242 GeneChip Fluidics Station 450. The arrays were scanned by Affymetrix GeneChip  
243 Scanner 3000 7G. The GeneChip miRNA 4.0 arrays contain 30,424 total mature  
244 miRNA probe sets including 2,578 mature human miRNAs, 2,025 pre-miRNA human  
245 probes, and 1,196 Human snoRNA and scaRNA probe sets.  
246

247 **Mouse infection assays**

248 Mouse infection assays were performed as previously described (17, 33, 44, 45).

249 For the lung infection model, CD-1 mice (Slc:ICR, 8 weeks, female) were infected

250 intratracheally with  $4.3\text{-}6.7 \times 10^6$  CFUs of *S. pneumoniae*. For intratracheal infection,

251 the vocal cords were visualized using an operating otoscope (Welch Allyn, NY, USA),

252 and 40  $\mu\text{L}$  of bacteria was placed onto the trachea using a plastic gel loading pipette tip.

253 Mouse survival was monitored twice daily for 14 days. At 24 h after intratracheal

254 infection, bronchoalveolar lavage fluid (BALF) was collected following perfusion with

255 PBS.

256 For the sepsis model, CD-1 mice (Slc:ICR, 8 weeks, female) were infected

257 intravenously with  $3.3\text{-}6.5 \times 10^5$  CFUs of *S. pneumoniae* via the tail vein. Mouse

258 survival was monitored twice daily for 14 days. At 24 and 48 h after infection, blood

259 aliquots were collected from mice following induction of general euthanasia. Brain,

260 lung, and liver samples were collected following perfusion with PBS. Brain and lung

261 whole tissues as well as the anterior segment of the liver were resected. Bacterial counts

262 in the blood as well as organ homogenates were determined by separately plating serial

263 dilutions, with organ counts corrected for differences in organ weight. Detection limits

264 were 50 CFUs/organ and 50 CFUs/mL in blood.

265 The concentrations of TNF- $\alpha$  in BALF and plasma were determined using a

266 Duoset<sup>®</sup> ELISA Kit (R&D Systems, Minneapolis, MN, USA). Mice plasma was

267 obtained by centrifuging the heparinized blood. All mouse experiments were conducted

268 in accordance with animal protocols approved by the Animal Care and Use Committees

269 at Osaka University Graduate School of Dentistry (28-002-0).

270

## 271 **Statistical analysis**

272 Statistical analysis of *in vitro* and *in vivo* experiments was performed using a

273 nonparametric analysis, Mann-Whitney *U* test, or Kruskal-Wallis test with Dunn's

274 multiple comparisons test. Mouse survival curves were compared using a log-rank test.

275  $p < 0.05$  was considered to indicate a significant difference. The tests were carried out

276 with Graph Pad Prism version 6.0h (GraphPad Software, Inc., San Diego, CA, USA).

277 **Results**

278 **The *pfbA* gene is specific to *S. pneumoniae* among mitis group *Streptococcus***

279 We searched *pfbA*-homologues by tBLASTn and performed phylogenetic analysis

280 (Fig. 1 and Supplementary Fig. 1). The *pfbA* gene homologues were identified in *S.*

281 *pneumoniae*, *Streptococcus pseudopneumoniae*, and *Streptococcus merionis*. Although

282 16S rRNA sequences cannot distinguish mitis group species, the 16S rRNA of

283 *Streptococcus* sp. strain W10853 showed 99.387% identity to that of *S.*

284 *pseudopneumoniae*. Interestingly, *S. pneumoniae*-related species such as *Streptococcus*

285 *mitis* and *Streptococcus oralis* did not contain the homologues, whereas *S. merionis* had

286 a gene of which the query cover and identity were over 50%. *S. merionis* strain

287 NCTC13788 (also known as WUE3771, DSM 19192, and CCUG 54871), isolated from

288 the oropharynges of Mongolian jirds (*Meriones unguiculatus*), contained 16S rRNA that

289 belongs in a cluster distinct from the mitis group (46). This result indicates that the *pfbA*

290 gene is specific to *S. pneumoniae* and *S. pseudopneumoniae* in the mitis group.

291

292 **PfbA contributes to evasion of neutrophil killing**

293 To investigate whether PfbA contributes to evasion of neutrophil killing, we  
294 determined pneumococcal survival rates after incubation with human neutrophils. After  
295 3 h incubation, the TIGR4  $\Delta pfbA$  strain showed a significantly decreased bacterial  
296 survival rate. In addition, to clarify whether the observed effects were attributed to PfbA,  
297 we also performed the assay with rPfbA. In the presence of 100 nM rPfbA, TIGR4  
298  $\Delta pfbA$  strain demonstrated a recovered survival rate nearly equal to that of the wild-type  
299 strain (Fig. 2A). In pneumococcal survival assays with neutrophil-like differentiated  
300 HL60 cells, TIGR4 strains showed similar results (Fig. 2B). We also performed the  
301 assay using the non-encapsulated strain R6 and human neutrophils. The R6  $\Delta pfbA$  strain  
302 showed significantly decreased survival rates as compared to the wild-type strain after  
303 incubation for 1, 2, and 3 h (Fig. 2C). As the R6 strain showed this phenotype at earlier  
304 time points than the TIGR4 strain, we performed pneumococcal survival assays using  
305 R6 strains with inhibitors (Fig. 2D). Neutrophil phagocytic killing of *S. pneumoniae*  
306 requires the serine proteases (47). Thus, we used a protein inhibitor cocktail as a  
307 positive control of a neutrophil killing inhibitor. While the R6  $\Delta pfbA$  strain showed  
308 significantly decreased survival rates at 1 h after incubation with human fresh

309 neutrophils in the absence of inhibitors, treatment with an actin polymerization inhibitor,  
310 cytochalasin D, reduced the differences among the wild-type and  $\Delta pfbA$  strains as well  
311 as the protein inhibitor cocktail. These results indicate that PfbA contributes to  
312 pneumococcal evasion of neutrophil phagocytosis.

313

314 **PfbA inhibits neutrophil phagocytosis directly**

315 We confirmed the anti-phagocytic activity of PfbA using flow cytometry and  
316 PfbA-coated fluorescent beads (Fig. 3A). The fluorescence intensity of neutrophils and  
317 monocytes incubated with PfbA-coated beads was substantially lower as compared with  
318 cells incubated with non- or BSA-coated beads. These results indicated that neutrophils  
319 and monocytes phagocytosed the non- and BSA-coated fluorescent beads, whereas the  
320 PfbA-coated fluorescent beads escaped phagocytosis by neutrophils and monocytes.

321 We performed real-time observations for time-lapse analysis of the interaction  
322 between *S. pneumoniae* and neutrophils (Fig. 3B). *S. pneumoniae* strain R6 wild-type  
323 and  $\Delta pfbA$  strains were separately incubated with fresh human neutrophils in RPMI  
324 1640 medium. After coming into contact with neutrophils, the  $\Delta pfbA$  strain was

325 phagocytosed within 1 min, whereas the wild-type strain was not phagocytosed after  
326 more than 5 min. Time-lapse analysis also showed the  $\Delta pfbA$  strain engulfed by  
327 neutrophil phagosomes. These results suggest that PfbA can directly inhibit  
328 phagocytosis.

329

330 **PfbA works as a TLR2 ligand and may inhibit phagocytosis through TLR2**

331 Some lectins of pathogens work as ligand for TLR2 and TLR4 (48). We previously  
332 reported that PfbA can interact with glycolipid and glycoprotein fractions of red blood  
333 cells, several monosaccharides, D-sucrose, and D-raffinose (26, 27). Hence, to determine  
334 whether PfbA works as a TLR ligand, we performed a SEAP assay using HEK-293 cells  
335 stably transfected with either TLR2 or TLR4, NF- $\kappa$ B, and SEAP (Fig. 4A). Pam3CSK4  
336 and Zymozan were used as positive controls for the TLR2 ligand, while LPS was used  
337 for TLR4. The SEAP assay indicated that pasteurized *S. pneumoniae* TIGR4 wild-type  
338 cells activated NF- $\kappa$ B via TLR2, whereas  $\Delta pfbA$  cells did not stimulate cells expressing  
339 either TLR2 or TLR4. Pasteurized rPfbA also activated NF- $\kappa$ B dose-dependently  
340 through TLR2, but not TLR4. In addition, in the presence of pasteurized rPfbA,  $\Delta pfbA$

341 cells activated the cells expressing TLR2. Thus, PfbA is responsible for pneumococcal

342 NF-κB activation through TLR2.

343 Next, to determine whether TLR signaling suppresses survival of pneumococci

344 incubated with neutrophils, we performed a neutrophil survival assay using a TIRAP

345 inhibitor peptide (Fig. 4B). Data are presented as the ratio calculated by dividing CFUs

346 in the presence of inhibitor peptide by CFUs in the presence of control peptide. TIRAP

347 is an adaptor protein involved in MyD88-dependent TLR2 and TLR4 signaling

348 pathways. Since the TIRAP inhibitor peptide blocks the interaction between TIRAP and

349 TLRs, the peptide works as a TLR2 and TLR4 inhibitor. The inhibitor peptide treatment

350 increased survival rates of the  $\Delta pfbA$  strain, but did not affect wild-type survival rates.

