

1 **A meiosis-specific AAA+ assembly reveals repurposing of ORC during budding yeast
2 gametogenesis**

3

4 María Ascensión Villar-Fernández^{1,2}, Richard Cardoso da Silva¹, Dongqing Pan¹, Elisabeth Weir^{1, #},
5 Annika Sarembe^{1, #}, Vivek B. Raina^{1, 2}, John R. Weir^{1, #} and Gerben Vader^{1, *}

6

7 ¹ Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-
8 Strasse 11, 44227, Dortmund, Germany

9 ² International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Max
10 Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany

11

12

13 * Corresponding author: GV; Tel: +49(0)2311332130, Fax: +49 (0)2311332128, Email:
14 gerben.vader@mpi-dortmund.mpg.de

15

16 [#]Present address: EW: Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076
17 Tübingen, Germany. AS: Institut für Pathologie am Klinikum Leverkusen, Am Gesundheitspark 11,
18 51375 Leverkusen, Germany, JRW: Friedrich Miescher Laboratory, Max-Planck-Ring 9, 72076
19 Tübingen, Germany

20

21 ORCIDs: RCS: 0000-0003-2767-2053
22 DP: 0000-0003-3701-8442
23 JRW: 0000-0002-6904-0284
24 GV: 0000-0001-5729-0991

25

26

27 Key words: meiosis, DNA replication, AAA+ protein, ORC, Pch2, Cdc6, rDNA, DNA break
28 formation, homologous recombination, chromosome, ATPase

29

30

31

32

33 **ABSTRACT**

34 **ORC (Orc1-6) is an AAA+ complex that loads the AAA+ MCM helicase to replication origins.**
35 **Orc1, a subunit of ORC, functionally interacts with budding yeast Pch2, a meiosis-specific**
36 **AAA+ protein. Pch2 regulates several chromosomal events of gametogenesis, but mechanisms**
37 **that dictate Pch2 function remain poorly understood. We demonstrate that ORC directly**
38 **interacts with an AAA+ Pch2 hexamer. The ORC-Pch2 assembly is established without Cdc6, a**
39 **factor crucial for ORC-MCM binding. Biochemical analysis suggests that Pch2 utilizes ORC's**
40 **Cdc6-binding interface and employs its non-enzymatic NH₂-terminal domain and AAA+ core to**
41 **engage ORC. In contrast to phenotypes observed upon Orc1 impairment, nuclear depletion of**
42 **other subunits of ORC does not lead to Pch2-like phenotypes, indicating that ORC integrity *per***
43 ***se* is not required to support Pch2 function. We thus reveal functional interplay between Pch2**
44 **and ORC, and uncover the repurposing of ORC to establish a non-canonical and meiosis-specific**
45 **AAA+ assembly.**

46

47 INTRODUCTION

48 Meiosis produces haploid gametes that are required for sexual reproduction. The reduction in
49 ploidy from diploid progenitor cells, requires several meiosis-specific events, which occur in the
50 context of a highly orchestrated meiotic program (1). During meiotic G2/prophase, Spo11-dependent
51 DNA double strand breaks (DSBs) are formed. A subset of these DSBs are repaired via homologous
52 recombination, in a manner that establishes physical linkages between homologous chromosomes.
53 These linkages are needed for proper meiotic chromosome segregation. As such, DSB formation and
54 recombination are essential for meiosis, but errors that occur during these events endanger genome
55 stability of the developing gametes. Thus, meiotic DSB formation and recombination need to be
56 carefully controlled.

57 Pch2 is a universally conserved AAA+ protein that controls multiple aspects of meiotic homologous
58 recombination and checkpoint signaling (2-8). AAA+ proteins are ATPases that, via cycles of
59 nucleotide binding and hydrolysis, can undergo conformational changes to influence a wide range of
60 client molecules (reviewed in (9)). A characteristic of AAA+ proteins is their assembly into ring-
61 shaped homo- or hetero hexamers, often mediated through interactions between AAA+ domains. In
62 line with this general mode of action of AAA+ proteins, Pch2 forms homo-hexamers, and uses its
63 enzymatic activity to remodel (and, as such, affect the function) of clients (10,11). HORMA domain-
64 containing proteins are confirmed Pch2-clients, and many, if not all, functions ascribed to Pch2 during
65 meiotic G2/prophase can be explained by its enzymatic activity towards these important chromosomal
66 factors (8). The biochemical activity of Pch2 towards HORMA proteins is relatively well understood
67 (10,12,13), but a comprehensive mechanistic and biochemical understanding of Pch2 function during
68 meiotic G2/prophase is required. It has been shown that many other AAA+ enzymes interact and
69 function with adaptor proteins that act to recruit AAA+ proteins to defined subcellular compartments
70 or enable client recognition and processing (9). Since association of Pch2 with chromosomes is tightly
71 linked to Pch2 function, it is imperative to understand how Pch2 is recruited to meiotic chromosomes
72 and whether adaptor proteins are required to facilitate specific functions of this AAA+ protein.
73 In addition to its global role in controlling meiotic recombination, Pch2 is needed to prevent
74 inappropriate DSB formation and recombination within the repetitive ribosomal DNA (rDNA) array of
75 budding yeast (3,14). In line with a role for Pch2 in promoting rDNA stability, Pch2 is enriched within
76 the nucleolus, the nuclear compartment where the rDNA resides. rDNA-recruitment and function of
77 Pch2 requires Orc1, a subunit of the Origin Recognition complex (ORC) (14), hinting at a potential
78 biochemical connection between these factors. ORC is a hetero-hexamer AAA+ complex composed of
79 six subunits (Orc1-6, wherein Orc1-5 are AAA+ proteins, and Orc6 shows no structural similarity with
80 the rest of ORC components (reviewed in (15,16)). Interaction of Orc1-6 with Cdc6, another AAA+

81 protein, through typical AAA+ to AAA+ interactions, creates a hexameric ORC-Cdc6 assembly. ORC-
82 Cdc6 (with the help of additional proteins) drives the chromosomal recruitment of the AAA+ MCM
83 helicase (15) onto defined regions of the genome that act as origins of DNA replication. Properly
84 loaded MCM helicase forms the basis of the replication complex and as such is key to initiate DNA
85 replication. This canonical MCM-loader function of ORC occurs during the G1 phase of the cell cycle
86 and is essential for DNA replication. Our observation that Pch2 requires Orc1 for its efficient
87 recruitment to the rDNA array (14), raised the interesting possibility that Orc1 (and potentially ORC)
88 could fulfill a meiosis-specific role by interacting with a distinct AAA+ protein complex.
89 Here, we use *in vivo* analysis during budding yeast meiosis, coupled to *in vitro* biochemical
90 reconstitution to show that Pch2 directly engages the entire ORC in meiotic G2/prophase, in a manner
91 that is consistent with an AAA+ to client/adaptor relationship. Our reconstitution provides biochemical
92 insight into the interaction of Pch2 with a factor that is involved in its chromosomal recruitment.
93 Chemical crosslinking combined with mass spectrometry (XL-MS), coupled to biochemical
94 characterization, shows that the ORC-Pch2 interaction is distinct from the well-established interaction
95 between ORC and MCM. In contrast to the ORC-MCM assembly, the ORC-Pch2 association does not
96 require Cdc6. Our data further suggests that ORC-Pch2 is established via binding interfaces within
97 ORC that are normally occupied by the Cdc6 protein. Finally, our data suggest that Orc1 plays a key
98 role in the interaction between ORC and Pch2. We thus define a non-canonical function for budding
99 yeast ORC, which indicates that, in addition to its role in loading MCM during G1, ORC is repurposed
100 during meiosis to functionally act with a distinct AAA+ protein complex.

101

102 **MATERIAL AND METHODS**

103

104 **Yeast strains**

105 All strains, except those used for yeast two-hybrid analysis, are of the SK1 background. See
106 Supplementary Data for a description of genotypes of strains.

107

108 **Yeast two-hybrid analysis**

109 Pch2 (full length and different truncations/mutants) and Orc1-Orc6 were cloned in the pGBDU-C1 or
110 pGAD-C1 vectors. The resulting bait and prey plasmids were transformed into a yeast two-hybrid
111 reporter strain (yGV864). Yeast two-hybrid (Y2H) spot assay was performed by spotting 5 μ L of
112 cultures at an optical density at 600nm (OD600) of 0.5 onto -Ura-Leu plates (control) and -Ura-Leu-
113 His (selective plate) and grown for 2-4 days.

114

115 **Spotting assays**

116 For spotting assays, anchor-away strains were grown on YP-Glycerol (YPG) plates overnight at 30°C,
117 transferred to YP-Dextrose (YPD) plates and further grown overnight at 30°C. Cells were then
118 inoculated into 15 mL YPD culture and incubated overnight at 23°C and 180 rotations/minute (rpm)
119 shaking. The following morning, cells were diluted to a final OD600 of 0.4 and grown for 4h at 30°C
120 and 180 rpm shaking. 5 mL of cells were harvested at 2000 rpm for 3 min, washed in 1 mL H₂O and
121 resuspended in 500 μ L H₂O. 10 μ L of 10-fold serial dilutions were prepared and spotted on YPD
122 plates with or without 1 μ g/mL rapamycin. Growth at 30°C was monitored for the following 2-4 days.

123

124 **Meiotic induction**

125 Cells were patched from glycerol stocks onto YPG plates and grown overnight. Patched cells were
126 transferred to YPD and further grown overnight. Cells were cultured in liquid YPD at 23°C overnight
127 and diluted at OD6000.3 into pre-sporulation media (BYTA; phthalate-buffered yeast extract, tryptone
128 and acetate). Cells were grown in BYTA for 16-18 hours at 30°C, washed twice in water and
129 resuspended in sporulation media (0.3% KAc) at OD6001.9 to induce meiosis. Sporulation cultures
130 were grown at 30°C (except for experiments involving temperature sensitive strains, where strains
131 were grown at the permissive temperature (23°C)). For time courses in which the anchor-away system
132 was used, rapamycin (1 μ g/mL) was added at t=0 (in sporulation media). Time courses were conducted
133 and samples for Western Blots, flow cytometry analysis and Southern Blots were taken at different
134 time points. For Western Blot analysis, samples were taken after 0, 3 and 4 or 5 h, whereas for FACS
135 and Southern Blot analysis, samples were typically taken after 0, 3, 5 and 8 hours.

136

137 **Flow cytometry**

138 Flow cytometry was used to assess synchronous passage through the meiotic program (as judged by
139 duplication of the genomic content) and was performed as described (14). For analysis of rapamycin-
140 induced phenotype, mitotic cultures were grown to saturation and diluted to OD600 1.0, and
141 rapamycin was added. Samples for flow cytometry were taken at the indicated time points.

142

143 **Western blot analysis**

144 For Western blot analysis, protein lysates from yeast meiotic cultures were prepared using
145 trichloroacetic acid (TCA)-precipitation and run on 10% SDS-gels (unless otherwise indicated),
146 transferred for 90 minutes at 300 mA and blot with the selected primary antibody/secondary antibody,
147 as described (14).

148

149 **Southern blot analysis**

150 For Southern blot assay, DNA from meiotic samples was prepared as described (14). DNA was
151 digested with *HindIII* (to detect DSBs at the control *YCR047C* hotspot) or *ApaLI* (to monitor DSBs in
152 the region of interest: right rDNA flank; *YLR164W*), followed by gel electrophoresis, blotting of the
153 membranes and radioactive (32P) hybridization using probes specific for *YCR047C* (chromosome *III*;
154 209,361 – 201,030) or *YLR164W* (chromosome *XII*; 493,432 – 493,932) (for detection of DSBs in
155 hotspot control region or rDNA, respectively) (14). DSBs signals were monitored by exposing an X-
156 ray film to the membranes and further developed using a Typhoon Trio scanner (GE Healthcare) after
157 one week of exposure.

158

159 ***In vivo* co-immunoprecipitation**

160 For immunoprecipitation assays, 100 mL meiotic cultures at OD600 1.9 were grown, harvested after
161 4.5 hours (unless otherwise indicated), washed with cold H₂O and snap frozen. Acid-washed glass
162 beads were then added, together with 300 μ L of ice-cold IP buffer (50 mM Tris-HCl pH 7.5, 150 mM
163 NaCl, 1% Triton X-100, 1 mM EDTA pH 8.0, with protease inhibitors) and the cells broken with a
164 Fastprep disruptor (FastPrep®-24, MP Biomedicals) by two 45 sec cycles on speed 6. The lysate was
165 subsequently spun 3 min at 3000 rpm and the supernatant transferred to a falcon tube. The lysate was
166 next sonicated by 25 cycles (30 sec on/ 30 sec off), high power range, using a Bioruptor (Bioruptor®-
167 Plus sonication device, Diagenode) and then spun down 20 min at 15000 rpm. Supernatant was
168 transferred to a new eppendorf tube, and 50 μ L of input was taken. For α -Flag/ HA/TAP-based IPs, 1
169 μ L of antibody (α -Flag-M2 antibody, Sigma-Aldrich / α -HA, Biolegend/ α -TAP, Thermo Fisher

170 Scientific) was added to the lysate and rotated for 3 hours. After the incubation step, 30 μ L of
171 Dynabeads protein G (Invitrogen, Thermo Fisher Scientific) were added and rotated overnight at 4°C.
172 For α -Orc2-based IPs, lysate was precleared with 10 μ L of Dynabeads protein G for 1 hour at 4°C.
173 Lysate was then incubated with 2 μ L of α -V5 (IgG isotype control; Invitrogen) or 11 μ L of α -Orc2
174 (Santa Cruz Biotechnology) for 3 h at 4°C, followed by 3 h incubation with 25 μ L of Dynabeads
175 protein G.

176 The reactions were washed 4 times with \sim 500 μ L of ice-cold IP buffer. In the last wash, beads were
177 transferred to a new eppendorf tube. 55 μ L of loading buffer was added, boiled at 95°C and run in a
178 SDS gel. The inputs followed a TCA precipitation step. Briefly, 10% TCA was added and incubated
179 during 30 min on ice. Pellet was then washed with ice-cold acetone, spun and dried on ice, and further
180 resuspended in TCA resuspension buffer (50 mM Tris-HCl 7.5, 6 M Urea). After incubating for 30
181 min on ice, pellet was dissolved by pipetting and vortexing. Finally, 10 μ L of loading buffer was added
182 and samples were boiled at 95°C and run in a SDS gel together with the IP samples. Note that for the
183 experiments shown in Figure 4D, 50 mL of sporulation culture, instead of 100 mL, were collected to
184 perform the IP protocol.

