

1 Heat tolerance and acclimation capacity in unrelated subterranean arthropods living
2 under common and stable thermal conditions

3 Short title: Heat tolerance in subterranean arthropods

4 Susana Pallarés^{1*,#a}; Raquel Colado¹; Toni Pérez-Fernández²; Thomas Wesener³;
5 Ignacio Ribera⁴; David Sánchez-Fernández^{1, #b}

6 ¹ Instituto de Ciencias Ambientales, Universidad de Castilla-La Mancha, Campus de
7 Toledo, Toledo, Spain

8 ² Grupo de Espeleología de Villacarrillo, Jaén, Spain

9 ³ Zoological Research Museum Alexander Koenig, Bonn, Germany

10 ⁴ Institut de Biología Evolutiva (CSIC-UPF), Barcelona, Spain

11 ^a Current address: Departamento de Zoología, Universidad de Sevilla, Seville, Spain
12 (current address)

13 ^b Current address: Departamento de Ecología e Hidrología, Universidad de Murcia,
14 Murcia, Spain (current address)

15 *Corresponding author

16 E-mail: susana.pallares@um.es (SP)

18 **Abstract**

19 Cave-dwelling ectotherms, which have evolved for millions of years under stable
20 thermal conditions, could be expected to have adjusted their physiological limits to the
21 narrow range of temperatures they experience and be highly vulnerable to global
22 warming. However, the few existing studies on thermal physiology in subterranean
23 invertebrates point that they have lost some of the thermoregulatory mechanisms
24 common in surface species, but there is a lack of evolutionary adjustment to ambient
25 temperature. The question remains whether this surprising homogeneous thermal niche
26 is common for the whole subterranean biodiversity or just a peculiarity of the species
27 tested. In order to test for the generality of such previous findings, we studied basal heat
28 tolerance and thermal plasticity in four species of distant arthropod groups (Coleoptera,
29 Diplopoda and Collembola) with different evolutionary histories but under similar
30 selection pressures, as they have been exposed to the same constant environmental
31 conditions for a long time (inhabiting the same cave). Adult specimens were exposed at
32 different temperatures for one week to determine upper lethal temperatures. Then,
33 surviving individuals from each treatment were exposed to a fixed stressful temperature
34 to determine acclimation capacity. Upper lethal temperatures were similar to those
35 reported for other subterranean species (between 20-25°C), except from that of the
36 diplopod (28°C), widely exceeding the cave temperature (13-14°C). Acclimation
37 responses differed from a positive acclimation response in two of the species to no
38 acclimation capacity or detrimental acclimation effects in the others. Our results show
39 that thermal niche features are not as homogeneous as expected across the subterranean
40 fauna and unrelated to ambient conditions. We show that some species, likely those that
41 colonized subterranean environments more recently, still retain thermoregulation

42 capacity to face temperature changes. Thus, subterranean species, even those living
43 under similar climatic conditions, might be very differently affected by global warming.

44 **Keywords:** upper lethal temperature, acclimation capacity, physiological plasticity,
45 thermal tolerance, subterranean, troglobiont, troglophile, Coleoptera, Collembola,
46 Diplopoda, climatic variability hypothesis, global change

47 **Introduction**

48 According with the climatic variability hypothesis [1], a positive relationship exists
49 between the thermal tolerance and the level of climatic variability experienced by taxa,
50 which has been demonstrated at different taxonomic resolutions (e.g. [2-5]). Similarly,
51 thermal acclimation capacity is in general very limited in organisms from thermally
52 stable environments compared with those living under more fluctuating conditions [6].
53 Thus, ectothermic animals which have evolved for millions of years under stable
54 thermal conditions are generally highly stenothermal and lack physiological plasticity,
55 which makes them especially vulnerable to global change [7-10]. For example, some
56 Antarctic cold-stenothermal species (e.g. [7, 11-14]) as well as warm stenothermal coral
57 reef fishes [15, 16] have lost the ability to activate a heat shock response via the
58 expression of heat shock proteins.

59 The subterranean environment, characterized by extremely stable thermal conditions,
60 provides another interesting system to test these general hypotheses of climatic
61 variability [17, 18]. As a result of the strong selection pressures in these climatically
62 buffered environments, cave-dwelling species might have adjusted physiological
63 performance to the narrow range of temperatures they experience and therefore could be
64 expected to be highly stenothermal compared with epigean taxa. Such thermal
65 sensitivity, together with their generally poor dispersal capacity and limited possibilities

66 for behavioural thermoregulation in a homogenous environment, would limit the
67 potential of subterranean species to adapt to global warming [18, 19]. However, several
68 decades ago, Vandel [20] questioned the stenothermal character of cave fauna, based on
69 the little experimental data available at that time for some cave-adapted invertebrates,
70 which showed that they generally survive long-term exposures at 20°C and can resist
71 temperatures up to 25-29°C for short exposures (e.g. [21-24]). Mitchell [25] reported
72 that the carabid *Rhadine subterranea* (Van Dyke, 1919) shows a seasonal shift in its
73 temperature preference, showing some degree of thermal plasticity. Bull & Mitchell
74 [26] demonstrated that the cave millipedes *Cambala speobia* (Chamberlin, 1952) and
75 *Speodesmus bicornourus* Causey, 1959 could survive 30°C for short exposures (several
76 hours) despite living at constant temperatures close to 20°C.

77 Experimental data on thermal physiology in subterranean species are still very scarce,
78 which in part could be due to the difficulties in collecting large number of specimens
79 required for experiments or rearing them in the laboratory. The few, more recent studies
80 that have specifically measured thermal breadth and plasticity in subterranean species
81 show different results depending on the trait measured. Some stygobitic (groundwater)
82 microcrustacean species present the typical characteristics of stenothermal organisms,
83 i.e., low physiological plasticity (e.g. [27]) and narrow thermal breadths of performance
84 optimum (e.g. [28]), being even sensitive to changes in temperature 2°C below or above
85 their habitat temperature [29]. In contrast, other closely related groundwater species
86 have a much wider thermal ranges for performance and survival [28, 29]. Rizzo *et al.*
87 [30] measured long-term (7 days) survival of several species of a clade of leiodid
88 beetles at different temperatures. Tolerance ranges were much narrower than those of
89 terrestrial insects living at the same latitude, but still wider than the temperatures
90 experienced through their evolutionary history and unrelated to their current habitat

91 conditions. Furthermore, lethal thermal limits were very similar for all of the studied
92 species irrespective of the climatic conditions of the areas where they live, and also
93 similar to those observed in other leiodids [22, 31].

