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Abstract

The present and future of large scale studies of human brain and behavior�in

typical and disease populations�is �mutli-omics�, �deep-phenotyping�, or other types

of multi-source and multi-domain data collection initiatives. These massive studies

rely on highly interdisciplinary teams that collect extremely diverse types of data

across numerous systems and scales of measurement (e.g., genetics, brain structure,

behavior, and demographics). Such large, complex, and heterogeneous data requires

relatively simple methods that allow for �exibility in analyses without the loss of

the inherent properties of various data types. Here we introduce a method designed

*Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimag-
ing Initiative (ADNI) database (http://adni.loni.usc.edu/). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI and/or provided data but did not par-
ticipate in analysis or writing of this report. A complete listing of ADNI investigators can be found at
http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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speci�cally to address these problems: partial least squares-correspondence analysis-

regression (PLS-CA-R). PLS-CA-R generalizes PLS regression for use with virtually

any data type (e.g., continuous, ordinal, categorical, non-negative values). Though

the primary emphasis here is on a PLS-regression approach generalized for data types,

we also show that PLS-CA-R leads to additional generalizations of many routine �two-

table� multivariate techniques and their respective algorithms, such as various PLS

approaches, canonical correlation analysis, and redundancy analysis (a.k.a. reduced

rank regression).

Keywords: generalized singular value decomposition, latent models, genetics, neuroimaging,
canonical correlation analysis
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1 Introduction

Today's large scale and multi-site studies, such as the UK BioBank (https://www.ukbiobank.

ac.uk/) and the Rotterdam study (http://www.erasmus-epidemiology.nl/), collect pop-

ulation level data across numerous types and modalities, including but not limited to ge-

netics, neurological, and various behavioral, clinical, and laboratory measures. Similarly,

other types of large scale studies�typically those that emphasize diseases and disorders�

collect more �depth� of data for each participant: many measures and modalities on smaller

samples. Some such studies include the Ontario Neurodegenerative Disease Research Ini-

tiative (ONDRI) (Farhan et al. 2016) which includes genetics, multiple types of magnetic

resonance brain imaging (Duchesne et al. 2019), a wide array of behavioral, cognitive, clin-

ical, and laboratory batteries, as well as many modalities �between� those, such as ocular

imaging, gait & balance (Montero-Odasso et al. 2017), eye tracking, and neuropathology.

Though large samples (e.g., UK BioBank) and depth of data (e.g., ONDRI) are necessary

to understand typical and disordered samples and populations, few statistical and machine

learning approaches exist that easily accomodate such large (whether �big� or �wide�), com-

plex, and heterogeneous data sets that also respect the inherent properties of such data,

while also accomodating numerous issues such as numerous predictors and responses, latent

e�ects, high collinearity, and rank de�ciency.

In many cases, the mixture of data types results in the sacri�ces of information and

inference, due in part because of transformations or assumptions that may be inappro-

priate or incorrect. For example, to analyze categorical and continuous data together, a

typical�but inappropriate�strategy is to recode the continous data into categories such

as dichotomization, trichotomization, or other (often arbitrary) binning strategies. Fur-

thermore, ordinal and Likert scale data�such as responses on many cognitive, behavioral,

clinical, and survey instruments�are often incorrectly treated as metric or continuous val-

ues (Bürkner & Vuorre n.d.). And when it comes to genetic data, such as single nucleotide

polymorphims (SNPs), there is almost exclusive use of the additive model based on the

minor homozygote: 0 for the most major homozygote, 1 for the heterozygote, and 2 for the

minor homozygote. The additive model holds as nearly exclusive even though other models

(e.g., dominant, recessive) or more general models (i.e., genotypic) exist and perform better
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(Lettre et al. 2007). Furthermore, {0, 1, 2} recoding of genotypes (1) presumes additive and

linear e�ects based on the minor homozygote and (2) are often treated as metric/continuous

values (as opposed to categorical or ordinal), even when known e�ects of risk are neither

linear nor additive, such as haplotypic e�ects (Vormfelde & Brockmöller 2007) nor exclu-

sively based on the minor homozygotes, such as ApoE in Alzheimer's Disease (Genin et al.

2011).

Here we introduce partial least squares-correspondence analysis-regression (PLS-CA-

R): a regression modeling and latent variable approach better suited for the complex data

sets of today's studies. We �rst show PLS-CA-R as a generalization of PLS regression

(Wold 1975, Wold et al. 1984, Tenenhaus 1998, Abdi 2010), CA (Greenacre 1984, 2010,

Lebart et al. 1984), and PLS-CA (Beaton et al. 2016)�the last of which is the �correlation�

companion to, and basis of, the proposed PLS-CA-R method. We then illustrate PLS-CA-R

as a data-type general PLS regression method. PLS-CA-R combines the features of CA to

allow for �exibility of data types with the features of PLS-R as a regression method designed

to replace OLS when we cannot meet the assumptions or requirements of ordinary least

squares (OLS). Both PLS-R and CA�and thus PLS-CA-R�are latent variable approaches

by way of components via the generlized singular value decomposition (GSVD). We show

multiple variants of PLS-CA-R, that address a variety of approaches and data types, on data

from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Data for these problems

span diagnosis (mutually exclusive categories), SNPs (genotypes are categorical), multiple

behavioral and clinical instruments (that could be ordinal, categorical, or continuous), and

several neuroimaging measures and indices (generally either continous or non-negative).

PLS-CA-R came about because it is clearly necessary: we need a method to accomodate

these data types in a predictive or �tting framework, capitalize on the ability to regress

(residualize) confounds out of mixed and likely collinear data, reveal latent variables, and

most importantly, do all of these things simply and within a well-established framework.

After we formalize and illustrate PLS-CA-R, we then show that the core of PLS-CA-R

also works as a much more generalized framework, and we then go into detail on how PLS-

CA-R provides the basis of more generalized PLS framework spans: multiple data types,

various optmizations (e.g., covariance as in PLS or correlation as in canonical correlation),
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various transformations for alternate metrics, and ridge-like regularization. Furthermore

this framework spans multiple PLS algorithms. We place particular emphasis on three of the

most commonly used PLS algorithms: (1) PLS �correlation� decomposition (Krishnan et al.

2011, Bookstein 1994, McIntosh et al. 1996)�also known as PLSSVD (Tenenhaus 1998)

or Tucker's Interbattery Factor Analysis (Tucker 1958), (2) PLS �canonical� decompostion

(Tenenhaus 1998), and (3) PLS �regression� (Wold 1975, Wold et al. 1984, 2001). PLS

correlation is a symmetric method where neither data table plays a privileged (or predictive)

role, and is performed with a single pass of the singular value decomposition (SVD). PLS

canonical is also symmetric, but makes use of the SVD iteratively and de�ates both data

tables in each iteration. PLS regression is an asymmetric method where one data table is

privileged (�predictors�) and also makes use of the SVD iteratively with de�ation of both

data tables. We discuss the particularities of these algorithms later in the paper.

This paper is orgnized as follows. In Section 2 we introduce su�cient background for,

and then formalize, PLS-CA-R. Next, in Section 3, we illustrate PLS-CA-R on the TAD-

POLE challenge (https://tadpole.grand-challenge.org/) and additional genetics data

from ADNI across three examples: a simple discriminant example with entirely categorical

data, a mixed data example that requires residualiation (i.e., adusting for confounds), and

the �nally a larger example of multiple genetic markers and whole brain tracer uptake

(non-negative values). Finally in Section 4 we discuss PLS-CA-R, but then provide further

details on how PLS-CA-R naturally leads to a much broader generalized PLS framework

that spans multiple optimizations, algorithms, metrics, and ridge-like regularization.

2 Partial least squares-correspondence analysis-regression

Here we present the generalization of partial least square-regression (PLS-R) to multiple

correspondence analysis (MCA) and correspondence analysis (CA)-like problems that gen-

erally apply to categorical (nominal) data. Via CA, we can also generalize to other data

types including mixed types (e.g., categorical, ordinal, continuous, contingency). We use a

mixture of nomenclature associated with χ2-analyses, CA, and PLS-R.

Notation is as follows. Bold uppercase letters denotes matrices (e.g., X), bold lowercase

letters denote vectors (e.g., x), and italic lowercase letters denote speci�c elements (e.g., x).
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Upper case italic letters denote cardinality, size, or length (e.g., I) where a lower case italic

denotes a speci�c index (e.g., i). A generic element of X would be denoted as xi,j. Common

letters of varying type faces, for example X, x, xi,j, come from the same data struture.

A preprocessed or transformed version of a matrix X will be denoted as ZX. Vectors are

assumed to be column vectors unless otherwise speci�ed. Two matrices side-by-side denotes

standard matrix multiplication (e.g., XY), where � denotes element-wise (Hadamard)

multiplication where � denotes element-wise (Hadamard) division. The matrix I denotes

the identity matrix. Superscript T denotes the transpose operation, superscript −1 denotes

standard matrix inversion, and superscript + denotes the Moore-Penrose pseudo-inverse.

