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Abstract

The present and future of large scale studies of human brain and behavior—in
typical and disease populations—is “mutli-omics”, “deep-phenotyping”, or other types
of multi-source and multi-domain data collection initiatives. These massive studies
rely on highly interdisciplinary teams that collect extremely diverse types of data
across numerous systems and scales of measurement (e.g., genetics, brain structure,
behavior, and demographics). Such large, complex, and heterogeneous data requires
relatively simple methods that allow for flexibility in analyses without the loss of
the inherent properties of various data types. Here we introduce a method designed

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (http://adni.loni.usc.edu/). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI and/or provided data but did not par-
ticipate in analysis or writing of this report. A complete listing of ADNI investigators can be found at
http://adni.loni.ucla.edu/wpcontent /uploads/how to_apply/ADNI Acknowledgement List.pdf
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specifically to address these problems: partial least squares-correspondence analysis-
regression (PLS-CA-R). PLS-CA-R generalizes PLS regression for use with virtually
any data type (e.g., continuous, ordinal, categorical, non-negative values). Though
the primary emphasis here is on a PLS-regression approach generalized for data types,
we also show that PLS-CA-R leads to additional generalizations of many routine “two-
table” multivariate techniques and their respective algorithms, such as various PLS
approaches, canonical correlation analysis, and redundancy analysis (a.k.a. reduced
rank regression).

Keywords: generalized singular value decomposition, latent models, genetics, neuroimaging,
canonical correlation analysis
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1 Introduction

Today’s large scale and multi-site studies, such as the UK BioBank (https://www.ukbiobank.
ac.uk/)) and the Rotterdam study (http://www.erasmus-epidemiology.nl/), collect pop-
ulation level data across numerous types and modalities, including but not limited to ge-
netics, neurological, and various behavioral, clinical, and laboratory measures. Similarly,
other types of large scale studies—typically those that emphasize diseases and disorders—
collect more “depth” of data for each participant: many measures and modalities on smaller
samples. Some such studies include the Ontario Neurodegenerative Disease Research Ini-
tiative (ONDRI) (Farhan et al.|2016) which includes genetics, multiple types of magnetic
resonance brain imaging (Duchesne et al.[[2019), a wide array of behavioral, cognitive, clin-
ical, and laboratory batteries, as well as many modalities “between” those, such as ocular
imaging, gait & balance (Montero-Odasso et al.|2017), eye tracking, and neuropathology.
Though large samples (e.g., UK BioBank) and depth of data (e.g., ONDRI) are necessary
to understand typical and disordered samples and populations, few statistical and machine
learning approaches exist that easily accomodate such large (whether “big” or “wide”), com-
plex, and heterogeneous data sets that also respect the inherent properties of such data,
while also accomodating numerous issues such as numerous predictors and responses, latent
effects, high collinearity, and rank deficiency.

In many cases, the mixture of data types results in the sacrifices of information and
inference, due in part because of transformations or assumptions that may be inappro-
priate or incorrect. For example, to analyze categorical and continuous data together, a
typical—but inappropriate—strategy is to recode the continous data into categories such
as dichotomization, trichotomization, or other (often arbitrary) binning strategies. Fur-
thermore, ordinal and Likert scale data—such as responses on many cognitive, behavioral,
clinical, and survey instruments—are often incorrectly treated as metric or continuous val-
ues (Biirkner & Vuorre/n.d.). And when it comes to genetic data, such as single nucleotide
polymorphims (SNPs), there is almost exclusive use of the additive model based on the
minor homozygote: 0 for the most major homozygote, 1 for the heterozygote, and 2 for the
minor homozygote. The additive model holds as nearly exclusive even though other models

(e.g., dominant, recessive) or more general models (i.e., genotypic) exist and perform better
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(Lettre et al.[2007)). Furthermore, {0, 1, 2} recoding of genotypes (1) presumes additive and
linear effects based on the minor homozygote and (2) are often treated as metric/continuous
values (as opposed to categorical or ordinal), even when known effects of risk are neither
linear nor additive, such as haplotypic effects (Vormfelde & Brockmoller 2007) nor exclu-
sively based on the minor homozygotes, such as ApoE in Alzheimer’s Disease (Genin et al.
2011]).

Here we introduce partial least squares-correspondence analysis-regression (PLS-CA-
R): a regression modeling and latent variable approach better suited for the complex data
sets of today’s studies. We first show PLS-CA-R as a generalization of PLS regression
(Wold! |1975, [Wold et al.| 1984, Tenenhaus| 1998, |Abdi 2010), CA (Greenacre |1984, 2010,
Lebart et al.[|1984), and PLS-CA (Beaton et al.|2016))—the last of which is the “correlation”
companion to, and basis of, the proposed PLS-CA-R method. We then illustrate PLS-CA-R
as a data-type general PLS regression method. PLS-CA-R combines the features of CA to
allow for flexibility of data types with the features of PLS-R as a regression method designed
to replace OLS when we cannot meet the assumptions or requirements of ordinary least
squares (OLS). Both PLS-R and CA—and thus PLS-CA-R—are latent variable approaches
by way of components via the generlized singular value decomposition (GSVD). We show
multiple variants of PLS-CA-R, that address a variety of approaches and data types, on data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Data for these problems
span diagnosis (mutually exclusive categories), SNPs (genotypes are categorical), multiple
behavioral and clinical instruments (that could be ordinal, categorical, or continuous), and
several neuroimaging measures and indices (generally either continous or non-negative).
PLS-CA-R came about because it is clearly necessary: we need a method to accomodate
these data types in a predictive or fitting framework, capitalize on the ability to regress
(residualize) confounds out of mixed and likely collinear data, reveal latent variables, and
most importantly, do all of these things simply and within a well-established framework.

After we formalize and illustrate PLS-CA-R, we then show that the core of PLS-CA-R
also works as a much more generalized framework, and we then go into detail on how PLS-
CA-R provides the basis of more generalized PLS framework spans: multiple data types,

various optmizations (e.g., covariance as in PLS or correlation as in canonical correlation),
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various transformations for alternate metrics, and ridge-like regularization. Furthermore
this framework spans multiple PLS algorithms. We place particular emphasis on three of the
most commonly used PLS algorithms: (1) PLS “correlation” decomposition (Krishnan et al.
2011, Bookstein||{1994] [McIntosh et al.|/1996)—also known as PLSSVD (Tenenhaus||1998)
or Tucker’s Interbattery Factor Analysis (Tucker|1958), (2) PLS “canonical” decompostion
(Tenenhaus [1998)), and (3) PLS “regression” (Wold| [1975, Wold et al.|[1984, 2001). PLS
correlation is a symmetric method where neither data table plays a privileged (or predictive)
role, and is performed with a single pass of the singular value decomposition (SVD). PLS
canonical is also symmetric, but makes use of the SVD iteratively and deflates both data
tables in each iteration. PLS regression is an asymmetric method where one data table is
privileged (“predictors”) and also makes use of the SVD iteratively with deflation of both
data tables. We discuss the particularities of these algorithms later in the paper.

This paper is orgnized as follows. In Section [2| we introduce sufficient background for,
and then formalize, PLS-CA-R. Next, in Section [3| we illustrate PLS-CA-R on the TAD-
POLE challenge (https://tadpole.grand-challenge.org/) and additional genetics data
from ADNI across three examples: a simple discriminant example with entirely categorical
data, a mixed data example that requires residualiation (i.e., adusting for confounds), and
the finally a larger example of multiple genetic markers and whole brain tracer uptake
(non-negative values). Finally in Section {4 we discuss PLS-CA-R, but then provide further
details on how PLS-CA-R naturally leads to a much broader generalized PLS framework

that spans multiple optimizations, algorithms, metrics, and ridge-like regularization.

2 Partial least squares-correspondence analysis-regression

Here we present the generalization of partial least square-regression (PLS-R) to multiple
correspondence analysis (MCA) and correspondence analysis (CA)-like problems that gen-
erally apply to categorical (nominal) data. Via CA, we can also generalize to other data
types including mixed types (e.g., categorical, ordinal, continuous, contingency). We use a
mixture of nomenclature associated with y2-analyses, CA, and PLS-R.