94 What seems to be common from all these studies is that most subterranean species, even
95 those from relatively cold climates (e.g. [29, 32]) can survive temperatures around 20°C
96 but not higher than 25-26°C in the long-term (> 7 days). Together, these results show
97 that, in agreement with the climatic variability hypothesis, subterranean ectotherms have
98 a lower heat tolerance than most epigean species, but also suggest a general lack of
99 evolutionary adjustment to ambient temperatures (i.e., they are not strictly
100 stenothermal). This would imply that species living in warmer areas are closer to their
101 upper limits of thermal tolerance and therefore at higher extinction risk than those living
102 in high altitudes (colder areas), contrary to the general predictions for surface species.
103 Yet the question that remains is to what extent this apparently homogeneous thermal
104 niche is common for the whole subterranean biodiversity. This question is difficult to be
105 answered given the general lack of data on thermal physiology for the subterranean
106 fauna. To fill pat of this gap, we studied heat tolerance, accounting for both basal (upper
107 lethal temperature - ULT) and induced tolerance (plasticity of ULTs via acclimation), in
108 four distantly related arthropod species representative of the invertebrate community of
109 a single cave system (Cueva de la Murcielaguina de Hornos, SE Spain). They represent
110 a set of species with different evolutionary origins but exposed to similar strong
111 selection pressures (i.e., the same constant environmental conditions) for a long time.

112 **Material and methods**

113 **Target species, sampling and holding conditions**

114 The four studied species coexist in the same cave system, Murcielaguina de Hornos
115 (Jaén, Spain), and belong to three different orders of arthropods. (1) *Glomeris* sp
116 (Diplopoda: Glomerida: Glomeridae) is an undescribed species of a mega-diverse genus
117 within the order Glomerida, and one of the few within the genus which is strictly
118 subterranean [33]; it seems to be confined to some caves in south Spain (unpublished
119 observations). (2) *Deuteraphorura silvaria* (Gisin, 1952) (Entognatha: Collembola:
120 Onychiuridae) is a troglophile (i.e. not strictly subterranean) species distributed in
121 Central and South Europe [34-35]. (3) *Speonemadus angusticollis* (Kraatz, 1870)
122 (Coleoptera: Leiodidae) is an Iberian endemic species strictly hypogean in its southern
123 distribution (Andalusia region) but endogean in the central part of the Iberian Peninsula
124 [36], and (4) *Atheta subcavicola* (Coleoptera: Staphylinidae) is one of the few species of
125 the genus *Atheta* associated with caves but also found in epigean environments (i.e.,
126 troglophile), distributed in the Iberian Peninsula and France [37-40].

127 None of the target species is included in national or international lists of protected or
128 endangered species. The Murcielaguina de Hornos cave is located in the protected area
129 “Parque Natural y Reserva de la Biosfera de las Sierras de Cazorla, Segura y Las
130 Villas”. Field sampling was made with the corresponding permissions from the park
131 authorities and the “Consejería de Medio Ambiente de la Junta de Andalucía”. Adult
132 specimens of the four species were collected by hand, and found usually close to guano
133 deposits. The temperature in the internal part of the cave (13-14°C) correlates with that
134 of the mean annual temperature of the surface (13.9°C, Worldclim database,
135 <http://www.worldclim.org>), as generally occurs in cave systems [18, 41, 42]. Specimens
136 were transported to the laboratory under controlled conditions, with substrate from the
137 cave in addition to moss to keep a high humidity. In the laboratory, the cultures were
138 stored for two days before the experiments in closed plastic containers (10x15cm) with

139 a white plaster layer (approx. 1cm) and the moss and cave substrate, at the approximate
140 temperature of the cave (13°C) in an incubator (Radiber ERF-360). Specimens were fed
141 *ad libitum* with freshly frozen *Drosophila melanogaster* throughout the entire duration
142 of the experiments.

143 For the experiments, specimens of *Glomeris* sp., *A. subcavicola* and *S. angusticollis*
144 were placed in the plastic boxes with the plaster substratum, 2 or 3 volcanic stones of a
145 diameter of 1–3 cm and wet tissue paper. As *D. silvaria* specimens were not easily
146 visible in such boxes given their small size and so were placed in Petri dishes also with
147 a plaster substratum and a tissue paper saturated in water. The substratum, stones and
148 papers were wetted daily, and trays with distilled water were placed in the incubator to
149 keep a relative humidity >90%. Temperature and relative humidity inside the plastic
150 boxes were recorded every 5 min with HOBO MX2301 dataloggers (Onset Computer
151 Corporation, Bourne, MA, USA).

152 **Basal heat tolerance: upper lethal temperatures**

153 To estimate species' heat tolerance, we assessed survival at different temperatures
154 during long-term exposure (7 days). The plastic boxes or Petri dishes with the
155 specimens (N= 7–16 replicates per treatment) were placed in cabinets at 13 (control
156 temperature), 20, 23, 25 or 30°C. Survival was checked every 24 h and specimens were
157 recorded as alive if they were capable of some movement after a slight touch with a
158 brush.

159 **Induced heat tolerance: acclimation capacity**

160 Acclimation capacity of the four species was assessed using surviving specimens (N=5–
161 16 specimens per species and treatment) from the heat tolerance experiment (i.e.,

162 previously exposed at the different temperatures), which were transferred to a high fixed
163 temperature. Such a fixed test temperature was set up considering the survival response
164 at sublethal temperatures in the previous experiment: those species whose survival was
165 higher than or close to 50% of the exposed specimens after 7 days at 25°C (*Glomeris*
166 sp., *A. subcavicola* and *S. angusticollis*) were directly transferred to 30°C, while those
167 with lower survival rates (*D. silvaria*) were transferred to 23°C. Survival was checked
168 every 24 h for 7 days.

169 **Data analyses**

170 All the analyses were performed in R v.3.3.3. To explore species' basal heat tolerance,
171 we used Kaplan–Meier survivorship curves [43] for comparison of survival at the
172 different tested temperatures. Right censored data were specified for those individuals
173 that were alive at the end of the experiment (see [44]). Survival data from each species
174 at the end of the experiment (7 days) were fitted to a logistic regression model from
175 which LT₅₀ values were estimated using the *dose.p* function.

176 The effect of acclimation treatments on survival at a high fixed temperature was
177 determined for each species by using GLMs assuming a Poisson distribution. Post-hoc
178 tests with Bonferroni correction were used to compare pairs of treatments and
179 specifically to test for positive acclimation responses (i.e. significantly higher survival
180 in individuals from heat treatments than those of the control group) or detrimental
181 acclimation effects (i.e. significantly lower survival in individuals from heat treatments
182 than those of the control group). Additionally, we employed non-parametric tests
183 (Kruskal-Wallis) and *kruskalmc* posthoc test [45, 46] for comparison with the previous,
184 more conservative approach, and to test for the robustness of the results.