The diagonal operation, diag{}, transforms a vector into a diagonal matrix, or extracts the

diagonal of a matrix and produces a vector.

2.1 The SVD, GSVD, CA, and GPLSSVD

Assume we have a matrix X with I rows and J columns, where X is preprocessed in some

way as ZX. The singular value decomposition (SVD) decomposes ZX as ZX = U∆VT

where UTU = I = VTV, where ZX is of rank A and ∆ is an A × A diagonal matrix

of singular values, and Λ = ∆2 is a A × A diagonal matrix of eigenvalues. U and V

are referred to as the left and right singular vectors, respectively. From the SVD we can

compute component (a.k.a. factor) scores as FI = U∆ and FJ = V∆ for the I rows and

J columns of X, respectively.

The GSVD generalizes the SVD wherein the GSVD decomposes ZX as ZX = P∆QT

under the constraints of PTMXP = I = QTWXQ, where ZX is of rank A and ∆ is a

A × A diagonal matrix of singular values. With the GSVD, P and Q are referred to as

the generalized singular vectors. Practically, the GSVD is performed through the SVD as

Z̃X = M
1
2
XZXW

1
2
X = U∆VT , where the generalized singular vectors are computed from the

singular vectors as P = M
− 1

2
X U and Q = W

− 1
2

X V. From the weights, generalized singular

vectors, and singular values we can obtain component (a.k.a. factor) scores as FI = MXP∆

and FJ = WXQ∆ for the I rows and J columns of X, respectively. For simplicity and

brevity we will refer to the use of the GSVD through �triplet notation� (Holmes 2008) but

in the form of GSVD(MX,ZX,WX), which is akin to how the multiplication steps work
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(see also Beaton et al. 2018). The standard SVD is the GSVD but with identity matrices

as the weights: GSVD(I,X, I) (see also Takane 2003), and thus if ZX were a column-wise

centered and/or normalized version of X then GSVD(I,ZX, I) is principal components

analysis (PCA).

Correspondence analysis (CA) is a technique akin to PCA but initially designed for

contingency and nominal data, and operates under the assumption of indepdence (i.e.,

akin to χ2). See Greenacre (1984), Greenacre (2010), and Lebart et al. (1984) for detailed

English explanations of CA and see Esco�er-Cordier (1965) and Benzécri (1973) for the

origins of CA. Assume the matrix X is some I × J matrix comprised of non-negative data,

generally counts (co-occurences between rows and columns) or categorical data transformed

into disjunctive format (see, e.g., �SEX� in Table 1). CA is performed with the GSVD as

follows. First we de�ne the observed matrix OX = X × (1TX1)−1. Next we compute the

marginal probabilities from the observed matrix as mX = OX1 = and wX = (1TOX)
T .

We then de�ne the expected (under the assumption of independence, i.e., χ2) matrix as

EX = mXwT
X. We then compute the deviation (from independence) matrix as ZX =

OX − EX. Finally, we perform CA as GSVD(M−1
X ,ZX,W

−1
X ) with the weights of MX =

diag{mX} and WX = diag{wX}.

We now introduce an extension of the GSVD and its triplet concept for PLS, called

the �GPLSSVD sextuplet� to decompose the the relationship between two matrices each

with I rows: X with J columns and Y with K columns, where ZX and ZY are pre-

processed versions of X and Y, respectively. The �GPLSSVD sextuplet� takes the form

of GPLSSVD(MX,ZX,WX,MY,ZY,WY). Like with the GSVD let us refer to Z̃X =

M
1
2
XZXW

1
2
X and Z̃Y = M

1
2
YZYW

1
2
Y. The GPLSSVD makes use of the SVD wherein

Z̃R = Z̃T
XZ̃Y = (M

1
2
XZXW

1
2
X)

T (M
1
2
YZYW

1
2
Y) = U∆VT . The GPLSSVD generalized sin-

gular vectors and component scores are computed as P = W
− 1

2
X U and FJ = WXP∆ for

the J columns of X, and Q = W
− 1

2
Y V and FK = WYQ∆ for the K columns of Y. Like

with the SVD UTU = I = VTV, and like with the GSVD PTWXP = I = QTWYQ.

The GPLSSVD also produces scores for the I rows of each matrix�usually called latent

variables�as LX = Z̃XU and LY = Z̃YV where LT
XLY = ∆. By its de�nition, the

GPLSSVD maximization of the latent variables�i.e., LT
XLY = ∆�is the PLS correlation
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decomposition (Krishnan et al. 2011, Bookstein 1994, McIntosh et al. 1996), also known as

PLSSVD (Tenenhaus 1998) and originally as Tucker's interbattery factor analysis (Tucker

1958). Speci�cally, if X and Y were each column-wise centered and/or normalized, then

GPLSSVD(I,ZX, I, I,ZY, I) is PLS correlation (a.k.a. PLSSVD or Tucker's approach).

Finally, we also introduce a small modi�cation of the �triplet� and �sextuplet� nota-

tions as a �quadruplet� and a �septuplet� that indicate the desired rank to be returned

by the GSVD or GPLSSVD. For example, if we want only one component from either

approach we would indicate the desired rank to return as GSVD(MX,ZX,WX, 1) and

GPLSSVD(MX,ZX,WX,MY,ZY,WY, 1). Both the GSVD and GPLSSVD in these cases

would return only one set of singular vectors, generalized singular vectors, and compo-

nent scores, and one singular value; for GPLSSVD it would return only one pair of latent

variables.

Table 1: An example of disjunctive (SEX) and pseudo-disjunctive (AGE, EDU) coding

through the fuzzy or Esco�er transforms. For disjunctive an pseudo-disunctive data, each

variable has a row-wise sum of 1 across its respective columns, and thus the row sums

across the table are the number of original variables.

Original coding Disjunctive and pseudo-disjunctive coding

SEX AGE EDU

SEX AGE EDU Male Female AGE- AGE+ EDU- EDU+

SUBJ 1 Male 64.8 16 1 0 1.03 -0.03 0.33 0.67

SUBJ 2 Female 63.6 18 0 1 1.11 -0.11 0.17 0.83

SUBJ 3 Female 76.4 18 0 1 0.24 0.76 0.17 0.83

SUBJ 4 Male 66.0 18 1 0 0.95 0.05 0.17 0.83

SUBJ 5 Female 61.9 14 0 1 1.23 -0.23 0.50 0.50

SUBJ 6 Female 66.7 14 0 1 0.90 0.10 0.50 0.50
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2.2 PLS-CA-R

For simplicity assume in the following formulation that X and Y are both complete dis-

junctive tables as seen in Table 1 (see SEX columns) or Table 2. This formulation also

applies generally to non-negative data (see later sections). We de�ne observed matrices for

X and Y as

OX = X× (1TX1)−1,

OY = Y × (1TY1)−1
(1)

Next we compute marginal probabilities for the rows and columns. We compute row

probabilities as

mX = OX1 and mY = OY1, (2)

which are the row sums of the observed matrices in Eq. 1. Then we compute column

probabilities as

wX = (1TOX)
T and wY = (1TOY)

T , (3)

which are the column sums of the observed matrices in Eq. 1. We then de�ne expected

matrices as

EX = mXwT
X and EY = mYwT

Y, (4)

and deviation matrices as

ZX = OX − EX and ZY = OY − EY, (5)

For PLS-CA-R we have two matrices, ZX which is I × J and ZY which is I × K,

and their respective row and column weights of MX = diag{mX}, MY = diag{mY},

WX = diag{wX}, and WY = diag{wY}. PLS-CA-R makes use of the rank 1 GPLSSVD

iteratively�GPLSSVD(M−1
X ,ZX,W

−1
X ,M−1

Y ,ZY,W
−1
Y , 1)�and works as follows.

First we have Z̃X = M
− 1

2
X ZXW

− 1
2

X and Z̃Y = M
− 1

2
Y ZYW

− 1
2

Y . Then we compute the

cross-product between Z̃X and Z̃Y as ZR = Z̃T
XZ̃Y = (M

− 1
2

X ZXW
− 1

2
X )T (M

− 1
2

Y ZYW
− 1

2
Y ),

where

ZR = U∆VT . (6)
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Because we make use of the rank 1 solution iteratively, we only retain the �rst vectors and

values from Eq. 6. Thus we distinguish what we retain as δ̃, ũ, ṽ, p̃, q̃, and f̃J , and f̃K .

We then compute the latent variables as

`X = Z̃Xũ and `Y = Z̃Yṽ. (7)

Next we compute tX = `X × ||`X||−1, b = `TYtX, and û = tTX(M
− 1

2
X ZXW

− 1
2

X ). We use tX,

b, and û to compute rank 1 �predicted� versions of ZX and ZY as

ẐX,1 = M
1
2
X(tXûT )W

1
2
X and

ẐY,1 = M
1
2
Y(btXṽT )W

1
2
Y.