Notation is as follows. Bold uppercase letters denotes matrices (e.g., X), bold lowercase

letters denote vectors (e.g., x), and italic lowercase letters denote specific elements (e.g., z).
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Upper case italic letters denote cardinality, size, or length (e.g., I) where a lower case italic
denotes a specific index (e.g., 7). A generic element of X would be denoted as z; ;. Common
letters of varying type faces, for example X, x, x;;, come from the same data struture.
A preprocessed or transformed version of a matrix X will be denoted as Zx. Vectors are
assumed to be column vectors unless otherwise specified. Two matrices side-by-side denotes
standard matrix multiplication (e.g., XY), where ® denotes element-wise (Hadamard)
multiplication where @ denotes element-wise (Hadamard) division. The matrix I denotes
the identity matrix. Superscript T denotes the transpose operation, superscript ~! denotes
standard matrix inversion, and superscript * denotes the Moore-Penrose pseudo-inverse.
The diagonal operation, diag{}, transforms a vector into a diagonal matrix, or extracts the

diagonal of a matrix and produces a vector.

2.1 The SVD, GSVD, CA, and GPLSSVD

Assume we have a matrix X with I rows and J columns, where X is preprocessed in some
way as Zx. The singular value decomposition (SVD) decomposes Zx as Zx = UAVT
where UTU = I = VTV, where Zx is of rank A and A is an A x A diagonal matrix
of singular values, and A = A? is a A x A diagonal matrix of eigenvalues. U and V
are referred to as the left and right singular vectors, respectively. From the SVD we can
compute component (a.k.a. factor) scores as F; = UA and F; = VA for the I rows and
J columns of X, respectively.

The GSVD generalizes the SVD wherein the GSVD decomposes Zx as Zx = PAQT
under the constraints of P"TMxP = I = Q"WxQ, where Zx is of rank A and A is a
A x A diagonal matrix of singular values. With the GSVD, P and Q are referred to as
the generalized singular vectors. Practically, the GSVD is performed through the SVD as
Zx = M)%(ZXW% = UAVT, where the generalized singular vectors are computed from the
singular vectors as P = M;(%U and Q = W;(%V. From the weights, generalized singular
vectors, and singular values we can obtain component (a.k.a. factor) scores as F; = MxPA
and F; = WxQA for the I rows and J columns of X, respectively. For simplicity and
brevity we will refer to the use of the GSVD through “triplet notation” (Holmes|2008)) but
in the form of GSVD(Mx, Zx, Wx), which is akin to how the multiplication steps work
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(see also Beaton et al[2018). The standard SVD is the GSVD but with identity matrices
as the weights: GSVD(I, X, I) (see also Takane|2003), and thus if Zx were a column-wise
centered and/or normalized version of X then GSVD(I,Zx,I) is principal components
analysis (PCA).

Correspondence analysis (CA) is a technique akin to PCA but initially designed for
contingency and nominal data, and operates under the assumption of indepdence (i.e.,
akin to x?). See Greenacre| (1984), |Greenacre (2010), and [Lebart et al.| (1984) for detailed
English explanations of CA and see [Escofier-Cordier| (1965) and Benzécri| (1973) for the
origins of CA. Assume the matrix X is some [ X J matrix comprised of non-negative data,
generally counts (co-occurences between rows and columns) or categorical data transformed
into disjunctive format (see, e.g., “SEX” in Table . CA is performed with the GSVD as
follows. First we define the observed matrix Ox = X x (17X1)~!. Next we compute the
marginal probabilities from the observed matrix as mx = Ox1 = and wx = (170x)7.
We then define the expected (under the assumption of independence, i.e., x?) matrix as
Ex = mxwk. We then compute the deviation (from independence) matrix as Zx =
Ox — Ex. Finally, we perform CA as GSVD(My', Zx, Wx') with the weights of Mx =
diag{mx} and Wx = diag{wx}.

We now introduce an extension of the GSVD and its triplet concept for PLS, called
the “GPLSSVD sextuplet” to decompose the the relationship between two matrices each
with I rows: X with J columns and Y with K columns, where Zx and Zv are pre-
processed versions of X and Y, respectively. The “GPLSSVD sextuplet” takes the form
of GPLSSVD(Mx,Zx, Wx,My,Zy,Wy). Like with the GSVD let us refer to ZX =
M}%(ZXW)%( and Zy = M%{ZYW%. The GPLSSVD makes use of the SVD wherein
Zn = 257y = (MLZxW2)"(M2ZyW2) = UAVT. The GPLSSVD generalized sin-
gular vectors and component scores are computed as P = W)—(%U and F; = WxPA for
the J columns of X, and Q = W;%V and Fx = WyQA for the K columns of Y. Like
with the SVD UTU =1 = VTV, and like with the GSVD PTWxP =1 = QTWyQ.
The GPLSSVD also produces scores for the I rows of each matrix—usually called latent
variables—as Lx = ZXU and Ly = ZYV where L§LY = A. By its definition, the
GPLSSVD maximization of the latent variables—i.e., L Ly = A—is the PLS correlation
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decomposition (Krishnan et al.| 2011} [Bookstein| 1994, |McIntosh et al.[1996)), also known as
PLSSVD (Tenenhaus|[1998) and originally as Tucker’s interbattery factor analysis (Tucker
1958)). Specifically, if X and Y were each column-wise centered and/or normalized, then
GPLSSVD(I, Zx, 1,1, Zvy,I) is PLS correlation (a.k.a. PLSSVD or Tucker’s approach).
Finally, we also introduce a small modification of the “triplet” and “sextuplet” nota-
tions as a “quadruplet” and a “septuplet” that indicate the desired rank to be returned
by the GSVD or GPLSSVD. For example, if we want only one component from either
approach we would indicate the desired rank to return as GSVD(Mx, Zx, Wx, 1) and
GPLSSVD(Mx, Zx, Wx, My, Zy, Wy, 1). Both the GSVD and GPLSSVD in these cases
would return only one set of singular vectors, generalized singular vectors, and compo-
nent scores, and one singular value; for GPLSSVD it would return only one pair of latent

variables.

Table 1:  An example of disjunctive (SEX) and pseudo-disjunctive (AGE, EDU) coding
through the fuzzy or Escofier transforms. For disjunctive an pseudo-disunctive data, each
variable has a row-wise sum of 1 across its respective columns, and thus the row sums

across the table are the number of original variables.

Original coding Disjunctive and pseudo-disjunctive coding

SEX AGE EDU

SEX AGE EDU Male Female AGE- AGE+ EDU- EDU+

SUBJ 1 Male 64.8 16 1 0 1.03 -0.03  0.33 0.67
SUBJ 2 Female 63.6 18 0 1 1.11 -0.11 0.17 0.83
SUBJ 3 Female 76.4 18 0 1 0.24 0.76  0.17 0.83
SUBJ 4 Male 66.0 18 1 0 095 0.06  0.17 0.83
SUBJ 5 Female 61.9 14 0 1 1.23 -0.23  0.50 0.50
SUBJ 6 Female 66.7 14 0 1 0.90 0.10  0.50 0.50
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2.2 PLS-CA-R

For simplicity assume in the following formulation that X and Y are both complete dis-
junctive tables as seen in Table |1| (see SEX columns) or Table This formulation also
applies generally to non-negative data (see later sections). We define observed matrices for

X and Y as

Ox =X x (17X1)7, )
1
Oy =Y x (17v1)!
Next we compute marginal probabilities for the rows and columns. We compute row

probabilities as

myx = Oxl and my = Oyl, (2)

which are the row sums of the observed matrices in Eq. Then we compute column

probabilities as

Wx = (1TOX)T and Wy = (1TOY)T, (3)

which are the column sums of the observed matrices in Eq. We then define expected
matrices as

Ex = mxwy and Ey = mywy, (4)

and deviation matrices as
ZX:OX—EX and ZY:OY—Ey, (5)

For PLS-CA-R we have two matrices, Zx which is I x J and Zv which is I x K,
and their respective row and column weights of Mx = diag{mx}, My = diag{my},
Wx = diag{wx}, and Wy = diag{wy}. PLS-CA-R makes use of the rank 1 GPLSSVD
iteratively —GPLSSVD(My', Zx, Wx', My, Zy, W4', 1)—and works as follows.

First we have Zx = My?ZxWx? and Zy = My?ZyWy2.
cross-product between Zx and Zy as Zgp = Z%Zy = (M;(%ZXW;(%)T(M;%ZYW;%),

N

Then we compute the

where

Zr = UAVT. (6)
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Because we make use of the rank 1 solution iteratively, we only retain the first vectors and
values from Eq. @ Thus we distinguish what we retain as 8, U, v, p, q, and E], and fy.