185

186 **Expression and purification of recombinant proteins in insect cells**

187 Full length Pch2 and its truncated versions were purified from insect cells. Specifically, fragments
188 containing the coding sequences of Pch2 or its truncations, derived from codon-optimized cDNA, were
189 sub-cloned into a pLIB-His-MBP vector (kind gift of Andrea Musacchio (Max Planck Institute of
190 Molecular Physiology, Dortmund, Germany), derived from pLIB (17)) and further integrated into
191 EMBacY cells via Tn7 transposition. Positive clones were identified by blue/white screening and
192 subsequently transfected into Sf9 cells to produce baculovirus (according to previously described
193 methods) (18,19). Baculovirus was amplified 3 times in Sf9 cells and used to infect Tnao38 cells for
194 protein production. Tnao38 cells infected with the corresponding baculovirus (at a 1:10 dilution of
195 virus to culture) were grown for 48 h and pellets from 2 L cultures were harvested. Cell pellets were
196 resuspended in lysis buffer (50 mM HEPES pH 8.0, 300 mM NaCl, 5 mM imidazole, 5% glycerol, 5
197 mM β -mercaptoethanol, 1 mM MgCl₂, benzonase, supplemented with Serva protease inhibitor mix -
198 Serva- and cOmplete™ mini, EDTA-free protease inhibitor cocktail tablets-Sigma Aldrich-) and lysed
199 by sonication (Branson Sonifier 450). Sonicated cells were cleared by centrifugation 1 h at 30000 rpm
200 (4°C) and the supernatant filtered. Clear lysate was immediately passed through a 5 mL TALON™
201 Superflow cartridge (Takara Bio). After extensive washing with buffer A (50 mM HEPES pH 8.0, 300
202 mM NaCl, 5 mM imidazole, 5% glycerol, 5 mM β -mercaptoethanol, 1 mM MgCl₂) and wash buffer
203 (50 mM HEPES pH 8.0, 1 M NaCl, 5 mM imidazole, 5% glycerol, 5 mM β -mercaptoethanol, 1 mM

204 MgCl₂), protein was eluted with a gradient between buffer A and buffer B (50 mM HEPES pH 8.0,
205 300 mM NaCl, 400 mM imidazole, 5% glycerol, 5mM β -mercaptoethanol, 1mM MgCl₂). Presence of
206 protein was monitored by UV280nm. Those fractions containing the protein of interest were pooled
207 and incubated 30 minutes at 4°C with pre-equilibrated amylose resin (New England BioLabs) and
208 eluted with elution buffer (30 mM HEPES pH 8.0, 500 mM NaCl, 3% glycerol, 2 mM TCEP, 1 mM
209 MgCl₂, and 20 mM maltose). The eluted protein was concentrated using an Amicon-Ultra-15
210 centrifugal filter (MWCO 30kDa) (Merck Millipore, USA), spin down 15 min in a bench-top
211 centrifuge (4°C) and subsequently purified by size-exclusion chromatography (SEC), by loading onto
212 a Superose 6 Increase 10/300 GL (GE Healthcare) previously equilibrated in gel filtration buffer (30
213 mM HEPES pH 8.0, 500 mM NaCl, 3% glycerol, 2mM TCEP, 1 mM MgCl₂). The peak fractions
214 were analysed by SDS-PAGE and those fractions corresponding to the protein of interest were
215 collected and concentrated using a 30K Amicon-Ultra-4 centrifugal filter (in the presence of protease
216 inhibitors). The concentrated protein was snap-frozen in liquid N₂ and stored at -80°C until further use.
217 Note that for purification of His-MBP-Pch2-243-564, buffers were adjusted to pH 7.6 instead of pH
218 8.0.

219 His-tagged ORC complex was purified from insect cells. The multiple subunits of the ORC complex
220 were cloned using the biGBac method described in (17). Briefly, the coding sequences of the
221 individual ORC subunits (Orc1, Orc2, Orc3, Orc4, Orc5 and Orc6) were cloned into pLIB vectors,
222 with the particularity that Orc1 coding sequence was sub-cloned into a pLIB vector containing a 6xHis
223 tag. pLIB vectors of His-Orc1, Orc2 and Orc3 were subsequently cloned into a pBIG1a vector,
224 whereas the pLIB vectors of Orc4, Orc5 and Orc6 were assembled into a pBIG1b construct. pBIG1a
225 and pBIG1b constructs were used to transform EMBacY cells by Tn7 transposition and the positive
226 clones were used to generate baculovirus by transfection to Sf9 cells. After 4 days amplification of the
227 baculoviruses, the supernatant of both viruses containing His-Orc1-3 and Orc4-Orc6, respectively,
228 were used for protein expression. 3-liter culture of Tn9038 cells were co-infected with the two
229 baculoviruses and 48h post-infection, cells were harvested by centrifugation, washed once with PBS
230 and snap frozen. Cell pellets were resuspended in lysis buffer (50 mM HEPES 7.5, 300 mM KCl, 1
231 mM MgCl₂, 10% glycerol, 5 mM β -mercaptoethanol, 5 mM imidazole, benzonase, protease
232 inhibitors- Serva protease inhibitor mix and cOmplete™ mini, EDTA-free protease inhibitor cocktail)
233 and lysed by sonication. Lysed cells were harvested by ultracentrifugation 1 h at 30000 rpm (4°C) and
234 the supernatant was filtered and precipitated with 20% (NH₄)₂SO₄ on ice for ~45 min and re-
235 centrifuged. Clear lysate was affinity-purified by incubating it with cOmplete His-Tag purification
236 resin (Roche) for 2 hours (4°C). After extensive washing with a 5 mM to 15 mM imidazole gradient in
237 buffer A (50 mM HEPES-KOH 7.5, 300 mM KCl, 1 mM MgCl₂, 10% glycerol, 5 mM β -

238 mercaptoethanol), protein was eluted with elution buffer (buffer A supplemented with 300 mM
239 imidazole). The eluted protein complex was concentrated using an 30K Amicon-Ultra-15 centrifugal
240 filter, spun down 15 min at 15000 rpm in a bench-top centrifuge (4°C) and loaded onto a Superose 6
241 Increase 10/300 GL column (GE Healthcare), previously equilibrated in gel filtration buffer (30 mM
242 HEPES pH 7.5, 300 mM KCl, 5% glycerol, 1 mM MgCl₂, 2 mM TCEP). Fractions were analyzed by
243 SDS-PAGE and those fractions containing His-ORC were concentrated using a 30 kDa MWCO
244 concentrator and flash frozen in liquid N₂.

245

246 **Expression and purification of recombinant proteins in bacteria**

247 Hop1 was purified from bacterial cells. Briefly, the coding sequence of Hop1 was sub-cloned into a
248 pET28a vector for expression of recombinant NH₂-terminally polyhistidine-tagged Hop1 (6xHis-
249 Hop1). For protein expression, BL21 RIPL cells were transformed with the resulting vector and further
250 used to inoculate 11 L of LB media, supplemented with kanamycin and chloramphenicol. Cultures
251 were grown at 37°C with vigorous shaking until OD₆₀₀ ~ 0.6-0.8. Protein expression was induced by
252 addition of 0.25 mM IPTG overnight at 18°C. Cells were harvested by centrifugation at 4500 rpm for
253 15 min and the pellet washed with PBS and immediately snap frozen. For protein purification, cell
254 pellets were resuspended in buffer A (50 mM Hepes, pH 7.5, 300 mM NaCl, 5 mM Imidazole, 10%
255 Glycerol, 0.05% Tween-20, 5 mM β-mercaptoethanol) supplemented with benzonase and protease
256 inhibitors (1 mM PMSF and Serva protease inhibitor mix). Cells were lysed using a microfluidizer
257 (Microfluidizer M-110S, Microfluidics Corporation), centrifuged at 30000 rpm, 4°C for 1h and the
258 lysate filtered. The clear lysate was firstly passed through a 5 mL TALON column (GE Healthcare).
259 After extensive washing, protein was eluted with an imidazole gradient between buffer A and buffer B
260 (buffer A supplemented with 400 mM imidazole). Eluate was pooled, diluted 2:1 in buffer A without
261 NaCl and imidazole, and subsequently loaded into a Heparin column (HiTrap Heparin 16/10, GE
262 Healthcare), previously equilibrated with buffer C (20 mM Hepes, pH 7.5, 150 mM NaCl, 5 mM
263 MgCl₂, 10% Glycerol, 5 mM β-mercaptoethanol). Protein was further eluted in a gradient between
264 buffer C and D (buffer C with 1 M NaCl), and fractions pooled and concentrated using a 30K Amicon-
265 Ultra-15 centrifugal filter. Concentrated protein was spun down 15 min in a bench-top centrifuge (4°C)
266 and immediately loaded onto a HiLoad 16/600 Superdex 200 column (GE Healthcare), pre-
267 equilibrated in gel filtration buffer consisting of 20 mM HEPES pH 7.5, 300 mM NaCl, 5 mM MgCl₂,
268 5% glycerol and 2 mM β-mercaptoethanol. Fractions were analyzed by SDS-PAGE and those fractions
269 containing 6xHis-Hop1 were concentrated with an Amicon-Ultra-15 concentrator (MWCO 30 kDa),
270 snap frozen and kept at -80°C until further use.

271

272 ***In vitro pulldown assays***

273 For pulldown between His-Hop1 and His-MBP-Pch2, 7.5 μ L of amylose beads (New England
274 BioLabs), pre-blocked with 5% BSA, were incubated with 6 μ M His-MBP or 1 μ M His-MBP-Pch2
275 (assuming a hexamer of Pch2) for 1 hour on ice in a final volume of 30 μ L pulldown buffer (50 mM
276 Tris pH 7.5, 50 mM NaCl, 10 mM imidazole, 10 mM β -mercaptoethanol, 0.1% Tween-20, 1 mM
277 MgCl₂). Beads were then washed once with 100 μ L pulldown buffer, and 6 μ M Hop1 was added. As
278 input, 6% of the final volume was taken. This reaction was incubated for 90 minutes on ice, and next
279 washed once with wash buffer (50 mM Tris pH 7.5, 200 mM NaCl, 10 mM imidazole, 10 mM β -
280 mercaptoethanol, 0.5% Triton X-100 and 1 mM MgCl₂). 20 μ L loading buffer was then added,
281 samples boiled at 95°C, and supernatant transferred to a new eppendorf tube. Samples were analysed
282 by SDS-PAGE and stained with Coomassie Brilliant Blue (CBB).

283 For pulldowns between His-MBP-Pch2 and His-ORC, 5 μ L of 5% BSA pre-blocked amylose beads
284 were incubated with 6 μ M His-MBP or 1 μ M His-MBP-Pch2 (assuming a hexamer of Pch2) for 1 hour
285 on ice in a 30 μ L final volume of pulldown buffer (30 mM HEPES pH 7.5, 150 mM NaCl, 10 mM
286 imidazole, 10 mM β -mercaptoethanol, 0.1% Tween-20, 10 mM MgCl₂). The pulldown reactions were
287 washed twice with 200 μ L of pulldown buffer and 1 μ M ORC was added. As input, 10% of the final
288 volume was taken. This reaction was incubated for 90 minutes on ice, and washed twice with 200 μ L
289 wash buffer containing 30 mM HEPES pH 7.5, 200 mM NaCl, 10 mM imidazole, 10 mM β -
290 mercaptoethanol, 10% TritonX-100 and 10 mM MgCl₂. Inputs were diluted with pulldown buffer up
291 to 10 μ L and then loading buffer was added. For the pulldown reactions, 20 μ L of loading buffer was
292 added. Samples were boiled at 95°C, and supernatant from pulldown reactions transferred to a new
293 eppendorf tube. Samples were analyzed by SDS-PAGE and stained with CBB. Alternatively, the input/
294 pulldown samples were analyzed by Western blotting, as follows: half of the input/ pulldown reactions
295 were run on a SDS-PAGE gel, transferred at 300 mA for 90 minutes and probed overnight with α -
296 MBP (1:10000, New England BioLabs) or α -ORC (1:1000, kind gift of Stephen Bell), and
297 subsequently developed using the corresponding secondary antibody.

298 Pulldowns with Pch2 fragments (His-MBP-Pch2-2-144/ His-MBP-Pch2-243-564) were performed
299 similarly, except that 6 μ M of His-MBP-Pch2-2- was used (due to formation of monomer instead of
300 hexamer in this fragment. See results for further details). Note that for pulldown with His-MBP-Pch2-
301 2-144 and ORC analysed by Western blot, we used a 2-fold excess of His-MBP-Pch2-2-144 fragment
302 as compared with the pulldown analysed by CBB. Western blotting was performed similarly as
303 detailed above, probing with α -MBP or α -ORC.

304

305 **Analytical Size-exclusion Chromatography**

306 Analytical size-exclusion chromatography (analytical SEC) was performed on a Superose 6 5/150 GL
307 column (GE Healthcare) connected to an ÄKTAmicro FPLC system (GE Healthcare). Proteins (1 μ M
308 His-MBP-Pch2, 3 μ M His-ORC) were mixed in a total volume of 50 μ L, incubated 2 hours on ice and
309 spun down for 15 minutes at 15000 rpm in a bench-top centrifuge (4°C) before injection. All samples
310 were eluted under isocratic conditions at 4°C in SEC buffer containing 30 mM HEPES pH 7.5, 150
311 mM NaCl, 3% glycerol, 1 mM MgCl₂, and 2 mM TCEP, at a flow rate of 0.1 ml/min. Fractions (100
312 μ L) were collected and 20 μ L were analyzed by SDS-PAGE and CBB staining.

313 For SEC profiles represented in Figure 2A, Figure 4G and Supplementary Figure 1B, the purified
314 proteins were run in a similar manner that indicated above. Briefly, purified His-MBP-Pch2 (2 μ M),
315 His-MBP-Pch2-2-144 (6 μ M) or His-ORC (6 μ M) were diluted in SEC buffer (30 mM HEPES pH 7.5,
316 150 mM NaCl, 3% glycerol, 2 mM TCEP, 1 mM MgCl₂) up to a volume of 50 μ L, spun down 15
317 minutes at 15000 rpm (4°C) and immediately loaded into a Superose 6 Increase 5/150 GL column (for
318 His-MBP-Pch2 and His-ORC) or into a Superdex 200 5/150 GL (for His-MBP-Pch2-2-144).