(8)

Finally, we de�ate ZX and ZY as ZX = ZX−ẐX,1 and ZY = ZY−ẐY,1. We then repeat the

iterative procedure with these de�ated ZX and ZY: GPLSSVD(M−1
X ,ZX,W

−1
X ,M−1

Y ,ZY,W
−1
Y , 1).

The computations outlined above are performed for C iterations where: (1) C is some pre-

speci�ed number of intended latent variables where C < A where where A is the rank of

Z̃X, (2) C = A, or (3) when ZX = 0 or ZY = 0 where 0 is a null matrix. Upon the

stopping condition we would have C components, and would have collected any vectors

into corresponding matrices. Those matrices are

� two C ×C diagonal matrices B and ∆̃ with each b and δ̃ on the diagonal with zeros

o�-diagonal,

� the I × C matrices LX, LY, and TX,

� the J × C matrices Ũ, Û, P̃, and F̃J , and

� the K × C matrices Ṽ, Q̃, F̃K .

The algorithm for PLS-CA-R is presented in Algorithm 2 in Section 4. We present

Algorithm 2 as a �generalized partial least squares regression� by way of the GPLSSVD

sextuplet. We discuss the generalized aspects of the algorithm in more detail in Section 4.

2.3 Maximization in PLS-CA-R

PLS-CA-R maximizes the common information between ZX and ZY such that
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argmax
`X,`Y

= `TX`Y = (M
− 1

2
X ZXW−1

X p̃)T (M
− 1

2
Y ZYW−1

Y q̃) =

(M
− 1

2
X ZXW

− 1
2

X W
− 1

2
X p̃)T (M

− 1
2

Y ZYW
− 1

2
Y W

− 1
2

Y q̃) =

(Z̃XW
− 1

2
X p̃)T (Z̃YW

− 1
2

Y q̃) = (Z̃XW
− 1

2
X W

1
2
Xũ)T (Z̃YW

− 1
2

Y W
1
2
Y ṽ) =

(Z̃Xũ)T (Z̃Yṽ) = ũZ̃T
XZ̃Yṽ = ũZRṽ = ũU∆Vṽ = δ̃,

(9)

where δ̃ is the �rst singular value from ∆ for each c step. PLS-CA-R maximization is

subject to the orthogonality constraint that `TX,c`X,c′ = 0 when c 6= c′. This orthogonality

constraint propagates through to many of the vectors and matrices associated with ZX

where TT
XTX = P̃TW−1

J P̃ = ŨT Ũ = I; these orthogonality constraints do not apply to

the various vectors and matrices associated with Y.

2.4 Decomposition and reconstitution

PLS-CA-R is a �double decomposition� where

ZX = M
1
2
XTÛTW

1
2
X and

ẐY = M
1
2
YTXBṼTW

1
2
Y = M

1
2
YZ̃XÛT+BṼTW

1
2
Y,

(10)

where Z̃X = TÛT and
̂̃
ZY = TXBṼT = Z̃XÛT+BṼT . PLS-CA-R, like PLS-R, provides

the same estimated predicted values as OLS under the conditions that ZX is (1) full rank,

(2) non-singular, (3) not excessively multicollinear:

ẐY = M
1
2
YTXBṼTW

1
2
Y = Z̃X(Z̃

T
XZ̃X)

+Z̃T
XZY, (11)

where TXBṼT = Z̃X(Z̃
T
XZ̃X)

+Z̃T
XZ̃Y. This connection to OLS shows how to residualize

(i.e., �regress out� or �correct�) for known confounding e�ects, akin to how residuals are

computed in OLS. We do so with the original ZY as ZY− ẐY. PLS-CA-R produces a both

predicted and residualized version of Y. Recall that ẐY = M
1
2
YTXBṼTW

1
2
Y. We compute

a reconstituted form of Y as

Ŷ = (ẐY + EY)× (1TY1), (12)

which is the opposite steps of computing the deviations matrix. We add back in the

expected values and then scale the data by the total sum of the original matrix. The same
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can be done for residualized values (i.e., �error�) as

Yε = [(ZY − ẐY) + EY]× (1TY1). (13)

Typically, EY is derived from the model of the data (as noted in Eq. 4). However,

the reconstituted space could come from any model by way of generalized correspondence

analysis (Esco�er 1983; Esco�er 1984; for more details and background see also Beaton et al.

2018). With GCA we could use any reasonable model with alternates to EY that could

be obtained, for examples, from known priors, a theoretical model, out of sample data, or

even population estimates. The same procedures can be applied to obtain a reconstituted

X. Finally, CA can then be applied directly to either Ŷ or Yε.

2.5 Concluding remarks

Now that we have formalized PLS-CA-R, we want to point out small variations, some

caveats, and some additional features here. We go into much more detail in later sections

on larger variations and broader generalizations through our formulation.

In PLS-CA-R (and PLS-R) each subsequent δ̃ is not guaranteed to be smaller than

the previous, with the exception of all δ̃ are smaller than the �rst. This is a by-product

of the iterative process and the de�ation steps, and does not occur with just a single

pass of the SVD or GSVD (i.e., PLS-correlation decomposition). This poses two issues:

(1) visualization of component scores and (2) explained variance. For visualization of

the component scores�which use δ̃�there is an alternative computation: F
′
J = WJP̃

and F
′
K = WKQ̃. This alternative is referred to as �asymmetric component scores� in

the correspondence analysis literature (Abdi & Béra 2014, Greenacre 1993). Additionally,

instead of computing the variance per component or latent variable, we can instead compute

the amount of variance explained by each component in X and Y. To do so we require the

sum of the eigenvalues of each of the respective matrices per iteration. The trace for each is

computed via CA (with the GSVD). Before the �rst iteration of PLS-CA-R we can obtain

the the full variance (sum of the eigenvalues) of each matrix from GSVD(M−1
X ,ZX,W

−1
X )

and GSVD(M−1
Y ,ZY,W

−1
Y ), which we refer to as φX and φY, respectively. We can compute

the sum of the eigenvalues for each de�ated version of ZX and ZY through the GSVD just
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as above, referred to as φX,c and φY,c. For each c component the proportion of explained

variance for each matrix is
φX−φX,c

φX
and

φY−φY,c

φY
.

In our formulation, the weights we use are derived from the χ2 assumption of indepen-

dence. However nearly any choices of weights could be used, so long as the weight matrices

are positive semi-de�nite. However, if alternate row weights (i.e., MX or MY) were chosen,

then the �tted values and residuals are no longer guaranteed to be orthogonal (the same

condition is true in weighted OLS). Likewise, alternate column weights (i.e., WX or WY)

may deviate from the assumptions of χ2 and may no longer re�ect independence, or is an

alternate metric altogether. There are some well-established alternates that we mention

further in later sections, and through the concept of generalized correspondence analysis

(Esco�er 1983, 1984) almost any weights or model could be used. However, those changes

should be informed by sound statistical and theoretical assumptions.

Finally, though we formalized PLS-CA-R as a method for categorical (nominal) data

coded in complete disjunctive format (as seen in Table 1�see SEX columns�or Table 2),

PLS-CA-R can easily accomodate various data types without loss of information. Speci�-

cally, both continuous and ordinal data can be handled with relative ease and in a �pseudo-

disjunctive� format, also referred to as �fuzzy coding� where complete disjunctive would

be a �crisp coding� (Greenacre 2014). We explain exactly to handle various data types

as Section 3 progresses, which re�ects more �real world� problems: complex, mixed data

types, and multi-source data.

3 Applications & Examples

The goal of this section is to provide a several illustrative examples with real data from

the Alzheimer's Disease Neuroimaging Initiative (ADNI). These examples highlight how to

approach mixed data with PLS-CA-R as well as the multiple uses of PLS-CA-R (e.g., for

analyses, as a residualization procedure). We present three sets of analyses to illustrate

multiple uses of PLS-CA-R. First we introduce PLS-CA-R through a typical and relatively

straightforward example: predict genotypes (categorical) from groups (categorical) where

we can highlight multiple features of PLS-CA-R. Next we present analyses with the goal to

predict genotypes from a small set of behavioral and brain variables. This second example
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serves multiple purposes: (1) how to recode and analyze mixed data (categorical, ordinal,

and continuous), (2) how to use PLS-CA-R as an analysis technique, and (3) how to use

PLS-CA-R as residualization technique (i.e., adjust for confounds) prior to subsequent

analyses. Finally, we present a larger analysis with the goal to predict genotypes from

cortical uptake of AV45 (i.e., a radiotracer) PET scan for beta-amyloid (�Aβ�) deposition.

This �nal example also makes use of residualization as illustrated in the second example.

3.1 ADNI Data

Data used in the preparation of this article come from the ADNI database (adni.loni.usc.edu).