185 **Results**

186 Raw data on survival time from both experiments are available in the Dataset S1.

187 **Absolute thermal tolerance**

188 All the species showed ca. 100% survival at 13°C (control) and 20°C during the 7
189 exposure days, and a rapid mortality (between 24–48 hours) at 30°C. Therefore, survival
190 at 23 and 25°C marked the differences in thermal tolerance among the species: *Glomeris*
191 sp. showed the highest survival at these temperatures (100% survival for 7 days) and *D.*
192 *silvaria* the lowest (i.e., rapid and high mortality in both treatments) (Fig 1). Mean LT₅₀
193 values (7 days) ranged from 19.64±1.03 (*D. silvaria*), 24.98±0.52 (*A. subcavicola*),
194 25.18±0.75 (*S. angusticollis*) to 27.59±0.76°C (*Glomeris* sp.).

195 **Fig 1. Kaplan–Meir survivorship curves for each temperature treatment.** Each data
196 point represents survival probability (mean±s.e.m.).

197 **Acclimation capacity**

198 Each species showed a different response after acclimation at the different temperatures.
199 *Glomeris* sp. and *A. subcavicola* showed a positive acclimation response, although in
200 the latter only non-parametric tests detected significant differences among acclimation
201 treatments (Table 1). In *Glomeris* sp., survival time at 30°C was significantly higher in
202 individuals acclimated at 23 and 25°C than those from the control group, with a
203 maximum difference of 1.8 days between 25°C and 13°C treatments. In *A. subcavicola*,
204 only those individuals acclimated at 23°C showed a significantly higher survival time (1
205 day) than the control group ($p<0.05$ in *kruskalmc* post-hoc test), while no positive
206 acclimation response was found at the other acclimation temperatures (Fig 2).

207 *Speonemadus angusticollis* had no acclimation capacity: no specimens of any of the
208 acclimation treatments survived more than 1 day of exposure at 30°C. In *D. silvaria*,
209 acclimation at 20°C significantly reduced subsequent tolerance to 23°C (Fig 2).

210 **Table 1. Results of GLM and Kruskal-Wallis tests to determine the effect of**
211 **acclimation temperature on the subsequent survival at a fixed temperature.**

Species	GLM (Poisson)			Kruskal-Wallis test		
	X ² value	df	p-value	X ² value	df	p-value
<i>A. subcavicola</i>	2.162	3	0.540	11.038	3	0.012
<i>Glomeris</i> sp.	14.496	3	0.002	40.137	3	<0.001
<i>S. angusticollis</i>	--	--	--	--	--	--
<i>D. silvaria</i>	12.645	1	<0.001	9.405	1	0.002

212

213 **Fig 2. Survival time at a fixed temperature (indicated above each species) after**
214 **acclimation at different temperatures.** Letters above the bars indicate significant
215 differences among acclimation treatments within species according to post-hoc tests
216 (p<0.05).

217 Discussion

218 As expected, and in agreement with the climatic variability hypothesis, upper thermal
219 limits of the studied species were lower than those of most surface organisms [47].
220 However, the four species studied here can survive, at least for one week, at
221 temperatures much higher than the narrow range currently experienced in their habitat
222 (ca. 13-14°C). Our results are in agreement with previous work showing that
223 subterranean species generally withstand temperatures up to 20°C with no apparent
224 signs of stress (e.g. [28-30]). This contrasts with the narrow survival limits found in taxa
225 from other thermally stable habitats, as for example stenothermal Antarctic fishes,
226 which generally die at temperatures above 5°C [48], and most coldwater marine

227 invertebrates, whose ULTs are generally not higher than 10°C [49]. Such higher thermal
228 sensitivity of these marine species might be related with the role of oxygen in setting
229 thermal tolerance, which is particularly relevant for aquatic organisms [50].
230 Nevertheless, thermal breadths for critical biological functions important to long-term
231 survival or reproduction (e.g. feeding, locomotion, fecundity) may be more constrained
232 than survival ranges in subterranean species (e.g. [29]). Similarly, exposure to non-
233 lethal temperatures may have ‘hidden costs’ through sublethal effects (e.g. oxidative
234 stress) which could affect fitness in the long-term [51]. It should be also noted that
235 earlier stages could display different thermal sensitivity than adults. Indeed, data on the
236 development of some strictly subterranean leiodid species showed high egg mortality
237 between 15-21°C [31, 52].

238 We found some differences in survival at temperatures above 20°C with respect to other
239 subterranean invertebrates. The two coleopteran species studied here showed LT₅₀
240 values after 7 days exposure close to 25°C, a temperature which was lethal in brief
241 exposures (<1 day) for several strictly subterranean species of leiodids [30]. But most
242 notable was the high heat tolerance displayed by *Glomeris* sp., apparently the only
243 troglobiont (i.e. obligate subterranean) species in our study, with a mean LT₅₀ of 27.6°C.
244 Although experimental data on thermal physiology are still scarce for subterranean
245 ectotherms – and particularly for cave diplopods (but see [26]), to our knowledge, no
246 known troglobiont species studied so far has shown such a high thermotolerance at long
247 term exposures. Other than absolute lethal limits, their degree of plasticity also differed
248 among the studied species. In comparative terms, thermal plasticity ranged from high in
249 *Glomeris* sp. to moderate in *A. subcavicola* and absent in *S. angusticollis* and *D.*
250 *silvaria*. In the light of these different acclimation responses, physiological plasticity
251 deserves further exploration in subterranean species. Caves are environments with

252 extreme selection pressures and adapted faunas that are similar in appearance,
253 physiology, and behaviour all over the world, despite their different origins [53-55].
254 However, our results suggest that upper thermal limits and acclimation capacities,
255 despite to be highly constrained, could be not as homogeneous as expected across the
256 subterranean fauna. Instead they seem to be linked to particular aspects of the ecology,
257 physiology or evolutionary history of the different lineages.
258 The degree of specialization to the subterranean environment, as well as habitat
259 selection within the cave (both aspects related with the thermal variability to which
260 organisms are exposed) have been associated with differences in the thermal tolerance
261 among subterranean species. Some troglobionts have been shown to be less
262 thermotolerant than facultative cave-inhabitants (trogloxenes and troglophiles) [56].
263 Such relationship was also consistent across a set of 37 phylogenetically distant
264 invertebrate species [57]. Within troglobionts, species confined to the internal parts of
265 the cave show also higher thermal sensitivity than closely related ones found close to
266 cave entrances, where thermal conditions are more fluctuating [32]. Our small set of
267 unrelated species prevents us to test this climatic variability hypothesis within an
268 appropriate phylogenetic context. However, it is remarkable that, in contrast with these
269 previous studies, the highest heat tolerance in our study was displayed by a troglobiont
270 species which is found in the internal part of the cave Murcielaguina de Hornos, while
271 the cohabitant troglophiles *A. subcavicola*, and especially, *D. silvaria*, were more heat-
272 susceptible. Anyway, it would be interesting to explore intraspecific differences on
273 thermal niche features related with the degree of specialization to the subterranean
274 environment in these troglophile species, as their habitat preferences might change
275 across their distribution range.