We then compute the latent variables as
EX = Zxﬁ and EY = Zyv (7)

Next we compute tx = €x x |[€x||™", b = £Ltx, and 6 = t§(M;(%ZXW;(%). We use tx,
b, and u to compute rank 1 “predicted” versions of Zx and Zv as
Zx1 = M2 (txt" ) W2 and .
Zov1 = M2 (btx v )W, ®
Finally, we deflate Zx and Zvy as Zx = ZX—ZXJ and Zvy = Zvy —ZYJ. We then repeat the
iterative procedure with these deflated Zx and Zy: GPLSSVD(My', Zx, Wx', My, Zy, W', 1).
The computations outlined above are performed for C' iterations where: (1) C' is some pre-
specified number of intended latent variables where C' < A where where A is the rank of
Zx, (2) C = A, or (3) when Zx = 0 or Zy = 0 where 0 is a null matrix. Upon the
stopping condition we would have C' components, and would have collected any vectors

into corresponding matrices. Those matrices are

e two C x C' diagonal matrices B and A with each b and § on the diagonal with zeros

off-diagonal,
e the [ x C' matrices Lx, Ly, and Tx,
e the J x C matrices fJ, [AJ, f’, and f‘J, and
e the K x C matrices \7, Q, Fg.

The algorithm for PLS-CA-R is presented in Algorithm [2] in Section [l We present
Algorithm [2] as a “generalized partial least squares regression” by way of the GPLSSVD

sextuplet. We discuss the generalized aspects of the algorithm in more detail in Section

2.3 Maximization in PLS-CA-R

PLS-CA-R maximizes the common information between Zx and Zv such that

10
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argmax = Lyly = (M ZxW'p)" (M, 2 ZyW,'q) =

£x by
(M Zx W W B) (M, Zy W, W, 2G) =
(ZxW D) (Zy Wy H0) = (Zx W W) (Zy Wy WiT) =
(Zx W) (Zy¥) = WZYZyV = WZgY = GUAVY =4,
where 4 is the first singular value from A for each ¢ step. PLS-CA-R maximization is
subject to the orthogonality constraint that EQCEX,C/ = 0 when ¢ # ¢. This orthogonality
constraint propagates through to many of the vectors and matrices associated with Zx
where TX Tx = 15TW}113 = UTU = L these orthogonality constraints do not apply to

the various vectors and matrices associated with Y.

2.4 Decomposition and reconstitution
PLS-CA-R is a “double decomposition” where

11
Zx = MzTU"WZ and (10)
10
. 1 1 1~ o1

Zy = M3 TxBVI'WZ = M2 ZxUT"BVIW2Z,
where Zx = TUT and Zy = TxBV?T = ZxUT+*BVT. PLS-CA-R, like PLS-R, provides
the same estimated predicted values as OLS under the conditions that Zx is (1) full rank,

(2) non-singular, (3) not excessively multicollinear:
Ty = M@TXB\N/TWE{ = ZX(Z§ZX)+Z§ZY7 (11)

where TxBV7T = ZX(2§2X)+Z§ZY This connection to OLS shows how to residualize
(i-e., “regress out” or “correct”) for known confounding effects, akin to how residuals are
computed in OLS. We do so with the original Zy as Zy — Zy. PLS-CA-R produces a both
predicted and residualized version of Y. Recall that ZY = MéTXB\NfTWé. We compute

a reconstituted form of Y as
Y = (Zy + Ey) x (17Y1), (12)

which is the opposite steps of computing the deviations matrix. We add back in the

expected values and then scale the data by the total sum of the original matrix. The same

11
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can be done for residualized values (i.e., “error”) as
Y. = [(Zy — Zy) + Ey] x (17Y1). (13)

Typically, Ey is derived from the model of the data (as noted in Eq. . However,
the reconstituted space could come from any model by way of generalized correspondence
analysis (Escofier|1983; Escofier|1984; for more details and background see also Beaton et al.
2018). With GCA we could use any reasonable model with alternates to Ey that could
be obtained, for examples, from known priors, a theoretical model, out of sample data, or
even population estimates. The same procedures can be applied to obtain a reconstituted

X. Finally, CA can then be applied directly to either Y or Y..

2.5 Concluding remarks

Now that we have formalized PLS-CA-R, we want to point out small variations, some
caveats, and some additional features here. We go into much more detail in later sections
on larger variations and broader generalizations through our formulation.

In PLS-CA-R (and PLS-R) each subsequent § is not guaranteed to be smaller than
the previous, with the exception of all § are smaller than the first. This is a by-product
of the iterative process and the deflation steps, and does not occur with just a single
pass of the SVD or GSVD (i.e., PLS-correlation decomposition). This poses two issues:
(1) visualization of component scores and (2) explained variance. For visualization of
the component scores—which use 0 there is an alternative computation: F, =W /P
and F’K = WKQ This alternative is referred to as “asymmetric component scores” in
the correspondence analysis literature (Abdi & Béra|2014, (Greenacre|[1993). Additionally,
instead of computing the variance per component or latent variable, we can instead compute
the amount of variance explained by each component in X and Y. To do so we require the
sum of the eigenvalues of each of the respective matrices per iteration. The trace for each is
computed via CA (with the GSVD). Before the first iteration of PLS-CA-R we can obtain
the the full variance (sum of the eigenvalues) of each matrix from GSVD(My', Zx, Wx')
and GSVD(My', Zy, W+'), which we refer to as ¢x and ¢y, respectively. We can compute
the sum of the eigenvalues for each deflated version of Zx and Zy through the GSVD just

12
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as above, referred to as ¢x . and ¢y .. For each ¢ component the proportion of explained

PX—PX,c Py —9v ¢
ox and oy

In our formulation, the weights we use are derived from the x? assumption of indepen-

variance for each matrix is

dence. However nearly any choices of weights could be used, so long as the weight matrices
are positive semi-definite. However, if alternate row weights (i.e., Mx or My ) were chosen,
then the fitted values and residuals are no longer guaranteed to be orthogonal (the same
condition is true in weighted OLS). Likewise, alternate column weights (i.e., Wx or Wy)
may deviate from the assumptions of y? and may no longer reflect independence, or is an
alternate metric altogether. There are some well-established alternates that we mention
further in later sections, and through the concept of generalized correspondence analysis
(Escofier| 1983, |1984) almost any weights or model could be used. However, those changes
should be informed by sound statistical and theoretical assumptions.

Finally, though we formalized PLS-CA-R as a method for categorical (nominal) data
coded in complete disjunctive format (as seen in Table see SEX columns—or Table ,
PLS-CA-R can easily accomodate various data types without loss of information. Specifi-
cally, both continuous and ordinal data can be handled with relative ease and in a “pseudo-
disjunctive” format, also referred to as “fuzzy coding” where complete disjunctive would
be a “crisp coding” (Greenacre| 2014). We explain exactly to handle various data types
as Section [3| progresses, which reflects more “real world” problems: complex, mixed data

types, and multi-source data.

3 Applications & Examples

The goal of this section is to provide a several illustrative examples with real data from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI). These examples highlight how to
approach mixed data with PLS-CA-R as well as the multiple uses of PLS-CA-R (e.g., for
analyses, as a residualization procedure). We present three sets of analyses to illustrate
multiple uses of PLS-CA-R. First we introduce PLS-CA-R through a typical and relatively
straightforward example: predict genotypes (categorical) from groups (categorical) where
we can highlight multiple features of PLS-CA-R. Next we present analyses with the goal to

predict genotypes from a small set of behavioral and brain variables. This second example
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serves multiple purposes: (1) how to recode and analyze mixed data (categorical, ordinal,
and continuous), (2) how to use PLS-CA-R as an analysis technique, and (3) how to use
PLS-CA-R as residualization technique (i.e., adjust for confounds) prior to subsequent
analyses. Finally, we present a larger analysis with the goal to predict genotypes from
cortical uptake of AV45 (i.e., a radiotracer) PET scan for beta-amyloid (“AS”) deposition.

This final example also makes use of residualization as illustrated in the second example.

3.1 ADNI Data

Data used in the preparation of this article come from the ADNI database (adni.loni.usc.edu).
ADNI was launched in 2003 as a public-private funding partnership and includes public

funding by the National Institute on Aging, the National Institute of Biomedical Imag-

ing and Bioengineering, and the Food and Drug Administration. The primary goal of

ADNI has been to test a wide variety of measures to assess the progression of mild cogni-

tive impairment and early Alzheimer’s disease. The ADNI project is the result of efforts of

many coinvestigators from a broad range of academic institutions and private corporations.

Michael W. Weiner (VA Medical Center, and University of California-San Francisco) is the

ADNI Principal Investigator. Subjects have been recruited from over 50 sites across the

United States and Canada (for up-to-date information, see www.adni-info.org).