ADNI was launched in 2003 as a public-private funding partnership and includes public

funding by the National Institute on Aging, the National Institute of Biomedical Imag-

ing and Bioengineering, and the Food and Drug Administration. The primary goal of

ADNI has been to test a wide variety of measures to assess the progression of mild cogni-

tive impairment and early Alzheimer's disease. The ADNI project is the result of e�orts of

many coinvestigators from a broad range of academic institutions and private corporations.

Michael W. Weiner (VA Medical Center, and University of California-San Francisco) is the

ADNI Principal Investigator. Subjects have been recruited from over 50 sites across the

United States and Canada (for up-to-date information, see www.adni-info.org).

The data we use in the following examples come from several modalities of the ADNI

data entirely from the ADNI-GO/2 cohort. Generally, the data come from two sources avail-

able from the ADNI download site (http://adni.loni.usc.edu/): genome-wide data and

the TADPOLE challenge data (https://tadpole.grand-challenge.org/) which con-

tains a wide variety of data (e.g., demographics, diagnosis, cognitive and behavioral data,

and some neuroimaging data). Because the genetics data are used in every example, we

provide all genetics preprocessing details here, and then describe any preprocessing for

other data as we discuss speci�c examples.

For all examples in this paper we use a candidate set of single nucleotide polymorphisms

(SNPs) extracted from the genome-wide data. We extracted only SNPs associated with

the MAPT, APP, ApoE, and TOMM40 genes because they are considered as candidate

contributors to various AD pathologies: MAPT because of its association with tau proteins,
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AD pathology, or cognitive decline (Myers et al. 2005, Trabzuni et al. 2012, Desikan et al.

2015, Cruchaga et al. 2012, Peterson et al. 2014), APP because of its association with

β-amyloid proteins (Cruchaga et al. 2012, Huang et al. 2017, Jonsson et al. 2012), as well

as ApoE and TOMM40 because of their strong association with the diagnosis of AD and

presence of various AD pathologies (Linnertz et al. 2014, Roses et al. 2010, Bennet et al.

2010, Huang et al. 2017). SNPs were processed as follows via Purcell et al. (2007) with

additional R code as necessary: minor allele frequency (MAF) > 5% and missingness for

individuals and genotypes ≤ 10%. Because the SNPs are coded as categorical variables

(i.e., for each genotype) we performed an additional level of preprocessing: genotypes > 5%

because even with MAF > 5%, it was possible that some genotypes (e.g., the heterozygote

or minor homozygote) could still have very few occurrences. Therefore if any genotypes were

≤ 5% they were combined with another genotype. In all cases the minor homozygote (`aa')

fell below that threshold and was then combined with its respective heterozygote (`Aa');

thus some SNPs were e�ectively coded as the dominant model (i.e., the major homozygote

vs. the presence of a minor allele). See Table for an example of SNP data coding examples.

From the ADNI-GO/2 cohort there were 791 available participants. After preprocessing

there were 791 participants with 134 total SNPs across the four candidate genes. The 134

SNPs span 349 columns in disjunctive coding (see Table 2). Other data include diagnosis

and demographics, some behavioral and cognitive instruments, and several types of brain-

based measures. We discuss these additional data in further detail when we introduce these

data.

3.2 Diagnosis and genotypes

Our �rst example asks and answers the question: �which genotypes are associated with

which diagnostic category?�. We do so through the prediction of genotypes from diagnosis.

Diagnosis at baseline in the ADNI study is a mutually exclusive categorical variable that

denotes which group each participant belongs to (at the �rst visit): control (CN; N = 155),

subjective memory complaints (SMC; N = 99), early mild cognitive impairment (EMCI;

N = 277), late mild cognitive impairment (LMCI; N = 134), and Alzheimer's disease (AD;

N = 126). We present this �rst example analysis in two ways: akin to a standard regression
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Table 2: An example of a SNP with its genotypes for respective individuals and disjunctive

coding for three types of genetic models: genotypic (three levels), dominant (two levels:

major homozygote vs. presence of minor allele), and recessive (two levels: presence of

major allele vs. minor homozygote).

SNP Genotypic Dominant Recessive

Genotype AA Aa aa AA Aa+aa AA+Aa aa

SUBJ 1 Aa 0 1 0 0 1 1 0

SUBJ 2 aa 0 0 1 0 1 1 0

SUBJ 3 aa 0 0 1 0 1 0 1

SUBJ 4 AA 1 0 0 1 0 1 0

SUBJ 5 Aa 0 1 0 0 1 1 0

SUBJ 6 AA 1 0 0 1 0 1 0

progblem a la Wold [Wold (1975); Wold et al. (1984); Wold et al. (1987); cf. Eq. 11) and

then again in the more recent, and now typical, multivariate perspective of �projection onto

latent structures� (Abdi 2010).

Table 3: Descriptives and demographics for the sample.

N AGE mean (sd) EDU mean (sd) Males (Females)

AD 126 74.53 (8.42) 15.78 (2.68) 75 (51)

CN 155 74 (6.02) 16.41 (2.52) 80 (75)

EMCI 277 71.14 (7.39) 15.93 (2.64) 156 (121)

LMCI 134 72.24 (7.68) 16.43 (2.57) 73 (61)

SMC 99 72.19 (5.71) 16.81 (2.51) 40 (59)

For this example we refer to diagnosis groups as the predictors (X) and the genotypic

data as the responses (Y). Both data types are coded in disjunctive format (see Tables 1

and 2). Because there are �ve columns (groups) in X, PLS-CA-R produces only four latent

variables (a.k.a. components). Table 4 presents the cumulative explained variance for both
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X and Y and shows that groups explain only a small amount of genotypic variance: R2 =

0.0065.

Table 4: The R-squared values over the four latent variables for both groups and genotypes.

The full variance of groups is explained over the four latent variables. The groups explained

0.65% of the genotypes.

X (groups) R-squared cumulative Y (genotypes) R-squared cumulative

Latent variable 1 0.25 0.0026

Latent variable 2 0.50 0.0042

Latent variable 3 0.75 0.0055

Latent variable 4 1.00 0.0065

In a simple regression-like framework we can compute the variance contributed by geno-

types or group (i.e., levels of variables) or variance contributed by entire variables (in this

example: SNPs). First we compute the contributions to the variance of the genotypes

as the sum of the squared loadings for each item: [(V � V)1] × C−1, where 1 is a con-

formable vector of ones. Total contribution values exist between 0 and 1 and describe

the proportional variance each genotype contributes. These contributions to components

can be computed as vc � vc. Because the contributions are additive we can compute the

contributions for a SNP through all of its all. A simple criterion to identify genotypes or

SNPs that contribute to the model is to identify which genotype or SNP contributes more

variance than expected, which is one divided by the total number of original variables (i.e.,

SNPs). In this case that would be 1/134 = 0.0075. This criterion can be applied on the

whole or component-wise. We show the genotypes and SNPs with above exepcted variance

for the whole model (i.e., high contributing variables a regression framework) in Figure 1.

Though PLS-R was initally developed as a regression approach�especially to handle

highly collinear predictors or a set of predictors that are not full rank (see explanations

in Wold et al. 1984)�it is far more common to use PLS to �nd latent structures (i.e.,

components or latent variables) (Abdi 2010). From this point forward we show only the

more common �projection onto latent structures� perspectives. We show the latent vari-
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Figure 1: Regression approach to prediction of genotypes from groups. Contributions

across all components for genotypes (A; top) and the SNPs (B; bottom) computed as the

summation of genotypes within a SNP. The horizontal line shows the expected variance

and we only highlight genotypes (A; top) or SNPs (B; bottom) greater than the expected

variance. Some of the highest contributing genotypes (e.g., AA and AG genotypes for

rs769449) or SNPs (e.g., rs769449 and rs20756560) come from the APOE and TOMM40

genes.
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able scores (observations) and component scores (variables) for the �rst two latent vari-

ables/components in Figure 2. The �rst latent variable scores (Fig. 2a) shows a gradient

from the control (CN) group through to the Alzheimer's Disease (AD) groups (CN to SMC

to EMCI to LMCI to AD). The second latent variable shows a dissociation of the EMCI

group from all other groups (Fig. 2b). Figure 2c and d show the component scores for the

variables. Genotypes on the left side of �rst latent variable (a.k.a., component; horizontal

axis in Figs. 2c and d) are more associated with CN and SMC than the other groups,

where as genotypes on the right side are more associated with AD and LMCI than the

other groups. Genotypes highlighted in purple are those that contribute more than ex-

pected variance to the �rst component. Through the latent structures approach we can

more clearly see the relationships between groups and genotypes. Because we treat the

data categorically and code for genotypes, we can identify the speci�c genotypes that con-

tribute to these e�ects. For example the `AA' genotype of rs769449 and the `GG' genotype

of rs2075650 are more associated with AD and LMCI than the other groups. In conrast,

the `TT' genotype of rs405697 and the `TT' genotype rs439401 are more associated with

the CN group than other groups (and thus could suggest potential protective e�ects).