351 These results indicate that PfbA contributes to the evasion of neutrophil phagocytosis,

352 and TIRAP inhibitor treatment did not change survival rates of pneumococci incubated

353 with neutrophils. On the other hand, the *S. pneumoniae*  $\Delta pfbA$  strain is more easily

354 phagocytosed by neutrophils as compared to the wild-type strain, and this phenotype is

355 abolished by TIRAP inhibitor.

356        Stimulation of the human monocytic cell line THP1 by a TLR ligand, LPS, induces  
357        miR-146a/b expression in an NF-κB-dependent fashion, and this induction inhibits  
358        innate immune responses (49). In addition, pneumococcal infection of human  
359        macrophages induces expression of several microRNAs, including miR-146a, in a  
360        TLR-2-dependent manner, which prevents excessive inflammation (50). We performed  
361        microRNA array analysis using neutrophil like-differentiated HL60 cells, *S.*  
362        *pneumoniae* strains and rPfbA (Supplementary Fig. 2, Accession number: GSE128341).  
363        We compared rPfbA-treated and non-treated cells, wild type and  $\Delta pfbA$ -infected cells,  
364        and  $\Delta pfbA$  with and without rPfbA-infected cells. The analysis revealed only one  
365        microRNA, hsa-miR-1281, that was commonly downregulated by 2-fold or greater in  
366        the presence of PfbA as compared to in its absence (Supplementary Fig. 2, magenta  
367        circle). On the other hand, there were no commonly upregulated miRNAs, including  
368        miR-146a/b. In addition, the expression of eight microRNAs was commonly changed in  
369        wild-type infection and  $\Delta pfbA$  infection with rPfbA as compared to infection with  
370         $\Delta pfbA$  only. Five micro RNAs (hsa-miR-4674, hsa-miR-3613-3p, hsa-miR-4668-5p,  
371        hsa-miR-3197, and hsa-miR-6802-5p) were upregulated, while three (hsa-miR-3935,

372 hsa-miR-1281, and hsa-miR-3613-5p) were downregulated. However, the role of these

373 miRNAs in infectious process remains unclear.

374

375 **PfbA deficiency reduces pneumococcal burden in BALF but does not alter host**

376 **survival rate in a mouse pneumonia model**

377 To investigate the role of PfbA in pneumococcal pathogenesis, we infected mice

378 with *S. pneumoniae* strains intratracheally and compared bacterial CFUs and TNF- $\alpha$

379 levels in BALF from mice 24 h after infection. There were no differences observed in

380 survival time between mice infected with wild type and  $\Delta pfbA$  strains (Fig. 5A).

381 However, recovered CFUs of wild-type bacteria were significantly greater than those of

382  $\Delta pfbA$  strains in mouse BALF. In addition, the level of TNF- $\alpha$  in BALF was almost the

383 same in wild type and  $\Delta pfbA$  infection (Fig. 5B).

384

385 **PfbA deficiency increases pneumococcal pathogenicity in a mouse sepsis model**

386 We also investigated the role of PfbA in mice following intravenous infection as a

387 model of sepsis. In the infection model, the  $\Delta pfbA$  strain showed significantly higher

388 levels of virulence as compared to the wild-type strain (Fig. 6A). Furthermore, we  
389 compared the TNF- $\alpha$  levels in plasma and examined the bacterial burden in blood, brain,  
390 lung, and liver samples obtained at 24 and 48 h after intravenous infection (Fig. 6B, 6C  
391 and Supplementary Fig. 3). At 24 h after infection, TNF- $\alpha$  ELISA findings showed a  
392 significantly greater level in the plasma of *pfbA* mutant strain-infected mice as  
393 compared to the wild-type strain-infected mice. The numbers of CFUs of both the  
394 wild-type and *pfbA* mutant strains in the blood and brain samples were comparable. On  
395 the other hand, in the lung and liver samples, the *pfbA* mutant strain-infected mice  
396 showed slightly but significantly reduced numbers of CFUs as compared with the  
397 wild-type strain-infected mice. At 48 h after infection, there were no significant  
398 differences in TNF- $\alpha$  level and bacterial burden in each organ between the wild-type-  
399 and *pfbA* mutant strain-infected mice (Supplementary Fig. 3). Bacteria were not  
400 detected in the blood of two of the wild-type strain-infected mice and five of the *pfbA*  
401 mutant strain-infected mice. Meanwhile, three of the wild-type strain-infected mice  
402 yielded more than  $10^6$  CFUs/mL, while seven of the wild-type strain-infected mice did.

403 The *pfbA* mutant strain infection caused a polarized bacterial burden in the host at 48 h

404 after infection as compared to wild type infection.

405 **Discussion**

406 In the present study, we found that *pfbA* is a pneumococcal-specific gene that  
407 contributes to evasion of neutrophil phagocytosis. We determined that PfbA can activate  
408 NF-κB through TLR2. TIRAP inhibition increased the survival rate of  $\Delta pfbA$  strain  
409 incubated with neutrophils, while this inhibition did not affect a wild-type strain  
410 survival. In a mouse model with lung infection, the bacterial burden of the  $\Delta pfbA$  strain  
411 was significantly reduced as compared with that of wild-type strain, but the TNF- $\alpha$  level  
412 was comparable between the strains. Overall, there was no significant difference in the  
413 survival rates of mice infected with the wild-type *S. pneumoniae* strain- and those  
414 infected with the  $\Delta pfbA$  strain. Furthermore, in a mouse model with blood infection, the  
415  $\Delta pfbA$  strain showed a significantly higher TNF- $\alpha$  level than the wild-type strain. These  
416 results suggest that PfbA may suppress the host innate immune response by acting as an  
417 anti-phagocytic factor interacting with TLR2.

418 Prior studies have shown that *S. pneumoniae* under selective pressure can adapt to  
419 the environment by importing genes from other related streptococci, such as those in the  
420 mitis group (51-54). Although *S. mitis* and *S. oralis* are oral commensal bacteria, these

421 species contain various pneumococcal virulence factor homologues. Some mitis group  
422 strains harbor several choline-binding proteins including autolysins, pneumolysin,  
423 sialidases, and others (11, 55, 56). In this study, we found that *pfbA* homologues were  
424 absent among mitis group strains without *S. pneumoniae* for which whole genome  
425 sequences were available, whereas the *pfbA* gene is highly conserved among  
426 pneumococcal strains. Interestingly, a streptococcal species with clear evolutionary  
427 separation from the mitis group, *S. merionis*, contained a *pfbA* orthologue. This result  
428 indicates that *pfbA* is a pneumococcal-specific gene and that ancestral *S. pneumoniae*  
429 likely obtained the gene by horizontal gene transfer from non-mitis group streptococcal  
430 species.

431 Although lipoproteins are major TLR2 ligands as well as peptidoglycans in *S.*  
432 *pneumoniae* (19), we found that rPfbA can activate NF-κB solely in HEK293 cells  
433 expressing TLR2, but not those expressing TLR4. Since *E. coli* does not have the  
434 capacity to glycosylate proteins (57), rPfbA-mediated TLR2 activation would be  
435 independent of pneumococcal glycosylation. Plant and pathogen lectins can induce  
436 NF-κB activation through binding to TLR2 *N*-glycans, while a classical ligand such as

437 Pam3CSK4 can activate NF- $\kappa$ B glycan-independently (48). TLR2 has four *N*-glycans  
438 whose structures still remain unknown, and the *N*-glycans are critical for the lectins to  
439 induce TLR2-mediated activation (48). PfbA binds to various carbohydrates via the  
440 groove residues in the  $\beta$ -helix (26, 27). There is a possibility that PfbA induces TLR2  
441 signaling by binding to TLR2 *N*-glycans.