276 The differences in thermal physiological limits observed here between the studied
277 species might thus reflect the particular evolutionary history of each lineage rather than
278 distinct environmental preferences related to the occupied habitat. If thermal tolerance
279 breadths have been progressively reduced in the process of specialization to
280 underground environments, one might expect that lineages which have been isolated in
281 caves for a longer time would show the most modified thermal tolerance ranges (i.e.
282 most reduced with respect to that of the closest epigean ancestor), assuming a paradigm
283 of evolution of thermal physiology traits similar to that of time-correlated
284 troglomorphies [58, 59]. Currently, we still lack both molecular and physiological data
285 needed to track the evolutionary reduction of thermal tolerance in the process of
286 colonization of subterranean habitats. However, our results with *Glomeris* sp. suggest
287 that this species may still retain some heat tolerance from a relatively recent epigean
288 ancestor. Unpublished barcoding data shows a close relationship of the cave species (ca.
289 10% uncorrected p-distance) to *Glomeris maerens* Attems, 1927, an ecologically
290 flexible species often found in semi-open habitat such as Mediterranean shrub and
291 evergreen forests, at sea levels up to 1700 m elevation [60]. Despite showing other well-
292 developed troglomorphic traits (depigmentation, reduced ocelli, elongation of body and
293 appendages, see [54]), this species might belong to a lineage which colonized caves
294 later than the other, less troglomorphic studied species. This also raises another
295 interesting question for future research, as the asynchronous evolution of morphological
296 and physiological traits in subterranean fauna.

297 Accurate predictions of species responses to climate change are mandatory if we aim to
298 develop accurate management strategies to face this problem [9, 61]. In summer,
299 maximum surface temperatures in the study site exceed or are very close to the ULTs of
300 the species studied here. Although warming will be buffered and delayed in caves [62],

301 these systems will not escape from the effects of climate change. We show here that
302 subterranean species, even those living under the same climatic conditions, might be
303 very differently affected by global warming. Among the studied species, the population
304 of the collembolan *D. silvaria* in the Murcielaguina cave, in the margin and warmest
305 extreme of its distribution range [34, 35], might be particularly threatened considering
306 its low heat tolerance. Our results also stress the need of experimental approaches to
307 assess the capability of species to cope with temperatures outside those they currently
308 experience.

309 **Conclusions**

310 According to the climatic variability hypothesis and similarly to other subterranean
311 ectotherms, the species studied here showed narrow thermal tolerance ranges if
312 compared with most terrestrial invertebrates. However, the estimated upper lethal limits
313 largely exceed the current range of habitat temperature of these species. We also
314 demonstrate that subterranean species with different evolutionary origins differ in their
315 tolerance to heat and acclimation capacity, despite having been exposed to similar
316 selection pressures (i.e., the same constant environmental conditions) for a long time.
317 Therefore, thermal niche features of cave-dwelling species appear to be linked to
318 particular aspects of the evolutionary history of the lineages (e.g. time of isolation in
319 caves). Experimental data on thermal tolerance are essential for assessing the effects of
320 global warming on subterranean fauna.

321 **Acknowledgements**

322 We would like to thank the “Consejería de Medio Ambiente de la Junta de Andalucía”
323 and “Parque Natural y Reserva de la Biosfera de las Sierras de Cazorla, Segura y Las

324 Villas" for authorizing sampling at Cueva de la Murcielaguina de Hornos. We also
325 thank members of the espeologist group of Villacarrillo (G.E.V) for conducting field
326 work.

327 **References**

- 328 1. Stevens GC. The latitudinal gradient in geographical range: how so many species
329 coexist in the tropics. *Am Nat.* 1989; 133: 240–256.
- 330 2. Addo-Bediako A, Chown SL, Gaston KJ. Thermal tolerance climatic variability and
331 latitude *Proc R Soc Lond B Biol Sci.* 2000; 267: 739-745.
- 332 3. Cruz FB, Fitzgerald LA, Espinoza RE, Schulte Ii JA. The importance of
333 phylogenetic scale in tests of Bergmann's and Rapoport's rules: lessons from a clade
334 of South American lizards. *J Evol Biol.* 2005; 18: 1559-1574.
- 335 4. Kellermann V, van Heerwaarden B, Sgrò CM, Hoffmann AA. Fundamental
336 evolutionary limits in ecological traits drive *Drosophila* species distributions.
337 *Science.* 2009; 325: 1244-1246.
- 338 5. Sunday JM, Bates AE, Dulvy NK. Global analysis of thermal tolerance and latitude
339 in ectotherms. *Proc R Soc Lond B Biol Sci.* 2011; 278: 1823-1830.
- 340 6. Tomanek L. Variation in the heat shock response and its implication for predicting
341 the effect of global climate change on species' biogeographical distribution ranges
342 and metabolic costs. *J Exp Biol.* 2010; 213: 971-979.
- 343 7. Somero GN. Linking biogeography to physiology: evolutionary and acclimatory
344 adjustments of thermal limits. *Front Zool.* 2005; 2: 1.
- 345 8. Patarnello T, Verde C, Di Prisco G, Bargelloni L, Zane L. How will fish that evolved
346 at constant sub-zero temperatures cope with global warming? Notothenioids as a case
347 study. *Bioessays.* 2011; 33: 260-268.

348 9. Sánchez-Fernández D, Rizzo V, Cieslak A, Faille A, Fresneda J, Ribera I. Thermal
349 niche estimators and the capability of poor dispersal species to cope with climate
350 change. *Sci Rep.* 2016; 6: 23381.

351 10. Kellermann V, van Heerwaarden B. Terrestrial insects and climate change: adaptive
352 responses in key traits. *Physiol Entomol.* 2019; DOI: 10.1111/phen.12282

353 11. La Terza A, Papa G, Miceli C, Luporini P. Divergence between two Antarctic
354 species of the ciliate *Euplotes*, *E. focialdi* and *E. nobilii*, in the expression of heat-
355 shock protein 70 genes. *Mol Ecol.* 2001; 10: 1061–1067.

356 12. Rinehart JP, Hayward SA, Elnitsky MA, Sandro LH, Lee Jr, RE, Denlinger DL.
357 Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar
358 insect. *Proc Natl Acad Sci USA.* 2006; 103:14223-14227.

359 13. Clark M, Fraser K, Burns G, Peck L. The HSP70 heat shock response in the
360 Antarctic fish *Harpagifer antarcticus*. *Polar Biol.* 2008; 31: 171–180.

361 14. Clark M, Fraser K, Peck L. Lack of an HSP70 heat shock response in two Antarctic
362 marine invertebrates. *Polar Biol.* 2008; 31: 1059–1065.