This group-based analysis is also a discriminant analysis because it maximally separates

groups. Thus we can classify observations by assigning them to the closest group. To

correctly project observations onto the latent variables we compute LY × I
1
2 = [OY �

(mY1T )]FK∆−1 where 1 is a 1×K vector of ones where OY � (mY1T ) are �row pro�les�

of Y (i.e., each element of Y divided by its respective row sum). Observations from LY×I
1
2

are then assigned to the closest group in FJ , either for per component, across a subset of

components, or all components. For this example we use the full set (four) of components.

The assigned groups can then be compared to the a priori groups to compute a classi�cation

accuracy. Figure 3 shows the results of the discriminant analysis but only visualized on the

�rst two components. Figures 3a and b show the scores for FJ and LY × I
1
2 , respectively.

Figure 3c shows the assignment of observations to their closest group. Figure 3d visualizes

the accuracy of the assignment, where observations in black are correct assignments (gray

are incorrect assignments). The total classi�cation accuracy 38.69% (where chance accuracy

was 23.08%). Finally, typical PLS-R discriminant analyses are applied in scenarios where
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Figure 2: Latent variable projection approach to prediction of genotypes from groups. (A)

and (B) show the latent variable scores for latent variables (LVs; components) one and two,

respectively; (C) shows the component scores of the groups, and (D) shows the component

scores of the genotypes. In (D) we highlight genotypes with above expected contribution

to Latent Variable (Component) 1 in purple and make all other genotypes gray.
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Figure 3: Discriminant PLS-CA-R. (A) shows the component scores for the group on

Latent Variables (LV) 1 and 2 (horizontal and vertical respectively), (B) shows the latent

variable scores for the genotype ('LY') LV scores for LVs 1 and 2, colored by a priori group

association, (C) shows the latent variable scores for the genotype ('LY') LV scores for LVs

1 and 2, colored by assigned group association (i.e., nearest group assignment across all

LVs), and (D) shows correct vs. incorrect assignment in black and gray, respectively.
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a small set of, or even a single, (typically) categorical responses are predicted from many

predictors (Pérez-Enciso & Tenenhaus 2003). However, such an approach appears to be

�over optimistic� in its prediction and classi�cation (Rodríguez-Pérez et al. 2018), which

is why we present discriminant PLS-CA-R more akin to a typical regression problem (i.e.,

here a single predictor with multiple responses).

Table 5: The a priori (rows) vs. assigned (columns) accuracies for the discriminant

analysis.

CN SMC EMCI LMCI AD

CN 62 15 54 16 17

SMC 20 40 33 18 10

EMCI 34 20 110 23 29

LMCI 14 12 39 44 20

AD 25 12 41 33 50

3.3 Mixed data and residualization

Our second example illustrates the prediction of genotypes from multiple brain and be-

havioral variables: (1) three behavioral/clinical scales: Montreal Cognitive Assessment

(MoCA) (Nasreddine et al. 2005), Clinical Dementia Rating-Sum of Boxes (CDRSB) (Mor-

ris 1993), and Alzheimer's Disease Assessment Scale (ADAS13) (Skinner et al. 2012), (2)

volumetric brain measures in mm3: hippocampus (HIPPO), ventricles (VENT), and whole

brain (WB), and (3) global estimates of brain function via PET scans: average FDG (for

cerebral blood �ow; metabolism) in angular, temporal, and posterior cingulate and average

AV45 (Aβ tracer) standard uptake value ratio (SUVR) in frontal, anterior cingulate, pre-

cuneus, and parietal cortex relative to the cerebellum. This example higlights two features

of PLS-CA-R: (1) the ability to accomodate mixed data types (continuous, ordinal, and

categorical) and (2) as a way to residualize (orthogonalize; cf. Eq. 13) with respect to

known or assumed confounds.

Here, the predictors encompass a variety of data types: all of the brain markers (vol-
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umetric MRI estimates, functional PET estimates) and the ADAS13 appear as generally

continuous data, whereas the MoCA and especially the CDRSB are generally ordinal be-

cause they have limited values constrained by a minimum and maximum score: the CDRSB

exists between 0 and 9 generally by steps of 1, and the MoCA exists between 0 and 30,

though values below 20 are exceedingly rare. Furthermore, the assumed di�erences between

each level are not considered the same, for example, MoCA scores of 29 and 30 are regarded

as preserved and normal (high) levels of cognition, where as 26 and 27 is the (clinical) line

between impaired and unimpaired. There are many properties of PLS-CA-R by way of CA

that allow for easy inclusion of mixed data types. In particular, continuous and ordinal

data types can be coded into what is called thermometer (Beaton et al. 2018), fuzzy, or

�bipolar� coding (because it has two poles) (Greenacre 2014); an idea initially propsosed by

Esco�er for continuous data (Esco�er 1979). The �Esco�er transform� allows continuous

data to be analyzed by CA and produces the exact same results as PCA (Esco�er 1979).

The same principles can be applied to ordinal data as well (Beaton et al. 2018). Continu-

ous and ordinal data can be transformed into a �pseudo-disjunctive� format that behaves

exactly like complete disjunctive data (see Table 1) but preserves the values (as opposed

to binning, or dichotomizing). Here, we refer to the transform for continuous data as the

�Esco�er transform� or �Esco�er coding� (Beaton et al. 2016) and the transform for ordinal

data as the �thermometer transform� or �thermometer coding�. Because continuous, ordi-

nal, and categorical data can all be trasnformed into a disjunctive-like format, they can all

be analyzed with PLS-CA-R.

While the overall objective of this example is to understand the relationship between

routine markers of AD and genetics, confounds exist for both the predictors (behavioral

and brain data) and the responses (genotype data): age, sex, and education in�uence the

behavioral and brain variables, whereas sex, race, and ethnicity in�uence the genotypic

variables. To note, these confounds are also of mixed types (e.g., sex is categorical, age

is generally continuous). Thus in this example we illustrate the mixed analysis in two

ways�unadjusted and then adjusted for these confounds. First we show the e�ects of the

confounds on the separate data sets, and then compare and contrast adjusted vs. unadjusted

analyes. For the �mixed� data analyses, the volumetric data were also normalized (divided
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by) by intracranial volume prior to these analyses; e�ectively transformed into proportional

volumes within each participant. Any other adjustments are described when needed.

First we show the PLS-CA-R between each data set and their respective confounds.

The main e�ects of age, sex, and education explained 11.17% of the variance of the behav-

ioral and brain data, where the main e�ects of sex, race, and ethnicity explained 2.1% of

the variance of the genotypic data. The �rst two components of each analysis are shown

in Figure 4. In the brain and behavioral data, age explains a substantial amount of vari-

ance and e�ectively explains Component 1. In the genotypic analysis, race is the primary

explanatory e�ect; more speci�cally, the �rst two components are explained by those that

identify as black or African-American (Component 1) vs. those that identify as Asian, Na-

tive, Hawaiian, or Latino/Hispanic (Component 2). Both data sets were reconstituted (i.e.,

Yε from Eq. 13) from their residuals.

Next we performed two analyses with the same goal: understand the relationship be-

tween genetics and the behavioral and brain markers. In the unadjusted analysis, the brain

and behavioral data explained 1.6% of variance in the genotypic data, whereas in the ad-

justed analysis, the brain and behavioral data explained 1.54% of variance in the genotypic

data. The �rst two components of the PLS-CA-R results can be seen in Figure 4.

In the unadjusted analysis (Figure 4a and c) vs. the adjusted analysis (Figure 4b and

d), we can some similarities and di�erences, especially with respect to the behavioral and

brain data. AV45 shows little change after the residualization, and generally explains a

substantial amount of variance as it contributes highly to the �rst two components in both

analyses. The e�ects of the structural data�especially the hippocampus�are dampened

after adjustment (see Figure 4a vs b), where the e�ects of FDG and CDRSB are now

(relatively) increased (see Figure 4a vs b). On the subject level, the di�erences are not

substantial, but there are noticeable e�ects especially with the ability to distinguish between

groups (see Figure 6). One important e�ect is that on a spectrum from CON to AD, we

can see that the residualization has a larger impact on the CON side, where the AD side

remains somewhat homgeneous (see Figure 6c) for the brain and behavioral variables. With

respect to the genotypic LV, there is much less of an e�ect (see Figure 6d), wherein the

observations appear relatively unchanged. However, both pre- (horizontal axis; Figure 6d)
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Figure 4: PLS-CA-R used as a way to residualize (orthogonalize) data. The top �gures (A)

and (B) show prediction of the brain and behavior markers from age, sex, and education.