442 Human macrophages challenged with *S. pneumoniae* induce a negative feedback  
443 loop, preventing excessive inflammation via miR-146a and potentially other miRNAs  
444 on the TLR2-MyD88 axis (50). On the other hand, pneumococcal endopeptidase O  
445 enhances macrophage phagocytosis in a TLR2- and miR-155-dependent manner (58).  
446 Furthermore, miR-9 is induced by TLR agonists and functions in feedback control of  
447 the NF- $\kappa$ B-dependent responses in human monocytes and neutrophils (59). These  
448 studies indicate that host phagocytes are regulated by a complex combination of pattern  
449 recognition receptor signaling and miRNA induction. We predicted that PfbA  
450 suppresses phagocytosis via the induction of miRNAs in a TLR2 dependent fashion.  
451 However, an miRNA array showed that the levels of the involved miRNAs were not  
452 changed over 2-fold in the presence or absence of PfbA. One possible hypothesis is that

453 PfbA induces different miRNA responses from classical TLR ligands via  
454 glycan-dependent recognition. Although PfbA can downregulate miR-1281 in  
455 differentiated HL-60 cells, the role of miR-1281 in phagocytes remains unclear. Further  
456 comprehensive studies are required to investigate the role of miRNAs in host innate  
457 immunity.

458 Unexpectedly, our mouse pneumonia and sepsis models indicated that *pfbA*  
459 deficiency reduces pneumococcal survival in the host, but does not decrease or  
460 increases host mortality. We previously reported that PfbA works as an adhesin and  
461 invasin of host epithelial cells (22). The reduction of bacterial burden in host organs can  
462 be explained by the synergy of adhesive and anti-phagocytic abilities. On the other hand,  
463 the *S. pneumoniae*  $\Delta pfbA$  strain showed equivalent or greater induction of inflammatory  
464 cytokines as compared with the wild-type strain. Generally, a deficiency of TLR ligands  
465 would suppress inflammatory responses. However, a deficiency of PfbA would cause  
466 more efficient bacterial uptake by phagocytes and promote inflammatory responses. In  
467 addition, there is a possibility that the negative feedback loop induced by PfbA is lost  
468 and causes excess inflammation. High mortality does not mean bacterial success, as

469 host death leads to the limitation of bacterial reproduction. PfbA may be beneficial for  
470 pneumococcal species by increasing the bacterial reproductive number through  
471 suppression of host cell phagocytosis and host mortality. PfbA showed high specificity  
472 for and conservation in *S. pneumoniae* species. The assumed negative feedback loop  
473 may not be as significant in non-pathogenic mitis group *Streptococcus*.  
474 In single toxin-induced infectious diseases such as diphtheria and tetanus, highly  
475 safe and protective vaccines are established. On the other hand, in multiple  
476 factor-induced diseases such as those caused by *S. pneumoniae*, *S. pyogenes*, and so on,  
477 there are either no approved vaccines or existing vaccines still need optimization. Our  
478 study indicates that PfbA is a pneumococcal specific cell surface protein, which  
479 contributes to evasion from phagocytosis. Therefore, PfbA would not be suitable as a  
480 vaccine antigen, since the protein suppresses pneumococcal virulence in a mouse sepsis  
481 model. Further investigation of the intricate balance between host immunity and  
482 pathogenesis is required to establish the basis for drug and vaccine design.  
483

484 **Acknowledgements**

485 This study was supported by the Japanese Society for the Promotion of Science

486 (JSPS), KAKENHI [grant numbers 26861546, 15H05012, 16H05847, 16K15787,

487 17H05103, 17K11666, and 18K19643], the SECOM Science and Technology

488 Foundation, Takeda Science Foundation, GSK Japan Research Grant, Asahi Glass

489 Foundation, Kurata Memorial Hitachi Science and Technology Foundation, Kobayashi

490 International Scholarship Foundation, and the Naito Foundation.

491

492 **Author contributions**

493 M.Y. and S.K. designed the study. M.Y. performed bioinformatics analyses. M.Y.,

494 Y.H., M.T., and M.O. performed the experiments. M.Y., T.S., M.N., Y.T., and S.K.

495 contributed to the setup of the experiments. M.Y. wrote the manuscript. Y.H., M.T.,

496 M.O., T.S., M.N., Y.T., and S.K. contributed to the writing of the manuscript.

497

498 **Conflict of interest**

499 The authors declare that they have no competing interests.

500 **References**

- 501 1. Kawamura Y, Hou XG, Sultana F, Miura H, Ezaki T. 1995. Determination of  
502 16S rRNA sequences of *Streptococcus mitis* and *Streptococcus gordonii* and  
503 phylogenetic relationships among members of the genus *Streptococcus*. *Int J*  
504 *Syst Evol Microbiol* 45:406-8.
- 505 2. Richards VP, Palmer SR, Pavinski Bitar PD, Qin X, Weinstock GM, Highlander  
506 SK, Town CD, Burne RA, Stanhope MJ. 2014. Phylogenomics and the dynamic  
507 genome evolution of the genus *Streptococcus*. *Genome Biol Evol* 6:741-53.
- 508 3. Bogaert D, van Belkum A, Sluijter M, Luijendijk A, de Groot R, Rumke HC,  
509 Verbrugh HA, Hermans PW. 2004. Colonisation by *Streptococcus pneumoniae*  
510 and *Staphylococcus aureus* in healthy children. *Lancet* 363:1871-2.
- 511 4. Collaborators GL. 2017. Estimates of the global, regional, and national  
512 morbidity, mortality, and aetiologies of lower respiratory tract infections in 195  
513 countries: a systematic analysis for the Global Burden of Disease Study 2015.  
514 *Lancet Infect Dis* 17:1133-1161.
- 515 5. McIntyre PB, O'Brien KL, Greenwood B, van de Beek D. 2012. Effect of  
516 vaccines on bacterial meningitis worldwide. *Lancet* 380:1703-11.
- 517 6. WHO. 2017. WHO priority pathogens list for R&D of new antibiotics.  
518 <http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/>. Accessed  
519
- 520 7. Kim L, McGee L, Tomczyk S, Beall B. 2016. Biological and Epidemiological  
521 Features of Antibiotic-Resistant *Streptococcus pneumoniae* in Pre- and  
522 Post-Conjugate Vaccine Eras: a United States Perspective. *Clin Microbiol Rev*  
523 29:525-52.
- 524 8. Golubchik T, Brueggemann AB, Street T, Gertz RE, Jr., Spencer CC, Ho T,  
525 Giannoulatou E, Link-Gelles R, Harding RM, Beall B, Peto TE, Moore MR,  
526 Donnelly P, Crook DW, Bowden R. 2012. Pneumococcal genome sequencing  
527 tracks a vaccine escape variant formed through a multi-fragment recombination  
528 event. *Nat Genet* 44:352-5.
- 529 9. Flasche S, Van Hoek AJ, Sheasby E, Waight P, Andrews N, Sheppard C, George  
530 R, Miller E. 2011. Effect of pneumococcal conjugate vaccination on  
531 serotype-specific carriage and invasive disease in England: a cross-sectional

532 study. PLoS Med 8:e1001017.

533 10. Lofling J, Vimberg V, Battig P, Henriques-Normark B. 2011. Cellular  
534 interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal  
535 homologues. Cell Microbiol 13:186-97.

536 11. Hakenbeck R, Madhour A, Denapaité D, Bruckner R. 2009. Versatility of  
537 choline metabolism and choline-binding proteins in *Streptococcus pneumoniae*  
538 and commensal streptococci. FEMS Microbiol Rev 33:572-86.

539 12. Mitchell AM, Mitchell TJ. 2010. *Streptococcus pneumoniae*: virulence factors  
540 and variation. Clin Microbiol Infect 16:411-8.

541 13. Weiser JN, Ferreira DM, Paton JC. 2018. *Streptococcus pneumoniae*:  
542 transmission, colonization and invasion. Nat Rev Microbiol 16:355-367.

543 14. Ren B, McCrory MA, Pass C, Bullard DC, Ballantyne CM, Xu Y, Briles DE,  
544 Szalai AJ. 2004. The virulence function of *Streptococcus pneumoniae* surface  
545 protein A involves inhibition of complement activation and impairment of  
546 complement receptor-mediated protection. J Immunol 173:7506-12.

547 15. Dave S, Carmicle S, Hammerschmidt S, Pangburn MK, McDaniel LS. 2004.  
548 Dual roles of PspC, a surface protein of *Streptococcus pneumoniae*, in binding  
549 human secretory IgA and factor H. J Immunol 173:471-7.

550 16. Gutierrez-Fernandez J, Saleh M, Alcorlo M, Gomez-Mejia A, Pantoja-Uceda D,  
551 Trevino MA, Voss F, Abdullah MR, Galan-Bartual S, Seinen J, Sanchez-Murcia  
552 PA, Gago F, Bruix M, Hammerschmidt S, Hermoso JA. 2016. Modular  
553 Architecture and Unique Teichoic Acid Recognition Features of  
554 Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis.  
555 Sci Rep 6:38094.