The data we use in the following examples come from several modalities of the ADNI
data entirely from the ADNI-GO/2 cohort. Generally, the data come from two sources avail-
able from the ADNT download site (http://adni.loni.usc.edu/): genome-wide data and
the TADPOLE challenge data (https://tadpole.grand-challenge.org/) which con-
tains a wide variety of data (e.g., demographics, diagnosis, cognitive and behavioral data,
and some neuroimaging data). Because the genetics data are used in every example, we
provide all genetics preprocessing details here, and then describe any preprocessing for
other data as we discuss specific examples.

For all examples in this paper we use a candidate set of single nucleotide polymorphisms
(SNPs) extracted from the genome-wide data. We extracted only SNPs associated with
the MAPT, APP, ApoE, and TOMM/0 genes because they are considered as candidate

contributors to various AD pathologies: MAPT because of its association with tau proteins,
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AD pathology, or cognitive decline (Myers et al. 2005, Trabzuni et al.|2012, Desikan et al.
2015, |Cruchaga et al.|[2012, Peterson et al. 2014), APP because of its association with
[B-amyloid proteins (Cruchaga et al. 2012, Huang et al./[2017, Jonsson et al.|2012), as well
as ApoE and TOMM/0 because of their strong association with the diagnosis of AD and
presence of various AD pathologies (Linnertz et al. 2014, Roses et al. 2010, Bennet et al.
2010, Huang et al. 2017). SNPs were processed as follows via Purcell et al. (2007) with
additional R code as necessary: minor allele frequency (MAF) > 5% and missingness for
individuals and genotypes < 10%. Because the SNPs are coded as categorical variables
(i.e., for each genotype) we performed an additional level of preprocessing: genotypes > 5%
because even with MAF > 5%, it was possible that some genotypes (e.g., the heterozygote
or minor homozygote) could still have very few occurrences. Therefore if any genotypes were
< 5% they were combined with another genotype. In all cases the minor homozygote (‘aa’)
fell below that threshold and was then combined with its respective heterozygote (‘Aa’);
thus some SNPs were effectively coded as the dominant model (i.e., the major homozygote
vs. the presence of a minor allele). See Table for an example of SNP data coding examples.
From the ADNI-GO/2 cohort there were 791 available participants. After preprocessing
there were 791 participants with 134 total SNPs across the four candidate genes. The 134
SNPs span 349 columns in disjunctive coding (see Table . Other data include diagnosis
and demographics, some behavioral and cognitive instruments, and several types of brain-
based measures. We discuss these additional data in further detail when we introduce these

data.

3.2 Diagnosis and genotypes

Our first example asks and answers the question: “which genotypes are associated with
which diagnostic category?”. We do so through the prediction of genotypes from diagnosis.
Diagnosis at baseline in the ADNI study is a mutually exclusive categorical variable that
denotes which group each participant belongs to (at the first visit): control (CN; N = 155),
subjective memory complaints (SMC; N = 99), early mild cognitive impairment (EMCI;
N = 277), late mild cognitive impairment (LMCI; N = 134), and Alzheimer’s disease (AD;

N = 126). We present this first example analysis in two ways: akin to a standard regression
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Table 2: An example of a SNP with its genotypes for respective individuals and disjunctive
coding for three types of genetic models: genotypic (three levels), dominant (two levels:
major homozygote vs. presence of minor allele), and recessive (two levels: presence of

major allele vs. minor homozygote).

SNP Genotypic Dominant Recessive

Genotype AA Aa aa AA Aataa AA+Aa aa

SUBJ 1 Aa 0 1 0 0 1 1 0
SUBJ 2 aa 0 0o 1 0 1 1 0
SUBJ 3 aa 0 0 1 0 1 0 1
SUBJ 4 AA 1 0 0 1 0 1 0
SUBJ 5 Aa 0 1 0 0 1 1 0
SUBJ 6 AA 1 0 0 1 0 1 0

progblem a la Wold [Wold| (1975); [Wold et al. (1984); [Wold et al. (1987); cf. Eq. and
then again in the more recent, and now typical, multivariate perspective of “projection onto

latent structures” (Abdi [2010)).

Table 3: Descriptives and demographics for the sample.

N AGE mean (sd) EDU mean (sd) Males (Females)

AD 126 74.53 (8.42) 15.78 (2.68) 75 (51)
CN 155 74 (6.02) 16.41 (2.52) 80 (75)
EMCI 277 71.14 (7.39) 15.93 (2.64) 156 (121)
LMCI 134 72.24 (7.68) 16.43 (2.57) 73 (61)
SMC 99 72.19 (5.71) 16.81 (2.51) 40 (59)

For this example we refer to diagnosis groups as the predictors (X) and the genotypic
data as the responses (Y). Both data types are coded in disjunctive format (see Tables
and [2). Because there are five columns (groups) in X, PLS-CA-R produces only four latent

variables (a.k.a. components). Table 4| presents the cumulative explained variance for both
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X and Y and shows that groups explain only a small amount of genotypic variance: R? =

0.0065.

Table 4: The R-squared values over the four latent variables for both groups and genotypes.
The full variance of groups is explained over the four latent variables. The groups explained

0.65% of the genotypes.

X (groups) R-squared cumulative Y (genotypes) R-squared cumulative

Latent variable 1 0.25 0.0026
Latent variable 2 0.50 0.0042
Latent variable 3 0.75 0.0055
Latent variable 4 1.00 0.0065

In a simple regression-like framework we can compute the variance contributed by geno-
types or group (i.e., levels of variables) or variance contributed by entire variables (in this
example: SNPs). First we compute the contributions to the variance of the genotypes
as the sum of the squared loadings for each item: [(V ® V)1] x C™', where 1 is a con-
formable vector of ones. Total contribution values exist between 0 and 1 and describe
the proportional variance each genotype contributes. These contributions to components
can be computed as v. ® v.. Because the contributions are additive we can compute the
contributions for a SNP through all of its all. A simple criterion to identify genotypes or
SNPs that contribute to the model is to identify which genotype or SNP contributes more
variance than expected, which is one divided by the total number of original variables (i.e.,
SNPs). In this case that would be 1/134 = 0.0075. This criterion can be applied on the
whole or component-wise. We show the genotypes and SNPs with above exepcted variance
for the whole model (i.e., high contributing variables a regression framework) in Figure

Though PLS-R was initally developed as a regression approach—especially to handle
highly collinear predictors or a set of predictors that are not full rank (see explanations
in Wold et al.|[1984)—it is far more common to use PLS to find latent structures (i.e.,
components or latent variables) (Abdi2010)). From this point forward we show only the

more common “projection onto latent structures” perspectives. We show the latent vari-
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Figure 1: Regression approach to prediction of genotypes from groups. Contributions
across all components for genotypes (A; top) and the SNPs (B; bottom) computed as the
summation of genotypes within a SNP. The horizontal line shows the expected variance
and we only highlight genotypes (A; top) or SNPs (B; bottom) greater than the expected
variance. Some of the highest contributing genotypes (e.g., AA and AG genotypes for
1s769449) or SNPs (e.g., rs769449 and rs20756560) come from the APOE and TOMMA40

genes. 18
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able scores (observations) and component scores (variables) for the first two latent vari-
ables/components in Figure 2l The first latent variable scores (Fig. [2h) shows a gradient
from the control (CN) group through to the Alzheimer’s Disease (AD) groups (CN to SMC
to EMCI to LMCI to AD). The second latent variable shows a dissociation of the EMCI
group from all other groups (Fig. 2p). Figure 2k and d show the component scores for the
variables. Genotypes on the left side of first latent variable (a.k.a., component; horizontal
axis in Figs. and d) are more associated with CN and SMC than the other groups,
where as genotypes on the right side are more associated with AD and LMCI than the
other groups. Genotypes highlighted in purple are those that contribute more than ex-
pected variance to the first component. Through the latent structures approach we can
more clearly see the relationships between groups and genotypes. Because we treat the
data categorically and code for genotypes, we can identify the specific genotypes that con-
tribute to these effects. For example the ‘AA’ genotype of rs769449 and the ‘GG’ genotype
of rs2075650 are more associated with AD and LMCI than the other groups. In conrast,
the “T'T” genotype of rs405697 and the “T'T" genotype rs439401 are more associated with
the CN group than other groups (and thus could suggest potential protective effects).
This group-based analysis is also a discriminant analysis because it maximally separates
groups. Thus we can classify observations by assigning them to the closest group. To
correctly project observations onto the latent variables we compute Ly x [ 3 = Oy @
(my17)|Fx A~ where 1is a 1 x K vector of ones where Oy @ (my1%) are “row profiles”
of Y (i.e., each element of Y divided by its respective row sum). Observations from Ly x [ 3
are then assigned to the closest group in F, either for per component, across a subset of
components, or all components. For this example we use the full set (four) of components.
The assigned groups can then be compared to the a priori groups to compute a classification
accuracy. Figure [3[shows the results of the discriminant analysis but only visualized on the
first two components. Figures |3 and b show the scores for F; and Ly x [ %, respectively.
Figure [3c shows the assignment of observations to their closest group. Figure [3d visualizes
the accuracy of the assignment, where observations in black are correct assignments (gray
are incorrect assignments). The total classification accuracy 38.69% (where chance accuracy