Gray items are one side (lower end) of the "bipolar" or pseudo-disjunctive variables. The

bottom �gures (C) and (D) show the prediction of genotypes from sex, race, and ethnicity.
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and post- (vertical axis; Figure 6d) residualization shows that there are individuals with

unique genotypic patterns that remain una�ected by the residualization process (i.e., those

at the tails).

From this point forward we emphasize the results from the adjusted analyses because

they are more realistic in terms of how analyses are performed. For this we refer to Figure

6b�which shows the latent variable scores for the observations and the averages of those

scores for the groups�and Figures 5b and 5d�which show the component scores for the

brain and behavioral markers and the genotypes, respectively. The �rst latent variable

(Fig. 6b) shows a gradient from control (CON) on the left to Alzheimer's Disease (AD)

on the right. Brain and behavioral variables on the right side of the �rst component

(horizontal axis in Fig. 5b) are more associated with genotypes on the right side (Fig.

5d), where brain and behavioral variables on the left side of are more associated with

genotypes on the left side. In particular, the AA genotype of rs769449, GG genotype of

rs2075650, GG genotype of rs4420638, and AA genotype of rs157582 (amongst others)

are related to increased AV45 (AV45+), decreased FDG (FDG-), and increased ADAS13

scores (ADAS13+), where as the TT genotype of rs405697, GG genotype of rs157580, and

TC+TT genotypes of rs7412 (amongst others) are more associated with control or possibly

protective e�ects (i.e., decreased AV4, increased FDG, and decreased ADAS13 scores).

3.4 SUVR and genotypes

In this �nal example we make use of all the features of PLS-CA-R: an example with mixed

data types within and between data sets, each with confounds (and thus require residu-

alization). This example serves as something more akin to the typical analysis pipeline

with similar objectives. The goal of this example is to predict genotypes from β−amyloid

burden (�AV45 uptake�) across regions of the cortex. In this case, we also assume that the

distribution of AV45 uptake across cortical regions approximately follows that of χ2 in that

we compute the deviations from independence (produced from the product between the row

and column probabilities). However we want to note that this is only one possible way to

handle such data. It is possible to treat these data as row-wise proportions (i.e., percentage

of total uptake per region within each subject) or even as continuous data; though these
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Figure 5: PLS-CA-R to predict genotypes from brain and behavioral markers on the

original and residualized data shown on the �rst two latent variables (components). The

top �gures (A) and (B) show the component scores for the brain and behavioral markers for

the original and residualized data, respectively, and the bottom �gures (C) and (D) show

the component scores for the genotypes for the original and residualized data, respectively.
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Figure 6: Latent variable scores (observations) for the �rst latent variable. The top �gures

(A) and (B) show the projection of the latent variable scores from each set: LX are the brain

and behavioral markers, where as LY are the genotypes, for the original and residualized,

respectively. The bottom �gures (C) and (D) show the the original and residualized scores

for the �rst latent variable compared to one another for each set: the brain and behavioral

markers (LX) and the genotypes (LY), respectively.
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data are strictly non-negative. Ultimately, it is up to the analyst to decide how to treat

such data and how it �ts into the analysis framework.

Because not all subjects have complete AV45 and genotypic data, the sample for this

example is slightly smaller: N = 778. Ethnicity, race, and sex (all categorical) explains

2.07% of the variance in the genotypic data where age (numeric), education (ordinal), and

sex (categorical) explains 2.22% of the variance in the in the AV45 uptake data. Overall,

AV45 brain data explains 9.08% of the variance in the genotypic data. With the adjusted

data we can now perform our intended analyses. Although this analysis produced 67

components (latent variables), we focus on just the �rst (0.57% of genotypic variance

explained by AV45 brain data).

The �rst latent variable in Figure 7a is associated with only the horizontal axes (Compo-

nent 1) in Figure 7b and c. The horizontal axis in Fig. 7a is associated with the horizontal

axis in Fig. 7b whereas the vertical axis in Fig. 7a is associated with the horizontal axis in

Fig. 7c. The �rst latent variable (Figure 7a) shows a gradient: from left to right we see the

groups con�gured from CN to AD. On the �rst latent variable we do also see a group-level

dissociation where AD+LMCI are entirely on one side whereas EMCI+SMC+CN are on

the opposite side for both LX (AV45 uptake, horizontal) and LY (genotypes, vertical);

e�ectively the means of AD and LMCI exist in the upper right quadrant and the means

of the EMCI, SMC, and CN groups exist in the lower left quadrant. Higher relative AV45

uptake for the regions on the left side of Component 1 are more associated with EMCI,

SMC, and CN than with the other groups, whereas higher relative AV45 uptake for the

regions on the right side of Component 1 are more associated with AD and LMCI (Fig. 7b).

The genotypes on the left side are associated with the uptake in regions on the left side and

the genotypes on the right side are associated with the uptake in regions on the right side

(Fig. 7c). For example, LV/Component 1 shows relative uptake in right and left frontal

pole, rostral middle frontal, and medial orbitofrontal regions are more associated with the

following genotypes: AA and AG from rs769449, GG from rs2075650, GG from rs4420638,

and AA from rs157582, than with other genotypes; these e�ects are generally driven by

the AD and LMCI groups. Conversely, LV/Component 1 shows higher relative uptake in

right and left lingual, cuneus, as well left parahippocampal and left entorhinal are more
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Figure 7: PLS-CA-R to predict genotypes from amyloid burden ("AV45 uptake"). The

top �gure (A) shows the latent variable scores for the observations on the �rst latent

variable with group averages. The bottom �gures (B) and (C) show the amyloid burden

in cortical regions and the genotypes, respecively. In (A) we see a gradient from the

Alzheimer's Disease (AD) group to the control (CON) group. Only items with above

expected contribution to variance on the �rst LV are highlighed in purple.
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associated with the following genotypes: TT from rs405697, GG from rs6859, TC+TT

from rs7412, TT from rs2830076, GG from rs157580, and AA from rs4420638 genotypes

than with other genotypes; these e�ects are generally driven by the CN, SMC, and EMCI

cohorts. In summary, from the PLS-CA-R results we see that particular patterns of re-

gional AV45 uptake predict particular genotypic patterns across many SNPs, and that the

sources these e�ects are generally driven by the groups. Furthermore the underlying brain

and genotypic e�ects of the groups exist along a spectrum of severity.

4 Discussion

Many modern studies, like ADNI, aim to measure individuals at a variety of scales: genetics

and genomics, brain structure and function, many aspects of cognition and behavior, bat-

teries of clinical measures, and almost anything in between all of these levels. These data

are extremely complex: they are heterogeneous and more often than not �wide� (many more

variables than subjects). But many current strategies and approaches to handle such mul-

tivariate heterogeneous data often requires compromises or sacri�ces (e.g., the presumption

of single numeric model for categorical data such as the additive model for SNPs; Z-scores

of ordinal values; or �dichotomania� (https://www.fharrell.com/post/errmed/#catg):

the binning of continuous values into categories). Many of those strategies and approaches

presume that data are interval scale, or completely misrepresent data, and therefore the

properties of those data types are E�ectively ignored. Because of the many features and

�exibility of PLS-CA-R�e.g., best �t to predictors, orthogonal latent variables, accommo-

dation for virtually any data type�we are able to identify distinct variables and levels (e.g.,

genotypes) that de�ne or contribute to control (CON) vs. disease (AD) e�ects (e.g., Fig.

2) or reveal particular patterns anchored by the polar control and disease e�ects (CON →

SMC → EMCI → LMCI → AD; see, e.g., Fig. 7).

While we focused on particular ways of coding and transforming data, there are many

alternatives that could be used with PLS-CA-R. For example, we used a disjunctive ap-

proach for SNPs because they are categorical, which matches the genotypic model. How-

ever, through various disjunctive schemes, or other forms of Esco�er or fuzzy coding, we

could have used any genetic model: if all SNPs were coded as the major vs. the minor allele
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(`AA' vs. {`Aa+aa'}), this would be the dominant model, or we could have assumed the ad-

ditive model �i.e., 0, 1, 2 for `AA', `Aa', and `aa', respectively�and transformed the data

with the ordinal approach (but we strongly emphasize not the continuous approach). We

previously provided a comprehensive guide on how transform various SNP genetic models

for use in PLS-CA and CA elsewhere (see Appendix of Beaton et al. 2016). Furthermore,

we only highlighted one of many possible methods to transform ordinal data. The term

�fuzzy coding� applies more generally to the recoding of ordinal, ranked, preference, and

even continuous data across a number of schemes, all of which conform to the same prop-

erties as disjunctive data. The many �fuzzy� and �double� coding schemes are generally

found in Esco�er (1979), Lebart et al. (1984), or Greenacre (2014). However, for ordinal

data�especially with fewer than or equal to 10 levels, and without excessively rare (≤ 1%)

occurences�we recommend to treat ordinal values as categorical levels. When ordinal data

are treated as categorial (and disjunctively coded), greater detail about the levels emerges

and in most cases reveal non-linear patterns of the ordinal levels.