556 17. Yamaguchi M, Goto K, Hirose Y, Yamaguchi Y, Sumitomo T, Nakata M, Nakano  
557 K, Kawabata S. 2019. Identification of evolutionarily conserved virulence factor  
558 by selective pressure analysis of *Streptococcus pneumoniae*. Commun Biol 2:96.

559 18. Koppe U, Suttorp N, Opitz B. 2012. Recognition of *Streptococcus pneumoniae*  
560 by the innate immune system. Cell Microbiol 14:460-6.

561 19. Tomlinson G, Chimalapati S, Pollard T, Lapp T, Cohen J, Camberlein E,  
562 Stafford S, Periselneris J, Aldridge C, Vollmer W, Picard C, Casanova JL,  
563 Noursadeghi M, Brown J. 2014. TLR-mediated inflammatory responses to  
564 *Streptococcus pneumoniae* are highly dependent on surface expression of

565 bacterial lipoproteins. *J Immunol* 193:3736-45.

566 20. Sabroe I, Dower SK, Whyte MK. 2005. The role of Toll-like receptors in the  
567 regulation of neutrophil migration, activation, and apoptosis. *Clin Infect Dis* 41  
568 Suppl 7:S421-6.

569 21. Richard AL, Siegel SJ, Erikson J, Weiser JN. 2014. TLR2 signaling decreases  
570 transmission of *Streptococcus pneumoniae* by limiting bacterial shedding in an  
571 infant mouse Influenza A co-infection model. *PLoS Pathog* 10:e1004339.

572 22. Yamaguchi M, Terao Y, Mori Y, Hamada S, Kawabata S. 2008. PfbA, a novel  
573 plasmin- and fibronectin-binding protein of *Streptococcus pneumoniae*,  
574 contributes to fibronectin-dependent adhesion and antiphagocytosis. *J Biol  
575 Chem* 283:36272-9.

576 23. Yamaguchi M. 2018. Synergistic findings from microbiological and evolutional  
577 analyses of virulence factors among pathogenic streptococcal species. *Journal of  
578 Oral Biosciences* 60:36-40.

579 24. Suits MD, Boraston AB. 2013. Structure of the *Streptococcus pneumoniae*  
580 surface protein and adhesin PfbA. *PLoS One* 8:e67190.

581 25. Beulin DS, Yamaguchi M, Kawabata S, Ponnuraj K. 2014. Crystal structure of  
582 PfbA, a surface adhesin of *Streptococcus pneumoniae*, provides hints into its  
583 interaction with fibronectin. *Int J Biol Macromol* 64:168-73.

584 26. Beulin DSJ, Radhakrishnan D, Suresh SC, Sadasivan C, Yamaguchi M,  
585 Kawabata S, Ponnuraj K. 2017. *Streptococcus pneumoniae* surface protein PfbA  
586 is a versatile multidomain and multiligand-binding adhesin employing different  
587 binding mechanisms. *FEBS J* 284:3404-3421.

588 27. Radhakrishnan D, Yamaguchi M, Kawabata S, Ponnuraj K. 2018. *Streptococcus  
589 pneumoniae* surface adhesin PfbA and its interaction with erythrocytes and  
590 hemoglobin. *Int J Biol Macromol* 120:135-143.

591 28. Mori Y, Yamaguchi M, Terao Y, Hamada S, Ooshima T, Kawabata S. 2012.  
592  $\alpha$ -Enolase of *Streptococcus pneumoniae* induces formation of neutrophil  
593 extracellular traps. *J Biol Chem* 287:10472-81.

594 29. Bricker AL, Camilli A. 1999. Transformation of a type 4 encapsulated strain of  
595 *Streptococcus pneumoniae*. *FEMS Microbiol Lett* 172:131-5.

596 30. Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC. 1979. Normal functional  
597 characteristics of cultured human promyelocytic leukemia cells (HL-60) after

598 induction of differentiation by dimethylsulfoxide. *J Exp Med* 149:969-74.

599 31. Wen X, Jin T, Xu X. 2016. Imaging G Protein-coupled Receptor-mediated  
600 Chemotaxis and its Signaling Events in Neutrophil-like HL60 Cells. *J Vis Exp*  
601 doi:10.3791/54511.

602 32. Yamaguchi M, Hirose Y, Nakata M, Uchiyama S, Yamaguchi Y, Goto K,  
603 Sumitomo T, Lewis AL, Kawabata S, Nizet V. 2016. Evolutionary inactivation  
604 of a sialidase in group B *Streptococcus*. *Sci Rep* 6:28852.

605 33. Yamaguchi M, Nakata M, Sumioka R, Hirose Y, Wada S, Akeda Y, Sumitomo T,  
606 Kawabata S. 2017. Zinc metalloproteinase ZmpC suppresses experimental  
607 pneumococcal meningitis by inhibiting bacterial invasion of central nervous  
608 systems. *Virulence* 8:1516-1524.

609 34. Gertz EM, Yu YK, Agarwala R, Schaffer AA, Altschul SF. 2006.  
610 Composition-based statistics and translated nucleotide searches: improving the  
611 TBLASTN module of BLAST. *BMC Biol* 4:41.

612 35. Tanabe AS. 2008. Phylogears2 ver. 2.0. <http://www.fifthdimension.jp/>.  
613 Accessed

614 36. Venditti C, Meade A, Pagel M. 2006. Detecting the node-density artifact in  
615 phylogeny reconstruction. *Syst Biol* 55:637-43.

616 37. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software  
617 version 7: improvements in performance and usability. *Mol Biol Evol*  
618 30:772-80.

619 38. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. 2009. Jalview  
620 Version 2--a multiple sequence alignment editor and analysis workbench.  
621 *Bioinformatics* 25:1189-91.

622 39. Talavera G, Castresana J. 2007. Improvement of phylogenies after removing  
623 divergent and ambiguously aligned blocks from protein sequence alignments.  
624 *Syst Biol* 56:564-77.

625 40. Tanabe AS. 2011. Kakusan4 and Aminosan: two programs for comparing  
626 nonpartitioned, proportional and separate models for combined molecular  
627 phylogenetic analyses of multilocus sequence data. *Mol Ecol Resour* 11:914-21.

628 41. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget  
629 B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian  
630 phylogenetic inference and model choice across a large model space. *Syst Biol*

631 61:539-42.

632 42. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and  
633 post-analysis of large phylogenies. *Bioinformatics* 30:1312-3.

634 43. Rambaut A. 2014. FigTree ver.1.4.2.  
635 <http://tree.bio.ed.ac.uk/software/figtree/>. Accessed

636 44. Okerblom JJ, Schwarz F, Olson J, Fletes W, Ali SR, Martin PT, Glass CK, Nizet  
637 V, Varki A. 2017. Loss of CMAH during Human Evolution Primed the  
638 Monocyte-Macrophage Lineage toward a More Inflammatory and Phagocytic  
639 State. *J Immunol* 198:2366-2373.

640 45. Hirose Y, Yamaguchi M, Goto K, Sumitomo T, Nakata M, Kawabata S. 2018.  
641 Competence-induced protein Ccs4 facilitates pneumococcal invasion into brain  
642 tissue and virulence in meningitis. *Virulence* 9:1576-1587.

643 46. Tappe D, Pukall R, Schumann P, Gronow S, Spiliotis M, Claus H, Brehm K,  
644 Vogel U. 2009. *Streptococcus merionis* sp. nov., isolated from *Mongolian jirds*  
645 (*Meriones unguiculatus*). *Int J Syst Evol Microbiol* 59:766-70.

646 47. Standish AJ, Weiser JN. 2009. Human neutrophils kill *Streptococcus*  
647 *pneumoniae* via serine proteases. *J Immunol* 183:2602-9.

648 48. Ricci-Azevedo R, Roque-Barreira MC, Gay NJ. 2017. Targeting and  
649 Recognition of Toll-Like Receptors by Plant and Pathogen Lectins. *Front  
650 Immunol* 8:1820.

651 49. Taganov KD, Boldin MP, Chang KJ, Baltimore D. 2006. NF-κB-dependent  
652 induction of microRNA miR-146, an inhibitor targeted to signaling proteins of  
653 innate immune responses. *Proc Natl Acad Sci U S A* 103:12481-6.