319

320 **Cross-linking Mass-Spectrometry**

321 Cross-linking Mass-Spectrometry (XL-MS) was performed as described (20). Briefly, 0.75 μ M of His-
322 MBP-Pch2 was mixed with 1.5 μ M of His-ORC complex in 200 μ L of buffer (30 mM HEPES pH 7.5,
323 150 mM NaCl, 2 mM TCEP) and incubated at 4°C for 90 minutes. DSBU (disuccinimidyl dibutyric
324 urea - also known as BuUrBu-, Alinda Chemical Limited) was added to a final concentration of 3 mM
325 and incubated at 25°C for 1 hour. The reaction was stopped by adding Tris-HCl pH 8.0 to a final
326 concentration of 100 mM and incubated at 25°C for an additional 30 min. 10 μ L of protein sample was
327 taken before and after adding the cross-linker for analysis by SDS-PAGE. SDS-PAGE gel was stained
328 with CBB. Cross-linked protein complexes were precipitated by adding 4 volumes of cold acetone (-
329 20°C overnight), centrifuged 5 min at 15000 rpm and the pellet was dried at room temperature.

330 Protein pellets were denatured in denaturation-reduction solution (8 M urea, 1 mM DTT) for 30 min at
331 25°C. Cysteine residues were alkylated by adding 5.5 mM chloroacetamide and incubating for 20 min
332 at 25°C. ABC buffer (20 mM ammonium bicarbonate pH 8.0) was added to reduce the final
333 concentration of urea to 4M. Sample was digested by Lys-C (2 μ g) at 25°C for 3h, followed by
334 overnight Trypsin (1 μ g) digestion in buffer containing 100 mM Tris-HCl pH 8.5, 1 mM CaCl₂ at
335 25°C. The digestion was stopped by adding trifluoroacetic acid (TFA) to a final concentration of 0.2%.
336 Resulting peptides after digestion were run in three independent Size-Exclusion Chromatography
337 (SEC) runs on a Superdex Peptide 3.2/ 300 column (GE Healthcare) connected to an ÄKTAmicro
338 FPLC system (GE Healthcare). SEC runs were performed at a flow rate of 0.1 mL/min in buffer

339 containing 30% acetonitrile and 0.1% formic acid. 100 μ L fractions were collected and the same
340 fractions from the three SEC runs were pooled, dried and submitted to LC-MS/MS analysis.
341 LC-MS/MS analysis was performed as previously reported using an Ultimate 3000 RSLC nano system
342 and a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific) (20). Peptides were dissolved in
343 water containing 0.1% TFA and were separated on the Ultimate 3000 RSLC nano system (precolumn:
344 C18, Acclaim PepMap, 300 μ m \times 5 mm, 5 μ m, 100 \AA , separation column: C18, Acclaim PepMap, 75
345 μ m \times 500 mm, 2 μ m, 100 \AA , Thermo Fisher Scientific). After loading the sample on the precolumn, a
346 multistep gradient from 5–40% B (90 min), 40–60% B (5 min), and 60–95% B (5 min) was used with
347 a flow rate of 300 nL/min; solvent A: water + 0.1% formic acid; solvent B: acetonitrile + 0.1% formic
348 acid. Data were acquired using the Q-Exactive Plus mass spectrometer in data-dependent MS/MS
349 mode. For full scan MS, we used mass range of m/z 300–1800, resolution of R = 140000 at m/z 200,
350 one microscan using an automated gain control (AGC) target of 3e6 and a maximum injection time
351 (IT) of 50 ms. Then, we acquired up to 10 HCD MS/MS scans of the most intense at least doubly
352 charged ions (resolution 17500, AGC target 1e5, IT 100 ms, isolation window 4.0 m/z, normalized
353 collision energy 25.0, intensity threshold 2e4, dynamic exclusion 20.0 s). All spectra were recorded in
354 profile mode.
355 Raw data from the Q-Exactive Plus mass spectrometer were converted to Mascot generic files (MGF)
356 format. Program MeroX (version 1.6.6.6) was used for cross-link identification (21). Combined MS
357 data in MGF format and the protein sequences in FASTA format were loaded on the program and MS
358 spectra matching cross-linked peptides were identified. In the settings of MeroX, the precursor
359 precision and the fragment ion precision were changed to 10.0 and 20.0 ppm, respectively. RISE mode
360 was used and the maximum missing ions was set to 1. MeroX estimates the false discovery rate (FDR)
361 by comparison of the distribution of the cross-link candidates found using provided protein sequences
362 and the distribution of the candidates found from decoy search using shuffled sequences. A 2% FDR
363 was used as the cut-off to exclude the candidates with lower MeroX scores. The results of cross-link
364 data were exported in comma-separated values (CSV) format. Cross-link network maps were
365 generated using the xVis web site (<https://xvis.genzentrum.lmu.de>) (22). Validation of the datasets was
366 performed by identifying 13 intra-MBP crosslinks and using a published crystal structure of MBP
367 (PDB 1FQB, (23)) to map $\text{Ca}-\text{Ca}$ distances between identified crosslinked amino acids. The average
368 $\text{Ca}-\text{Ca}$ was 14.41 \AA , which is in good agreement with the $\text{Ca}-\text{Ca}$ distance (12 \AA) which the cross-
369 linked state of DSBU is able to facilitate (Supplementary Table 3).
370

371 **RESULTS**

372

373 **Pch2 interacts with the ORC complex in meiotic G2/prophase**

374 We previously showed that Pch2 functionally interacts with Orc1 (14), but the biochemical
375 basis of this interaction remains poorly understood. To start to define the interaction between Pch2 and
376 Orc1, we investigated how this interaction depended on Pch2 hexamer formation and ATP hydrolysis
377 activity *in vivo*. We employed an ATP hydrolysis mutant within the Walker B domain of Pch2 (*pch2-*
378 *E399Q*) (Figure 1A), which is unable to support rDNA-associated DSB protection (14). In other
379 AAA+ enzymes, mutating this critical residue in the Walker B domain prevents efficient ATP
380 hydrolysis and stalls the stereotypical catalytic cycle of AAA+ enzymes. This often leads to stabilized
381 interactions between AAA+ proteins and their clients and/or adaptors. Equivalent mutants in other
382 AAA+ enzymes have been used to trap enzyme:client and/or enzyme:adaptor interactions (9,24). We
383 detected an increased interaction between Pch2 and Orc1 in cells expressing Pch2-E399Q as compared
384 to cells expressing wild type Pch2 (Figure 1A and B). We next investigated a different mutant Pch2
385 allele, which carried a mutation within the Walker A motif (K320R). Mutations in residues located
386 within this motif have been shown to reduce ATP binding (9). When we probed the interaction
387 between Pch2 and Orc1, Orc1-TAP failed to co-immunoprecipitate Pch2-K320R (Figure 1A and C).
388 Considering that mutations in the Walker A motif lead to monomerization of Pch2 *in vivo* (25), our
389 data suggest that the efficient interaction between Pch2 and Orc1 relies on ATP binding and Pch2
390 hexamer formation. As a whole, these experiments indicate that Pch2 interacts with Orc1 in a manner
391 that is consistent with a stereotypical AAA+: client and/or adaptor interaction.

392 Many, if not all functions ascribed to Orc1 involve its assembly into the six-component Origin
393 Recognition Complex (ORC; consisting of Orc1-6) (15)). We therefore tested whether in addition to
394 Orc1, other subunits of ORC also interacted with Pch2. We employed the *pch2-E399Q* allele to
395 stabilize *in vivo* interactions. Our co-immunoprecipitation (co-IP) assays revealed an interaction
396 between TAP-tagged versions of Orc2 and Orc5 and Pch2 during meiotic G2/prophase (Figure 1D-F).
397 Similarly, we detected this interaction between 3xFLAG-tagged Pch2-E399Q and Orc2 by Co-IP using
398 a α -Orc2 antibody (Figure 1G). Furthermore, an unbiased mass-spectrometric analysis of the Pch2-
399 E399Q interactome identified Orc5 in addition to Orc1, indicating that Pch2 interacts with multiple
400 ORC subunits (VBR and GV, unpublished observations). As a whole, we conclude that Pch2 interacts
401 with ORC during meiotic G2/prophase.

402 To enable the chromosomal loading of the MCM AAA+ replicative helicase at origins of DNA
403 replication, ORC (*i.e.* Orc1-6) associates with Cdc6, an additional AAA+ protein (15)(Figure 1D).
404 Pch2 is expressed during meiotic S-phase and G2/prophase, whereas Cdc6 availability is restricted to

405 G1 phase (26), also in the meiotic program (27). This suggests that the interaction between Pch2 and
406 ORC occurs independently of Cdc6. We employed a meiosis-specific null allele of *CDC6* (*cdc6-mn*)
407 (28) which interferes with pre-meiotic DNA replication (Figure 1H), to investigate if absence of Cdc6
408 influenced Pch2-ORC binding. (Note that in the *cdc6-mn* background, despite a failure to undergo bulk
409 DNA replication, meiotic progression is unaffected and cells initiate DSB formation in a meiotic
410 G2/prophase-like state (28,29)). The interaction between Pch2 and Orc1 in the *cdc6-mn* background
411 was similar to the binding that was observed in *CDC6* cells (Figure 1I), indicating that ORC-Pch2
412 assembly occurs independently of Cdc6.

413 We have previously shown that Pch2 protects ribosomal (r)DNA array borders (*i.e.* the ~1-10
414 outermost rDNA repeats and ~50 kb of single copy flanking sequences) against meiotic DSB
415 formation ((14), and Figure 1J). In agreement with our observation that the interaction between Pch2
416 and ORC does not depend on Cdc6, we observed that Cdc6 depletion (via *cdc6-mn*) did not trigger a
417 Pch2-like phenotype at rDNA borders, as judged by the analysis of meiotic DSB formation at the right
418 rDNA flank (*YLR164W*) (Figure 1K). In addition, *pch2Δcdc6-mn* efficiently formed DSBs within the
419 right rDNA flank (Figure 1K), demonstrating that bulk (Cdc6-dependent) DNA replication is not
420 required for DSB formation in these regions in cells lacking Pch2. Thus, these data show that Pch2 and
421 ORC functionally interact during meiotic G2/prophase, and that this interaction does not require Cdc6.
422

423 ***In vitro* reconstitution demonstrates a direct interaction between Pch2 and ORC**

424 To gain understanding of the biochemical basis underlying ORC-Pch2 binding, we sought to *in*
425 *vitro* reconstitute this complex. For this, we expressed and purified budding yeast Pch2 (carrying a
426 NH2-terminal His-MBP tag) through a baculovirus-based protein expression system. As judged by
427 size exclusion chromatography (SEC), purified Pch2 assembled into an apparent hexamer (predicted
428 size ~636 kDa), with a minor fraction that appears to be monomeric (size of ~106 kDa for His-MBP-
429 Pch2) (Figure 2A). We confirmed functionality of our affinity purified Pch2 by demonstrating a direct
430 interaction with Hop1, a confirmed substrate of Pch2, as previously described (10) (Supplementary
431 Figure 1A). We next tested whether Pch2 directly interacted with ORC, by using ORC (*i.e.* Orc1-6;
432 with Orc1 carrying a His-tag, total size ~414 kDa) purified from insect cells (see Supplementary
433 Figure 1B). Solid phase pulldown experiments revealed that Pch2 is able to interact with the entire
434 ORC (*i.e.* Orc1-6) (Figure 2B and C). This demonstrates that these AAA+ proteins indeed interact
435 directly. Next, we asked whether this interaction could also be reconstituted in solution. Size Exclusion
436 Chromatography (SEC) analysis confirmed that ORC and Pch2 form a complex in solution, as judged
437 by a reduced retention volume (which is indicative of a larger and/or more elongated complex) when
438 combined, as compared to the elution profiles of Pch2 or ORC individually (Figure 2D). We suggest

439 that ORC and Pch2 interact with each other in an ORC (Orc1-6 hexamer) to Pch2 (hexamer) fashion,
440 yielding what would be a complex of ~ 1 MDa. Taken together, these experiments demonstrate that
441 ORC directly interacts with Pch2 to establish a meiosis-specific AAA+ to AAA+ assembly. Since this
442 interaction does not require Cdc6, this assembly represents an interaction of ORC with an AAA+
443 protein which is biochemically distinct from the interaction of ORC with the MCM AAA+ complex.
444

445 ***In vitro* XL-MS characterization of ORC-Pch2**

446 To shed light on the interaction mode of ORC and Pch2, we employed chemical crosslinking
447 coupled to mass spectrometry (XL-MS). XL-MS can provide information on inter- and intramolecular
448 interactions that can yield useful insights into assembly principles of complex protein preparations.
449 Using an experimental pipeline based on a MS-cleavable chemical crosslinker (DSBU; disuccinimidyl
450 dibutyric urea, also known as BuUrBu) (20) (Figure 3A), we crosslinked purified Pch2 (His-MBP-
451 Pch2) and ORC (Orc1-6) (Figure 3B) and after processing and MS-analysis, identified crosslinked
452 peptides (for crosslinks see Supplementary Table 2 and Supplementary Table 3). We validated the
453 quality of our XL-MS dataset by analyzing (intramolecular) crosslinked peptides within the MBP-
454 moiety present on our Pch2 preparation (see Material and Methods for more detailed information).
455 After applying a stringent cut-off analysis by setting a False-Discovery Rate (FDR) of 2%, we
456 obtained a total of 313 non-redundant crosslinks (Figure 3C and Supplementary Table 3) out of a total
457 of 721 crosslinked peptides identified by MeroX (Figure 3C and Supplementary Table 2). We used
458 these non-redundant crosslinks to generate crosslink network maps for the ORC-Pch2 assembly by
459 using xVis (<https://xvis.genzentrum.lmu.de>). These 313 crosslinks consist of 121 intermolecular
460 crosslinks (*i.e.* crosslinks between peptides originating from two different proteins) and 192
461 intramolecular crosslinks (*i.e.* crosslinks between peptides originating from a single protein). We
462 identified 96 Pch2-Pch2 crosslinks (Figure 3C, red lines and Supplementary Table 3). Since Pch2
463 forms a homo-hexameric complex, we cannot distinguish whether Pch2-Pch2-crosslinked peptides originate from
464 intra- or intermolecular crosslinked peptides. We observed 77 crosslinks between ORC subunits (*i.e.*
465 inter-ORC crosslinks) (Figure 3C, represented by blue lines. See also Supplementary Figure 2 and
466 Supplementary Table 3). When comparing crosslink abundance between individual ORC subunits with
467 a published crystal structure of ORC to model the position of each subunit (Figure 3F; based on
468 structure PBD 5v8f; (30)), we noted that neighboring subunits often displayed the most abundant
469 crosslinks (for example Orc1/Orc2, Orc2/Orc3 and Orc3/Orc5; see Supplementary Table 3). However,
470 several observed crosslinks span considerable distance when based on the ORC structure we used for
471 analysis (PBD 5v8f; (30)), arguing for significant levels of flexibility within our ORC preparation. Of
472 note, our ORC complex is devoid of Cdc6, and also not bound to MCM-Cdt1, contrary to the reported

473 structure (30), which conceivably could affect complex topology. Furthermore, we cannot exclude that
474 Pch2 leads to structural rearrangements within ORC upon binding.