Though we have presented PLS-CA-R as a generalization of PLS-R that accomodates

virutally any data type (by way of CA), the way we formalized PLS-CA-R�in Section 2.2

and describe its algorithm in Algorithm 2�leads to further variants and broader generaliza-

tions, that span various PLS, CA, and related approaches, several typical PLS algorithms,

a variety of optimizations (e.g., canonical correlation), and ridge-like regularization.

4.1 GPLS algorithms

In general there exist three primary PLS algorithms: PLS correlation decomposition (Book-

stein 1994, Ketterlinus et al. 1989) generally more known in neuroimaging (McIntosh et al.

1996, McIntosh & Lobaugh 2004, Krishnan et al. 2011) which has numerous alternate

names such as PLS-SVD and Tucker's interbattery factor analysis (Tucker 1958) amongst

others (see also Beaton et al. 2016), PLS regression decomposition (cf. Section 2.2 and

also Algorithm 2) and the PLS canonical decomposition (Tenenhaus 1998, Wegelin et al.

2000), which is a symmetric method with iterative de�ation (i.e., it has features of both

PLS-C and PLS-R). Given the way in which we formalize PLS-CA-R�as a generalized

PLS-R�here we show how PLS-CA-R provides the basis of generalizations of these three

32

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 2, 2019. ; https://doi.org/10.1101/598888doi: bioRxiv preprint 

https://doi.org/10.1101/598888
http://creativecommons.org/licenses/by-nc/4.0/


algorithms, as well as further optimizations, similar to Borga et al. (1992), Indahl et al.

(2009), and de Micheaux et al. (2019) but we do so in a more comprehensive way that

incorporates more methods than other uni�cation strategies, and we also do so in a way

that accomodates multiple data types. We refer to the three techniques under the umbrella

of generalized partial least squares (GPLS) as GPLS-COR, GPLS-REG, and GPLS-CAN,

for the �correlation�, �regression�, and �canonical� decompositions respectively. GPLS-COR

and GPLS-CAN are symmetric decomposition approaches where neither ZX nor ZY are

privileged. GPLS-REG is an asymmetric decomposition approach where ZX is privileged.

We present the GPLS-COR, GPLS-REG, and then GPLS-CAN algorithms with their re-

spective optimizations. We do so in the previously mentioned order because GPLS-COR

is used as the basis of all three algorithms and GPLS-CAN shares features and concepts

with both GPLS-COR and GPLS-REG. For all of these we rely on the basis of PLS-CA-R

we established in Section 2.2�speci�cally for various mixed data types under the χ2 model

(as used in CA).

The GPLS-COR decomposition is the simplest GPLS technique. It requires only a

single pass of the SVD�or in our case the GPLSSVD. There are no explicit iterative steps

in GPLS-COR. GPLS-COR takes as input the two preprocessed matrices�ZX and ZY�

and their respective row and column weights: MX and WX for ZX, and MY and WY

for ZY, where C is the desired number of components to return. GPLS-COR is shown in

Algorithm 1.

Result: Generalized PLS-correlation between ZX and ZY

Input : MX, ZX, WX, MY, ZY, WY, C

Output: U, V, P, Q, FJ , FK , LX, LY, ∆

GPLSSVD(MX,ZX,WX,MY,ZY,WY, C)

Algorithm 1: Generalized PLS-correlation algorithm. GPLS-COR is the

GPLSSVD and provides the basis of other GPLS techniques. Furthermore, GPLS-

COR easily allows for a variety of optmizations for examples canonical correlation,

reduced rank regression (redundancy analysis), and even ridge-like regularization.

GPLS-COR maximizes the relationship between LX and LY with the orthogonality

constraint `TX,c`Y,c′ = 0 when c 6= c′ where `TX,c`Y,c = δc and thus LT
XLY = UT Z̃T

XZ̃YVT =
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UT Z̃RVT = UTU∆VTVT = ∆. We can show this with the generalized vectors and weight

as LT
XLY = PTWXZT

XM
1
2
XM

1
2
YZYWYQT = PTWXP∆QTWYQ = ∆. Furthermore,

GPLS-COR (via GPLSSVD) provides all of the other outputs as previously described in

Section 2.1. GPLS-COR�which is the GPLSSVD�provides the basis for the other two al-

gorithms: both GPLS-REG and GPLS-CAN make use of GPLS-COR (i.e., the GPLSSVD)

with rank 1 solutions iteratively.

The GPLS-REG decomposition builds o� of the GPLS-COR algorithm, but does so by

way of the GPLSSVD septuplet iteratively for C iterations, with only a rank 1 solution

is provided for each use of the GPLSSVD. Then the two data matrices�ZX and ZY�

are de�ated for each step asymmetrically, with a privileged ZX. GPLS-REG is shown in

Algorithm 2.

Result: Generalized PLS-regression between ZX and ZY

Input : MX, ZX, WX, MY, ZY, WY, C

Output: Ũ, Ṽ, P̃, Q̃, F̃J , F̃K , LX, LY, ∆̃, TX, Û, B

for c = 1, . . . , C do

GPLSSVD(MX,ZX,WX,MY,ZY,WY, 1)

tX ← `X × ||`X||−1

b← `TYtX

û← (M
1
2
XZXW

1
2
X)

T tX

ZX ← ZX − [M
− 1

2
X (tXûT )W

− 1
2

X ]

ZY ← ZY − [M
− 1

2
Y (btXṽT )W

− 1
2

Y ]

end

Algorithm 2: Generalized PLS-regression algorithm. The results of a rank 1

GPLSSVD are used to compute the latent variables and values necessary for de-

�ation of ZX and ZY. PLS-CA-R is a speci�c instance of GPLS-REG, which we

de�ned in Section 2.2.

GPLS-REG maximizes the relationship between LX and LY with the orthogonality

constraint `TX,c`X,c′ = 0 when c 6= c′ where `TX,c`Y,c = δc which is also diag{LT
XLY} =

diag{∆̃}.

The GPLS-CAN decomposition builds o� of the GPLS-COR algorithm, but does so by
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way of the GPLSSVD septuplet iteratively for C iterations, with only a rank 1 solution

is provided for each use of the GPLSSVD. Then the two data matrices�ZX and ZY�are

de�ated for each step symmetrically. GPLS-CAN is shown in Algorithm 3

Result: Generalized PLS-canonical between ZX and ZY

Input : MX, ZX, WX, MY, ZY, WY, C

Output: Ũ, Ṽ, P̃, Q̃, F̃J , F̃K , LX, LY, ∆̃, TX, TY, Û, V̂

for c = 1, . . . , C do

GPLSSVD(MX,ZX,WX,MY,ZY,WY, 1)

tX ← `X × ||`X||−1

tY ← `Y × ||`Y||−1

û← (M
1
2
XZXW

1
2
X)

T tX

v̂← (M
1
2
YZYW

1
2
Y)

T tY

ZX ← ZX − [M
− 1

2
X (tXûT )W

− 1
2

X ]

ZY ← ZY − [M
− 1

2
Y (tYv̂T )W

− 1
2

Y ]

end

Algorithm 3: Generalized PLS-canonical algorithm. The results of a rank 1

GPLSSVD are used to compute the latent variables and values necessary for de�a-

tion of ZX and ZY. Note that the de�ation in GPLS-CAN di�ers from GPLS-REG

in Algorithm 2.

GPLS-CAN maximizes the relationship between LX and LY with the orthogonality

constraints `TX,c`X,c′ = 0 and `TY,c`Y,c′ = 0 when c 6= c′ where `TX,c`Y,c = δc which is also

diag{LT
XLY} = diag{∆̃}.

Note that across all three algorithms de�ned here, that the �rst component is identical

when the same preprocessed data and constraints are provided to the GPLSSVD. In nearly

all cases, subsequent components across the three algorithms di�er, but also generally they

do not di�er substantially. The similarities can be traced back to the common maximization

of `TX,c`Y,c = δc, where the di�erences can be traced back to the speci�c orthogonality

optimizations when c 6= c′ where: (1) GPLS-COR in Algorithm 1 is `TX,c`Y,c′ = 0, (2)

GPLS-REG in Algorithm 2 is `TX,c`X,c′ = 0, and (3) GPLS-CAN in Algorithm 3 is both

`TX,c`X,c′ = 0 and `TY,c`Y,c′ = 0.
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4.2 GPLS optimizations and further generalizations

From the GPLS perspective, we can better unify the wide variety of approaches with similar

goals but variations of metric, transformations, and optimizations that often appear under

a wide variety of names (e.g., PLS, CCA, interbattery factor analysis, co-inertia analysis,

canonical variates, PLS-CA, and so on; see Abdi et al. (2017)). The way we de�ned the

GPLS algorithms�in particular with the constraints applied to the rows and columns of

each data matrix�leads to numerous further generalizations.