654 50. Griss K, Bertrams W, Sittka-Stark A, Seidel K, Stielow C, Hippenstiel S, Suttorp  
655 N, Eberhardt M, Wilhelm J, Vera J, Schmeck B. 2016. MicroRNAs Constitute a  
656 Negative Feedback Loop in *Streptococcus pneumoniae*-Induced Macrophage  
657 Activation. *J Infect Dis* 214:288-99.

658 51. Bek-Thomsen M, Poulsen K, Kilian M. 2012. Occurrence and evolution of the  
659 paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD in  
660 *Streptococcus pneumoniae* and related commensal species. *MBio* 3: e00303-12.

661 52. Kilian M, Riley DR, Jensen A, Bruggemann H, Tettelin H. 2014. Parallel  
662 evolution of *Streptococcus pneumoniae* and *Streptococcus mitis* to pathogenic  
663 and mutualistic lifestyles. *MBio* 5:e01490-14.

664 53. Jensen A, Valdorsson O, Frimodt-Møller N, Hollingshead S, Kilian M. 2015. Commensal streptococci serve as a reservoir for  $\beta$ -lactam resistance genes in *Streptococcus pneumoniae*. *Antimicrob Agents Chemother* 59:3529-40.

665 54. Skov Sorensen UB, Yao K, Yang Y, Tettelin H, Kilian M. 2016. Capsular Polysaccharide Expression in Commensal *Streptococcus* Species: Genetic and Antigenic Similarities to *Streptococcus pneumoniae*. *MBio* 7:e01844-16.

666 55. Kilian M, Poulsen K, Blomqvist T, Havarstein LS, Bek-Thomsen M, Tettelin H, Sorensen UB. 2008. Evolution of *Streptococcus pneumoniae* and its close commensal relatives. *PLoS One* 3:e2683.

667 56. Johnston C, Hinds J, Smith A, van der Linden M, Van Eldere J, Mitchell TJ. 2010. Detection of large numbers of pneumococcal virulence genes in streptococci of the mitis group. *J Clin Microbiol* 48:2762-9.

668 57. Clausen H, Wandall HH, Steentoft C, Stanley P, Schnaar RL. 2015. Glycosylation Engineering, p 713-728. In Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH (ed), *Essentials of Glycobiology*, 3rd edition doi:10.1101/glycobiology.3e.056. Cold Spring Harbor Laboratory Press, New York.

669 58. Yao H, Zhang H, Lan K, Wang H, Su Y, Li D, Song Z, Cui F, Yin Y, Zhang X. 2017. Purified *Streptococcus pneumoniae* Endopeptidase O (PepO) Enhances Particle Uptake by Macrophages in a Toll-Like Receptor 2- and miR-155-Dependent Manner. *Infect Immun* 85.

670 59. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L, Tamassia N, Mantovani A, Cassatella MA, Locati M. 2009. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. *Proc Natl Acad Sci U S A* 106:5282-7.

690

691

692 **Figure Legends**

693 **Figure 1. Bayesian phylogenetic analysis of the *pfbA* gene.**

694 The codon-based Bayesian phylogenetic relationship was calculated using the MrBayes  
695 program. Strains with identical sequences are listed on the same branch. The percentage  
696 of posterior probabilities is shown near the nodes. The scale bar indicates nucleotide  
697 substitutions per site.

698

699 **Figure 2. PfbA contributes to pneumococcal survival after incubation with**

700 **neutrophils. A.** Growth of TIGR4 strains incubated with human fresh neutrophils. **B.**

701 Growth of TIGR4 strains incubated with neutrophil-like differentiated HL-60 cells.

702 Bacterial cells were incubated with human neutrophils or differentiated HL-60 cells in

703 the presence or absence of rPfbA for 1, 2, and 3 h at 37°C in a 5% CO<sub>2</sub> atmosphere.

704 Next, the mixture was serially diluted and plated on TS blood agar. Following

705 incubation, the number of CFUs was determined. Growth index was calculated by

706 dividing CFUs after incubation by CFUs of the original inoculum. **C.** Growth of R6

707 strains incubated with human fresh neutrophils. *S. pneumoniae* strains were added to

708 human neutrophils without serum and gently mixed for 1, 2, or 3 h at 37°C. Next, the  
709 mixtures were serially diluted and plated on TS blood agar. After incubation, the  
710 number of CFUs was determined. **D.** Growth of R6 strains incubated with human fresh  
711 neutrophils in the presence of inhibitors. *S. pneumoniae* strains were added to human  
712 neutrophils with or without cytochalasin D, or protease inhibitor cocktail in the absence  
713 of serum, then gently mixed for 1 h at 37°C. The percent bacterial survival was  
714 calculated based on viable counts relative to the wild-type strain. These data are  
715 presented as the mean values of six samples, with S.E. values represented by vertical  
716 lines. Differences between several groups were analyzed using a Kruskal-Wallis test  
717 followed by Dunn's multiple comparisons test (A, B). The Mann-Whitney's U test was  
718 used to compare differences between two independent groups (C, D). Three  
719 experiments were performed, with data from a representative experiment is shown.  
720

721 **Figure 3. PfbA suppresses host cell phagocytosis. A.** Uptake of fluorescent  
722 PfbA-coated beads by neutrophils and monocytes. Human neutrophils and monocytes  
723 were separately incubated with PfbA-, BSA-, or non-coated fluorescent beads for 1 h at

724 37°C. Phagocytic activities were analyzed using flow cytometry. Data are presented as  
725 histograms. The value shown for the percent of maximum was determined by dividing  
726 the number of cells in each bin by the number of cells in the bin that contained the  
727 largest number of cells. The bin is shown as a numerical range for the parameter on the  
728 X-axis. **B.** Time-lapse analysis of the interaction between *S. pneumoniae* and  
729 neutrophils. *S. pneumoniae* wild-type and  $\Delta pfbA$  strains were incubated with neutrophils.  
730 The elapsed times from contact with neutrophils are shown in the upper part of the  
731 figures. Arrows indicate when *S. pneumoniae* cells contacted neutrophils. Arrowheads  
732 indicate *S. pneumoniae* engulfed by a neutrophil phagosome.  
733

734 **Figure 4. PfbA activates NF-κB via TLR2, and TLR2/4 inhibitor enhances  $\Delta pfbA$**   
735 **strain survival. A.** Secreted alkaline phosphatase (SEAP) porter assay using  
736 TLR2/NF-κB/ SEAporter or TLR4/MD-2/CD14/NF-κB SEAporter HEK293 cell lines.  
737 The cells were plated in 24-well plates at  $5 \times 10^5$  cells/well. After 24 h, cells were  
738 stimulated with various amount of rPfbA, pasteurized *S. pneumoniae* ( $\sim 5 \times 10^6$  CFU), 1  
739  $\mu\text{g}/\text{mL}$  Pam3CSK4, 10  $\mu\text{g}/\text{mL}$  Zymozan, or 25 ng/mL LPS for 24 h. SEAP was

740 analyzed using the SEAPorter Assay Kit. Data are presented as the mean of six wells.

741 SE values are represented by vertical lines. Differences in pneumococcal infection

742 group and rPfbA addition group were analyzed using a Kruskal-Wallis test followed by

743 Dunn's multiple comparisons test, respectively. **B.** TLR2/4 inhibitor peptide enhances

744 survival of the TIGR4  $\Delta pfbA$  strain incubated with human neutrophils. *S. pneumoniae*

745 TIGR4 wild type strain or  $\Delta pfbA$  strain bacteria were incubated with human neutrophils

746 in the presence of TLR2/4 inhibitor peptide or control peptide. After 1, 2, and 3 h, the

747 mixture was serially diluted and plated on TS blood agar. Following incubation, the

748 number of CFUs was determined. The CFU ratio was calculated by dividing CFUs in

749 the presence of inhibitor peptide by CFUs in the presence of control peptide. Data are

750 presented as the mean of six wells. S.E. values are represented by vertical lines.

751 Differences between groups were analyzed using Mann-Whitney's U test.

752

753

754 **Figure 5. In a mouse pneumonia model, deficiency of *pfbA* decreases pneumococcal**

755 **burden in the lung but does not affect host mortality. A.** CD-1 mice were infected

756 intratracheally with the *S. pneumoniae* TIGR4 wild-type or  $\Delta pfbA$  strain ( $3-18 \times 10^6$   
757 CFUs). Mice survival was recorded for 14 days. The differences between groups were  
758 analyzed using a log-rank test. **B.** Bacterial CFUs and TNF- $\alpha$  in BALF collected from  
759 CD-1 mice after intratracheal infection with *S. pneumoniae*. CD-1 mice were infected  
760 intratracheally with the *S. pneumoniae* TIGR4 wild type or  $\Delta pfbA$  strain ( $4-7 \times 10^6$   
761 CFUs). BALF was collected at 24 h after pneumococcal infection, and bacterial CFUs  
762 and TNF- $\alpha$  levels in the BALF were determined. S.E. values are represented by vertical  
763 lines. Statistical differences between groups were analyzed using Mann-Whitney's U  
764 test. The data obtained from three independent experiments were pooled.