475 We next focused on the 96 Pch2-Pch2 crosslinks (Figure 3C, see also Supplementary Figure 2 and
476 Supplementary Table 3). Interestingly, a significant fraction of these (42 out of 96; 44%) consisted of
477 crosslinks between peptides from Pch2's non-catalytic NH₂-terminal domain (NTD, amino acids 1-
478 242) with peptides from the COOH-terminal AAA+ domain of Pch2 (amino acids 243-564). Since we
479 cannot distinguish between inter- or intramolecular crosslinks with respect to hexamer Pch2-derived
480 peptides (see also above), these crosslinked peptides could *i*) be a reflection of a close proximity
481 between the NTD and AAA+ domain within a single Pch2 polypeptide or of *ii*) an association between
482 the NTD of one Pch2 monomer with the AAA+ domain of an adjacent (or potential more distally
483 localized, depending on domain flexibility) AAA+ module, from a distinct Pch2 monomer. With
484 regard to these observations, we note that, in biochemical purifications, mutational disruption of the
485 NTD of Pch2 influenced the apparent formation of stable/properly assembled Pch2 hexamers
486 (unpublished observations and see below; MAVF and GV), indeed hinting at a contribution of the
487 NTD of Pch2 to the stable hexamerization of Pch2's AAA+ core.

488 We also identified 21 inter-ORC-Pch2 crosslinks (Figure 3C-F; black lines). Several observations are
489 of note when considering these crosslinks. First, we find crosslinks that contain Pch2 peptides from
490 both its enzymatic AAA+ core (12 out of 21; 57%) and its non-catalytic NTD (9 out of 21; 43%) (see
491 also Supplementary Figure 2). We interpret this to indicate that Pch2 makes extensive contacts with
492 the ORC complex, whereby both its enzymatic core and its NTD are involved. Many AAA+ ATPases
493 (including TRIP13, the mammalian homolog of Pch2 (12) (13)) engage clients/adaptors via an initial
494 engagement using their NTDs, and subsequently show interactions mediated through AAA+
495 core:client binding (9). The observation that both Pch2's AAA+ core and NTD are involved in ORC
496 binding, is consistent with a scenario in which Pch2 binds to ORC in a AAA+:client and/or adaptor-
497 type engagement. It is conceivable that Pch2 uses its NTD for the initial recognition of ORC, whereas
498 subsequent AAA+ mediated interactions stabilize this complex formation. Second, a large fraction of
499 the total Pch2-ORC crosslinks is established between Pch2 and Orc1/Orc2 (10 out of 21; 48 %).
500 Although these two subunits are the largest polypeptides of the Orc1-6 complex (which might affect
501 the distribution of the observed crosslinks), we note that Orc1/Orc2 are neighboring the position that is
502 occupied by Cdc6 when it interacts with ORC. In our preparations, Cdc6 is not present, leaving this
503 space unoccupied. We thus speculate that Pch2 utilizes this "vacated" Cdc6-binding position to
504 interact with ORC. In agreement with this is our earlier finding that, *in vivo*, Pch2 binding with ORC
505 occurs independently of Cdc6 (Figure 1I). We attempted to map the identified 21 inter-ORC-Pch2
506 crosslinks onto an ORC structure (PBD 5v8f (30), Figure 3F; crosslinked residues are marked by a

507 black dot). Due to the absence of regions of ORC within the used crystal structure, we were unable to
508 map several of the ORC-Pch2 crosslinks (*i.e.* crosslinks with Orc2, Orc5 and Orc6). Mapping of
509 observed crosslinks showed a distribution of crosslinked residues across a large region of ORC,
510 suggesting that Pch2 establishes extensive contacts with the ORC complex. Interestingly, when we
511 analyzed the position of these residues in a structure containing Cdc6, we noted that three crosslinked
512 residues within Orc1 (K612, T614 and S615) were located in a position that is shielded by Cdc6,
513 according to the ORC-Cdc6-Cdt1-MCM complex structure (PBD 5v8f; (30)). This reiterates the idea
514 that Pch2 employs a binding mode which might involve binding interfaces within ORC that are also
515 involved in Cdc6 engagement.

516

517 **Biochemical characterization of ORC-Pch2 complex formation**

518 Many AAA+ protein:AAA+ protein associations rely on inter-domain AAA+ interactions. For
519 example, inter-domain AAA+ contacts between individual ORC subunits establish ORC complex
520 formation. In contrast, our XL-MS analysis suggests that the NTD of Pch2 is involved in mediating
521 binding to ORC. We aimed to establish whether indeed the NTD was involved in Pch2-ORC
522 assembly. For this, we first employed yeast two-hybrid (Y2H) analysis, to show that Pch2 lacking its
523 NTD (amino acids 2-242) was unable to interact with Orc1 (Figure 4A and B). We next investigated
524 the interaction between Pch2 and Orc1 in meiotic G2/prophase, by expressing an identical truncated
525 version of Pch2 (3xFLAG-Pch2-243-564). This truncated version of Pch2 was impaired in its ability to
526 interact with Orc1 (Figure 4C and D). The residual interaction of Pch2-243-564 with Orc1 might
527 indicate that, in meiotic cells, Pch2 lacking its NTD retains a certain degree of affinity towards ORC
528 (Figure 4D). We next purified Pch2 lacking the NTD (His-MBP-Pch2-243-564) from insect cells. By
529 SEC, we observed that this Pch2 protein eluted at an apparent size that indicated a more extended
530 shape or less organized assembly as compared to full length Pch2 (data not shown). We have observed
531 a similar behavior when purifying Pch2 proteins that harbor specific amino acid mutations within the
532 NTD (unpublished observations, MAVF and GV). These findings imply a role for the NTD in
533 stabilizing and/or maintaining Pch2 into a stable, well-ordered hexamer (see also above). Importantly,
534 the ability of purified Pch2 243-564 to interact with ORC was abolished, further demonstrating an
535 important contribution of the NTD of Pch2 in directing interaction with ORC (Figure 4E).

536 We next asked whether the NTD of Pch2 was sufficient for ORC binding. Based on Pch2 sequence
537 conservation and secondary structure predictions, we performed Y2H analyses using a series of
538 COOH-truncated fragments of Pch2. These analyses revealed that the NTD of Pch2 (consisting of
539 amino acids 2-242) is sufficient to establish the interaction with Orc1 (Figure 4F). Further truncations
540 of the NTD identified a minimal fragment of Pch2 (containing amino acids 2-144) sufficient for the

541 interaction between Pch2 and Orc1. In agreement with these observations, our XL-MS analysis
542 identified several crosslinks between Pch2 and ORC-subunits that consisted of Pch2-peptides that are
543 located within this region of the NTD (K88, K18, K43; Figure 3D and E), underscoring the importance
544 of this domain in mediating the interaction between Pch2 and ORC. We attempted to express
545 corresponding Pch2-NTD fragments in meiosis, but observed that often these fragments were poorly
546 expressed (unpublished observations, MAVF and GV). This precluded us from performing *in vivo*
547 interaction studies. To further test a role of the NTD of Pch2 in mediating interaction with ORC, we
548 expressed recombinant NTD fragments. We noted that, similarly to our *in vivo* observations, many
549 recombinantly-produced fragments were poorly expressed or aggregated under purifying conditions
550 (unpublished observations, MAVF and GV). We managed to express and purify the minimal NH₂-
551 terminal fragment of Pch2 (His-MBP-Pch2-2-144) that was sufficient for Orc1 interaction in our Y2H
552 analysis. SEC analysis suggested that this fragment exists as a monomer (expected size ~59 kDa),
553 which is in agreement with the crucial role AAA+ domains play in mediating hexamerization of
554 AAA+ complexes (Figure 4G). This fragment was capable of interacting with ORC, albeit to
555 significantly lesser extent than full length Pch2 (Figure 4H and I). This could indicate additional
556 binding interfaces between Pch2 and ORC that lie outside of this domain (as suggested by the
557 observation of additional crosslinks containing peptides from regions outside of the NTD of Pch2, and
558 by the residual *in vivo* interaction we observed between Pch2-ΔNTD and Orc1; see above).
559 Alternatively, hexamer formation of Pch2 (driven by AAA+ to AAA+ interactions) increases the local
560 effective concentration of the NTD, and this could contribute to efficient binding between Pch2 and
561 ORC. The latter interpretation is in agreement with our observation that the *in vivo* interaction between
562 Pch2 and Orc1 is severely diminished in cells expressing a Pch2 Walker A domain mutant, which is
563 expected to disrupt ATP binding and hexamerization (25). We conclude that the NTD of Pch2
564 provides a crucial contribution to ORC-Pch2 complex formation (Figure 4).
565

566 ***In vivo* analysis of the functional connection between Pch2 and ORC**

567 We previously demonstrated that Pch2 is required to prevent rDNA-associated meiotic DSB
568 formation (14). Inactivating Orc1 (via a temperature-sensitive allele of *ORC1*, *orc1-161*) triggers a
569 similar rDNA-associated phenotype as observed in cells lacking Pch2, which shows that Orc1 and
570 Pch2 collaborate to protect the rDNA against DSB formation and instability in meiosis (14). Since our
571 biochemical analysis demonstrates that Pch2 binds to ORC, we aimed to address whether ORC is
572 required for Pch2 function at rDNA borders during meiotic DSB formation and recombination. ORC
573 subunits are essential for cell viability, and we thus employed the “anchor away” method (31), which
574 has been used to efficiently deplete chromosomal factors in budding yeast meiosis (32-34), to

575 inactivate selected ORC subunits (Figure 5A). Mitotically proliferating diploid cells that carry FRB-
576 tagged versions of *ORC2* or *ORC5* (*orc2-FRB* and *orc5-FRB*) exhibited a strong growth defect when
577 grown in the presence of rapamycin (Figure 5B), demonstrating efficient nuclear depletion of Orc2 and
578 Orc5. To investigate the efficacy and timing of this functional depletion, we used flow cytometry to
579 query DNA replication in logarithmically growing cultures after treatment with rapamycin. In the
580 *orc2-FRB* or *orc5-FRB* backgrounds, addition of rapamycin induced DNA replication to cease (as
581 judged by an accumulation of 2N-containing cells) within 180 minutes of treatment, with the first
582 effects detectable after 90 minutes (Figure 5C). These experiments indicate a rapid and efficient
583 functional depletion of Orc2 or Orc5. We used these *ORC* alleles to investigate rDNA-associated DSB
584 formation (by probing meiotic DSB formation at the right rDNA flank; *YLR164W* (14)). Surprisingly,
585 rapamycin-induced depletion of Orc2 or Orc5 did not trigger an increase in rDNA-associated DSB
586 formation, in contrast to what is observed in cells lacking Pch2 or in cells expressing a temperature-
587 sensitive allele of *ORC1* (14) (Figure 5D). Meiotic progression seemed normal under these conditions,
588 since meiotic DSB formation at a control locus (*YCR047C*; chromosome *III*) occurred normally
589 (Figure 5D), and pre-meiotic DNA replication timing appeared unaffected under this treatment
590 regimen (data not shown). MCM association with origins of replication (the critical ORC-dependent
591 step during DNA replication) occurs prior to induction into the meiotic program (and thus rapamycin
592 exposure in our experimental setup) (27), and therefore nuclear depletion of ORC in this regimen is
593 not expected to interfere with efficient pre-meiotic DNA replication. We cannot currently exclude that
594 incomplete depletion of Orc2/5 precludes us to expose a role for Orc2/5 in controlling Pch2's rDNA-
595 associated phenotype. However, based on the viability effects (Figure 5B), and on the timing of the
596 observed effects of Orc2/5-depletion during vegetative growth (*i.e.* within 90-180 minutes; Figure 5C)
597 as compared to the duration of rapamycin treatment in our meiotic experiments (up to a maximum of 8
598 hours), we favor the interpretation that *in vivo*, Orc2 and Orc5 are not strictly required for rDNA-
599 associated Pch2 function. In agreement with this conclusion are experiments in which cells were
600 exposed to longer periods of rapamycin treatment by adding the drug in pre-meiotic cultures (*i.e.* 3
601 hours prior to initiation of meiotic cultures). Under these conditions we equally failed to see an effect
602 of Orc2/Orc5 depletion on rDNA-associated DNA break formation, despite the appearance of (mild)
603 pre-meiotic DNA replication defects (unpublished observations, MAVF and GV). Based on these
604 results, we conclude that the rDNA-associated function of Pch2 does not strictly depend on Orc2/Orc5
605 function.

606 The lack of a role for Orc2/5 in mediating Pch2-dependent suppression of rDNA instability is in stark
607 contrast with the role of Orc1 (14), suggesting that Orc1 could be a central mediator of the interaction
608 between ORC-Pch2. Several observations support this hypothesis. First, when comparing Pch2 Co-IP

609 efficiencies of Orc1, Orc2 and Orc5, we consistently find the strongest interaction with Orc1 (Figure
610 1F), arguing that Orc1 is a central interactor of Pch2. Second, we observed several intermolecular
611 crosslinks containing peptides from the MBP-moiety (that is NH₂-terminally fused to Pch2 in His-
612 MBP-Pch2). In addition to 17 intermolecular crosslinks between MBP and Pch2 (which are expected
613 since these two polypeptides are covalently linked), we observed 6 MBP-Orc1 intermolecular
614 crosslinks (Figure 5E, and Supplementary Table 3). MBP-derived crosslinks with Orc1 were unique:
615 there were no crosslinks observed between MBP and other ORC subunits. Since efficient crosslinking
616 depends on proximity of ~ 12 Å between C α 's of crosslinked amino acids, these data argue that Orc1 is
617 in close vicinity of MBP (and, by extension, Pch2). Third, by analyzing the interaction between
618 individual ORC subunits (Orc1-4, and Orc6) and Pch2 using Y2H analysis, we observed an interaction
619 between Orc1 and Pch2, as reported earlier (14) but did not detect an interaction between Pch2 and
620 other individual ORC subunits (Figure 5F). This result strengthens the conclusion that, within ORC,
621 Orc1 is a major interaction partner of Pch2. To test the premise that Orc1 is a crucial mediator of
622 ORC-Pch2 assembly, we probed the interaction between Pch2 and Orc2/Orc5 in the presence of a
623 temperature-sensitive allele of *ORC1* (*orc1-161*). In this situation, Orc2 and Orc5 showed a decreased
624 ability to immunoprecipitate Pch2, further strengthening the premise that Orc1 is crucial in mediating
625 the interaction between ORC and Pch2 (Figure 5G).