was 23.08%). Finally, typical PLS-R discriminant analyses are applied in scenarios where
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Figure 2: Latent variable projection approach to prediction of genotypes from groups. (A)
and (B) show the latent variable scores for latent variables (LVs; components) one and two,
respectively; (C) shows the component scores of the groups, and (D) shows the component
scores of the genotypes. In (D) we highlight genotypes with above expected contribution
to Latent Variable (Component) 1 in purple and make all other genotypes gray.
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Figure 3: Discriminant PLS-CA-R. (A) shows the component scores for the group on
Latent Variables (LV) 1 and 2 (horizontal and vertical respectively), (B) shows the latent
variable scores for the genotype ('LY’) LV scores for LVs 1 and 2, colored by a priori group
association, (C) shows the latent variable scores for the genotype ("LY’) LV scores for LVs
1 and 2, colored by assigned group association (i.e., nearest group assignment across all

LVs), and (D) shows correct vs. incorrect assignment in black and gray, respectively.
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a small set of, or even a single, (typically) categorical responses are predicted from many
predictors (Pérez-Enciso & Tenenhaus 2003). However, such an approach appears to be
“over optimistic” in its prediction and classification (Rodriguez-Pérez et al.2018), which
is why we present discriminant PLS-CA-R more akin to a typical regression problem (i.e.,

here a single predictor with multiple responses).

Table 5:  The a priori (rows) vs. assigned (columns) accuracies for the discriminant

analysis.

CN SMC EMCI LMCI AD

CN 62 15 24 16 17
SMC 20 40 33 18 10
EMCI 34 20 110 23 29
LMCI 14 12 39 44 20
AD 25 12 41 33 50

3.3 Mixed data and residualization

Our second example illustrates the prediction of genotypes from multiple brain and be-
havioral variables: (1) three behavioral/clinical scales: Montreal Cognitive Assessment
(MoCA) (Nasreddine et al.[2005), Clinical Dementia Rating-Sum of Boxes (CDRSB) (Mor-
ris|[1993), and Alzheimer’s Disease Assessment Scale (ADAS13) (Skinner et al.|2012), (2)
volumetric brain measures in mm?®: hippocampus (HIPPO), ventricles (VENT), and whole
brain (WB), and (3) global estimates of brain function via PET scans: average FDG (for
cerebral blood flow; metabolism) in angular, temporal, and posterior cingulate and average
AV45 (Ap tracer) standard uptake value ratio (SUVR) in frontal, anterior cingulate, pre-
cuneus, and parietal cortex relative to the cerebellum. This example higlights two features
of PLS-CA-R: (1) the ability to accomodate mixed data types (continuous, ordinal, and
categorical) and (2) as a way to residualize (orthogonalize; cf. Eq. with respect to
known or assumed confounds.

Here, the predictors encompass a variety of data types: all of the brain markers (vol-

22


https://doi.org/10.1101/598888
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/598888; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

umetric MRI estimates, functional PET estimates) and the ADAS13 appear as generally
continuous data, whereas the MoCA and especially the CDRSB are generally ordinal be-
cause they have limited values constrained by a minimum and maximum score: the CDRSB
exists between 0 and 9 generally by steps of 1, and the MoCA exists between 0 and 30,
though values below 20 are exceedingly rare. Furthermore, the assumed differences between
each level are not considered the same, for example, MoCA scores of 29 and 30 are regarded
as preserved and normal (high) levels of cognition, where as 26 and 27 is the (clinical) line
between impaired and unimpaired. There are many properties of PLS-CA-R by way of CA
that allow for easy inclusion of mixed data types. In particular, continuous and ordinal
data types can be coded into what is called thermometer (Beaton et al.2018), fuzzy, or
“bipolar” coding (because it has two poles) (Greenacre|2014); an idea initially propsosed by
Escofier for continuous data (Escofier||1979)). The “Escofier transform” allows continuous
data to be analyzed by CA and produces the exact same results as PCA (Escofier||1979).
The same principles can be applied to ordinal data as well (Beaton et al.[2018). Continu-
ous and ordinal data can be transformed into a “pseudo-disjunctive” format that behaves
exactly like complete disjunctive data (see Table [1)) but preserves the values (as opposed
to binning, or dichotomizing). Here, we refer to the transform for continuous data as the
“Escofier transform” or “Escofier coding” (Beaton et al.|2016) and the transform for ordinal
data as the “thermometer transform” or “thermometer coding”. Because continuous, ordi-
nal, and categorical data can all be trasnformed into a disjunctive-like format, they can all
be analyzed with PLS-CA-R.

While the overall objective of this example is to understand the relationship between
routine markers of AD and genetics, confounds exist for both the predictors (behavioral
and brain data) and the responses (genotype data): age, sex, and education influence the
behavioral and brain variables, whereas sex, race, and ethnicity influence the genotypic
variables. To note, these confounds are also of mixed types (e.g., sex is categorical, age
is generally continuous). Thus in this example we illustrate the mixed analysis in two
ways—unadjusted and then adjusted for these confounds. First we show the effects of the
confounds on the separate data sets, and then compare and contrast adjusted vs. unadjusted

analyes. For the “mixed” data analyses, the volumetric data were also normalized (divided
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by) by intracranial volume prior to these analyses; effectively transformed into proportional
volumes within each participant. Any other adjustments are described when needed.

First we show the PLS-CA-R between each data set and their respective confounds.
The main effects of age, sex, and education explained 11.17% of the variance of the behav-
ioral and brain data, where the main effects of sex, race, and ethnicity explained 2.1% of
the variance of the genotypic data. The first two components of each analysis are shown
in Figure {4l In the brain and behavioral data, age explains a substantial amount of vari-
ance and effectively explains Component 1. In the genotypic analysis, race is the primary
explanatory effect; more specifically, the first two components are explained by those that
identify as black or African-American (Component 1) vs. those that identify as Asian, Na-
tive, Hawaiian, or Latino/Hispanic (Component 2). Both data sets were reconstituted (i.e.,
Y. from Eq. from their residuals.

Next we performed two analyses with the same goal: understand the relationship be-
tween genetics and the behavioral and brain markers. In the unadjusted analysis, the brain
and behavioral data explained 1.6% of variance in the genotypic data, whereas in the ad-
justed analysis, the brain and behavioral data explained 1.54% of variance in the genotypic
data. The first two components of the PLS-CA-R results can be seen in Figure [4

In the unadjusted analysis (Figure [4p and c) vs. the adjusted analysis (Figure [4b and
d), we can some similarities and differences, especially with respect to the behavioral and
brain data. AV45 shows little change after the residualization, and generally explains a
substantial amount of variance as it contributes highly to the first two components in both
analyses. The effects of the structural data—especially the hippocampus—are dampened
after adjustment (see Figure 4a vs b), where the effects of FDG and CDRSB are now
(relatively) increased (see Figure 4a vs b). On the subject level, the differences are not
substantial, but there are noticeable effects especially with the ability to distinguish between
groups (see Figure @ One important effect is that on a spectrum from CON to AD, we
can see that the residualization has a larger impact on the CON side, where the AD side
remains somewhat homgeneous (see Figure[6f) for the brain and behavioral variables. With
respect to the genotypic LV, there is much less of an effect (see Figure @d), wherein the

observations appear relatively unchanged. However, both pre- (horizontal axis; Figure @d)
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Figure 4: PLS-CA-R used as a way to residualize (orthogonalize) data. The top figures (A)
and (B) show prediction of the brain and behavior markers from age, sex, and education.
Gray items are one side (lower end) of the "bipolar" or pseudo-disjunctive variables. The

bottom figures (C) and (D) show the prediction of genotypes from sex, race, and ethnicity.
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and post- (vertical axis; Figure [6}1) residualization shows that there are individuals with
unique genotypic patterns that remain unaffected by the residualization process (i.e., those
at the tails).