765

766 **Figure 6. In a mouse sepsis model, the deficiency of *pfbA* increases the virulence**  
767 **and TNF- $\alpha$  level in blood but decreases the bacterial burden in the lung and liver.**

768 CD-1 mice were infected intravenously with the *S. pneumoniae* TIGR4 wild type or  
769  $\Delta pfbA$  strain ( $3-6 \times 10^6$  CFUs). **A.** Mouse survival was monitored for 14 days.  
770 Statistical differences between groups were analyzed using a log-rank test. **B.** CD-1  
771 mice were infected intravenously with the *S. pneumoniae* TIGR4 wild type or  $\Delta pfbA$

772 strain ( $6.9 \times 10^6$  CFUs). Plasma samples were collected from these mice at 24 h after  
773 infection. Values are presented as the mean of 16 or 18 samples. Vertical lines represent  
774 the mean  $\pm$  S.E. Statistical differences between groups were analyzed using  
775 Mann-Whitney's U test. **C.** The bacterial burden in the blood, brain, lung, and liver  
776 were assessed after 24 h of infection. S.E. values are represented by vertical lines. All  
777 mice were perfused with PBS after blood collection, organ samples were collected.  
778 Statistical differences between groups were analyzed using Mann-Whitney's U test. The  
779 mouse survival data were obtained from three independent experiments, and the TNF- $\alpha$   
780 level and bacterial burden values obtained from two independent experiments were  
781 pooled.