363 15. Kassahn KS, Caley MJ, Ward AC, Connolly AR, Stone G, Crozier RH.
364 Heterologous microarray experiments used to identify the early gene response to heat
365 stress in a coral fish. *Mol Ecol.* 2007; 16: 1749-1763.

366 16. Nilsson GE, Östlund-Nilsson S, Munday PL. Effects of elevated temperature on
367 coral reef fishes: loss of hypoxia tolerance and inability to acclimate. *Comp Biochem
368 Physiol A Mol Integr Physiol.* 2010; 156: 389-393.

369 17. Mammola, S. (2018) Finding answers in the dark: caves as models in ecology fifty
370 years after Poulson and White. *Ecography.* 41, 1–21.

371 18. Sánchez-Fernández D, Rizzo V, Bourdeau C, Cieslak A, Comas J, Faille A, et al.
372 The deep subterranean environment as a potential model system in ecological,
373 biogeographical and evolutionary research. *Subterr Biol*. 2018; 25: 1.

374 19. Mammola S, Leroy B. () Applying species distribution models to caves and other
375 subterranean habitats. *Ecography*. 2018; 41: 1194-1208.

376 20. Vandel A. *Biospeleology: the biology of cavernicolous animals*. Oxford: Pergamon
377 Press; 1965

378 21. Beauchamp P. Turbellariés, hirudinées, branchiobdellidés: Deuxième série. Paris:
379 Librairie H. Le Soudie; 1932.

380 22. Glaçon S. Recherches sur la biologie des Coléoptères cavernicoles troglobies.
381 *Publications du premier congrès international de Spéléologie, Paris*. 1953; 3: 39-45.

382 23. Szymczkowsky W. Preferendum termiczne jaskiniowego pajaka Meta menardi Latr.
383 (Argiopidae) (The temperature preferendum of a cave Spider, Meta menardi Latr.).
384 *Folia Biologica Warszawa*. 1953; I.

385 24. Ginet R. Ecologie, éthologie et biologie de "Niphargus" (Amphipodes Gammaridés
386 hypogés). *Annales de Spéléologie*. 1960; 15: 127–376.

387 25. Mitchell RW. Preference responses and tolerances of the troglobitic carabid beetle,
388 *Rhadine subterranea*. *Int J Speleol*. 1971; 3: 8.

389 26. Bull E, Mitchell RW. Temperature and relative humidity responses of two Texas
390 cave-adapted millipedes, *Cambala speobia* (Cambalida: Cambalidae) and
391 *Speodesmus bicornourus* (Polydesmida: Vanhoeffeniidae). *Int J Speleol*. 1972; 4: 7

392 27. Di Lorenzo T, Galassi DMP. Effect of temperature rising on the stygobitic
393 crustacean species *Diacyclops belgicus*: does global warming affect groundwater
394 populations? *Water*. 2017; 9: 951.

395 28. Issartel J, Hervant F, Voituron Y, Renault D, Vernon P. Behavioural, ventilatory and
396 respiratory responses of epigean and hypogean crustaceans to different temperatures.
397 Comp Biochem Physiol A Mol Integr Physiol. 2005; 141: 1-7.

398 29. Mermillod-Blondin F, Lefour C, Lalouette L, Renault D, Malard F, Simon L, et al.
399 Thermal tolerance breadths among groundwater crustaceans living in a thermally
400 constant environment. J Exp Biol. 2013; 216: 1683-1694.

401 30. Rizzo V, Sánchez-Fernández D, Fresneda J, Cieslak A, Ribera I. Lack of
402 evolutionary adjustment to ambient temperature in highly specialized cave beetles.
403 BMC Evol Biol. 2015; 15: 10.

404 31. Juberthie C, Delay B, Juberthie-Juapeau L, Durand J, Escola O, Belles X, et al. Le
405 complexe *Speonomus delarouzei*: un modelle d'approches as sociees pour l'etude
406 de la speciation. Memoire de Biospéologie. 1984; 11: 141-164.

407 32. Latella L, Bernabò P, Lencioni V. Distribution pattern and thermal tolerance in two
408 cave dwelling Leptodirinae (Coleoptera, Cholevidae). Subterr Biol. 2008; 6: 81-86.

409 33. Golovatch S, Mauriès JP, Akkari N, Stoev P, Geoffroy JJ. The millipede genus
410 *Glomeris* Latreille, 1802 (Diplopoda, Glomerida, Glomeridae) in North Africa.
411 Zookeys. 2009; 12: 47.

412 34. Arbea JI. Los colémbolos de Aragón (Hexapoda: Collembola). Catalogus de la
413 entomofauna aragonesa. 2003; 29: 3-23.

414 35. Arbea JI. Los Colémbolos (Hexapoda, Collembola) subterráneos de Jaén. In: Grupo
415 de Espeleología de Villacarrillo, editors. Los invertebrados de hábitats subterráneos
416 de Jaén. Grupo de Espeleología de Villacarrillo; 2013. pp. 103-114.

417 36. Fresneda J. Los Leiódidos (Coleoptera, Leiódidae) subterráneos de Jaén. In: Grupo
418 de Espeleología de Villacarrillo, editors. Los invertebrados de hábitats subterráneos
419 de Jaén. Grupo de Espeleología de Villacarrillo; 2013. pp. 164-175.

420 37. Balazuc J, de Miré P, Sigwalt J, Théodoridès J. Trois campagnes biospéléologiques
421 dans le Bas-Vivarais (Avril 1949-décembre 1949-Juin Juillet 1950) (suite et fin).
422 Publications de la Société Linnéenne de Lyon. 1951; 20: 238-242.

423 38. Assing V, Vogel J. A new species of *Atheta* Thomson from caves in southern Spain
424 (Coleoptera: Staphylinidae Aleocharinae). *Linzer Biologische Beiträge*. 2003; 35:
425 543-546.

426 39. Barranco P, Mayoral JG, Ruiz-Portero C, Amafe J, García-Pardo J, Piquer M, et al.
427 Fauna endokárstica andaluza. In: Andreo B, Durán JJ, editors. *Investigaciones en*
428 *sistemas kársticos españoles*. Instituto Geológico y Minero de España; 2004. pp. 473-
429 504.

430 40. Reboleira ASPS, Gonçalves F, Oromí P. On the Iberian endemic subgenus
431 *Lathromene* Koch (Coleoptera: Staphylinidae: Paederinae): description of the first
432 hypogean *Domene* Fauvel 1872 from Portugal. *Zootaxa*. 2011; 2780: 48-56.

433 41. Poulson TL, White WB. The cave environment. *Science*. 1969; 165: 971-981.

434 42. Mammola S, Goodacre SL, Isaia M. Climate change may drive cave spiders to
435 extinction. *Ecography*. 2017; 40: 1-10.

436 43. Altman DG. Analysis of survival times. In: Altman DG, editor. *Practical Statistics*
437 for Medical Research. Chapman and Hall London; 1992. pp. 365-393.