From this point forward we emphasize the results from the adjusted analyses because
they are more realistic in terms of how analyses are performed. For this we refer to Figure
[Bb—which shows the latent variable scores for the observations and the averages of those
scores for the groups—and Figures fb and [fd—which show the component scores for the
brain and behavioral markers and the genotypes, respectively. The first latent variable
(Fig. [6b) shows a gradient from control (CON) on the left to Alzheimer’s Disease (AD)
on the right. Brain and behavioral variables on the right side of the first component
(horizontal axis in Fig. [5b) are more associated with genotypes on the right side (Fig.
5d), where brain and behavioral variables on the left side of are more associated with
genotypes on the left side. In particular, the AA genotype of rs769449, GG genotype of
152075650, GG genotype of 14420638, and AA genotype of rs157582 (amongst others)
are related to increased AV45 (AV45+), decreased FDG (FDG-), and increased ADAS13
scores (ADAS13+), where as the TT genotype of rs405697, GG genotype of rs157580, and
TC+TT genotypes of rs7412 (amongst others) are more associated with control or possibly
protective effects (i.e., decreased AV4, increased FDG, and decreased ADAS13 scores).

3.4 SUVR and genotypes

In this final example we make use of all the features of PLS-CA-R: an example with mixed
data types within and between data sets, each with confounds (and thus require residu-
alization). This example serves as something more akin to the typical analysis pipeline
with similar objectives. The goal of this example is to predict genotypes from S—amyloid
burden (“AV45 uptake”) across regions of the cortex. In this case, we also assume that the
distribution of AV45 uptake across cortical regions approximately follows that of x? in that
we compute the deviations from independence (produced from the product between the row
and column probabilities). However we want to note that this is only one possible way to
handle such data. It is possible to treat these data as row-wise proportions (i.e., percentage

of total uptake per region within each subject) or even as continuous data; though these
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Figure 5: PLS-CA-R to predict genotypes from brain and behavioral markers on the
original and residualized data shown on the first two latent variables (components). The
top figures (A) and (B) show the component scores for the brain and behavioral markers for
the original and residualized data, respectively, and the bottom figures (C) and (D) show

the component scores for the genotypes for the original and residualized data, respectively.
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Figure 6: Latent variable scores (observations) for the first latent variable. The top figures
(A) and (B) show the projection of the latent variable scores from each set: LX are the brain
and behavioral markers, where as LY are the genotypes, for the original and residualized,
respectively. The bottom figures (C) and (D) show the the original and residualized scores
for the first latent variable compared to one another for each set: the brain and behavioral

markers (LX) and the genotypes (LY), respectively.
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data are strictly non-negative. Ultimately, it is up to the analyst to decide how to treat
such data and how it fits into the analysis framework.

Because not all subjects have complete AV45 and genotypic data, the sample for this
example is slightly smaller: N = 778. Ethnicity, race, and sex (all categorical) explains
2.07% of the variance in the genotypic data where age (numeric), education (ordinal), and
sex (categorical) explains 2.22% of the variance in the in the AV45 uptake data. Overall,
AV45 brain data explains 9.08% of the variance in the genotypic data. With the adjusted
data we can now perform our intended analyses. Although this analysis produced 67
components (latent variables), we focus on just the first (0.57% of genotypic variance
explained by AV45 brain data).

The first latent variable in Figure is associated with only the horizontal axes (Compo-
nent 1) in Figure [7b and c¢. The horizontal axis in Fig. [7h is associated with the horizontal
axis in Fig. whereas the vertical axis in Fig. [7p is associated with the horizontal axis in
Fig. [Tk. The first latent variable (Figure [7h) shows a gradient: from left to right we see the
groups configured from CN to AD. On the first latent variable we do also see a group-level
dissociation where AD+LMCI are entirely on one side whereas EMCI+SMC+CN are on
the opposite side for both Lx (AV45 uptake, horizontal) and Ly (genotypes, vertical);
effectively the means of AD and LMCI exist in the upper right quadrant and the means
of the EMCI, SMC, and CN groups exist in the lower left quadrant. Higher relative AV45
uptake for the regions on the left side of Component 1 are more associated with EMCI,
SMC, and CN than with the other groups, whereas higher relative AV45 uptake for the
regions on the right side of Component 1 are more associated with AD and LMCI (Fig. )
The genotypes on the left side are associated with the uptake in regions on the left side and
the genotypes on the right side are associated with the uptake in regions on the right side
(Fig. [7c). For example, LV/Component 1 shows relative uptake in right and left frontal
pole, rostral middle frontal, and medial orbitofrontal regions are more associated with the
following genotypes: AA and AG from rs769449, GG from rs2075650, GG from rs4420638,
and AA from rs157582, than with other genotypes; these effects are generally driven by
the AD and LMCI groups. Conversely, LV/Component 1 shows higher relative uptake in

right and left lingual, cuneus, as well left parahippocampal and left entorhinal are more
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Figure 7: PLS-CA-R to predict genotypes from amyloid burden ("AV45 uptake"). The
top figure (A) shows the latent variable scores for the observations on the first latent
variable with group averages. The bottom figures (B) and (C) show the amyloid burden
in cortical regions and the genotypes, respecively. In (A) we see a gradient from the
Alzheimer’s Disease (AD) group to the control (CON) group. Only items with above

expected contribution to variance on the first LV are highlighed in purple.

30


https://doi.org/10.1101/598888
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/598888; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

associated with the following genotypes: TT from rs405697, GG from rs6859, TC+TT
from rs7412, TT from rs2830076, GG from rs157580, and AA from rs4420638 genotypes
than with other genotypes; these effects are generally driven by the CN, SMC, and EMCI
cohorts. In summary, from the PLS-CA-R results we see that particular patterns of re-
gional AV45 uptake predict particular genotypic patterns across many SNPs; and that the
sources these effects are generally driven by the groups. Furthermore the underlying brain

and genotypic effects of the groups exist along a spectrum of severity.

4 Discussion

Many modern studies, like ADNI, aim to measure individuals at a variety of scales: genetics
and genomics, brain structure and function, many aspects of cognition and behavior, bat-
teries of clinical measures, and almost anything in between all of these levels. These data
are extremely complex: they are heterogeneous and more often than not “wide” (many more
variables than subjects). But many current strategies and approaches to handle such mul-
tivariate heterogeneous data often requires compromises or sacrifices (e.g., the presumption
of single numeric model for categorical data such as the additive model for SNPs; Z-scores
of ordinal values; or “dichotomania” (https://www.fharrell.com/post/errmed/#catg):
the binning of continuous values into categories). Many of those strategies and approaches
presume that data are interval scale, or completely misrepresent data, and therefore the
properties of those data types are Effectively ignored. Because of the many features and
flexibility of PLS-CA-R—e.g., best fit to predictors, orthogonal latent variables, accommo-
dation for virtually any data type—we are able to identify distinct variables and levels (e.g.,
genotypes) that define or contribute to control (CON) vs. disease (AD) effects (e.g., Fig.
or reveal particular patterns anchored by the polar control and disease effects (CON —
SMC — EMCI — LMCI — AD; see, e.g., Fig. [7)).

While we focused on particular ways of coding and transforming data, there are many
alternatives that could be used with PLS-CA-R. For example, we used a disjunctive ap-
proach for SNPs because they are categorical, which matches the genotypic model. How-
ever, through various disjunctive schemes, or other forms of Escofier or fuzzy coding, we

could have used any genetic model: if all SNPs were coded as the major vs. the minor allele
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(‘AA’ vs. {‘Aa+aa’}), this would be the dominant model, or we could have assumed the ad-
ditive model —i.e., 0, 1, 2 for ‘AA’, ‘Aa’, and ‘aa’, respectively—and transformed the data
with the ordinal approach (but we strongly emphasize not the continuous approach). We
previously provided a comprehensive guide on how transform various SNP genetic models
for use in PLS-CA and CA elsewhere (see Appendix of Beaton et al.|2016]). Furthermore,
we only highlighted one of many possible methods to transform ordinal data. The term
“fuzzy coding” applies more generally to the recoding of ordinal, ranked, preference, and
even continuous data across a number of schemes, all of which conform to the same prop-
erties as disjunctive data. The many “fuzzy” and “double” coding schemes are generally
found in [Escofier| (1979), Lebart et al. (1984), or |Greenacre| (2014). However, for ordinal
data—especially with fewer than or equal to 10 levels, and without excessively rare (< 1%)
occurences—we recommend to treat ordinal values as categorical levels. When ordinal data
are treated as categorial (and disjunctively coded), greater detail about the levels emerges
and in most cases reveal non-linear patterns of the ordinal levels.