626 Altogether, our data suggest that *in vivo*, Pch2 interacts with the entire ORC, with Orc1 being an
627 important mediator of this interaction. Functionally, Orc1 is a crucial binding partner for Pch2. Thus,
628 we conclude that during meiotic G2/prophase, ORC is repurposed to interact together with Pch2, in a
629 biochemical and functional manner that is uniquely distinct from its well-documented role in the
630 chromosomal loading of the AAA+ MCM helicase assembly.

631

632 **DISCUSSION**

633 The hexameric AAA+ ORC complex is an essential regulator of eukaryotic DNA replication. It
634 forms the loading platform for the chromosomal association of the replicative helicase MCM, a
635 hexameric AAA+ complex (15,16). Here we show that, during the meiotic program of budding yeast,
636 ORC interacts with another AAA+ protein: Pch2. Our data reveal several interesting biochemical
637 characteristics about the ORC-Pch2 assembly. First, we show that the ORC-Pch2 assembly does not
638 require Cdc6 (or any other accessory factors). This is in stark contrast to the highly regulated
639 interaction between ORC and MCM (15,16). Expression of Pch2 is induced during S-phase and peaks
640 during G2/prophase, when Pch2 is involved in many processes controlling meiotic DSB formation and
641 recombination. During this time of the cell cycle, ORC is not complexed with Cdc6 (26,27) and, as
642 such, would be available for association with Pch2. In line with such a temporal separation of Pch2-
643 and Cdc6-bound ORC, we found evidence from *in vitro* reconstitution that Pch2 might (partially) use
644 the binding pocket that in ORC-Cdc6 is occupied by Cdc6. In future experiments, our biochemical
645 reconstitution should allow us to test whether Cdc6 and Pch2 binding to ORC is mutually exclusive.
646 Binding of a monomer of the Cdc6 AAA+ protein to the five other AAA+ like ORC-proteins (Orc1-5)
647 establishes the functional ring-shaped ORC hexamer (*i.e.* a Cdc6-Orc1-5 hexamer), which, in this
648 composition, is proficient in loading the MCM AAA+ hexamer. (Note that Orc6 is a non-AAA+
649 domain-containing component of ORC that does not directly contribute to Cdc6-ORC AAA+ hexamer
650 assembly (15,16)). An intriguing possibility was that a monomer of Pch2 AAA+ protein could, in lieu
651 of Cdc6, establish a complex with Orc1-5 (*i.e.* a 1:5 Pch2:Orc1-5 hexamer). However, we do not find
652 evidence supporting such a binding mode. First, when we reconstituted the ORC-Pch2 complex, we
653 observed that the pool of Pch2 that elutes at the expected size of a Pch2 hexamer interacts with ORC
654 (as judged by SEC analysis; Figure 2D). Second, our combined XL-MS and biochemical analyses
655 indicate that the non-AAA+ domain of Pch2 (*i.e.* its NTD) provides a key contribution to the efficient
656 binding of Pch2 to ORC (Figure 3 and 4). This kind of behavior would not be expected if a 1:5
657 Pch2:ORC (Orc1-5) would be established via binding principles that are similar to Cdc6-ORC,
658 wherein AAA+ to AAA+ interactions are the main driver of complex formation. Third, a Walker A
659 domain Pch2 mutant that is expected to monomerize (25) (Figure 1), fails to interact with ORC *in vivo*.
660 Although our current *in vitro* reconstitutions cannot formally exclude the establishment of a 1:6
661 Pch2:ORC complex that then is bound to an hexamer of Pch2 (in a manner analogous to a 1:6 Cdc6-
662 ORC (Orc1-6): hexameric MCM assembly), we interpret our experiments to indicate that ORC (Orc1-
663 6) is complexed with an hexamer of Pch2. Our results also suggest that Pch2 employs a stereotypical
664 AAA+ to client/adaptor binding mode towards ORC: *i*) binding is increased in a mutant that stalls ATP
665 hydrolysis (Figure 1B), *ii*) hexamerization is required for efficient interaction (Figure 1C), and *iii*) the

666 non-enzymatic NTD of Pch2 plays a crucial role in mediating the interaction between Pch2 and ORC
667 (Figure 4). If the binding of Pch2 with ORC is in line with an AAA+ to client/adaptor interaction, can
668 ORC then be considered a client or an adaptor of Pch2? Together with our earlier observations, which
669 revealed that Orc1 is required for the nucleolar localization and function of Pch2 (14), our current
670 analysis is in agreement with an adaptor-like role for Orc1 (*i.e.* by aiding in proper subcellular
671 localization of Pch2). Based on these experiments, we favor a model in which Orc1 (and ORC) acts as
672 a localized chromosomal recruiter of Pch2, in line with an adaptor-like role for ORC in facilitating
673 Pch2 function. Nonetheless, we cannot currently exclude that ORC function/composition is also
674 influenced by Pch2 activity in an AAA+ to client relationship, and our *in vitro* reconstitution
675 experiments have the promise of addressing this intriguing possibility. Pch2 uses its enzymatic activity
676 to influence the chromosomal association of its clients, chromosomal HORMA domain-containing
677 proteins (10,11). Since Pch2-mediated removal of HORMA proteins has been associated with local
678 control of DSB activity and meiotic recombination, also within the rDNA (3,14,35), an interesting
679 question remains whether, and if so, how the interaction between Pch2 and ORC plays a direct role in
680 Pch2 activity-driven Hop1 removal from specific chromosomal regions.

681 A surprising aspect of our work is the finding that depleting subunits of ORC other than Orc1 (*i.e.*
682 Orc2 or Orc5) did not lead to a Pch2-associated phenotype at the rDNA locus (Figure 5). Although we
683 cannot exclude that our depletion strategy for these subunits is incomplete, based on our data we favor
684 the conclusion that these subunits are not strictly required for Pch2 function. In combination with the
685 fact that Orc1 is required for Pch2 function at the rDNA (14), and appears to act as a major interacting
686 partner for Pch2, we envision two possible (not mutually exclusive) molecular explanations. First,
687 since inactivating Orc2/Orc5 is expected to lead to diminished origin binding of ORC, we suggest that
688 the role of Pch2-ORC at the rDNA could be executed away from origins of replication. Second, it is
689 possible that *in vivo*, Orc1 exists in two pools: one where it is complexed with Orc2-6 (*i.e.* ORC), and
690 one where it exists as a monomer. Conceivably, Pch2 could interact with both pools. If Orc1 is the
691 protein that provides the needed functionality to Pch2 (whether complexed with ORC or not),
692 inactivating other ORC components (like Orc2/Orc5) would not *per se* trigger Pch2-like phenotypes.
693 In either case, our findings point to a non-canonical role for Orc1/ORC in mediating the activity of
694 Pch2 during meiotic G2/prophase. The recruitment of Pch2 to the nucleolus is diminished in an *orc1-*
695 *161* mutant background (14) and Orc1 should thus contain a chromosome-binding activity that is
696 required for nucleolar recruitment of Pch2. Interestingly, Orc1 contains a nucleosome binding module
697 (a Bromo-Adjacent Homology (BAH) domain) (36,37), and we previously showed that this domain is
698 required for the rDNA-associated role of Pch2 (14). Future work should be focused on understanding

699 how the BAH domain of Orc1 biochemically and functionally contributes to Pch2 function in relation
700 to nucleosome/chromatin association.

701 In conclusion, we have used a combination of *in vivo* and *in vitro* analyses to reveal the establishment
702 of a meiosis-specific AAA+ assembly between ORC and Pch2. By establishing an *in vitro*
703 reconstituted assembly of Pch2 and ORC combined with *in vivo* analysis, we have shed light on an
704 interaction between Pch2 and an AAA+ adaptor-like protein complex, which is important for localized
705 chromosomal recruitment of Pch2. Our experiments reveal interesting characteristics of this assembly
706 and highlight a certain plasticity in the ability of ORC to interact with distinct AAA+ proteins.
707 Understanding the biochemical, structural and functional connections between these two ATPases in
708 more detail will be an important avenue for future research.

709

710

711 **ACKNOWLEDGEMENTS**

712 This work was financially supported by the European Research Council (ERC Starting Grant
713 URDNA, agreement nr. 638197, to GV), a CAPES-Humboldt fellowship from the Alexander von
714 Humboldt Foundation (agreement nr. 99999.000021/2016-04, to RCS), and the Max Planck Society.
715 We thank Andrea Musacchio (Max Planck Institute of Molecular Physiology, Dortmund, Germany)
716 for ongoing support and for sharing unpublished reagents. We acknowledge Andreas Brockmeyer and
717 Franziska Müller (Max Planck Institute of Molecular Physiology, Dortmund, Germany) for technical
718 and computational assistance in preparation of the XL-MS dataset. We thank Stephen Bell (MIT,
719 Cambridge, USA) for sharing reagents. We thank Andreas Hochwagen (NYU, New York, USA),
720 Adèle Marston (Wellcome Centre for Cell Biology, Edinburgh, UK), Hannah Blitzblau (Novogy,
721 Cambridge, USA) and Arnaud Rondelet (Max Planck Institute of Molecular Physiology, Dortmund,
722 Germany) for comments on the manuscript. We thank members of the Vader and Bird groups (Max
723 Planck Institute of Molecular Physiology, Dortmund, Germany) for helpful discussions and comments
724 on the manuscript.

725

726 **AUTHOR CONTRIBUTIONS**

727 MAVF, AS, EW and JRW performed *in vitro* biochemistry. MAVF, RCS, EW, VBR and GV
728 performed *in vivo* budding yeast experiments. MAVF and DP performed and analyzed XL-MS
729 experiments. MAVF, RCS and GV conceptualized experiments. GV supervised the project. GV and
730 MAVF wrote the manuscript with input from all authors.

731

732 **COMPETING INTERESTS**

733 None declared.

734

735 **LITERATURE**

- 736 1. Petronczki, M., Siomos, M.F. and Nasmyth, K. (2003) Un menage a quatre: the molecular
737 biology of chromosome segregation in meiosis. *Cell*, **112**, 423-440.
- 738 2. Roig, I., Dowdle, J.A., Toth, A., de Rooij, D.G., Jasin, M. and Keeney, S. (2010) Mouse
739 *TRIP13/PCH2* is required for recombination and normal higher-order chromosome structure
740 during meiosis. *PLoS genetics*, **6**.
- 741 3. San-Segundo, P.A. and Roeder, G.S. (1999) Pch2 links chromatin silencing to meiotic
742 checkpoint control. *Cell*, **97**, 313-324.
- 743 4. Borner, G.V., Barot, A. and Kleckner, N. (2008) Yeast Pch2 promotes domainal axis
744 organization, timely recombination progression, and arrest of defective recombinosomes during
745 meiosis. *Proceedings of the National Academy of Sciences of the United States of America*,
746 **105**, 3327-3332.
- 747 5. Bhalla, N. and Dernburg, A.F. (2005) A conserved checkpoint monitors meiotic chromosome
748 synapsis in *Caenorhabditis elegans*. *Science*, **310**, 1683-1686.
- 749 6. Joshi, N., Brown, M.S., Bishop, D.K. and Borner, G.V. (2015) Gradual Implementation of the
750 Meiotic Recombination Program via Checkpoint Pathways Controlled by Global DSB Levels.
751 *Molecular cell*, **57**, 797-811.
- 752 7. Li, X.C. and Schimenti, J.C. (2007) Mouse pachytene checkpoint 2 (trip13) is required for
753 completing meiotic recombination but not synapsis. *PLoS genetics*, **3**, e130.
- 754 8. Vader, G. (2015) Pch2(TRIP13): controlling cell division through regulation of HORMA
755 domains. *Chromosoma*, **124**, 333-339.
- 756 9. Hanson, P.I. and Whiteheart, S.W. (2005) AAA+ proteins: have engine, will work. *Nature*
757 reviews. *Molecular cell biology*, **6**, 519-529.
- 758 10. Chen, C., Jomaa, A., Ortega, J. and Alani, E.E. (2014) Pch2 is a hexameric ring ATPase that
759 remodels the chromosome axis protein Hop1. *Proceedings of the National Academy of
760 Sciences of the United States of America*, **111**, E44-53.
- 761 11. Ye, Q., Rosenberg, S.C., Moeller, A., Speir, J.A., Su, T.Y. and Corbett, K.D. (2015) TRIP13 is
762 a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. *eLife*, **4**.
- 763 12. Ye, Q., Kim, D.H., Dereli, I., Rosenberg, S.C., Hagemann, G., Herzog, F., Toth, A., Cleveland,
764 D.W. and Corbett, K.D. (2017) The AAA+ ATPase TRIP13 remodels HORMA domains
765 through N-terminal engagement and unfolding. *The EMBO journal*, **36**, 2419-2434.
- 766 13. Alfieri, C., Chang, L. and Barford, D. (2018) Mechanism for remodelling of the cell cycle
767 checkpoint protein MAD2 by the ATPase TRIP13. *Nature*, **559**, 274-278.
- 768 14. Vader, G., Blitzblau, H.G., Tame, M.A., Falk, J.E., Curtin, L. and Hochwagen, A. (2011)
769 Protection of repetitive DNA borders from self-induced meiotic instability. *Nature*, **477**, 115-
770 119.
- 771 15. Bell, S.P. and Labib, K. (2016) Chromosome Duplication in *Saccharomyces cerevisiae*.
772 *Genetics*, **203**, 1027-1067.
- 773 16. Bell, S.P. and Kaguni, J.M. (2013) Helicase loading at chromosomal origins of replication.
774 *Cold Spring Harbor perspectives in biology*, **5**.
- 775 17. Weissmann, F., Petzold, G., VanderLinden, R., Huis In 't Veld, P.J., Brown, N.G., Lampert, F.,
776 Westermann, S., Stark, H., Schulman, B.A. and Peters, J.M. (2016) biGBac enables rapid gene
777 assembly for the expression of large multisubunit protein complexes. *Proceedings of the
778 National Academy of Sciences of the United States of America*, **113**, E2564-2569.
- 779 18. Trowitzsch, S., Bieniossek, C., Nie, Y., Garzoni, F. and Berger, I. (2010) New baculovirus
780 expression tools for recombinant protein complex production. *J Struct Biol*, **172**, 45-54.
- 781 19. Wilde, M., Klausberger, M., Palmberger, D., Ernst, W. and Grabherr, R. (2014) Tnao38, high
782 five and Sf9--evaluation of host-virus interactions in three different insect cell lines:
783 baculovirus production and recombinant protein expression. *Biotechnol Lett*, **36**, 743-749.