438 44. Therneau T. A Package for Survival Analysis in S, version 2.38; 2015. Available
439 from: <https://CRAN.R-project.org/package=survival>

440 45. Siegel S, Castellan NJ. Non parametric statistics for the behavioural sciences. New
441 York: MacGraw Hill Int; 1988.

442 46. Giraudeau P. pgirmess: Data analysis in ecology (Version 1.6.4); 2016. Available
443 from: <https://cran.r-project.org/package=pgirmess>

444 47. Bennett JM, Calosi P, Clusella-Trullas S, Martínez B, Sunday J, Algar A, et al.

445 GlobTherm a global database on thermal tolerances for aquatic and terrestrial

446 organisms. *Sci Data.* 2018; 5: 180022.

447 48. Somero GN, DeVries AL. Temperature tolerance of some Antarctic fishes. *Science.*

448 1967; 156: 257–258.

449 49. Peck LS, Webb KE, Bailey DM. Extreme sensitivity of biological function to

450 temperature in Antarctic marine species. *Funct Ecol.* 2004; 18: 625-630.

451 50. Verberk WC, Overgaard J, Ern R, Bayley M, Wang T, Boardman L, et al. Does

452 oxygen limit thermal tolerance in arthropods? A critical review of current evidence.

453 *Comp Biochem Physiol A Mol Integr Physiol.* 2016; 192: 64-78.

454 51. Monaghan P, Metcalfe NB, Torres R. Oxidative stress as a mediator of life history

455 trade-offs: mechanisms measurements and interpretation. *Ecol Lett.* 2009; 12: 75-92.

456 52. Delay B, Milieu souterrain et écophysiologie de la reproduction et du

457 développement des Coléoptères Bathysciinae hypogés. *Mémoires de Biospéologie.*

458 1978; 5: 1–349.

459 53. Trontelj P, Blejec A, Fišer C. Ecomorphological convergence of cave communities.

460 *Evolution.* 2012; 66: 3852-3865.

461 54. Liu W, Golovatch S, Wesener T, Tian M. Convergent evolution of unique

462 morphological adaptations to a subterranean environment in cave millipedes

463 (Diplopoda). *PloS One.* 2017; 12: e0170717.

464 55. Howarth FG, Moldovan T. The ecological classification of cave animals and their

465 adaptations. In: Moldovan OT, Kovác L, Halse S, editors. *Cave Ecology.* Springer