Though we have presented PLS-CA-R as a generalization of PLS-R that accomodates
virutally any data type (by way of CA), the way we formalized PLS-CA-R—in Section
and describe its algorithm in Algorithm 2}—leads to further variants and broader generaliza-
tions, that span various PLS, CA, and related approaches, several typical PLS algorithms,

a variety of optimizations (e.g., canonical correlation), and ridge-like regularization.

4.1 GPLS algorithms

In general there exist three primary PLS algorithms: PLS correlation decomposition (Book-
stein| 1994, Ketterlinus et al.|[1989) generally more known in neuroimaging (McIntosh et al.
1996, Mclntosh & Lobaugh| 2004, Krishnan et al. 2011) which has numerous alternate
names such as PLS-SVD and Tucker’s interbattery factor analysis (Tucker||1958) amongst
others (see also Beaton et al|2016), PLS regression decomposition (cf. Section and
also Algorithm [2) and the PLS canonical decomposition (Tenenhaus||[1998, Wegelin et al.
2000), which is a symmetric method with iterative deflation (i.e., it has features of both
PLS-C and PLS-R). Given the way in which we formalize PLS-CA-R—as a generalized
PLS-R—here we show how PLS-CA-R provides the basis of generalizations of these three
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algorithms, as well as further optimizations, similar to [Borga et al.| (1992), |Indahl et al.
(2009), and de Micheaux et al.| (2019) but we do so in a more comprehensive way that
incorporates more methods than other unification strategies, and we also do so in a way
that accomodates multiple data types. We refer to the three techniques under the umbrella
of generalized partial least squares (GPLS) as GPLS-COR, GPLS-REG, and GPLS-CAN;
for the “correlation”, “regression”, and “canonical” decompositions respectively. GPLS-COR
and GPLS-CAN are symmetric decomposition approaches where neither Zx nor Zvy are
privileged. GPLS-REG is an asymmetric decomposition approach where Zx is privileged.
We present the GPLS-COR, GPLS-REG, and then GPLS-CAN algorithms with their re-
spective optimizations. We do so in the previously mentioned order because GPLS-COR
is used as the basis of all three algorithms and GPLS-CAN shares features and concepts
with both GPLS-COR and GPLS-REG. For all of these we rely on the basis of PLS-CA-R
we established in Section speciﬁcally for various mixed data types under the x? model
(as used in CA).

The GPLS-COR decomposition is the simplest GPLS technique. It requires only a
single pass of the SVD—or in our case the GPLSSVD. There are no explicit iterative steps
in GPLS-COR. GPLS-COR takes as input the two preprocessed matrices—Zx and Zv—
and their respective row and column weights: Mx and Wx for Zx, and My and Wy

for Zv, where C is the desired number of components to return. GPLS-COR is shown in

Algorithm [T}

Result: Generalized PLS-correlation between Zx and Zvy
Input : Mx, Zx, Wx, My, Zy, Wy, C
OUtPUt: UJ VJ PJ QJ FJ7 FK; LX; LYJ A

GPLSSVD(Mx, Zx, Wx, My, Zy, Wy, C)
Algorithm 1: Generalized PLS-correlation algorithm.  GPLS-COR is the

GPLSSVD and provides the basis of other GPLS techniques. Furthermore, GPLS-

COR easily allows for a variety of optmizations for examples canonical correlation,

reduced rank regression (redundancy analysis), and even ridge-like regularization.

GPLS-COR maximizes the relationship between Lx and Ly with the orthogonality

constraint EQCEY?C/ = 0 when ¢ # ¢ where E)TQCEY,C = ¢, and thus L%;LY = UTZ§ZYVT =
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UTZr VT = UTUAVTVT = A. We can show this with the generalized vectors and weight
as LYLy = PTWxZIMiMZZyWyQ” = PTWxPAQ"WyQ = A. Furthermore,
GPLS-COR (via GPLSSVD) provides all of the other outputs as previously described in
Section GPLS-COR~—which is the GPLSSVD—provides the basis for the other two al-
gorithms: both GPLS-REG and GPLS-CAN make use of GPLS-COR (i.e., the GPLSSVD)
with rank 1 solutions iteratively.

The GPLS-REG decomposition builds off of the GPLS-COR algorithm, but does so by
way of the GPLSSVD septuplet iteratively for C' iterations, with only a rank 1 solution
is provided for each use of the GPLSSVD. Then the two data matrices—Zx and Zvy—
are deflated for each step asymmetrically, with a privileged Zx. GPLS-REG is shown in
Algorithm [2]

Result: Generalized PLS-regression between Zx and Zy
Input : Mx, Zx, Wx, My, Zy, Wy, C

Output: Ij, iv/', f’, Q, i:‘J, f‘K, Lx, Ly, 5, Tx, f], B
forc=1,...,C do

GPLSSVD(Mx, Zx, Wx, My, Zyv, Wy, 1)

tx — £x x ||€x||”"

b fitx

i+ (MLZxW32)Ttx

Zx  Zx — [My? (x0T Wx]

Zy « Zy — [My :

end

| xwh—t

[N
=
[
»
W
Z
<

Algorithm 2: Generalized PLS-regression algorithm. The results of a rank 1
GPLSSVD are used to compute the latent variables and values necessary for de-
flation of Zx and Zy. PLS-CA-R is a specific instance of GPLS-REG, which we
defined in Section

GPLS-REG maximizes the relationship between Lx and Ly with the orthogonality
constraint £x £x. = 0 when ¢ # ¢ where £x £y . = 0. which is also diag{LxLy} =
diag{A}.

The GPLS-CAN decomposition builds off of the GPLS-COR algorithm, but does so by
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way of the GPLSSVD septuplet iteratively for C' iterations, with only a rank 1 solution
is provided for each use of the GPLSSVD. Then the two data matrices—Zx and Zy—are
deflated for each step symmetrically. GPLS-CAN is shown in Algorithm

Result: Generalized PLS-canonical between Zx and Zvy
Input : Mx, Zx, Wx, My, Zy, Wy, C

Output: ﬁ, \7, 13, Q, f‘J, f‘K, Lx, Ly, 5, Tx, Ty, ﬁ, A
forc=1,...,C do

GPLSSVD(Mx, Zx, Wx, My, Zyv, Wy, 1)

tx « €x x ||x||”"

ty < Ly x ||ey|| !

i (MLZxW3)Ttx

¥ (MZZyW2) Tty

Zx  Zx — [My? (tx07 )Wy
Zy + Zy — M2 (tvvT) Wy

end

(S

)
]

Nl
ol

Algorithm 3: Generalized PLS-canonical algorithm. The results of a rank 1
GPLSSVD are used to compute the latent variables and values necessary for defla-
tion of Zx and Zv. Note that the deflation in GPLS-CAN differs from GPLS-REG
in Algorithm

GPLS-CAN maximizes the relationship between Lx and Ly with the orthogonality
constraints E;CEX,C/ = 0 and e;tjey,d = 0 when ¢ # ¢ where E;céyﬁ = 0. which is also
diag{L% Ly} = diag{A}.

Note that across all three algorithms defined here, that the first component is identical
when the same preprocessed data and constraints are provided to the GPLSSVD. In nearly
all cases, subsequent components across the three algorithms differ, but also generally they
do not differ substantially. The similarities can be traced back to the common maximization
of E;cﬁy,c = 0., where the differences can be traced back to the specific orthogonality
optimizations when ¢ # ¢ where: (1) GPLS-COR in Algorithm [1| is €% £y = 0, (2)
GPLS-REG in Algorithm [2]is £x £x . = 0, and (3) GPLS-CAN in Algorithm [3] is both

£§70£X,C/ =0 and ’e€'7c£Y,c’ = 0.
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4.2 GPLS optimizations and further generalizations

From the GPLS perspective, we can better unify the wide variety of approaches with similar
goals but variations of metric, transformations, and optimizations that often appear under
a wide variety of names (e.g., PLS, CCA, interbattery factor analysis, co-inertia analysis,
canonical variates, PLS-CA, and so on; see |Abdi et al.| (2017)). The way we defined the
GPLS algorithms—in particular with the constraints applied to the rows and columns of
each data matrix—leads to numerous further generalizations.