784 20. Pan, D., Brockmeyer, A., Mueller, F., Musacchio, A. and Bange, T. (2018) Simplified Protocol
785 for Cross-linking Mass Spectrometry Using the MS-Cleavable Cross-linker DSBU with
786 Efficient Cross-link Identification. *Anal Chem*, **90**, 10990-10999.

787 21. Gotze, M., Pettelkau, J., Fritzsche, R., Ihling, C.H., Schafer, M. and Sinz, A. (2015) Automated
788 assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. *J Am Soc Mass
789 Spectrom*, **26**, 83-97.

790 22. Grimm, M., Zimniak, T., Kahraman, A. and Herzog, F. (2015) xVis: a web server for the
791 schematic visualization and interpretation of crosslink-derived spatial restraints. *Nucleic acids
792 research*, **43**, W362-369.

793 23. Duan, X., Hall, J.A., Nikaido, H. and Quiocho, F.A. (2001) Crystal structures of the
794 maltodextrin/maltose-binding protein complexed with reduced oligosaccharides: flexibility of
795 tertiary structure and ligand binding. *Journal of molecular biology*, **306**, 1115-1126.

796 24. Ritz, D., Vuk, M., Kirchner, P., Bug, M., Schutz, S., Hayer, A., Bremer, S., Lusk, C., Baloh,
797 R.H., Lee, H. *et al.* (2011) Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by
798 VCP and UBXD1 and impaired by VCP disease mutations. *Nature cell biology*, **13**, 1116-1123.

799 25. Herruzo, E., Ontoso, D., Gonzalez-Arranz, S., Cavero, S., Lechuga, A. and San-Segundo, P.A.
800 (2016) The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint
801 adaptor in response to synaptonemal complex defects. *Nucleic acids research*, **44**, 7722-7741.

802 26. Drury, L.S., Perkins, G. and Diffley, J.F. (2000) The cyclin-dependent kinase Cdc28p regulates
803 distinct modes of Cdc6p proteolysis during the budding yeast cell cycle. *Current biology : CB*,
804 **10**, 231-240.

805 27. Phizicky DV, B., Bell SP. (2018) Multiple kinases inhibit origin licensing and helicase
806 activation to ensure reductive cell division during meiosis.
eLife, Feb 1;7. pii: e33309.

808 28. Hochwagen, A., Tham, W.H., Brar, G.A. and Amon, A. (2005) The FK506 binding protein
809 Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity.
Cell, **122**, 861-873.

811 29. Blitzblau, H.G., Chan, C.S., Hochwagen, A. and Bell, S.P. (2012) Separation of DNA
812 replication from the assembly of break-competent meiotic chromosomes. *PLoS genetics*, **8**,
813 e1002643.

814 30. Yuan, Z., Riera, A., Bai, L., Sun, J., Nandi, S., Spanos, C., Chen, Z.A., Barbon, M., Rappaport,
815 J., Stillman, B. *et al.* (2017) Structural basis of Mcm2-7 replicative helicase loading by ORC-
816 Cdc6 and Cdt1. *Nature structural & molecular biology*, **24**, 316-324.

817 31. Haruki, H., Nishikawa, J. and Laemmli, U.K. (2008) The anchor-away technique: rapid,
818 conditional establishment of yeast mutant phenotypes. *Molecular cell*, **31**, 925-932.

819 32. Vincenten, N., Kuhl, L.M., Lam, I., Oke, A., Kerr, A.R., Hochwagen, A., Fung, J., Keeney, S.,
820 Vader, G. and Marston, A.L. (2015) The kinetochore prevents centromere-proximal crossover
821 recombination during meiosis. *eLife*, **4**.

822 33. Subramanian, V.V., MacQueen, A.J., Vader, G., Shinohara, M., Sanchez, A., Borde, V.,
823 Shinohara, A. and Hochwagen, A. (2016) Chromosome Synapsis Alleviates Mek1-Dependent
824 Suppression of Meiotic DNA Repair. *PLoS biology*, **14**, e1002369.

825 34. Subramanian, V.V., Zhu, X., Markowitz, T.E., Vale-Silva, L.A., San-Segundo, P.A.,
826 Hollingsworth, N.M., Keeney, S. and Hochwagen, A. (2019) Persistent DNA-break potential
827 near telomeres increases initiation of meiotic recombination on short chromosomes. *Nature
828 communications*, **10**, 970.

829 35. Herruzo, E., Santos, B., Freire, R., Carballo, J.A. and San-Segundo, P.A. (2019)
830 Characterization of Pch2 localization determinants reveals a nucleolar-independent role in the
831 meiotic recombination checkpoint. *Chromosoma*.

832 36. Yang N, X.R. (2013) Structure and function of the BAH domain in chromatin biology. *Crit Rev
833 Biochem Mol Biol.*, May-Jun;48(3):211-21.

834 37. Callebaut, I., Courvalin, J.C. and Mornon, J.P. (1999) The BAH (bromo-adjacent homology)
835 domain: a link between DNA methylation, replication and transcriptional regulation. *FEBS*
836 *Lett*, **446**, 189-193.
837
838
839

840 **FIGURE LEGENDS**

841

842 **Figure 1. *In vivo* characterization of ORC-Pch2.** A. Schematic of hexameric Pch2 AAA+ assembly,
843 with domains organization of Pch2. B. Co-immunoprecipitation of wild type Pch2 and Pch2-E399Q
844 with Orc1-TAP (via α -TAP-IP) during meiotic prophase (5 hours into meiotic program). C. Co-
845 immunoprecipitation of wild type Pch2 and Pch2-K320R with Orc1-TAP (via α -TAP-IP) during
846 meiotic prophase (5 hours into meiotic program). D. Schematic of Orc1-6 AAA+ complex and its
847 canonical role with the Cdc6 AAA+ protein (and additional factors) in MCM AAA+ complex loading
848 and DNA replication. E. Western blotting of yeast strains expressing Pch2 with Orc1-TAP, Orc2-TAP
849 and Orc5-TAP. Time points after meiosis induction are shown. * denotes Orc1-TAP degradation
850 fragment. F. Co-immunoprecipitation of Pch2-E399Q with Orc1-TAP, Orc2-TAP and Orc5-TAP
851 during meiotic prophase (5 hours into meiotic program) (via α -TAP-IP). For α -HA short and long
852 exposures are shown. G. Co-immunoprecipitation of Pch2-E399Q with Orc2 (via α -Orc2 IP). Isotype
853 IgG IP was used a negative control. H. Flow cytometry analysis of *CDC6* and *cdc6-mn*
854 (*pSCC1::CDC6*) (28) in meiosis. Time points after induction into the meiotic program are indicated. I.
855 Co-immunoprecipitation of Pch2-E399Q with ORC (via α -HA-IP) during meiotic prophase (5 hours
856 into meiotic program) in *CDC6* and *cdc6-mn*. J. Schematic of the role of Pch2 in controlling Spo11-
857 dependent DNA double strand break (DSB) formation within the flanking regions of the budding yeast
858 rDNA array located on chromosome XII. * indicates location of *YLR164W* locus, where DSB
859 formation is interrogated. K. Southern blot analysis of *YLR164W* locus (right rDNA flank;
860 chromosome XII) and *YCR047C* locus (control DSB region; chromosome III), in *dmc1Δ*, *pch2Δ*
861 *dmc1Δ*, *cdc6-mn dmc1Δ* and *cdc6-mn pch2Δ dmc1Δ* background. *dmc1Δ* is a DSB repair deficient
862 mutant used to detect accumulation of meiotic DSBs.

863

864 **Figure 2. *In vitro* reconstitution of the ORC-Pch2 complex.** A. Size exclusion chromatography
865 (SEC) of His-MBP-Pch2 purified from insect cells. Coomassie Brilliant Blue (CBB) staining of peak
866 fractions (dotted line) run on SDS-PAGE gel. * indicates likely monomeric fraction of His-MBP-Pch2.
867 AU stands for arbitrary units. B and C. Amylose based pulldown of ORC (Orc1-6) purified from
868 insect cells, with His-MBP-Pch2. B: CBB staining, C: Western blot analysis using α -MBP and α -
869 ORC. D. Size exclusion chromatography (SEC) of ORC-(His-MBP-Pch2) assembly. CBB staining of
870 peak fractions (dotted line) run on SDS-PAGE gel. AU stands for arbitrary units.

871

872 **Figure 3. Crosslinking mass-spectrometric analysis of ORC-Pch2 complex assembly.** A.
873 Schematic of DSBU-based crosslinking mass-spectrometry (XL-MS) experimental pipeline. B. CBB

874 staining of crosslinked Pch2-ORC. C. Right panel: table indicating total crosslinked peptides, and
875 derived non-redundant (inter- and intra-molecular) crosslinks with FDR of 2%. * indicates that
876 intramolecular crosslink peptides include 96 Pch2-Pch2 crosslinks, which can be derived from inter- or
877 intramolecular Pch2-Pch2 crosslinks. Left panel: Schematic indicating all identified non-redundant
878 crosslinks. Blue= inter-ORC, red= intra-ORC and intra-Pch2, black= inter-ORC-Pch2. D. Table
879 showing inter-ORC-Pch2 crosslinks. Indicated are residues in Pch2, and ORC subunits, domain of
880 Pch2 involved (NTD: 1-242, AAA+: 243-564). N indicates how often crosslinks were identified.
881 MeroX score is indicated. ● indicates crosslinked ORC residues that are mapped into cartoon
882 representation of ORC structure in F. E. Schematic indicating identified non-redundant inter-Pch2-
883 ORC crosslinks. F. Cartoon depiction of ORC organization, based on structure PBD 5v8f; (30). Black
884 dots represent ORC crosslinked residues in our XL-MS analysis. Note that, due to a lack of regions in
885 the structure used to generate the ORC schematic representation, not all crosslinks are represented (see
886 also text).

887

888 **Figure 4. The NH₂-terminal domain (NTD) of Pch2 is required for ORC-Pch2 formation.**

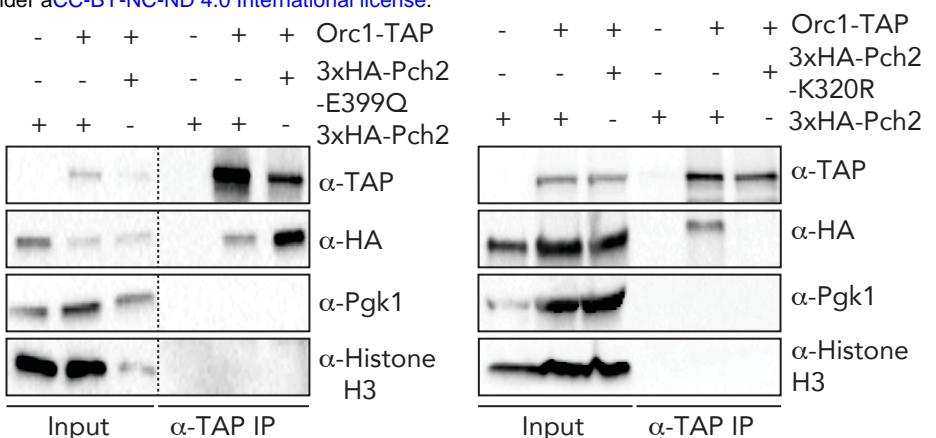
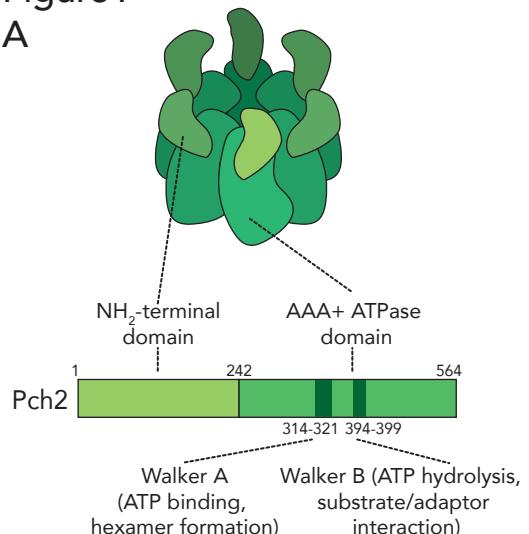
889 A. Schematic of Pch2 domain organization. B. Yeast two-hybrid analysis between Orc1 and Pch2 (full
890 length Pch2, and Pch2 243-564). C. Western blot analysis of meiotic time-course of yeast strains
891 expressing wild type 3xFLAG-Pch2 and 3xFLAG-Pch2 243-564. D. Co-immunoprecipitation of
892 3xFLAG-Pch2 and 3xFLAG-Pch2 243-564 with Orc1-TAP (via α -TAP-IP) during meiotic prophase
893 (4 hours into meiotic program). For α -Flag short and long exposures are shown. E. Amylose based
894 pulldown of ORC (Orc1-6) purified from insect cells, with His-MBP-Pch2 or His-MBP-Pch2 243-564;
895 CBB staining. F. Yeast two-hybrid analysis between Orc1 and NH₂-terminal fragments of Pch2 (2-
896 270, 2-257, 2-242, 2-233, 2-194, 2-144, 2-121, 2-91, 2-60, 2-27). Red-dotted box indicates the
897 minimal fragment of Pch2 that showed interaction with Orc1. G. Size exclusion chromatography
898 (SEC) of His-MBP-Pch2 2-144 purified from insect cells; CBB staining of the peak fractions (dotted
899 line). AU stands for arbitrary units. H. Amylose based pulldown of ORC (Orc1-6) purified from insect
900 cells, with His-MBP-Pch2 or His-MBP-Pch2 2-144; CBB staining. I. Amylose based pulldown of
901 ORC (Orc1-6) purified from insect cells, with His-MBP-Pch2 or His-MBP-Pch2 2-144; Western blot
902 analysis using α -MBP and α -ORC. J. Schematic of interaction mode between ORC and Pch2. Red-
903 dotted box indicates NH₂-terminal 2-144 region of Pch2's NTD.