782

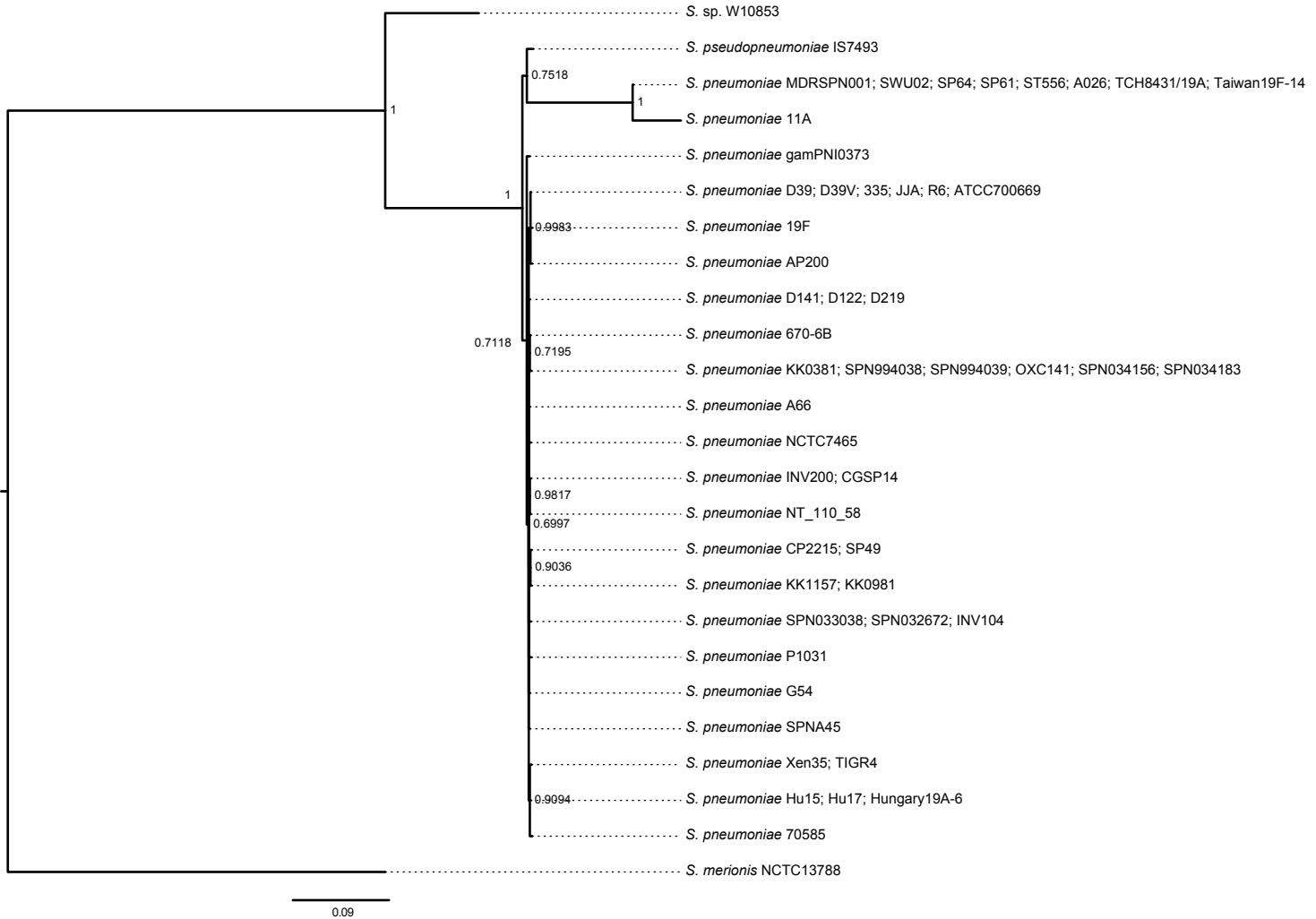



Figure 1. Yamaguchi *et al.*

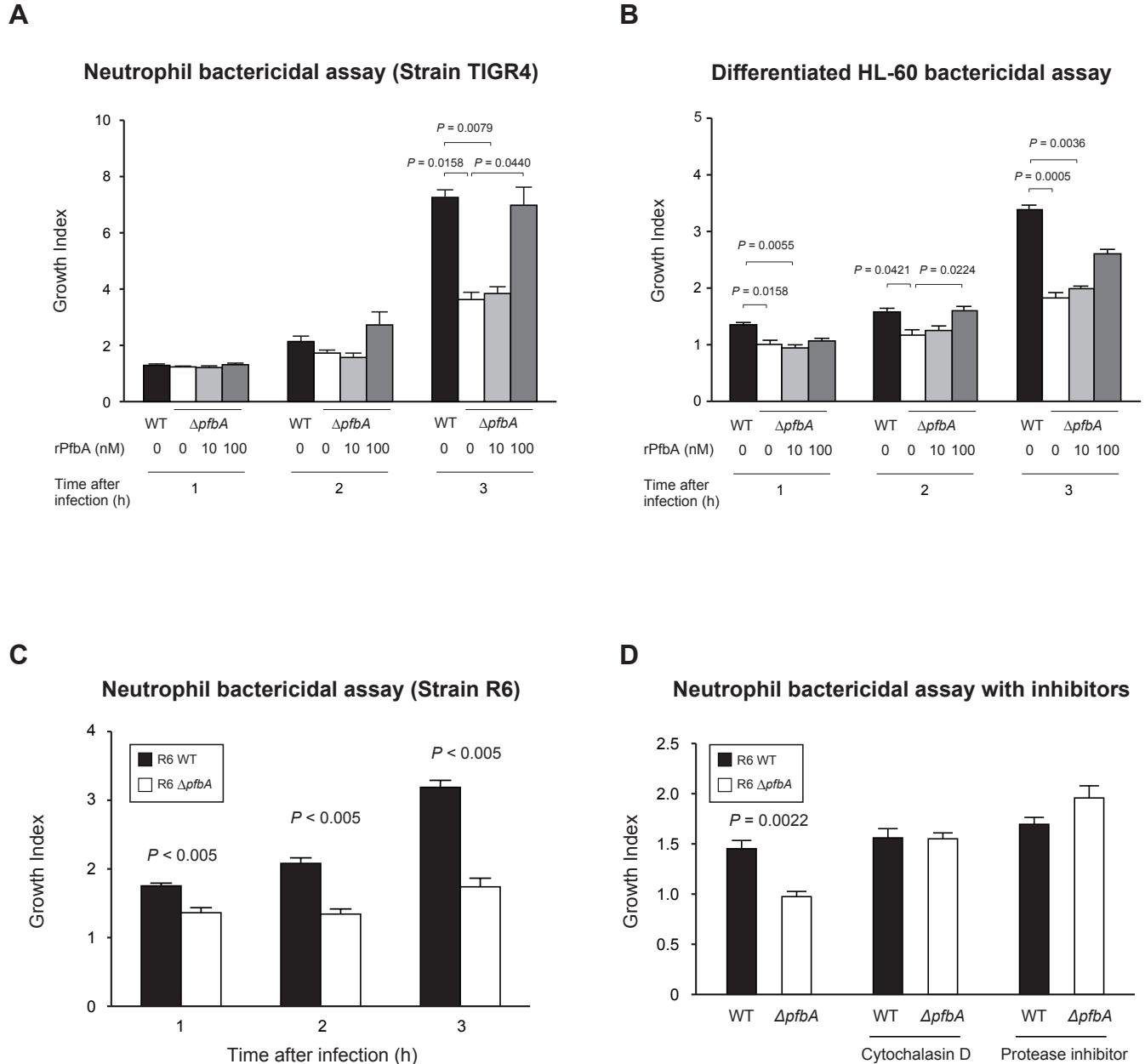
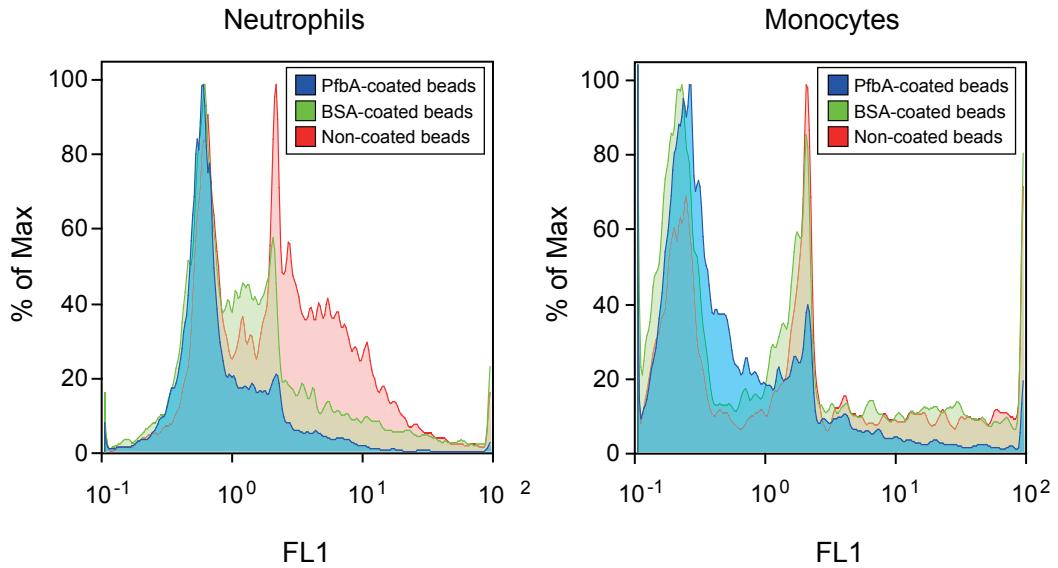




Figure 2. Yamaguchi *et al.*

**A**



**B**

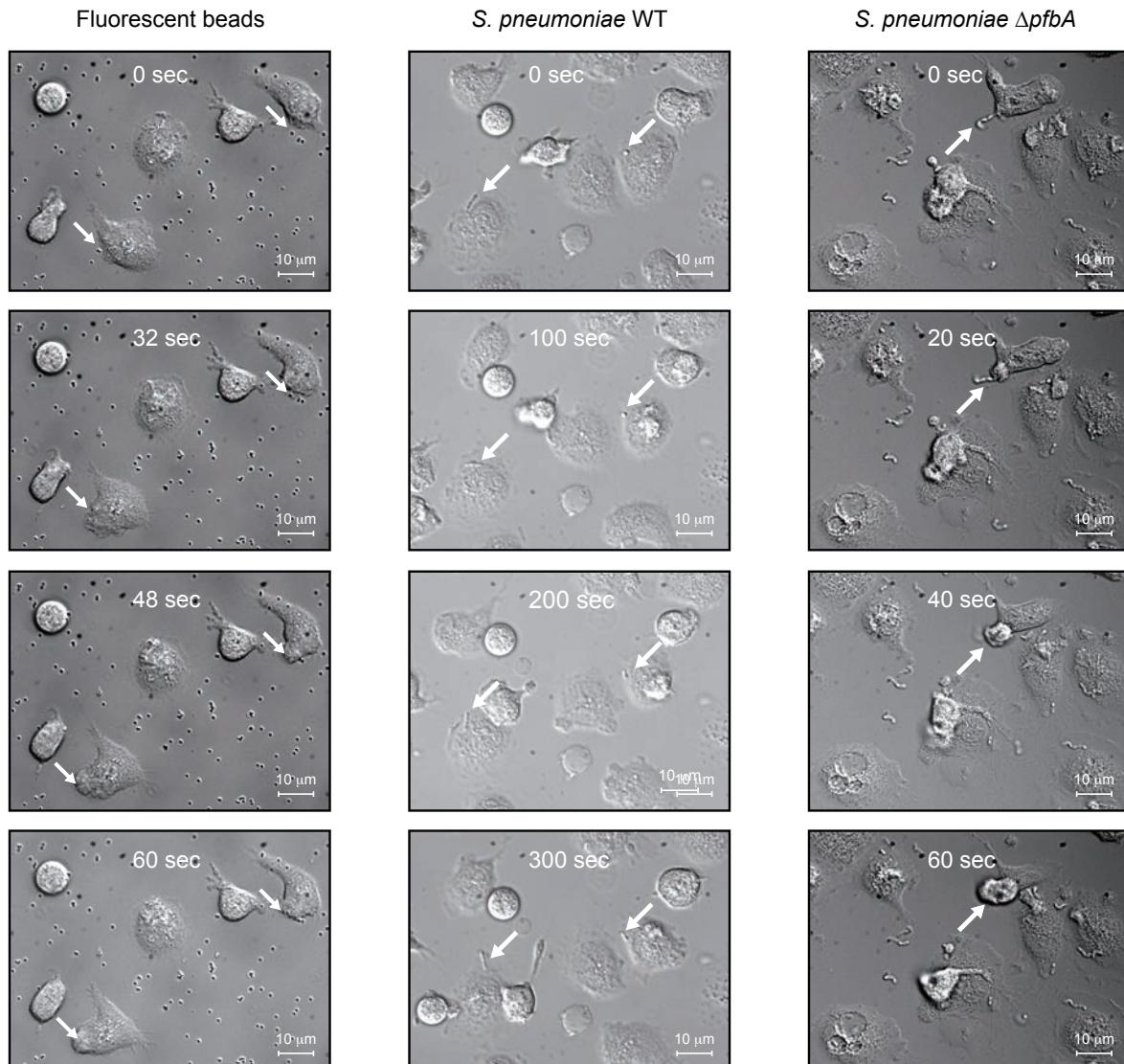
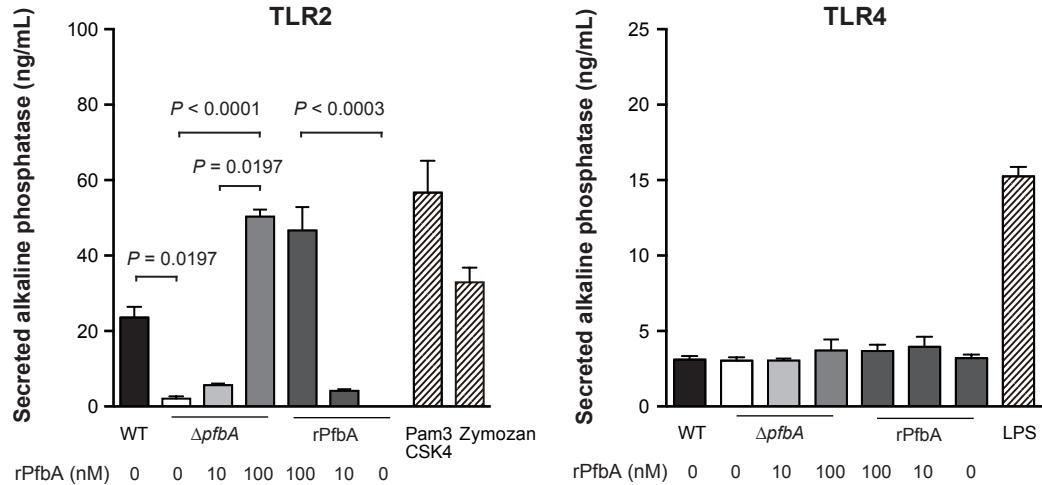