For simplicity, let us first focus on Algorithm [I, and assume that X and Y are con-
tinuous data, where Zx and Zy are column-wise centered and/or scaled versions of X
and Y. Though we have established Algorithm [I] as GPLS-COR—and more generally as
the GPLSSVD-—we can obtain the results of three of the most common “two-table” tech-
niques: PLS correlation (PLSC), canonical correlation analysis (CCA), and redundancy
analysis (RDA, a.k.a., reduced rank regression [RRR]). Standard PLSC is performed as
GPLSSVD(1, Zx, 1,1, Zy,I), CCA is performed as GPLSSVD(I, Zx, (ZXZx) ', 1, Zv, (ZL Zv)™1),
and RDA—where X is privileged—is performed as GPLSSVD(I, Zx, (Z%Zx)™, 1, Zvy,1).
Furthermore, these three variants—PLSC, CCA, and RDA /RRR—also generalize discrimi-
nant analyses under different optimizations so long as X is a dummy-coded or complete dis-
junctive matrix to assign each observation (row) to a specific group or category (columns).

Most importantly, because of the ways we formalized the GPLS algorithms—see also
Section and the variety of ways to suitably transform data (e.g., the various coding
schemes we have shown) allow application of PLS-CA-R and GPLS algorithms on a variety
of different problems or models such as log or power transformations and alternate choices
for weights (see Eq. or models (see Eq. [). That means that the GPLS algorithms
further generalize many approaches, especially the numerous variants of CA. Generally
in the cases of strictly positive data, there may be a need to preprocess data within the
family of power transformations for CA (Greenacre 2009) or alternate distance metrics
such as Hellinger distance (Rao|[1995], [Escofier|[1978]). Finally, with the choices of weights
can change, as they do for Hellinger CA, and for the variations of “non-symmetrical CA”
(D’Ambra & Lauro||1992, Kroonenberg & Lombardo||1999, Takane et al.[[1991), where both
types of variants require one set of weights as I (akin to RDA/RRR-type optimizations
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with CA /x? models across any of the GPLS algorithms).

4.3 Ridge-like regularization

It is also possible to apply ridge-like regularization to PLLS-CA regression, correlation, and
canonical decompositions. We show two possible strategies for ridge-like regularization
under the data/model assumptions and the preprocessing we established in Section

The first approach is based on Takane’s regularized multiple CA (Takane & Hwang
2006) and regularized nonsymmetric CA (Takane & Jung/2009). To do so, it is convenient
to slightly reformulate PLS-CA-R, but still require X, Y, Ox, Oy, Ex, and Ey as defined
in Section[2.2] First we re-define Zx = (Ox—Ex)x(17X1) and Zy = (Oy—Ey)x (17Y1);
which are the same as in Eq. [5| except scaled by the grand sum of its respective source
data matrix. Next we define the following additional matrices: Dx ; = diag{X1}, and
Dy ; = diag{Y1} which are diagonal matrices of the row sums of X and Y, respectively
and Dx ; = diag{1"X}, and Dy x = diag{17Y} which are the column sums of X and Y.
Then PLS-CA correlation, regression, and canonical decompositions replace the GPLSSVD
step in Algorithms , with GPLSSVD(Dy';, Z%, D', DY'). 2%, Dy',). The only
differences between this Takane-ian reformulation and what we originally established is
that the generalized singular vectors (P and Q) and the component scores (Fj and Fk)
differ by constant scaling factors (which come from the sums of X and Y).

We can regularize PLS-CA-R in the same way as Takane’s RMCA. To do so we require
(1) a ridge parameter which we refer to as A and (2) variants of Dx ;, Dx ;, Dy, and
Dy i that we refer to as Dx; = Dx s + [A X (ZxZ%)T], Dy = Dy + [\ x (ZvZ3%)7],
Dx.j = Dx  +[AxZ¥(ZxZ%)"Zx], and Dy x = Dy x+[AX 2L (ZyZ%) T Zy]. When A =0
then Dx ; = Dx 1, Dy ; = Dy 1, Dx s = Dx j, Dy xk = Dy k. We obtain regularized forms
of PLS-CA for the correlation, regression, and canonical decompositions if we simply replace
the GPLSSVD step in each algorithm with GPLSSVD(Dy';, 2%, Dx',, Dy';, 23, Dy’ ). As
per Takane’s recommendation (Takane & Hwang 2006), A could be any positive value,
though integers in the range from 1 to 20 provide sufficient regularization, especially as A
increases.

However, the Takane-ian approach may not be feasible when I, J, and/or K are par-

37


https://doi.org/10.1101/598888
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/598888; this version posted October 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

ticularly large because the various crossproduct and projection matrices require a large
amount of memory and/or computational expense. So we now introduce a “truncated”
version of the Takane regularization which is far more computationally efficient, and anal-
ogous to the regularization procedure of Allen (Allen 2013, Allen et al.2014). We re-define
Dx; = Dx;+ (A xI)and Dy; = Dy + (A x I) and then also Dx ; = Dx j + (A x I)
and Dy x = Dy x + (A x I) where I are identity matrices (1s on the diagonal) of appropri-
ate size. Like in the previous formulation, we replace the values we have in the GPLSSVD
step where GPLSSVD(ID;&I, yAS ID;(}J, [D}{I, yAS D}{K); and in this particular case, the con-
straint matrices are all diagonal matrices, which allows for a lower memory footprint and
less computational burden.

Finally, we have two concluding remarks on ridge-like regularization. The first point
is that the more simplified Takane/Allen hybrid approach to ridge-like regularization also
applies much more generally to virtually any technique for the SVD or GPLSSVD. For
any approach, we only require some inflation factor () for the constraints so long as those
constraints are diagonal matrices. The second point is that while we have presented ridge-
like regularization with a single A it is entirely possible to use different As for each set
of constraints. Though it is possible, we do not necessarily recommend this approach, as
it would require a complex grid search over all the various A parameters; or one could
minimize the number of parameters to search and set some of the As to 0 and, for example,

use only one or two A values instead of four possible \ values.

4.4 Conclusions

The primary motivation to develop PLS-CA-R was to address the need of many fields that
require data type general methods. We introduced PLS-CA-R in a way that emphasizes
various recoding schemes to accomodate different data types all with respect to CA and the
x2 model. While that was the bulk of this work, our secondary goal was to further generalize
the PLS-CA approach and to better unify many methods under a simpler framework, specif-
ically by way of the GPLSSVD and our three GPLS algorithms. Thus our generalizations—
first established in Section [2.2] and expanded upon in Discussion—accomodate: almost any

data type, various metrics (e.g., Hellinger distance), various optimizations (e.g., PLS, CCA,
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or RDA type optmizations), and even two strategies for ridge-like regularization. We have
foregone any discussions of inference, stability, and resampling for PLS-CA-R because, as
a generalization of PLS-R, many inference and stability approaches still apply—such as
feature selection or sparsification (Sutton et al. [2018)), additional regularization or spar-
sification approaches (Le Floch et al. 2012, (Guillemot et al. 2019, Tenenhaus et al.| 2014,
Tenenhaus & Tenenhaus||2011)), cross-validation (Wold et al. 1987, Rodriguez-Pérez et al.
2018, |[Kvalheim et al. 2019, Abdi [2010)), permutation (Berry et al|2011), various boot-
strap (Efron||1979, Chernick|[2008) approaches (Abdi 2010, Takane & Jung2009)) or tests
(McIntosh & Lobaugh/[2004, Krishnan et al.[2011), and other frameworks such as split-half
resampling (Strother et al.[2002, Kovacevic et al.[2013} [Strother et al.|2004)—and are easily
adapted for the PLS-CA-R and GPLS frameworks.

PLS-CA-R was designed primarily as the mixed-data generalization of PLSR that pro-
vides for us a technique that both produces latent variables and performs regression when
standard assumptions are not met (e.g., HDLSS or high collinearity). PLS-CA-R—and
GPLS—addresses the need of many fields that require data type general methods across
multi-source and multi-domain data sets where we require careful considerations about how
we prepare and understand our data (Nguyen & Holmes|2019). We introduced PLS-CA-R
in a way that emphasizes various recoding schemes to accomodate different data types
all with respect to CA and the x? model. PLS-CA-R provides key features necessary for
data analyses as data-rich and data-heavy disciplines and fields rapidly move towards and
depend on fundamental techniques in machine and statistical learning (e.g., PLSR, CCA).
Finally, with techniques such as mixed-data MFA (Bécue-Bertaut & Pages [2008), PLS-
CA-R provides a much needed basis for development of future methods designed forsuch

complex data sets.
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