904

905 **Figure 5. Functional *in vivo* analysis of ORC-Pch2.**

906 A. Schematic of ORC assembly and of rapamycin-based anchor away method. B. 10-fold serial
907 dilution spotting assay for anchor-away strains (untagged, *orc2-FRB* and *orc5-FRB*). Strains are grown

908 on YP-Dextrose (YPD) or YPD + rapamycin (1 μ g/mL). C. Flow cytometry analysis of efficiency of
909 *orc2-FRB* and *orc5-FRB* nuclear depletion. Cells were treated as indicated, with rapamycin (1 μ g/mL)
910 at t=0. D. Southern blot analysis of *YLR164W* locus (right rDNA flank; chromosome XII) and
911 *YCR047C* locus (control DSB region; chromosome III). *dmc1Δ* is a DSB repair deficient mutant that is
912 employed to detect accumulation of meiotic DSBs. Rapamycin (1 μ g/mL) or DMSO was added at
913 indicated t=0. Samples were taken at indicated time points after meiotic induction. E. schematic
914 indicating inter-MBP-Pch2 and inter-MBP-Orc1 non-redundant crosslinks. F. Yeast two-hybrid
915 analysis between Pch2 and Orc1, Orc2, Orc3, Orc4 and Orc6. G. Co-immunoprecipitations of Pch2
916 (wild type) with Orc2-TAP (upper panel) and Pch2-E399Q with Orc5-TAP (lower panel) in *ORC1* or
917 *orc1-161* backgrounds (via α -TAP-IP) during meiotic prophase (4 hours into meiotic program).
918 Experiments were performed at 23°C.



919

920

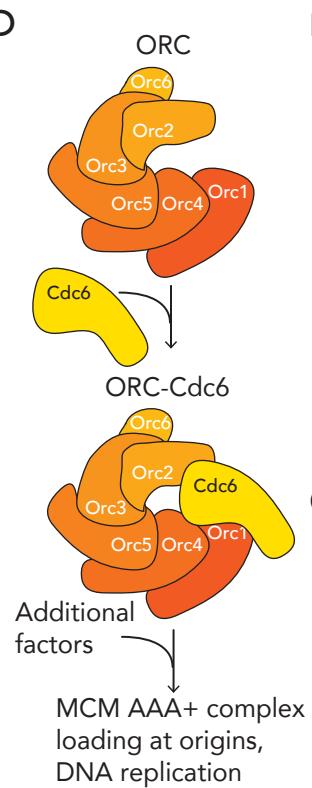
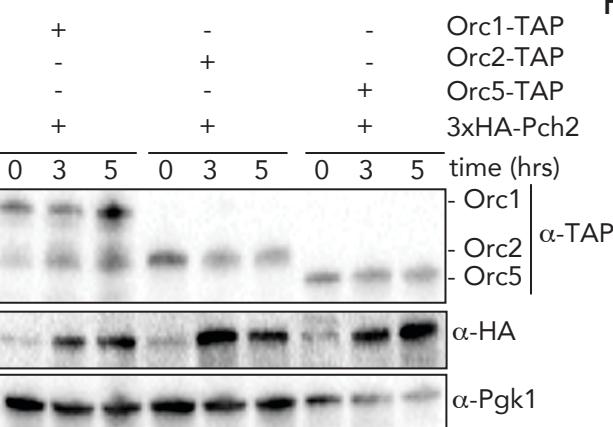
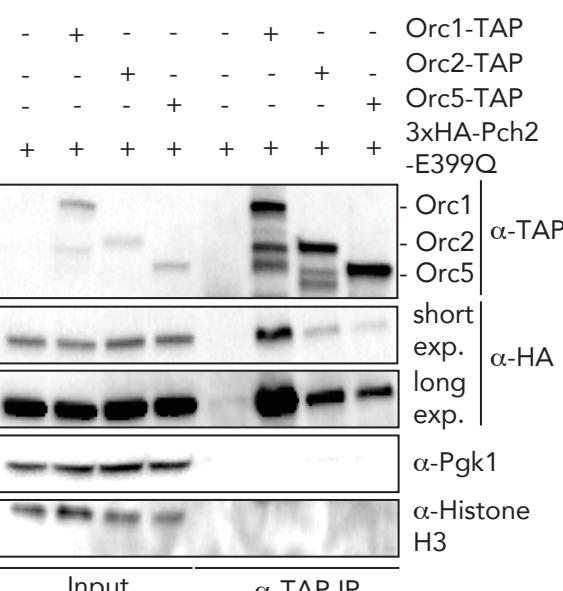
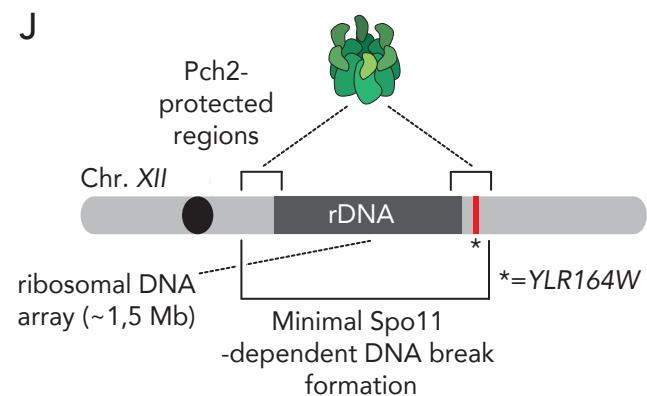
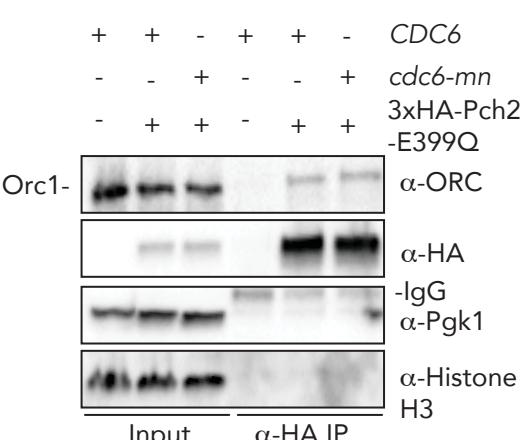
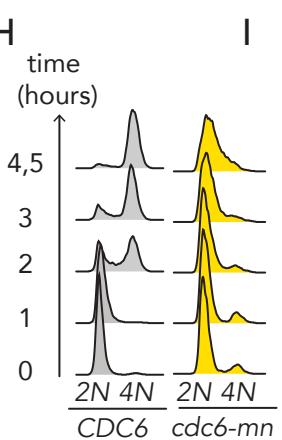

921

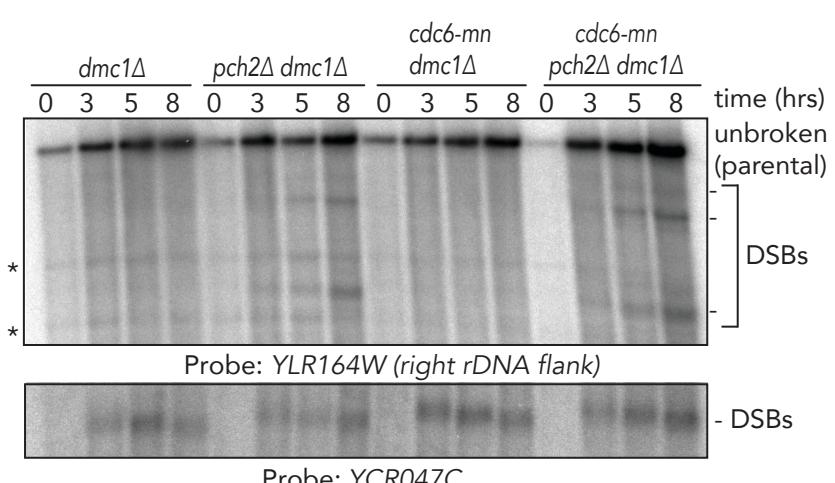
Figure 1


A

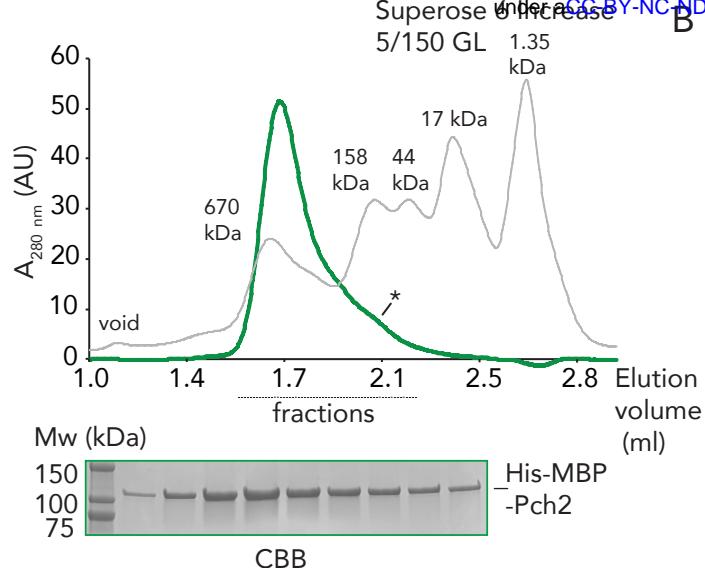

D


E



F


J

H I K



J

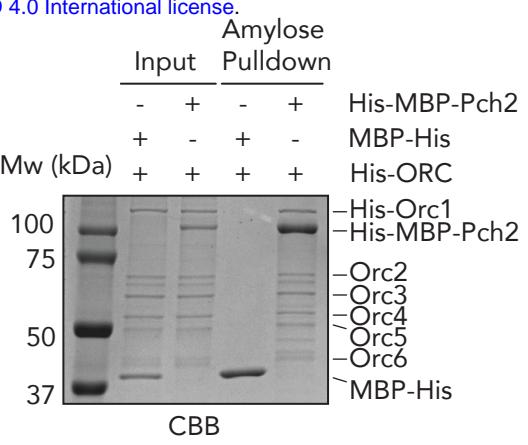
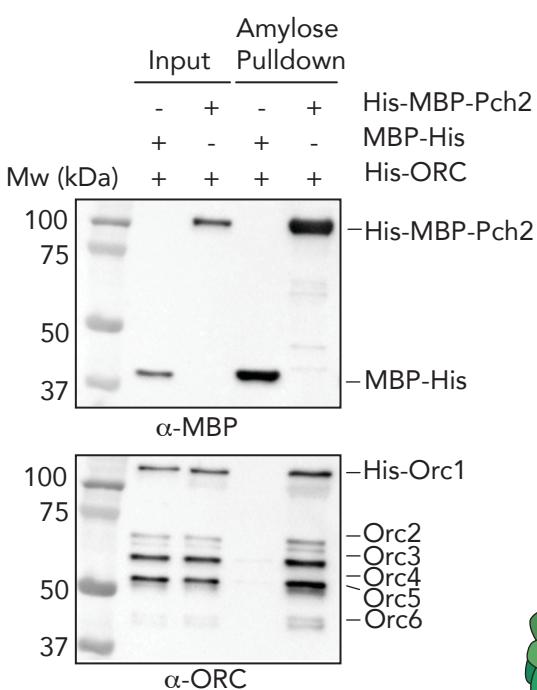