Figure 3. Yamaguchi *et al.*

**A**



**B**

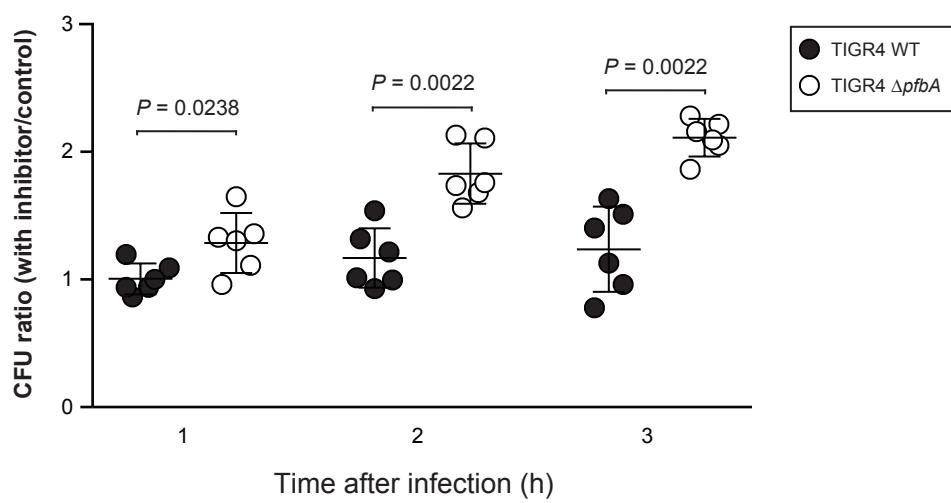
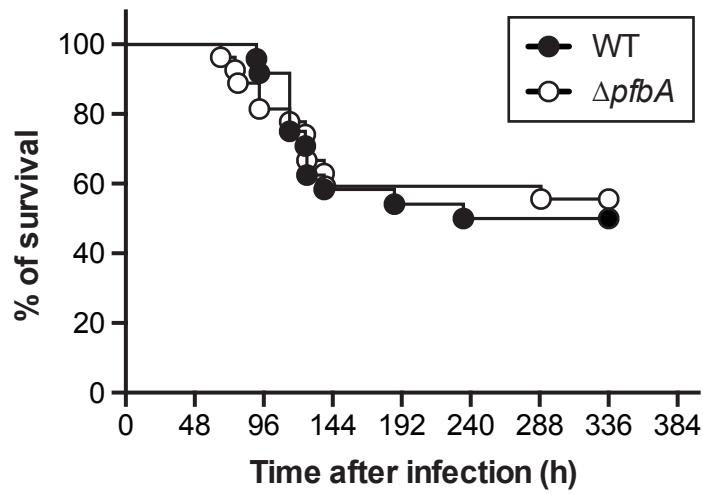




Figure 4. Yamaguchi *et al.*

A



B

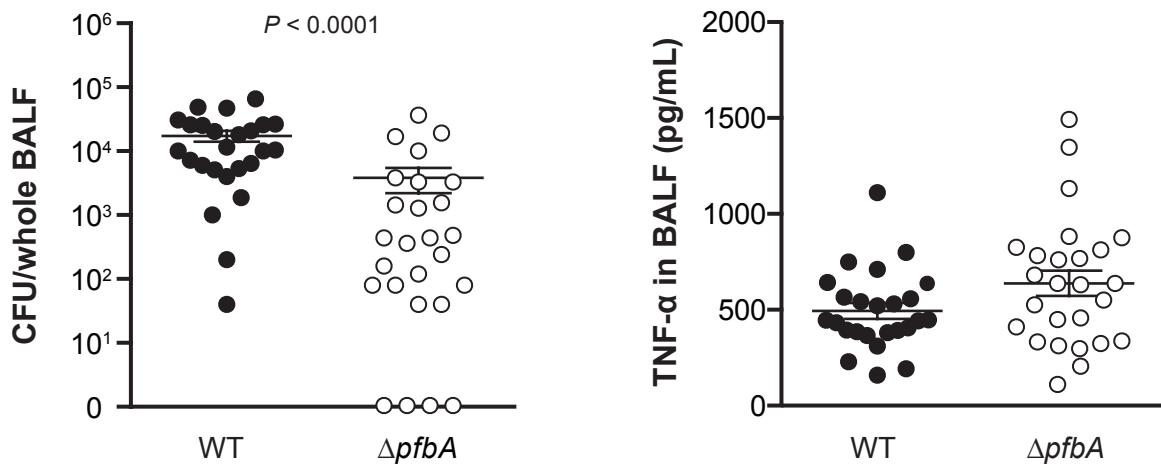



Figure 5. Yamaguchi *et al.*

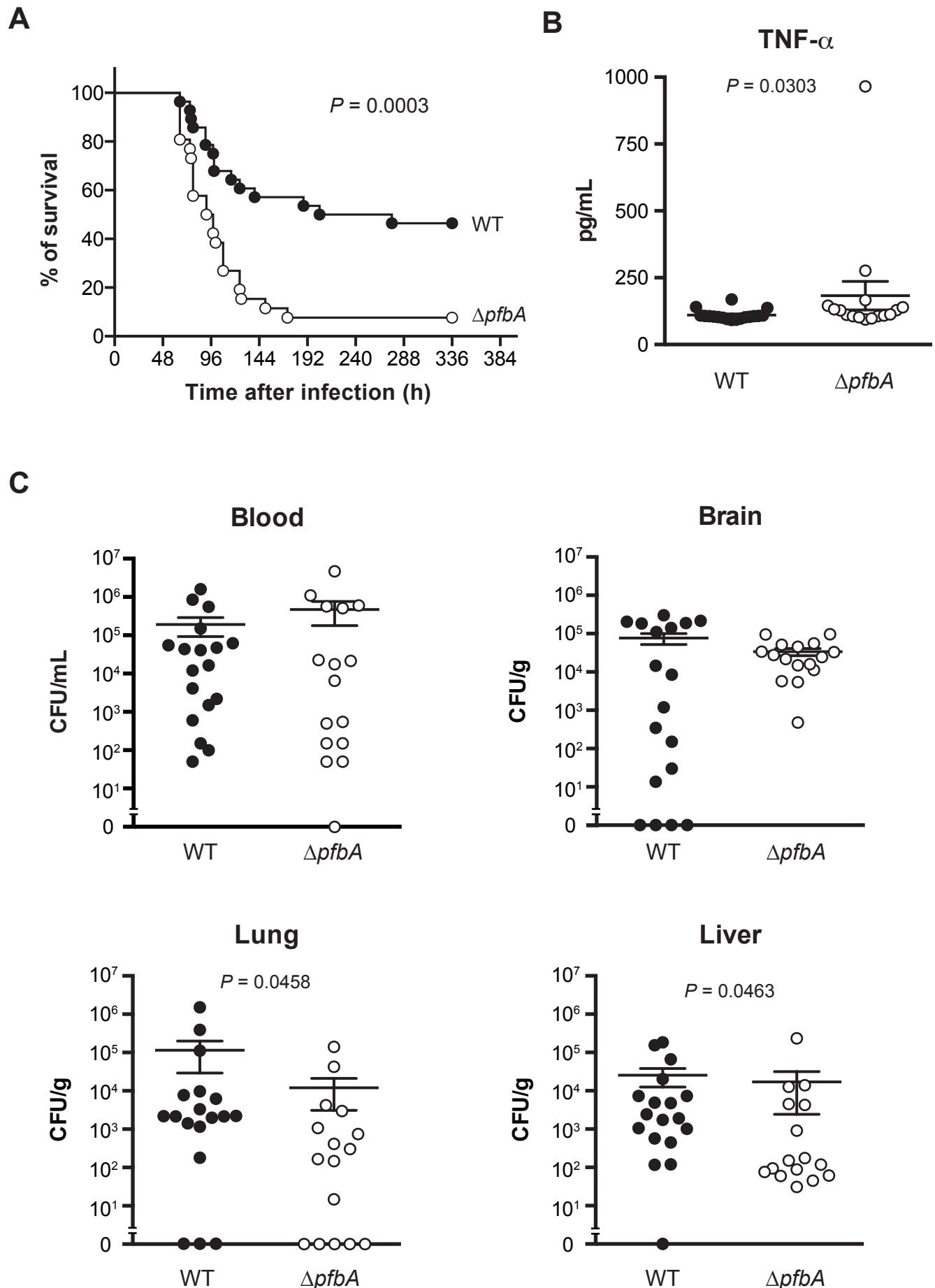



Figure 6. Yamaguchi *et al.*