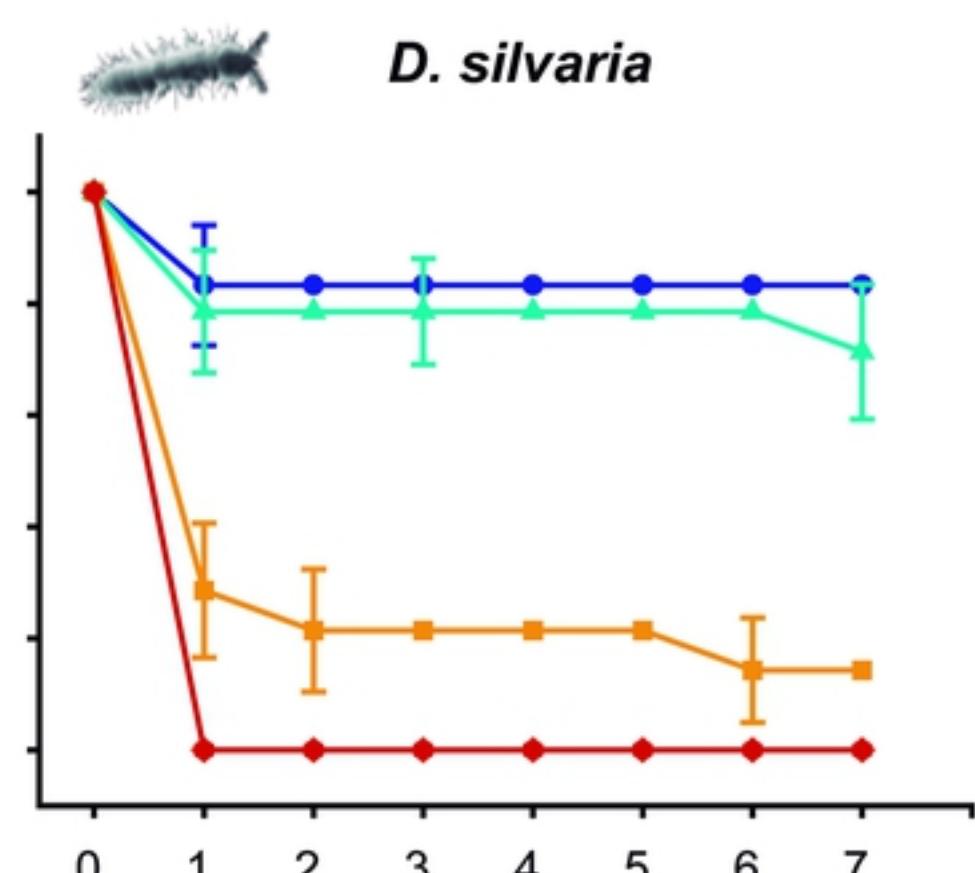
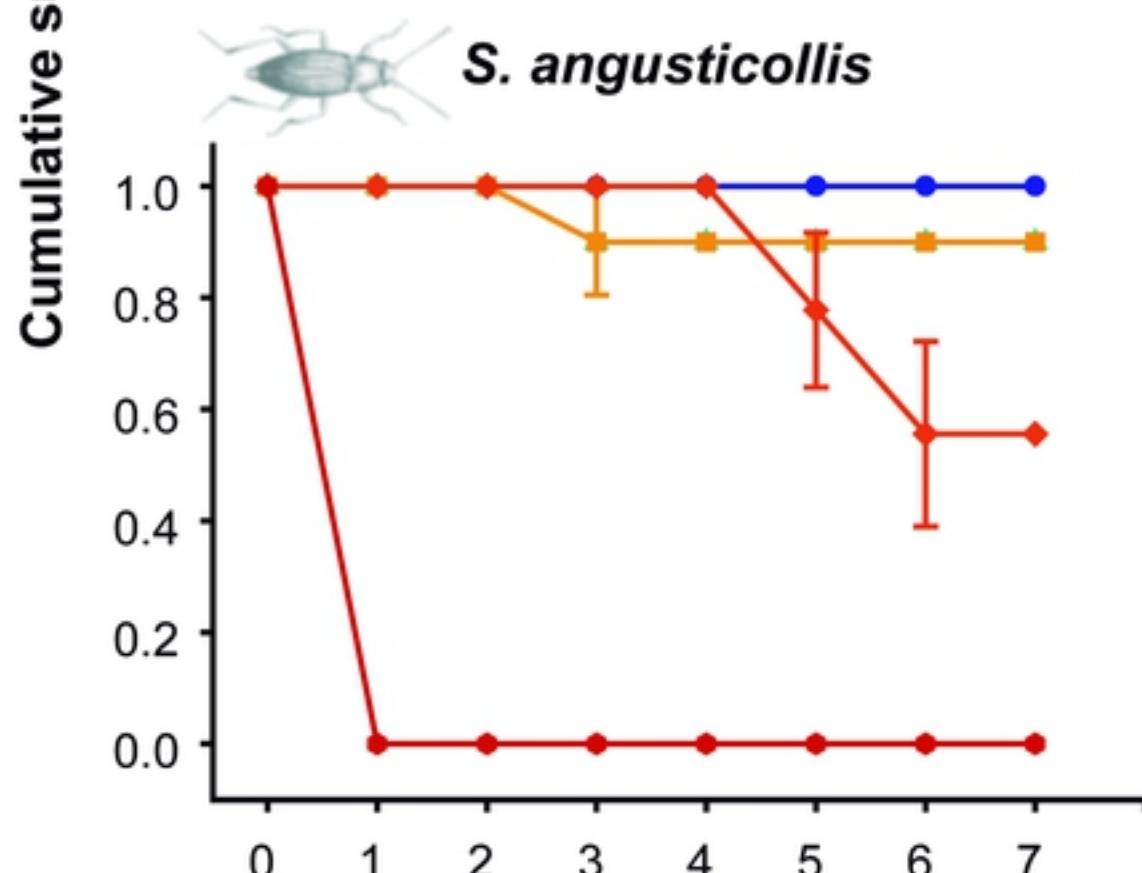
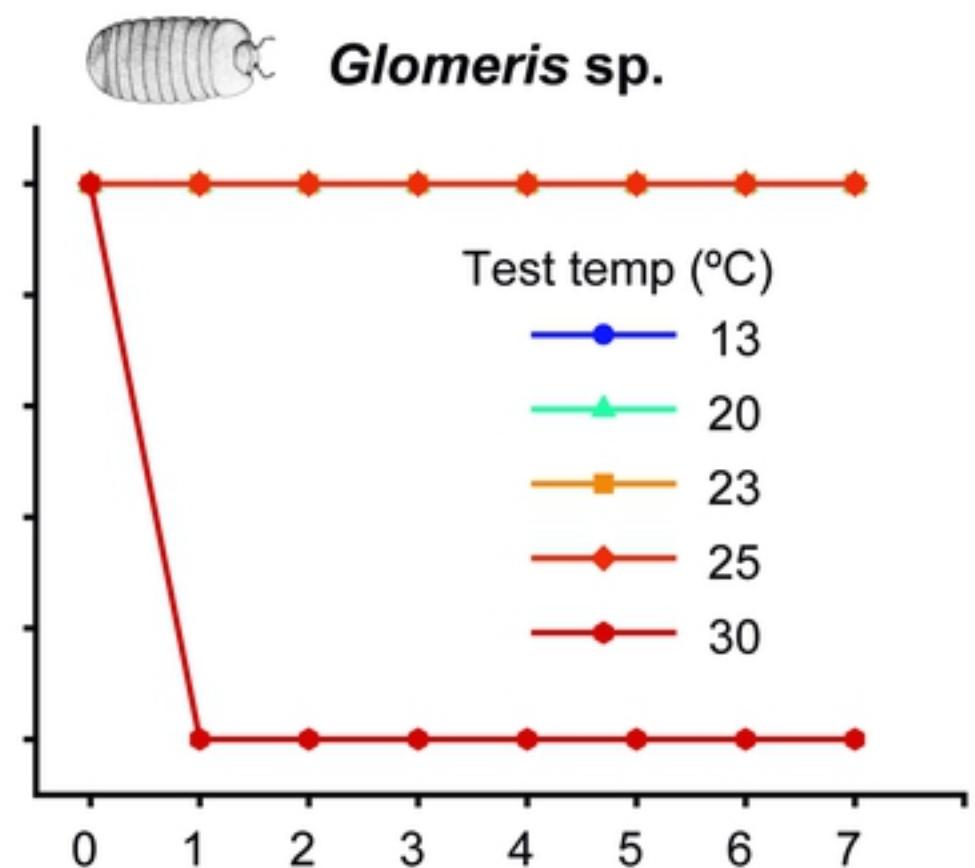
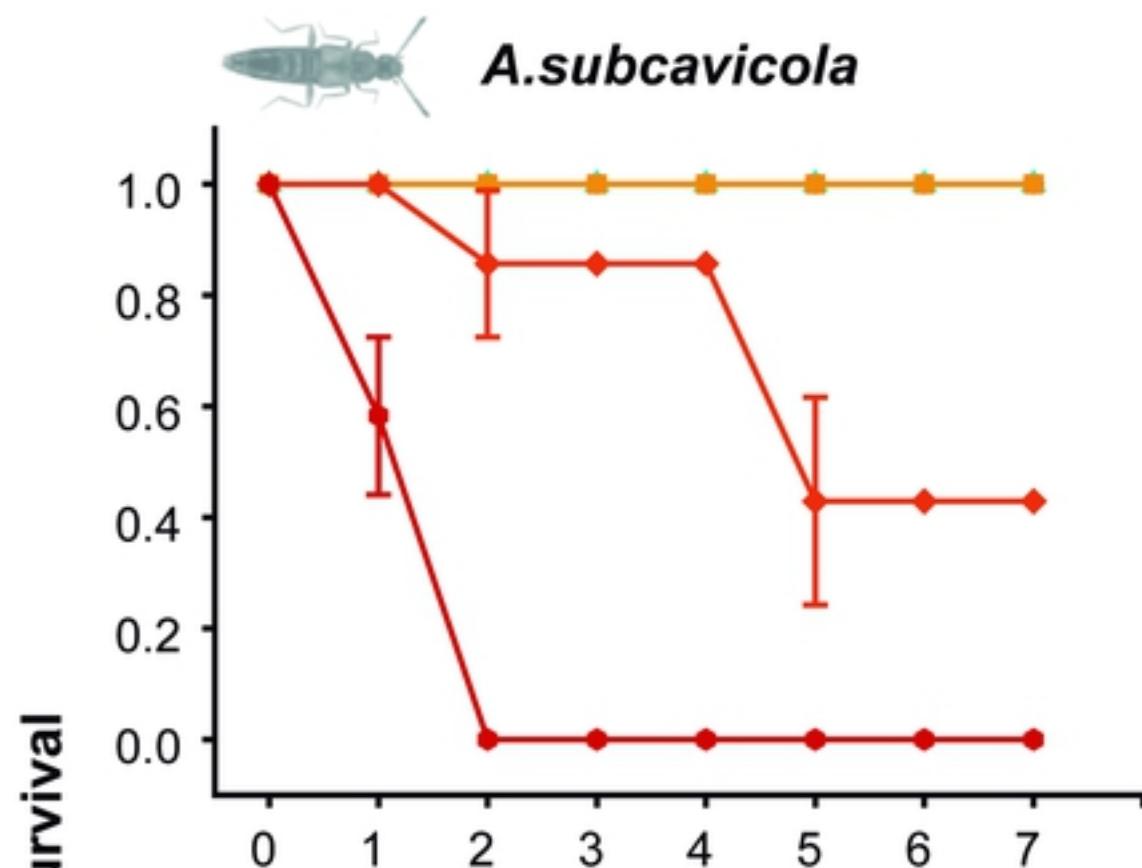
466 Cham; 2018. pp. 41-67.