Figure 2


A

B

C

D

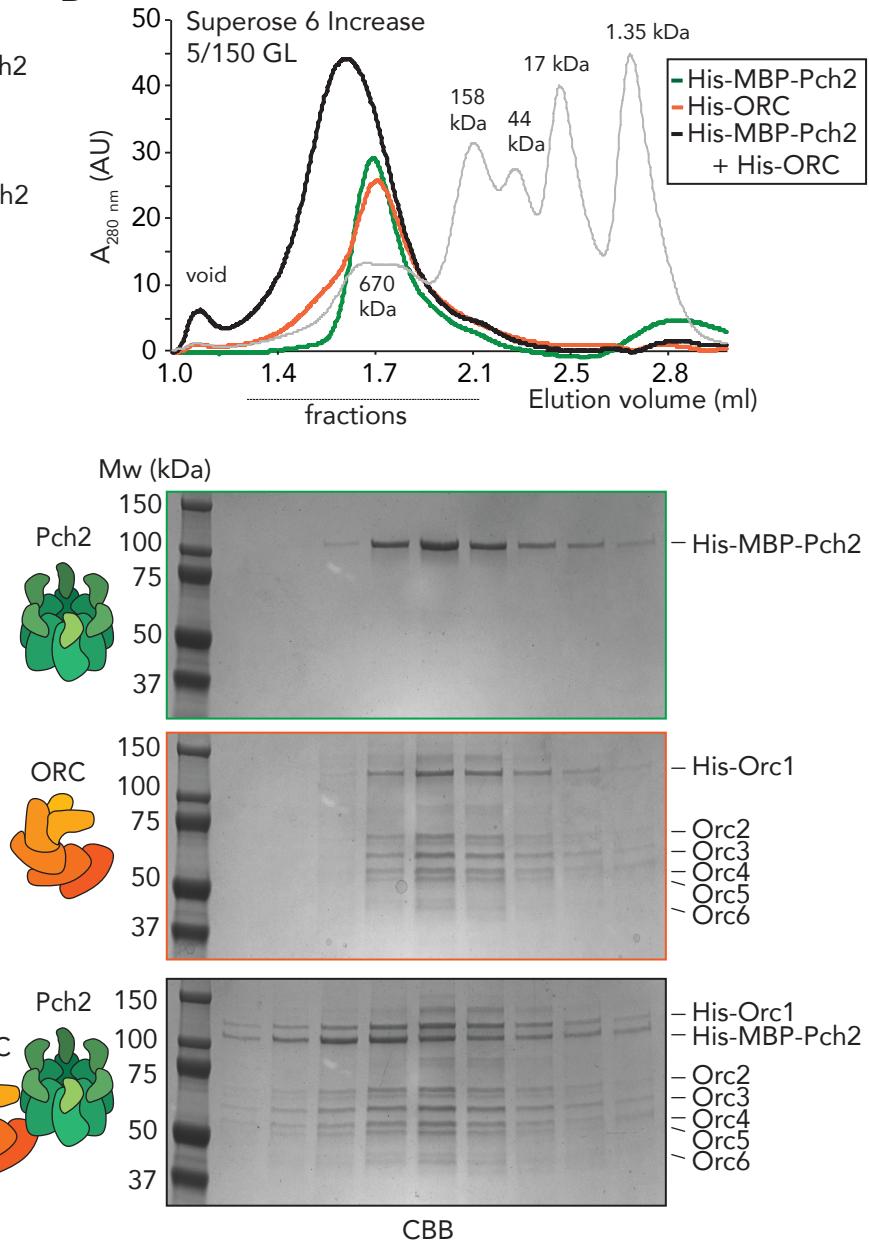
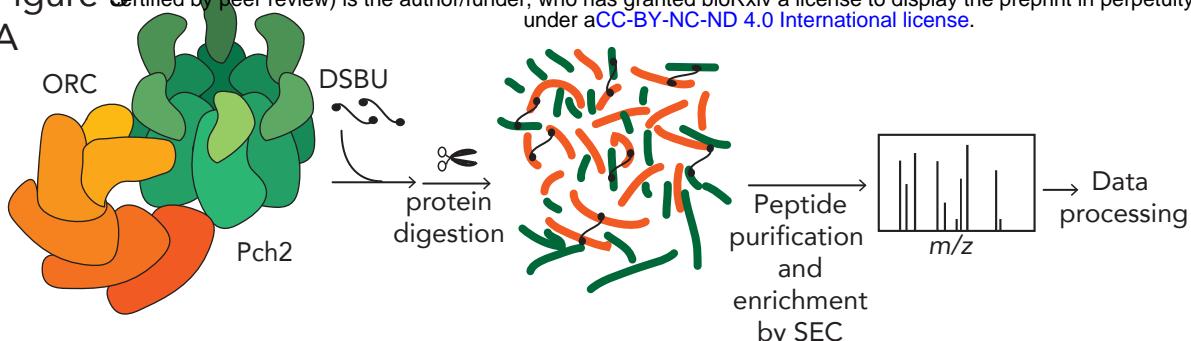
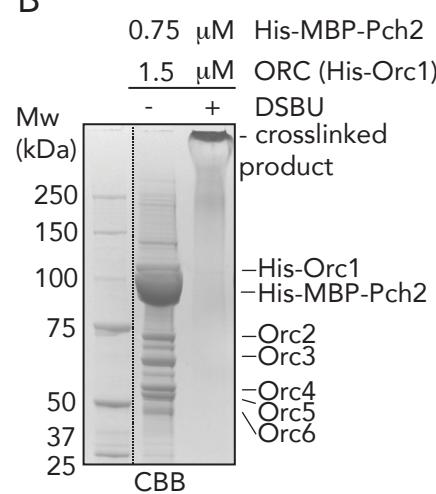
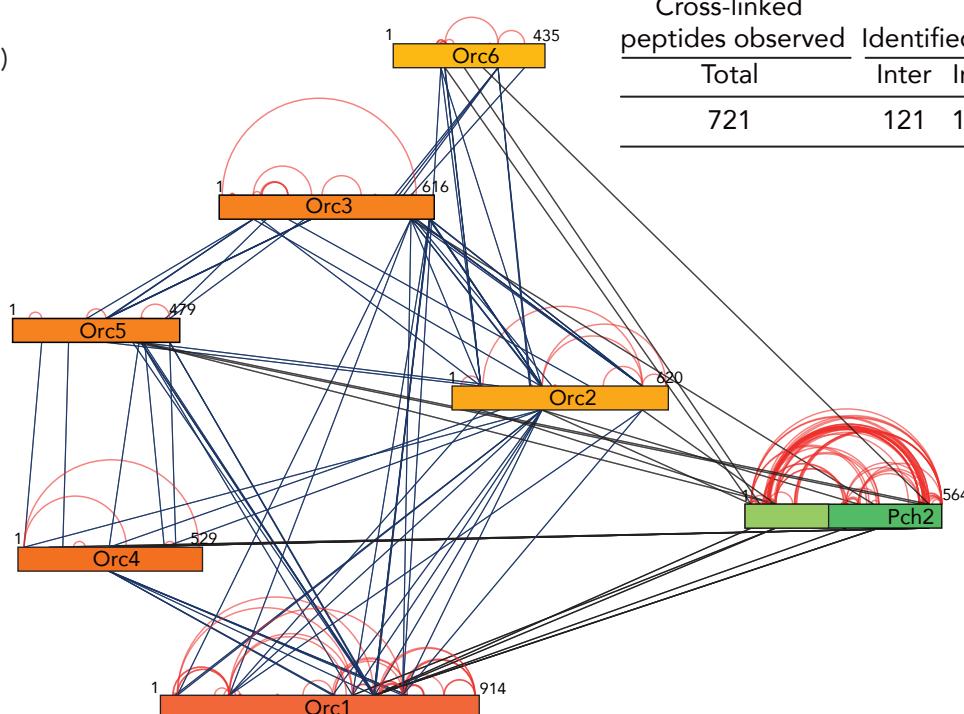
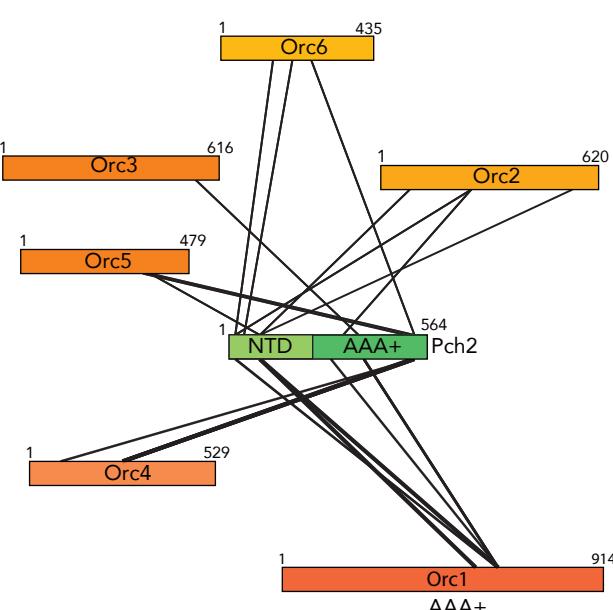




Figure 3


A

B

C



Cross-linked peptides observed	Identified cross-links		
	Total	Inter	Intra
721	121	192*	313

D

Pch2		ORC				
residues	domain	residues	N	Score		
K88	NTD	K551	2	93	•	
K18	NTD	K612	1	113	•	
K384	AAA+	Orc1	T614	1	131	•
K290	AAA+		S615	1	62	•
K88	NTD	S615	5	103	•	
K384	AAA+	S615	1	122	•	
K88	NTD	K83	1	89		
K325	AAA+	Orc2	K258	1	125	
K18	NTD	K258	2	133		
K88	NTD	K546	1	59		
S369	AAA+	Orc3	K550	1	81	•
K528	AAA+		S89	1	62	•
K528	AAA+	Orc4	K265	2	72	•
S522	AAA+		K265	1	64	•
K528	AAA+		K266	1	62	•
K504	AAA+		K348	1	57	•
K528	AAA+	Orc5	K369	1	62	
K88	NTD	K369	1	77		
K18	NTD	K149	1	57		
K43	NTD	Orc6	S204	1	59	
K528	AAA+		T258	1	56	

E

F

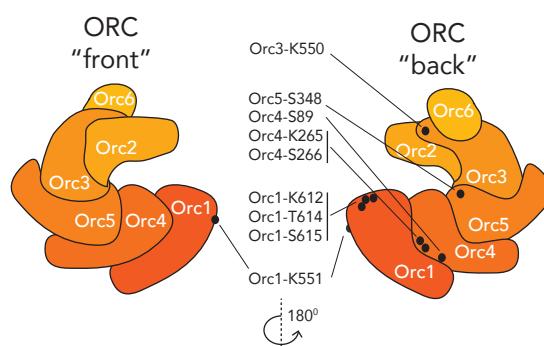


Figure 4

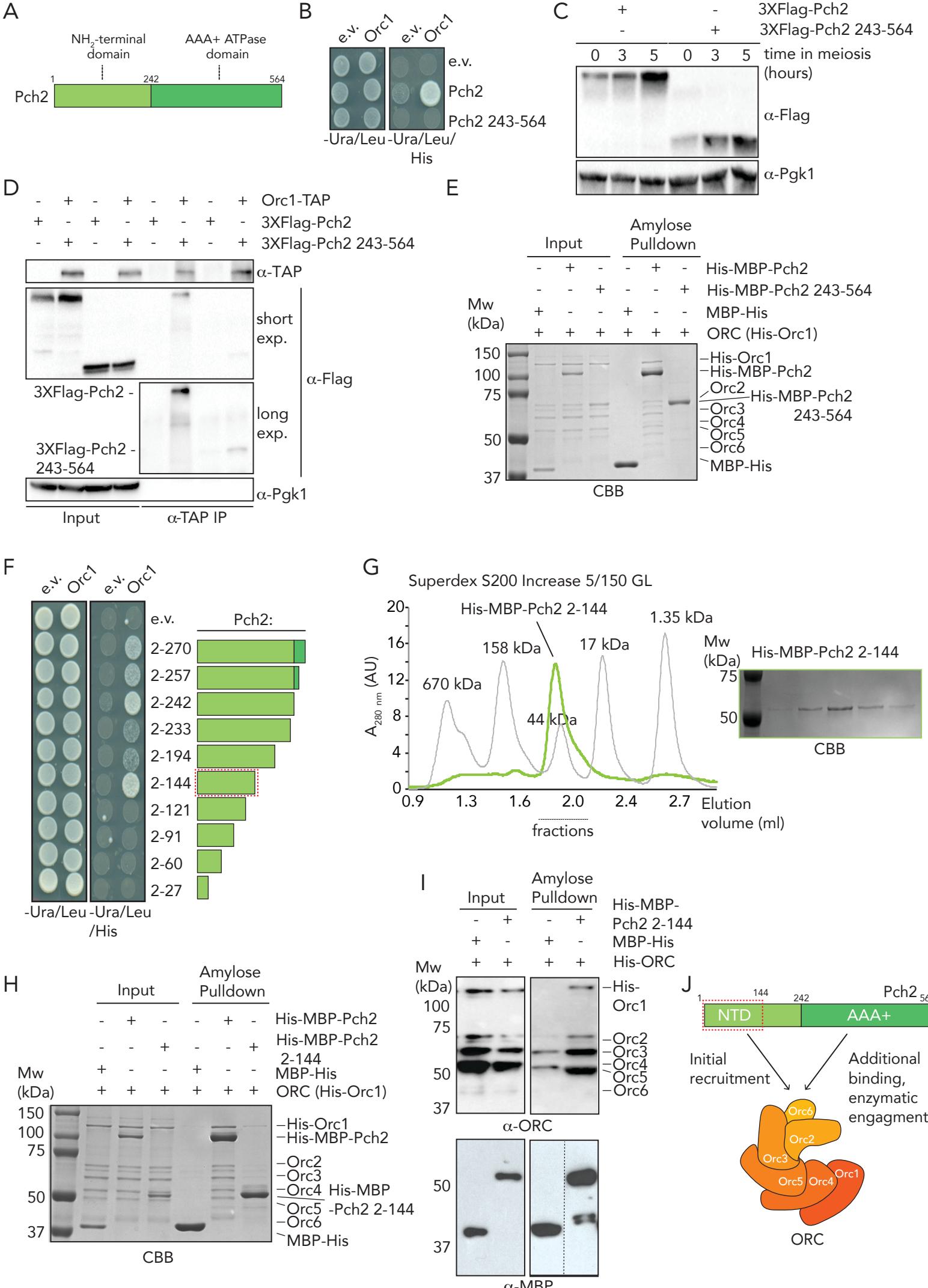
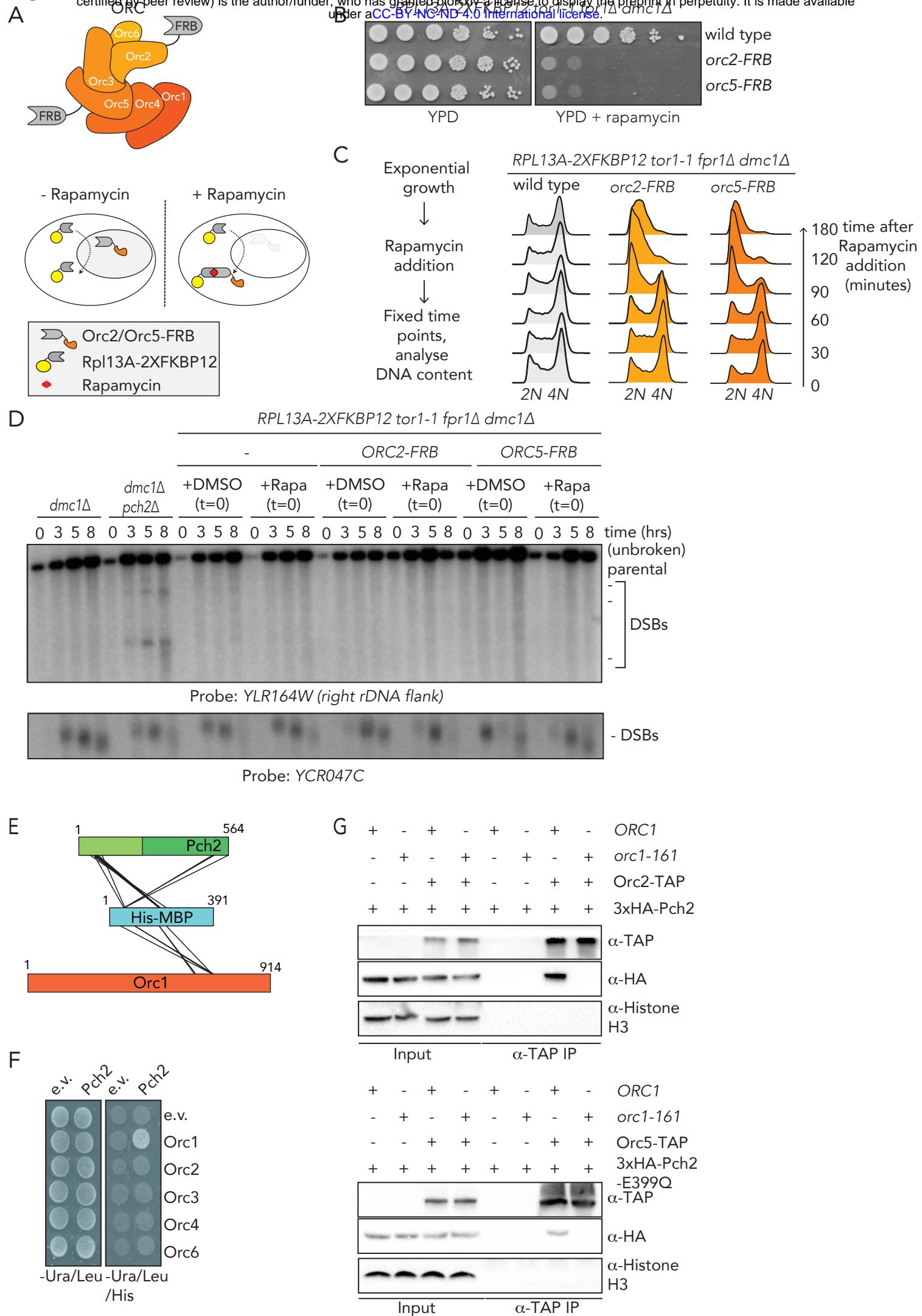



Figure 5