For simplicity, let us �rst focus on Algorithm 1, and assume that X and Y are con-

tinuous data, where ZX and ZY are column-wise centered and/or scaled versions of X

and Y. Though we have established Algorithm 1 as GPLS-COR�and more generally as

the GPLSSVD�we can obtain the results of three of the most common �two-table� tech-

niques: PLS correlation (PLSC), canonical correlation analysis (CCA), and redundancy

analysis (RDA, a.k.a., reduced rank regression [RRR]). Standard PLSC is performed as

GPLSSVD(I,ZX, I, I,ZY, I), CCA is performed asGPLSSVD(I,ZX, (Z
T
XZX)

−1, I,ZY, (Z
T
YZY)

−1),

and RDA�where X is privileged�is performed as GPLSSVD(I,ZX, (Z
T
XZX)

−1, I,ZY, I).

Furthermore, these three variants�PLSC, CCA, and RDA/RRR�also generalize discrimi-

nant analyses under di�erent optimizations so long as X is a dummy-coded or complete dis-

junctive matrix to assign each observation (row) to a speci�c group or category (columns).

Most importantly, because of the ways we formalized the GPLS algorithms�see also

Section 2.2�and the variety of ways to suitably transform data (e.g., the various coding

schemes we have shown) allow application of PLS-CA-R and GPLS algorithms on a variety

of di�erent problems or models such as log or power transformations and alternate choices

for weights (see Eq. 3) or models (see Eq. 4). That means that the GPLS algorithms

further generalize many approaches, especially the numerous variants of CA. Generally

in the cases of strictly positive data, there may be a need to preprocess data within the

family of power transformations for CA (Greenacre 2009) or alternate distance metrics

such as Hellinger distance (Rao 1995, Esco�er 1978). Finally, with the choices of weights

can change, as they do for Hellinger CA, and for the variations of �non-symmetrical CA�

(D'Ambra & Lauro 1992, Kroonenberg & Lombardo 1999, Takane et al. 1991), where both

types of variants require one set of weights as I (akin to RDA/RRR-type optimizations
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with CA/χ2 models across any of the GPLS algorithms).

4.3 Ridge-like regularization

It is also possible to apply ridge-like regularization to PLS-CA regression, correlation, and

canonical decompositions. We show two possible strategies for ridge-like regularization

under the data/model assumptions and the preprocessing we established in Section 2.2.

The �rst approach is based on Takane's regularized multiple CA (Takane & Hwang

2006) and regularized nonsymmetric CA (Takane & Jung 2009). To do so, it is convenient

to slightly reformulate PLS-CA-R, but still require X, Y, OX, OY, EX, and EY as de�ned

in Section 2.2. First we re-de�ne ZX = (OX−EX)×(1TX1) and ZY = (OY−EY)×(1TY1);

which are the same as in Eq. 5 except scaled by the grand sum of its respective source

data matrix. Next we de�ne the following additional matrices: DX,I = diag{X1}, and

DY,I = diag{Y1} which are diagonal matrices of the row sums of X and Y, respectively

and DX,J = diag{1TX}, and DY,K = diag{1TY} which are the column sums of X and Y.

Then PLS-CA correlation, regression, and canonical decompositions replace the GPLSSVD

step in Algorithms 1, 2, 3 with GPLSSVD(D−1X,I ,Z
T
X,D

−1
X,J ,D

−1
Y,I ,Z

T
Y,D

−1
Y,K). The only

di�erences between this Takane-ian reformulation and what we originally established is

that the generalized singular vectors (P and Q) and the component scores (FJ and FK)

di�er by constant scaling factors (which come from the sums of X and Y).

We can regularize PLS-CA-R in the same way as Takane's RMCA. To do so we require

(1) a ridge parameter which we refer to as λ and (2) variants of DX,I , DX,J , DY,I , and

DY,K that we refer to as DX,I = DX,I + [λ × (ZXZT
X)

+], DY,I = DY,I + [λ × (ZYZT
Y)

+],

DX,J = DX,J+[λ×ZT
X(ZXZT

X)
+ZX], and DY,K = DY,K+[λ×ZT

Y(ZYZT
Y)

+ZY]. When λ = 0

then DX,I = DX,I , DY,I = DY,I , DX,J = DX,J , DY,K = DY,K . We obtain regularized forms

of PLS-CA for the correlation, regression, and canonical decompositions if we simply replace

the GPLSSVD step in each algorithm with GPLSSVD(D−1X,I ,Z
T
X,D

−1
X,J ,D

−1
Y,I ,Z

T
Y,D

−1
Y,K). As

per Takane's recommendation (Takane & Hwang 2006), λ could be any positive value,

though integers in the range from 1 to 20 provide su�cient regularization, especially as λ

increases.

However, the Takane-ian approach may not be feasible when I, J , and/or K are par-
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ticularly large because the various crossproduct and projection matrices require a large

amount of memory and/or computational expense. So we now introduce a �truncated�

version of the Takane regularization which is far more computationally e�cient, and anal-

ogous to the regularization procedure of Allen (Allen 2013, Allen et al. 2014). We re-de�ne

DX,I = DX,I + (λ × I) and DY,I = DY,I + (λ × I) and then also DX,J = DX,J + (λ × I)

and DY,K = DY,K +(λ× I) where I are identity matrices (1s on the diagonal) of appropri-

ate size. Like in the previous formulation, we replace the values we have in the GPLSSVD

step where GPLSSVD(D−1X,I ,Z
T
X,D

−1
X,J ,D

−1
Y,I ,Z

T
Y,D

−1
Y,K); and in this particular case, the con-

straint matrices are all diagonal matrices, which allows for a lower memory footprint and

less computational burden.

Finally, we have two concluding remarks on ridge-like regularization. The �rst point

is that the more simpli�ed Takane/Allen hybrid approach to ridge-like regularization also

applies much more generally to virtually any technique for the SVD or GPLSSVD. For

any approach, we only require some in�ation factor (λ) for the constraints so long as those

constraints are diagonal matrices. The second point is that while we have presented ridge-

like regularization with a single λ it is entirely possible to use di�erent λs for each set

of constraints. Though it is possible, we do not necessarily recommend this approach, as

it would require a complex grid search over all the various λ parameters; or one could

minimize the number of parameters to search and set some of the λs to 0 and, for example,

use only one or two λ values instead of four possible λ values.

4.4 Conclusions

The primary motivation to develop PLS-CA-R was to address the need of many �elds that

require data type general methods. We introduced PLS-CA-R in a way that emphasizes

various recoding schemes to accomodate di�erent data types all with respect to CA and the

χ2 model. While that was the bulk of this work, our secondary goal was to further generalize

the PLS-CA approach and to better unify many methods under a simpler framework, specif-

ically by way of the GPLSSVD and our three GPLS algorithms. Thus our generalizations�

�rst established in Section 2.2, and expanded upon in Discussion�accomodate: almost any

data type, various metrics (e.g., Hellinger distance), various optimizations (e.g., PLS, CCA,
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or RDA type optmizations), and even two strategies for ridge-like regularization. We have

foregone any discussions of inference, stability, and resampling for PLS-CA-R because, as

a generalization of PLS-R, many inference and stability approaches still apply�such as

feature selection or sparsi�cation (Sutton et al. 2018), additional regularization or spar-

si�cation approaches (Le Floch et al. 2012, Guillemot et al. 2019, Tenenhaus et al. 2014,

Tenenhaus & Tenenhaus 2011), cross-validation (Wold et al. 1987, Rodríguez-Pérez et al.

2018, Kvalheim et al. 2019, Abdi 2010), permutation (Berry et al. 2011), various boot-

strap (Efron 1979, Chernick 2008) approaches (Abdi 2010, Takane & Jung 2009) or tests

(McIntosh & Lobaugh 2004, Krishnan et al. 2011), and other frameworks such as split-half

resampling (Strother et al. 2002, Kovacevic et al. 2013, Strother et al. 2004)�and are easily

adapted for the PLS-CA-R and GPLS frameworks.

PLS-CA-R was designed primarily as the mixed-data generalization of PLSR that pro-

vides for us a technique that both produces latent variables and performs regression when

standard assumptions are not met (e.g., HDLSS or high collinearity). PLS-CA-R�and

GPLS�addresses the need of many �elds that require data type general methods across

multi-source and multi-domain data sets where we require careful considerations about how

we prepare and understand our data (Nguyen & Holmes 2019). We introduced PLS-CA-R

in a way that emphasizes various recoding schemes to accomodate di�erent data types

all with respect to CA and the χ2 model. PLS-CA-R provides key features necessary for

data analyses as data-rich and data-heavy disciplines and �elds rapidly move towards and

depend on fundamental techniques in machine and statistical learning (e.g., PLSR, CCA).

Finally, with techniques such as mixed-data MFA (Bécue-Bertaut & Pagès 2008), PLS-

CA-R provides a much needed basis for development of future methods designed forsuch

complex data sets.
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