467 56. Raschmanová N, Šustr V, Kováč L, Parimuchová A, Devetter M. Testing the
468 climatic variability hypothesis in edaphic and subterranean Collembola (Hexapoda).
469 J Therm Biol. 2018; 78: 391-400.

470 57. Novak T, Šajna N, Antolinc E, Lipovšek S, Devetak D, et al. Cold tolerance in
471 terrestrial invertebrates inhabiting subterranean habitats. Int J Speleol. 2014; 43: 3.

472 58. Culver DC, Holsinger JR, Christman MC, Pipan T. Morphological differences
473 among eyeless Amphipods in the genus *Stygobromus* dwelling in different
474 subterranean habitats. J Crustacean Biol. 2010; 30: 68–74.

475 59. Ribera I, Cieslak A, Faille A, Fresneda J. Historical and ecological factors
476 determining cave diversity. In: Moldovan OT, Kováč L, Halse S, editors. Cave
477 Ecology. Springer Cham; 2018. pp. 229-252.





478 60. Kime RD, Enghoff H. Atlas of European Millipedes (Class Diplopoda). Volume 1.
479 Orders Polyxenida Glomerida Platynodesmida Siphonocryptida Polyzoniida
480 Callipodida Polydesmida. Sofia-Moscow-Leiden: Pensoft Publishers and European
481 Invertebrate Survey; 2011

482 61. Arribas P, Abellán P, Velasco J, Bilton DT, Millán A, Sánchez-Fernández D.
483 Evaluating drivers of vulnerability to climate change: a guide for insect conservation
484 strategies. Glob Chang Biol. 2012; 18: 2135–2146.

485 62. Domínguez-Villar D, Lojen S, Krklec K, Baker A, Fairchild IJ. Is global warming
486 affecting cave temperatures? Experimental and model data from a paradigmatic case
487 study. Clim Dyn. 2015; 45: 569-581

488 **Supporting information**

489 **S1 Dataset. Raw data on survival time in basal heat tolerance and acclimation**
490 **capacity experiments.**

Time (days)

Figure 1

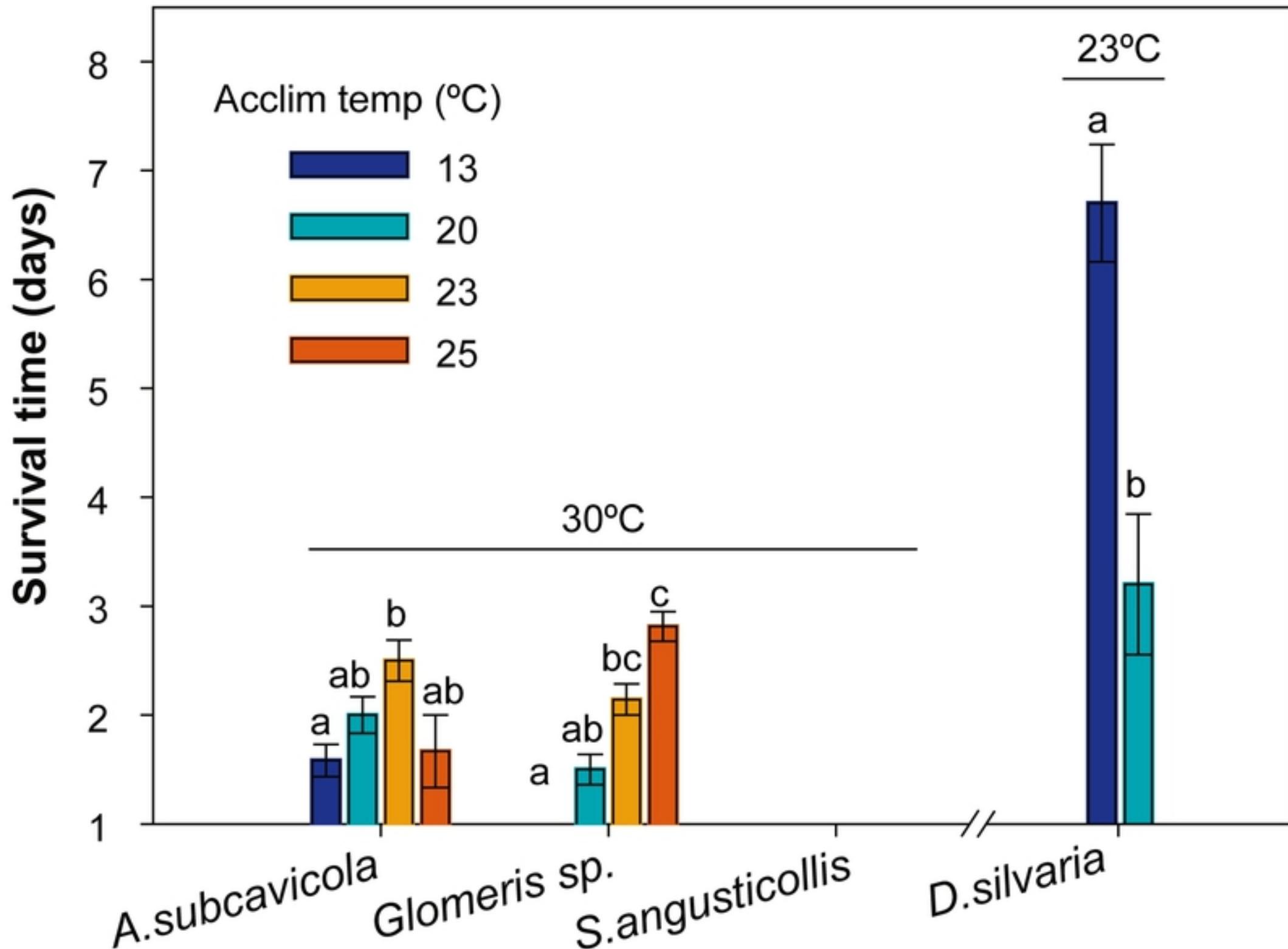


Figure 2